

pyramid_mailer

pyramid_mailer is a package for the Pyramid [https://pypi.org/project/pyramid/] framework to take the pain out of sending emails.
It is compatible with Python 2.7, 3.4, 3.5, 3.6, and 3.7 as well as PyPy.
It has the following features:

	A wrapper around the low-level email functionality of standard
Python. This includes handling multipart emails with both text and HTML
content, and file attachments.

	The option of directly sending an email or adding it to the queue in your
maildir.

	Wrapping email sending in the transaction manager. If you have a view that
sends a customer an email for example, and there is an error in that view
(for example, a database error) then this ensures that the email is not
sent.

	A pyramid_mailer.DummyMailer class to help with writing unit
tests, or other situations where you want to avoid emails being sent
accidentally from a non-production install.

pyramid_mailer uses the repoze_sendmail [https://pypi.org/project/repoze.sendmail/] package for general email
sending, queuing and transaction management, and it borrows code from Zed
Shaw's Lamson [https://pypi.org/project/lamson/] library for low-level multipart message encoding and
wrapping.

Pre-Installation

For local development, a developer has a few options:

	Include the pyramid_mailer.debug module in your application's
configuration (see Debugging) so mails save to a local file.

	Run a fake SMTPD server for developing and debugging your webapp. Python
provides an SMTP server in its standard library called smtpd. We can make
use of it by simply running the following command in a new terminal (this
example uses port 2525; feel free to change that):

python -m smtpd -n -c DebuggingServer localhost:2525

	Use your ISP's mail relay.

	Ensure an SMTP server is installed and running. This is usually used
for a production environment. Follow instructions for the appropriate operating
system:

	Linux/OSX
	For Linux users, a common SMTP server to use is Postfix. Most Linux
distributions carry Postfix, so ensure it is installed and running.
Ubuntu/Debian users see Ubuntu's Postfix guide [https://help.ubuntu.com/lts/serverguide/postfix.html]. Other Linux users
can follow the ArchLinux Postfix guide [https://wiki.archlinux.org/index.php/postfix]. OSX users can
check out the OSX Postfix instructions [https://benjaminrojas.net/configuring-postfix-to-send-mail-from-mac-os-x-mountain-lion/].

	Windows
	Windows users can use Windows' built-in Internet Information
Services to setup an SMTP with IIS [http://www.neatcomponents.com/enable-SMTP-in-Windows-8].

Installation

Install using pip install pyramid_mailer or easy_install
pyramid_mailer.

If installing from source, untar/unzip, cd into the directory and do python
setup.py install.

The source repository is on Github [https://github.com/Pylons/pyramid_mailer]. Please report any bugs, issues or
queries there.

Getting Started (The Easier Way)

Or, in your application's configuration development.ini add:

pyramid.includes =
 pyramid_mailer
 ...
 pyramid_debugtoolbar
 pyramid_tm

Or, in your application's configuration stanza use the
pyramid.config.Configurator.include() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.include] method:

config.include('pyramid_mailer')

Thereafter, the mailer is available via the request.mailer attribute:

mailer = request.mailer

To send a message, you must first create a
Message instance:

from pyramid_mailer.message import Message

message = Message(subject="hello world",
 sender="admin@mysite.com",
 recipients=["arthur.dent@gmail.com"],
 body="hello, arthur")

The Message is then passed to the Mailer instance. You can either
send the message right away:

mailer.send(message)

or add it to your mail queue (a maildir on disk):

mailer.send_to_queue(message)

Usually you provide the sender to your Message instance. Often
however a site might just use a single from address. If that is the case you
can provide the default_sender to your Mailer and this will be used
in throughout your application as the default if the sender is not
otherwise provided.

If you don't want to use transactions, you can side-step them by using
send_immediately():

mailer.send_immediately(message, fail_silently=False)

This will send the email immediately, without the transaction, so if it fails
you have to deal with it manually. The fail_silently flag will swallow
any connection errors silently - if it's not important whether the email gets
sent.

Getting Started (The Harder Way)

To get started the harder way (without using config.include), create an
instance of pyramid_mailer.mailer.Mailer:

from pyramid_mailer.mailer import Mailer

mailer = Mailer()

The mailer can take a number of optional settings, detailed in
Configuration. It's a good idea to create a single Mailer instance
for your application, and add it to your registry in your configuration
setup:

config = Configurator(settings=settings)
config.registry['mailer'] = Mailer.from_settings(settings)

or alternatively:

from pyramid_mailer import mailer_factory_from_settings
config.registry['mailer'] = mailer_factory_from_settings(settings)

You can then access your mailer in a view:

def my_view(request):
 mailer = request.registry['mailer']

Note that the pyramid_mailer.get_mailer() API will not work if you
construct and set your own mailer in this way.

Configuration

If you configure a Mailer using
from_settings() or via
config.include('pyramid_mailer'), you can pass the settings from your
Paste .ini file. For example:

[app:myproject]
mail.host = localhost
mail.port = 25

By default, the prefix is assumed to be mail.. If you use the
config.include mechanism, to set another prefix, use the
pyramid_mailer.prefix key in the config file. For example:

[app:myproject]
foo.host = localhost
foo.port = 25
pyramid_mailer.prefix = foo.

If you use the pyramid_mailer.mailer.Mailer.from_settings() or
pyramid_mailer.mailer_factory_from_settings() API, these accept a
prefix directly; for example:

mailer_factory_from_settings(settings, prefix='foo.')

If you don't use Paste, just pass the settings directly into your Pyramid
Configurator:

settings = {'mail.host':'localhost', 'mail.port':'25'}
Configurator(settings=settings)
config.include('pyramid_mailer')

The available settings are listed below.

	Setting

	Default

	Description

	mail.host

	localhost

	SMTP host

	mail.port

	25

	SMTP port

	mail.username

	None

	SMTP username

	mail.password

	None

	SMTP password

	mail.tls

	False

	Use TLS

	mail.ssl

	False

	Use SSL

	mail.keyfile

	None

	SSL key file

	mail.certfile

	None

	SSL certificate file

	mail.queue_path

	None

	Location of maildir

	mail.default_sender

	None

	Default from address

	mail.debug

	0

	SMTP debug level

	mail.sendmail_app

	/usr/sbin/sendmail

	Sendmail executable

	mail.sendmail_template

	{sendmail_app} -t -i -f {sender}

	Template for sendmail execution

	mail.debug_include_bcc

	False

	Include Bcc headers when Debugging

	Note: SSL will only work with pyramid_mailer if you are using Python
	2.6 or higher, as it uses the SSL additions to the smtplib
package. While it may be possible to work around this if you have to use
Python 2.5 or lower, pyramid_mailer does not support this out of the
box.

Note: the mail.debug option will be passed to the underlying
smtplib connection. Any values for this option that Python would consider
> 0 will result in debug messages for all messages sent and received from
the server. Thus, specifying mail.debug with any value will result in debug
messages as pyramid_mailer will not attempt to coerce this value from its
original string.

Transactions

If you are using transaction management with your Pyramid application then
pyramid_mailer will only send the emails (or add them to the mail queue)
when the transactions are committed.

For example:

import transaction

from pyramid_mailer.mailer import Mailer
from pyramid_mailer.message import Message

mailer = Mailer()
message = Message(subject="hello arthur",
 sender="ford.prefect@gmail.com",
 recipients=['arthur.dent@gmail.com'],
 body="hello from ford")

mailer.send(message)
transaction.commit()

The email is not actually sent until the transaction is committed.

When the repoze.tm2 [https://pypi.org/project/repoze.tm2/] tm
middleware is in your Pyramid WSGI pipeline or if you've included the
pyramid_tm package in your Pyramid configuration, transactions are
already managed for you, so you don't need to explicitly commit or abort
within code that sends mail. Instead, if an exception is raised, the
transaction will implicitly be aborted and mail will not be sent; otherwise
it will be committed, and mail will be sent.

HTML email

Below is a recipe how to send templatized HTML and plain text email.
The email is assembled from three templates: subject, HTML body and text
body. It is also recommend to use premailer [https://pypi.org/project/premailer/]
Python package to transform email CSS styles to inline CSS, as
email clients are pretty restricted what comes to their ability to understand
CSS.

from pyramid.renderers import render

from pyramid_mailer import get_mailer
from pyramid_mailer.message import Message

import premailer

def send_templated_mail(request, recipients, template, context, sender=None):
 """Send out templatized HTML and plain text emails.

 The email is assembled from three different templates:

 * Read subject from a subject specific template $template.subject.txt

 * Generate HTML email from HTML template, $template.body.html

 * Generate plain text email from HTML template, $template.body.txt

 :param request: HTTP request, passed to the template engine. Request configuration is used to get hold of the configured mailer.

 :param recipients: List of recipient emails

 :param template: Template filename base string for template tripled (subject, HTML body, plain text body). For example ``email/my_message`` would map to templates ``email/my_message.subject.txt``, ``email/my_message.body.txt``, ``email/my_message.body.html``

 :param context: Template context variables as a dict

 :param sender: Override the sender email - if not specific use the default set in the config as ``mail.default_sender``
 """

 assert recipients
 assert len(recipients) > 0

 subject = render(template + ".subject.txt", context, request=request)
 subject = subject.strip()

 html_body = render(template + ".body.html", context, request=request)
 text_body = render(template + ".body.txt", context, request=request)

 if not sender:
 sender = request.registry.settings["mail.default_sender"]

 # Inline CSS styles
 html_body = premailer.transform(html_body)

 message = Message(subject=subject, sender=sender, recipients=recipients, body=text_body, html=html_body)

 mailer = get_mailer(request)
 mailer.send(message)

Attachments

Attachments are added using the pyramid_mailer.message.Attachment
class:

from pyramid_mailer.message import Attachment
from pyramid_mailer.message import Message

message = Message()

photo_data = open("photo.jpg", "rb").read()
attachment = Attachment("photo.jpg", "image/jpg", photo_data)

message.attach(attachment)

You can pass the data either as a string or file object, so the above code
could be rewritten:

from pyramid_mailer.message import Attachment
from pyramid_mailer.message import Message

message = Message()

attachment = Attachment("photo.jpg", "image/jpg",
 open("photo.jpg", "rb"))

message.attach(attachment)

A transfer encoding can be specified via the transfer_encoding option.
Supported options are currently quoted-printable (default), base64,
7bit and 8bit.

You can also pass an attachment as the body and/or html
arguments to specify Content-Transfer-Encoding or other
Attachment attributes:

from pyramid_mailer.message import Attachment
from pyramid_mailer.message import Message

body = Attachment(data="hello, arthur",
 transfer_encoding="quoted-printable")
html = Attachment(data="<p>hello, arthur</p>",
 transfer_encoding="quoted-printable")
message = Message(body=body, html=html)

Debugging

If your site is in development and you want to avoid accidental sending of any
emails to customers, but still see what emails would get sent, you can use
config.include('pyramid_mailer.debug') to make the current mailer an
instance of the pyramid_mailer.mailer.DebugMailer, hence writing all
emails to a file instead of sending them out. In other words if you add
pyramid_mailer.debug to your development.ini, all emails that would be sent
out will instead get written to files so you can inspect them:

pyramid.includes =
 pyramid_mailer.debug
 ...
 pyramid_debugtoolbar
 pyramid_tm

Set the mail.debug_include_bcc flag to True if you want the bcc recipients written to the file

Unit tests

When running unit tests you probably don't want to actually send any emails
inadvertently. However it's still useful to keep track of what emails would
be sent in your tests.

In either case, config.include('pyramid_mailer.testing') can be used to
make the current mailer an instance of the
pyramid_mailer.mailer.DummyMailer:

from pyramid import testing

class TestViews(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()
 self.config.include('pyramid_mailer.testing')

 def tearDown(self):
 testing.tearDown()

 def test_some_view(self):
 from pyramid.testing import DummyRequest
 from pyramid_mailer import get_mailer
 request = DummyRequest()
 mailer = get_mailer(request)
 response = some_view(request)

One can also use the DummyMailer to keep track of emails sent from a WebTest [https://pypi.org/project/WebTest/] functional test.:

class FunctionalTests(unittest.TestCase):
 def setUp(self):
 from myapp import main
 settings = {'pyramid.includes' : 'pyramid_mailer.testing'}
 app = main({}, **settings)
 from webtest import TestApp
 self.testapp = TestApp(app)

 def test_some_functionality(self):
 res = self.testapp.get('/post_email', status=200)
 registry = self.testapp.app.registry
 mailer = get_mailer(registry)

The DummyMailer instance keeps track of emails "sent" in two properties:
queue for emails send via
pyramid_mailer.mailer.Mailer.send_to_queue() and outbox for emails
sent via pyramid_mailer.mailer.Mailer.send(). Each stores the
individual Message instances:

self.assertEqual(len(mailer.outbox), 1)
self.assertEqual(mailer.outbox[0].subject, "hello world")

self.assertEqual(len(mailer.queue), 1)
self.assertEqual(mailer.queue[0].subject, "hello world")

Queue

When you send mail to a queue via
pyramid_mailer.mailer.Mailer.send_to_queue(), the mail will be placed
into a maildir directory specified by the queue_path parameter or
setting to
pyramid_mailer.mailer.Mailer. A separate process will need to be
launched to monitor this maildir and take actions based on its state. Such a
program comes as part of repoze_sendmail [https://pypi.org/project/repoze.sendmail/] (a dependency of the
pyramid_mailer package). It is known as qp. qp will be
installed into your Python (or virtualenv) bin or Scripts directory
when you install repoze_sendmail.

qp is a script that is meant to be run as a cron job because what it does
is that it looks at maildir and sends messages. You'll need to arrange
for qp to be a long-running process that monitors the maildir state.:

$ bin/qp /path/to/mail/queue

This will attempt to use the localhost SMTP server to send any messages in
the queue over time. qp has other options that allow you to choose
different settings. Use it's --help parameter to see more:

$ bin/qp --help

Note

Sending messages via the queue requires the use of a transaction manager.
If no manager is enabled, it must be emulated by issuing a manual commit
via transaction.commit().

import transaction
tx = transaction.begin()
mailer.send_to_queue(msg)
try:
 tx.commit()
except Exception:
 # handle a failed delivery

API

	
mailer_factory_from_settings(settings, prefix='mail.')

	Factory function to create a Mailer instance from settings.
Equivalent to pyramid_mailer.mailer.Mailer.from_settings().

	Versionadded

	0.2.2

	
get_mailer(request)

	Obtain a mailer previously registered via
config.include('pyramid_mailer') or
config.include('pyramid_mailer.testing').

The mailer instance will be re-bound to the transaction manager set via
request.tm if available.

	Versionadded

	0.4

	
class Mailer(**kw)

	Manages sending of email messages.

	Parameters

	
	host -- SMTP hostname

	port -- SMTP port

	username -- SMTP username

	password -- SMPT password

	tls -- use TLS

	ssl -- use SSL

	keyfile -- SSL key file

	certfile -- SSL certificate file

	queue_path -- path to maildir for queued messages

	default_sender -- default "from" address

	sendmail_app -- path to "sendmail" binary.
repoze defaults to "/usr/sbin/sendmail"

	sendmail_template -- custom commandline template for sendmail binary,
defaults to'["{sendmail_app}", "-t", "-i", "-f", "{sender}"]'

	transaction_manager -- a transaction manager to join with when
sending transactional emails

	debug -- SMTP debug level

	
bind(**kw)

	Create a new mailer with the same server configuration but with
different delivery options.

	Parameters

	
	default_sender -- default "from" address

	transaction_manager -- a transaction manager to join with when
sending transactional emails

	
classmethod from_settings(settings, prefix='mail.')

	Create a new instance of 'Mailer' from settings dict.

	Parameters

	
	settings -- a settings dict-like

	prefix -- prefix separating 'pyramid_mailer' settings

	
send(message)

	Send a message.

The message is handled inside a transaction, so in case of failure
(or the message fails) the message will not be sent.

	Parameters

	message -- a 'Message' instance.

	
send_immediately(message, fail_silently=False)

	Send a message immediately, outside the transaction manager.

If there is a connection error to the mail server this will have to
be handled manually. However if you pass fail_silently the error
will be swallowed.

	Versionadded

	0.3

	Parameters

	
	message -- a 'Message' instance.

	fail_silently -- silently handle connection errors.

	
send_immediately_sendmail(message, fail_silently=False)

	Send a message immediately, outside the transaction manager.

Uses the local sendmail option

If there is a connection error to the mail server this will have to
be handled manually. However if you pass fail_silently the error
will be swallowed.

	Parameters

	
	message -- a 'Message' instance.

	fail_silently -- silently handle connection errors.

	
send_sendmail(message)

	Send a message within the transaction manager.

Uses the local sendmail option

	Parameters

	message -- a 'Message' instance.

	
send_to_queue(message)

	Add a message to a maildir queue.

In order to handle this, the setting 'mail.queue_path' must be
provided and must point to a valid maildir.

	Parameters

	message -- a 'Message' instance.

	
class DummyMailer

	Dummy mailer instance, used for example in unit tests.

Sent messages are appended to 'outbox' list.

Queued messages are appended to 'queue' list.

	
bind(**kw)

	Get mailer with the same server configuration but with
different delivery options.

This method returns self, and is, essentially a no-op, but
is included for API compatibility with Mailer.

	Parameters

	
	default_sender -- default "from" address

	transaction_manager -- a transaction manager to join with when
sending transactional emails

	
send(message)

	Mock sending a transactional message via SMTP.

The message is appended to the 'outbox' list.

	Parameters

	message -- a 'Message' instance.

	
send_immediately(message, fail_silently=False)

	Mock sending an immediate (non-transactional) message.

The message is appended to the 'outbox' list.

	Versionadded

	0.3

	Parameters

	
	message -- a 'Message' instance.

	fail_silently -- swallow connection errors (ignored here)

	
send_immediately_sendmail(message, fail_silently=False)

	Mock sending an immediate (non-transactional) message.

The message is added to the 'outbox' list.

	Parameters

	
	message -- a 'Message' instance.

	fail_silently -- swallow connection errors (ignored here)

	
send_sendmail(message)

	Mock sending a transactional message via sendmail.

The message is added to the 'outbox' list.

	Parameters

	message -- a 'Message' instance.

	
send_to_queue(message)

	Mock sending to a maildir queue.

The message is appended to the 'queue' list.

	Parameters

	message -- a 'Message' instance.

	
class Message(subject=None, recipients=None, body=None, html=None, sender=None, cc=None, bcc=None, extra_headers=None, attachments=None)

	Encapsulates an email message.

	Parameters

	
	subject -- email subject header

	recipients -- list of email addresses

	body -- plain text message (may be an Attachment or text)

	html -- HTML message (may be an Attachment or text)

	sender -- email sender address

	cc -- CC list

	bcc -- BCC list

	extra_headers -- dict of extra email headers

	attachments -- list of Attachment instances

The message must have a body or html part (or both) to be successfully
sent.

	
add_bcc(recipient)

	Adds an email address to the BCC list.

	Parameters

	recipient -- email address of recipient.

	
add_cc(recipient)

	Adds an email address to the CC list.

	Parameters

	recipient -- email address of recipient.

	
add_recipient(recipient)

	Adds another recipient to the message.

	Parameters

	recipient -- email address of recipient.

	
attach(attachment)

	Adds an attachment to the message.

	Parameters

	attachment -- an Attachment instance.

	
is_bad_headers()

	Checks for bad headers i.e. newlines in subject, sender or recipients.

	
to_message()

	Returns raw email.Message instance. Validates message first.

	
validate()

	Checks if message is valid and raises appropriate exception.

	
class Attachment(filename=None, content_type=None, data=None, disposition=None, transfer_encoding=None, content_id=None)

	Encapsulates file attachment information.

	Parameters

	
	filename -- filename of attachment (if any)

	content_type -- file mimetype (if any, may contain extra params in
the form "text/plain; charset='utf-8'").

	data -- the raw file data, either as text or a file object

	disposition -- content-disposition (if any, may contain extra
params in the form 'attachment; filename="fred.txt"'). If filename
is supplied in the disposition, it will be used if no filename
is supplied to the Attachment constructor. If disposition is
not supplied, it will default to 'attachment'.

	transfer_encoding -- content-transfer-encoding (if any, may be
'base64' or 'quoted-printable'). If it is not supplied, it will
default to 'base64'.

	
class InvalidMessage

	Raised if message is missing vital headers, such
as recipients or sender address.

	
class BadHeaders

	Raised if message contains newlines in headers.

Change History

	Change History
	unreleased

	0.15.1 (2016-12-13)

	0.15 (2016-12-06)

	0.14.1 (2015-05-21)

	0.14 (2014-12-10)

	0.13 (2013-07-13)

	0.12 (2013-06-26)

	0.11 (2013-03-28)

	0.10 (2012-11-22)

	0.9 (2012-05-03)

	0.8 (2012-03-26)

	0.7 (2012-03-26)

	0.7dev (2012-03-20)

	0.6 (2012-01-22)

	0.5.1 (2011-11-13)

	0.5 (2011-10-24)

	0.4.X

Change History

unreleased

	Bring repo up to Pylons Project standards.
See https://github.com/Pylons/pyramid_mailer/pull/89

	Optionally include bcc information on send.
See https://github.com/Pylons/pyramid_mailer/pull/87

0.15.1 (2016-12-13)

	Add the new .bind method to the DebugMailer and the
DummyMailer. Also pyramid_mailer.testing and
pyramid_mailer.debug now add the request.mailer request attribute.
https://github.com/Pylons/pyramid_mailer/pull/83

0.15 (2016-12-06)

	Support '7bit' and '8bit' transfer-encoding.
https://github.com/Pylons/pyramid_mailer/pull/49

	If username and password are both set to the empty string,
Mailer.from_settings, now interprets them as being set to None.
Previously, setting them to the empty string caused SMTP authentication
to be force with empty username and password.
https://github.com/Pylons/pyramid_mailer/pull/70

	Add a content_id argument to the Attachment constructor
which allows you to set the Content-ID header so you can reference it from
an HTML body.
https://github.com/Pylons/pyramid_mailer/pull/71

	Change file extension to .eml for mails saved from
DebugMailer. .eml is the standard file format for storing
plaintext MIME (rfc822) emails.
https://github.com/Pylons/pyramid_mailer/pull/72

	Drop Python 2.6 and 3.2 support.
https://github.com/Pylons/pyramid_mailer/pull/77

	Add Python 3.5 support.

	Support per-request transaction managers if available via
request.tm set by pyramid_tm.
https://github.com/Pylons/pyramid_mailer/pull/78

0.14.1 (2015-05-21)

	Enable compatibility testing with Pyramid all the way back to 1.2. It may
work earlier but we aren't testing it any longer.

	Fix a bug where the mailer.debug ini option was not properly being
cast to an int. This did not show up on Python 2 because string
to int comparisons are valid there but it was a latent bug.
See https://github.com/Pylons/pyramid_mailer/pull/68

0.14 (2014-12-10)

	Added support for Python3.4, PyPy3.

	Ensure that DebugMailer emulates Mailer by generating
a sender if none is passed.
https://github.com/Pylons/pyramid_mailer/pull/56

	Add configuration options for mail.sendmail_app and
mail.sendmail_template to allow use with non-default sendmail
configurations.
https://github.com/Pylons/pyramid_mailer/pull/52

	Add pyramid_mailer.debug shorthand: via one line in
development.ini, enables writing emails to a file instead of sending
them.
https://github.com/Pylons/pyramid_mailer/pull/50

0.13 (2013-07-13)

	Default transfer encoding for mail messages is now
'quoted-printable'.
https://github.com/Pylons/pyramid_mailer/pull/45

0.12 (2013-06-26)

	Added support for sendmail binary via repoze.sendmail >= 4.0b2.
https://github.com/Pylons/pyramid_mailer/pull/35

	Remove "all_parts" and "attach_all_parts" from MailResponse object (unused by
pyramid_mailer).

	The Attachment class no longer supports reading data from the a file based on
the filename it is passed. Instead, use the filename argument only as
something that should go in the Content-Disposition header, and pass a
filelike object as data.

	Major code overhaul: nonascii attachment sending now actually works, most of
the code stolen from Lamson was gutted and replaced.

	Requires repoze.sendmail >= 4.1

0.11 (2013-03-28)

	Allow setting Content-Transfer-Encoding for body and html
via Attachments.
https://github.com/Pylons/pyramid_mailer/issues/29

	Fix handling of messages with both HTML and plain text
bodies that also have attachments.
https://github.com/Pylons/pyramid_mailer/issues/32

	ensure that pyramid_mailer.response.to_message returns
text under Python 3.x.
https://github.com/Pylons/pyramid_mailer/issues/24

	Dropped support for Python 2.5.

0.10 (2012-11-22)

	Set default transfer encoding for attachments to base64 and allow
an optional transfer_encoding argument for attachments. This currently
supports base64 or quoted-printable.

	Properly handle Mailer.from_settings boolean options including tls
and ssl.

	Support setup.py dev (installs testing dependencies).

	Use setup.py dev in tox.ini.

0.9 (2012-05-03)

	Add a test for uncode encoding in multipart messages.

	Depend on repoze.sendmail >= 3.2 (fixes unicode multipart message
encoding).

0.8 (2012-03-26)

	Work around a Python 3.2.0 bug in handling emails with empty headers. This
allows cc-only and bcc-only emails to be handled properly on all platforms
(no recipient= required anymore). See
https://github.com/Pylons/pyramid_mailer/issues/14.

0.7 (2012-03-26)

	Packaging release

0.7dev (2012-03-20)

	Python 2.5, 2.6, 2.7, 3.2, and pypy compatibility.

	Remove explicit Jython support. It may work, but we no longer test it
using automated testing.

	Requires repoze.sendmail 3.0+.

	More descriptive exception raised when attempting to send cc-only or
bcc-only messages. See https://github.com/Pylons/pyramid_mailer/issues/14

0.6 (2012-01-22)

	Use ',' as an email header field separator rather than ';' when multiple
values are in the same header (as per RFC822).

	Allow lists of recipient emails to be tuples or lists (previously it was
just lists).

	Don't include Bcc header in mail messages (breaks secrecy of BCC).
See https://github.com/Pylons/pyramid_mailer/pull/10

0.5.1 (2011-11-13)

	Fixed a bug where the mailer was only sending email to addresses in
the "TO" field.

0.5 (2011-10-24)

	Drop Lamson dependency by copying Lamson's MailResponse and dependent code
into pyramid_mailer.response.

0.4.X

	pyramid_mailer.includeme function added for
config.include('pyramid_mailer') support

	pyramid_mailer.testing module added for
config.include('pyramid_mailer.testing') support.

	pyramid_mailer.get_mailer API added (see docs).

	pyramid_mailer.interfaces module readded (with marker IMailer interface
for ZCA registration).

	setup.cfg added with coverage parameters to allow for setup.py
nosetests --with-coverage.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyramid_mailer	

 	
 	
 pyramid_mailer.exceptions	

 	
 	
 pyramid_mailer.mailer	

 	
 	
 pyramid_mailer.message	

Index

 A
 | B
 | D
 | F
 | G
 | I
 | M
 | P
 | S
 | T
 | V

A

 	
 	add_bcc() (Message method)

 	add_cc() (Message method)

 	
 	add_recipient() (Message method)

 	attach() (Message method)

 	Attachment (class in pyramid_mailer.message)

B

 	
 	BadHeaders (class in pyramid_mailer.exceptions)

 	
 	bind() (DummyMailer method)

 	(Mailer method)

D

 	
 	DummyMailer (class in pyramid_mailer.mailer)

F

 	
 	from_settings() (Mailer class method)

G

 	
 	get_mailer() (in module pyramid_mailer)

I

 	
 	InvalidMessage (class in pyramid_mailer.exceptions)

 	
 	is_bad_headers() (Message method)

M

 	
 	Mailer (class in pyramid_mailer.mailer)

 	mailer_factory_from_settings() (in module pyramid_mailer)

 	Message (class in pyramid_mailer.message)

 	
 module

 	pyramid_mailer

 	pyramid_mailer.exceptions

 	pyramid_mailer.mailer

 	pyramid_mailer.message

P

 	
 	
 pyramid_mailer

 	module

 	
 pyramid_mailer.exceptions

 	module

 	
 	
 pyramid_mailer.mailer

 	module

 	
 pyramid_mailer.message

 	module

S

 	
 	send() (DummyMailer method)

 	(Mailer method)

 	send_immediately() (DummyMailer method)

 	(Mailer method)

 	send_immediately_sendmail() (DummyMailer method)

 	(Mailer method)

 	
 	send_sendmail() (DummyMailer method)

 	(Mailer method)

 	send_to_queue() (DummyMailer method)

 	(Mailer method)

T

 	
 	to_message() (Message method)

V

 	
 	validate() (Message method)

 nav.xhtml

 Table of Contents

 		
 pyramid_mailer

 		
 Change History

 		
 unreleased

 		
 0.15.1 (2016-12-13)

 		
 0.15 (2016-12-06)

 		
 0.14.1 (2015-05-21)

 		
 0.14 (2014-12-10)

 		
 0.13 (2013-07-13)

 		
 0.12 (2013-06-26)

 		
 0.11 (2013-03-28)

 		
 0.10 (2012-11-22)

 		
 0.9 (2012-05-03)

 		
 0.8 (2012-03-26)

 		
 0.7 (2012-03-26)

 		
 0.7dev (2012-03-20)

 		
 0.6 (2012-01-22)

 		
 0.5.1 (2011-11-13)

 		
 0.5 (2011-10-24)

 		
 0.4.X

_static/plus.png

_static/latex-note.png

_static/latex-warning.png

_static/file.png

_static/minus.png

