

Substance D

Overview

Substance D is an application server built using the Pyramid web
framework. It can be used as a base to build a general-purpose web application
like a blog, a shopping cart application, a scheduling application, or any
other web app that requires both an administration and a retail interface.

Substance D owes much of its spirit to the Zope application server.

It requires Python 2.7, 3.4, or 3.5.

Installation

See Installation.

Demonstration Application

See the application running at http://demo.substanced.net for a demonstration
of the Substance D management interface.

Narrative Documentation

	Installation

	Introduction

	The Substance D Management Interface

	Defining Content

	Management Views

	Forms

	Services

	Cataloging

	References

	Workflows

	Dumping Content to Disk

	Changing Resource Structure With Evolution

	Configuring Folder Contents

	Using Auditing

	Using Locking

	Configuration

	Gathering Runtime Statistics

	Virtual Rooting

	Building a Retail Application

	Substance D Command-Line Utilities

	Installing python-magic

API Documentation

	substanced API

	substanced.audit API

	substanced.catalog API

	substanced.catalog.indexes API

	hypatia.query API

	hypatia.util API

	substanced.content API

	substanced.db API

	substanced.dump API

	substanced.editable API

	substanced.event API

	substanced.evolution API

	substanced.file API

	substanced.folder API

	substanced.folder.views API

	substanced.form API

	substanced.locking API

	substanced.objectmap API

	substanced.principal API

	substanced.property API

	substanced.schema API

	substanced.sdi API

	substanced.root API

	substanced.stats API

	substanced.util API

	substanced.workflow API

	substanced.interfaces

	Substance D SDI Permission Names

Support / Reporting Bugs / Development Versions

Visit http://github.com/Pylons/substanced to download development or tagged
versions.

Visit http://github.com/Pylons/substanced/issues to report bugs.

The mailing list exists at https://groups.google.com/group/substanced-users

The IRC channel is at irc://freenode.net/#substanced

Copyright, Trademarks, and Attributions

	Copyright, Trademarks, and Attributions

Indices and tables

	Glossary

	Index

	Module Index

	Search Page

Installation

Install using pip, e.g., (within a virtual environment).

$ pip install substanced

Warning

During Substance D’s alpha period, it may be necessary to use a checkout of
Substance D as well as checkouts of the most recent versions of the
libraries upon which Substance D depends.

Demonstration application

See the application running at http://demo.substanced.net for a demonstration
of the Substance D management interface.

You can deploy the demonstration application locally by performing the
following steps.

	Create a new directory somewhere and cd to it:

$ virtualenv -p python2.7 hack-on-substanced
$ cd hack-on-substanced

	Install Substance D either from PyPI or from a git checkout:

$ bin/pip install substanced

OR:

$ bin/pip install -e git+https://github.com/Pylons/substanced#egg=substanced

Alternatively create a writeable fork on GitHub and check that out.

	Check that the python-magic library has been installed:

$ bin/python -c "from substanced.file import magic; assert magic is not None, 'python-magic not installed'"

If you then see “python-magic not installed” then you will need to take
additional steps to install the python-magic library. See Installing python-magic.

	Move back to the parent directory:

$ cd ..

	Now you should be able to create new Substance D projects by
using pcreate. The following pcreate command uses the scaffold
substanced to create a new project named myproj:

$ hack-on-substanced/bin/pcreate -s substanced myproj

	Now you can make a virtual environment for your project and move into it:

$ virtualenv -p python2.7 myproj
$ cd myproj

	Install that project using pip install -e into the virtual environment:

$ bin/pip install -e .

	Run the resulting project via bin/pserve development.ini. The
development server listens to requests sent to http://0.0.0.0:6543 by
default. Open this URL in a web browser.

	The initial Administrator password is randomly generated automatically.
Use the following command to find the login information:

$ grep initial_password *.ini
development.ini:substanced.initial_password = hNyrGI5nnl
production.ini:substanced.initial_password = hNyrGI5nnl

Create a project from a scaffold in Substance D

After creating a development checkout, you can create a new project from the
default substanced scaffold by using pcreate.

$ cd ../env
$ bin/pcreate -s substanced myproj

Then install that project using pip install -e . into the virtual
environment.

$ cd myproj
$../bin/pip install -e .

Run the resulting project.

$../bin/pserve development.ini

Then start hacking on your new project.

Hacking on Substance D

See Hacking on Substance D [https://github.com/Pylons/substanced/blob/master/HACKING.txt], or look in
your checked out local git repository for HACKING.txt, for information and
guidelines to develop your application, including testing and
internationalization.

Introduction

A Scanner Darkly

“The two hemispheres of my brain are competing?” Fred said.

“Yes.”

“Why?”

“Substance D. It often causes that, functionally. This is what we
expected; this is what the tests confirm. Damage having taken place in
the normally dominant left hemisphere, the right hemisphere is attempting
to compensate for the impairment. But the twin functions do not fuse,
because this is an abnormal condition the body isn’t prepared for. It
should never happen. “Cross-cuing”, we call it. Related to splitbrain
phenomena. We could perform a right hemispherectomy, but–”

“Will this go away,” Fred interrupted, “when I get off Substance D?”

“Probably,” the psychologist on the left said, nodding. “It’s a
functional impairment.”

The other man said, “It may be organic damage. It may be
permanent. Time’ll tell, and only after you are off Substance D for a
long while. And off entirely.”

“What?” Fred said. He did not understand the answer– was it yes or no?
Was he damaged forever or not? Which had they said?

– Philip K. Dick, A Scanner Darkly

Substance D is an application server. It provides the following features:

	Facilities that allow developers to define “content” (e.g., “a blog entry”,
“a product”, or “a news item”).

	A management (a.k.a., “admin”) web UI which allows non-expert but privileged
users to create, edit, update, and delete developer-defined content, as well
as managing other aspects of the system such as users, groups, security, and
so on.

	“Undo” capability for actions taken via the management UI.

	A way to make highly granular hierarchical security declarations for content
objects (e.g., “Bob can edit this post” or “Bob can edit all posts in this
collection” as opposed to just “Bob can edit posts”).

	Built-in users and groups management.

	Built-in content workflow.

	Indexing and searching of content (field, keyword, facet, and full-text).
Searches can be easily filtered by the security settings of individual pieces
of content, by path in the content hierarchy, or by a combination of the two.

	A facility for relating content objects to each other (with optional
referential integrity).

	An “evolve” mechanism for evolving content over time as it changes.

	A mechanism to dump your site’s content to the filesystem in a mostly
human-readable format, and a mechanism to reload a dump into the system.

Substance D is built upon the following technologies:

	ZODB [http://zodb.org]

	Pyramid [http://pylonsproject.org]

	hypatia [https://github.com/Pylons/hypatia]

	colander [http://docs.pylonsproject.org/projects/colander/en/latest/]

	deform [http://docs.pylonsproject.org/projects/deform/en/latest/]

The Substance D Management Interface

Substance D’s prime directive is to help developers quickly build
custom content management applications with a custom user experience.
For the Substance D parts, though, a polished, stable,
and supported management UI is provided.

The Substance D management interface (aka SDI) is a set of view [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view]
registrations that are imposed upon the resource tree of your
application. The SDI allows you to add, delete, change, and otherwise manage
resources and services.

[image: _images/sdi.png]

Benefits and features

	Create, Read, Update, Delete (CRUD) operations on content resources

	Extensible actions for each content type via management views

	Built-in support for hierarchies with security

	Already-done UIs for all supported features (e.g., references, principals)

	Undo facility to back out of the last transaction

	Copy and paste

Background and motivation

In prehistoric times there was a Python-based application server,
derived from a commercial predecessor released in 1996. Zope and its
predecessor had a unique “through-the-web” (TTW) UI for interacting
with the system. This UI, called the “Zope Management Interface” (ZMI),
had a number of capabilities for a number of audiences. Plone,
built on Zope, extended this idea. Other systems, such as Django,
have found that providing an out-of-the-box (OOTB) starting point with
attractive pixels on the screen can be a key selling point.

Substance D taps into this. In particular, lessons learned from our
long experience in this area are applied to the SDI:

	Attractive, official, supported OOTB management UI

	Be successful by being very clear what the SDI isn’t

What is and isn’t the SDI

The SDI is for:

	Developers to use while building their application

	Administrators to use after deployment, to manage certain Substance D
or application settings provided by the developer

	Certain power users to use as a behind-the-scenes UI

The SDI is not for:

	The retail UI for your actual application. Unlike Plone,
we don’t expect developers to squeeze their UX expectations into an
existing UX

	Overridable, customizable, replaceable, frameworky new expectations

The SDI does have a short list of clearly-defined places for developers
to plug in parts of their application. As a prime example, you can
define a Management View that gets added as a new
tab on a resource.

The SDI is extensible and allows you to plug your own views into it, so you
can present nontechnical users with a way to manage arbitrary kinds of
custom content.

Once again, for clarity: the SDI is not a framework, it is an
application. It is not your retail UI.

Layout

The SDI has a mostly-familiar layout:

	A header that shows the username as a dropdown menu containing a
link to the principal screen as well as a logout link

	Breadcrumbs with a path from the root

	A series of tabs for the management views of the current resource

	Optionally, a flash message showing results of the previous
operation, a warning, or some other notice

	A footer

Folder contents

Folders show a listing of items they contain using a powerful data grid
based on SlickGrid:

[image: _images/contents.png]
This dynamic grid features:

	Only loading the items needed for display, to speed up operations on
large folders

	“Infinite scrolling” via the scrollbar to go directly to a batch at
any point in the folder

	Column resizing and re-ordering

	Sorting on sort-supported columns

	Filtering based on search string

	Selection of one or more items and performing an operation by
clicking on a button

	Styling integrated with Twitter Bootstrap

	Detection and re-layout on responsive design operations

The Configuring Folder Contents chapter covers how Substance D developers
can plug their custom content types into folder contents.

Undo

In Substance D, many transactions can be undone and redone after a
commit. This “Undo” ability is one of the key features that people
notice immediately and it has real, deep value to a developer’s
customers.

Many of the built-in operations display an undo button. For example, if we
delete an item from a folder, we get a “flash” message telling us the deletion
was performed, but with a button allowing us to undo it if that was a mistake:

[image: _images/undo1.png]
Clicking “undo” restores the deleted item, with a flash message
offering to redo the undo:

[image: _images/undo2.png]
Undo button support is enabled by the developer in their management views
that commit data. It isn’t available on every kind of change. Instead
developers need to wrap their commit with certain information used by the SDI’s
undo features.

All actions that change data (even ones without undo button support) can be
undone. These screenshots show an Undo tab on the site’s root folder. This
provides a global way to see recent transactions and perform an undo:

[image: _images/undo3.png]
Sometimes a particular transaction cannot be undone without undoing an earlier
transaction. For example, if you make three changes to a resource, the first
two can’t be undone without first undoing the last, as the resource will have
been changed by a later transaction.

Catalog

With cataloging developers have a powerful indexing and
searching facility that can be added to their application. Like other
first-class parts of Substance D’s machinery, it includes an SDI UI for
interacting with the catalog:

[image: _images/catalog.png]
Catalogues are content, meaning they show up as folder items in the SDI. You
can visit a catalog and update its indexes, or see some statistics for those
indexes. You can also use the SDI to reindex the contents of an index, if you
suspect it has gotten out of sync with the content.

The catalog also registers a management view on content resources, which
gain an Indexing tab:

[image: _images/indexing.png]
This shows some statistics and allows an SDI user to reindex an
individual resource.

Principals

Managing users and groups, a.k.a., principals, is more interesting in a
system like Substance D with rich hierarchies. You can add a folder of
principals to any folder or other kind of container that allows adding
principals:

[image: _images/principals.png]
A principals folder allows you to manage (e.g., add, edit, delete, or rename)
users and groups via the SDI, as well as password resets. Since users and
groups are content, you gain some of the other SDI tabs for managing them
(e.g., Security, References):

[image: _images/user.png]
Users and groups can also grow extra attributes and behavior because they’re
just content, so you can customize your user model out of the box.

Workflows

The workflows service provides a powerful system for
managing states and transitions. This service shows up in the SDI as a
tab on content types that have workflows registered for them:

[image: _images/workflows.png]
This provides a way, via the SDI, to transition the workflow state of a
resource.

References

With the built-in support for references, Substance D
helps manage relationships between resources. The SDI provides a UI into the
reference service.

If the resource you are viewing has any references, a References
tab will appear:

[image: _images/references.png]
In this example, mydoc1 is a target of an ACL reference from the
admin1 user.

An integrity error can occur if you try to delete a source or target of
a reference that claims to be “integral”. The SDI will then show this
with an explanation:

[image: _images/integrityerror.png]

Manage Database

The object database inside Substance D has some management knobs that
can be adjusted via the SDI:

[image: _images/managedb.png]
This tab appears on the root object of the site and lets you:

	Pack the old revisions of objects in the database.

	Inspect and run evolution steps.

	Flush the object cache.

	See details and statistics about the database, the connection, and
activity.

Implementation Notes

While it doesn’t matter for developers of Substance D applications, some notes
are below, regarding how the SDI is implemented:

	We use a high-performance, modern, responsive UI based on Twitter Bootstrap [http://getbootstrap.com/]

	We use the upstream LESS variables from Bootstrap in a LESS file for parts of
the SDI.

	Our grid is based on SlickGrid [https://github.com/mleibman/SlickGrid/].

Defining Content

Resource is the term that Substance D uses to describe an object
placed in the resource tree.

Ideally, all resources in your resource tree will be content. “Content”
is the term that Substance D uses to describe resource objects that are
particularly well-behaved when they appear in the SDI management interface.
The Substance D management interface (aka SDI) is a set of views
imposed upon the resource tree that allow you to add, delete, change and
otherwise manage resources.

You can convince the management interface that your particular resources are
content. To define a resource as content, you need to associate a resource
with a content type.

Registering Content

In order to add new content to the system, you need to associate a
resource factory with a content type. A resource factory that
generates content must have these properties:

	It must be a class, or a factory function that returns an instance of a
resource class.

	Instances of the resource class must be persistent (it must derive from
the persistent.Persistent class or a class that derives from Persistent
such as substanced.folder.Folder).

	The resource class or factory must be decorated with the @content
decorator, or must be added at configuration time via
config.add_content_type.

	It must have a type. A type acts as a globally unique categorization
marker, and allows the content to be constructed, enumerated, and
introspected by various Substance D UI elements such as “add forms”, and
queries by the management interface for the icon class of a resource. A
type can be any hashable Python object, but it’s most often a string.

Here’s an example which defines a content resource factory as a class:

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry')
class BlogEntry(Persistent):
 def __init__(self, title='', body=''):
 self.title = title
 self.body = body

Here’s an example of defining a content resource factory using a function
instead:

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

class BlogEntry(Persistent):
 def __init__(self, title, body):
 self.title = title
 self.body = body

@content('Blog Entry')
def make_blog_entry(title='', body=''):
 return BlogEntry(title, body)

When a resource factory is not a class, Substance D will wrap the resource
factory in something that changes the resource object returned from the
factory. In the above case, the BlogEntry instance returned from
make_blog_entry will be changed; its __factory_type__ attribute will be
mutated.

Notice that when we decorate a resource factory class with @content, and
the class’ __init__ function takes arguments, we provide those arguments
with default values. This is mandatory if you’d like your content objects to
participate in a “dump”. Dumping a resource requires that the resource be
creatable without any mandatory arguments. It’s a similar story if our factory
is a function; the function decorated by the @content decorator should
provide defaults to any argument. In general, a resource factory can take
arguments, but each parameter of the factory’s callable should be given a
default value. This also means that all arguments to a resource factory
should be keyword arguments, and not positional arguments.

In order to activate a @content decorator, it must be scanned using the
Pyramid config.scan() machinery:

in a module named blog.__init__

from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator()
 config.include('substanced')
 config.scan('blog.resources')
 # .. and so on ...

Instead of using the @content decorator, you can alternately add a
content resource imperatively at configuration time using the
add_content_type method of the Configurator:

in a module named blog.__init__

from pyramid.config import Configurator
from .resources import BlogEntry

def main(global_config, **settings):
 config = Configurator()
 config.include('substanced')
 config.add_content_type('Blog Entry', BlogEntry)

This does the same thing as using the @content decorator, but you don’t
need to scan() your resources if you use add_content_type instead of
the @content decorator.

Once a content type has been defined (and scanned, if it’s been defined using
a decorator), an instance of the resource can be constructed from within a
view that lives in your application:

in a module named blog.views

from pyramid.httpexceptions import HTTPFound
from pyramid.view import (
 view_config,
 view_defaults,
)

@view_config(name='add_blog_entry', request_method='POST')
def add_blogentry(context, request):
 title = request.POST['title']
 body = request.POST['body']
 entry = request.registry.content.create('Blog Entry', title, body)
 context[title] = entry
 return HTTPFound(request.resource_url(entry))

The arguments passed to request.registry.content.create must start with
the content type, and must be followed with whatever arguments are required
by the resource factory.

Creating an instance of content this way isn’t particularly more useful than
creating an instance of the resource object by calling its class __init__
directly unless you’re building a highly abstract system. But even if you’re
not building a very abstract system, types can be very useful. For instance,
types can be enumerated:

in a module named blog.views

@view_config(name='show_types', renderer='show_types.pt')
def show_types(request):
 all_types = request.registry.content.all()
 return {'all_types':all_types}

request.registry.content.all() will return all the types you’ve defined
and scanned.

Metadata

A content’s type can be associated with metadata about that type, including the
content type’s name, its icon in the SDI management interface, an add view
name, and other things. Pass arbitrary keyword arguments to the @content
decorator or config.add_content_type to specify metadata.

Names

You can associate a content type registration with a name that shows up when
someone attempts to add such a piece of content using the SDI management
interface “Add” tab by passing a name keyword argument to @content
or config.add_content_type.

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry', name='Cool Blog Entry')
class BlogEntry(Persistent):
 def __init__(self, title='', body=''):
 self.title = title
 self.body = body

Once you’ve done this, the “Add” tab in the SDI management interface will
show your content as addable using this name instead of the type name.

Icons

You can associate a content type registration with a management view icon class
by passing an icon keyword argument to @content or add_content_type.

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry', icon='glyphicon glyphicon-file')
class BlogEntry(Persistent):
 def __init__(self, title='', body=''):
 self.title = title
 self.body = body

Once you’ve done this, content you add to a folder in the sytem will display
the icon next to it in the contents view of the management interface and in
the breadcrumb list. The available icon class names are listed at
http://getbootstrap.com/components/#glyphicons . For glyphicon icons, you’ll
need to use two classnames: glyphicon and glyphicon-foo, separated by
a space.

You can also pass a callback as an icon argument:

from persistent import Persistent
from substanced.content import content

def blogentry_icon(context, request):
 if context.body:
 return 'glyphicon glyphicon-file'
 else:
 return 'glyphicon glyphicon-gift'

@content('Blog Entry', icon=blogentry_icon)
class BlogEntry(Persistent):
 def __init__(self, title='', body=''):
 self.title = title
 self.body = body

A callable used as icon must accept two arguments: context and
request. context will be an instance of the type and request will
be the current request; your callback will be called at the time the folder
view is drawn. The callable should return either an icon class name or
None. For example, the above blogentry_icon callable tells the SDI to
use an icon representing a file if the blogentry has a body, otherwise show an
icon representing gift.

Add Views

You can associate a content type with a view that will allow the type to be
added by passing the name of the add view as a keyword argument to
@content or add_content_type.

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry', add_view='add_blog_entry')
class BlogEntry(Persistent):
 def __init__(self, title='', body=''):
 self.title = title
 self.body = body

Once you’ve done this, if the button is clicked in the “Add” tab for this
content type, the related view will be presented to the user.

You can also pass a callback as an add_view argument:

from persistent import Persistent
from substanced.content import content
from substanced.folder import Folder

def add_blog_entry(context, request):
 if request.registry.content.istype(context, 'Blog'):
 return 'add_blog_entry'

@content('Blog')
class Blog(Folder):
 pass

@content('Blog Entry', add_view=add_blog_entry)
class BlogEntry(Persistent):
 def __init__(self, title='', body=''):
 self.title = title
 self.body = body

A callable used as add_view must accept two arguments: context and
request. context will be the potential parent object of the content
(when the SDI folder view is drawn), and request will be the current
request at the time the folder view is drawn. The callable should return
either a view name or None if the content should not be addable in this
circumstance. For example, the above add_blog_entry callable asserts that
Blog Entry content should only be addable if the context we’re adding to is of
type Blog; it returns None otherwise, signifying that the content is not
addable in this circumstance.

Obtaining Metadata About a Content Object’s Type

Return the icon class name for the blogentry’s content type or
None if it does not exist:

request.registry.content.metadata(blogentry, 'icon')

Return the icon for the blogentry’s content type or
glyphicon glyphicon-file if it does not exist:

request.registry.content.metadata(blogentry, 'icon',
 'glyphicon glyphicon-file')

Affecting Content Creation

In some cases you might want your resource to perform some actions that
can only take place after it has been seated in its container, but
before the creation events have fired. The @content decorator and
add_content_type method both support an after_create argument,
pointed at a callable.

For example:

@content(
 'Document',
 icon='glyphicon glyphicon-align-left',
 add_view='add_document',
 propertysheets = (
 ('Basic', DocumentPropertySheet),
),
 after_create='after_creation'
)
class Document(Persistent):

 name = renamer()

 def __init__(self, title, body):
 self.title = title
 self.body = body

 def after_creation(self, inst, registry):
 pass

If the value provided for after_create is a string, it’s assumed to
be a method of the created object. If it’s a sequence, each value
should be a string or a callable, which will be called in turn. The
callable(s) are passed the instance being created and the registry.
Afterwards, substanced.event.ContentCreatedEvent is emitted.

Construction of the root folder in Substance D is a special case. Most
Substance D applications will start with:

from substanced.db import root_factory
def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings, root_factory=root_factory)

The substanced.db.root_factory() callable contains the following
line:

app_root = registry.content.create('Root')

In many cases you want to perform some extra work on the Root. For
example, you might want to create a catalog with indexes. Substance D
emits an event when the root is created, so you can subscribe to that
event and perform some actions:

from substanced.root import Root
from substanced.event import subscribe_created
from substanced.catalog import Catalog

@subscribe_created(Root)
def root_created(event):
 root = event.object
 catalog = Catalog()
 catalogs = root['catalogs']
 catalogs.add_service('catalog', catalog)
 catalog.update_indexes('system', reindex=True)
 catalog.update_indexes('sdidemo', reindex=True)

Names and Renaming

A resource’s “name” (__name__) is important to the system in
Substance D. For example, traversal uses the value in URLs and paths to
walk through hierarchy. Containers need to know when a resource’s
__name__ changes.

To help support this, Substance D provides
substanced.util.renamer(). You use it as a class attribute
wrapper on resources that want “managed” names. These resources then
gain a name attribute with a getter/setter from renamer.
Getting the name returns the __name__. Setting name grabs
the container and calls the rename method on the folder.

For example:

class Document(Persistent):
 name = renamer()

Special Colander Support

Forms and schemas for resources become pretty easy in Substance D. To
make it easier for forms to interact with the Substance D machinery,
it includes some special Colander schema nodes you can use on your forms.

NameSchemaNode

If you want your form to affect the __name__ of a resource,
certain constraints become applicable. These constraints might be
different, so you might want to know if you are on an add form versus
an edit form. substanced.schema.NameSchemaNode provides a
schema node and default widget that bundles up the common rules for this.
For example:

class BlogEntrySchema(Schema):
 name = NameSchemaNode()

The above provides the basics of support for editing a name property,
especially when combined with the renamer() utility mentioned above.

By default the name is limited to 100 characters. NameSchemaNode
accepts an argument that can set a different limit:

class BlogEntrySchema(Schema):
 name = NameSchemaNode(max_len=20)

You can also provide an editing argument, either as a boolean or a
callable which returns a boolean, which determines whether the form is
rendered in “editing” mode. For example:

class BlogEntrySchema(Schema):
 name = NameSchemaNode(
 editing=lambda c, r: r.registry.content.istype(c, 'BlogEntry')
)

PermissionSchemaNode

A form might want to allow selection of zero or more permissions from
the site’s defined list of permissions.
PermissionSchemaNode collects the possible
state from the system, the currently-assigned values, and presents a
widget that manages the values.

MultireferenceIdSchemaNode

References are a very powerful facility in Substance D. Naturally
you’ll want your application’s forms to assign references.
MultireferenceIdSchemaNode gives a schema node and widget
that allows multiple selections of possible values in the system for
references, including the current assignments.

As an example, the built-in substanced.principal.UserSchema
uses this schema node:

class UserSchema(Schema):
 """ The property schema for :class:`substanced.principal.User`
 objects."""
 groupids = MultireferenceIdSchemaNode(
 choices_getter=groups_choices,
 title='Groups',
)

Overriding Existing Content Types

Perhaps you would like to slightly adjust an existing content type,
such as Folder, without re-implementing it. For exampler,
perhaps you would like to override just the add_view and provide
your own view, such as:

@mgmt_view(
 context=IFolder,
 name='my_add_folder',
 tab_condition=False,
 permission='sdi.add-content',
 renderer='substanced.sdi:templates/form.pt'
)
class MyAddFolderView(AddFolderView):

 def before(self, form):
 # Perform some custom work before validation
 pass

With this you can override any of the view predicates (such as
permission) and override any part of the form handling (such as
adding a before that performs some custom processing.)

To make this happen, you can re-register, so to speak,
the content type during startup:

from substanced.folder import Folder
from .views import MyAddFolderView
config.add_content_type('Folder', Folder,
 add_view='my_add_folder',
 icon='glyphicon glyphicon-folder-close')

This, however, keeps the same content type class. You can also go
further by overriding the content type definition itself:

@content(
 'Folder',
 icon='glyphicon glyphicon-folder-close',
 add_view='my_add_folder',
)
@implementer(IFolder)
class MyFolder(Folder):

 def send_email(self):
 pass

The class for the Folder content type has now been replaced. Instead
of substanced.folder.Folder it is MyFolder.

Note

Overriding a content type is a pain-free way to make a custom
Root object. You could supply your own root_factory to
the Configurator but that means replicating all its rather
complicated goings-on. Instead, provide your own content type
factory, as above, for Root.

Adding Automatic Naming for Content

On some sites you don’t want to set the name for every piece of content you
create. Substance D provides support for this with a special kind of folder.
You can configure your site to use the autonaming folder by overriding
the standard folder:

from substanced.folder import SequentialAutoNamingFolder
from substanced.interaces import IFolder
from zope.interface import implementer

@content(
 'Folder',
 icon='glyphicon glyphicon-folder-close',
 add_view='add_folder',
)
@implementer(IFolder)
class MyFolder(SequentialAutoNamingFolder):
 """ Override Folder content type """

The add view for Documents can then be edited to no longer require a name:

def add_success(self, appstruct):
 registry = self.request.registry
 document = registry.content.create('Document', **appstruct)
 self.context.add_next(document)
 return HTTPFound(
 self.request.sdiapi.mgmt_path(self.context, '@@contents')
)

Note

This does not apply to the root object.

Affecting the Tab Order for Management Views

The tab_order parameter overrides the mgmt_view tab settings
for a content type. Its value should be a sequence of view names, each
corresponding to a tab that will appear in the management interface. Any
registered view names that are omitted from this sequence will be placed
after the other tabs.

Handling Content Events

Adding and modifying data related to content is, thanks to the framework,
easy to do. Sometimes, though, you want to intervene and, for example,
perform some extra work when content resources are added. Substance D
has several framework events you can subscribe to using
Pyramid events [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/events.html#events-chapter].

The substanced.events module imports these events as interfaces
from substanced.interfaces and then provides decorator
subscribers as convenience for each:

	substanced.interfaces.IObjectAdded as subscriber
@subscriber_added

	substanced.interfaces.IObjectWillBeAdded as subscriber
@subscriber_will_be_added

	substanced.interfaces.IObjectRemoved as subscriber
@subscriber_removed

	substanced.interfaces.IObjectWillBeRemoved as subscriber
@subscriber_will_be_removed

	substanced.interfaces.IObjectModified as subscriber
@subscriber_modified

	substanced.interfaces.IACLModified as subscriber
@subscriber_acl_modified

	substanced.interfaces.IContentCreated as subscriber
@subscriber_created

As an example, the
substanced.principal.subscribers.user_added() function is a
subscriber to the IObjectAdded event:

@subscribe_added(IUser)
def user_added(event):
 """ Give each user permission to change their own password."""
 if event.loading: # fbo dump/load
 return
 user = event.object
 registry = event.registry
 set_acl(
 user,
 [(Allow, get_oid(user), ('sdi.view', 'sdi.change-password'))],
 registry=registry,
)

As with the rest of Pyramid, you can do imperative configuration if you
don’t like decorator-based configuration, using
config.add_content_subscriber Both the declarative and imperative
forms result in substanced.event.add_content_subscriber().

Note

While the event subscriber is de-coupled logically from the action
that triggers the event, both the action and the subscriber run
in the same transaction.

The IACLModified event (and @subscriber_acl_modified subscriber)
is used internally by Substance D to re-index information in the system
catalog’s ACL index. Substance D also uses this event to maintain
references between resources and principals. Substance D applications
can use this in different ways, for example recording a security audit
trail on security changes.

Sometimes when you perform operations on objects you don’t want to
perform the standard events. For example, in folder contents you can
select a number of resources and move them to another folder. Normally
this would fire content change events that re-index the files. This is
fairly pointless: the content of the file hasn’t changed.

If you looked at the interface for one of the content events,
you would see some extra information supported. For example, in
substanced.interfaces.IObjectWillBeAdded:

class IObjectWillBeAdded(IObjectEvent):
 """ An event type sent when an before an object is added """
 object = Attribute('The object being added')
 parent = Attribute('The folder to which the object is being added')
 name = Attribute('The name which the object is being added to the folder '
 'with')
 moving = Attribute('None or the folder from which the object being added '
 'was moved')
 loading = Attribute('Boolean indicating that this add is part of a load '
 '(during a dump load process)')
 duplicating = Attribute('The object being duplicated or ``None``')

moving, loading, and duplicating are flags that can be set
on the event when certain actions are triggered. These help in cases
such as the one above: certain subscribers might want “flavors” of
standard events and, in some cases, handle the event in a different
way. This helps avoid lots of special-case events or the need for a
hierarchy of events.

Thus in the case above, the catalog subscriber can see that the changes
triggered by the event where in the special case of “moving”. This can
be seen in substanced.catalog.subscribers.object_added.

Management Views

A management view is a view configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-configuration] that applies only
when the URL is prepended with the manage prefix. The manage prefix
is usually /manage, unless you’ve changed it from its default by setting
a custom substanced.manage_prefix in your application’s .ini file.

This means that views declared as management views will never show up in your
application’s “retail” interface (the interface that normal unprivileged
users see). They’ll only show up when a user is using the SDI to
manage content.

There are two ways to define management views:

	Using the substanced.sdi.mgmt_view decorator on a function,
method, or class.

	Using the substanced.sdi.add_mgmt_view() Configurator (aka.
config.add_mgmt_view) API.

The former is most convenient, but they are functionally equivalent.
mgmt_view just calls into add_mgmt_view when found via a
scan [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-scan].

Declaring a management view is much the same as declaring a “normal” Pyramid
view using pyramid.view.view_config [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config] with a route_name of
substanced_manage. For example, each of the following view declarations
will register a view that will show up when the /manage/foobar URL is
visited:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.view import view_config

@view_config(
 renderer='string',
 route_name='substanced_manage',
 name='foobar',
 permission='sdi.view',
)
def foobar(request):
 return 'Foobar!'

The above is largely functionally the same as this:

	1
2
3
4
5

	from substanced.sdi import mgmt_view

@mgmt_view(renderer='string', name='foobar')
def foobar(request):
 return 'Foobar!'

Management views, in other words, are really just plain-old Pyramid views
with a slightly shorter syntax for definition. Declaring a view a management
view, however, does do some extra things that make it advisable to use rather
than a plain Pyramid view registration:

	It registers introspectable objects that the SDI interface uses to try to
find management interface tabs (the row of actions at the top of every
management view rendering).

	It allows you to associate a tab title, a tab condition, and cross-site
request forgery attributes with the view.

	It uses the default permission sdi.view.

So if you want things to work right when developing management views, you’ll
use @mgmt_view instead of @view_config, and config.add_mgmt_view
instead of config.add_view.

As you use management views in the SDI, you might notice that the URL
includes @@ as “goggles”. For example,
http://0.0.0.0:6541/manage/@@contents is the URL for seeing the
folder contents. The @@ is a way to ensure that you point at the
URL for a view and not get some resource with the __name__ of
contents. You can still get to the folder contents management view
using http://0.0.0.0:6541/manage/contents…until that folder
contains something named contents.

mgmt_view View Predicates

Since mgmt_view is an extension of Pyramid’s view_config,
it re-uses the same concept of view predicates as well as some of the
same actual predicates:

	request_type, request_method, request_param,
containment, attr, renderer, wrapper, xhr,
accept, header, path_info, context, name,
custom_predicates, decorator, mapper, and http_cache
are supported and behave the same.

	permission is the same but defaults to sdi.view.

The following are new view predicates introduced for mgmt_view:

	tab_title takes a string for the label placed on the tab.

	tab_condition takes a callable that returns True or False,
or True or False. If you state a callable, this callable is
passed context and request. The boolean determines whether the
tab is listed in a certain situation.

	tab_before takes the view name of a mgmt_view that this mgmt_view
should appear after (covered in detail in the next section.)

	tab_after takes the view name of a mgmt_view
that this mgmt_view should appear after. Also covered below.

	tab_near takes a “sentinel” from substanced.sdi (or None) that
makes a best effort at placement independent of another particular
mgmt_view. Also covered below. The possible sentinel values are:

substanced.sdi.LEFT
substanced.sdi.MIDDLE
substanced.sdi.RIGHT

Tab Ordering

If you register a management view, a tab will be added in the list of tabs. If
no mgmt view specifies otherwise via its tab data, the tab order will use a
default sorting: alphabetical order by the tab_title parameter of each tab
(or the view name if no tab_title is provided.) The first tab in this tab
listing acts as the “default” that is open when you visit a resource. Substance
D does, though, give you some options to control tab ordering in larger systems
with different software registering management views.

Perhaps a developer wants to ensure that one of her tabs appears first in the
list and another appears last, no matter what other management views have been
registered by Substance D or any add-on packages. @mgmt_view (or the
imperative call) allow a keyword of tab_before or tab_after. Each take
the string tab name of the management view to place before or after. If
you don’t care (or don’t know) which view name to use as a tab_before or
tab_after value, use tab_near, which can be any of the sentinel values
MIDDLE, LEFT, or
RIGHT, each of which specifies a target “zone” in the
tab order. Substance D will make a best effort to do something sane with
tab_near.

As in many cases, an illustration is helpful:

from substanced.sdi import LEFT, RIGHT

@mgmt_view(
 name='tab_1',
 tab_title='Tab 1',
 renderer='templates/tab.pt'
)
def tab_1(context, request):
 return {}

@mgmt_view(
 name='tab_2',
 tab_title='Tab 2',
 renderer='templates/tab.pt',
 tab_before='tab_1'
)
def tab_2(context, request):
 return {}

@mgmt_view(
 name='tab_3',
 tab_title='Tab 3',
 renderer='templates/tab.pt',
 tab_near=RIGHT
)
def tab_3(context, request):
 return {}

@mgmt_view(
 name='tab_4',
 tab_title='Tab 4',
 renderer='templates/tab.pt',
 tab_near=LEFT
)
def tab_4(context, request):
 return {}

@mgmt_view(
 name='tab_5',
 tab_title='Tab 5',
 renderer='templates/tab.pt',
 tab_near=LEFT
)
def tab_5(context, request):
 return {}

This set of management views (combined with the built-in Substance D
management views for Contents and Security) results in:

Tab 4 | Tab 5 | Contents | Security | Tab 2 | Tab 1 | Tab 3

These management view arguments apply to any content type that the view
is registered for. What if you want to allow a content type to
influence the tab ordering? As mentioned in the
content type docs, the tab_order parameter
overrides the mgmt_view tab settings, for a content type, with a
sequence of view names that should be ordered (and everything
not in the sequence, after.)

Filling Slots

Each management view that you write plugs into various parts of the SDI
UI. This is done using normal ZPT fill-slot semantics:

	page-title is the <title> in the <head>

	head-more is a place to inject CSS and JS in the <head>
after all the SDI elements

	tail-more does the same, just before the </body>

	main is the main content area

SDI API

All templates in the SDI share a common “layout”. This layout needs
information from the environment to render markup that is common to
every screen, as well as the template used as the “main template.”

This “template API” is known as the SDI API. It is an instance of
the sdiapi class in substanced.sdi.__init__.py and is made
available as request.sdiapi.

The template for your management view should start with a call to
requests.sdiapi:

<div metal:use-macro="request.sdiapi.main_template">

The request.sdiapi object has other convenience features as well.
See the Substance D interfaces documentation for more information.

Flash Messages

Often you perform an action on one view that needs a message displayed
by another view on the next request. For example, if you delete a
resource, the next request might confirm to the user “Deleted 1
resource.” Pyramid supports this with “flash messages.”

In Substance D, your applications can make a call to the sdiapi
such as:

request.sdiapi.flash('ACE moved up')

…and the next request will process this flash message:

	The message will be removed from the stack of messages

	It will then be displayed in the appropriate styling based on the
“queue”

The sdiapi provides another helper:

request.sdiapi.flash_with_undo(‘ACE moved up’)

This displays a flash message as before, but also provides an Undo
button to remove the previous transaction.

	title, content, flash messages, head, tail

Forms

When writing a Substance D application, you are free to use any library
you would like for forms and schemas. This applies both for your retail
views and for the management views that you plug into the SDI.

For the built-in content types and management views,
you will see that Substance D has standardized on Colander and
Deform for schemas and forms.
Additionally, Substance D defines a substanced.form.FormView
class, discussed below.

FormView

Form handling is ground that is frequently covered, usually in different
ways. Substance D provides a class to help implement common patterns in
form handling.

Imagine this example:

@mgmt_view(
 context=IFolder,
 name='add_document',
 tab_title='Add Document',
 permission='sdi.add-content',
 renderer='substanced.sdi:templates/form.pt',
 tab_condition=False,
)
class AddDocumentView(FormView):
 title = 'Add Document'
 schema = DocumentSchema()
 buttons = ('add',)

 def add_success(self, appstruct):
 registry = self.request.registry
 name = appstruct.pop('name')
 document = registry.content.create('Document', **appstruct)
 self.context[name] = document
 return HTTPFound(
 self.request.mgmt_path(self.context, '@@contents'))

This mgmt_view adds a view add_document to resources with the
IFolder interface. The form gets a title, a Colander schema,
and asks for just one button.

Since the mgmt_view is associated with a renderer,
we have an SDI template form.pt which does the basics of laying out
the rendering before handing the work over to Deform.

The @action of the form is the mgmt_view itself,
making it a self-posting form. The button that was clicked causes the
FormView to, upon validation success, route processing to a handler
for that button. By convention, FormView looks for a method
starting with the name of the button (e.g. add) and finishing with
_success (e.g. add_success.) The class also supports a similar
protocol for _failure.

FormView also supports the following methods that can be overridden:

	before(self, form) is called before validation and processing of any
_success or _failure methods

	failure(self, e) is called with the exception, if the there is no
button-specific _failure method

	show(self, form) returns {'form':form.render()} and thus
can be a place to affect form rendering

Services

A service is a name for a content object that provides a service to
application code. It looks just like any other content object, but services
that are added to a site can be found by name using various Substance D APIs.

Services expose APIs that exist for the benefit of application developers. For
instance, the catalogs service provides an API that allows a developer to
index and query for content objects using a structured query API. The
principals service allows a developer to add and enumerate users and
groups.

A service is added to a folder via the
substanced.folder.Folder.add_service() API.

An existing service can be looked up in one of two ways: using the
substanced.util.find_service() API or the
substanced.folder.Folder.find_service() API. They are functionally
equivalent. The latter exists only as a convenience so you don’t need to
import a function if you know you’re dealing with a folder.

Either variant of find_service will look down the resource hierarchy
towards the root until it finds a parent folder that has had add_service
called on it. If the name passed in matches the service name, the object
will be returned, otherwise the search will continue down the tree.

Note that a content object may exist in the folder with the same name as
you’re looking for via find_service, but if that object was not added via
add_service (instead it’s just a “normal” content object), it won’t be
found by find_service.

Here’s how to use substanced.util.find_service():

from substanced.util import find_service
principals = find_service(somecontext, 'principals')

somecontext above is any resource in the resource tree.
For example, somecontext could be a “document” object you’ve added to a
folder.

Here’s how to use substanced.folder.Folder.find_service():

principals = somefolder.find_service('principals')

somefolder above is any substanced.folder.Folder object (or any
object which inherits from that class) present in the resource tree.

There is also the find-multiple-services variants
substanced.util.find_services() and
substanced.folder.Folder.find_services().

Cataloging

Substance D provides application content indexing and querying via a catalog.
A catalog is an object named catalog which lives in a service named
catalogs within your application’s resource tree. A catalog has a number
of indexes, each of which keeps a certain kind of information about your
content.

The Default Catalog

A default catalog named system is installed into the root folder’s
catalogs subfolder when you start Substance D. This system catalog
contains a default set of indexes:

	path (a path index)

Represents the path of the content object.

	name (a field index), uses content.__name__ exclusively

Represents the local name of the content object.

	interfaces (a keyword index)

Represents the set of interfaces possessed by the content object.

	content_type (a field index)

Represents the Substance D content-type of an object.

	allowed (an allowed index)

An index which can be used to filter resultsets using principals and
permissions.

	text (a text index)

Represents the text searched for when you use the filter box within the
folder contents view of the SDI.

Adding a Catalog

The system catalog won’t have enough information to form all the queries you
need. You’ll have to add a catalog via code related to your application. The first
step is adding a catalog factory.

A catalog factory is a collection of index descriptions. Creating a catalog factory
doesn’t actually add a catalog to your database, but it makes it possible
to add one later.

Here’s an example catalog factory named mycatalog:

from substanced.catalog import (
 catalog_factory,
 Text,
 Field,
)

@catalog_factory('mycatalog')
class MyCatalogFactory(object):
 freaky = Text()
 funky = Field()

In order to activate a @catalog_factory decorator, it must be scanned using the
Pyramid config.scan() machinery. This will allow you to use
substanced.catalog.CatalogsService.add_catalog() to add a catalog with that
factory’s name:

in a module named blog.__init__

from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator()
 config.include('substanced')
 config.scan('blog.catalogs')
 # .. and so on ...

Once you’ve done this, you can then add the catalog to the database in any bit
of code that has access to the database. For example, in an event handler when
the root object is created for the first time.

from substanced.root import Root
from substanced.event import subscribe_created

@subscribe_created(Root)
def created(event):
 root = event.object
 service = root['catalogs']
 service.add_catalog('mycatalog', update_indexes=True)

Object Indexing

Once a new catalog has been added to the database, each time a new
catalogable object is added to the site, its attributes will be indexed by
each catalog in its lineage that “cares about” the object. The object will
always be indexed in the “system” catalog. To make sure it’s cataloged in
custom catalogs, you’ll need to do some work. To index the object in a custom
application index, you will need to create an index view for your content
using substanced.catalog.indexview, and scan the resulting index
view using pyramid.config.Configurator.scan() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan]:

For example:

from substanced.catalog import indexview

class MyCatalogViews(object):
 def __init__(self, resource):
 self.resource = resource

 @indexview(catalog_name='mycatalog')
 def freaky(self, default):
 return getattr(self.resource, 'freaky', default)

An index view class should be a class that accepts a single argument,
(conventionally named resource), in its constructor, and which has one or
more methods named after potential index names. When it comes time for the
system to index your content, Substance D will create an instance of your
indexview class, and it will then call one or more of its methods; it will call
methods on the indexview object matching the attr passed in to
add_indexview. The default value passed in should be returned if the
method is unable to compute a value for the content object.

Once this is done, whenever an object is added to the system, a value (the
result of the freaky(default) method of the catalog view) will be indexed in the
freaky field index.

You can attach multiple index views to the same index view class:

from substanced.catalog import indexview

class MyCatalogViews(object):
 def __init__(self, resource):
 self.resource = resource

 @indexview(catalog_name='mycatalog')
 def freaky(self, default):
 return getattr(self.resource, 'freaky', default)

 @indexview(catalog_name='mycatalog')
 def funky(self, default):
 return getattr(self.resource, 'funky', default)

You can use the “index_name” parameter to indexview to tell the system that
the index name is not the same as the method name in the index view:

from substanced.catalog import indexview

class MyCatalogViews(object):
 def __init__(self, resource):
 self.resource = resource

 @indexview(catalog_name='mycatalog')
 def freaky(self, default):
 return getattr(self.resource, 'freaky', default)

 @indexview(catalog_name='mycatalog', index_name='funky')
 def notfunky(self, default):
 return getattr(self.resource, 'funky', default)

You can use the context parameter to indexview to tell the system that
this particular index view should only be executed when the class of the
resource (or any of its interfaces) matches the value of the context:

from substanced.catalog import indexview

class MyCatalogViews(object):
 def __init__(self, resource):
 self.resource = resource

 @indexview(catalog_name='mycatalog', context=FreakyContent)
 def freaky(self, default):
 return getattr(self.resource, 'freaky', default)

 @indexview(catalog_name='mycatalog', index_name='funky')
 def notfunky(self, default):
 return getattr(self.resource, 'funky', default)

You can use the indexview_defaults class decorator to save typing in each
indexview declaration. Keyword argument names supplied to
indexview_defaults will be used if the indexview does not supply the
same keyword:

from substanced.catalog import (
 indexview,
 indexview_defaults,
)

@indexview_defaults(catalog_name='mycatalog')
class MyCatalogViews(object):
 def __init__(self, resource):
 self.resource = resource

 @indexview()
 def freaky(self, default):
 return getattr(self.resource, 'freaky', default)

 @indexview()
 def notfunky(self, default):
 return getattr(self.resource, 'funky', default)

The above configuration is the same as:

from substanced.catalog import indexview

class MyCatalogViews(object):
 def __init__(self, resource):
 self.resource = resource

 @indexview(catalog_name='mycatalog')
 def freaky(self, default):
 return getattr(self.resource, 'freaky', default)

 @indexview(catalog_name='mycatalog')
 def notfunky(self, default):
 return getattr(self.resource, 'funky', default)

You can also use the substanced.catalog.add_indexview() directive to add
index views imperatively, instead of using the @indexview decorator.

Querying the Catalog

You execute a catalog query using APIs of the catalog’s indexes.

from substanced.util import find_catalog

catalog = find_catalog(resource, 'system')
name = catalog['name']
path = catalog['path']
find me all the objects that exist under /somepath with the name 'somename'
q = name.eq('somename') & path.eq('/somepath')
resultset = q.execute()
for contentob in resultset:
 print contentob

The calls to name.eq() and path.eq() above each return a query object.
Those two queries are ANDed together into a single query via the
& operator between them (there’s also the | character to OR the
queries together, but we don’t use it above). Parentheses can be used to
group query expressions together for the purpose of priority.

Different indexes have different query methods, but most support the eq
method. Other methods that are often supported by indexes: noteq, ge,
le, gt, any, notany, all, notall, inrange,
notinrange. The AllowedIndex supports
an additional allows() method.

Query objects support an execute method. This method returns a
hypatia.util.ResultSet. A hypatia.util.ResultSet
can be iterated over; each iteration returns a content object.
hypatia.util.ResultSet also has methods like one and first, which
return a single content object instead of a set of content objects. A
hypatia.util.ResultSet also has a sort method which accepts an index
object (the sort index) and returns another (sorted) hypatia.util.ResultSet.

catalog = find_catalog(resource, 'system')
name = catalog['name']
path = catalog['path']
find me all the objects that exist under /somepath with the name 'somename'
q = name.eq('somename') & path.eq('/somepath')
resultset = q.execute()
newresultset = resultset.sort(name)

Note

If you don’t call sort on the hypatia.util.ResultSet you get back,
the results will not be sorted in any particular order.

Querying Across Catalogs

In many cases, you might only have one custom attribute that you need
indexed, while the system catalog has everything else you need. You
thus need an efficient way to combine results from two catalogs,
before executing the query:

system_catalog = find_catalog(resource, 'system')
my_catalog = find_catalog(resource, 'mycatalog')
path = system_catalog['path']
funky = my_catalog['funky']
find me all funky objects that exist under /somepath
q = funky.eq(True) & path.eq('/somepath')
resultset = q.execute()
newresultset = resultset.sort(system_catalog['name'])

Filtering Catalog Results Using the Allowed Index

The Substance D system catalog at
substanced.catalog.system.SystemCatalogFactory contains a number of
default indexes, including an allowed index. Its job is to index security
information to allow security-aware results in queries. This index allows us
to filter queries to the system catalog based on whether the principal issuing
the request has a permission on the matching resource.

For example, the below query will find:

	all of the subresources inside a folder

	which is of content type News Item

	which the current user also possesses the view permission against

system_catalog = find_catalog(resource, 'system')
path = system_catalog['path']
content_type = system_catalog['content_type']
allowed = system_catalog['allowed']
q = (path.eq(resource, depth=1, include_origin=False) &
 content_type.eq('News Item') &
 allowed.allows(request, 'view')
)
return q

Filtering Catalog Results Using The Objectmap

It is possible to postfilter catalog results using the
substanced.objectmap.ObjectMap.allowed() API. For example:

def get_allowed_to_view(context, request):

 catalog = find_catalog(context, 'system')
 q = catalog['content_type'].eq('News Item')
 resultset = q.execute()

 objectmap = find_objectmap(context)
 return objectmap.allowed(
 resultset.oids, request.effective_principals, 'view')

The result of allowed() is a generator
which returns oids, so the result must be listified if you intend to index into
it, or slice it, or what-have-you.

Setting ACLs

The objectmap keeps track of ACLs in a cache to make catalog security
functionality work. Note that for the object map’s cached version of ACLs to
be correct, you will need to set ACLs in a way that helps keep track of all the
contracts. For this, the helper function substanced.util.set_acl() can
be used. For example, the site root at substanced.root.Root finishes
with:

set_acl(
 self,
 [(Allow, get_oid(admins), ALL_PERMISSIONS)],
 registry=registry,
)

Using set_acl this way will generate an event that will keep the
objectmap’s cache updated. This will allow the allowed index to work and
the substanced.objectmap.ObjectMap.allowed() method to work.

Deferred Indexing and Mode Parameters

As a lesson learned from previous cataloging experience,
Substance D natively supports deferred indexing. As an example,
in many systems the text indexing can be done after the change to the
object is committed in the web request’s transaction. Doing so has a
number of performance benefits: the user’s request processes more
quickly, the work to extract text from a Word file can be performed
later, less chance to have a conflict error, etc.

As such, the
substanced.catalog.system.SystemCatalogFactory, by default,
has indexes that aren’t updated immediately when a resource is
changed. For example:

name is MODE_ATCOMMIT for next-request folder contents consistency
name = Field()

text = Text(action_mode=MODE_DEFERRED)
content_type = Field()

The Field indexes use the default of MODE_ATCOMMIT. The Text
overrides the default and set action_mode to MODE_DEFERRED.

There are three such catalog “modes” for indexing:

	substanced.interfaces.MODE_IMMEDIATE means
indexing action should take place as immediately as possible.

	substanced.interfaces.MODE_ATCOMMIT means
indexing action should take place at the successful end of the
current transaction.

	substanced.interfaces.MODE_DEFERRED means
indexing action should be performed by an
external indexing processor (e.g. drain_catalog_indexing) if one is
active at the successful end of the current transaction. If an indexing
processor is unavailable at the successful end of the current transaction,
this mode will be taken to imply the same thing as MODE_ATCOMMIT.

Running an Indexer Process

Great, we’ve now deferred indexing to a later time. What exactly do we
do at that later time?

Indexer processes are easy to write and schedule with supervisor.
Here is an example of a configuration for supervisor.conf that will
run in indexer process every five seconds:

[program:indexer]
command = %(here)s/../bin/sd_drain_indexing %(here)s/production.ini
redirect_stderr = true
stdout_logfile = %(here)s/../var/indexing.log
autostart = true
startsecs = 5

This calls sd_drain_indexing which is a console script that
Substance D automatically creates in your bin directory. Indexing
messages are logged with standard Python logging to the file that you
name. You can view these messages with the supervisorctl command
tail indexer. For example, here is the output from
sd_drain_indexing when changing a simple Document content type:

2013-01-07 11:07:38,306 INFO [substanced.catalog.deferred][MainThread] no actions to execute
2013-01-07 11:08:38,329 INFO [substanced.catalog.deferred][MainThread] executing <substanced.catalog.deferred.IndexAction object oid 5886459017869105529 for index u'text' at 0x106e52910>
2013-01-07 11:08:38,332 INFO [substanced.catalog.deferred][MainThread] executing <substanced.catalog.deferred.IndexAction object oid 5886459017869105529 for index u'interfaces' at 0x106e52dd0>
2013-01-07 11:08:38,333 INFO [substanced.catalog.deferred][MainThread] executing <substanced.catalog.deferred.IndexAction object oid 5886459017869105529 for index u'content_type' at 0x1076e2ed0>
2013-01-07 11:08:38,334 INFO [substanced.catalog.deferred][MainThread] committing
2013-01-07 11:08:38,351 INFO [substanced.catalog.deferred][MainThread] committed

Overriding Default Modes Manually

Above we set the default mode used by an index when Substance D indexes
a resource automatically. Perhaps in an evolve script, you’d like to
override the default mode for that index and reindex immediately.

The index_resource on an index can be passed an action_mode
flag that overrides the configured mode for that index, and instead,
does exactly what you want for only that call. It does not permanently
change the configured default for indexing mode. This applies also to
reindex_resource and unindex_resource. You can also grab the
catalog itself and reindex with a mode that overrides all default modes
on each index.

Autosync and Autoreindex

If you add substanced.catalogs.autosync = true within your application’s
.ini file, all catalog indexes will be resynchronized with their catalog
factory definitions at application startup time. Indices which were added to
the catalog factory since the last startup time will be added to each catalog
which uses the index factory. Likewise, indices which were removed will be
removed from each catalog, and indices which were modified will be modified
according to the catalog factory. Having this setting in your .ini file is
like pressing the Update indexes button on the Manage tab of each of
your catalogs. The SUBSTANCED_CATALOGS_AUTOSYNC environment variable can
also be used to turn this behavior on. For example export
SUBSTANCED_CATALOGS_AUTOSYNC=true.

If you add substanced.catalogs.autoreindex = true within your application’s
.ini file, all catalogs that were changed as the result of an auto-sync
will automatically be reindexed. Having this setting in your .ini file is
like pressing the Reindex catalog button on the Manage tab of each
catalog which was changed as the result of hitting Update indexes. The
SUBSTANCED_CATALOGS_AUTOREINDEX environment variable can also be used to
turn this behavior on. For example export
SUBSTANCED_CATALOGS_AUTOREINDEX=true.

Forcing Deferral of Indexing

There may be times when you’d like to defer all catalog indexing operations,
such as during a bulk load of data from a script. Normally, only indexes
marked with MODE_DEFERRED use deferred indexing, and actions associated
with those indexes are even then only actually deferred if an index processor
is active.

You can force Substance D to defer all catalog indexing using the
substanced.catalogs.force_deferred flag in your application’s .ini
file. When this flag is used, all catalog indexing operations will be added to
the indexer’s queue, even those indexes marked as MODE_IMMEDIATE or
MODE_ATCOMMIT. Deferral will also happen whether or not the indexer is
running, unlike during normal operations.

When you use this flag, you can stop the indexer process, do your bulk load,
and start the indexer again when it’s convenient to have all the content
indexing done in the background.

The SUBSTANCED_CATALOGS_FORCE_DEFERRED environment variable can also be
used to turn this behavior on. For example export
SUBSTANCED_CATALOGS_FORCE_DEFERRED=true.

References

Objects that live in the Substance D resource tree can be related to one
another using references.

The most user-visible facet of references is the SDI “References” tab, which is
presented to SDI admin users when the object they’re looking at is involved in
a reference relation. For example, you’ll notice that the built-in user and
group implementations already have references to each other, and you can visit
their References tabs to see them. Likewise, when you use the Security tab to
change the ACL associated with an object, and include in the ACL a user or
group that lives in the principals folder, a relation is formed between the
ACL-bearing object and the principal. So, as you can see, references aren’t
just for application developers; Substance D itself uses references under the
hood to do its job too.

A reference has a type and a direction. A reference is formed using methods of
the object map.

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
 pass

def connect_reference(context, request):
 objectmap = find_objectmap(context)
 root = request.root
 objectmap.connect(context, root, ContextToRoot)

A reference type is a class (not an instance) that inherits from
substanced.interfaces.ReferenceType. The reference’s name should
indicate its directionality.

Warning

One caveat: reference types are pickled, so if you move a reference type
from one location to another, you’ll have to leave behind a backwards
compatibility import in its original location “forever”, so choose its name
and location wisely. We recommend that you place it in an interfaces.py
file in your project.

A reference can be removed using the object map too:

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
 pass

def disconnect_reference(context, request):
 objectmap = find_objectmap(context)
 root = request.root
 objectmap.disconnect(context, root, ContextToRoot)

The first two arguments to connect() or
disconnect() are source and target.
These can be either resource objects or oids. The third argument to these
functions is the reference type.

Once a reference is formed between two objects, you can see the reference
within the “References” tab in the SDI. The References tab of either side of
the reference (in the above example, either the root or the context) when
visited in the SDI will display the reference to the other side.

Once a reference is made between two objects, the object map can be queried for
objects which take part in the reference.

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
 pass

def query_reference_sources(context, request):
 objectmap = find_objectmap(context)
 return objectmap.sourceids(request.root, ContextToRoot)

def query_reference_targets(context, request):
 objectmap = find_objectmap(context)
 return objectmap.targetids(context, ContextToRoot)

The sourceids() method returns the set of
objectids which are sources of the object and reference type it’s passed.
The targetids() method returns the set of
objectids which are targets of the object and reference type it’s passed. If
no objects are involved in the relation, an empty set will be returned in
either case. sources() and
targets() methods also exist which are
analogous, but return the actual objects involved in the relation instead of the
objectids:

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
 pass

def query_reference_sources(context, request):
 objectmap = find_objectmap(context)
 return objectmap.sources(request.root, ContextToRoot)

def query_reference_targets(context, request):
 objectmap = find_objectmap(context)
 return objectmap.targets(context, ContextToRoot)

A reference type can claim that it is “integral”, which just means that the
deletion of either the source or the target of a reference will be
prevented. Here’s an example of a “source integral” reference type:

from substanced.interfaces import ReferenceType

class UserToGroup(ReferenceType):
 source_integrity = True

This reference type will prevent any object on the “user” side of the
UserToGroup reference (as opposed to the group side) from being deleted. When
a user attempts to delete a user that’s related to a group using this reference
type, a substanced.objectmap.SourceIntegrityError will be raised and
the deletion will be prevented. Only when the reference is removed or the
group is deleted will the user deletion be permitted.

The flip side of this is target integrity:

from substanced.interfaces import ReferenceType

class UserToGroup(ReferenceType):
 target_integrity = True

This is the inverse. The reference will prevent any object on the “group” side
of the UserToGroup reference from being deleted unless the associated user is
first removed or the reference itself is no longer active. When a user
attempts to delete a user that’s related to a group using this reference type,
a substanced.objectmap.TargetIntegrityError will be raised and the
deletion will be prevented.

substanced.objectmap.SourceIntegrityError and
substanced.objectmap.TargetIntegrityError both inherit from
substanced.objectmap.ReferentialIntegrityError, so you can catch
either in your code.

There are convenience functions that you can add to your resource objects that
give them special behavior:
reference_sourceid_property(),
reference_targetid_property(),
reference_source_property(),
reference_target_property(),
multireference_sourceid_property(),
multireference_targetid_property(),
reference_source_property(), and
reference_target_property().

Here’s use of a reference property:

	1
2
3
4
5
6
7
8
9

	from persistent import Persistent
from substanced.objectmap import reference_sourceid_property
from substanced.interfaces import ReferenceType

class LineItemToOrder(ReferenceType):
 pass

class LineItem(Persistent):
 order = reference_target_property(LineItemToOrder)

Once you’ve seated a resource object in a folder, you can then begin to use its
special properties:

	1
2
3
4
5

	from mysystem import LineItem, Order

lineitem = LineItem()
folder['lineitem'] = lineitem
lineitem.order = Order()

This is just a nicer way to use the objectmap query API; you don’t have to
interact with it at all, just assign and ask for attributes of your object.
The multireference_* variants are similar to the reference variants, but
they allow for more than one object on the “other side”.

ACLs and Principal References

When an ACL is modified on a resource, a statement is being made about
a relationship between that resource and a principal or group of
principals. Wouldn’t it be great if a reference was established,
allowing you to then see such connections in the SDI?

This is indeed exactly how Substance D behaves: a source-integral
PrincipalToACLBearing reference is set up between an ACL-bearing
resource and the principals referred to within the ACL.

Workflows

A workflow is a collection of transitions that transition
between states. Specifically, substanced.workflow implements
event-driven finite-state machine [https://en.wikipedia.org/wiki/Finite-state_machine] workflows.

Workflows are used to ease following tasks when content goes through the
lifecycle:

	updating security (adding/removing permissions)

	sending emails

	…

States and transitions together with metadata are stored on the
Workflow. Workflows are stored in
config.registry.workflows. The only thing that content has from the
workflow machinery is content.__workflow_state__ attribute that stores a
dict of all workflow types and corresponding states assigned. When content is
added to the database (ObjectAdded event is
emitted), all relevant registered workflows are initialized for it.

Features

	Site-wide workflows

	Multiple workflows per object

	Content type specific workflows

	Restrict transitions by permission

	Configurable callbacks when entering state

	Configurable callbacks when executing transition

	Reset workflow to initial state

Adding a workflow

Suppose we want to add a simple workflow:

/-----\ <-- to_draft ----- /---------\
|draft| |published|
\-----/ --- to_publish --> \---------/

Using add_workflow() Pyramid configuration
directive:

>>> workflow = Workflow(initial_state="draft", type="article")
>>> workflow.add_state("draft")
>>> workflow.add_state("published")
>>> workflow.add_transition('to_publish', from_state='draft', to_state='published')
>>> workflow.add_transition('to_draft', from_state='published', to_state='draft')

...

>>> config.add_workflow(workflow, ('News',))

Interaction with the workflow

Retrieve a Workflow instance using
the substanced.workflow.get_workflow():

>>> from substanced.workflow import get_workflow

>>> workflow = get_workflow(request, type='article', content_type='News')

Suppose there is a context object at hand, you can
reset() its workflow to initial state:

>>> workflow.reset(context, request)

You could check it has_state() and assert
state_of() context is initial state name
of the workflow:

>>> assert workflow.has_state(context) == True
>>> assert workflow.state_of(context) == workflow.initial_state

List possible transitions from the current state of the workflow
with get_transitions():

>>> workflow.get_transitions(context, request)
[{'from_state': 'draft',
 'callback': None,
 'permission': None,
 'name': 'to_publish',
 'to_state': 'published'}]

Execute a transition():

>>> workflow.transition(context, request, 'to_publish')

List all states of the workflow with
get_states():

>>> workflow.get_states(context, request)
[{'name': 'draft',
 'title': 'draft',
 'initial': True,
 'current': False,
 'transitions': [{'from_state': 'draft',
 'callback': None,
 'permission': None,
 'name': 'to_publish',
 'to_state': 'published'}],
 'data': {'callback': None}},
 {'name': 'published',
 'title': 'published',
 'initial': False,
 'current': True,
 'transitions': [{'from_state': 'published',
 'callback': None,
 'permission': None,
 'name': 'to_draft',
 'to_state': 'draft'}],
 'data': {'callback': None}}]

Execute a transition_to_state():

>>> workflow.transition_to_state(context, request, 'draft')

Using callbacks

Typically you will want to define custom actions when transition is executed
or when content enters a specific state. Let’s define a transition with
a callback:

>>> def cb(context, **kw):
... print "keywords: ", kw

>>> workflow.add_transition('to_publish_with_callback',
... from_state='draft',
... to_state='published',
... callback=cb)

When you execute the transition, callback is called:

>>> workflow.transition(context, request, 'to_publish_with_callback')
keywords: {'workflow': <Workflow ...>, 'transition': {'to_state': 'published', 'from_state': 'draft', ...}, request=<Request ...>}

To know more about callback parameters, read
add_transition() signature.

Dumping Content to Disk

Substance D’s object database stores native Python representations of
resources. This is easy enough to work with: you can run
bin/pshell to get an interactive prompt, write longer ad-hoc
console scripts, or just put code into your application.

However, production sites usually want exportable representations of
important data stored in a long-term format. For this,
Substance D provides a dump facility for content types to be serialized
in a YAML [http://yaml.org/] representation on disk.

Note

You’ll note in the following the absence of docs on loading data.
This is intentional. The process of loading data into a new,
or semi-new, or newer-than-new site has many policy implications.
Too many to fit into a single loading script. Substance D considers
the particulars of loading data to be in the province of the
application developer.

Dumping Resources Using sd_dump

The sd_dump console script loads your Substance D application,
connects to your object database, and writes serialized representations
of resources to disk in a directory hierarchy:

$../bin/sd_dump --help
Usage: sd_dump [options]

 Dump an object (and its subobjects) to the filesystem: sd_dump [--source
=ZODB-PATH] [--dest=FILESYSTEM-PATH] config_uri Dumps the object at ZODB-
PATH and all of its subobjects to a filesystem path. Such a dump can be
loaded (programmatically) by using the substanced.dump.load function e.g.
sd_dump --source=/ --dest=/my/dump etc/development.ini

Options:
 -h, --help show this help message and exit
 -s ZODB-PATH, --source=ZODB-PATH
 The ZODB source path to dump (e.g. /foo/bar or /)
 -d FILESYSTEM-PATH, --dest=FILESYSTEM-PATH
 The destination filesystem path to dump to.

For example:

$../bin/sd_dump ../etc/development.ini
2013-01-07 13:27:03,939 INFO [ZEO.ClientStorage][MainThread] ('localhost', 9963) ClientStorage (pid=93148) created RW/normal for storage: 'main'
2013-01-07 13:27:03,941 INFO [ZEO.cache][MainThread] created temporary cache file '<fdopen>'
2013-01-07 13:27:03,981 WARNI [ZEO.zrpc][Connect([(2, ('localhost', 9963))])] (93148) CW: error connecting to ('fe80::1%lo0', 9963): EHOSTUNREACH
2013-01-07 13:27:03,982 WARNI [ZEO.zrpc][Connect([(2, ('localhost', 9963))])] (93148) CW: error connecting to ('fe80::1%lo0', 9963): EHOSTUNREACH
2013-01-07 13:27:04,002 WARNI [ZEO.zrpc][Connect([(2, ('localhost', 9963))])] (93148) CW: error connecting to ('::1', 9963): EINVAL
2013-01-07 13:27:04,003 INFO [ZEO.ClientStorage][Connect([(2, ('localhost', 9963))])] ('localhost', 9963) Testing connection <ManagedClientConnection ('127.0.0.1', 9963)>
2013-01-07 13:27:04,004 INFO [ZEO.zrpc.Connection(C)][('localhost', 9963) zeo client networking thread] (127.0.0.1:9963) received handshake 'Z3101'
2013-01-07 13:27:04,105 INFO [ZEO.ClientStorage][Connect([(2, ('localhost', 9963))])] ('localhost', 9963) Server authentication protocol None
2013-01-07 13:27:04,106 INFO [ZEO.ClientStorage][Connect([(2, ('localhost', 9963))])] ('localhost', 9963) Connected to storage: ('localhost', 9963)
2013-01-07 13:27:04,108 INFO [ZEO.ClientStorage][Connect([(2, ('localhost', 9963))])] ('localhost', 9963) No verification necessary -- empty cache
2013-01-07 13:27:04,727 INFO [substanced.catalog][MainThread] system update_indexes: no indexes added or removed
2013-01-07 13:27:04,730 INFO [substanced.catalog][MainThread] sdidemo update_indexes: no indexes added or removed
2013-01-07 13:27:04,732 INFO [substanced.dump][MainThread] Dumping /
2013-01-07 13:27:04,749 INFO [substanced.dump][MainThread] Dumping /principals
2013-01-07 13:27:04,754 INFO [substanced.dump][MainThread] Dumping /principals/users
2013-01-07 13:27:04,760 INFO [substanced.dump][MainThread] Dumping /principals/users/admin
2013-01-07 13:27:04,779 INFO [substanced.dump][MainThread] Dumping /principals/resets
2013-01-07 13:27:04,783 INFO [substanced.dump][MainThread] Dumping /principals/groups

…with logging messages being emitted until all known content is
dumped. A dump subdirectory in the current directory is created (if
no argument is provided) containing:

$ ls
acl.yaml propsheets references.yaml resource.yaml resources

Note

To correctly encode as much meaning as possible,
the dump files contain some advanced and custom YAML constructs
when needed.

acl.yaml For Security Settings

This YAML file contains security settings for this resource. For
example:

- !!python/tuple [Allow, 1644064392535565429, !all_permissions '']

references.yaml for Reference Information

Data about references aren’t stored on the resources involved in the
reference. Instead, they are stored in the objectmap. This file
contains the reference information for the resource identified at the
current dump directory. For example:

!interface 'substanced.interfaces.PrincipalToACLBearing':
 sources: [1644064392535565429]

workflow.yaml for Workflow Settings

The workflow engine can contain information about resource state. For
example:

!!python/object:persistent.mapping.PersistentMapping
data: {document: draft}

propsheets Directory for Property Sheet Data

Resources can have multiple system-defined or application-defined
property sheets on resources. These are serialized as subdirectories
under propsheets, with a directory for each property sheet. For
example, a resources propsheets/Basic/properties.yaml might contain:

{body: !!python/unicode 'The quick brown fox jumps over the lazy dog. The quick brown
 fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog.
 The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the
 lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps
 over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown
 fox jumps over the lazy dog. ', name: !!python/unicode 'document_0', title: !!python/unicode 'Document
 0 Binder 0'}

resource.yaml for Content Type Information

Each directory after the top corresponds to a resource in the database.
As such, the resource likely has content type information. The dump
script encodes this into a YAML file in the resource’s dump directory:

{content_type: Root, created: !!timestamp '2013-01-07 14:23:23.133436', is_service: false,
 name: null, oid: 1644064392535565415}

resources for Contained Resources in Containers

If the resource at a current dump directory is a Folder or some
other kind of container, it will contain a resources subdirectory.
This might contain more subfolders and thus subdirectories. It might
also contain individual resources, as a subdirectory named with the
resource name.

Custom Dumping with __dump__

The built-in facilities allow automatic dumping of most information for
your content, including information in your property sheets,
the content type, security settings, references, workflows, etc.

If you do need extra information dumped to YAML about your content type,
Substance D has a Python protocol using an __dump__ on your
@content class. As an example,
:py:meth:substanced.principal.User.dump is a callable which returns
a mapping of simple Python objects. The dumper checks to see if a
resource has a __dump__ method. If so, it calls the method,
encodes the result to YAML, and writes it to an adhoc.yaml file in
the dumped-resource’s directory.

The inverse is also true. If a content type has a __load__ method,
information from that method is added to the state that is loaded.

Adding New Dumpers

The adhoc.yaml file that we just saw is an example of the
AdhocAttrDumper. There are seven other dumpers built-in: acl,
workflow, references, sdiproperties, interfaces, order, and propsheets.

If you would like a custom dumper, you can register it with
config.add_dumper. For example,
substanced.dump.includeme() registers the existing dumpers and
their dumper factories:

def includeme(config):
 DEFAULT_DUMPERS = [
 ('acl', ACLDumper),
 ('workflow', WorkflowDumper),
 ('references', ReferencesDumper),
 ('sdiproperties', SDIPropertiesDumper),
 ('interfaces', DirectlyProvidedInterfacesDumper),
 ('order', FolderOrderDumper),
 ('propsheets', PropertySheetDumper),
 ('adhoc', AdhocAttrDumper),
]
 config.add_directive('add_dumper', add_dumper)
 for dumper_name, dumper_factory in DEFAULT_DUMPERS:
 config.add_dumper(dumper_name, dumper_factory)

Changing Resource Structure With Evolution

As you develop your software and make changes to structures,
your existing content will be in an old state. Whether in production or
during development, you need a facility to correct out-of-date data.

Evolution provides a rich facility for “evolving” your resources to
match changes during development. Substance D’s evolution facility
gives Substance D developers full control over the data updating process:

	Write scripts for each package that get called during an update

	Set revision markers in the data to indicate the revision level a
database is at

	Console script and SDI GUI that can be run to “evolve” a database

Running an Evolution from the Command Line

Substance D applications generate a console script at
bin/sdi_evolve. Running this without arguments displays some help:

$ bin/sd_evolve
Requires a config_uri as an argument

 sd_evolve [--latest] [--dry-run] [--mark-finished=stepname] [--mark-unfinished=stepname] config_uri
 Evolves new database with changes from scripts in evolve packages
 - with no arguments, evolve displays finished and unfinished steps
 - with the --latest argument, evolve runs scripts as necessary
 - with the --dry-run argument, evolve runs scripts but does not issue any commits
 - with the --mark-finished argument, marks the stepname as finished
 - with the --mark-unfinished argument, marks the stepname as unfinished

 e.g. sd_evolve --latest etc/development.ini

Running with your INI file, as explained in the help,
shows information about the version numbers of various packages:

$ bin/sd_evolve etc/development.ini

Finished steps:

 2013-06-14 13:01:28 substanced.evolution.legacy_to_new

Unfinished steps:

This shows that one evolution step has already been run and that there are no
unfinished evolution steps.

Running an Evolution from the SDI

The Evolution section of the Database tab of the Substance D root object
allows you to do what you might have otherwise done using the sd_evolve
console script described above.

In some circumstances when Substance D itself needs to be upgraded, you may
need to use the sd_evolve script rather than the GUI. For example, if the
way that Substance D Folder objects work is changed and folder objects need
to be evolved, it may be impossible to view the evolution GUI, and you may need
to use the console script.

Autoevolve

If you add substanced.autoevolve = true within your application .ini file,
all pending evolution upgrade steps will be run when your application starts.
Alternately you can use the SUBSTANCED_AUTOEVOLVE evnironment variable
(e.g. export SUBSTANCED_AUTOEVOLVE=true) to do the same thing.

Adding Evolution Support To a Package

Let’s say we have been developing an sdidemo package and,
with content already in the database, we want to add evolution support.
Our sdidemo package is designed to be included into a site,
so we have the traditional Pyramid includeme support. In there we
add the following:

import logging

logger = logging.getLogger('evolution')

def evolve_stuff(root, registry):
 logger.info('Stuff evolved.')

def includeme(config):
 config.add_evolution_step(evolve_stuff)

We’ve used the substanced.evolution.add_evolution_step() API to add an
evolution step in this package’s includeme function.

Running sd_evolve without --latest (meaning,
without performing an evolution) shows that Substance D’s evolution now
knows about our package:

$ bin/sd_evolve etc/development.ini

Finished steps:

 2013-06-14 13:01:28 substanced.evolution.legacy_to_new

Unfinished steps:

 sdidemo.evolve_stuff

Let’s now run sd_evolve “for real”. This will cause the evolution step to
be executed and marked as finished.

$ bin/sd_evolve --latest etc/development.ini

2013-06-14 13:22:51,475 INFO [evolution][MainThread] Stuff evolved.
Evolution steps executed:
 substanced.evolution.evolve_stuff

This examples shows a number of points:

	Each package can easily add evolution support via the
config.add_evolution_step() directive. You can learn more about this
directive by reading its API documentation at
substanced.evolution.add_evolution_step().

	Substance D’s evolution service looks at the database to see which steps
haven’t been run, then runs all the needed evolve scripts, sequentially, to
bring the database up to date.

	All changes within an evolve script are in the scope of a
transaction. If all the evolve scripts run to completion without
exception, the transaction is committed.

Manually Marking a Step As Evolved

In some cases you might have performed the work in an evolve step by hand and
you know there is no need to re-perform that work. You’d like to mark the step
as finished for one or more evolve scripts, so these steps don’t get run. The
--mark-step-finished argument to sd_evolve accomplishes this. The
“Mark finished” button in the SDI evolution GUI does the same.

Baselining

Evolution is baselined at first startup. When there’s no initial list of
finished steps in the database. Substance D, in the root factory, says: “I
know all the steps participating in evolution, so when I first create the
root object, I will set all of those steps to finished.”

If you wish to perform something after Root was
created, see Affecting Content Creation.

Configuring Folder Contents

The folder contents, as mentioned previously in
Folder contents, the SDI’s folder contents uses a powerful
datagrid to view and manage items in a folder. This chapter covers how
your content types can plug into the folder contents view.

Adding Columns

Perhaps your system has content types with extra attributes that are
meaningful and you’d like your contents listings to show that column.
You can change the columns available on folder contents listings by
passing in a columns argument to the @content directive. The
value of this argument is a callable which returns a sequence of
mappings conforming to the datagrid’s contract. For example:

def binder_columns(folder, subobject, request, default_columnspec):
 subobject_name = getattr(subobject, '__name__', str(subobject))
 objectmap = find_objectmap(folder)
 user_oid = getattr(subobject, 'creator', None)
 created = getattr(subobject, 'created', None)
 modified = getattr(subobject, 'modified', None)
 if user_oid is not None:
 user = objectmap.object_for(user_oid)
 user_name = getattr(user, '__name__', 'anonymous')
 else:
 user_name = 'anonymous'
 if created is not None:
 created = created.isoformat()
 if modified is not None:
 modified = modified.isoformat()
 return default_columnspec + [
 {'name': 'Title',
 'value': getattr(subobject, 'title', subobject_name),
 },
 {'name': 'Created',
 'value': created,
 'formatter': 'date',
 },
 {'name': 'Last edited',
 'value': modified,
 'formatter': 'date',
 },
 {'name': 'Creator',
 'value': user_name,
 }
]

@content(
 'Binder',
 icon='glyphicon glyphicon-book',
 add_view='add_binder',
 propertysheets = (
 ('Basic', BinderPropertySheet),
),
 columns=binder_columns,
)

The callable is passed the folder, a subobject, the request,
and a set of default column specifications. To display the datagrid
column headers, your callable is invoked on the first resource.
Later, this callable is used to get the value for the fields of each
column for each resource in a request’s batch.

The mappings returned can indicate whether a particular column should be
sorted. If you want your column to be sortable, you must provide a sorter
key in the mapping. If supplied, the sorter value must either be None
if the column is not sortable, or a function which accepts a resource (the
folder), a “resultset”, a limit keyword argument, and a reverse keyword
argument and which must return a sorted result set. Here’s an example sorter:

from substanced.util import find_index

def sorter(folder, resultset, reverse=False, limit=None):
 index = find_index(folder, 'mycatalog', 'date')
 if index is not None:
 resultset = resultset.sort(index, reverse=reverse, limit=limit)
 return resultset

def my_columns(folder, subobject, request, default_columnspec):
 return default_columnspec + [
 {'name': 'Date',
 'value': getattr(subobject, 'title', subobject_name),
 'sorter': 'sorter',
 },

Most often, sorting is done by passing a catalog index into the resultset.sort
method as above (resultset.sort returns another resultset), but sorting can be
performed manually, as long as the sorter returns a resultset.

Buttons

As we just showed, you can extend the folder contents with extra
columns to display and possibly sort on. You can also add new buttons
that will trigger operations on selected resources.

As with columns, we pass a new argument to the @content directive.
For example, the folder contents view for the catalogs folder allows you
to reindex multiple indexes at once:

[image: _images/catalog_contents.png]
The Reindex button illustrates a useful facility for performing
many custom operations at once.

The substanced.catalog module’s @content directive has a
buttons argument:

@content(
 'Catalog',
 icon='glyphicon glyphicon-search',
 service_name='catalog',
 buttons=catalog_buttons,
)

This points at a callable:

def catalog_buttons(context, request, default_buttons):
 """ Show a reindex button before default buttons in the folder contents
 view of a catalog"""
 buttons = [
 {'type':'single',
 'buttons':
 [
 {'id':'reindex',
 'name':'form.reindex',
 'class':'btn-primary btn-sdi-sel',
 'value':'reindex',
 'text':'Reindex'}
]
 }
] + default_buttons
 return buttons

In this case, the Reindex button was inserted before the other
buttons, in the place where an add button would normally appear.

The class on your buttons affect behavior in the datagrid:

	btn-primary gives this button the styling for the primary button
of a form, using Twitter Bootstrap form styling

	btn-sdi-act makes the button always enabled

	btn-sdi-sel disables the button until one or more items are
selected

	btn-sdi-one disables the button until exactly one item is selected

	btn-sdi-del disables the button if any of the selected resources
is marked as “non-deletable” (discussed below)

When clicked, this button will do a form POST of the selected
docids to a view that you have implemented. Which view? The
'name': 'form.reindex' item sets the parameter on the POST. You can
then register a view against this.
substanced.catalog.views.catalog shows this:

@mgmt_view(
 context=IFolder,
 content_type='Catalog',
 name='contents',
 request_param='form.reindex',
 request_method='POST',
 renderer='substanced.folder:templates/contents.pt',
 permission='sdi.manage-contents',
 tab_condition=False,
)
def reindex_indexes(context, request):
 toreindex = request.POST.getall('item-modify')
 if toreindex:
 context.reindex(indexes=toreindex, registry=request.registry)
 request.sdiapi.flash(
 'Reindex of selected indexes succeeded',
 'success'
)
 else:
 request.sdiapi.flash(
 'No indexes selected to reindex',
 'danger'
)

 return HTTPFound(request.sdiapi.mgmt_path(context, '@@contents'))

Selection and Button Enabling

As mentioned above, some buttons are driven by the selection. If
nothing is selected, the button is disabled.

Buttons can also be disabled if any selected item is “non-deletable”.
How does that get signified? An item is ‘deletable’ if the user has
the sdi.manage-contents permission on folder and if the
subobject has a __sdi_deletable__ attribute which resolves to a
boolean True value.

It is also possible to make button enabling and disabling depend on some
application-specific condition. To do this, assign a callable to the
enabled_for key in the button spec. For example:

def catalog_buttons(context, request, default_buttons):
 def is_indexable(folder, subobject, request):
 """ only enable the button if subobject is indexable """
 return subobject.is_indexable()

 buttons = [
 {'type':'single',
 'buttons':
 [
 {'id':'reindex',
 'name':'form.reindex',
 'class':'btn-primary btn-sdi-sel',
 'value':'reindex',
 'enabled_for': is_indexable,
 'text':'Reindex'}
]
 }
] + default_buttons
 return buttons

In the example above, we define a button similar to our previous reindex
button, except this time we have an enabled_for key that is assigned
the is_indexable function. When the buttons are rendered, each element
is passed to this function, along with the folder and request. If any one
of the folder subobjects returns False for this call, the button will
not be enabled.

Filtering What Can Be Added

Not all kinds of resources make sense to be added inside a certain kind
of container. For example, substanced.catalog.Catalog
is a content type that can hold only indexes. That is,it isn’t meant to
hold any arbitrary kind of thing.

To tell the SDI what can be added inside a container content type, add a
__sdi_addable__ method to your content type. This method is passed the
folder object representing the place the object might be added, and a Substance
D introspectable [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-introspectable] for a content type. When Substance D tries to
figure out whether an object is addable to a particular folder, it will call
the __sdi_addable__ method of your folderish type once for each content
type.

The introspectable is a dictionary-like object which contains information about
the content type. The introspectable contains the following keys:

	meta

	A dictionary representing “meta” values passed to
add_content_type(). For example, if you pass
add_view='foo' to add_content_type(), the
meta of the content type will be {'add_view':'foo'}.

	content_type

	The content type value passed to add_content_type().

	factory_type

	The factory_type value passed to
add_content_type().

	original_factory

	The original content factory (without any wrapping) passed to
add_content_type().

	factory

	The potentially wrapped content factory derived from the original factory in
add_content_type().

See Registering Content for more information about content type
registration and what the above introspectable values mean.

Your __sdi_addable__ method can perform some logic using the values it is
passed, and then it must return a filtered sequence.

As an example, the __sdi_addable__ method on the Catalog
filters out the kinds of things that can be added in a catalog.

Extending Which Columns Are Displayed

The folder contents grid displays a number of columns by default. If
you are managing content with custom properties, in some cases you want
to list those properties in the columns the grid can display. You can
do so on custom folder content types by adding a columns argument
to your @content decorator.

As an example, imagine a Binder kind of container. It has a content
type declaration:

@content(
 'Binder',
 icon='glyphicon glyphicon-book',
 add_view='add_binder',
 propertysheets = (
 ('Basic', BinderPropertySheet),
),
 columns=binder_columns,
)

The binder_columns points to a callable where we perform the work
to both add the column to the list of columns, but also specify how to
get the row data for that column:

def binder_columns(folder, subobject, request, default_columnspec):
 subobject_name = getattr(subobject, '__name__', str(subobject))
 objectmap = find_objectmap(folder)
 user_oid = getattr(subobject, 'creator', None)
 created = getattr(subobject, 'created', None)
 modified = getattr(subobject, 'modified', None)
 if user_oid is not None:
 user = objectmap.object_for(user_oid)
 user_name = getattr(user, '__name__', 'anonymous')
 else:
 user_name = 'anonymous'
 if created is not None:
 created = created.isoformat()
 if modified is not None:
 modified = modified.isoformat()
 return default_columnspec + [
 {'name': 'Title',
 'value': getattr(subobject, 'title', subobject_name),
 },
 {'name': 'Created',
 'value': created,
 'formatter': 'date',
 },
 {'name': 'Last edited',
 'value': modified,
 'formatter': 'date',
 },
 {'name': 'Creator',
 'value': user_name,
 }
]

Here we add four columns to the standard set of grid columns,
whenever we are in a Binder folder.

Adding New Folder Contents Buttons

The grid in folder contents makes it easy to select multiple resources
then click a button to perform an action. Wouldn’t it be great, though,
if we could add a new button to all or certain folders,
to perform custom actions?

In the previous section we saw how to pass another argument to the
@content decorator. We do the same for new buttons. A content type
can pass in buttons=callable to modify the list of buttons on a
particular kind of folder.

For example, the substanced.catalog.catalog_buttons() callable
adds a new Reindex button in front of the standard set of buttons:

def catalog_buttons(context, request, default_buttons):
 """ Show a reindex button before default buttons in the folder contents
 view of a catalog"""
 buttons = [
 {'type':'single',
 'buttons':
 [
 {'id':'reindex',
 'name':'form.reindex',
 'class':'btn-primary btn-sdi-sel',
 'value':'reindex',
 'text':'Reindex'}
]
 }
] + default_buttons
 return buttons

The button is disabled until one or more resources are selected which
have the correct permission (discussed above.) If our new button is
clicked, the form is posted with the form.reindex value in post
data. You can then make a @mgmt_view with
request_param='form.reindex' in the declaration to handle the form
post when that button is clicked.

Broken Objects and Class Aliases

Let’s assume that there’s an object in your database that is an instance of the
class myapplication.resources.MyCoolResource. If that class is
subsequently renamed to myapplication.resources.MySuperVeryCoolResource,
the MyCoolResource object that exists in the database will become broken.
This is because the ZODB database used by Substance D uses the Python
pickle persistence format, and pickle writes the literal class name
into the record associated with an object instance. Therefore, if a class is
renamed or moved, when you come along later and try to deserialize a pickle
with the old name, it will not work as it used to.

Persistent objects that exist in the database but which have a class that
cannot be resolved are called “broken objects”. If you ask a Substance D folder
(or the object map) for an object that turns out to be broken in this way, it
will hand you back an instance of the pyramid.util.BrokenWrapper class.
This class tries to behave as much as possible like the original object for
data that exists in the original objects’ __dict__ (it defines a custom
__getattr__ that looks in the broken object’s state). However, you won’t
able to call methods of the original class against a broken object.

You can usually delete broken objects using the SDI folder contents view if
necessary.

If you must rename or move a class, you can leave a class alias behind for
backwards compatibility to avoid seeing broken objects in your database. For
example:

class MySuperVeryCoolResource(Persistent):
 pass

MyCoolResource = MySuperVeryCoolResource # bw compat alias

Using Auditing

Substance D keeps an audit log of all meaningful operations performed against
content if you have an audit database configured. At the time of this writing, “meaningful” is defined as:

	When an ACL is changed.

	When a resource is added or removed.

	When a resource is modified.

The audit log is of a fixed size (currently 1,000 items). When the audit log
fills up, the oldest audit event is thrown away. Currently we don’t have an
archiving mechanism in place to keep around the items popped off the end of the
log when it fills up; this is planned.

You can extend the auditing system by using the
substanced.audit.AuditLog, writing your own events to the log.

Configuring the Audit Database

In order to enable auditing, you have to add an audit database to your
Substance D configuration. This means adding a key to your application’s
section in the .ini file associated with the app:

zodbconn.uri.audit = <some ZODB uri>

An example of “some ZODB URI” above might be (for a FileStorage database, if
your application doesn’t use multiple processes):

zodbconn.uri.audit = file://%(here)s/auditlog.fs

Or if your application uses multiple processes, use a ZEO URL.

The database cannot be your main database. The reason that the audit database
must live in a separate ZODB database is that we don’t want undo operations to
undo the audit log data.

Note that if you do not configure an audit database, real-time SDI features
such as your folder contents views updating without a manual refresh will not
work.

Once you’ve configured the audit database, you need to add an audit log object
to the new database. You can do this using pshell:

[chrism@thinko sdnet]$ bin/pshell etc/development.ini
Python 3.3.2 (default, Jun 1 2013, 04:46:52)
[GCC 4.6.3] on linux
Type "help" for more information.

Environment:
 app The WSGI application.
 registry Active Pyramid registry.
 request Active request object.
 root Root of the default resource tree.
 root_factory Default root factory used to create `root`.

>>> from substanced.audit import set_auditlog
>>> set_auditlog(root)
>>> import transaction; transaction.commit()

Once you’ve done this, the “Auditing” tab of the root object in the SDI should
no longer indicate that auditing is not configured.

Viewing the Audit Log

The root object will have a tab named “Auditing”. You can view the currently
active audit log entries from this page. Accessing this tab requires the
sdi.view-auditlog permission.

Adding an Audit Log Entry

Here’s an example of adding an audit log entry of type NailsFiled to the
audit log:

from substanced.util import get_oid, get_auditlog

def myview(context, request):
 auditlog = get_auditlog(context)
 auditlog.add('NailsFiled', get_oid(context), type='fingernails')
 ...

Warning

If you don’t have an audit database defined, the
get_auditlog() API will return None.

This will add a``NailsFiled`` event with the payload
{'type':'fingernails'} to the audit log. The payload will also
automatically include a UNIX timestamp as the key time. The first argument
is the audit log typename. Audit entries of the same kind should share the
same type name. It should be a string. The second argument is the oid of the
content object which this event is related to. It may be None indicating
that the event is global, and unrelated to any particular piece of content.
You can pass any number of keyword arguments to
substanced.audit.AuditLog.add(), each will be added to the payload.
Each value supplied as a keyword argument must be JSON-serializable. If one
is not, you will receive an error when you attempt to add the event.

Using The auditstream-sse View

If you have auditing enabled, you can use a view named auditstream-sse
against any resource in your resource tree using JavaScript. It will return
an event stream suitable for driving an HTML5 EventSource (an HTML 5
feature, see http://www.html5rocks.com/en/tutorials/eventsource/basics/ for more
information). The event stream will contain auditing events. This can be used
for progressive enhancement of your application’s UI. Substance D’s SDI uses
it for that purpose. For example, when an object’s ACL is changed, a user
looking at the “Security” tab of that object in the SDI will see the change
immediately, rather than upon the next page refresh.

Obtain events for the context of the view only:

var source = new EventSource(
 "${request.sdiapi.mgmt_path(context, 'auditstream-sse')}");

Obtain events for a single OID unrelated to the context:

var source = new EventSource(
 "${request.sdiapi.mgmt_path(context, 'auditstream-sse', query={'oid':'12345'})}");

Obtain events for a set of OIDs:

var source = new EventSource(
 "${request.sdiapi.mgmt_path(context, 'auditstream-sse', query={'oid':['12345', '56789']})}");

Obtain all events for all oids:

var source = new EventSource(
 "${request.sdiapi.mgmt_path(context, 'auditstream-sse', query={'all':'1'})}");

The executing user will need to possess the sdi.view-auditstream permission
against the context on which the view is invoked. Each event payload will
contain detailed information about the audit event as a string which represents
a JSON dictionary.

See the acl.pt template in the substanced/sdi/views/templates directory
of Substance D to see a “real-world” usage of this feature.

Using Locking

Substance D allows you to lock content resources programmatically. When a
resource is locked, its UI can change to indicate that it cannot be edited by
someone other than the user holding the lock.

Locking a resource only locks the resource, not its children. The locking
system is not recursive at this time.

Locking a Resource

To lock a resource:

from substanced.locking import lock_resource
from pyramid.security import has_permission

if has_permission('sdi.lock', someresource, request):
 lock_resource(someresource, request.user, timeout=3600)

If the resource is already locked by the owner supplied as owner_or_ownerid
(the parameter filled by request.user above), calling this function will
refresh the lock. If the resource is not already locked by another user,
calling this function will create a new lock. If the resource is already
locked by a different user, a substanced.locking.LockError will be
raised.

Using the substanced.locking.lock_resource() function has the side effect
of creating a “Lock Service” (named locks) in the Substance D root if one
does not already exist.

Warning

Callers should assert that the owner has the sdi.lock permission against
the resource before calling lock_resource() to
ensure that a user can’t lock a resource he is not permitted to.

Unlocking a Resource

To unlock a resource:

from substanced.locking import unlock_resource
from pyramid.security import has_permission

if has_permission('sdi.lock', someresource, request):
 unlock_resource(someresource, request.user)

If the resource is already locked by a user other than the owner supplied as
owner_or_ownerid (the parameter filled by request.user above) or the
resource isn’t already locked with this lock type, calling this function will
raise a substanced.locking.UnlockError exception. Otherwise the lock
will be removed.

Using the substanced.locking.unlock_resource() function has the side
effect of creating a “Lock Service” (named locks) in the Substance D root
if one does not already exist.

Warning

Callers should assert that the owner has the sdi.lock permission against
the resource before calling unlock_resource() to
ensure that a user can’t lock a resource he is not permitted to.

To unlock a resource using an explicit lock token:

from substanced.locking import unlock_token
from pyramid.security import has_permission

if has_permission('sdi.lock', someresource, request):
 unlock_token(someresource, token, request.user)

If the lock identified by token belongs to a user other than the owner
supplied as owner_or_ownerid (the parameter filled by request.user
above) or if no lock exists under token , calling this function will
raise a substanced.locking.LockError exception. Otherwise the lock
will be removed.

Using the substanced.locking.unlock_token() function has the side
effect of creating a “Lock Service” (named locks) in the Substance D root
if one does not already exist.

Warning

Callers should assert that the owner has the sdi.lock permission against
the resource before calling unlock_token() to
ensure that a user can’t lock a resource he is not permitted to.

Discovering Existing Locks

To discover any existing locks for a resource:

from substanced.locking import discover_resource_locks

locks = discover_resource_locks(someresource)
"locks" will be a sequence

The substanced.locking.discover_resource_locks() function will return a
sequence of substanced.locking.Lock objects related to the resource
for the lock type provided to the function. By default, only valid locks are
returned. Invalid locks for the resource may exist, but they are not returned
unless the include_invalid argument passed to
:discover_resource_locks() is True.

Under normal circumstances, the length of the sequence returned will be either
0 (if there are no locks) or 1 (if there is any lock). In some special
circumstances, however, when the substanced.locking.lock_resource() API
is not used to create locks, there may be more than one lock related to a
resource of the same type.

By default, the discover_resource_locks API returns locks for the
provided object, plus locks on any object in its lineage [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage]. To suppress
this default, pass include_lineage=False, e.g.:

locks = discover_resource_locks(someresource)
"locks" will be only those set on 'someresource'

In some applications, the important thing is to ensure that a particular
user could lock a resource before updating it (e.g., from a browser view
on a property sheet). The :could_lock_resource()
API is designed for these cases: if the supplied userid could not lock the
resource, it raises a substanced.locking.LockError exception:

from substanced.locking import could_lock_resource, LockError

try:
 could_lock_resource(someresource, request.user)
except LockError as e:
 raise FormError('locked by "%s"' % e.lock.owner.__name__)

Viewing The Lock Service

Once some locks have been created, a lock service will have been created.
The lock service is an object named locks in the Substance D root.

You can use the SDI UI of this locks service to delete and edit existing locks.
It’s a good idea to periodically use the “Delete Expired” button in this UI to
clear out any existing expired locks that were orphaned by buggy or interrupted
clients.

Configuration

While writing a Substance D application is very similar to writing a
Pyramid application, there are a few extra considerations to keep in
mind.

Scan and Include

When writing Pyramid applications, the Configurator supports
config.include and config.scan Because of ordering
effects, do all your config.include calls before any of your
config.scan calls.

Using RelStorage

Content in Substance D is stored in a Python object database called the
ZODB [http://en.wikipedia.org/wiki/Zope_Object_Database]. The ZODB
has
deep integration [http://docs.pylonsproject.org/projects/pyramid_cookbook/en/latest/database/zodb_zeo.html]
with Pyramid. When developing Python applications that use ZODB,
you have a number of storage options:

	FileStorage is the simplest and is used in the development
scaffolds for Substance D. That is, development.ini is configured
use FileStorage. Just a file on disk, no long-running server
process.

	ZEO keeps a file on disk but runs a server process that manages
transactions over a socket. This allows multiple app servers on
multiple boxes, or background processes such as deferred indexing,
to access the database.

	RelStorage [http://pypi.python.org/pypi/RelStorage]
stores and retrieves the Python objects from a
relational database. This is the preferred deployment option for
applications that need trusted reliability and scalability.

Switching between storages is mostly a matter of editing your
configuration file and choosing a different storage.

Note

While RelStorage uses an RDBMS for transactions, storage, retrieval,
failover, and other features, it does not use SQL or decompose
your Python objects into columns and joined tables.

Although RelStorage supports a number of RDBMS packages,
we’ll focus on PostgreSQL in these docs.

RelStorage + PostgreSQL Configuration

First, read the RelStorage docs, focusing on the
PostgreSQL section [http://pypi.python.org/pypi/RelStorage/1.5.1#postgresql]
and the command line needed for database setup. In particular,
make sure that you:

	Have a system user account named database:

$ sudo su - postgres
$ createuser --pwprompt zodbuser
$ createdb -O zodbuser zodb

	The user that you created (e.g. zodbuser) can make local
connections

Next, we’ll make some changes to some of the configuration files. In
your setup.py, indicate that you need the RelStorage package
as well as the psycopg2 Python binding for PostgreSQL. This
presumes that the binaries for the PostgreSQL client are available on
your path.

In your configuration file (e.g. production.ini), the
[app:main] section should have:

zodbconn.uri = zconfig://%(here)s/relstorage.conf

We thus need a relstorage.conf file:

%import relstorage
<zodb main>
 <relstorage>
 blob-dir ../var/blobs
 <postgresql>
 dsn dbname='zodb' user='zodbuser' host='localhost' password='zodbuser'
 </postgresql>
 </relstorage>
 cache-size 100000
</zodb>

Resetting Your Substance D Database

During development you frequently need to blow away all your data and
start over. You can do this via evolution, but usually it isn’t worth
the work.

This is very easy with FileStorage: just rm var/Data.fs* and
restart your app server. It is also easy with ZEO: shut down the
supervisor service, remove the data as above, restart it,
and restart the app server.

With RelStorage, you get a rich set of existing tools such as
pgadmin to browse and modify table data. You can, though,
do it the quickie way via bin/pshell and just delete the root
object, then commit the transaction.

If you need to remove evolve data as well, open up pshell and do
root._p_jar.root(). You’ll see the ZODB root
(not the app root). Inside of it is the app root and the evolve data.

Gathering Runtime Statistics

Problems can come up in production. When they do, you usually want
forensics that show aspects of the system under load,
over a period of time.

Of course, you don’t want the collection of such data to affect
performance. What’s needed is a mechanism to log data all the time,
in a lightweight way, that can later be analyzed in productive ways.
This system needs both built-in hooks at the Substance D framework
level as well as extension points to analyze function points in the
application you are writing.

Three components are involved in the process of collecting statistics:

	substanced.stats exposes Python API to collect data and sends it to to
a StatsD <https://github.com/etsy/statsd> agent

	The StatsD agent aggregates data and sends it to backend service

	A backend service displays graphs based on stored data. The service can be
self-hosted such as Graphite [http://graphite.readthedocs.org/en/latest/]
or it can be a SaaS solution such as DataDog [http://www.datadoghq.com].

Setting Up

To enable statistics gathering in your site, edit your .ini configuration
file and add the following lines to your [app:main] section:

substanced.statsd.enabled = true
substanced.statsd.host = localhost
substanced.statsd.port = 8125
substanced.statsd.prefix = substanced

Using DataDog with SubstanceD statistics

Substance D supports DataDog, a Software-as-a-Service (SaaS) provider
for monitoring and visualizing performance data. DataDog installs an
dogstatsd agent for sending custom metrics on your local system. The agent is
based on StatsD [https://github.com/etsy/statsd].

Using DataDog is an an easy way to get started with Substance D statistics.
Sign up for an account with DataDog [https://www.datadoghq.com/signup/].
This will provide you with the instructions for downloading and running the
local agent. You’ll need to get the agent installed before proceeding.

Once you’ve got the agent installed, and the proper settings in your Substance
D ini file, you will be able to see statistics in the DataDog user interface.
Once you log into your DataDog dashboard, click on Infrastructure and
you’ll see any hosts configured as part of your account:

[image: _images/datadog1.png]
The substanced entry in Apps table column is from the
substanced.statsd.prefix configured in Settings up section. Clicking on
that brings up Substance D specific monitoring in DataDog:

[image: _images/datadog2.png]
Clicking settings symbol on a graph will lead you to graph editor, where you
can change how DataDog interprets and renders your graphs. A good resource how
the editor works is Graphing Primer [http://docs.datadoghq.com/graphing/#editor].

DataDog also supports Metric Alerts [https://app.datadoghq.com/alerts]
allowing you to send alerts when your statistics reach certain state.

Logging Custom Statistics

Over time, Substance D itself will include more framework points where
statistics are collected. Most likely, though, you’ll want some statistics that
are very meaningful to your application’s specific functionality.

If you look at the docs for the Python statsd module [http://statsd.readthedocs.org/en/v0.5.0/types.html] you will see three main
types:

	Counters for simply incrementing a value,

	Timers for logging elapsed time in a code block, and

	Gauges for tracking a constant at a particular point in time

Each of these map to methods in substanced.stats.StatsdHelper. This
class is available as an instance available via import:

from substanced.stats import statsd_gauge

Your application code can then make calls to these stats-gathering
methods. For example, substanced.principal.User does the
following to note that check password was used:

statsd_gauge('check_password', 1)

Here is an example in substanced.catalog.Catalog.index_resource() that
measures elapsed indexing time inside a Python with block:

with statsd_timer('catalog.index_resource'):
 if oid is None:
 oid = oid_from_resource(resource)
 for index in self.values():
 index.index_resource(resource, oid=oid, action_mode=action_mode)
 self.objectids.insert(oid)

Virtual Rooting

You can present a folder other than the physical Substance D root object as the
“SDI root” to people. For example, if you have the following structure from
your physical Substance D root:

root--
 \-- folder1
 |
 |-- folder2

You can present either folder1 or folder2 to the user as a virtual
root when people log in to the SDI.

To do so, you have to pass an X-Vhm-Root header to SubstanceD in each
request. It’s easiest to do this with Apache or another frontend web server.
Here’s a sample configuration which assumes you are telling Apache to proxy to
a Substance D application that runs on localhost on port 6543:

<VirtualHost *:80>
 ServerAdmin webmaster@agendaless.com
 ServerName example.com
 ErrorLog /var/log/apache2/example.com-error.log
 CustomLog /var/log/apache2/example.com-access.log combined
 RewriteEngine On
 RewriteRule ^(.*) http://127.0.0.1:6543/$1 [L,P]
 ProxyPreserveHost On
 RequestHeader add X-Vhm-Root /folder1
</VirtualHost>

In the above configuration, when users log in on http://example.com/manage,
the root they see in the SDI will be /folder1 instead of the real root.
They will not be able to access the real root.

Note that retail requests (requests without /manage) to the same hostname
will also be rooted at folder1.

This feature requires Pyramid version 1.4.4 or better.

Building a Retail Application

It’s not the intent that normal unprivileged users of an application you build
using Substance D ever see the SDI management interface. That
interface is reserved for privileged users, like you and your staff.

To build a “retail” application, you just use normal Pyramid view
configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-configuration] to associate objects with view logic based on the content
types provided to you by Substance D and the content types you’ve defined.

For example, here’s a view that will respond on the root Substance D object
and return its SDI title:

	1
2
3
4
5
6
7

	from pyramid.view import view_config

@view_config(content_type='Root')
def hello(request):
 html = u'<html><head></head><body>Hello from %s!</body></html>'
 request.response.text = html % request.context.sdi_title
 return request.response

Note that we did not use the substanced.sdi.mgmt_view decorator.
Instead we used the pyramid.view.view_config [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config] decorator, which will
expose the view to normal site visitors, not just those visiting the
resource via the SDI.

To see that code working, create a retail package within the myproj
package (that is the inner myproj folder that contains the
__init__.py, resources.py and views.py files). The package will
have two files: an empty __init__.py and a views.py with the code
snippet above. If you now visit http://localhost:6543/ you will see the
“Hello from…” message.

To display actual content stored in the database, Substance D exposes a
resource tree that you can hang views from to build your application.
You’ll want to read up on traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-traversal] to understand how to associate
view configuration with resource objects.

Substance D Command-Line Utilities

Substance D installs a number of helper scripts for performing admin-related
tasks. To get full command-line syntax for any script, run it with the
option --help.

sd_adduser

Add a new user, making them part of the ‘admins’ group. Useful when
recovering from a forgotten password for the default ‘admin’ user. E.g.:

$ /path/to/virtualenv/bin/sd_adduser /path/to/virtualenv/etc/production.ini phred password

sd_drain_indexing

Process deferred indexing actions. E.g., run this from a cron
job to drain the queue every two minutes:

0-59/2 * * * * /path/to/virtualenv/bin/sd_drain_indexing /path/to/virtualenv/etc/production.ini

sd_dump

Dump an object (and its subobjects) to the filesystem:

sd_dump [--source=ZODB-PATH] [--dest=FILESYSTEM-PATH] config_uri
Dumps the object at ZODB-PATH and all of its subobjects to a
filesystem path. Such a dump can be loaded (programmatically)
by using the substanced.dump.load function

E.g.:

$ /path/to/virtualenv/bin/sd_dump --source=/ --dest=/tmp/dump /path/to/virtualenv/etc/development.ini

sd_evolve

Query for pending evolution steps, or run them to get the database
up-to-date. See Running an Evolution from the Command Line.

sd_reindex

Reindex the catalog. E.g.:

$ /path/to/virtualenv/bin/sd_reindex /path/to/virtualenv/etc/development.ini

Installing python-magic

Use of the substanced.file.USE_MAGIC constant for guessing file
types from stream content requires the python-magic library, which works
without extra help on most systems, but may require special dependency
installations on Mac OS and Windows systems. You’ll need to follow these
steps on those platforms to use this feature:

Mac OS X

http://www.brambraakman.com/blog/comments/installing_libmagic_in_mac_os_x_for_python-magic/

Windows

“Installation on Win32” in https://github.com/ahupp/python-magic

substanced API

	
substanced.includeme(config)

	Do the work of substanced.include(), then
substanced.scan(). Makes config.include(substanced) work.

	
substanced.include(config)

	Perform all config.include tasks required for Substance D and the
default aspects of the SDI to work.

	
substanced.scan(config)

	Perform all config.scan tasks required for Substance D and the
default aspects of the SDI to work.

substanced.audit API

	
class substanced.audit.AuditLog(max_layers=10, layer_size=100, entries=None)

	
	
add(_name, _oid, **kw)

	Add a record the audit log. _name should be the event name,
_oid should be an object oid or None, and kw should be a
json-serializable dictionary

	
latest_id()

	Return the generation and the index id as a tuple, representing
the latest audit log entry

	
newer(generation, index_id, oids=None)

	Return the events newer than the combination of generation and
oid. Filter using oids if supplied.

substanced.catalog API

	
class substanced.catalog.Text(**kw)

	

	
class substanced.catalog.Field(**kw)

	

	
class substanced.catalog.Keyword(**kw)

	

	
class substanced.catalog.Facet(**kw)

	

	
class substanced.catalog.Allowed(**kw)

	

	
class substanced.catalog.Path(**kw)

	

	
class substanced.catalog.Catalog(family=None)

	
	
__setitem__(name, other)

	Set object other into this folder under the name name.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the
system default encoding.

name cannot be the empty string.

When other is seated into this folder, it will also be decorated
with a __parent__ attribute (a reference to the folder into which
it is being seated) and __name__ attribute (the name passed in to
this function. It must not already have a __parent__ attribute
before being seated into the folder, or an exception will be raised.

If a value already exists in the foldr under the name name, raise
KeyError.

When this method is called, the object will be added to the objectmap,
an substanced.event.ObjectWillBeAdded event will be emitted
before the object obtains a __name__ or __parent__ value, then
a substanced.event.ObjectAdded will be emitted after the
object obtains a __name__ and __parent__ value.

	
__getitem__(name)

	Return the object named name added to this folder or raise
KeyError if no such object exists. name must be a Unicode
object or directly decodeable to Unicode using the system default
encoding.

Retrieve an index.

	
get(name, default=None)

	Return the object named by name or the default.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the
system default encoding.

Retrieve an index or return failobj.

	
flush(all=True)

	Flush pending indexing actions for all indexes in this catalog.

If all is True, all pending indexing actions will be
immediately executed regardless of the action’s mode.

If all is False, pending indexing actions which are
MODE_ATCOMMIT will be executed but
actions which are MODE_DEFERRED will not
be executed.

	
index_resource(resource, oid=None, action_mode=None)

	Register the resource in indexes of this catalog using oid as
the indexing identifier. If oid is not supplied, the __oid__
attribute of the resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None,
MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED, indicating when the
updates should take effect. The action_mode value will overrule
any action mode a member index has been configured with except None
which explicitly indicates that you’d like to use the index’s
action_mode value.

	
reindex(dry_run=False, commit_interval=3000, indexes=None, path_re=None, output=None, registry=None)

	Reindex all objects in the catalog using the existing set of
indexes immediately.

If dry_run is True, do no actual work but send what would be
changed to the logger.

commit_interval controls the number of objects indexed between
each call to transaction.commit() (to control memory
consumption).

indexes, if not None, should be a list of index names that
should be reindexed. If indexes is None, all indexes are
reindexed.

path_re, if it is not None should be a regular expression
object that will be matched against each object’s path. If the
regular expression matches, the object will be reindexed, if it does
not, it won’t.

output, if passed should be one of None, False or a
function. If it is a function, the function should accept a single
message argument that will be used to record the actions taken during
the reindex. If False is passed, no output is done. If None
is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

registry, if passed, should be a Pyramid registry. If one is not
passed, the get_current_registry() function will be used to
look up the current registry. This function needs the registry in
order to access content catalog views.

	
reindex_resource(resource, oid=None, action_mode=None)

	Register the resource in indexes of this catalog using oid as
the indexing identifier. If oid is not supplied, the __oid__
attribute of resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None,
MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED indicating when the
updates should take effect. The action_mode value will overrule
any action mode a member index has been configured with except None
which explicitly indicates that you’d like to use the index’s
action_mode value.

The result of calling this method is logically the same as calling
unindex_resource, then index_resource with the same resource,
but calling those two methods in succession is often more expensive
than calling this single method, as member indexes can choose to do
smarter things during a reindex than what they would do during an
unindex followed by a successive index.

	
reset()

	Reset all indexes in this catalog and clear self.objectids.

	
transaction = <module 'transaction' from '/home/docs/checkouts/readthedocs.org/user_builds/substanced/envs/latest/local/lib/python2.7/site-packages/transaction/__init__.pyc'>

	

	
unindex_resource(resource_or_oid, action_mode=None)

	Deregister the resource in indexes of this catalog using the
indexing identifier resource_or_oid. If resource_or_oid is an
integer, it will be used as the indexing identifier; if
resource_or_oid is a resource, its __oid__ attribute will be
used as the indexing identifier.

action_mode, if supplied, should be one of None,
MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED indicating when the
updates should take effect. The action_mode value will overrule
any action mode a member index has been configured with except None
which explicitly indicates that you’d like to use the index’s
action_mode value.

	
update_indexes(registry=None, dry_run=False, output=None, replace=False, reindex=False, **reindex_kw)

	Use the candidate indexes registered via config.add_catalog_factory
to populate this catalog. Any indexes which are present in the
candidate indexes, but not present in the catalog will be created. Any
indexes which are present in the catalog but not present in the
candidate indexes will be deleted.

registry, if passed, should be a Pyramid registry. If one is not
passed, the get_current_registry() function will be used to
look up the current registry. This function needs the registry in
order to access content catalog views.

If dry_run is True, don’t commit the changes made when this
function is called, just send what would have been done to the logger.

output, if passed should be one of None, False or a
function. If it is a function, the function should accept a single
message argument that will be used to record the actions taken during
the reindex. If False is passed, no output is done. If None
is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

This function does not reindex new indexes added to the catalog
unless reindex=True is passed.

Arguments to this method captured as kw are passed to
substanced.catalog.Catalog.reindex() if reindex is True,
otherwise kw is ignored.

If replace is True, an existing catalog index that is
not in the category supplied but which has the same name as a
candidate index will be replaced. If replace is False,
existing indexes will never be replaced.

	
class substanced.catalog.CatalogsService(data=None, family=None)

	
	
class Catalog(family=None)

	
	
flush(all=True)

	Flush pending indexing actions for all indexes in this catalog.

If all is True, all pending indexing actions will be
immediately executed regardless of the action’s mode.

If all is False, pending indexing actions which are
MODE_ATCOMMIT will be executed but
actions which are MODE_DEFERRED will not
be executed.

	
index_resource(resource, oid=None, action_mode=None)

	Register the resource in indexes of this catalog using oid as
the indexing identifier. If oid is not supplied, the __oid__
attribute of the resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None,
MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED, indicating when the
updates should take effect. The action_mode value will overrule
any action mode a member index has been configured with except None
which explicitly indicates that you’d like to use the index’s
action_mode value.

	
reindex(dry_run=False, commit_interval=3000, indexes=None, path_re=None, output=None, registry=None)

	Reindex all objects in the catalog using the existing set of
indexes immediately.

If dry_run is True, do no actual work but send what would be
changed to the logger.

commit_interval controls the number of objects indexed between
each call to transaction.commit() (to control memory
consumption).

indexes, if not None, should be a list of index names that
should be reindexed. If indexes is None, all indexes are
reindexed.

path_re, if it is not None should be a regular expression
object that will be matched against each object’s path. If the
regular expression matches, the object will be reindexed, if it does
not, it won’t.

output, if passed should be one of None, False or a
function. If it is a function, the function should accept a single
message argument that will be used to record the actions taken during
the reindex. If False is passed, no output is done. If None
is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

registry, if passed, should be a Pyramid registry. If one is not
passed, the get_current_registry() function will be used to
look up the current registry. This function needs the registry in
order to access content catalog views.

	
reindex_resource(resource, oid=None, action_mode=None)

	Register the resource in indexes of this catalog using oid as
the indexing identifier. If oid is not supplied, the __oid__
attribute of resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None,
MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED indicating when the
updates should take effect. The action_mode value will overrule
any action mode a member index has been configured with except None
which explicitly indicates that you’d like to use the index’s
action_mode value.

The result of calling this method is logically the same as calling
unindex_resource, then index_resource with the same resource,
but calling those two methods in succession is often more expensive
than calling this single method, as member indexes can choose to do
smarter things during a reindex than what they would do during an
unindex followed by a successive index.

	
reset()

	Reset all indexes in this catalog and clear self.objectids.

	
transaction = <module 'transaction' from '/home/docs/checkouts/readthedocs.org/user_builds/substanced/envs/latest/local/lib/python2.7/site-packages/transaction/__init__.pyc'>

	

	
unindex_resource(resource_or_oid, action_mode=None)

	Deregister the resource in indexes of this catalog using the
indexing identifier resource_or_oid. If resource_or_oid is an
integer, it will be used as the indexing identifier; if
resource_or_oid is a resource, its __oid__ attribute will be
used as the indexing identifier.

action_mode, if supplied, should be one of None,
MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED indicating when the
updates should take effect. The action_mode value will overrule
any action mode a member index has been configured with except None
which explicitly indicates that you’d like to use the index’s
action_mode value.

	
update_indexes(registry=None, dry_run=False, output=None, replace=False, reindex=False, **reindex_kw)

	Use the candidate indexes registered via config.add_catalog_factory
to populate this catalog. Any indexes which are present in the
candidate indexes, but not present in the catalog will be created. Any
indexes which are present in the catalog but not present in the
candidate indexes will be deleted.

registry, if passed, should be a Pyramid registry. If one is not
passed, the get_current_registry() function will be used to
look up the current registry. This function needs the registry in
order to access content catalog views.

If dry_run is True, don’t commit the changes made when this
function is called, just send what would have been done to the logger.

output, if passed should be one of None, False or a
function. If it is a function, the function should accept a single
message argument that will be used to record the actions taken during
the reindex. If False is passed, no output is done. If None
is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

This function does not reindex new indexes added to the catalog
unless reindex=True is passed.

Arguments to this method captured as kw are passed to
substanced.catalog.Catalog.reindex() if reindex is True,
otherwise kw is ignored.

If replace is True, an existing catalog index that is
not in the category supplied but which has the same name as a
candidate index will be replaced. If replace is False,
existing indexes will never be replaced.

	
add_catalog(name, update_indexes=True)

	Create and add a catalog named name to this catalogs service.
Return the newly created catalog object. If a catalog named name
already exists in this catalogs service, an exception will be raised.

Example usage in a root created subscriber:

@subscribe_created(content_type='Root')
def created(event):
 root = event.object
 service = root['catalogs']
 catalog = service.add_catalog('app1', update_indexes=True)

If update_indexes is True, indexes in the named catalog factory
will be added to the newly created catalog.

	
substanced.catalog.is_catalogable(resource, registry=None)

	

	
substanced.catalog.catalog_factory(name)

	Decorator for a class which acts as a template for index
creation.:

from substanced.catalog import Text

@catalog_factory('myapp')
class MyAppIndexes(object):
 text = Text()
 title = Field()

When scanned, this catalog factory will be added to the registry as
if substanced.catalog.add_catalog_factory() were called like:

config.add_catalog_factory('myapp', MyAppIndexes)

	
substanced.catalog.includeme(config)

	

	
substanced.catalog.add_catalog_factory(config, name, cls)

	Directive which adds a named catalog factory to the configuration state.
The cls argument should be a class that has named index factory
instances as attributes. The name argument should be a string.

	
substanced.catalog.add_indexview(self, *arg, **kw)

	Directive which adds an index view to the configuration state state.
The view argument should be function that is an indeview function, or
or a class with a __call__ method that acts as an indexview method.
For example:

def title(resource, default):
 return getattr(resource, 'title', default)

config.add_indexview(title, catalog_name='myapp', index_name='title')

Or, a class:

class IndexViews(object):
 def __init__(self, resource):
 self.resource = resource

 def __call__(self, default):
 return getattr(self.resource, 'title', default)

config.add_indexview(
 IndexViews, catalog_name='myapp', index_name='title'
)

If an attr arg is supplied to add_indexview, you can use a
different attribute of the class instad of __call__:

class IndexViews(object):
 def __init__(self, resource):
 self.resource = resource

 def title(self, default):
 return getattr(self.resource, 'title', default)

 def name(self, default):
 return getattr(self.resource, 'name', default)

config.add_indexview(
 IndexViews, catalog_name='myapp', index_name='title', attr='title'
)
config.add_indexview(
 IndexViews, catalog_name='myapp', index_name='name', attr='name'
)

In this way you can use the same class to represent a bunch of different
index views. An index view will be looked up by the cataloging machinery
when it wants to insert value into a particular catalog type’s index. The
catalog_name you use specify which catalog name this indeview is good
for; it should match the string passed to add_catalog_factory as a
name. The index_name argument should match an index name used
within such a catalog.

Index view lookups work a bit like Pyramid view lookups: you can use the
context argument to pass an interface or class which should be used to
register the index view; such an index view will only be used when the
resource being indexed has that class or interface. Eventually we’ll
provide a way to add predicates other than context too.

The substanced.catalog.indexview decorator provides a declarative
analogue to using this configuration directive.

	
class substanced.catalog.indexview(**settings)

	A class decorator [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-decorator] which, when applied to an index view class
method, will mark the method as an index view. This decorator accepts all
the arguments accepted by substanced.catalog.add_indexview(), and
each has the same meaning.

	
class substanced.catalog.indexview_defaults(**settings)

	A class decorator [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-decorator] which, when applied to a class, will provide
defaults for all index view configurations defined in the class. This
decorator accepts all the arguments accepted by
substanced.catalog.indexview(), and each has the same meaning.

substanced.catalog.indexes API

	
class substanced.catalog.indexes.FieldIndex(discriminator=None, family=None, action_mode=None)

	

	
class substanced.catalog.indexes.KeywordIndex(discriminator=None, family=None, action_mode=None)

	

	
class substanced.catalog.indexes.TextIndex(discriminator=None, lexicon=None, index=None, family=None, action_mode=None)

	

	
class substanced.catalog.indexes.FacetIndex(discriminator=None, facets=None, family=None, action_mode=None)

	

	
class substanced.catalog.indexes.PathIndex(discriminator=None, family=None)

	Uses the substanced.objectmap.ObjectMap.pathlookup() to
apply a query to retrieve object identifiers at or under a path.

path can be passed to methods as:

	resource object

	tuple of strings (usually returned value of
pyramid.traverse.resource_path_tuple())

	a string path (e.g. /foo/bar)

Query methods accept following parameters:

	include_origin (by default True), see
substanced.objectmap.ObjectMap.pathlookup() for explanation.

	depth (by default None) see
substanced.objectmap.ObjectMap.pathlookup() for explanation.

Query types supported:

	Eq

	NotEq

	
class substanced.catalog.indexes.AllowedIndex(discriminator, family=None)

	An index which defers to objectmap.allowed as part of a query
intersection.

	
allows(principals, permission)

	principals may either be 1) a sequence of principal
indentifiers, 2) a single principal identifier, or 3) a Pyramid
request, which indicates that all the effective principals implied by
the request are used.

permission must be a permission name.

hypatia.query API

Comparators

	
class hypatia.query.Contains(index, value)

	Contains query.

CQE equivalent: ‘foo’ in index

	
class hypatia.query.Eq(index, value)

	Equals query.

CQE equivalent: index == ‘foo’

	
class hypatia.query.NotEq(index, value)

	Not equal query.

CQE eqivalent: index != ‘foo’

	
class hypatia.query.Gt(index, value)

	Greater than query.

CQE equivalent: index > ‘foo’

	
class hypatia.query.Lt(index, value)

	Less than query.

CQE equivalent: index < ‘foo’

	
class hypatia.query.Ge(index, value)

	Greater (or equal) query.

CQE equivalent: index >= ‘foo’

	
class hypatia.query.Le(index, value)

	Less (or equal) query.

CQE equivalent: index <= ‘foo

	
class hypatia.query.Contains(index, value)

	Contains query.

CQE equivalent: ‘foo’ in index

	
class hypatia.query.NotContains(index, value)

	CQE equivalent: ‘foo’ not in index

	
class hypatia.query.Any(index, value)

	Any of query.

CQE equivalent: index in any([‘foo’, ‘bar’])

	
class hypatia.query.NotAny(index, value)

	Not any of query (ie, None of query)

CQE equivalent: index not in any([‘foo’, ‘bar’])

	
class hypatia.query.All(index, value)

	All query.

CQE equivalent: index in all([‘foo’, ‘bar’])

	
class hypatia.query.NotAll(index, value)

	NotAll query.

CQE equivalent: index not in all([‘foo’, ‘bar’])

	
class hypatia.query.InRange(index, start, end, start_exclusive=False, end_exclusive=False)

	Index value falls within a range.

	CQE eqivalent: lower < index < upper

	lower <= index <= upper

	
class hypatia.query.NotInRange(index, start, end, start_exclusive=False, end_exclusive=False)

	Index value falls outside a range.

	CQE eqivalent: not(lower < index < upper)

	not(lower <= index <= upper)

Boolean Operators

	
class hypatia.query.Or(*queries)

	Boolean Or of multiple queries.

	
class hypatia.query.And(*queries)

	Boolean And of multiple queries.

	
class hypatia.query.Not(query)

	Negation of a query.

Other Helpers

	
class hypatia.query.Name(name)

	A variable name in an expression, evaluated at query time. Can be used
to defer evaluation of variables used inside of expressions until query
time.

Example:

from hypatia.query import Eq
from hypatia.query import Name

Define query at module scope
find_cats = Eq('color', Name('color')) & Eq('sex', Name('sex'))

Use query in a search function, evaluating color and sex at the
time of the query
def search_cats(catalog, resolver, color='tabby', sex='female'):
 # Let resolver be some function which can retrieve a cat object
 # from your application given a docid.
 params = dict(color=color, sex=sex)
 count, docids = catalog.query(find_cats, params)
 for docid in docids:
 yield resolver(docid)

	
hypatia.query.parse_query(expr, catalog, optimize_query=True)

	Parses the given expression string and returns a query object. Requires
Python >= 2.6.

hypatia.util API

	
class hypatia.util.ResultSet(ids, numids, resolver, sort_type=None)

	Implements hypatia.interfaces.IResultSet

	
intersect(docids)

	Intersect this resultset with a sequence of docids or
another resultset. Returns a new ResultSet.

	
interface hypatia.interfaces.IResultSet

	Iterable sequence of documents or document identifiers.

	
sort(index, reverse=False, limit=None, sort_type=None, raise_unsortable=True)

	Return another IResultSet sorted using the index (an IIndexSort)
passed to it after performing the sort using the index and the
limit, reverse, and sort_type parameters.

If sort_type is not None, it should be the value
hypatia.interfaces.STABLE to specify that the sort should be
stable or hypatia.interfaces.OPTIMAL to specify that the sort
algorithm chosen should be optimal (but not necessarily stable). It’s
usually unnecessary to pass this value, even if you’re resorting an
already-sorted set of docids, because the implementation of IResultSet
will internally ensure that subsequent sorts of the returned result set
of an initial sort will be stable; if you don’t want this behavior,
explicitly pass hypatia.interfaces.OPTIMAL on the second and
subsequent sorts of a set of docids.

If raise_unsortable is True (the default), if the index cannot
resolve any of the docids in the set of docids in this result set, a
hypatia.exc.Unsortable exception will be raised during iteration
over the sorted docids.

	
all(resolve=True)

	Return a sequence representing all elements in the resultset. If
``resolve` is True, and the result set has a valid resolver, return an
iterable of the resolved documents, otherwise return an iterable
containing the document id of each document.

	
ids

	An iterable sequence of document identifiers

	
one(resolve=True)

	Return the element in the resultset, asserting that there is only
one result. If the resultset has more than one element, raise an
hypatia.exc.MultipleResults exception. If the resultset has no
elements, raise an hypatia.exc.NoResults exception. If
``resolve` is True, and the result set has a valid resolver, return
the resolved document, otherwise return the document id of the
document.

	
__iter__()

	Return an iterator over the results of self.all()

	
resolver

	A callable which accepts a document id and which returns a document. May be None, in which case, resolution performed by result set methods is not performed, and document identifiers are returned unresolved.

	
__len__()

	Return the length of the result set

	
first(resolve=True)

	Return the first element in the sequence. If resolve is True,
and the result set has a valid resolver, return the resolved
document, otherwise return the document id of the first document.

substanced.content API

	
class substanced.content.content(content_type, factory_type=None, **meta)

	Use as a decorator for a content factory (usually a class). Accepts
a content type, a factory type (optionally), and a set of meta keywords.
These values mean the same thing as they mean for
substanced.content.add_content_type(). This decorator attaches
information to the object it decorates which is used to call
add_content_type() during a scan [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-scan].

	
class substanced.content.service(content_type, factory_type=None, **meta)

	This class is meant to be used as a decorator for a content factory that
creates a service object (aka a service factory). A service object is an
instance of a content type that can be looked up by name and which
provides a service to application code. Services have well-known names
within a folder. For example, the principals service within a folder
is ‘the principals service’, the catalog object within a folder is
‘the catalog service’ and so on.

This decorator accepts a content type, a factory type (optionally), and a
set of meta keywords. These values mean the same thing as they mean for
the substanced.content.content decorator and
substanced.content.add_content_type(). The decorator attaches
information to the object it decorates which is used to call
add_content_type() during a scan [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-scan].

There is only one difference between using the
substanced.content.content decorator and the
substanced.service.service decorator. The service decorator
honors a service_name keyword argument. If this argument is passed,
and a service already exists in the folder by this name, the service will
not be shown as addable in the add-content dropdown in the SDI UI.

	
substanced.content.add_content_type(config, content_type, factory, factory_type=None, **meta)

	Configurator directive method which register a content type factory with
the Substance D type system. Call via config.add_content_type during
Pyramid configuration phase.

content_type is a hashable object (usually a string) representing the
content type.

factory is a class or function which produces a content instance. It
must be a global object (e.g. it cannot be a callable which is a
method of a class or a callable instance). If factory is a function
rather than a class, a factory wrapper is used (see below).

**meta is an arbitrary set of keywords associated with the content
type in the content registry.

Some of the keywords in **meta have special meaning:

	If meta contains the keyword propertysheets, the content type
will obtain a tab in the SDI that allows users to manage its
properties.

	If meta contains the keyword icon, this value will be used as the
icon for the content type that shows up next to the content in a folder
content view.

Other keywords in meta will just be stored, and have no special
meaning.

factory_type is an optional argument that can be used if the same
factory must be used for two different content types; it is used during
content type lookup (e.g. substanced.util.get_content_type()) to
figure out which content type a constructed object is an instance of; it
only needs to be used when the same factory is used for two different
content types. Note that two content types cannot have the same factory
type, unless it is None.

If factory_type is passed, the supplied factory will be wrapped in a
factory wrapper which adds a __factory_type__ attribute to the
constructed instance. The value of this attribute will be used to
determine the content type of objects created by the factory.

If the factory is a function rather than a class, a factory wrapper is
used unconditionally.

The upshot wrt to factory_type: if your factory is a class and you
pass a factory_type or if your factory is a function, you won’t be
able to successfully use the ‘bare’ factory callable to construct an
instance of this content in your code, because the resulting instance
will not have a __factory_type__ attribute. Instead, you’ll be
required to use substanced.content.Content.create() to create an
instance of the object with a proper __factory_type__ attribute.
But if your factory is a class, and you don’t pass factory_type
(the ‘garden path’), you’ll be able to use the class’ constructor directly
in your code to create instances of your content objects, which is more
convenient and easier to unit test.

	
substanced.content.add_service_type(config, content_type, factory, factory_type=None, **meta)

	Configurator directive method which registers a service factory. Call
via config.add_service_type during Pyramid configuration phase. All
arguments mean the same thing as they mean for the
substanced.content.add_content_type.

A service factory is a special kind of content factory. A service
factory creates a service object. A service object is an instance of a
content type that can be looked up by name and which provides a service
to application code. Services often have well-known names within the
services folder. For example, the principals object within a
services folder is ‘the principals service’, the catalog object
within a services folder is ‘the catalog service’ and so on.

There is only one difference between using the
substanced.content.add_content_type function and the
substanced.service.add_service_type decorator. The
add_service_type function honors a service_name keyword argument
in its **meta. If this argument is passed, and a service already
exists in a folder by this name, the service will not
be shown as addable in the add-content dropdown in the SDI UI of the
folder.

	
class substanced.content.ContentRegistry(registry)

	An object accessible as registry.content (aka
request.registry.content, aka config.registry.content) that
contains information about Substance D content types.

	
add(content_type, factory_type, factory, **meta)

	Add a content type to this registry

	
all()

	Return all content types known my this registry as a sequence.

	
create(content_type, *arg, **kw)

	Create an instance of content_type by calling its factory
with *arg and **kw. If the meta of the content type has an
after_create value, call it (if it’s a string, it’s assumed to be
a method of the created object, and if it’s a sequence, each value
should be a string or a callable, which will be called in turn); then
send a substanced.event.ContentCreatedEvent. Return the
created object.

If the key __oid is in the kw arguments, it will be used as
the created object’s oid.

	
exists(content_type)

	Return True if content_type has been registered within
this content registry, False otherwise.

	
factory_type_for_content_type(content_type)

	Return the factory_type value for the content_type requested

	
find(resource, content_type)

	Return the first object in the lineage [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage] of the
resource that supplies the content_type or None if no
such object can be found.

See also pyramid.traversal.find_interface() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/traversal.html#pyramid.traversal.find_interface] to find object
by an interface or a class.

	
istype(resource, content_type)

	Return True if resource is of content type
content_type, False otherwise.

	
metadata(resource, name, default=None)

	Return a metadata value for the content type of resource based on
the **meta value passed to
add(). If a value in that
content type’s metadata was passed using name as its name, the
value will be returned, otherwise default will be returned.

	
typeof(resource)

	Return the content type of resource

	
substanced.content.includeme(config)

	

substanced.db API

	
substanced.db.root_factory(request, t=<module 'transaction' from '/home/docs/checkouts/readthedocs.org/user_builds/substanced/envs/latest/local/lib/python2.7/site-packages/transaction/__init__.pyc'>, g=<function get_connection>, mark_unfinished_as_finished=<function mark_unfinished_as_finished>)

	A function which can be used as a Pyramid root_factory. It accepts
a request and returns an instance of the Root content type.

substanced.dump API

	
substanced.db.includeme(config)

	

substanced.editable API

	
interface substanced.editable.IEditable

	Adapter interface for editing content as a file.

	
put(fileish)

	Update context based on the contents of fileish.

	fileish is a file-type object: its read method should
return the (new) file representation of the context.

	
get()

	Return (body_iter, mimetype) representing the context.

	body_iter is an iterable, whose chunks are bytes represenating
the context as an editable file.

	mimetype is the MIMEType corresponding to body_iter.

	
class substanced.editable.FileEditable(context, request)

	IEditable adapter for stock SubstanceD ‘File’ objects.

	
substanced.editable.register_editable_adapter(config, adapter, iface)

	Configuration directive: register IEditable adapter for iface.

	adapter is the adapter factory (a class or other callable taking
(context, request)).

	iface is the interface / class for which the adapter is registered.

	
substanced.editable.get_editable_adapter(context, request)

	Return an editable adapter for the context

Return None if no editable adapter is registered.

substanced.event API

	
class substanced.event.ObjectAdded(object, parent, name, duplicating=False, moving=False, loading=False)

	An event sent just after an object has been added to a folder.

	
class substanced.event.ObjectWillBeAdded(object, parent, name, duplicating=False, moving=False, loading=False)

	An event sent just before an object has been added to a folder.

	
class substanced.event.ObjectRemoved(object, parent, name, removed_oids, moving=False, loading=False)

	An event sent just after an object has been removed from a folder.

	
class substanced.event.ObjectWillBeRemoved(object, parent, name, moving=False, loading=False)

	An event sent just before an object has been removed from a folder.

	
removed_oids

	Helper property that caches oids that will be removed as the result
of this event. Will return an empty sequence if objectmap cannot be
found on self.parent.

	
class substanced.event.ObjectModified(object)

	An event sent when an object has been modified.

	
class substanced.event.ACLModified(object, old_acl, new_acl)

	

	
class substanced.event.LoggedIn(login, user, context, request)

	

	
class substanced.event.RootAdded(object)

	

	
class substanced.event.AfterTransition(object, old_state, new_state, transition)

	Event sent after any workflow transition happens

	
class substanced.event.subscribe_added(obj=None, container=None, **predicates)

	Decorator for registering an object added event subscriber
(a subscriber for ObjectAdded).

	
event = <InterfaceClass substanced.interfaces.IObjectAdded>

	

	
class substanced.event.subscribe_removed(obj=None, container=None, **predicates)

	Decorator for registering an object removed event subscriber
(a subscriber for ObjectRemoved).

	
event = <InterfaceClass substanced.interfaces.IObjectRemoved>

	

	
class substanced.event.subscribe_will_be_added(obj=None, container=None, **predicates)

	Decorator for registering an object will-be-added event subscriber
(a subscriber for ObjectWillBeAdded).

	
event = <InterfaceClass substanced.interfaces.IObjectWillBeAdded>

	

	
class substanced.event.subscribe_will_be_removed(obj=None, container=None, **predicates)

	Decorator for registering an object will-be-removed event subscriber
(a subscriber for ObjectWillBeRemoved).

	
event = <InterfaceClass substanced.interfaces.IObjectWillBeRemoved>

	

	
class substanced.event.subscribe_modified(obj=None, **predicates)

	Decorator for registering an object modified event subscriber
(a subscriber for ObjectModified).

	
event = <InterfaceClass substanced.interfaces.IObjectModified>

	

	
class substanced.event.subscribe_acl_modified(obj=None, **predicates)

	Decorator for registering an acl modified event subscriber
(a subscriber for ObjectModified).

	
event = <InterfaceClass substanced.interfaces.IACLModified>

	

	
class substanced.event.subscribe_logged_in(**predicates)

	Decorator for registering an event listener for when a user is logged
in

	
event = <InterfaceClass substanced.interfaces.ILoggedIn>

	

	
class substanced.event.subscribe_root_added(**predicates)

	Decorator for registering an event listener for when a root object
has a database connection

	
event = <InterfaceClass substanced.interfaces.IRootAdded>

	

	
class substanced.event.subscribe_after_transition(**predicates)

	Decorator for registering an event listener for when a transition has
been done on an object

	
event = <InterfaceClass substanced.interfaces.IAfterTransition>

	

substanced.evolution API

	
substanced.evolution.add_evolution_step(config, func, before=None, after=None, name=None)

	A configurator directive which adds an evolution step. An evolution step
can be used to perform upgrades or migrations of data structures in
existing databases to meet expectations of new code.

func should be a function that performs the evolution logic.
It should accept two arguments (conventionally-named) root and
registry. ``root will be the root of the ZODB used to serve
your Substance D site, and registry will be the Pyramid application
registry.

before should either be None, another evolution step function, or
the dotted name to such a function. By default, it is None, which
means execute in the order defined by the calling order of
add_evolution_step.

after should either be None, another evolution step function, or
the dotted name to such a function. By default, it is None.

name is the name of the evolution step. It must be unique between all
registered evolution steps. If it is not provided, the dotted name of
the function used as func will be used as the evolution step name.

	
substanced.evolution.mark_unfinished_as_finished(app_root, registry, t=None)

	Given the root object of a Substance D site as app_root and a
Pyramid registry, mark all pending evolution steps as completed without
actually executing them.

	
substanced.evolution.includeme(config)

	

substanced.file API

	
substanced.file.USE_MAGIC

	A constant value used as an argument to various methods of the
substanced.file.File class.

	
class substanced.file.File(stream=None, mimetype=None, title=u'')

	
	
__init__(stream=None, mimetype=None, title=u'')

	The constructor of a File object.

stream should be a filelike object (an object with a read
method that takes a size argument) or None. If stream is
None, the blob attached to this file object is created empty.

title must be a string or Unicode object.

mimetype may be any of the following:

	None, meaning set this file object’s mimetype to
application/octet-stream (the default).

	A mimetype string (e.g. image/gif)

	The constant substanced.file.USE_MAGIC, which will
derive the mimetype from the stream content (if stream is also
supplied) using the python-magic library.

Warning

On non-Linux systems, successful use of
substanced.file.USE_MAGIC requires the installation
of additional dependencies. See Installing python-magic.

	
blob

	The ZODB blob object associated with this file.

	
mimetype

	The mimetype of this file object (a string).

	
get_etag()

	Return a token identifying the “version” of the file.

	
get_response(**kw)

	Return a WebOb-compatible response object which uses the blob
content as the stream data and the mimetype of the file as the
content type. The **kw arguments will be passed to the
pyramid.response.FileResponse [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html#pyramid.response.FileResponse] constructor as its keyword
arguments.

	
get_size()

	Return the size in bytes of the data in the blob associated with
the file

	
upload(stream, mimetype_hint=None)

	Replace the current contents of this file’s blob with the
contents of stream. stream must be a filelike object (it
must have a read method that takes a size argument).

mimetype_hint can be any of the following:

	None, meaning don’t reset the current mimetype. This is the
default. If you already know the file’s mimetype, and you don’t
want it divined from a filename or stream content, use None as
the mimetype_hint value, and set the mimetype attribute of
the file object directly before or after calling this method.

	A string containing a filename that has an extension; the mimetype
will be derived from the extension in the filename using the Python
mimetypes module, and the result will be set as the mimetype
attribute of this object.

	The constant substanced.file.USE_MAGIC, which will derive
the mimetype using the python-magic library based on the
stream’s actual content. The result will be set as the mimetype
attribute of this object.

Warning

On non-Linux systems, successful use of
substanced.file.USE_MAGIC requires the installation
of additional dependencies. See Installing python-magic.

substanced.folder API

	
class substanced.folder.FolderKeyError

	

	
class substanced.folder.Folder(data=None, family=None)

	A folder implementation which acts much like a Python dictionary.

Keys must be Unicode strings; values must be arbitrary Python objects.

	
__init__(data=None, family=None)

	Constructor. Data may be an initial dictionary mapping object
name to object.

	
order

	A tuple of name values. If set, controls the order in which names should
be returned from __iter__(), keys(), values(), and
items(). If not set, use an effectively random order.

	
add(name, other, send_events=True, reserved_names=(), duplicating=None, moving=None, loading=False, registry=None)

	Same as __setitem__.

If send_events is False, suppress the sending of folder events.
Don’t allow names in the reserved_names sequence to be added.

If duplicating not None, it must be the object which is being
duplicated; a result of a non-None duplicating means that oids will
be replaced in objectmap. If moving is not None, it must be
the folder from which the object is moving; this will be the moving
attribute of events sent by this function too. If loading is
True, the loading attribute of events sent as a result of
calling this method will be True too.

This method returns the name used to place the subobject in the
folder (a derivation of name, usually the result of
self.check_name(name)).

	
add_service(name, obj, registry=None, **kw)

	Add a service to this folder named name.

	
check_name(name, reserved_names=())

	Perform all the validation checks implied by
validate_name() against the name
supplied but also fail with a
FolderKeyError if an object with the name
name already exists in the folder.

	
clear(registry=None)

	Clear all items from the folder. This is the equivalent of calling
.remove with each key that exists in the folder.

	
copy(name, other, newname=None, registry=None)

	Copy a subobject named name from this folder to the folder
represented by other. If newname is not none, it is used as
the target object name; otherwise the existing subobject name is
used.

	
find_service(service_name)

	Return a service named by service_name in this folder or any
parent service folder or None if no such service exists. A
shortcut for substanced.service.find_service().

	
find_services(service_name)

	Returns a sequence of service objects named by service_name
in this folder’s lineage or an empty sequence if no such service
exists. A shortcut for substanced.service.find_services()

	
get(name, default=None)

	Return the object named by name or the default.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the
system default encoding.

	
is_ordered()

	Return true if the folder has a manually set ordering, false
otherwise.

	
is_reorderable()

	Return true if the folder can be reordered, false otherwise.

	
items()

	Return an iterable sequence of (name, value) pairs in the folder.

Respect order, if set.

	
keys()

	Return an iterable sequence of object names present in the folder.

Respect order, if set.

	
load(name, newobject, registry=None)

	A replace method used by the code that loads an existing dump.
Events sent during this replace will have a true loading flag.

	
move(name, other, newname=None, registry=None)

	Move a subobject named name from this folder to the folder
represented by other. If newname is not none, it is used as
the target object name; otherwise the existing subobject name is
used.

This operation is done in terms of a remove and an add. The Removed
and WillBeRemoved events as well as the Added and WillBeAdded events
sent will indicate that the object is moving.

	
order

	Return an iterable sequence of object names present in the folder.

Respect order, if set.

	
pop(name, default=<object object>, registry=None)

	Remove the item stored in the under name and return it.

If name doesn’t exist in the folder, and default is not
passed, raise a KeyError.

If name doesn’t exist in the folder, and default is
passed, return default.

When the object stored under name is removed from this folder,
remove its __parent__ and __name__ values.

When this method is called, emit an
substanced.event.ObjectWillBeRemoved event before the
object loses its __name__ or __parent__ values. Emit an
substanced.event.ObjectRemoved after the object loses its
__name__ and __parent__ value,

	
remove(name, send_events=True, moving=None, loading=False, registry=None)

	Same thing as __delitem__.

If send_events is false, suppress the sending of folder events.

If moving is not None, the moving argument must be the
folder to which the named object will be moving. This value will be
passed along as the moving attribute of the events sent as the
result of this action. If loading is True, the loading
attribute of events sent as a result of calling this method will be
True too.

	
rename(oldname, newname, registry=None)

	Rename a subobject from oldname to newname.

This operation is done in terms of a remove and an add. The Removed
and WillBeRemoved events sent will indicate that the object is
moving.

	
reorder(names, before)

	Move one or more items from a folder into new positions inside that
folder. names is a list of ids of existing folder subobject names,
which will be inserted in order before the item named before. All
other items are left in the original order. If before is None,
the items will be appended after the last item in the current order. If
this method is called on a folder which does not have an order set, or
which is not reorderable, a ValueError will be raised. A
KeyError is raised, if before does not correspond to any
item, and is not None.

	
replace(name, newobject, send_events=True, registry=None)

	Replace an existing object named name in this folder with a
new object newobject. If there isn’t an object named name in
this folder, an exception will not be raised; instead, the new
object will just be added.

This operation is done in terms of a remove and an add. The Removed
and WillBeRemoved events will be sent for the old object, and the
WillBeAdded and Added events will be sent for the new object.

	
set_order(names, reorderable=None)

	Sets the folder order. names is a list of names for existing
folder items, in the desired order. All names that currently exist in
the folder must be mentioned in names, or a ValueError will
be raised.

If reorderable is passed, value, it must be None, True or
False. If it is None, the reorderable flag will not be reset
from its current value. If it is anything except None, it will be
treated as a boolean and the reorderable flag will be set to that
value. The reorderable value of a folder will be returned by that
folder’s is_reorderable() method. The
is_reorderable() method is used by the
SDI folder contents view to indicate that the folder can or cannot be
reordered via the web UI.

If reorderable is set to True, the
reorder() method will work properly,
otherwise it will raise a ValueError when called.

	
unset_order()

	Remove set order from a folder, making it unordered, and
non-reorderable.

	
validate_name(name, reserved_names=())

	Validate the name passed to ensure that it’s addable to the folder.
Returns the name decoded to Unicode if it passes all addable checks.
It’s not addable if:

	the name is not decodeable to Unicode.

	the name starts with @@ (conflicts with explicit view names).

	the name has slashes in it (WSGI limitation).

	the name is empty.

If any of these conditions are untrue, raise a ValueError. If
the name passed is in the list of reserved_names, raise a
ValueError.

	
values()

	Return an iterable sequence of the values present in the folder.

Respect order, if set.

	
class substanced.folder.SequentialAutoNamingFolder(data=None, family=None, autoname_length=None, autoname_start=None)

	An auto-naming folder which autonames a subobject by sequentially
incrementing the maximum key of the folder.

Example names: 0000001, then 0000002, and so on.

This class implements the
substanced.interfaces.IAutoNamingFolder interface and inherits
from substanced.folder.Folder.

This class is typically used as a base class for a custom content type.

	
__init__(data=None, family=None, autoname_length=None, autoname_start=None)

	Constructor. Data may be an initial dictionary mapping object
name to object. Autoname length may be supplied. If it is not, it
will default to 7. Autoname start may be supplied. If it is not, it
will default to -1.

	
add_next(subobject, send_events=True, duplicating=None, moving=None, registry=None)

	Add a subobject, naming it automatically, giving it the name
returned by this folder’s next_name method. It has the same
effect as calling substanced.folder.Folder.add(), but you
needn’t provide a name argument.

This method returns the name of the subobject.

	
next_name(subobject)

	Return a name string based on:

	intifying the maximum key of this folder and adding one.

	zero-filling the left hand side of the result with as many zeroes
as are in the value of this folder’s autoname_length
constructor value.

If the folder has no items in it, the initial value used as a name
will be the value of this folder’s autoname_start constructor
value.

	
add(name, other, send_events=True, reserved_names=(), duplicating=None, moving=None, loading=False, registry=None)

	The add method of a SequentialAutoNamingFolder will raise a
ValueError if the name it is passed is not intifiable, as
its next_name method relies on controlling the types of names
that are added to it (they must be intifiable). It will also
zero-fill the name passed based on this folder’s autoname_length
constructor value. It otherwise just calls its superclass’ add
method and returns the result.

	
class substanced.folder.RandomAutoNamingFolder(data=None, family=None, autoname_length=None)

	An auto-naming folder which autonames a subobject using a random
string.

Example names: MXF937A, FLTP2F9.

This class implements the
substanced.interfaces.IAutoNamingFolder interface and inherits
from substanced.folder.Folder.

This class is typically used as a base class for a custom
content type.

	
__init__(data=None, family=None, autoname_length=None)

	Constructor. Data may be an initial dictionary mapping object
name to object. Autoname length may be supplied. If it is not, it
will default to 7.

	
add_next(subobject, send_events=True, duplicating=None, moving=None, registry=None)

	Add a subobject, naming it automatically, giving it the name
returned by this folder’s next_name method. It has the same
effect as calling substanced.folder.Folder.add(), but you
needn’t provide a name argument.

This method returns the name of the subobject.

	
next_name(subobject)

	Return a name string based on generating a random string composed
of digits and uppercase letters of a length determined by this
folder’s autoname_length constructor value. It tries generatoing
values continuously until one that is unused is found.

substanced.folder.views API

substanced.form API

	
class substanced.form.Form(schema, action='', method='POST', buttons=(), formid='deform', use_ajax=False, ajax_options='{}', autocomplete=None, **kw)

	Subclass of deform.form.Form which uses a custom resource
registry designed for Substance D. XXX point at deform docs.

	
class substanced.form.FormView(context, request)

	A class which can be used as a view which introspects a schema to
present the form. XXX describe better using pyramid_deform
documentation.

	
form_class

	alias of Form

	
class substanced.form.FileUploadTempStore(request)

	A Deform FileUploadTempStore implementation that stores file
upload data in the Pyramid session and on disk. The request passed to
its constructor must be a fully-initialized Pyramid request (it have a
registry attribute, which must have a settings attribute, which
must be a dictionary). The substanced.uploads_tempdir variable in the
settings dictionary must be set to the path of an existing directory
on disk. This directory will temporarily store file upload data on
behalf of Deform and Substance D when a form containing a file upload
widget fails validation.

See the Deform documentation for more information about
FileUploadTempStore objects.

substanced.locking API

Advisory exclusive DAV-style locks for content objects.

When a resource is locked, it is presumed that its SDI UI will display a
warning to users who do not hold the lock. The locking service can also be
used by add-ons such as DAV implementations.

	
class substanced.locking.Lock(infinite=False, timeout=3600, comment=None, last_refresh=None)

	A persistent object representing a lock.

	
ownerid

	The owner oid for this lock.

	
owner

	The owner object of this lock (a User).

	
resourceid

	The oid of the resource related to this lock.

	
resource

	The resource object related to this lock.

	
commit_suicide()

	Remove this lock from the lock service.

	
expires()

	Return the future datetime at which this lock will expire.

For invalid locks, the returned value indicates the point in the past
at which the lock expired.

	
is_valid(when=None)

	Return True if the lock has not expired and its resource exists.

	
refresh(timeout=None, when=None)

	Refresh the lock.

If the timeout is not None, set the timeout for this lock too.

	
class substanced.locking.LockError(lock)

	Raised when a lock cannot be created due to a conflicting lock.

Instances of this class have a lock attribute which is a
substanced.locking.Lock object, representing the conflicting
lock.

	
class substanced.locking.UnlockError(lock)

	Raised when a lock cannot be removed

This may be because the owner suplied in the unlock request does not
match the owner of the lock, or becaues the lock no longer exists.

Instances of this class have a lock attribute which is a
substanced.locking.Lock object, representing the conflicting lock,
or None if there was no lock to unlock.

	
substanced.locking.lock_resource(resource, owner_or_ownerid, timeout=None, comment=None, locktype=<ReferenceClass substanced.interfaces.WriteLock>, infinite=False)

	Lock a resource using the lock service.

If the resource is already locked by the owner supplied as
owner_or_ownerid, refresh the lock using timeout.

If the resource is not already locked by another user, create a new lock
with the given values.

If the resource is already locked by a different user, raise a
substanced.locking.LockError

If a Lock Service does not already exist in the lineage, a
ValueError will be raised.

Warning

Callers should assert that the owner has the sdi.lock permission
against the resource before calling this function to ensure that a user
can’t lock a resource he is not permitted to.

	
substanced.locking.unlock_resource(resource, owner_or_ownerid, locktype=<ReferenceClass substanced.interfaces.WriteLock>)

	Unlock a resource using the lock service.

If the resource is already locked by a user other than the owner supplied
as owner_or_ownerid or the resource isn’t already locked with this
lock type, raise a substanced.locking.UnlockError exception.

Otherwise, remove the lock.

If a Lock Service does not already exist in the lineage, a
ValueError will be raised.

Warning

Callers should assert that the owner has the sdi.lock permission
against the resource before calling this function to ensure that a
user can’t lock a resource he is not permitted to.

	
substanced.locking.discover_resource_locks(resource, include_invalid=False, include_lineage=True, locktype=<ReferenceClass substanced.interfaces.WriteLock>)

	Return locks related to resource for the given locktype.

Return a sequence of substanced.locking.Lock objects.

By default, only valid locks are returned.

Invalid locks for the resource may exist, but they are not
returned unless include_invalid is True.

Under normal circumstances, the length of the sequence returned will be
either 0 (if there are no locks) or 1 (if there is any lock).

In some special circumstances, however, when the
substanced.locking.lock_resource API is not used to create locks,
there may be more than one lock of the same type related to a resource.

substanced.objectmap API

	
class substanced.objectmap.ObjectMap(root, family=None)

	
	
add(obj, path_tuple, duplicating=False, moving=False)

	Add a new object to the object map at the location specified by
path_tuple (must be the path of the object in the object graph as
a tuple, as returned by Pyramid’s resource_path_tuple function).

If duplicating is True, replace the oid of the added object
even if it already has one and adjust extents involving the new oid.

If moving is True, don’t add any extents.

It is an error to pass a true value for both duplicating and
moving.

	
allowed(oids, principals, permission)

	For the set of oids present in oids, return a sequence of oids
that are permitted permission against each oid if the implied user
is a member of the set of principals implied by principals. This
method uses the data collected via the set_acl method of this
class.

	
connect(source, target, reftype)

	Connect a source object or objectid to a target object or
objectid using reference type reftype

	
disconnect(source, target, reftype)

	Disconnect a source object or objectid from a target object or
objectid using reference type reftype

	
get_extent(name, default=())

	Return the extent for name (typically a factory name, e.g. the
dotted name of the content class). It will be a TreeSet composed
entirely of oids. If no extent exist by this name, this will return
the value of default.

	
get_reftypes()

	Return a sequence of reference types known by this objectmap.

	
has_references(obj, reftype=None)

	Return true if the object participates in any reference as a source
or a target. obj may be an object or an oid.

	
new_objectid()

	Obtain an unused integer object identifier

	
object_for(objectid_or_path_tuple, context=None)

	Returns an object or None given an object id or a path tuple

	
objectid_for(obj_or_path_tuple)

	Returns an objectid or None, given an object or a path tuple

	
order_sources(targetid, reftype, order=<object object>)

	Set the ordering of the source ids of a reference relative to the
targetid. order should be a tuple or list of oids or objects
in the order that they should be kept in the reference map. If the
reftyp+targetid combination has existing reference values, the values
in order must mention all of their oids, or a ValueError
will be raised. You can unset an order for this targetid+reftype
combination by passing None as the order.

	
order_targets(sourceid, reftype, order=<object object>)

	Set the ordering of the target ids of a reference type. order
should be a tuple (or list) of oids or objects in the order that they
should be kept in the reference map. If the reference type has
existing reference values, the values in order must mention all of
their oids, or a ValueError will be raised. You can unset an
ordering by passing None as the order.

	
path_for(objectid)

	Returns an path or None given an object id

	
pathcount(obj_or_path_tuple, depth=None, include_origin=True)

	Return the total number of objectids under a given path given an
object or a path tuple. If depth is None, count all object ids
under the path. If depth is an integer, use that depth instead.
If include_origin is True, count the object identifier of the
object that was passed, otherwise omit it.

	
pathlookup(obj_or_path_tuple, depth=None, include_origin=True)

	Return a set of objectids under a given path given an object or a
path tuple. If depth is None, return all object ids under the
path. If depth is an integer, use that depth instead. If
include_origin is True, include the object identifier of the
object that was passed, otherwise omit it from the returned set.

	
remove(obj_objectid_or_path_tuple, moving=False)

	Remove an object from the object map give an object, an object id
or a path tuple. If moving is False, also remove any
references added via connect and any extents related to the removed
objects.

Return a set of removed oids (including the oid related to the object
passed).

	
set_acl(obj_objectid_or_path_tuple, acl)

	For the resource implied by obj_objectid_or_path_tuple, set the
cached version of its ACL (for later used by allowed) to the ACL
passed as acl

	
sourceids(obj, reftype)

	Return a set of object identifiers of the objects connected to
obj a source using reference type reftype

	
sources(obj, reftype)

	Return a generator which will return the objects connected to
obj as a source using reference type reftype

	
targetids(obj, reftype)

	Return a set of object identifiers of the objects connected to
obj a target using reference type reftype

	
targets(obj, reftype)

	Return a generator which will return the objects connected to
obj as a target using reference type reftype

	
class substanced.objectmap.Multireference(context, objectmap, reftype, ignore_missing, resolve, orientation, ordered=False)

	An iterable of objects (if resolve is true) or oids (if
resolve is false). Also supports the Python sequence protocol.

Additionally supports connect, disconnect, and clear methods
for mutating the relationships implied by the reference.

	
clear()

	Clear all references in this relationship.

	
connect(objects, ignore_missing=None)

	Connect objects to this reference’s relationship. objects
should be a sequence of content objects or object identifiers.

	
disconnect(objects, ignore_missing=None)

	Disconnect objects from this reference’s relationship.
objects should be a sequence of content objects or object
identifiers.

	
substanced.objectmap.reference_sourceid_property(reftype)

	Returns a property which, when set, establishes an object map
reference between the property’s instance (the source) and another
object in the objectmap (the target) based on the reference type
reftype. It is comparable to a Python ‘weakref’ between the
persistent object instance which the property is attached to and the
persistent target object id; when the target object or the object upon
which the property is defined is removed from the system, the reference
is destroyed.

The reftype argument is a reference type, a hashable object
that describes the type of the relation. See
substanced.objectmap.ObjectMap.connect() for more information about
reference types.

You can set, get, and delete the value. When you set the value, a
relation is formed between the object which houses the property and the
target object id. When you get the value, the related value (or None
if no relation exists) is returned, when you delete the value, the
relation is destroyed and the value will revert to None.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	# definition

from substanced.content import content
from substanced.objectmap import reference_sourceid_property

@content('Profile')
class Profile(Persistent):
 user_id = reference_sourceid_property('profile-to-userid')

subsequent usage of the property in a view...

profile = registry.content.create('Profile')
somefolder['profile'] = profile
profile.user_id = get_oid(request.user)
print profile.user_id # will print the oid of the user

if the user is later deleted by unrelated code...

print profile.user_id # will print None

or if you delete the value explicitly...

del profile.user_id
print profile.user_id # will print None

	
substanced.objectmap.reference_source_property(reftype)

	Exactly like substanced.objectmap.reference_sourceid_property(),
except its getter returns the instance related to the target instead of
the target object id. Likewise, its setter will accept another
persistent object instance that has an object id.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	# definition

from substanced.content import content
from substanced.objectmap import reference_source_property

@content('Profile')
class Profile(Persistent):
 user = reference_source_property('profile-to-user')

subsequent usage of the property in a view...

profile = registry.content.create('Profile')
somefolder['profile'] = profile
profile.user = request.user
print profile.user # will print the user object

if the user is later deleted by unrelated code...

print profile.user # will print None

or if you delete the value explicitly...

del profile.user
print profile.user # will print None

	
substanced.objectmap.reference_targetid_property(reftype)

	Same as substanced.objectmap.reference_sourceid_property(),
except the object upon which the property is defined is the target of
the reference and any object assigned to the property is the source.

	
substanced.objectmap.reference_target_property(reftype)

	Same as substanced.objectmap.reference_source_property(),
except the object upon which the property is defined is the target of
the reference and any object assigned to the property is the source.

	
substanced.objectmap.multireference_sourceid_property(reftype, ignore_missing=False, ordered=None)

	Like substanced.objectmap.reference_sourceid_property(), but
maintains a substanced.objectmap.Multireference rather than an
object id. If ignore_missing is True, attempts to connect or
disconnect unresolveable object identifiers will not cause an exception.
If ordered is True, the relative ordering of references in a
sequence will be maintained when you assign that sequence to the property
and when you use the .connect method of the property. If ordered
is None, defers to the appropriate attribute on the reftype.

	
substanced.objectmap.multireference_source_property(reftype, ignore_missing=False, ordered=None)

	Like substanced.objectmap.reference_source_property(), but
maintains a substanced.objectmap.Multireference rather than a
single object reference. If ignore_missing is True, attempts to
connect or disconnect unresolveable object identifiers will not cause an
exception. If ordered is True, the relative ordering of references
in a sequence will be maintained when you assign that sequence to the
property and when you use the .connect method of the property.
If ordered is None, defers to the appropriate attribute on the
reftype.

	
substanced.objectmap.multireference_targetid_property(reftype, ignore_missing=False, ordered=None)

	Like substanced.objectmap.reference_targetid_property(), but
maintains a substanced.objectmap.Multireference rather than an
object id. If ignore_missing is True, attempts to connect or
disconnect unresolveable object identifiers will not cause an exception.
If ordered is True, the relative ordering of references in a
sequence will be maintained when you assign that sequence to the property
and when you use the .connect method of the property. If ordered
is None, defers to the appropriate attribute on the reftype.

	
substanced.objectmap.multireference_target_property(reftype, ignore_missing=False, ordered=None)

	Like substanced.objectmap.reference_target_property(), but
maintains a substanced.objectmap.Multireference rather than a
single object reference. If ignore_missing is True, attempts to
connect or disconnect unresolveable object identifiers will not cause an
exception. If ordered is True, the relative ordering of references
in a sequence will be maintained when you assign that sequence to the
property and when you use the .connect method of the property.
If ordered is None, defers to the appropriate attribute on the
reftype.

	
class substanced.objectmap.ReferentialIntegrityError(obj, reftype, oids)

	Exception raised when a referential integrity constraint is violated.
Raised before an object involved in a relation with an integrity constraint
is removed from a folder.

Attributes:

obj: the object which would have been removed were its removal not
 prevented by the raising of this exception

reftype: the reference type (usually a class)

oids: the oids that reference the to-be-removed object.

	
get_objects()

	Return the objects which hold a reference to the object inovlved in
the integrity error.

	
class substanced.objectmap.SourceIntegrityError(obj, reftype, oids)

	

	
class substanced.objectmap.TargetIntegrityError(obj, reftype, oids)

	

substanced.principal API

substanced.property API

	
class substanced.property.PropertySheet(context, request)

	Bases: object

Convenience base class for concrete property sheet implementations

	
before_render(form)

	Hook: allow subclasses to scribble on form.

Called by substanced.property.views.PropertySheetsView.before,
after building the form but before rendering it.

	
substanced.property.add_propertysheet(self, *arg, **kw)

	Add a propertysheet for the content types implied by iface and
predicates.

The propsheet argument represents a propertysheet class (or a
dotted Python name [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-dotted-python-name] which identifies such a class); it will be
called with two objects: context and request whenever Substance D
determines that the propertysheet is necessary to display. The iface
may be an interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface] or a class or a dotted Python name [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-dotted-python-name] to a
global object representing an interface or a class.

Using the default iface value, None will cause the propertysheet
to be registered for all content types.

Any number of predicate keyword arguments may be passed in
**predicates. Each predicate named will narrow the set of
circumstances in which the propertysheet will be invoked. Each named
predicate must have been registered via
pyramid.config.Configurator.add_propertysheet_predicate() before it
can be used.

	
substanced.property.add_propertysheet_predicate(self, *arg, **kw)

	Adds a property sheet predicate factory. The associated property sheet
predicate can later be named as a keyword argument to
pyramid.config.Configurator.add_propertysheet() in the
**predicates anonymous keyword argument dictionary.

name should be the name of the predicate. It must be a valid
Python identifier (it will be used as a **predicates keyword
argument to add_propertysheet()).

factory should be a predicate factory [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-predicate-factory] or dotted
Python name [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-dotted-python-name] which refers to a predicate factory.

	
class substanced.property.PropertySheet(context, request)

	Convenience base class for concrete property sheet implementations

	
before_render(form)

	Hook: allow subclasses to scribble on form.

Called by substanced.property.views.PropertySheetsView.before,
after building the form but before rendering it.

substanced.schema API

	
class substanced.schema.Schema(*arg, **kw)

	A colander.Schema subclass which generates and validates a CSRF token
automatically. You must use it like so:

from substanced.schema import Schema as CSRFSchema
import colander

class MySchema(CSRFSchema):
 my_value = colander.SchemaNode(colander.String())

And in your application code, bind the schema, passing the request
as a keyword argument:

def aview(request):
 schema = MySchema().bind(request=request)

In order for the CRSFSchema to work, you must configure a session
factory in your Pyramid application. This is usually done by
Substance D itself, but may not be done for you in extremely custom
configurations.

	
schema_type

	alias of RemoveCSRFMapping

	
class substanced.schema.NameSchemaNode(*arg, **kw)

	Convenience Colander schemanode used to represent the name (aka
__name__) of an object in a propertysheet or add form which allows for
customizing the detection of whether editing or adding is being done, and
setting a max length for the name.

By default it uses the context’s check_name API to ensure that the name
provided is valid, and limits filename length to a default of 100
characters. Some usage examples follow.

This sets up the name_node to assume that it’s in ‘add’ mode with the
default 100 character max limit.:

name_node = NameSchemaNode()

This sets up the name_node to assume that it’s in ‘add’ mode, and that the
maximum length of the name provided is 20 characters:

name_node = NameSchemaNode(max_len=20)

This sets up the name_node to assume that it’s in ‘edit’
mode (check_name will be called on the parent of the bind
context, not on the context itself):

name_node = NameSchemaNode(editing=True)

This sets up the name_node to condition whether it’s in edit mode on the
result of a function:

def i_am_editing(context, request):
 return request.registry.content.istype(context, 'Document')

name_node = NameSchemaNode(editing=i_am_editing)

	
class substanced.schema.PermissionsSchemaNode(*arg, **kw)

	A SchemaNode which represents a set of permissions; uses a widget which
collects all permissions from the introspection system. Deserializes to a
set.

substanced.sdi API

	
substanced.schema.LEFT

	

	
substanced.schema.MIDDLE

	

	
substanced.schema.RIGHT

	

substanced.root API

	
class substanced.root.Root(data=None, family=None)

	An object representing the root of a Substance D application (the
object represented in the root of the SDI). It is a subclass of
substanced.folder.Folder.

When created as the result of registry.content.create, an instance of
a Root will contain a principals service. The principals service
will contain a user whose name is specified via the
substanced.initial_login deployment setting with a password taken
from the substanced.initial_password setting. This user will also be
a member of an admins group. The admins group will be granted
the ALL_PERMISSIONS special permission in the root.

If this class is created by hand, its after_create method must be
called manually to create its objectmap, the services, the user, and the
group.

substanced.stats API

	
substanced.stats.statsd_timer()

	Return a context manager that can be used for statsd timing, e.g.:

with statsd_timer('addlotsofstuff'):
 # add lots of stuff

name is the statsd stat name, rate is the sample rate (a
float between 0 and 1), and registry can be passed to speed up
lookups (it should be the Pyramid registry).

	
substanced.stats.statsd_gauge()

	Register a statsd gauge value. For example:

statsd_gauge('connections', numconnections)

name is the statsd stat name, rate is the sample rate (a
float between 0 and 1), and registry can be passed to speed up
lookups (it should be the Pyramid registry).

	
substanced.stats.statsd_incr()

	Incremement or decrement a statsd counter value. For example:

 statsd_incr('hits', 1)

To decrement::

 statsd_incr('numusers', -1)

name is the statsd stat name, rate is the sample rate (a
float between 0 and 1), and registry can be passed to speed up
lookups (it should be the Pyramid registry).

substanced.util API

	
substanced.util.acquire(resource, name, default=<object object>)

	

	
substanced.util.get_oid(resource, default=<object object>)

	Return the object identifer of resource. If resource has no
object identifier, raise an AttributeError exception unless default was
passed a value; if default was passed a value, return the default in
that case.

	
substanced.util.set_oid(resource, oid)

	Set the object id of the resource to oid.

	
substanced.util.get_acl(resource, default=<object object>)

	Return the ACL of the object or the default if the object has no ACL.
If no default is passed, an AttributeError will be raised if the
object doesn’t have an ACL.

	
substanced.util.set_acl(resource, new_acl, registry=None)

	Change the ACL on resource to new_acl, which may be a valid ACL or
None. If new_acl is None, any existing non-None
__acl__ attribute of the resource will be removed (via del
resource.__acl__). Otherwise, if the resource’s __acl__ and the
new_acl differ, set the resource’s __acl__ to new_acl via
setattr.

If the new ACL and the object’s original ACL differ, send a
substanced.event.ACLModified event with the
new ACL and the original ACL (the __acl__ attribute of the resource, or
None if it doesn’t have one) as arguments to the event.

This function will return True if a mutation to the resource’s __acl__
was performed, and False otherwise.

If registry is passed, it should be a Pyramid registry; if it is not
passed, this function will use the current threadlocal registry to send the
event.

	
substanced.util.get_interfaces(obj, classes=True)

	Return the set of interfaces provided by obj. Include its
__class__ if classes is True.

	
substanced.util.get_content_type(resource, registry=None)

	Return the content type of a resource or None if the object has
no content type. If registry is not supplied, the current Pyramid
registry will be looked up as a thread local in order to find the
Substance D content registry.

	
substanced.util.find_content(resource, content_type, registry=None)

	Return the first object in the lineage [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage] of the resource that
supplies the content_type. If registry is not supplied, the
current Pyramid registry will be looked up as a thread local in order to
find the Substance D content registry.

	
substanced.util.find_service(resource, name, *subnames)

	Find the first service named name in the lineage of resource
or return None if no such-named service could be found.

If subnames is supplied, when a service named name is found in the
lineage, it will attempt to traverse the service as a folder, finding a
content object inside the service, and it will return it instead of the
service object itself. For example, find_service(resource, 'principals',
'users') would find and return the users subobject in the
principals service. find_service(resource, 'principals', 'users',
'fred') would find and return the fred subobject of the users subobject
of the principals service, and so forth. If subnames are supplied, and
the named object cannot be found, the lineage search continues.

	
substanced.util.find_services(resource, name, *subnames)

	Finds all services named name in the lineage of resource and
returns a sequence containing those service objects. The sequence will
begin with the most deepest nested service and will end with the least
deeply nested service. Returns an empty sequence if no such-named
service could be found.

If subnames is supplied, when a service named name is found in the
lineage, it will attempt to traverse the service as a folder, finding a
content object inside the service, and this API will append this object
rather than the service itself to the list of things returned. For
example, find_services(resource, 'principals', 'users') would find the
users subobject in the principals service.
find_services(resource, 'principals', 'users', 'fred') would find the
fred subobject of the users subobject of the principals service, and so
forth. If subnames are supplied, whether or not the named object can
be found, the lineage search continues.

	
substanced.util.find_objectmap(context)

	Returns the object map for the root object in the lineage of the
context or None if no objectmap can be found.

	
substanced.util.find_catalogs(resource, name=None)

	Return all catalogs in the lineage. If name is supplied, return
only catalogs that have this name in the lineage, otherwise return all
catalogs in the lineage.

	
substanced.util.find_catalog(resource, name)

	Return the first catalog named name in the lineage of the resource

	
substanced.util.find_index(resource, catalog_name, index_name)

	Find the first catalog named catalog_name in the lineage of the
resource, and ask it for its index_name index; return the resulting
index. If either a catalog of the provided name or an index of the
provided name does not exist, this function will return None.

	
substanced.util.get_principal_repr(principal_or_id)

	Given as principal_or_id a resource object that has a
__principal_repr__ method, return the result of calling that method
(without arguments); it must be a string that uniquely identifies the
principal amongst all principals in the system.

Given as principal_or_id a resource object that does not
have a __principal_repr__ method, return the result of the
stringification of the __oid__ attribute of the resource object.

Given an integer as principal_or_id, return a stringification
of the integer.

Given any other string value, return it.

	
substanced.util.is_folder(resource)

	Return True if the object is a folder, False if not.

	
substanced.util.is_service(resource)

	Returns True if the resource is a service, False if not.

	
substanced.util.get_factory_type(resource)

	If the resource has a __factory_type__ attribute, return it.
Otherwise return the full Python dotted name of the resource’s class.

	
substanced.util.coarse_datetime_repr(date)

	Convert a datetime to an integer with 100 second granularity.

The granularity reduces the number of index entries in a fieldindex when
it’s used in an indexview to convert a datetime value to an integer.

	
substanced.util.postorder(startnode)

	Walks over nodes in a folder recursively. Yields deepest nodes first.

	
substanced.util.merge_url_qs(url, **kw)

	Merge the query string elements of a URL with the ones in kw.
If any query string element exists in url that also exists in
kw, replace it.

	
substanced.util.chunks(stream, chunk_size=10000)

	Return a generator that will iterate over a stream (a filelike
object) chunk_size bytes at a time.

	
substanced.util.renamer()

	Returns a property. The getter of the property returns the
__name__ attribute of the instance on which it’s defined. The setter
of the property calls rename() on the __parent__ of the instance on
which it’s defined if the new value doesn’t match the existing __name__
of the instance (this will cause __name__ to be reset if the parent is
a normal Substance D folder). Sample usage:

class SomeContentType(Persistent):
 name = renamer()

	
substanced.util.get_dotted_name(g)

	Return the dotted name of a global object.

	
substanced.util.get_icon_name(resource, request)

	Returns the content registry icon name of the resource or None if
the resource type has no icon in the content registry.

	
substanced.util.get_auditlog(context)

	Returns the current substanced.audit.AuditLog object or None
if no audit database is configured

	
class substanced.util.Batch(seq, request, url=None, default_size=10, toggle_size=40, seqlen=None)

	Given a sequence named seq, and a Pyramid request, return an
object with the following attributes:

items

A list representing a slice of seq. It will contain the number of
elements in request.params['batch_size'] or the default_size
number if such a key does not exist in request.params or the key is
invalid. The slice will begin at request.params['batch_num'] or
zero if such a key does not exist in request.params or the
batch_num key could not successfully be converted to a positive
integer.

This value can be iterated over via the __iter__ of the batch
object.

size

The value obtained from request.params['batch_size'] or
default_size if no batch_size parameter exists in
request.params or the batch_size parameter could not
successfully be converted to a positive interger.

num

The value obtained from request.params['batch_num'] or 0 if no
batch_num parameter exists in request.params or if the
batch_num parameter could not successfully be converted to a
positive integer. Batch numbers are indexed from zero, so batch 0
is the first batch, batch 1 the second, and so forth.

length

This is length of the current batch. It is usually equal to size
but may be different in the very last batch. For example, if the
seq is [1,2,3,4] and the batch size is 3, the first batch’s
length will be 3 because the batch content will be [1,2,3];
but the second and final batch’s length will be 1 because the
batch content will be [4].

last

The batch number computed from the sequence length of the last batch
(indexed from zero).

first_url

The URL of the first batch. This will be a URL with batch_num and
batch_size in its query string. The base URL will be taken from
the url value passed to this function. If a url value is not
passed to this function, the URL will be taken from request.url.
This value will be None if the current batch_num is 0.

prev_url

The URL of the previous batch. This will be a URL with batch_num
and batch_size in its query string. The base URL will be taken
from the url value passed to this function. If a url value is
not passed to this function, the URL will be taken from
request.url. This value will be None if there is no previous
batch.

next_url

The URL of the next batch. This will be a URL with batch_num and
batch_size in its query string. The base URL will be taken from
the url value passed to this function. If a url value is not
passed to this function, the URL will be taken from request.url.
This value will be None if there is no next batch.

last_url

The URL of the next batch. This will be a URL with batch_num and
batch_size in its query string. The base URL will be taken from
the url value passed to this function. If a url value is not
passed to this function, the URL will be taken from request.url.
This value will be None if there is no next batch.

required

True if either next_url or prev_url are True (meaning
batching is required).

multicolumn

True if the current view should be rendered in multiple columns.

toggle_url

The URL to be used for the multicolumn/single column toggle button. The
batch_size, batch_num, and multicolumn parameters are
converted to their multicolumn or single column equivalents. If a user
is viewing items 40-80 in multiple columns, the toggle will switch to
items 40-50 in a single column. If a user is viewing items 50-60 in a
single column, the toggle will switch to items 40-80 in multiple columns.

toggle_text

The text to display on the multi-column/single column toggle.

make_columns

A method to split items into a nested list representing columns.

seqlen

This is total length of the sequence (across all batches).

startitem

The item number that starts this batch (indexed from zero).

enditem

The item number that ends this batch (indexed from zero).

	
make_columns(column_size=10, num_columns=4)

	Break self.items into a nested list representing columns.

substanced.workflow API

	
class substanced.workflow.ACLState(acl=None, **kw)

	Bases: dict

	
class substanced.workflow.ACLWorkflow(initial_state, type, name='', description='')

	Bases: substanced.workflow.Workflow

	
class substanced.workflow.Workflow(initial_state, type, name='', description='')

	Bases: object

Finite state machine.

Implements substanced.interfaces.IWorkflow.

	Parameters

	
	initial_state (string) – Initial state of the workflow assigned to the content

	type (string) – Identifier to separate multiple workflows on same content.

	name (string) – Display name.

	description (string) – Not used internally, provided as help text to describe
what workflow does.

	
add_state(state_name, callback=None, **kw)

	Add a new workflow state.

	Parameters

	
	state_name – Unique name of the state for this workflow.

	callback (callable) – Will be called when content enters this state.
Meaning Workflow.reset(),
Workflow.initialize(),
Workflow.transition() and
Workflow.transition_to_state() will trigger
callback if entering this state.

	**kw – Metadata assigned to this state.

	Raises

	WorkflowError if state already exists.

Callback is called with content as a single positional argument and
the keyword arguments workflow, transition, and request. Be
aware that methods as Workflow.initialize() pass transition
as an empty dictionary.

Note

**kw must not contain the key
callback. This name is reserved for internal use.

	
add_transition(transition_name, from_state, to_state, callback=None, permission=None, **kw)

	Add a new workflow transition.

	Parameters

	
	transition_name – Unique name of transition for this workflow.

	callback (callable) – Will be called when transition is executed.
Meaning Workflow.transition() and
Workflow.transition_to_state() will trigger
callback if this transition is executed.

	**kw – Metadata assigned to this transition.

	Raises

	WorkflowError if transition already exists.

	Raises

	WorkflowError if from_state or to_state don’t exist.

Callback is called with content as a single positional argument and
the keyword arguments workflow, transition, and request.

Note

**kw must not contain any of the keys from_state, name,
to_state, or callback; these are reserved for internal use.

	
check()

	Check the consistency of the workflow state machine.

	Raises

	WorkflowError if workflow is inconsistent.

	
get_states(content, request, from_state=None)

	Return all states for the workflow.

	Parameters

	
	content – Object to be operated on

	request – pyramid.request.Request instance

	from_state – State of the content. If None,
Workflow.state_of() will be used on
content.

	Return type

	list of dicts

	Returns

	Where dictionary contains information about the transition,
such as title, initial, current,
transitions and data. transitions is return value
of Workflow.get_transitions() call for current state.
data is a dictionary containing at least callback.

Note

States that fail has_permission check for their transition
are left out.

	
get_transitions(content, request, from_state=None)

	Get all transitions from the content state.

	Parameters

	
	content – Object to be operated on.

	request – pyramid.request.Request instance

	from_state – Name of the state to retrieve transitions. If None,
Workflow.state_of() will be used on
content.

	Return type

	list of dicts

	Returns

	Where dictionary contains information about the transition,
such as from_state, to_state, callback,
permission and name.

Note

Transitions that fail has_permission check are left out.

	
has_state(content)

	Return True if the content has state for this workflow,
False if not.

	
initialize(content, request=None)

	Initialize the content object to the initial state of this workflow.

	Parameters

	
	content – Object to be operated on

	request – pyramid.request.Request instance

	Returns

	(initial_state, msg)

msg is a string returned by the state callback.

	
reset(content, request=None)

	Reset the content workflow by calling the callback of
it’s current state and setting its state attr.

If content has no current state, it will be initialized
for this workflow (see initialize).

msg is a string returned by the state callback.

	Parameters

	
	content – Object to be operated on

	request – pyramid.request.Request instance

	Returns

	(state, msg)

	
state_of(content)

	Return the current state of the content object or None
if the content object does not have this workflow.

	
transition(content, request, transition_name)

	Execute a transition using a transition_name on content.

	Parameters

	
	content – Object to be operated on.

	request – pyramid.request.Request instance

	transition_name – Name of transition to execute.

	Raises

	WorkflowError if no transition is found

	Raises

	WorkflowError if transition doesn’t pass
has_permission check

	
transition_to_state(content, request, to_state, skip_same=True)

	Execute a transition to another state using a state name
(to_state). All possible transitions towards to_state
will be tried until one if found that passes without exception.

	Parameters

	
	content – Object to be operated on.

	request – pyramid.request.Request instance

	to_state – State to transition to.

	skip_same – If True and the to_state is the same as
the content state, no transition is issued.

	Raises

	WorkflowError if no transition is found

	
exception substanced.workflow.WorkflowError

	Bases: exceptions.Exception

Exception raised for anything related to substanced.workflow.

	
substanced.workflow.add_workflow(config, workflow, content_types=(None,))

	Configurator method for adding a workflow.

If no content_types is given, workflow is registered globally.

	Parameters

	
	config – Pyramid configurator

	workflow – Workflow instance

	content_types (iterable) – Register workflow for given content_types

	Raises

	ConfigurationError if Workflow.check() fails

	Raises

	ConfigurationError if content_type does not exist

	Raises

	DoesNotImplement if workflow does not
implement IWorkflow

	
substanced.workflow.get_workflow(request, type, content_type=None)

	Return a workflow based on a content_type and the workflow type.

	Parameters

	
	request – pyramid.request.Request instance

	type – Workflow type

	content_type – Substanced content type or None for default workflow.

substanced.interfaces

These represent interfaces implemented by various Substance D objects.

	
interface substanced.interfaces.IACLModified

	Extends: zope.interface.interfaces.IObjectEvent

May be sent when an object’s ACL is modified

	
old_acl

	The object ACL before the modification

	
object

	The object being modified

	
new_acl

	The object ACL after the modification

	
interface substanced.interfaces.IAfterTransition

	An event type sent after a transition has been done

	
transition

	The transition name

	
new_state

	The new state of the object

	
object

	The object on which the transition has been done

	
initial_state

	The initial state of the object

	
interface substanced.interfaces.ICatalog

	A collection of indices.

	
reset()

	Clear all indexes in this catalog and clear self.objectids.

	
__getitem__(name)

	Return the index named name

	
update_indexes(registry=None, dry_run=False, output=None, replace=False, reindex=False, **kw)

	Use the candidate indexes registered via
config.add_catalog_factory to populate this catalog.

	
reindex_resource(resource, oid=None, action_mode=None)

	Register the resource in indexes of this catalog using objectid
oid. If oid is not supplied, the __oid__ of the
resource will be used. action_mode, if supplied, should be one
of None, MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED indicating when the
updates should take effect. The action_mode value will overrule
any action mode that a member index has been configured with.

The result of calling this method is logically the same as calling
unindex_resource, then index_resource for the same resource/oid
combination, but calling those two methods in succession is often more
expensive than calling this single method, as member indexes can choose
to do smarter things during a reindex than what they would do during an
unindex then an index.

	
reindex(dry_run=False, commit_interval=200, indexes=None, path_re=None, output=None)

	Reindex all objects in this collection of indexes.

If dry_run is True, do no actual work but send what would be
changed to the logger.

commit_interval controls the number of objects indexed between
each call to transaction.commit() (to control memory
consumption).

indexes, if not None, should be a list of index names that
should be reindexed. If indexes is None, all indexes are
reindexed.

path_re, if it is not None should be a regular expression
object that will be matched against each object’s path. If the
regular expression matches, the object will be reindexed, if it does
not, it won’t.

output, if passed should be one of None, False or a
function. If it is a function, the function should accept a single
message argument that will be used to record the actions taken during
the reindex. If False is passed, no output is done. If None
is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

	
unindex_resource(resource_or_oid, action_mode=None)

	Deregister the resource in indexes of this catalog using objectid or
resource resource_or_oid. If resource_or_oid is an integer, it
will be used as the oid; if resource_or_oid is a resource, its
__oid__ attribute will be used as the oid. action_mode, if
supplied, should be one of None,
MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED.

	
index_resource(resource, oid=None, action_mode=None)

	Register the resource in indexes of this catalog using objectid
oid. If oid is not supplied, the __oid__ of the
resource will be used. action_mode, if supplied, should be one
of None, MODE_IMMEDIATE,
MODE_ATCOMMIT or
MODE_DEFERRED.

	
objectids

	a sequence of objectids that are cataloged in this catalog

	
flush(immediate=True)

	Flush any pending indexing actions for all indexes in this catalog.
If immediate is True, all actions will be immediately
executed. If immediate is False,
MODE_DEFERRED actions will be sent to
the actions processor if one is active, and all other actions will be
executed immediately.

	
interface substanced.interfaces.IContentCreated

	An event type sent when a Substance D content object is created
via registry.content.create

	
object

	The freshly created content object. It will not yet have been seated into any folder.

	
meta

	The metainformation about the content type in the content registry

	
content_type

	The content type of the object that was created

	
interface substanced.interfaces.IDefaultWorkflow

	Marker interface used internally for workflows that aren’t
associated with a particular content type

	
interface substanced.interfaces.IEditable

	Adapter interface for editing content as a file.

	
put(fileish)

	Update context based on the contents of fileish.

	fileish is a file-type object: its read method should
return the (new) file representation of the context.

	
get()

	Return (body_iter, mimetype) representing the context.

	body_iter is an iterable, whose chunks are bytes represenating
the context as an editable file.

	mimetype is the MIMEType corresponding to body_iter.

	
interface substanced.interfaces.IEvolutionSteps

	Utility for obtaining evolution step data

	
interface substanced.interfaces.IFile

	An object representing file content

	
mimetype

	The mimetype of the file content

	
upload(stream, mimetype_hint=False)

	Replace the current contents of this file’s blob with the
contents of stream. mimetype_hint can be any of the
folliwing:

	None, meaning don’t reset the current mimetype. This is the
default.

	A string containing a filename with an extension; the mimetype will
be derived from the extension in the filename.

	The constant substanced.file.USE_MAGIC, which will derive the
content type using the python-magic library based on the
stream’s actual content.

	
get_size()

	Return the size in bytes of the data in the blob associated with
the file

	
blob

	The ZODB blob object holding the file content

	
get_response(**kw)

	Return a WebOb-compatible response object which uses the blob
content as the stream data and the mimetype of the file as the
content type. The **kw arguments will be passed to the
pyramid.response.FileResponse [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html#pyramid.response.FileResponse] constructor as its keyword
arguments.

	
interface substanced.interfaces.IFolder

	A Folder which stores objects using Unicode keys.

All methods which accept a name argument expect the
name to either be Unicode or a byte string decodable using the
default system encoding or the UTF-8 encoding.

	
rename(oldname, newname)

	Rename a subobject from oldname to newname.

This operation is done in terms of a remove and an add. The Removed
and WillBeRemoved events sent will indicate that the object is
moving.

	
load(name, newobject)

	Same as substanced.interfaces.IFolder.replace() except it causes
the loading flag of added and removed events sent during the add
and remove events implied by the replacement to be True.

	
move(name, other, newname=None)

	Move a subobject named name from this folder to the folder
represented by other. If newname is not none, it is used as
the target object name; otherwise the existing subobject name is
used.

This operation is done in terms of a remove and an add. The Removed
and WillBeRemoved events sent will indicate that the object is
moving.

	
set_order(value, reorderable=None)

	Makes the folder orderable and sets its order to the list of
names provided in value. Names should be existing names for objects
contained in the folder at the time order is set.

If reorderable is passed, value, it must be None, True or
False. If it is None, the reorderable flag will not be reset
from its current value. If it is anything except None, it will be
treated as a boolean and the reorderable flag will be set to that
value. The reorderable value of a folder will be returned by that
folder’s is_reorderable() method.

The is_reorderable() method is used by
the SDI folder contents view to indicate that the folder can or cannot
be reordered via the web UI.

If reorderable is set to True, the
reorder() method will work properly,
otherwise it will raise a ValueError when called.

	
pop(name, default=None)

	Remove the item stored in the under name and return it.

If name doesn’t exist in the folder, and default is not
passed, raise a KeyError.

If name doesn’t exist in the folder, and default is
passed, return default.

When the object stored under name is removed from this folder,
remove its __parent__ and __name__ values.

When this method is called, emit an IObjectWillBeRemoved event
before the object loses its __name__ or __parent__ values.
Emit an ObjectRemoved after the object loses its __name__
and __parent__ value,

	
replace(name, newobject)

	Replace an existing object named name in this folder with a
new object newobject. If there isn’t an object named name in
this folder, an exception will not be raised; instead, the new
object will just be added.

This operation is done in terms of a remove and an add. The Removed
and WillBeRemoved events will be sent for the old object, and the
WillBeAdded and Add events will be sent for the new object.

	
__contains__(name)

	Does the container contains an object named by name?

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the
system default encoding or the UTF-8 encoding.

	
is_reorderable()

	Return true if the folder can be reordered, false otherwise.

	
keys()

	Return an iterable sequence of object names present in the folder.

Respect order, if set.

	
add(name, other, send_events=True, reserved_names=(), duplicating=None, moving=None, loading=False, registry=None)

	Same as __setitem__.

If send_events is false, suppress the sending of folder events.
Disallow the addition of the name provided is in the reserved_names
list. If duplicating is not None, it must be the object being
duplicated; when non-None, the ObjectWillBeAdded and ObjectAdded events
sent will be marked as ‘duplicating’, which typically has the effect
that the subobject’s object id will be overwritten instead of reused.
If registry is passed, it should be a Pyramid registry object;
otherwise the pyramid.threadlocal.get_current_registry() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/threadlocal.html#pyramid.threadlocal.get_current_registry]
function is used to look up the current registry.

This method returns the name used to place the subobject in the
folder (a derivation of name, usually the result of
self.check_name(name)).

	
__len__()

	Return the number of subobjects in this folder.

	
sort(oids, reverse=False, limit=None)

	Return the intersection of the oids of the folder’s order with the
oids passed in. If reverse is True, reverse the result set. If
limit is an integer, return only that number of items (after
reversing, if reverse is True).

	
__getitem__(name)

	Return the object represented by name in this folder or raise
a KeyError if no such object exists.

	
get(name, default=None)

	Return the object named by name or the default.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the
system default encoding or the UTF-8 encoding.

	
is_ordered()

	Return True if the folder has a manual ordering (e.g. its
order attribute has been set), False otherwise.

	
unset_order()

	Removes the folder internal ordering, making it an unordered
folder.

	
validate_name(name, reserved_names=())

	Checks the name passed for validity. If the name is valid and is not
present in reserved_names returns a validated name. Otherwise a
ValueError will be raised.

	
__iter__()

	An alias for keys.

Respect order, if set.

	
check_name(name, reserved_names=())

	Performs all checks associated with validate_name but also
raises a substanced.folder.FolderKeyError if an object with
the name name already exists in the folder. Returns the name (with
any modifications) returned by validate_name.

	
__delitem__(name)

	Remove the object from this folder stored under name.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the
system default encoding or the UTF-8 encoding.

If no object is stored in the folder under name, raise a
KeyError.

When the object stored under name is removed from this folder,
remove its __parent__ and __name__ values.

When this method is called, emit an IObjectWillBeRemoved event
before the object loses its __name__ or __parent__ values.
Emit an IObjectRemoved after the object loses its __name__
and __parent__ value,

	
__nonzero__()

	Always return True

	
items()

	Return an iterable sequence of (name, value) pairs in the folder.

Respect order, if set.

	
clear()

	Clear all objects from the folder. Calling this is equivalent to
calling .remove for each key in the folder.

	
__setitem__(name, other)

	Set object other into this folder under the name name.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the
system default encoding or the UTF-8 encoding.

name cannot be the empty string.

When other is seated into this folder, it will also be
decorated with a __parent__ attribute (a reference to the
folder into which it is being seated) and __name__
attribute (the name passed in to this function.

If a value already exists in the foldr under the name name, raise
KeyError.

When this method is called, emit an IObjectWillBeAdded event
before the object obtains a __name__ or __parent__ value.
Emit an IObjectAdded event after the object obtains a __name__
and __parent__ value.

	
remove(name, send_events=True, moving=None, loading=False)

	Same thing as __delitem__.

If send_events is false, suppress the sending of folder events. If
moving is not None, it should be the folder object from which
the object is being moved; the events sent will indicate that a move is
in process.

	
values()

	Return an iterable sequence of the values present in the folder.

Respect order, if set.

	
reorder(items, before)

	Move one or more items from a folder into new positions inside that
folder. items is a list of ids of existing folder items, which will
be inserted in order before the item named before. All other items
are left in the original order. If this method is called on a folder
which does not have an order set, or which is not reorderable, a
ValueError will be raised.

	
interface substanced.interfaces.IGroup

	Extends: substanced.interfaces.IPrincipal

Marker interface representing a group

	
interface substanced.interfaces.IGroups

	Marker interface representing a collection of groups

	
interface substanced.interfaces.IIndexFactory

	A factory for an index

	
interface substanced.interfaces.IIndexingActionProcessor

	Processor of deferred indexing/unindexing actions of
catalogs in the system

	
interface substanced.interfaces.ILock

	Represents a lock to be applied by the lock service

	
interface substanced.interfaces.ILoggedIn

	An event type sent when a user supplies a valid username and password
to a login view. Note that this event is not sent on every request that
the user initiates, just ones which result in an interactive login.

	
request

	The request which resulted in the login

	
user

	The user object computed by Substance D

	
context

	The context resource that was active during login

	
login

	The login name used by the user

	
interface substanced.interfaces.IObjectAdded

	Extends: zope.interface.interfaces.IObjectEvent

An event type sent when an object is added

	
loading

	Boolean indicating that this add is part of a load (during a dump load process)

	
name

	The name of the object within the folder

	
parent

	The folder to which the object is being added

	
object

	The object being added

	
duplicating

	The object being duplicated or None

	
moving

	None or the folder from which the object being added was moved

	
interface substanced.interfaces.IObjectMap

	A map of objects to paths and a reference engine

	
pathlookup(obj_or_path_tuple, depth=None, include_origin=True)

	Returns an iterator of document ids within
obj_or_path_tuple (a traversable object or a path tuple). If depth
is specified, returns only objects at that depth. If
include_origin is True, returns the docid of the object
passed as obj_or_path_tuple in the returned set, otherwise it
omits it.

	
disconnect(src, target, reftype)

	Disonnect src_object from target_object using the
reference type reftype. src and target may be objects or
object identifiers

	
path_for(objectid)

	Return the path tuple for objectid

	
objectid_for(obj_or_path_tuple)

	Return the object id for obj_or_path_tuple

	
remove(obj_objectid_or_path_tuple)

	Removes an object from the object map using the object itself, an
object id, or a path tuple. Returns a set of objectids (children,
inclusive) removed as the result of removing this object from the
object map.

	
targets(obj, reftype)

	Return a generator consisting of objects which have obj as a
relationship target using reftype. obj can be an object or an
object id.

	
sources(obj, reftype)

	Return a generator consisting of objects which have obj as a
relationship source using reftype. obj can be an object or
an object id.

	
add(obj)

	Add a new object to the object map. Assigns a new objectid to
obj.__oid__ to the object if it doesn’t already have one. The
object’s path or objectid must not already exist in the map. Returns
the object id.

	
connect(src, target, reftype)

	Connect src_object to target_object using the reference
type reftype. src and target may be objects or object
identifiers.

	
targetids(obj, reftype)

	Return a set of objectids which have obj as a relationship
target using reftype. obj can be an object or an object id.

	
object_for(objectid)

	Return the object associated with objectid or None if the
object cannot be found.

	
sourceids(obj, reftype)

	Return a set of objectids which have obj as a relationship
source using reftype. obj can be an object or an object id.

	
interface substanced.interfaces.IObjectModified

	Extends: zope.interface.interfaces.IObjectEvent

May be sent when an object is modified

	
object

	The object being modified

	
interface substanced.interfaces.IObjectRemoved

	Extends: zope.interface.interfaces.IObjectEvent

An event type sent when an object is removed

	
loading

	Boolean indicating that this remove is part of a load (during a dump load process)

	
name

	The name of the object within the folder

	
parent

	The folder from which the object is being removed

	
object

	The object being removed

	
moving

	None or the folder to which the object being removed will be moved

	
removed_oids

	The set of oids removed as the result of this object being removed (including the oid of the object itself). This may be any number of oids if the object was folderish

	
interface substanced.interfaces.IObjectWillBeAdded

	Extends: zope.interface.interfaces.IObjectEvent

An event type sent when an before an object is added

	
loading

	Boolean indicating that this add is part of a load (during a dump load process)

	
name

	The name which the object is being added to the folder with

	
parent

	The folder to which the object is being added

	
object

	The object being added

	
duplicating

	The object being duplicated or None

	
moving

	None or the folder from which the object being added was moved

	
interface substanced.interfaces.IObjectWillBeRemoved

	Extends: zope.interface.interfaces.IObjectEvent

An event type sent before an object is removed

	
loading

	Boolean indicating that this remove is part of a load (during a dump load process)

	
name

	The name of the object within the folder

	
parent

	The folder from which the object is being removed

	
object

	The object being removed

	
moving

	None or the folder to which the object being removed will be moved

	
interface substanced.interfaces.IPasswordReset

	Marker interface represent a password reset request

	
interface substanced.interfaces.IPasswordResets

	Marker interface representing a collection of password reset requests

	
interface substanced.interfaces.IPrincipal

	Marker interface representing a user or group

	
interface substanced.interfaces.IPrincipals

	Marker interface representing a container of users and groups

	
interface substanced.interfaces.IPropertySheet

	Interface for objects with a set of properties defined by a Colander
schema. The class substanced.property.PropertySheet (which is
meant to be subclassed for specialization) implements this interface.

	
set(struct, omit=())

	Accept struct (a dictionary representing the property state)
and persist it to the context, refraining from persisting the keys in
the struct that are named in omit (a sequence of strings or a
string). The data structure will have already been validated against
the propertysheet schema.

You can return a value from this method. It will be passed as
changed into the after_set method. It should be False if
your set implementation did not change any persistent data. Any
other return value will be conventionally interpreted as the
implementation having changed persistent data.

	
get()

	Return a dictionary representing the current property state
compatible with the schema for serialization

	
request

	The current request

	
context

	The context of the property sheet (a resource)

	
after_set(changed)

	Perform operations after a successful set. changed is the
value returned from the set method.

The default propertysheet implementation sends an ObjectModified event
if the changed value is not False.

	
schema

	The Colander schema instance which defines the fields related to this property sheet

	
interface substanced.interfaces.IRootAdded

	An event type sent when the Substance D root object has a connection to
the database as its _p_jar attribute.

	
object

	The root object

	
interface substanced.interfaces.ISDIAPI

	Easy access to common templating operations on all views.
This object is available as request.sdiapi.

	
mgmt_path(obj, *arg, **kw)

	Return the route_path inside the SDI for an object

	
sdi_title()

	The sdi_title of the virtual root or “Substance D” if
not defined

	
mgmt_views(context)

	The list of management views on a resource

	
breadcrumbs()

	Return a sequence of dicts for the breadcrumb information.
Each dict contains:

	url: The request.mgmt_path to that resource

	name: The resource __name__ or ‘Home’ for the root

	active: Boolean representing whether the resource is
in the breadcrumb is the current context

	icon: The full path to the icon for that resource type

	
get_macro(asset_spec, name=None)

	Return a Chameleon template macro based on the asset spec
(e.g. somepackage:templates/foo.pt) and the name. If the name is
None, the bare template implementation is returned, otherwise the named
macro from within the template is returned.

	
mgmt_url(obj, *arg, **kw)

	Return the route_url inside the SDI for an object

	
main_template

	The loaded master.pt which can
be used in view templates with
metal:use-macro="request.sdiapi.main_template".

	
flash_with_undo(msg, queue='', allow_duplicate=True)

	Display a Pyramid flash message to the appropriate
queue with a button to allow an undo of the commit.

	
interface substanced.interfaces.IService

	Marker for items which are showin in the “Services” tab.

	
interface substanced.interfaces.IUser

	Extends: substanced.interfaces.IPrincipal

Marker interface representing a user

	
interface substanced.interfaces.IUserLocator

	Adapter responsible for returning a user by his login name and/or
userid as well as group objects of a user by his userid.

	
get_groupids(userid)

	Return all the group-related principal identifiers for a user with
the user principal identifier userid as a sequence. If no user
exists under userid, return None.

	
get_user_by_email(email)

	Return an IUser object or None if no such user exists. The
email argument is the email address of the user.

	
get_user_by_userid(userid)

	Return an IUser object or None if no such user exists. The
userid argument is the user id of the user (usually an oid).

	
get_user_by_login(login)

	Return an IUser object or None if no such user exists. The
login argument is the login name of the user, not an oid.

	
interface substanced.interfaces.IUsers

	Marker interface representing a collection of users

	
interface substanced.interfaces.IWorkflow

	
	
reset(content, request=None)

	

	
has_state(content)

	

	
get_transitions(content, request, from_state=None)

	

	
add_state(name, callback=None, **kw)

	

	
transition(content, request, transition_name)

	

	
state_of(content)

	

	
check()

	

	
get_states(content, request, from_state=None)

	

	
initialize(content, request=None)

	

	
transition_to_state(content, request, to_state, skip_same=True)

	

	
add_transition(name, from_state, to_state, callback=None, **kw)

	

	
interface substanced.interfaces.MODE_ATCOMMIT

	Sentinel indicating that an indexing action should take place at the
successful end of the current transaction.

	
interface substanced.interfaces.MODE_DEFERRED

	Sentinel indicating that an indexing action should be performed by an
external indexing processor (e.g. drain_catalog_indexing) if one is
active at the successful end of the current transaction. If an indexing
processor is unavailable at the successful end of the current transaction,
this mode will be taken to imply the same thing as
MODE_ATCOMMIT.

	
interface substanced.interfaces.MODE_IMMEDIATE

	Sentinel indicating that an indexing action should take place as
immediately as possible.

	
class substanced.interfaces.ReferenceClass(*arg, **kw)

	Bases: zope.interface.interface.InterfaceClass

	
interface substanced.interfaces.UserToLock

	Extends: substanced.interfaces.ReferenceType

A reference type which represents the relationship from a user to
his set of locks

	
interface substanced.interfaces.WriteLock

	Extends: substanced.interfaces.ReferenceType

Represents a DAV-style writelock. It’s a Substance D reference type
from resource object to lock object

Substance D SDI Permission Names

sdi.add-content

Protects views which allow users to add content to a folder.

sdi.add-group

Protects views which add groups to a groups collection within a principals
service.

sdi.add-services

Protects views which add built-in Substance D services.

sdi.add-user

Protects views which add users to a users collection within a principals
service.

sdi.change-acls

Protects arbitrary locations, allowing certain people to execute views the
under that location which change ACLs associated with a resource.

sdi.change-password

Protects views of a user which allow for the changing of passwords.

sdi.lock

Protects views which allow users to lock or unlock a resource.

sdi.manage-catalog

Protects views which allow users to manage catalog data and indexes within a
catalog service.

sdi.manage-contents

Protects views which allow users to add, remove, and rename items within
folders.

sdi.manage-database

Protects the “manage database” view at the root.

sdi.manage-references

Protects views which allow users to manage the references associated with a
resource.

sdi.manage-user-groups

Protects views which allow admin users to update groups for users.

sdi.manage-workflow

Protects the views associated with managing the workflows of an object.

sdi.undo

Protects the capability of users to execute views which undo transactions.

sdi.view

Protects whether a user can view the SDI management pages associated with a
resource.

sdi.view-services

Protects whether a user can view the “Services” tab in a folder.

sdi.edit-properties

Allows for the editing of the properties of a property sheet for an object.

sdi.view-auditlog

Allows the user to view the audit log event stream (auditstream-sse)
view.

Copyright, Trademarks, and Attributions

Substance D

by Chris McDonough

Copyright © 2011-2013, Agendaless Consulting.

All rights reserved. This documentation is offered under a (BSD-like) license [http://repoze.org/license.html] .

All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. However, use of a term in
this book should not be regarded as affecting the validity of any trademark or
service mark.

Every effort has been made to make this documentation as complete and as
accurate as possible, but no warranty of fitness is implied. The information
provided is on as “as-is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book. No
patent liability is assumed with respect to the use of the information
contained herein.

Attributions

	Editor:

	TBD

	Contributors:

	Steve Piercy, Eric Rasmussen, Domen Kožar, Paul Everitt, Carlos de la
Guardia, Balazs Ree, Douglas Cerna, and a number of people with only
pseudonyms on GitHub.

	SubstanceD.net [http://www.substanced.net/] Website Theme:

	The assets in the directory assets are not open source; they are
copyrighted by Tamerlan Soziev and released under a proprietary license. To
purchase a license for these assets, visit
https://wrapbootstrap.com/theme/venera-responsive-multipurpose-template-
WB059C895

	Documentation Template:

	Steve Piercy [http://www.stevepiercy.com/] based on the Venera theme.
Used by permission.

Some Substance D Interface images copyright Rokey [http://www.iconarchive.com/artist/rokey.html], in particular
http://www.iconarchive.com/show/smooth-icons-by-rokey/capsule-icon.html

Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries, and other
business communications to Agendaless Consulting. For software and other technical queries
see Support / Reporting Bugs / Development Versions.

HTML Version and Source Code

The source code for the examples used in this documentation are available
within the Substance D software distribution, available via
https://github.com/Pylons/substanced

Glossary

	Colander

	A schema library which can be used used to describe arbitrary data
structures. See
http://docs.pylonsproject.org/projects/colander/en/latest/ for more
information.

	Content

	A resource which is particularly well-behaved when viewed via
the Substance D management interface.

	Content type

	An interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface] associated with a particular kind of content
object. A content type also has metadata like an icon, an add view
name, and other things.

	DataDog

	A Software-as-a-Service (SaaS) provider for monitoring and visualizing
performance data that is compatible with the statsd statistics output
channel used by Substance D. See http://www.datadoghq.com

	Deform

	A form library that draws and validates forms based on Colander
schemas. See http://docs.pylonsproject.org/projects/deform/en/latest/
for more information.

	Factory Wrapper

	A function that wraps a content factory when the content factory is not
a class or when a factory_name is used within the content type
declaration.

	Folder

	A resource object which contains other resource objects. See
substanced.folder.Folder.

	Global Object

	A Python object that can be obtained via an import statement.

	Manage prefix

	The prepended portion of the URL (usually /manage) which signifies
that view lookup should be done only amongst the set of views registered
as management view types. This can be changed by setting the
substanced.manage_prefix key in your development.ini or
production.ini configuration files.

	Management view

	A view configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-configuration] that is only invoked when a user visits a
URL prepended with the manage prefix.

	Object Map

	A Substance D service which maps the object IDs of persistent
objects to paths and object IDs to other object IDs in the system.

	Object Map Reference

	A relationship kept in the object map between two persistent
objects. It is composed of a source, some number of targets, and a
reference type.

	Pyramid

	A web framework [http://pylonsproject.org].

	Reference Type

	A hashable object describing the type of relationship between two
objects in the object map. It’s usually a string.

	Resource

	An object representing a node in the resource tree of your
Substance D application. A resource becomes the context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] of a
view [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view] when someone visits a URL in your application.

	Resource factory

	An object which creates a resource when it’s called. It’s often
just a class that implements the resource itself.

	Resource tree

	A nested set of folder objects and other kinds of content
objects, each of which is a resource. Your content objects are
laid out hierarchically in the resource tree as they’re added.

	SDI

	An acronym for the “Substance D (Management) Interface”. What you see
when you visit /manage.

	Service

	A persistent object in the resource tree that exposes an API to
application developers. For example, the principals service.

	Service

	A Substance D content object which provides a service to application code
(such as a catalog or a principals service).

	State	States

	TODO

	Transition	Transitions

	TODO

	Workflow	Workflows

	TODO

	Zope

	An application server from which much of the spirit of Substance D is
derived. See http://zope.org.

 Python Module Index

 Python Module Index

 h |
 s

 		 	

 		
 h	

 	[image: -]
 	
 hypatia	

 	
 	
 hypatia.query	

 	
 	
 hypatia.util	

 		 	

 		
 s	

 	[image: -]
 	
 substanced	

 	
 	
 substanced.audit	

 	
 	
 substanced.catalog	

 	
 	
 substanced.catalog.indexes	

 	
 	
 substanced.content	

 	
 	
 substanced.db	

 	
 	
 substanced.editable	

 	
 	
 substanced.event	

 	
 	
 substanced.evolution	

 	
 	
 substanced.file	

 	
 	
 substanced.folder	

 	
 	
 substanced.form	

 	
 	
 substanced.interfaces	

 	
 	
 substanced.locking	

 	
 	
 substanced.objectmap	

 	
 	
 substanced.property	

 	
 	
 substanced.root	

 	
 	
 substanced.schema	

 	
 	
 substanced.stats	

 	
 	
 substanced.util	

 	
 	
 substanced.workflow	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__contains__() (substanced.interfaces.IFolder method)

 	__delitem__() (substanced.interfaces.IFolder method)

 	__getitem__() (substanced.catalog.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	(substanced.interfaces.IFolder method)

 	__init__() (substanced.file.File method)

 	(substanced.folder.Folder method)

 	(substanced.folder.RandomAutoNamingFolder method)

 	(substanced.folder.SequentialAutoNamingFolder method)

 	
 	__iter__() (hypatia.interfaces.IResultSet method)

 	(substanced.interfaces.IFolder method)

 	__len__() (hypatia.interfaces.IResultSet method)

 	(substanced.interfaces.IFolder method)

 	__nonzero__() (substanced.interfaces.IFolder method)

 	__setitem__() (substanced.catalog.Catalog method)

 	(substanced.interfaces.IFolder method)

A

 	
 	ACLModified (class in substanced.event)

 	ACLState (class in substanced.workflow)

 	ACLWorkflow (class in substanced.workflow)

 	acquire() (in module substanced.util)

 	add() (substanced.audit.AuditLog method)

 	(substanced.content.ContentRegistry method)

 	(substanced.folder.Folder method)

 	(substanced.folder.SequentialAutoNamingFolder method)

 	(substanced.interfaces.IFolder method)

 	(substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	add_catalog() (substanced.catalog.CatalogsService method)

 	add_catalog_factory() (in module substanced.catalog)

 	add_content_type() (in module substanced.content)

 	add_evolution_step() (in module substanced.evolution)

 	add_indexview() (in module substanced.catalog)

 	add_next() (substanced.folder.RandomAutoNamingFolder method)

 	(substanced.folder.SequentialAutoNamingFolder method)

 	add_propertysheet() (in module substanced.property)

 	
 	add_propertysheet_predicate() (in module substanced.property)

 	add_service() (substanced.folder.Folder method)

 	add_service_type() (in module substanced.content)

 	add_state() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	add_transition() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	add_workflow() (in module substanced.workflow)

 	after_set() (substanced.interfaces.IPropertySheet method)

 	AfterTransition (class in substanced.event)

 	All (class in hypatia.query)

 	all() (hypatia.interfaces.IResultSet method)

 	(substanced.content.ContentRegistry method)

 	Allowed (class in substanced.catalog)

 	allowed() (substanced.objectmap.ObjectMap method)

 	AllowedIndex (class in substanced.catalog.indexes)

 	allows() (substanced.catalog.indexes.AllowedIndex method)

 	And (class in hypatia.query)

 	Any (class in hypatia.query)

 	AuditLog (class in substanced.audit)

B

 	
 	Batch (class in substanced.util)

 	before_render() (substanced.property.PropertySheet method), [1]

 	
 	blob (substanced.file.File attribute)

 	(substanced.interfaces.IFile attribute)

 	breadcrumbs() (substanced.interfaces.ISDIAPI method)

C

 	
 	Catalog (class in substanced.catalog)

 	catalog_factory() (in module substanced.catalog)

 	CatalogsService (class in substanced.catalog)

 	CatalogsService.Catalog (class in substanced.catalog)

 	check() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	check_name() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	chunks() (in module substanced.util)

 	clear() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	(substanced.objectmap.Multireference method)

 	coarse_datetime_repr() (in module substanced.util)

 	Colander

 	
 	commit_suicide() (substanced.locking.Lock method)

 	connect() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.Multireference method)

 	(substanced.objectmap.ObjectMap method)

 	Contains (class in hypatia.query), [1]

 	Content

 	content (class in substanced.content)

 	Content type

 	content_type (substanced.interfaces.IContentCreated attribute)

 	ContentRegistry (class in substanced.content)

 	context (substanced.interfaces.ILoggedIn attribute)

 	(substanced.interfaces.IPropertySheet attribute)

 	copy() (substanced.folder.Folder method)

 	create() (substanced.content.ContentRegistry method)

D

 	
 	DataDog

 	Deform

 	disconnect() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.Multireference method)

 	(substanced.objectmap.ObjectMap method)

 	
 	discover_resource_locks() (in module substanced.locking)

 	duplicating (substanced.interfaces.IObjectAdded attribute)

 	(substanced.interfaces.IObjectWillBeAdded attribute)

E

 	
 	Eq (class in hypatia.query)

 	event (substanced.event.subscribe_acl_modified attribute)

 	(substanced.event.subscribe_added attribute)

 	(substanced.event.subscribe_after_transition attribute)

 	(substanced.event.subscribe_logged_in attribute)

 	(substanced.event.subscribe_modified attribute)

 	(substanced.event.subscribe_removed attribute)

 	(substanced.event.subscribe_root_added attribute)

 	(substanced.event.subscribe_will_be_added attribute)

 	(substanced.event.subscribe_will_be_removed attribute)

 	
 	exists() (substanced.content.ContentRegistry method)

 	expires() (substanced.locking.Lock method)

F

 	
 	Facet (class in substanced.catalog)

 	FacetIndex (class in substanced.catalog.indexes)

 	Factory Wrapper

 	factory_type_for_content_type() (substanced.content.ContentRegistry method)

 	Field (class in substanced.catalog)

 	FieldIndex (class in substanced.catalog.indexes)

 	File (class in substanced.file)

 	FileEditable (class in substanced.editable)

 	FileUploadTempStore (class in substanced.form)

 	find() (substanced.content.ContentRegistry method)

 	find_catalog() (in module substanced.util)

 	find_catalogs() (in module substanced.util)

 	find_content() (in module substanced.util)

 	find_index() (in module substanced.util)

 	find_objectmap() (in module substanced.util)

 	
 	find_service() (in module substanced.util)

 	(substanced.folder.Folder method)

 	find_services() (in module substanced.util)

 	(substanced.folder.Folder method)

 	first() (hypatia.interfaces.IResultSet method)

 	flash_with_undo() (substanced.interfaces.ISDIAPI method)

 	flush() (substanced.catalog.Catalog method)

 	(substanced.catalog.CatalogsService.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	Folder

 	(class in substanced.folder)

 	FolderKeyError (class in substanced.folder)

 	Form (class in substanced.form)

 	form_class (substanced.form.FormView attribute)

 	FormView (class in substanced.form)

G

 	
 	Ge (class in hypatia.query)

 	get() (substanced.catalog.Catalog method)

 	(substanced.editable.IEditable method)

 	(substanced.folder.Folder method)

 	(substanced.interfaces.IEditable method)

 	(substanced.interfaces.IFolder method)

 	(substanced.interfaces.IPropertySheet method)

 	get_acl() (in module substanced.util)

 	get_auditlog() (in module substanced.util)

 	get_content_type() (in module substanced.util)

 	get_dotted_name() (in module substanced.util)

 	get_editable_adapter() (in module substanced.editable)

 	get_etag() (substanced.file.File method)

 	get_extent() (substanced.objectmap.ObjectMap method)

 	get_factory_type() (in module substanced.util)

 	get_groupids() (substanced.interfaces.IUserLocator method)

 	get_icon_name() (in module substanced.util)

 	get_interfaces() (in module substanced.util)

 	
 	get_macro() (substanced.interfaces.ISDIAPI method)

 	get_objects() (substanced.objectmap.ReferentialIntegrityError method)

 	get_oid() (in module substanced.util)

 	get_principal_repr() (in module substanced.util)

 	get_reftypes() (substanced.objectmap.ObjectMap method)

 	get_response() (substanced.file.File method)

 	(substanced.interfaces.IFile method)

 	get_size() (substanced.file.File method)

 	(substanced.interfaces.IFile method)

 	get_states() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	get_transitions() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	get_user_by_email() (substanced.interfaces.IUserLocator method)

 	get_user_by_login() (substanced.interfaces.IUserLocator method)

 	get_user_by_userid() (substanced.interfaces.IUserLocator method)

 	get_workflow() (in module substanced.workflow)

 	Global Object

 	Gt (class in hypatia.query)

H

 	
 	has_references() (substanced.objectmap.ObjectMap method)

 	has_state() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	
 	hypatia.query (module)

 	hypatia.util (module)

I

 	
 	IACLModified (interface in substanced.interfaces)

 	IAfterTransition (interface in substanced.interfaces)

 	ICatalog (interface in substanced.interfaces)

 	IContentCreated (interface in substanced.interfaces)

 	IDefaultWorkflow (interface in substanced.interfaces)

 	ids (hypatia.interfaces.IResultSet attribute)

 	IEditable (interface in substanced.editable)

 	(interface in substanced.interfaces)

 	IEvolutionSteps (interface in substanced.interfaces)

 	IFile (interface in substanced.interfaces)

 	IFolder (interface in substanced.interfaces)

 	IGroup (interface in substanced.interfaces)

 	IGroups (interface in substanced.interfaces)

 	IIndexFactory (interface in substanced.interfaces)

 	IIndexingActionProcessor (interface in substanced.interfaces)

 	ILock (interface in substanced.interfaces)

 	ILoggedIn (interface in substanced.interfaces)

 	include() (in module substanced)

 	includeme() (in module substanced)

 	(in module substanced.catalog)

 	(in module substanced.content)

 	(in module substanced.db)

 	(in module substanced.evolution)

 	index_resource() (substanced.catalog.Catalog method)

 	(substanced.catalog.CatalogsService.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	indexview (class in substanced.catalog)

 	indexview_defaults (class in substanced.catalog)

 	initial_state (substanced.interfaces.IAfterTransition attribute)

 	initialize() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	
 	InRange (class in hypatia.query)

 	intersect() (hypatia.util.ResultSet method)

 	IObjectAdded (interface in substanced.interfaces)

 	IObjectMap (interface in substanced.interfaces)

 	IObjectModified (interface in substanced.interfaces)

 	IObjectRemoved (interface in substanced.interfaces)

 	IObjectWillBeAdded (interface in substanced.interfaces)

 	IObjectWillBeRemoved (interface in substanced.interfaces)

 	IPasswordReset (interface in substanced.interfaces)

 	IPasswordResets (interface in substanced.interfaces)

 	IPrincipal (interface in substanced.interfaces)

 	IPrincipals (interface in substanced.interfaces)

 	IPropertySheet (interface in substanced.interfaces)

 	IResultSet (interface in hypatia.interfaces)

 	IRootAdded (interface in substanced.interfaces)

 	is_catalogable() (in module substanced.catalog)

 	is_folder() (in module substanced.util)

 	is_ordered() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	is_reorderable() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	is_service() (in module substanced.util)

 	is_valid() (substanced.locking.Lock method)

 	ISDIAPI (interface in substanced.interfaces)

 	IService (interface in substanced.interfaces)

 	istype() (substanced.content.ContentRegistry method)

 	items() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	IUser (interface in substanced.interfaces)

 	IUserLocator (interface in substanced.interfaces)

 	IUsers (interface in substanced.interfaces)

 	IWorkflow (interface in substanced.interfaces)

K

 	
 	keys() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	
 	Keyword (class in substanced.catalog)

 	KeywordIndex (class in substanced.catalog.indexes)

L

 	
 	latest_id() (substanced.audit.AuditLog method)

 	Le (class in hypatia.query)

 	LEFT (in module substanced.schema)

 	load() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	loading (substanced.interfaces.IObjectAdded attribute)

 	(substanced.interfaces.IObjectRemoved attribute)

 	(substanced.interfaces.IObjectWillBeAdded attribute)

 	(substanced.interfaces.IObjectWillBeRemoved attribute)

 	
 	Lock (class in substanced.locking)

 	lock_resource() (in module substanced.locking)

 	LockError (class in substanced.locking)

 	LoggedIn (class in substanced.event)

 	login (substanced.interfaces.ILoggedIn attribute)

 	Lt (class in hypatia.query)

M

 	
 	main_template (substanced.interfaces.ISDIAPI attribute)

 	make_columns() (substanced.util.Batch method)

 	Manage prefix

 	Management view

 	mark_unfinished_as_finished() (in module substanced.evolution)

 	merge_url_qs() (in module substanced.util)

 	meta (substanced.interfaces.IContentCreated attribute)

 	metadata() (substanced.content.ContentRegistry method)

 	mgmt_path() (substanced.interfaces.ISDIAPI method)

 	mgmt_url() (substanced.interfaces.ISDIAPI method)

 	mgmt_views() (substanced.interfaces.ISDIAPI method)

 	MIDDLE (in module substanced.schema)

 	mimetype (substanced.file.File attribute)

 	(substanced.interfaces.IFile attribute)

 	
 	MODE_ATCOMMIT (interface in substanced.interfaces)

 	MODE_DEFERRED (interface in substanced.interfaces)

 	MODE_IMMEDIATE (interface in substanced.interfaces)

 	move() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	moving (substanced.interfaces.IObjectAdded attribute)

 	(substanced.interfaces.IObjectRemoved attribute)

 	(substanced.interfaces.IObjectWillBeAdded attribute)

 	(substanced.interfaces.IObjectWillBeRemoved attribute)

 	Multireference (class in substanced.objectmap)

 	multireference_source_property() (in module substanced.objectmap)

 	multireference_sourceid_property() (in module substanced.objectmap)

 	multireference_target_property() (in module substanced.objectmap)

 	multireference_targetid_property() (in module substanced.objectmap)

N

 	
 	Name (class in hypatia.query)

 	name (substanced.interfaces.IObjectAdded attribute)

 	(substanced.interfaces.IObjectRemoved attribute)

 	(substanced.interfaces.IObjectWillBeAdded attribute)

 	(substanced.interfaces.IObjectWillBeRemoved attribute)

 	NameSchemaNode (class in substanced.schema)

 	new_acl (substanced.interfaces.IACLModified attribute)

 	new_objectid() (substanced.objectmap.ObjectMap method)

 	new_state (substanced.interfaces.IAfterTransition attribute)

 	
 	newer() (substanced.audit.AuditLog method)

 	next_name() (substanced.folder.RandomAutoNamingFolder method)

 	(substanced.folder.SequentialAutoNamingFolder method)

 	Not (class in hypatia.query)

 	NotAll (class in hypatia.query)

 	NotAny (class in hypatia.query)

 	NotContains (class in hypatia.query)

 	NotEq (class in hypatia.query)

 	NotInRange (class in hypatia.query)

O

 	
 	object (substanced.interfaces.IACLModified attribute)

 	(substanced.interfaces.IAfterTransition attribute)

 	(substanced.interfaces.IContentCreated attribute)

 	(substanced.interfaces.IObjectAdded attribute)

 	(substanced.interfaces.IObjectModified attribute)

 	(substanced.interfaces.IObjectRemoved attribute)

 	(substanced.interfaces.IObjectWillBeAdded attribute)

 	(substanced.interfaces.IObjectWillBeRemoved attribute)

 	(substanced.interfaces.IRootAdded attribute)

 	Object Map

 	Object Map Reference

 	object_for() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	ObjectAdded (class in substanced.event)

 	objectid_for() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	
 	objectids (substanced.interfaces.ICatalog attribute)

 	ObjectMap (class in substanced.objectmap)

 	ObjectModified (class in substanced.event)

 	ObjectRemoved (class in substanced.event)

 	ObjectWillBeAdded (class in substanced.event)

 	ObjectWillBeRemoved (class in substanced.event)

 	old_acl (substanced.interfaces.IACLModified attribute)

 	one() (hypatia.interfaces.IResultSet method)

 	Or (class in hypatia.query)

 	order (substanced.folder.Folder attribute), [1]

 	order_sources() (substanced.objectmap.ObjectMap method)

 	order_targets() (substanced.objectmap.ObjectMap method)

 	owner (substanced.locking.Lock attribute)

 	ownerid (substanced.locking.Lock attribute)

P

 	
 	parent (substanced.interfaces.IObjectAdded attribute)

 	(substanced.interfaces.IObjectRemoved attribute)

 	(substanced.interfaces.IObjectWillBeAdded attribute)

 	(substanced.interfaces.IObjectWillBeRemoved attribute)

 	parse_query() (in module hypatia.query)

 	Path (class in substanced.catalog)

 	path_for() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	pathcount() (substanced.objectmap.ObjectMap method)

 	PathIndex (class in substanced.catalog.indexes)

 	
 	pathlookup() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	PermissionsSchemaNode (class in substanced.schema)

 	pop() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	postorder() (in module substanced.util)

 	PropertySheet (class in substanced.property), [1]

 	put() (substanced.editable.IEditable method)

 	(substanced.interfaces.IEditable method)

 	Pyramid

R

 	
 	RandomAutoNamingFolder (class in substanced.folder)

 	Reference Type

 	reference_source_property() (in module substanced.objectmap)

 	reference_sourceid_property() (in module substanced.objectmap)

 	reference_target_property() (in module substanced.objectmap)

 	reference_targetid_property() (in module substanced.objectmap)

 	ReferenceClass (class in substanced.interfaces)

 	ReferentialIntegrityError (class in substanced.objectmap)

 	refresh() (substanced.locking.Lock method)

 	register_editable_adapter() (in module substanced.editable)

 	reindex() (substanced.catalog.Catalog method)

 	(substanced.catalog.CatalogsService.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	reindex_resource() (substanced.catalog.Catalog method)

 	(substanced.catalog.CatalogsService.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	remove() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	(substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	removed_oids (substanced.event.ObjectWillBeRemoved attribute)

 	(substanced.interfaces.IObjectRemoved attribute)

 	rename() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	
 	renamer() (in module substanced.util)

 	reorder() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	replace() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	request (substanced.interfaces.ILoggedIn attribute)

 	(substanced.interfaces.IPropertySheet attribute)

 	reset() (substanced.catalog.Catalog method)

 	(substanced.catalog.CatalogsService.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	(substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	resolver (hypatia.interfaces.IResultSet attribute)

 	Resource

 	resource (substanced.locking.Lock attribute)

 	Resource factory

 	Resource tree

 	resourceid (substanced.locking.Lock attribute)

 	ResultSet (class in hypatia.util)

 	RIGHT (in module substanced.schema)

 	Root (class in substanced.root)

 	root_factory() (in module substanced.db)

 	RootAdded (class in substanced.event)

S

 	
 	scan() (in module substanced)

 	Schema (class in substanced.schema)

 	schema (substanced.interfaces.IPropertySheet attribute)

 	schema_type (substanced.schema.Schema attribute)

 	SDI

 	sdi_title() (substanced.interfaces.ISDIAPI method)

 	SequentialAutoNamingFolder (class in substanced.folder)

 	Service, [1]

 	service (class in substanced.content)

 	set() (substanced.interfaces.IPropertySheet method)

 	set_acl() (in module substanced.util)

 	(substanced.objectmap.ObjectMap method)

 	set_oid() (in module substanced.util)

 	set_order() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	sort() (hypatia.interfaces.IResultSet method)

 	(substanced.interfaces.IFolder method)

 	sourceids() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	SourceIntegrityError (class in substanced.objectmap)

 	sources() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	State

 	state_of() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	States

 	statsd_gauge() (in module substanced.stats)

 	statsd_incr() (in module substanced.stats)

 	statsd_timer() (in module substanced.stats)

 	
 	subscribe_acl_modified (class in substanced.event)

 	subscribe_added (class in substanced.event)

 	subscribe_after_transition (class in substanced.event)

 	subscribe_logged_in (class in substanced.event)

 	subscribe_modified (class in substanced.event)

 	subscribe_removed (class in substanced.event)

 	subscribe_root_added (class in substanced.event)

 	subscribe_will_be_added (class in substanced.event)

 	subscribe_will_be_removed (class in substanced.event)

 	substanced (module)

 	substanced.audit (module)

 	substanced.catalog (module)

 	substanced.catalog.indexes (module)

 	substanced.content (module)

 	substanced.db (module)

 	substanced.editable (module)

 	substanced.event (module)

 	substanced.evolution (module)

 	substanced.file (module)

 	substanced.folder (module)

 	substanced.form (module)

 	substanced.interfaces (module)

 	substanced.locking (module)

 	substanced.objectmap (module)

 	substanced.property (module)

 	substanced.root (module)

 	substanced.schema (module)

 	substanced.stats (module)

 	substanced.util (module)

 	substanced.workflow (module)

T

 	
 	targetids() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	TargetIntegrityError (class in substanced.objectmap)

 	targets() (substanced.interfaces.IObjectMap method)

 	(substanced.objectmap.ObjectMap method)

 	Text (class in substanced.catalog)

 	TextIndex (class in substanced.catalog.indexes)

 	transaction (substanced.catalog.Catalog attribute)

 	(substanced.catalog.CatalogsService.Catalog attribute)

 	
 	Transition

 	transition (substanced.interfaces.IAfterTransition attribute)

 	transition() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	transition_to_state() (substanced.interfaces.IWorkflow method)

 	(substanced.workflow.Workflow method)

 	Transitions

 	typeof() (substanced.content.ContentRegistry method)

U

 	
 	unindex_resource() (substanced.catalog.Catalog method)

 	(substanced.catalog.CatalogsService.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	unlock_resource() (in module substanced.locking)

 	UnlockError (class in substanced.locking)

 	unset_order() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	
 	update_indexes() (substanced.catalog.Catalog method)

 	(substanced.catalog.CatalogsService.Catalog method)

 	(substanced.interfaces.ICatalog method)

 	upload() (substanced.file.File method)

 	(substanced.interfaces.IFile method)

 	USE_MAGIC (in module substanced.file)

 	user (substanced.interfaces.ILoggedIn attribute)

 	UserToLock (interface in substanced.interfaces)

V

 	
 	validate_name() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

 	
 	values() (substanced.folder.Folder method)

 	(substanced.interfaces.IFolder method)

W

 	
 	Workflow

 	(class in substanced.workflow)

 	
 	WorkflowError

 	Workflows

 	WriteLock (interface in substanced.interfaces)

Z

 	
 	Zope

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Substance D

 		
 Installation

 		
 Demonstration application

 		
 Create a project from a scaffold in Substance D

 		
 Hacking on Substance D

 		
 Introduction

 		
 The Substance D Management Interface

 		
 Benefits and features

 		
 Background and motivation

 		
 What is and isn’t the SDI

 		
 Layout

 		
 Folder contents

 		
 Undo

 		
 Catalog

 		
 Principals

 		
 Workflows

 		
 References

 		
 Manage Database

 		
 Implementation Notes

 		
 Defining Content

 		
 Registering Content

 		
 Metadata

 		
 Names

 		
 Icons

 		
 Add Views

 		
 Obtaining Metadata About a Content Object’s Type

 		
 Affecting Content Creation

 		
 Names and Renaming

 		
 Special Colander Support

 		
 NameSchemaNode

 		
 PermissionSchemaNode

 		
 MultireferenceIdSchemaNode

 		
 Overriding Existing Content Types

 		
 Adding Automatic Naming for Content

 		
 Affecting the Tab Order for Management Views

 		
 Handling Content Events

 		
 Management Views

 		
 mgmt_view View Predicates

 		
 Tab Ordering

 		
 Filling Slots

 		
 SDI API

 		
 Flash Messages

 		
 Forms

 		
 FormView

 		
 Services

 		
 Cataloging

 		
 The Default Catalog

 		
 Adding a Catalog

 		
 Object Indexing

 		
 Querying the Catalog

 		
 Querying Across Catalogs

 		
 Filtering Catalog Results Using the Allowed Index

 		
 Filtering Catalog Results Using The Objectmap

 		
 Setting ACLs

 		
 Deferred Indexing and Mode Parameters

 		
 Running an Indexer Process

 		
 Overriding Default Modes Manually

 		
 Autosync and Autoreindex

 		
 Forcing Deferral of Indexing

 		
 References

 		
 ACLs and Principal References

 		
 Workflows

 		
 Features

 		
 Adding a workflow

 		
 Interaction with the workflow

 		
 Using callbacks

 		
 Dumping Content to Disk

 		
 Dumping Resources Using sd_dump

 		
 acl.yaml For Security Settings

 		
 references.yaml for Reference Information

 		
 workflow.yaml for Workflow Settings

 		
 propsheets Directory for Property Sheet Data

 		
 resource.yaml for Content Type Information

 		
 resources for Contained Resources in Containers

 		
 Custom Dumping with __dump__

 		
 Adding New Dumpers

 		
 Changing Resource Structure With Evolution

 		
 Running an Evolution from the Command Line

 		
 Running an Evolution from the SDI

 		
 Autoevolve

 		
 Adding Evolution Support To a Package

 		
 Manually Marking a Step As Evolved

 		
 Baselining

 		
 Configuring Folder Contents

 		
 Adding Columns

 		
 Buttons

 		
 Selection and Button Enabling

 		
 Filtering What Can Be Added

 		
 Extending Which Columns Are Displayed

 		
 Adding New Folder Contents Buttons

 		
 Broken Objects and Class Aliases

 		
 Using Auditing

 		
 Configuring the Audit Database

 		
 Viewing the Audit Log

 		
 Adding an Audit Log Entry

 		
 Using The auditstream-sse View

 		
 Using Locking

 		
 Locking a Resource

 		
 Unlocking a Resource

 		
 Discovering Existing Locks

 		
 Viewing The Lock Service

 		
 Configuration

 		
 Scan and Include

 		
 Using RelStorage

 		
 RelStorage + PostgreSQL Configuration

 		
 Resetting Your Substance D Database

 		
 Gathering Runtime Statistics

 		
 Setting Up

 		
 Using DataDog with SubstanceD statistics

 		
 Virtual Rooting

 		
 Building a Retail Application

 		
 Substance D Command-Line Utilities

 		
 sd_adduser

 		
 sd_drain_indexing

 		
 sd_dump

 		
 sd_evolve

 		
 sd_reindex

 		
 Installing python-magic

 		
 substanced API

 		
 substanced.audit API

 		
 substanced.catalog API

 		
 substanced.catalog.indexes API

 		
 hypatia.query API

 		
 Comparators

 		
 Boolean Operators

 		
 Other Helpers

 		
 hypatia.util API

 		
 substanced.content API

 		
 substanced.db API

 		
 substanced.dump API

 		
 substanced.editable API

 		
 substanced.event API

 		
 substanced.evolution API

 		
 substanced.file API

 		
 substanced.folder API

 		
 substanced.folder.views API

 		
 substanced.form API

 		
 substanced.locking API

 		
 substanced.objectmap API

 		
 substanced.principal API

 		
 substanced.property API

 		
 substanced.schema API

 		
 substanced.sdi API

 		
 substanced.root API

 		
 substanced.stats API

 		
 substanced.util API

 		
 substanced.workflow API

 		
 substanced.interfaces

 		
 Substance D SDI Permission Names

 		
 Copyright, Trademarks, and Attributions

 		
 Attributions

 		
 Contacting The Publisher

 		
 HTML Version and Source Code

_images/catalog.png
Home | Q catalog

Contents | Manage Search Security e o .

Name -

O Qatowes
Qeontanment

O Qntrtaces
Qramo

0 Qos
Qpan

O Qe

rane | ooy o | ot [0

_images/catalog_contents.png
Home | Q catalogs | Q sddemo

Contents Manage Seach Securty Indexing

[Ee T oo a
Name -

o Qe N

_images/contents.png
Home | @ binder_0

Contents | Properties Securty Indexing

e [G [o | Diotn a

Name - Tite Created Last edited Creator
O R document0 Document 0Binder0 December s Decamber 4 aamin
O document 1 Document 1 Binder 0 December 4 December 4 admin
O = document 10 Document 10Binder0 December & Decamber 4 aamin
O = document_100 Document 100 Binder 0 December 4 December 4 aamin
O = document 101 Document 101 Binder0 December & Decamber 4 aamin
O R document 102 Document 102 Binder 0 December & Decermber 4 admin
O = document 103 Document 103 Binder 0 December & December aamin
O = document 104 Document 104 Binder 0 December & December 4 aamin
O = document 105 Document 105 Binder 0 December & Decamber 4 aamin

© R document 106 Document 106 Binder 0 December & December4 admin

_images/datadog1.png
Showing all Hosts (10 tags seected) summaRy: Found Bl hosts/ B up

1SON APl permalink =+
Search within results:
Host 4 saws, cPu + 1owait Load - Apps
bobo.local 4 o EE0 BT 3 W I T oo] catacop [substances |
thinko P P- % S TR e NS W o [cacados [subsiancea |
Showing 1to 2 of 2 entries IO

© Keyboard navigation: 1o inspect tabe,

| _to move down/up rows, | h or| B5C_to close details panel.

L3

Copyrght Dsadog, n. 2012 - 21.22-473- 1360680 - Termsof U - vy oy

_images/integrityerror.png
Home /@ principals | Busers

Integrity Error

Sory, the object /principalsusers/person/ you ve attempted to remove could not be removed de o an ntegrty ror for the reference type
<RoforenceCiass substanced.nterfaces. PrincipalloACL Bearing. Below is st of objects that efer to or are refere t by) the object you'e tying to
remove. Disconnect these references before attempting to deete the object.

Imydoc1

_images/managedb.png
Manage

e —)
Evolve
fo—
—
Details

Connections details

Activity

_images/datadog2.png
$.DATADOG Dashi

a

Custom Metrics - substanced

m Custom metris for substanced Graph size: [xs | s il L[x.

Only showing 30 of 34 metrics. Clone this dash to add or

delete metrics.
Show metrics aggrepated across | host bobolocal .
i
& Search Events to overlay. © (® Show | [Ih) The Past Hour < mim >
substanced.check_password #WEHO| substanced.folder.add.count EeR0 |
50 1545 1800 1635 50 1545 1590 165

substanced.catalog index_resource.count 8 % ©| | substanced.catalog.unindex resource.avg ©e#o

_images/indexing.png
#rione | W s

Cortris ropees Socrty g

Object Indexing Status
For catalog service at "/catalog/"

[n———

oo COSAAOBSZ5He25853547458 o, pomision e, (00S20462985354749, 5k conten) ABSZONEZIRSSSA7498 k),
1405294820955547498, s i srvces), (OSSZOAGLSBSIST19, o -, OBSEONGZSRSSSATAS, . crae-acs’, 409S2H29859547438, s change-
password), (4085234629853547438, s aci-properbs , (085204620853547438, s manage-catuog), (4085204G29853547498, ‘s manage-contents).
[40652462995357459, s marage-Gtabse), 4085254529853547438, i marage-leraces). (COBZHEZ0BSIS47430, g W),
4085204820953547498,), OBS254E23853547458, i RSZSABZSRS3547 58, Vi)

005t cass saemo esouces Sinse, <taaceCias s eseces DomoCrtant <hiaacaass subsiacod s o, <racsCiss
pasiton atace. Porstants, <ieiaceCasssuosancad riafaco ot <acocias 0po arce ifaces, <css b4 00100)

S ——————

_images/sdi.png
Home.

Contents | ManageDB Properties Securty References Typeto iter.

Name -
© Wbinders

Soincer.7
O Qeataig

O @ principals

ereme | cory wow s [

_images/undo1.png
Substance D Demo
Home

o
Deleted 1 tem ([

Name -
binder 0
Qcatalogs
8 ordered_binder

@ principals

Security Undo Indexing

wore | ovens | [

References

Type to fiter.

_images/principals.png
#tome @ principais
Contents ~ Securty Type to iter. a

Name -
groups
W rosets

Buses »

orane | ooy o owicas [

_images/references.png
Home /& mydoct

Properties Securty Worklows References Indexing

References

As source
(none)

As target

Relationship type Objects

<ReferencaClass substanced interfaces. PrincpalToACLBearing> Iprincipals/users/persont

_images/undo3.png
Substance D Demo

Home

Contents ManageDB Propertis Secury Undo Indexing References

Batch #:0
“arier
Time sz User Description
Jan7114%43 15475 Indexing acton processor executed 3 actons.
Jn714930 1919 admin Imanage/@@undo_recent Undid: /manage/@@contents Deleted 1 tem
Jn7iiesz2 15070 Indexing acton processor executed 3 actions
o) Jan7iiaszs 22866 admin Imanage/@@contents Deleted 1 tem
Jn71iatss 13480 Indexing acton processor executed 3 actions
Jn71ats0 22822 acmin Imanage/@@contents Daleted 1 tem
Jn7iiatar 1ses2 Indexing acton processor executed 3 actions
Jn71ats 24126 acmin Imanage/@@my_add_foider
O Jan7iiosss 19276 Indexing acton processor executed 3 actions
Jn710836 26112 admin Imanage/@@add_document

_images/user.png
Homo / @ principas | Busers,

Contents ~ Securty N

Selectal Fiter:

2 i

‘Showing 1101 of 1 entries

[ee e