
Substance D Documentation
Release 0.0

Repoze Developers

November 07, 2018

Contents

1 Overview 1

2 Installation 3

3 Demonstration Application 5

4 Narrative Documentation 7

5 API Documentation 75

6 Support / Reporting Bugs / Development Versions 125

7 Copyright, Trademarks, and Attributions 127

8 Indices and tables 129

Python Module Index 131

i

ii

CHAPTER 1

Overview

Substance D is an application server built using the Pyramid web framework. It can be used as a base to build a
general-purpose web application like a blog, a shopping cart application, a scheduling application, or any other web
app that requires both an administration and a retail interface.

Substance D owes much of its spirit to the Zope application server.

It requires Python 2.7, 3.4, or 3.5.

1

Substance D Documentation, Release 0.0

2 Chapter 1. Overview

CHAPTER 2

Installation

See Installation.

3

Substance D Documentation, Release 0.0

4 Chapter 2. Installation

CHAPTER 3

Demonstration Application

See the application running at http://demo.substanced.net for a demonstration of the Substance D management inter-
face.

5

http://demo.substanced.net

Substance D Documentation, Release 0.0

6 Chapter 3. Demonstration Application

CHAPTER 4

Narrative Documentation

4.1 Installation

Install using pip, e.g., (within a virtual environment).

$ pip install substanced

Warning: During Substance D’s alpha period, it may be necessary to use a checkout of Substance D as well as
checkouts of the most recent versions of the libraries upon which Substance D depends.

4.1.1 Demonstration application

See the application running at http://demo.substanced.net for a demonstration of the Substance D management inter-
face.

You can deploy the demonstration application locally by performing the following steps.

1. Create a new directory somewhere and cd to it:

$ virtualenv -p python2.7 hack-on-substanced
$ cd hack-on-substanced

2. Install Substance D either from PyPI or from a git checkout:

$ bin/pip install substanced

OR:

$ bin/pip install -e git+https://github.com/Pylons/substanced#egg=substanced

Alternatively create a writeable fork on GitHub and check that out.

7

http://demo.substanced.net

Substance D Documentation, Release 0.0

3. Check that the python-magic library has been installed:

$ bin/python -c "from substanced.file import magic; assert magic is not None,
→˓'python-magic not installed'"

If you then see “python-magic not installed” then you will need to take additional steps to install the python-
magic library. See Installing python-magic.

4. Move back to the parent directory:

$ cd ..

5. Now you should be able to create new Substance D projects by using pcreate. The following pcreate
command uses the scaffold substanced to create a new project named myproj:

$ hack-on-substanced/bin/pcreate -s substanced myproj

6. Now you can make a virtual environment for your project and move into it:

$ virtualenv -p python2.7 myproj
$ cd myproj

7. Install that project using pip install -e into the virtual environment:

$ bin/pip install -e .

8. Run the resulting project via bin/pserve development.ini. The development server listens to requests
sent to http://0.0.0.0:6543 by default. Open this URL in a web browser.

9. The initial Administrator password is randomly generated automatically. Use the following command to find
the login information:

$ grep initial_password *.ini
development.ini:substanced.initial_password = hNyrGI5nnl
production.ini:substanced.initial_password = hNyrGI5nnl

4.1.2 Create a project from a scaffold in Substance D

After creating a development checkout, you can create a new project from the default substanced scaffold by using
pcreate.

$ cd ../env
$ bin/pcreate -s substanced myproj

Then install that project using pip install -e . into the virtual environment.

$ cd myproj
$../bin/pip install -e .

Run the resulting project.

$../bin/pserve development.ini

Then start hacking on your new project.

8 Chapter 4. Narrative Documentation

http://0.0.0.0:6543

Substance D Documentation, Release 0.0

4.1.3 Hacking on Substance D

See Hacking on Substance D, or look in your checked out local git repository for HACKING.txt, for information
and guidelines to develop your application, including testing and internationalization.

4.2 Introduction

A Scanner Darkly

“The two hemispheres of my brain are competing?” Fred said.

“Yes.”

“Why?”

“Substance D. It often causes that, functionally. This is what we expected; this is what the tests confirm. Damage
having taken place in the normally dominant left hemisphere, the right hemisphere is attempting to compensate for
the impairment. But the twin functions do not fuse, because this is an abnormal condition the body isn’t prepared
for. It should never happen. “Cross-cuing”, we call it. Related to splitbrain phenomena. We could perform a right
hemispherectomy, but–”

“Will this go away,” Fred interrupted, “when I get off Substance D?”

“Probably,” the psychologist on the left said, nodding. “It’s a functional impairment.”

The other man said, “It may be organic damage. It may be permanent. Time’ll tell, and only after you are off
Substance D for a long while. And off entirely.”

“What?” Fred said. He did not understand the answer– was it yes or no? Was he damaged forever or not? Which
had they said?

– Philip K. Dick, A Scanner Darkly

Substance D is an application server. It provides the following features:

• Facilities that allow developers to define “content” (e.g., “a blog entry”, “a product”, or “a news item”).

• A management (a.k.a., “admin”) web UI which allows non-expert but privileged users to create, edit, update,
and delete developer-defined content, as well as managing other aspects of the system such as users, groups,
security, and so on.

• “Undo” capability for actions taken via the management UI.

• A way to make highly granular hierarchical security declarations for content objects (e.g., “Bob can edit this
post” or “Bob can edit all posts in this collection” as opposed to just “Bob can edit posts”).

• Built-in users and groups management.

• Built-in content workflow.

• Indexing and searching of content (field, keyword, facet, and full-text). Searches can be easily filtered by the
security settings of individual pieces of content, by path in the content hierarchy, or by a combination of the two.

• A facility for relating content objects to each other (with optional referential integrity).

• An “evolve” mechanism for evolving content over time as it changes.

• A mechanism to dump your site’s content to the filesystem in a mostly human-readable format, and a mechanism
to reload a dump into the system.

4.2. Introduction 9

https://github.com/Pylons/substanced/blob/master/HACKING.txt

Substance D Documentation, Release 0.0

Substance D is built upon the following technologies:

• ZODB

• Pyramid

• hypatia

• colander

• deform

4.3 The Substance D Management Interface

Substance D’s prime directive is to help developers quickly build custom content management applications with a
custom user experience. For the Substance D parts, though, a polished, stable, and supported management UI is
provided.

The Substance D management interface (aka SDI) is a set of view registrations that are imposed upon the resource
tree of your application. The SDI allows you to add, delete, change, and otherwise manage resources and services.

4.3.1 Benefits and features

• Create, Read, Update, Delete (CRUD) operations on content resources

• Extensible actions for each content type via management views

• Built-in support for hierarchies with security

• Already-done UIs for all supported features (e.g., references, principals)

10 Chapter 4. Narrative Documentation

http://zodb.org
http://pylonsproject.org
https://github.com/Pylons/hypatia
http://docs.pylonsproject.org/projects/colander/en/latest/
http://docs.pylonsproject.org/projects/deform/en/latest/
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view

Substance D Documentation, Release 0.0

• Undo facility to back out of the last transaction

• Copy and paste

4.3.2 Background and motivation

In prehistoric times there was a Python-based application server, derived from a commercial predecessor released in
1996. Zope and its predecessor had a unique “through-the-web” (TTW) UI for interacting with the system. This UI,
called the “Zope Management Interface” (ZMI), had a number of capabilities for a number of audiences. Plone, built
on Zope, extended this idea. Other systems, such as Django, have found that providing an out-of-the-box (OOTB)
starting point with attractive pixels on the screen can be a key selling point.

Substance D taps into this. In particular, lessons learned from our long experience in this area are applied to the SDI:

• Attractive, official, supported OOTB management UI

• Be successful by being very clear what the SDI isn’t

4.3.3 What is and isn’t the SDI

The SDI is for:

• Developers to use while building their application

• Administrators to use after deployment, to manage certain Substance D or application settings provided by the
developer

• Certain power users to use as a behind-the-scenes UI

The SDI is not for:

• The retail UI for your actual application. Unlike Plone, we don’t expect developers to squeeze their UX expec-
tations into an existing UX

• Overridable, customizable, replaceable, frameworky new expectations

The SDI does have a short list of clearly-defined places for developers to plug in parts of their application. As a prime
example, you can define a Management View that gets added as a new tab on a resource.

The SDI is extensible and allows you to plug your own views into it, so you can present nontechnical users with a way
to manage arbitrary kinds of custom content.

Once again, for clarity: the SDI is not a framework, it is an application. It is not your retail UI.

4.3.4 Layout

The SDI has a mostly-familiar layout:

• A header that shows the username as a dropdown menu containing a link to the principal screen as well as a
logout link

• Breadcrumbs with a path from the root

• A series of tabs for the management views of the current resource

• Optionally, a flash message showing results of the previous operation, a warning, or some other notice

• A footer

4.3. The Substance D Management Interface 11

Substance D Documentation, Release 0.0

4.3.5 Folder contents

Folders show a listing of items they contain using a powerful data grid based on SlickGrid:

This dynamic grid features:

• Only loading the items needed for display, to speed up operations on large folders

• “Infinite scrolling” via the scrollbar to go directly to a batch at any point in the folder

• Column resizing and re-ordering

• Sorting on sort-supported columns

• Filtering based on search string

• Selection of one or more items and performing an operation by clicking on a button

• Styling integrated with Twitter Bootstrap

• Detection and re-layout on responsive design operations

The Configuring Folder Contents chapter covers how Substance D developers can plug their custom content types into
folder contents.

4.3.6 Undo

In Substance D, many transactions can be undone and redone after a commit. This “Undo” ability is one of the key
features that people notice immediately and it has real, deep value to a developer’s customers.

Many of the built-in operations display an undo button. For example, if we delete an item from a folder, we get a
“flash” message telling us the deletion was performed, but with a button allowing us to undo it if that was a mistake:

12 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

Clicking “undo” restores the deleted item, with a flash message offering to redo the undo:

Undo button support is enabled by the developer in their management views that commit data. It isn’t available on
every kind of change. Instead developers need to wrap their commit with certain information used by the SDI’s undo
features.

All actions that change data (even ones without undo button support) can be undone. These screenshots show an Undo
tab on the site’s root folder. This provides a global way to see recent transactions and perform an undo:

4.3. The Substance D Management Interface 13

Substance D Documentation, Release 0.0

Sometimes a particular transaction cannot be undone without undoing an earlier transaction. For example, if you make
three changes to a resource, the first two can’t be undone without first undoing the last, as the resource will have been
changed by a later transaction.

4.3.7 Catalog

With cataloging developers have a powerful indexing and searching facility that can be added to their application.
Like other first-class parts of Substance D’s machinery, it includes an SDI UI for interacting with the catalog:

14 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

Catalogues are content, meaning they show up as folder items in the SDI. You can visit a catalog and update its indexes,
or see some statistics for those indexes. You can also use the SDI to reindex the contents of an index, if you suspect it
has gotten out of sync with the content.

The catalog also registers a management view on content resources, which gain an Indexing tab:

4.3. The Substance D Management Interface 15

Substance D Documentation, Release 0.0

This shows some statistics and allows an SDI user to reindex an individual resource.

4.3.8 Principals

Managing users and groups, a.k.a., principals, is more interesting in a system like Substance D with rich hierarchies.
You can add a folder of principals to any folder or other kind of container that allows adding principals:

16 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

A principals folder allows you to manage (e.g., add, edit, delete, or rename) users and groups via the SDI, as well as
password resets. Since users and groups are content, you gain some of the other SDI tabs for managing them (e.g.,
Security, References):

4.3. The Substance D Management Interface 17

Substance D Documentation, Release 0.0

Users and groups can also grow extra attributes and behavior because they’re just content, so you can customize your
user model out of the box.

4.3.9 Workflows

The workflows service provides a powerful system for managing states and transitions. This service shows up in the
SDI as a tab on content types that have workflows registered for them:

18 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

This provides a way, via the SDI, to transition the workflow state of a resource.

4.3.10 References

With the built-in support for references, Substance D helps manage relationships between resources. The SDI provides
a UI into the reference service.

If the resource you are viewing has any references, a References tab will appear:

4.3. The Substance D Management Interface 19

Substance D Documentation, Release 0.0

In this example, mydoc1 is a target of an ACL reference from the admin1 user.

An integrity error can occur if you try to delete a source or target of a reference that claims to be “integral”. The SDI
will then show this with an explanation:

20 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

4.3.11 Manage Database

The object database inside Substance D has some management knobs that can be adjusted via the SDI:

This tab appears on the root object of the site and lets you:

• Pack the old revisions of objects in the database.

4.3. The Substance D Management Interface 21

Substance D Documentation, Release 0.0

• Inspect and run evolution steps.

• Flush the object cache.

• See details and statistics about the database, the connection, and activity.

4.3.12 Implementation Notes

While it doesn’t matter for developers of Substance D applications, some notes are below, regarding how the SDI is
implemented:

• We use a high-performance, modern, responsive UI based on Twitter Bootstrap

• We use the upstream LESS variables from Bootstrap in a LESS file for parts of the SDI.

• Our grid is based on SlickGrid.

4.4 Defining Content

Resource is the term that Substance D uses to describe an object placed in the resource tree.

Ideally, all resources in your resource tree will be content. “Content” is the term that Substance D uses to describe
resource objects that are particularly well-behaved when they appear in the SDI management interface. The Substance
D management interface (aka SDI) is a set of views imposed upon the resource tree that allow you to add, delete,
change and otherwise manage resources.

You can convince the management interface that your particular resources are content. To define a resource as content,
you need to associate a resource with a content type.

4.4.1 Registering Content

In order to add new content to the system, you need to associate a resource factory with a content type. A resource
factory that generates content must have these properties:

• It must be a class, or a factory function that returns an instance of a resource class.

• Instances of the resource class must be persistent (it must derive from the persistent.Persistent class
or a class that derives from Persistent such as substanced.folder.Folder).

• The resource class or factory must be decorated with the @content decorator, or must be added at configura-
tion time via config.add_content_type.

• It must have a type. A type acts as a globally unique categorization marker, and allows the content to be
constructed, enumerated, and introspected by various Substance D UI elements such as “add forms”, and queries
by the management interface for the icon class of a resource. A type can be any hashable Python object, but it’s
most often a string.

Here’s an example which defines a content resource factory as a class:

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry')
class BlogEntry(Persistent):

def __init__(self, title='', body=''):
(continues on next page)

22 Chapter 4. Narrative Documentation

http://getbootstrap.com/
https://github.com/mleibman/SlickGrid/

Substance D Documentation, Release 0.0

(continued from previous page)

self.title = title
self.body = body

Here’s an example of defining a content resource factory using a function instead:

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

class BlogEntry(Persistent):
def __init__(self, title, body):

self.title = title
self.body = body

@content('Blog Entry')
def make_blog_entry(title='', body=''):

return BlogEntry(title, body)

When a resource factory is not a class, Substance D will wrap the resource factory in something that changes the re-
source object returned from the factory. In the above case, the BlogEntry instance returned from make_blog_entry
will be changed; its __factory_type__ attribute will be mutated.

Notice that when we decorate a resource factory class with @content, and the class’ __init__ function takes
arguments, we provide those arguments with default values. This is mandatory if you’d like your content objects to
participate in a “dump”. Dumping a resource requires that the resource be creatable without any mandatory arguments.
It’s a similar story if our factory is a function; the function decorated by the @content decorator should provide
defaults to any argument. In general, a resource factory can take arguments, but each parameter of the factory’s
callable should be given a default value. This also means that all arguments to a resource factory should be keyword
arguments, and not positional arguments.

In order to activate a @content decorator, it must be scanned using the Pyramid config.scan() machinery:

in a module named blog.__init__

from pyramid.config import Configurator

def main(global_config, **settings):
config = Configurator()
config.include('substanced')
config.scan('blog.resources')
.. and so on ...

Instead of using the @content decorator, you can alternately add a content resource imperatively at configuration
time using the add_content_type method of the Configurator:

in a module named blog.__init__

from pyramid.config import Configurator
from .resources import BlogEntry

def main(global_config, **settings):
config = Configurator()
config.include('substanced')
config.add_content_type('Blog Entry', BlogEntry)

This does the same thing as using the @content decorator, but you don’t need to scan() your resources if you use

4.4. Defining Content 23

Substance D Documentation, Release 0.0

add_content_type instead of the @content decorator.

Once a content type has been defined (and scanned, if it’s been defined using a decorator), an instance of the resource
can be constructed from within a view that lives in your application:

in a module named blog.views

from pyramid.httpexceptions import HTTPFound
from pyramid.view import (

view_config,
view_defaults,
)

@view_config(name='add_blog_entry', request_method='POST')
def add_blogentry(context, request):

title = request.POST['title']
body = request.POST['body']
entry = request.registry.content.create('Blog Entry', title, body)
context[title] = entry
return HTTPFound(request.resource_url(entry))

The arguments passed to request.registry.content.create must start with the content type, and must be
followed with whatever arguments are required by the resource factory.

Creating an instance of content this way isn’t particularly more useful than creating an instance of the resource object
by calling its class __init__ directly unless you’re building a highly abstract system. But even if you’re not building
a very abstract system, types can be very useful. For instance, types can be enumerated:

in a module named blog.views

@view_config(name='show_types', renderer='show_types.pt')
def show_types(request):

all_types = request.registry.content.all()
return {'all_types':all_types}

request.registry.content.all() will return all the types you’ve defined and scanned.

4.4.2 Metadata

A content’s type can be associated with metadata about that type, including the content type’s name, its icon in the
SDI management interface, an add view name, and other things. Pass arbitrary keyword arguments to the @content
decorator or config.add_content_type to specify metadata.

Names

You can associate a content type registration with a name that shows up when someone attempts to add such a piece
of content using the SDI management interface “Add” tab by passing a name keyword argument to @content or
config.add_content_type.

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry', name='Cool Blog Entry')

(continues on next page)

24 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

(continued from previous page)

class BlogEntry(Persistent):
def __init__(self, title='', body=''):

self.title = title
self.body = body

Once you’ve done this, the “Add” tab in the SDI management interface will show your content as addable using this
name instead of the type name.

Icons

You can associate a content type registration with a management view icon class by passing an icon keyword argu-
ment to @content or add_content_type.

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry', icon='glyphicon glyphicon-file')
class BlogEntry(Persistent):

def __init__(self, title='', body=''):
self.title = title
self.body = body

Once you’ve done this, content you add to a folder in the sytem will display the icon next to it in the contents
view of the management interface and in the breadcrumb list. The available icon class names are listed at http:
//getbootstrap.com/components/#glyphicons . For glyphicon icons, you’ll need to use two classnames: glyphicon
and glyphicon-foo, separated by a space.

You can also pass a callback as an icon argument:

from persistent import Persistent
from substanced.content import content

def blogentry_icon(context, request):
if context.body:

return 'glyphicon glyphicon-file'
else:

return 'glyphicon glyphicon-gift'

@content('Blog Entry', icon=blogentry_icon)
class BlogEntry(Persistent):

def __init__(self, title='', body=''):
self.title = title
self.body = body

A callable used as icon must accept two arguments: context and request. context will be an instance of the
type and request will be the current request; your callback will be called at the time the folder view is drawn. The
callable should return either an icon class name or None. For example, the above blogentry_icon callable tells
the SDI to use an icon representing a file if the blogentry has a body, otherwise show an icon representing gift.

Add Views

You can associate a content type with a view that will allow the type to be added by passing the name of the add view
as a keyword argument to @content or add_content_type.

4.4. Defining Content 25

http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons

Substance D Documentation, Release 0.0

in a module named blog.resources

from persistent import Persistent
from substanced.content import content

@content('Blog Entry', add_view='add_blog_entry')
class BlogEntry(Persistent):

def __init__(self, title='', body=''):
self.title = title
self.body = body

Once you’ve done this, if the button is clicked in the “Add” tab for this content type, the related view will be presented
to the user.

You can also pass a callback as an add_view argument:

from persistent import Persistent
from substanced.content import content
from substanced.folder import Folder

def add_blog_entry(context, request):
if request.registry.content.istype(context, 'Blog'):

return 'add_blog_entry'

@content('Blog')
class Blog(Folder):

pass

@content('Blog Entry', add_view=add_blog_entry)
class BlogEntry(Persistent):

def __init__(self, title='', body=''):
self.title = title
self.body = body

A callable used as add_view must accept two arguments: context and request. context will be the potential
parent object of the content (when the SDI folder view is drawn), and request will be the current request at the time
the folder view is drawn. The callable should return either a view name or None if the content should not be addable
in this circumstance. For example, the above add_blog_entry callable asserts that Blog Entry content should only
be addable if the context we’re adding to is of type Blog; it returns None otherwise, signifying that the content is not
addable in this circumstance.

Obtaining Metadata About a Content Object’s Type

Return the icon class name for the blogentry’s content type or None if it does not exist:

request.registry.content.metadata(blogentry, 'icon')

Return the icon for the blogentry’s content type or glyphicon glyphicon-file if it does not exist:

request.registry.content.metadata(blogentry, 'icon',
'glyphicon glyphicon-file')

26 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

4.4.3 Affecting Content Creation

In some cases you might want your resource to perform some actions that can only take place after it has been seated in
its container, but before the creation events have fired. The @content decorator and add_content_type method
both support an after_create argument, pointed at a callable.

For example:

@content(
'Document',
icon='glyphicon glyphicon-align-left',
add_view='add_document',
propertysheets = (

('Basic', DocumentPropertySheet),
),

after_create='after_creation'
)

class Document(Persistent):

name = renamer()

def __init__(self, title, body):
self.title = title
self.body = body

def after_creation(self, inst, registry):
pass

If the value provided for after_create is a string, it’s assumed to be a method of the created object. If it’s a
sequence, each value should be a string or a callable, which will be called in turn. The callable(s) are passed the
instance being created and the registry. Afterwards, substanced.event.ContentCreatedEvent is emitted.

Construction of the root folder in Substance D is a special case. Most Substance D applications will start with:

from substanced.db import root_factory
def main(global_config, **settings):

""" This function returns a Pyramid WSGI application.
"""
config = Configurator(settings=settings, root_factory=root_factory)

The substanced.db.root_factory() callable contains the following line:

app_root = registry.content.create('Root')

In many cases you want to perform some extra work on the Root. For example, you might want to create a catalog
with indexes. Substance D emits an event when the root is created, so you can subscribe to that event and perform
some actions:

from substanced.root import Root
from substanced.event import subscribe_created
from substanced.catalog import Catalog

@subscribe_created(Root)
def root_created(event):

root = event.object
catalog = Catalog()
catalogs = root['catalogs']
catalogs.add_service('catalog', catalog)

(continues on next page)

4.4. Defining Content 27

Substance D Documentation, Release 0.0

(continued from previous page)

catalog.update_indexes('system', reindex=True)
catalog.update_indexes('sdidemo', reindex=True)

4.4.4 Names and Renaming

A resource’s “name” (__name__) is important to the system in Substance D. For example, traversal uses the value in
URLs and paths to walk through hierarchy. Containers need to know when a resource’s __name__ changes.

To help support this, Substance D provides substanced.util.renamer(). You use it as a class attribute wrap-
per on resources that want “managed” names. These resources then gain a name attribute with a getter/setter from
renamer. Getting the name returns the __name__. Setting name grabs the container and calls the renamemethod
on the folder.

For example:

class Document(Persistent):
name = renamer()

4.4.5 Special Colander Support

Forms and schemas for resources become pretty easy in Substance D. To make it easier for forms to interact with the
Substance D machinery, it includes some special Colander schema nodes you can use on your forms.

NameSchemaNode

If you want your form to affect the __name__ of a resource, certain constraints become applicable. These constraints
might be different, so you might want to know if you are on an add form versus an edit form. substanced.
schema.NameSchemaNode provides a schema node and default widget that bundles up the common rules for this.
For example:

class BlogEntrySchema(Schema):
name = NameSchemaNode()

The above provides the basics of support for editing a name property, especially when combined with the renamer()
utility mentioned above.

By default the name is limited to 100 characters. NameSchemaNode accepts an argument that can set a different
limit:

class BlogEntrySchema(Schema):
name = NameSchemaNode(max_len=20)

You can also provide an editing argument, either as a boolean or a callable which returns a boolean, which deter-
mines whether the form is rendered in “editing” mode. For example:

class BlogEntrySchema(Schema):
name = NameSchemaNode(

editing=lambda c, r: r.registry.content.istype(c, 'BlogEntry')
)

28 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

PermissionSchemaNode

A form might want to allow selection of zero or more permissions from the site’s defined list of permissions.
PermissionSchemaNode collects the possible state from the system, the currently-assigned values, and presents
a widget that manages the values.

MultireferenceIdSchemaNode

References are a very powerful facility in Substance D. Naturally you’ll want your application’s forms to assign
references. MultireferenceIdSchemaNode gives a schema node and widget that allows multiple selections of
possible values in the system for references, including the current assignments.

As an example, the built-in substanced.principal.UserSchema uses this schema node:

class UserSchema(Schema):
""" The property schema for :class:`substanced.principal.User`
objects."""
groupids = MultireferenceIdSchemaNode(

choices_getter=groups_choices,
title='Groups',
)

4.4.6 Overriding Existing Content Types

Perhaps you would like to slightly adjust an existing content type, such as Folder, without re-implementing it. For
exampler, perhaps you would like to override just the add_view and provide your own view, such as:

@mgmt_view(
context=IFolder,
name='my_add_folder',
tab_condition=False,
permission='sdi.add-content',
renderer='substanced.sdi:templates/form.pt'

)
class MyAddFolderView(AddFolderView):

def before(self, form):
Perform some custom work before validation
pass

With this you can override any of the view predicates (such as permission) and override any part of the form
handling (such as adding a before that performs some custom processing.)

To make this happen, you can re-register, so to speak, the content type during startup:

from substanced.folder import Folder
from .views import MyAddFolderView
config.add_content_type('Folder', Folder,

add_view='my_add_folder',
icon='glyphicon glyphicon-folder-close')

This, however, keeps the same content type class. You can also go further by overriding the content type definition
itself:

4.4. Defining Content 29

Substance D Documentation, Release 0.0

@content(
'Folder',
icon='glyphicon glyphicon-folder-close',
add_view='my_add_folder',

)
@implementer(IFolder)
class MyFolder(Folder):

def send_email(self):
pass

The class for the Folder content type has now been replaced. Instead of substanced.folder.Folder it is
MyFolder.

Note: Overriding a content type is a pain-free way to make a custom Root object. You could supply your own
root_factory to the Configurator but that means replicating all its rather complicated goings-on. Instead,
provide your own content type factory, as above, for Root.

4.4.7 Adding Automatic Naming for Content

On some sites you don’t want to set the name for every piece of content you create. Substance D provides support for
this with a special kind of folder. You can configure your site to use the autonaming folder by overriding the standard
folder:

from substanced.folder import SequentialAutoNamingFolder
from substanced.interaces import IFolder
from zope.interface import implementer

@content(
'Folder',
icon='glyphicon glyphicon-folder-close',
add_view='add_folder',

)
@implementer(IFolder)
class MyFolder(SequentialAutoNamingFolder):

""" Override Folder content type """

The add view for Documents can then be edited to no longer require a name:

def add_success(self, appstruct):
registry = self.request.registry
document = registry.content.create('Document', **appstruct)
self.context.add_next(document)
return HTTPFound(

self.request.sdiapi.mgmt_path(self.context, '@@contents')
)

Note: This does not apply to the root object.

30 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

4.4.8 Affecting the Tab Order for Management Views

The tab_order parameter overrides the mgmt_view tab settings for a content type. Its value should be a sequence
of view names, each corresponding to a tab that will appear in the management interface. Any registered view names
that are omitted from this sequence will be placed after the other tabs.

4.4.9 Handling Content Events

Adding and modifying data related to content is, thanks to the framework, easy to do. Sometimes, though, you want
to intervene and, for example, perform some extra work when content resources are added. Substance D has several
framework events you can subscribe to using Pyramid events.

The substanced.eventsmodule imports these events as interfaces from substanced.interfaces and then
provides decorator subscribers as convenience for each:

• substanced.interfaces.IObjectAdded as subscriber @subscriber_added

• substanced.interfaces.IObjectWillBeAdded as subscriber @subscriber_will_be_added

• substanced.interfaces.IObjectRemoved as subscriber @subscriber_removed

• substanced.interfaces.IObjectWillBeRemoved as subscriber
@subscriber_will_be_removed

• substanced.interfaces.IObjectModified as subscriber @subscriber_modified

• substanced.interfaces.IACLModified as subscriber @subscriber_acl_modified

• substanced.interfaces.IContentCreated as subscriber @subscriber_created

As an example, the substanced.principal.subscribers.user_added() function is a subscriber to the
IObjectAdded event:

@subscribe_added(IUser)
def user_added(event):

""" Give each user permission to change their own password."""
if event.loading: # fbo dump/load

return
user = event.object
registry = event.registry
set_acl(

user,
[(Allow, get_oid(user), ('sdi.view', 'sdi.change-password'))],
registry=registry,
)

As with the rest of Pyramid, you can do imperative configuration if you don’t like decorator-based configuration,
using config.add_content_subscriber Both the declarative and imperative forms result in substanced.
event.add_content_subscriber().

Note: While the event subscriber is de-coupled logically from the action that triggers the event, both the action and
the subscriber run in the same transaction.

The IACLModified event (and @subscriber_acl_modified subscriber) is used internally by Substance D
to re-index information in the system catalog’s ACL index. Substance D also uses this event to maintain references
between resources and principals. Substance D applications can use this in different ways, for example recording a
security audit trail on security changes.

4.4. Defining Content 31

https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/events.html#events-chapter

Substance D Documentation, Release 0.0

Sometimes when you perform operations on objects you don’t want to perform the standard events. For example,
in folder contents you can select a number of resources and move them to another folder. Normally this would fire
content change events that re-index the files. This is fairly pointless: the content of the file hasn’t changed.

If you looked at the interface for one of the content events, you would see some extra information supported. For
example, in substanced.interfaces.IObjectWillBeAdded:

class IObjectWillBeAdded(IObjectEvent):
""" An event type sent when an before an object is added """
object = Attribute('The object being added')
parent = Attribute('The folder to which the object is being added')
name = Attribute('The name which the object is being added to the folder '

'with')
moving = Attribute('None or the folder from which the object being added '

'was moved')
loading = Attribute('Boolean indicating that this add is part of a load '

'(during a dump load process)')
duplicating = Attribute('The object being duplicated or ``None``')

moving, loading, and duplicating are flags that can be set on the event when certain actions are triggered.
These help in cases such as the one above: certain subscribers might want “flavors” of standard events and, in some
cases, handle the event in a different way. This helps avoid lots of special-case events or the need for a hierarchy of
events.

Thus in the case above, the catalog subscriber can see that the changes triggered by the event where in the special case
of “moving”. This can be seen in substanced.catalog.subscribers.object_added.

4.5 Management Views

A management view is a view configuration that applies only when the URL is prepended with the manage prefix. The
manage prefix is usually /manage, unless you’ve changed it from its default by setting a custom substanced.
manage_prefix in your application’s .ini file.

This means that views declared as management views will never show up in your application’s “retail” interface (the
interface that normal unprivileged users see). They’ll only show up when a user is using the SDI to manage content.

There are two ways to define management views:

• Using the substanced.sdi.mgmt_view decorator on a function, method, or class.

• Using the substanced.sdi.add_mgmt_view() Configurator (aka. config.add_mgmt_view) API.

The former is most convenient, but they are functionally equivalent. mgmt_view just calls into add_mgmt_view
when found via a scan.

Declaring a management view is much the same as declaring a “normal” Pyramid view using pyramid.view.
view_config with a route_name of substanced_manage. For example, each of the following view decla-
rations will register a view that will show up when the /manage/foobar URL is visited:

1 from pyramid.view import view_config
2

3 @view_config(
4 renderer='string',
5 route_name='substanced_manage',
6 name='foobar',
7 permission='sdi.view',
8)

(continues on next page)

32 Chapter 4. Narrative Documentation

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-configuration
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-scan
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config

Substance D Documentation, Release 0.0

(continued from previous page)

9 def foobar(request):
10 return 'Foobar!'

The above is largely functionally the same as this:

1 from substanced.sdi import mgmt_view
2

3 @mgmt_view(renderer='string', name='foobar')
4 def foobar(request):
5 return 'Foobar!'

Management views, in other words, are really just plain-old Pyramid views with a slightly shorter syntax for definition.
Declaring a view a management view, however, does do some extra things that make it advisable to use rather than a
plain Pyramid view registration:

• It registers introspectable objects that the SDI interface uses to try to find management interface tabs (the row
of actions at the top of every management view rendering).

• It allows you to associate a tab title, a tab condition, and cross-site request forgery attributes with the view.

• It uses the default permission sdi.view.

So if you want things to work right when developing management views, you’ll use @mgmt_view instead of
@view_config, and config.add_mgmt_view instead of config.add_view.

As you use management views in the SDI, you might notice that the URL includes @@ as “goggles”. For example,
http://0.0.0.0:6541/manage/@@contents is the URL for seeing the folder contents. The @@ is a way to
ensure that you point at the URL for a view and not get some resource with the __name__ of contents. You can
still get to the folder contents management view using http://0.0.0.0:6541/manage/contents. . . until
that folder contains something named contents.

4.5.1 mgmt_view View Predicates

Since mgmt_view is an extension of Pyramid’s view_config, it re-uses the same concept of view predicates as
well as some of the same actual predicates:

• request_type, request_method, request_param, containment, attr, renderer, wrapper,
xhr, accept, header, path_info, context, name, custom_predicates, decorator, mapper,
and http_cache are supported and behave the same.

• permission is the same but defaults to sdi.view.

The following are new view predicates introduced for mgmt_view:

• tab_title takes a string for the label placed on the tab.

• tab_condition takes a callable that returns True or False, or True or False. If you state a callable,
this callable is passed context and request. The boolean determines whether the tab is listed in a certain
situation.

• tab_before takes the view name of a mgmt_view that this mgmt_view should appear after (covered in
detail in the next section.)

• tab_after takes the view name of a mgmt_view that this mgmt_view should appear after. Also covered
below.

• tab_near takes a “sentinel” from substanced.sdi (or None) that makes a best effort at placement inde-
pendent of another particular mgmt_view. Also covered below. The possible sentinel values are:

4.5. Management Views 33

Substance D Documentation, Release 0.0

substanced.sdi.LEFT
substanced.sdi.MIDDLE
substanced.sdi.RIGHT

4.5.2 Tab Ordering

If you register a management view, a tab will be added in the list of tabs. If no mgmt view specifies otherwise via
its tab data, the tab order will use a default sorting: alphabetical order by the tab_title parameter of each tab (or
the view name if no tab_title is provided.) The first tab in this tab listing acts as the “default” that is open when
you visit a resource. Substance D does, though, give you some options to control tab ordering in larger systems with
different software registering management views.

Perhaps a developer wants to ensure that one of her tabs appears first in the list and another appears last, no matter
what other management views have been registered by Substance D or any add-on packages. @mgmt_view (or the
imperative call) allow a keyword of tab_before or tab_after. Each take the string tab name of the management
view to place before or after. If you don’t care (or don’t know) which view name to use as a tab_before or
tab_after value, use tab_near, which can be any of the sentinel values MIDDLE, LEFT, or RIGHT, each of
which specifies a target “zone” in the tab order. Substance D will make a best effort to do something sane with
tab_near.

As in many cases, an illustration is helpful:

from substanced.sdi import LEFT, RIGHT

@mgmt_view(
name='tab_1',
tab_title='Tab 1',
renderer='templates/tab.pt'
)

def tab_1(context, request):
return {}

@mgmt_view(
name='tab_2',
tab_title='Tab 2',
renderer='templates/tab.pt',
tab_before='tab_1'
)

def tab_2(context, request):
return {}

@mgmt_view(
name='tab_3',
tab_title='Tab 3',
renderer='templates/tab.pt',
tab_near=RIGHT
)

def tab_3(context, request):
return {}

@mgmt_view(
name='tab_4',

(continues on next page)

34 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

(continued from previous page)

tab_title='Tab 4',
renderer='templates/tab.pt',
tab_near=LEFT
)

def tab_4(context, request):
return {}

@mgmt_view(
name='tab_5',
tab_title='Tab 5',
renderer='templates/tab.pt',
tab_near=LEFT
)

def tab_5(context, request):
return {}

This set of management views (combined with the built-in Substance D management views for Contents and
Security) results in:

Tab 4 | Tab 5 | Contents | Security | Tab 2 | Tab 1 | Tab 3

These management view arguments apply to any content type that the view is registered for. What if you want to
allow a content type to influence the tab ordering? As mentioned in the content type docs, the tab_order parameter
overrides the mgmt_view tab settings, for a content type, with a sequence of view names that should be ordered (and
everything not in the sequence, after.)

4.5.3 Filling Slots

Each management view that you write plugs into various parts of the SDI UI. This is done using normal ZPT
fill-slot semantics:

• page-title is the <title> in the <head>

• head-more is a place to inject CSS and JS in the <head> after all the SDI elements

• tail-more does the same, just before the </body>

• main is the main content area

4.5.4 SDI API

All templates in the SDI share a common “layout”. This layout needs information from the environment to render
markup that is common to every screen, as well as the template used as the “main template.”

This “template API” is known as the SDI API. It is an instance of the sdiapi class in substanced.sdi.
__init__.py and is made available as request.sdiapi.

The template for your management view should start with a call to requests.sdiapi:

<div metal:use-macro="request.sdiapi.main_template">

The request.sdiapi object has other convenience features as well. See the Substance D interfaces documentation
for more information.

4.5. Management Views 35

Substance D Documentation, Release 0.0

4.5.5 Flash Messages

Often you perform an action on one view that needs a message displayed by another view on the next request. For
example, if you delete a resource, the next request might confirm to the user “Deleted 1 resource.” Pyramid supports
this with “flash messages.”

In Substance D, your applications can make a call to the sdiapi such as:

request.sdiapi.flash('ACE moved up')

. . . and the next request will process this flash message:

• The message will be removed from the stack of messages

• It will then be displayed in the appropriate styling based on the “queue”

The sdiapi provides another helper:

request.sdiapi.flash_with_undo(‘ACE moved up’)

This displays a flash message as before, but also provides an Undo button to remove the previous transaction.

• title, content, flash messages, head, tail

4.6 Forms

When writing a Substance D application, you are free to use any library you would like for forms and schemas. This
applies both for your retail views and for the management views that you plug into the SDI.

For the built-in content types and management views, you will see that Substance D has standardized on Colander
and Deform for schemas and forms. Additionally, Substance D defines a substanced.form.FormView class,
discussed below.

4.6.1 FormView

Form handling is ground that is frequently covered, usually in different ways. Substance D provides a class to help
implement common patterns in form handling.

Imagine this example:

@mgmt_view(
context=IFolder,
name='add_document',
tab_title='Add Document',
permission='sdi.add-content',
renderer='substanced.sdi:templates/form.pt',
tab_condition=False,

)
class AddDocumentView(FormView):

title = 'Add Document'
schema = DocumentSchema()
buttons = ('add',)

def add_success(self, appstruct):
registry = self.request.registry
name = appstruct.pop('name')
document = registry.content.create('Document', **appstruct)

(continues on next page)

36 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

(continued from previous page)

self.context[name] = document
return HTTPFound(

self.request.mgmt_path(self.context, '@@contents'))

This mgmt_view adds a view add_document to resources with the IFolder interface. The form gets a title,
a Colander schema, and asks for just one button.

Since the mgmt_view is associated with a renderer, we have an SDI template form.pt which does the basics of
laying out the rendering before handing the work over to Deform.

The @action of the form is the mgmt_view itself, making it a self-posting form. The button that was clicked
causes the FormView to, upon validation success, route processing to a handler for that button. By convention,
FormView looks for a method starting with the name of the button (e.g. add) and finishing with _success (e.g.
add_success.) The class also supports a similar protocol for _failure.

FormView also supports the following methods that can be overridden:

• before(self, form) is called before validation and processing of any _success or _failuremethods

• failure(self, e) is called with the exception, if the there is no button-specific _failure method

• show(self, form) returns {'form':form.render()} and thus can be a place to affect form render-
ing

4.7 Services

A service is a name for a content object that provides a service to application code. It looks just like any other content
object, but services that are added to a site can be found by name using various Substance D APIs.

Services expose APIs that exist for the benefit of application developers. For instance, the catalogs service provides
an API that allows a developer to index and query for content objects using a structured query API. The principals
service allows a developer to add and enumerate users and groups.

A service is added to a folder via the substanced.folder.Folder.add_service() API.

An existing service can be looked up in one of two ways: using the substanced.util.find_service() API
or the substanced.folder.Folder.find_service() API. They are functionally equivalent. The latter
exists only as a convenience so you don’t need to import a function if you know you’re dealing with a folder.

Either variant of find_service will look down the resource hierarchy towards the root until it finds a parent folder
that has had add_service called on it. If the name passed in matches the service name, the object will be returned,
otherwise the search will continue down the tree.

Note that a content object may exist in the folder with the same name as you’re looking for via find_service,
but if that object was not added via add_service (instead it’s just a “normal” content object), it won’t be found by
find_service.

Here’s how to use substanced.util.find_service():

from substanced.util import find_service
principals = find_service(somecontext, 'principals')

somecontext above is any resource in the resource tree. For example, somecontext could be a “document”
object you’ve added to a folder.

Here’s how to use substanced.folder.Folder.find_service():

4.7. Services 37

Substance D Documentation, Release 0.0

principals = somefolder.find_service('principals')

somefolder above is any substanced.folder.Folder object (or any object which inherits from that class)
present in the resource tree.

There is also the find-multiple-services variants substanced.util.find_services() and substanced.
folder.Folder.find_services().

4.8 Cataloging

Substance D provides application content indexing and querying via a catalog. A catalog is an object named catalog
which lives in a service named catalogs within your application’s resource tree. A catalog has a number of indexes,
each of which keeps a certain kind of information about your content.

4.8.1 The Default Catalog

A default catalog named system is installed into the root folder’s catalogs subfolder when you start Substance
D. This system catalog contains a default set of indexes:

• path (a path index)

Represents the path of the content object.

• name (a field index), uses content.__name__ exclusively

Represents the local name of the content object.

• interfaces (a keyword index)

Represents the set of interfaces possessed by the content object.

• content_type (a field index)

Represents the Substance D content-type of an object.

• allowed (an allowed index)

An index which can be used to filter resultsets using principals and permissions.

• text (a text index)

Represents the text searched for when you use the filter box within the folder contents view of the SDI.

4.8.2 Adding a Catalog

The system catalog won’t have enough information to form all the queries you need. You’ll have to add a catalog
via code related to your application. The first step is adding a catalog factory.

A catalog factory is a collection of index descriptions. Creating a catalog factory doesn’t actually add a catalog to your
database, but it makes it possible to add one later.

Here’s an example catalog factory named mycatalog:

from substanced.catalog import (
catalog_factory,
Text,
Field,

(continues on next page)

38 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

(continued from previous page)

)

@catalog_factory('mycatalog')
class MyCatalogFactory(object):

freaky = Text()
funky = Field()

In order to activate a @catalog_factory decorator, it must be scanned using the Pyramid config.scan()
machinery. This will allow you to use substanced.catalog.CatalogsService.add_catalog() to add
a catalog with that factory’s name:

in a module named blog.__init__

from pyramid.config import Configurator

def main(global_config, **settings):
config = Configurator()
config.include('substanced')
config.scan('blog.catalogs')
.. and so on ...

Once you’ve done this, you can then add the catalog to the database in any bit of code that has access to the database.
For example, in an event handler when the root object is created for the first time.

from substanced.root import Root
from substanced.event import subscribe_created

@subscribe_created(Root)
def created(event):

root = event.object
service = root['catalogs']
service.add_catalog('mycatalog', update_indexes=True)

4.8.3 Object Indexing

Once a new catalog has been added to the database, each time a new catalogable object is added to the site, its attributes
will be indexed by each catalog in its lineage that “cares about” the object. The object will always be indexed in the
“system” catalog. To make sure it’s cataloged in custom catalogs, you’ll need to do some work. To index the object in
a custom application index, you will need to create an index view for your content using substanced.catalog.
indexview , and scan the resulting index view using pyramid.config.Configurator.scan():

For example:

from substanced.catalog import indexview

class MyCatalogViews(object):
def __init__(self, resource):

self.resource = resource

@indexview(catalog_name='mycatalog')
def freaky(self, default):

return getattr(self.resource, 'freaky', default)

An index view class should be a class that accepts a single argument, (conventionally named resource), in its
constructor, and which has one or more methods named after potential index names. When it comes time for the

4.8. Cataloging 39

https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan

Substance D Documentation, Release 0.0

system to index your content, Substance D will create an instance of your indexview class, and it will then call one or
more of its methods; it will call methods on the indexview object matching the attr passed in to add_indexview.
The default value passed in should be returned if the method is unable to compute a value for the content object.

Once this is done, whenever an object is added to the system, a value (the result of the freaky(default) method
of the catalog view) will be indexed in the freaky field index.

You can attach multiple index views to the same index view class:

from substanced.catalog import indexview

class MyCatalogViews(object):
def __init__(self, resource):

self.resource = resource

@indexview(catalog_name='mycatalog')
def freaky(self, default):

return getattr(self.resource, 'freaky', default)

@indexview(catalog_name='mycatalog')
def funky(self, default):

return getattr(self.resource, 'funky', default)

You can use the “index_name” parameter to indexview to tell the system that the index name is not the same as the
method name in the index view:

from substanced.catalog import indexview

class MyCatalogViews(object):
def __init__(self, resource):

self.resource = resource

@indexview(catalog_name='mycatalog')
def freaky(self, default):

return getattr(self.resource, 'freaky', default)

@indexview(catalog_name='mycatalog', index_name='funky')
def notfunky(self, default):

return getattr(self.resource, 'funky', default)

You can use the context parameter to indexview to tell the system that this particular index view should only be
executed when the class of the resource (or any of its interfaces) matches the value of the context:

from substanced.catalog import indexview

class MyCatalogViews(object):
def __init__(self, resource):

self.resource = resource

@indexview(catalog_name='mycatalog', context=FreakyContent)
def freaky(self, default):

return getattr(self.resource, 'freaky', default)

@indexview(catalog_name='mycatalog', index_name='funky')
def notfunky(self, default):

return getattr(self.resource, 'funky', default)

You can use the indexview_defaults class decorator to save typing in each indexview declaration. Keyword
argument names supplied to indexview_defaults will be used if the indexview does not supply the same

40 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

keyword:

from substanced.catalog import (
indexview,
indexview_defaults,
)

@indexview_defaults(catalog_name='mycatalog')
class MyCatalogViews(object):

def __init__(self, resource):
self.resource = resource

@indexview()
def freaky(self, default):

return getattr(self.resource, 'freaky', default)

@indexview()
def notfunky(self, default):

return getattr(self.resource, 'funky', default)

The above configuration is the same as:

from substanced.catalog import indexview

class MyCatalogViews(object):
def __init__(self, resource):

self.resource = resource

@indexview(catalog_name='mycatalog')
def freaky(self, default):

return getattr(self.resource, 'freaky', default)

@indexview(catalog_name='mycatalog')
def notfunky(self, default):

return getattr(self.resource, 'funky', default)

You can also use the substanced.catalog.add_indexview() directive to add index views imperatively,
instead of using the @indexview decorator.

4.8.4 Querying the Catalog

You execute a catalog query using APIs of the catalog’s indexes.

from substanced.util import find_catalog

catalog = find_catalog(resource, 'system')
name = catalog['name']
path = catalog['path']
find me all the objects that exist under /somepath with the name 'somename'
q = name.eq('somename') & path.eq('/somepath')
resultset = q.execute()
for contentob in resultset:

print contentob

The calls to name.eq() and path.eq() above each return a query object. Those two queries are ANDed together
into a single query via the & operator between them (there’s also the | character to OR the queries together, but we
don’t use it above). Parentheses can be used to group query expressions together for the purpose of priority.

4.8. Cataloging 41

Substance D Documentation, Release 0.0

Different indexes have different query methods, but most support the eq method. Other methods that are of-
ten supported by indexes: noteq, ge, le, gt, any, notany, all, notall, inrange, notinrange. The
AllowedIndex supports an additional allows() method.

Query objects support an execute method. This method returns a hypatia.util.ResultSet. A hypatia.
util.ResultSet can be iterated over; each iteration returns a content object. hypatia.util.ResultSet
also has methods like one and first, which return a single content object instead of a set of content objects. A
hypatia.util.ResultSet also has a sort method which accepts an index object (the sort index) and returns
another (sorted) hypatia.util.ResultSet.

catalog = find_catalog(resource, 'system')
name = catalog['name']
path = catalog['path']
find me all the objects that exist under /somepath with the name 'somename'
q = name.eq('somename') & path.eq('/somepath')
resultset = q.execute()
newresultset = resultset.sort(name)

Note: If you don’t call sort on the hypatia.util.ResultSet you get back, the results will not be sorted in
any particular order.

4.8.5 Querying Across Catalogs

In many cases, you might only have one custom attribute that you need indexed, while the system catalog has
everything else you need. You thus need an efficient way to combine results from two catalogs, before executing the
query:

system_catalog = find_catalog(resource, 'system')
my_catalog = find_catalog(resource, 'mycatalog')
path = system_catalog['path']
funky = my_catalog['funky']
find me all funky objects that exist under /somepath
q = funky.eq(True) & path.eq('/somepath')
resultset = q.execute()
newresultset = resultset.sort(system_catalog['name'])

4.8.6 Filtering Catalog Results Using the Allowed Index

The Substance D system catalog at substanced.catalog.system.SystemCatalogFactory contains a
number of default indexes, including an allowed index. Its job is to index security information to allow security-
aware results in queries. This index allows us to filter queries to the system catalog based on whether the principal
issuing the request has a permission on the matching resource.

For example, the below query will find:

• all of the subresources inside a folder

• which is of content type News Item

• which the current user also possesses the view permission against

system_catalog = find_catalog(resource, 'system')
path = system_catalog['path']

(continues on next page)

42 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

(continued from previous page)

content_type = system_catalog['content_type']
allowed = system_catalog['allowed']
q = (path.eq(resource, depth=1, include_origin=False) &

content_type.eq('News Item') &
allowed.allows(request, 'view')

)
return q

4.8.7 Filtering Catalog Results Using The Objectmap

It is possible to postfilter catalog results using the substanced.objectmap.ObjectMap.allowed() API.
For example:

def get_allowed_to_view(context, request):

catalog = find_catalog(context, 'system')
q = catalog['content_type'].eq('News Item')
resultset = q.execute()

objectmap = find_objectmap(context)
return objectmap.allowed(

resultset.oids, request.effective_principals, 'view')

The result of allowed() is a generator which returns oids, so the result must be listified if you intend to index into
it, or slice it, or what-have-you.

4.8.8 Setting ACLs

The objectmap keeps track of ACLs in a cache to make catalog security functionality work. Note that for the object
map’s cached version of ACLs to be correct, you will need to set ACLs in a way that helps keep track of all the
contracts. For this, the helper function substanced.util.set_acl() can be used. For example, the site root
at substanced.root.Root finishes with:

set_acl(
self,
[(Allow, get_oid(admins), ALL_PERMISSIONS)],
registry=registry,
)

Using set_acl this way will generate an event that will keep the objectmap’s cache updated. This will allow the
allowed index to work and the substanced.objectmap.ObjectMap.allowed() method to work.

4.8.9 Deferred Indexing and Mode Parameters

As a lesson learned from previous cataloging experience, Substance D natively supports deferred indexing. As an
example, in many systems the text indexing can be done after the change to the object is committed in the web
request’s transaction. Doing so has a number of performance benefits: the user’s request processes more quickly, the
work to extract text from a Word file can be performed later, less chance to have a conflict error, etc.

As such, the substanced.catalog.system.SystemCatalogFactory, by default, has indexes that aren’t
updated immediately when a resource is changed. For example:

4.8. Cataloging 43

Substance D Documentation, Release 0.0

name is MODE_ATCOMMIT for next-request folder contents consistency
name = Field()

text = Text(action_mode=MODE_DEFERRED)
content_type = Field()

The Field indexes use the default of MODE_ATCOMMIT. The Text overrides the default and set action_mode
to MODE_DEFERRED.

There are three such catalog “modes” for indexing:

• substanced.interfaces.MODE_IMMEDIATE means indexing action should take place as immediately
as possible.

• substanced.interfaces.MODE_ATCOMMIT means indexing action should take place at the successful
end of the current transaction.

• substanced.interfaces.MODE_DEFERRED means indexing action should be performed by an external
indexing processor (e.g. drain_catalog_indexing) if one is active at the successful end of the current
transaction. If an indexing processor is unavailable at the successful end of the current transaction, this mode
will be taken to imply the same thing as MODE_ATCOMMIT.

4.8.10 Running an Indexer Process

Great, we’ve now deferred indexing to a later time. What exactly do we do at that later time?

Indexer processes are easy to write and schedule with supervisor. Here is an example of a configuration for
supervisor.conf that will run in indexer process every five seconds:

[program:indexer]
command = %(here)s/../bin/sd_drain_indexing %(here)s/production.ini
redirect_stderr = true
stdout_logfile = %(here)s/../var/indexing.log
autostart = true
startsecs = 5

This calls sd_drain_indexing which is a console script that Substance D automatically creates in your bin
directory. Indexing messages are logged with standard Python logging to the file that you name. You can view
these messages with the supervisorctl command tail indexer. For example, here is the output from
sd_drain_indexing when changing a simple Document content type:

2013-01-07 11:07:38,306 INFO [substanced.catalog.deferred][MainThread] no actions to
→˓execute
2013-01-07 11:08:38,329 INFO [substanced.catalog.deferred][MainThread] executing
→˓<substanced.catalog.deferred.IndexAction object oid 5886459017869105529 for index u
→˓'text' at 0x106e52910>
2013-01-07 11:08:38,332 INFO [substanced.catalog.deferred][MainThread] executing
→˓<substanced.catalog.deferred.IndexAction object oid 5886459017869105529 for index u
→˓'interfaces' at 0x106e52dd0>
2013-01-07 11:08:38,333 INFO [substanced.catalog.deferred][MainThread] executing
→˓<substanced.catalog.deferred.IndexAction object oid 5886459017869105529 for index u
→˓'content_type' at 0x1076e2ed0>
2013-01-07 11:08:38,334 INFO [substanced.catalog.deferred][MainThread] committing
2013-01-07 11:08:38,351 INFO [substanced.catalog.deferred][MainThread] committed

44 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

4.8.11 Overriding Default Modes Manually

Above we set the default mode used by an index when Substance D indexes a resource automatically. Perhaps in an
evolve script, you’d like to override the default mode for that index and reindex immediately.

The index_resource on an index can be passed an action_mode flag that overrides the configured mode for
that index, and instead, does exactly what you want for only that call. It does not permanently change the configured
default for indexing mode. This applies also to reindex_resource and unindex_resource. You can also
grab the catalog itself and reindex with a mode that overrides all default modes on each index.

4.8.12 Autosync and Autoreindex

If you add substanced.catalogs.autosync = true within your application’s .ini file, all catalog in-
dexes will be resynchronized with their catalog factory definitions at application startup time. Indices which were
added to the catalog factory since the last startup time will be added to each catalog which uses the index factory. Like-
wise, indices which were removed will be removed from each catalog, and indices which were modified will be modi-
fied according to the catalog factory. Having this setting in your .ini file is like pressing the Update indexes but-
ton on the Manage tab of each of your catalogs. The SUBSTANCED_CATALOGS_AUTOSYNC environment variable
can also be used to turn this behavior on. For example export SUBSTANCED_CATALOGS_AUTOSYNC=true.

If you add substanced.catalogs.autoreindex = true within your application’s .ini file, all catalogs
that were changed as the result of an auto-sync will automatically be reindexed. Having this setting in your .ini file
is like pressing the Reindex catalog button on the Manage tab of each catalog which was changed as the result
of hitting Update indexes. The SUBSTANCED_CATALOGS_AUTOREINDEX environment variable can also be
used to turn this behavior on. For example export SUBSTANCED_CATALOGS_AUTOREINDEX=true.

4.8.13 Forcing Deferral of Indexing

There may be times when you’d like to defer all catalog indexing operations, such as during a bulk load of data from
a script. Normally, only indexes marked with MODE_DEFERRED use deferred indexing, and actions associated with
those indexes are even then only actually deferred if an index processor is active.

You can force Substance D to defer all catalog indexing using the substanced.catalogs.force_deferred
flag in your application’s .ini file. When this flag is used, all catalog indexing operations will be added to the
indexer’s queue, even those indexes marked as MODE_IMMEDIATE or MODE_ATCOMMIT. Deferral will also happen
whether or not the indexer is running, unlike during normal operations.

When you use this flag, you can stop the indexer process, do your bulk load, and start the indexer again when it’s
convenient to have all the content indexing done in the background.

The SUBSTANCED_CATALOGS_FORCE_DEFERRED environment variable can also be used to turn this behavior
on. For example export SUBSTANCED_CATALOGS_FORCE_DEFERRED=true.

4.9 References

Objects that live in the Substance D resource tree can be related to one another using references.

The most user-visible facet of references is the SDI “References” tab, which is presented to SDI admin users when the
object they’re looking at is involved in a reference relation. For example, you’ll notice that the built-in user and group
implementations already have references to each other, and you can visit their References tabs to see them. Likewise,
when you use the Security tab to change the ACL associated with an object, and include in the ACL a user or group
that lives in the principals folder, a relation is formed between the ACL-bearing object and the principal. So, as you
can see, references aren’t just for application developers; Substance D itself uses references under the hood to do its
job too.

4.9. References 45

Substance D Documentation, Release 0.0

A reference has a type and a direction. A reference is formed using methods of the object map.

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
pass

def connect_reference(context, request):
objectmap = find_objectmap(context)
root = request.root
objectmap.connect(context, root, ContextToRoot)

A reference type is a class (not an instance) that inherits from substanced.interfaces.ReferenceType.
The reference’s name should indicate its directionality.

Warning: One caveat: reference types are pickled, so if you move a reference type from one location to another,
you’ll have to leave behind a backwards compatibility import in its original location “forever”, so choose its name
and location wisely. We recommend that you place it in an interfaces.py file in your project.

A reference can be removed using the object map too:

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
pass

def disconnect_reference(context, request):
objectmap = find_objectmap(context)
root = request.root
objectmap.disconnect(context, root, ContextToRoot)

The first two arguments to connect() or disconnect() are source and target. These can be either resource
objects or oids. The third argument to these functions is the reference type.

Once a reference is formed between two objects, you can see the reference within the “References” tab in the SDI.
The References tab of either side of the reference (in the above example, either the root or the context) when visited
in the SDI will display the reference to the other side.

Once a reference is made between two objects, the object map can be queried for objects which take part in the
reference.

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
pass

def query_reference_sources(context, request):
objectmap = find_objectmap(context)
return objectmap.sourceids(request.root, ContextToRoot)

def query_reference_targets(context, request):
objectmap = find_objectmap(context)
return objectmap.targetids(context, ContextToRoot)

46 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

The sourceids() method returns the set of objectids which are sources of the object and reference type it’s passed.
The targetids() method returns the set of objectids which are targets of the object and reference type it’s passed.
If no objects are involved in the relation, an empty set will be returned in either case. sources() and targets()
methods also exist which are analogous, but return the actual objects involved in the relation instead of the objectids:

from substanced.interfaces import ReferenceType
from substanced.objectmap import find_objectmap

class ContextToRoot(ReferenceType):
pass

def query_reference_sources(context, request):
objectmap = find_objectmap(context)
return objectmap.sources(request.root, ContextToRoot)

def query_reference_targets(context, request):
objectmap = find_objectmap(context)
return objectmap.targets(context, ContextToRoot)

A reference type can claim that it is “integral”, which just means that the deletion of either the source or the target of
a reference will be prevented. Here’s an example of a “source integral” reference type:

from substanced.interfaces import ReferenceType

class UserToGroup(ReferenceType):
source_integrity = True

This reference type will prevent any object on the “user” side of the UserToGroup reference (as opposed to the group
side) from being deleted. When a user attempts to delete a user that’s related to a group using this reference type, a
substanced.objectmap.SourceIntegrityError will be raised and the deletion will be prevented. Only
when the reference is removed or the group is deleted will the user deletion be permitted.

The flip side of this is target integrity:

from substanced.interfaces import ReferenceType

class UserToGroup(ReferenceType):
target_integrity = True

This is the inverse. The reference will prevent any object on the “group” side of the UserToGroup reference
from being deleted unless the associated user is first removed or the reference itself is no longer active. When a
user attempts to delete a user that’s related to a group using this reference type, a substanced.objectmap.
TargetIntegrityError will be raised and the deletion will be prevented.

substanced.objectmap.SourceIntegrityError and substanced.objectmap.
TargetIntegrityError both inherit from substanced.objectmap.
ReferentialIntegrityError, so you can catch either in your code.

There are convenience functions that you can add to your resource objects that give them spe-
cial behavior: reference_sourceid_property(), reference_targetid_property(),
reference_source_property(), reference_target_property(),
multireference_sourceid_property(), multireference_targetid_property(),
reference_source_property(), and reference_target_property().

Here’s use of a reference property:

1 from persistent import Persistent
2 from substanced.objectmap import reference_sourceid_property

(continues on next page)

4.9. References 47

Substance D Documentation, Release 0.0

(continued from previous page)

3 from substanced.interfaces import ReferenceType
4

5 class LineItemToOrder(ReferenceType):
6 pass
7

8 class LineItem(Persistent):
9 order = reference_target_property(LineItemToOrder)

Once you’ve seated a resource object in a folder, you can then begin to use its special properties:

1 from mysystem import LineItem, Order
2

3 lineitem = LineItem()
4 folder['lineitem'] = lineitem
5 lineitem.order = Order()

This is just a nicer way to use the objectmap query API; you don’t have to interact with it at all, just assign and ask for
attributes of your object. The multireference_* variants are similar to the reference variants, but they allow for
more than one object on the “other side”.

4.9.1 ACLs and Principal References

When an ACL is modified on a resource, a statement is being made about a relationship between that resource and
a principal or group of principals. Wouldn’t it be great if a reference was established, allowing you to then see such
connections in the SDI?

This is indeed exactly how Substance D behaves: a source-integral PrincipalToACLBearing reference is set up between
an ACL-bearing resource and the principals referred to within the ACL.

4.10 Workflows

A workflow is a collection of transitions that transition between states. Specifically, substanced.workflow
implements event-driven finite-state machine workflows.

Workflows are used to ease following tasks when content goes through the lifecycle:

• updating security (adding/removing permissions)

• sending emails

• . . .

States and transitions together with metadata are stored on the Workflow . Workflows are stored in config.
registry.workflows. The only thing that content has from the workflow machinery is content.
__workflow_state__ attribute that stores a dict of all workflow types and corresponding states assigned. When
content is added to the database (ObjectAdded event is emitted), all relevant registered workflows are initialized
for it.

4.10.1 Features

• Site-wide workflows

• Multiple workflows per object

48 Chapter 4. Narrative Documentation

https://en.wikipedia.org/wiki/Finite-state_machine

Substance D Documentation, Release 0.0

• Content type specific workflows

• Restrict transitions by permission

• Configurable callbacks when entering state

• Configurable callbacks when executing transition

• Reset workflow to initial state

4.10.2 Adding a workflow

Suppose we want to add a simple workflow:

/-----\ <-- to_draft ----- /---------\
|draft| |published|
\-----/ --- to_publish --> \---------/

Using add_workflow() Pyramid configuration directive:

>>> workflow = Workflow(initial_state="draft", type="article")
>>> workflow.add_state("draft")
>>> workflow.add_state("published")
>>> workflow.add_transition('to_publish', from_state='draft', to_state='published')
>>> workflow.add_transition('to_draft', from_state='published', to_state='draft')

...

>>> config.add_workflow(workflow, ('News',))

4.10.3 Interaction with the workflow

Retrieve a Workflow instance using the substanced.workflow.get_workflow():

>>> from substanced.workflow import get_workflow

>>> workflow = get_workflow(request, type='article', content_type='News')

Suppose there is a context object at hand, you can reset() its workflow to initial state:

>>> workflow.reset(context, request)

You could check it has_state() and assert state_of() context is initial state name of the workflow:

>>> assert workflow.has_state(context) == True
>>> assert workflow.state_of(context) == workflow.initial_state

List possible transitions from the current state of the workflow with get_transitions():

>>> workflow.get_transitions(context, request)
[{'from_state': 'draft',

'callback': None,
'permission': None,
'name': 'to_publish',
'to_state': 'published'}]

Execute a transition():

4.10. Workflows 49

Substance D Documentation, Release 0.0

>>> workflow.transition(context, request, 'to_publish')

List all states of the workflow with get_states():

>>> workflow.get_states(context, request)
[{'name': 'draft',

'title': 'draft',
'initial': True,
'current': False,
'transitions': [{'from_state': 'draft',

'callback': None,
'permission': None,
'name': 'to_publish',
'to_state': 'published'}],

'data': {'callback': None}},
{'name': 'published',
'title': 'published',
'initial': False,
'current': True,
'transitions': [{'from_state': 'published',

'callback': None,
'permission': None,
'name': 'to_draft',
'to_state': 'draft'}],

'data': {'callback': None}}]

Execute a transition_to_state():

>>> workflow.transition_to_state(context, request, 'draft')

4.10.4 Using callbacks

Typically you will want to define custom actions when transition is executed or when content enters a specific state.
Let’s define a transition with a callback:

>>> def cb(context, **kw):
... print "keywords: ", kw

>>> workflow.add_transition('to_publish_with_callback',
... from_state='draft',
... to_state='published',
... callback=cb)

When you execute the transition, callback is called:

>>> workflow.transition(context, request, 'to_publish_with_callback')
keywords: {'workflow': <Workflow ...>, 'transition': {'to_state': 'published', 'from_
→˓state': 'draft', ...}, request=<Request ...>}

To know more about callback parameters, read add_transition() signature.

50 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

4.11 Dumping Content to Disk

Substance D’s object database stores native Python representations of resources. This is easy enough to work with:
you can run bin/pshell to get an interactive prompt, write longer ad-hoc console scripts, or just put code into your
application.

However, production sites usually want exportable representations of important data stored in a long-term format. For
this, Substance D provides a dump facility for content types to be serialized in a YAML representation on disk.

Note: You’ll note in the following the absence of docs on loading data. This is intentional. The process of loading
data into a new, or semi-new, or newer-than-new site has many policy implications. Too many to fit into a single
loading script. Substance D considers the particulars of loading data to be in the province of the application developer.

4.11.1 Dumping Resources Using sd_dump

The sd_dump console script loads your Substance D application, connects to your object database, and writes serial-
ized representations of resources to disk in a directory hierarchy:

$../bin/sd_dump --help
Usage: sd_dump [options]

Dump an object (and its subobjects) to the filesystem: sd_dump [--source
=ZODB-PATH] [--dest=FILESYSTEM-PATH] config_uri Dumps the object at ZODB-
PATH and all of its subobjects to a filesystem path. Such a dump can be
loaded (programmatically) by using the substanced.dump.load function e.g.
sd_dump --source=/ --dest=/my/dump etc/development.ini

Options:
-h, --help show this help message and exit
-s ZODB-PATH, --source=ZODB-PATH

The ZODB source path to dump (e.g. /foo/bar or /)
-d FILESYSTEM-PATH, --dest=FILESYSTEM-PATH

The destination filesystem path to dump to.

For example:

$../bin/sd_dump ../etc/development.ini
2013-01-07 13:27:03,939 INFO [ZEO.ClientStorage][MainThread] ('localhost', 9963)
→˓ClientStorage (pid=93148) created RW/normal for storage: 'main'
2013-01-07 13:27:03,941 INFO [ZEO.cache][MainThread] created temporary cache file '
→˓<fdopen>'
2013-01-07 13:27:03,981 WARNI [ZEO.zrpc][Connect([(2, ('localhost', 9963))])] (93148)
→˓CW: error connecting to ('fe80::1%lo0', 9963): EHOSTUNREACH
2013-01-07 13:27:03,982 WARNI [ZEO.zrpc][Connect([(2, ('localhost', 9963))])] (93148)
→˓CW: error connecting to ('fe80::1%lo0', 9963): EHOSTUNREACH
2013-01-07 13:27:04,002 WARNI [ZEO.zrpc][Connect([(2, ('localhost', 9963))])] (93148)
→˓CW: error connecting to ('::1', 9963): EINVAL
2013-01-07 13:27:04,003 INFO [ZEO.ClientStorage][Connect([(2, ('localhost',
→˓9963))])] ('localhost', 9963) Testing connection <ManagedClientConnection ('127.0.0.
→˓1', 9963)>
2013-01-07 13:27:04,004 INFO [ZEO.zrpc.Connection(C)][('localhost', 9963) zeo client
→˓networking thread] (127.0.0.1:9963) received handshake 'Z3101'
2013-01-07 13:27:04,105 INFO [ZEO.ClientStorage][Connect([(2, ('localhost',
→˓9963))])] ('localhost', 9963) Server authentication protocol None

(continues on next page)

4.11. Dumping Content to Disk 51

http://yaml.org/

Substance D Documentation, Release 0.0

(continued from previous page)

2013-01-07 13:27:04,106 INFO [ZEO.ClientStorage][Connect([(2, ('localhost',
→˓9963))])] ('localhost', 9963) Connected to storage: ('localhost', 9963)
2013-01-07 13:27:04,108 INFO [ZEO.ClientStorage][Connect([(2, ('localhost',
→˓9963))])] ('localhost', 9963) No verification necessary -- empty cache
2013-01-07 13:27:04,727 INFO [substanced.catalog][MainThread] system update_indexes:
→˓no indexes added or removed
2013-01-07 13:27:04,730 INFO [substanced.catalog][MainThread] sdidemo update_
→˓indexes: no indexes added or removed
2013-01-07 13:27:04,732 INFO [substanced.dump][MainThread] Dumping /
2013-01-07 13:27:04,749 INFO [substanced.dump][MainThread] Dumping /principals
2013-01-07 13:27:04,754 INFO [substanced.dump][MainThread] Dumping /principals/users
2013-01-07 13:27:04,760 INFO [substanced.dump][MainThread] Dumping /principals/users/
→˓admin
2013-01-07 13:27:04,779 INFO [substanced.dump][MainThread] Dumping /principals/resets
2013-01-07 13:27:04,783 INFO [substanced.dump][MainThread] Dumping /principals/groups

. . . with logging messages being emitted until all known content is dumped. A dump subdirectory in the current
directory is created (if no argument is provided) containing:

$ ls
acl.yaml propsheets references.yaml resource.yaml resources

Note: To correctly encode as much meaning as possible, the dump files contain some advanced and custom YAML
constructs when needed.

acl.yaml For Security Settings

This YAML file contains security settings for this resource. For example:

- !!python/tuple [Allow, 1644064392535565429, !all_permissions '']

references.yaml for Reference Information

Data about references aren’t stored on the resources involved in the reference. Instead, they are stored in the objectmap.
This file contains the reference information for the resource identified at the current dump directory. For example:

!interface 'substanced.interfaces.PrincipalToACLBearing':
sources: [1644064392535565429]

workflow.yaml for Workflow Settings

The workflow engine can contain information about resource state. For example:

!!python/object:persistent.mapping.PersistentMapping
data: {document: draft}

52 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

propsheets Directory for Property Sheet Data

Resources can have multiple system-defined or application-defined property sheets on resources. These are seri-
alized as subdirectories under propsheets, with a directory for each property sheet. For example, a resources
propsheets/Basic/properties.yaml might contain:

{body: !!python/unicode 'The quick brown fox jumps over the lazy dog. The quick brown
fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the
lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps
over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown
fox jumps over the lazy dog. ', name: !!python/unicode 'document_0', title: !!

→˓python/unicode 'Document
0 Binder 0'}

resource.yaml for Content Type Information

Each directory after the top corresponds to a resource in the database. As such, the resource likely has content type
information. The dump script encodes this into a YAML file in the resource’s dump directory:

{content_type: Root, created: !!timestamp '2013-01-07 14:23:23.133436', is_service:
→˓false,
name: null, oid: 1644064392535565415}

resources for Contained Resources in Containers

If the resource at a current dump directory is a Folder or some other kind of container, it will contain a resources
subdirectory. This might contain more subfolders and thus subdirectories. It might also contain individual resources,
as a subdirectory named with the resource name.

4.11.2 Custom Dumping with __dump__

The built-in facilities allow automatic dumping of most information for your content, including information in your
property sheets, the content type, security settings, references, workflows, etc.

If you do need extra information dumped to YAML about your content type, Substance D has a Python protocol using
an __dump__ on your @content class. As an example, :py:meth:substanced.principal.User.dump is a
callable which returns a mapping of simple Python objects. The dumper checks to see if a resource has a __dump__
method. If so, it calls the method, encodes the result to YAML, and writes it to an adhoc.yaml file in the dumped-
resource’s directory.

The inverse is also true. If a content type has a __load__ method, information from that method is added to the state
that is loaded.

4.11.3 Adding New Dumpers

The adhoc.yaml file that we just saw is an example of the AdhocAttrDumper. There are seven other dumpers
built-in: acl, workflow, references, sdiproperties, interfaces, order, and propsheets.

If you would like a custom dumper, you can register it with config.add_dumper. For example, substanced.
dump.includeme() registers the existing dumpers and their dumper factories:

4.11. Dumping Content to Disk 53

Substance D Documentation, Release 0.0

def includeme(config):
DEFAULT_DUMPERS = [

('acl', ACLDumper),
('workflow', WorkflowDumper),
('references', ReferencesDumper),
('sdiproperties', SDIPropertiesDumper),
('interfaces', DirectlyProvidedInterfacesDumper),
('order', FolderOrderDumper),
('propsheets', PropertySheetDumper),
('adhoc', AdhocAttrDumper),
]

config.add_directive('add_dumper', add_dumper)
for dumper_name, dumper_factory in DEFAULT_DUMPERS:

config.add_dumper(dumper_name, dumper_factory)

4.12 Changing Resource Structure With Evolution

As you develop your software and make changes to structures, your existing content will be in an old state. Whether
in production or during development, you need a facility to correct out-of-date data.

Evolution provides a rich facility for “evolving” your resources to match changes during development. Substance D’s
evolution facility gives Substance D developers full control over the data updating process:

• Write scripts for each package that get called during an update

• Set revision markers in the data to indicate the revision level a database is at

• Console script and SDI GUI that can be run to “evolve” a database

4.12.1 Running an Evolution from the Command Line

Substance D applications generate a console script at bin/sdi_evolve. Running this without arguments displays
some help:

$ bin/sd_evolve
Requires a config_uri as an argument

sd_evolve [--latest] [--dry-run] [--mark-finished=stepname] [--mark-
→˓unfinished=stepname] config_uri

Evolves new database with changes from scripts in evolve packages
- with no arguments, evolve displays finished and unfinished steps
- with the --latest argument, evolve runs scripts as necessary
- with the --dry-run argument, evolve runs scripts but does not issue any

→˓commits
- with the --mark-finished argument, marks the stepname as finished
- with the --mark-unfinished argument, marks the stepname as unfinished

e.g. sd_evolve --latest etc/development.ini

Running with your INI file, as explained in the help, shows information about the version numbers of various packages:

$ bin/sd_evolve etc/development.ini

Finished steps:

(continues on next page)

54 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

(continued from previous page)

2013-06-14 13:01:28 substanced.evolution.legacy_to_new

Unfinished steps:

This shows that one evolution step has already been run and that there are no unfinished evolution steps.

4.12.2 Running an Evolution from the SDI

The Evolution section of the Database tab of the Substance D root object allows you to do what you might have
otherwise done using the sd_evolve console script described above.

In some circumstances when Substance D itself needs to be upgraded, you may need to use the sd_evolve script
rather than the GUI. For example, if the way that Substance D Folder objects work is changed and folder objects
need to be evolved, it may be impossible to view the evolution GUI, and you may need to use the console script.

4.12.3 Autoevolve

If you add substanced.autoevolve = true within your application .ini file, all pending evolution upgrade
steps will be run when your application starts. Alternately you can use the SUBSTANCED_AUTOEVOLVE evnironment
variable (e.g. export SUBSTANCED_AUTOEVOLVE=true) to do the same thing.

4.12.4 Adding Evolution Support To a Package

Let’s say we have been developing an sdidemo package and, with content already in the database, we want to add
evolution support. Our sdidemo package is designed to be included into a site, so we have the traditional Pyramid
includeme support. In there we add the following:

import logging

logger = logging.getLogger('evolution')

def evolve_stuff(root, registry):
logger.info('Stuff evolved.')

def includeme(config):
config.add_evolution_step(evolve_stuff)

We’ve used the substanced.evolution.add_evolution_step() API to add an evolution step in this
package’s includeme function.

Running sd_evolve without --latest (meaning, without performing an evolution) shows that Substance D’s
evolution now knows about our package:

$ bin/sd_evolve etc/development.ini

Finished steps:

2013-06-14 13:01:28 substanced.evolution.legacy_to_new

Unfinished steps:

sdidemo.evolve_stuff

4.12. Changing Resource Structure With Evolution 55

Substance D Documentation, Release 0.0

Let’s now run sd_evolve “for real”. This will cause the evolution step to be executed and marked as finished.

$ bin/sd_evolve --latest etc/development.ini

2013-06-14 13:22:51,475 INFO [evolution][MainThread] Stuff evolved.
Evolution steps executed:

substanced.evolution.evolve_stuff

This examples shows a number of points:

• Each package can easily add evolution support via the config.add_evolution_step() directive.
You can learn more about this directive by reading its API documentation at substanced.evolution.
add_evolution_step().

• Substance D’s evolution service looks at the database to see which steps haven’t been run, then runs all the
needed evolve scripts, sequentially, to bring the database up to date.

• All changes within an evolve script are in the scope of a transaction. If all the evolve scripts run to completion
without exception, the transaction is committed.

4.12.5 Manually Marking a Step As Evolved

In some cases you might have performed the work in an evolve step by hand and you know there is no need to re-
perform that work. You’d like to mark the step as finished for one or more evolve scripts, so these steps don’t get run.
The --mark-step-finished argument to sd_evolve accomplishes this. The “Mark finished” button in the
SDI evolution GUI does the same.

4.12.6 Baselining

Evolution is baselined at first startup. When there’s no initial list of finished steps in the database. Substance D, in the
root factory, says: “I know all the steps participating in evolution, so when I first create the root object, I will set all of
those steps to finished.”

If you wish to perform something after Root was created, see Affecting Content Creation.

4.13 Configuring Folder Contents

The folder contents, as mentioned previously in Folder contents, the SDI’s folder contents uses a powerful datagrid to
view and manage items in a folder. This chapter covers how your content types can plug into the folder contents view.

4.13.1 Adding Columns

Perhaps your system has content types with extra attributes that are meaningful and you’d like your contents listings
to show that column. You can change the columns available on folder contents listings by passing in a columns
argument to the @content directive. The value of this argument is a callable which returns a sequence of mappings
conforming to the datagrid’s contract. For example:

def binder_columns(folder, subobject, request, default_columnspec):
subobject_name = getattr(subobject, '__name__', str(subobject))
objectmap = find_objectmap(folder)
user_oid = getattr(subobject, 'creator', None)
created = getattr(subobject, 'created', None)

(continues on next page)

56 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

(continued from previous page)

modified = getattr(subobject, 'modified', None)
if user_oid is not None:

user = objectmap.object_for(user_oid)
user_name = getattr(user, '__name__', 'anonymous')

else:
user_name = 'anonymous'

if created is not None:
created = created.isoformat()

if modified is not None:
modified = modified.isoformat()

return default_columnspec + [
{'name': 'Title',
'value': getattr(subobject, 'title', subobject_name),
},
{'name': 'Created',
'value': created,
'formatter': 'date',
},
{'name': 'Last edited',
'value': modified,
'formatter': 'date',
},
{'name': 'Creator',
'value': user_name,
}
]

@content(
'Binder',
icon='glyphicon glyphicon-book',
add_view='add_binder',
propertysheets = (

('Basic', BinderPropertySheet),
),

columns=binder_columns,
)

The callable is passed the folder, a subobject, the request, and a set of default column specifications. To display the
datagrid column headers, your callable is invoked on the first resource. Later, this callable is used to get the value for
the fields of each column for each resource in a request’s batch.

The mappings returned can indicate whether a particular column should be sorted. If you want your column to be
sortable, you must provide a sorter key in the mapping. If supplied, the sorter value must either be None if the
column is not sortable, or a function which accepts a resource (the folder), a “resultset”, a limit keyword argument,
and a reverse keyword argument and which must return a sorted result set. Here’s an example sorter:

from substanced.util import find_index

def sorter(folder, resultset, reverse=False, limit=None):
index = find_index(folder, 'mycatalog', 'date')
if index is not None:

resultset = resultset.sort(index, reverse=reverse, limit=limit)
return resultset

def my_columns(folder, subobject, request, default_columnspec):
return default_columnspec + [

(continues on next page)

4.13. Configuring Folder Contents 57

Substance D Documentation, Release 0.0

(continued from previous page)

{'name': 'Date',
'value': getattr(subobject, 'title', subobject_name),
'sorter': 'sorter',
},

Most often, sorting is done by passing a catalog index into the resultset.sort method as above (resultset.sort returns
another resultset), but sorting can be performed manually, as long as the sorter returns a resultset.

4.13.2 Buttons

As we just showed, you can extend the folder contents with extra columns to display and possibly sort on. You can
also add new buttons that will trigger operations on selected resources.

As with columns, we pass a new argument to the @content directive. For example, the folder contents view for the
catalogs folder allows you to reindex multiple indexes at once:

The Reindex button illustrates a useful facility for performing many custom operations at once.

The substanced.catalog module’s @content directive has a buttons argument:

@content(
'Catalog',
icon='glyphicon glyphicon-search',
service_name='catalog',
buttons=catalog_buttons,
)

This points at a callable:

58 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

def catalog_buttons(context, request, default_buttons):
""" Show a reindex button before default buttons in the folder contents
view of a catalog"""
buttons = [

{'type':'single',
'buttons':
[

{'id':'reindex',
'name':'form.reindex',
'class':'btn-primary btn-sdi-sel',
'value':'reindex',
'text':'Reindex'}
]

}
] + default_buttons

return buttons

In this case, the Reindex button was inserted before the other buttons, in the place where an add button would
normally appear.

The class on your buttons affect behavior in the datagrid:

• btn-primary gives this button the styling for the primary button of a form, using Twitter Bootstrap form
styling

• btn-sdi-act makes the button always enabled

• btn-sdi-sel disables the button until one or more items are selected

• btn-sdi-one disables the button until exactly one item is selected

• btn-sdi-del disables the button if any of the selected resources is marked as “non-deletable” (discussed
below)

When clicked, this button will do a form POST of the selected docids to a view that you have implemented. Which
view? The 'name': 'form.reindex' item sets the parameter on the POST. You can then register a view
against this. substanced.catalog.views.catalog shows this:

@mgmt_view(
context=IFolder,
content_type='Catalog',
name='contents',
request_param='form.reindex',
request_method='POST',
renderer='substanced.folder:templates/contents.pt',
permission='sdi.manage-contents',
tab_condition=False,
)

def reindex_indexes(context, request):
toreindex = request.POST.getall('item-modify')
if toreindex:

context.reindex(indexes=toreindex, registry=request.registry)
request.sdiapi.flash(

'Reindex of selected indexes succeeded',
'success'
)

else:
request.sdiapi.flash(

'No indexes selected to reindex',

(continues on next page)

4.13. Configuring Folder Contents 59

Substance D Documentation, Release 0.0

(continued from previous page)

'danger'
)

return HTTPFound(request.sdiapi.mgmt_path(context, '@@contents'))

4.13.3 Selection and Button Enabling

As mentioned above, some buttons are driven by the selection. If nothing is selected, the button is disabled.

Buttons can also be disabled if any selected item is “non-deletable”. How does that get signified? An item
is ‘deletable’ if the user has the sdi.manage-contents permission on folder and if the subobject has a
__sdi_deletable__ attribute which resolves to a boolean True value.

It is also possible to make button enabling and disabling depend on some application-specific condition. To do this,
assign a callable to the enabled_for key in the button spec. For example:

def catalog_buttons(context, request, default_buttons):
def is_indexable(folder, subobject, request):

""" only enable the button if subobject is indexable """
return subobject.is_indexable()

buttons = [
{'type':'single',
'buttons':
[

{'id':'reindex',
'name':'form.reindex',
'class':'btn-primary btn-sdi-sel',
'value':'reindex',
'enabled_for': is_indexable,
'text':'Reindex'}
]

}
] + default_buttons

return buttons

In the example above, we define a button similar to our previous reindex button, except this time we have an
enabled_for key that is assigned the is_indexable function. When the buttons are rendered, each element
is passed to this function, along with the folder and request. If any one of the folder subobjects returns False for this
call, the button will not be enabled.

4.13.4 Filtering What Can Be Added

Not all kinds of resources make sense to be added inside a certain kind of container. For example, substanced.
catalog.Catalog is a content type that can hold only indexes. That is,it isn’t meant to hold any arbitrary kind of
thing.

To tell the SDI what can be added inside a container content type, add a __sdi_addable__ method to your content
type. This method is passed the folder object representing the place the object might be added, and a Substance D
introspectable for a content type. When Substance D tries to figure out whether an object is addable to a particular
folder, it will call the __sdi_addable__ method of your folderish type once for each content type.

The introspectable is a dictionary-like object which contains information about the content type. The introspectable
contains the following keys:

60 Chapter 4. Narrative Documentation

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-introspectable

Substance D Documentation, Release 0.0

meta A dictionary representing “meta” values passed to add_content_type(). For example, if
you pass add_view='foo' to add_content_type(), the meta of the content type will be
{'add_view':'foo'}.

content_type The content type value passed to add_content_type().

factory_type The factory_type value passed to add_content_type().

original_factory The original content factory (without any wrapping) passed to add_content_type().

factory The potentially wrapped content factory derived from the original factory in add_content_type().

See Registering Content for more information about content type registration and what the above introspectable values
mean.

Your __sdi_addable__ method can perform some logic using the values it is passed, and then it must return a
filtered sequence.

As an example, the __sdi_addable__ method on the Catalog filters out the kinds of things that can be added in
a catalog.

4.13.5 Extending Which Columns Are Displayed

The folder contents grid displays a number of columns by default. If you are managing content with custom properties,
in some cases you want to list those properties in the columns the grid can display. You can do so on custom folder
content types by adding a columns argument to your @content decorator.

As an example, imagine a Binder kind of container. It has a content type declaration:

@content(
'Binder',
icon='glyphicon glyphicon-book',
add_view='add_binder',
propertysheets = (

('Basic', BinderPropertySheet),
),

columns=binder_columns,
)

The binder_columns points to a callable where we perform the work to both add the column to the list of columns,
but also specify how to get the row data for that column:

def binder_columns(folder, subobject, request, default_columnspec):
subobject_name = getattr(subobject, '__name__', str(subobject))
objectmap = find_objectmap(folder)
user_oid = getattr(subobject, 'creator', None)
created = getattr(subobject, 'created', None)
modified = getattr(subobject, 'modified', None)
if user_oid is not None:

user = objectmap.object_for(user_oid)
user_name = getattr(user, '__name__', 'anonymous')

else:
user_name = 'anonymous'

if created is not None:
created = created.isoformat()

if modified is not None:
modified = modified.isoformat()

return default_columnspec + [
{'name': 'Title',

(continues on next page)

4.13. Configuring Folder Contents 61

Substance D Documentation, Release 0.0

(continued from previous page)

'value': getattr(subobject, 'title', subobject_name),
},
{'name': 'Created',
'value': created,
'formatter': 'date',
},
{'name': 'Last edited',
'value': modified,
'formatter': 'date',
},
{'name': 'Creator',
'value': user_name,
}
]

Here we add four columns to the standard set of grid columns, whenever we are in a Binder folder.

4.13.6 Adding New Folder Contents Buttons

The grid in folder contents makes it easy to select multiple resources then click a button to perform an action. Wouldn’t
it be great, though, if we could add a new button to all or certain folders, to perform custom actions?

In the previous section we saw how to pass another argument to the @content decorator. We do the same for new
buttons. A content type can pass in buttons=callable to modify the list of buttons on a particular kind of folder.

For example, the substanced.catalog.catalog_buttons() callable adds a new Reindex button in front
of the standard set of buttons:

def catalog_buttons(context, request, default_buttons):
""" Show a reindex button before default buttons in the folder contents
view of a catalog"""
buttons = [

{'type':'single',
'buttons':
[

{'id':'reindex',
'name':'form.reindex',
'class':'btn-primary btn-sdi-sel',
'value':'reindex',
'text':'Reindex'}
]

}
] + default_buttons

return buttons

The button is disabled until one or more resources are selected which have the correct permission (discussed above.)
If our new button is clicked, the form is posted with the form.reindex value in post data. You can then make a
@mgmt_view with request_param='form.reindex' in the declaration to handle the form post when that
button is clicked.

4.13.7 Broken Objects and Class Aliases

Let’s assume that there’s an object in your database that is an instance of the class myapplication.
resources.MyCoolResource. If that class is subsequently renamed to myapplication.resources.
MySuperVeryCoolResource, the MyCoolResource object that exists in the database will become broken.

62 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

This is because the ZODB database used by Substance D uses the Python pickle persistence format, and pickle
writes the literal class name into the record associated with an object instance. Therefore, if a class is renamed or
moved, when you come along later and try to deserialize a pickle with the old name, it will not work as it used to.

Persistent objects that exist in the database but which have a class that cannot be resolved are called “broken objects”.
If you ask a Substance D folder (or the object map) for an object that turns out to be broken in this way, it will hand you
back an instance of the pyramid.util.BrokenWrapper class. This class tries to behave as much as possible
like the original object for data that exists in the original objects’ __dict__ (it defines a custom __getattr__
that looks in the broken object’s state). However, you won’t able to call methods of the original class against a broken
object.

You can usually delete broken objects using the SDI folder contents view if necessary.

If you must rename or move a class, you can leave a class alias behind for backwards compatibility to avoid seeing
broken objects in your database. For example:

class MySuperVeryCoolResource(Persistent):
pass

MyCoolResource = MySuperVeryCoolResource # bw compat alias

4.14 Using Auditing

Substance D keeps an audit log of all meaningful operations performed against content if you have an audit database
configured. At the time of this writing, “meaningful” is defined as:

• When an ACL is changed.

• When a resource is added or removed.

• When a resource is modified.

The audit log is of a fixed size (currently 1,000 items). When the audit log fills up, the oldest audit event is thrown
away. Currently we don’t have an archiving mechanism in place to keep around the items popped off the end of the
log when it fills up; this is planned.

You can extend the auditing system by using the substanced.audit.AuditLog, writing your own events to the
log.

4.14.1 Configuring the Audit Database

In order to enable auditing, you have to add an audit database to your Substance D configuration. This means adding
a key to your application’s section in the .ini file associated with the app:

zodbconn.uri.audit = <some ZODB uri>

An example of “some ZODB URI” above might be (for a FileStorage database, if your application doesn’t use multiple
processes):

zodbconn.uri.audit = file://%(here)s/auditlog.fs

Or if your application uses multiple processes, use a ZEO URL.

The database cannot be your main database. The reason that the audit database must live in a separate ZODB database
is that we don’t want undo operations to undo the audit log data.

4.14. Using Auditing 63

Substance D Documentation, Release 0.0

Note that if you do not configure an audit database, real-time SDI features such as your folder contents views updating
without a manual refresh will not work.

Once you’ve configured the audit database, you need to add an audit log object to the new database. You can do this
using pshell:

[chrism@thinko sdnet]$ bin/pshell etc/development.ini
Python 3.3.2 (default, Jun 1 2013, 04:46:52)
[GCC 4.6.3] on linux
Type "help" for more information.

Environment:
app The WSGI application.
registry Active Pyramid registry.
request Active request object.
root Root of the default resource tree.
root_factory Default root factory used to create `root`.

>>> from substanced.audit import set_auditlog
>>> set_auditlog(root)
>>> import transaction; transaction.commit()

Once you’ve done this, the “Auditing” tab of the root object in the SDI should no longer indicate that auditing is not
configured.

4.14.2 Viewing the Audit Log

The root object will have a tab named “Auditing”. You can view the currently active audit log entries from this page.
Accessing this tab requires the sdi.view-auditlog permission.

4.14.3 Adding an Audit Log Entry

Here’s an example of adding an audit log entry of type NailsFiled to the audit log:

from substanced.util import get_oid, get_auditlog

def myview(context, request):
auditlog = get_auditlog(context)
auditlog.add('NailsFiled', get_oid(context), type='fingernails')
...

Warning: If you don’t have an audit database defined, the get_auditlog() API will return None.

This will add a‘‘NailsFiled‘‘ event with the payload {'type':'fingernails'} to the audit log. The payload
will also automatically include a UNIX timestamp as the key time. The first argument is the audit log typename.
Audit entries of the same kind should share the same type name. It should be a string. The second argument is
the oid of the content object which this event is related to. It may be None indicating that the event is global, and
unrelated to any particular piece of content. You can pass any number of keyword arguments to substanced.
audit.AuditLog.add(), each will be added to the payload. Each value supplied as a keyword argument must
be JSON-serializable. If one is not, you will receive an error when you attempt to add the event.

64 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

4.14.4 Using The auditstream-sse View

If you have auditing enabled, you can use a view named auditstream-sse against any resource in your resource
tree using JavaScript. It will return an event stream suitable for driving an HTML5 EventSource (an HTML 5
feature, see http://www.html5rocks.com/en/tutorials/eventsource/basics/ for more information). The event stream will
contain auditing events. This can be used for progressive enhancement of your application’s UI. Substance D’s SDI
uses it for that purpose. For example, when an object’s ACL is changed, a user looking at the “Security” tab of that
object in the SDI will see the change immediately, rather than upon the next page refresh.

Obtain events for the context of the view only:

var source = new EventSource(
"${request.sdiapi.mgmt_path(context, 'auditstream-sse')}");

Obtain events for a single OID unrelated to the context:

var source = new EventSource(
"${request.sdiapi.mgmt_path(context, 'auditstream-sse', query={'oid':'12345'})}");

Obtain events for a set of OIDs:

var source = new EventSource(
"${request.sdiapi.mgmt_path(context, 'auditstream-sse', query={'oid':['12345',

→˓'56789']})}");

Obtain all events for all oids:

var source = new EventSource(
"${request.sdiapi.mgmt_path(context, 'auditstream-sse', query={'all':'1'})}");

The executing user will need to possess the sdi.view-auditstream permission against the context on which
the view is invoked. Each event payload will contain detailed information about the audit event as a string which
represents a JSON dictionary.

See the acl.pt template in the substanced/sdi/views/templates directory of Substance D to see a “real-
world” usage of this feature.

4.15 Using Locking

Substance D allows you to lock content resources programmatically. When a resource is locked, its UI can change to
indicate that it cannot be edited by someone other than the user holding the lock.

Locking a resource only locks the resource, not its children. The locking system is not recursive at this time.

4.15.1 Locking a Resource

To lock a resource:

from substanced.locking import lock_resource
from pyramid.security import has_permission

if has_permission('sdi.lock', someresource, request):
lock_resource(someresource, request.user, timeout=3600)

4.15. Using Locking 65

http://www.html5rocks.com/en/tutorials/eventsource/basics/

Substance D Documentation, Release 0.0

If the resource is already locked by the owner supplied as owner_or_ownerid (the parameter filled by request.
user above), calling this function will refresh the lock. If the resource is not already locked by another user, calling
this function will create a new lock. If the resource is already locked by a different user, a substanced.locking.
LockError will be raised.

Using the substanced.locking.lock_resource() function has the side effect of creating a “Lock Service”
(named locks) in the Substance D root if one does not already exist.

Warning: Callers should assert that the owner has the sdi.lock permission against the resource before calling
lock_resource() to ensure that a user can’t lock a resource he is not permitted to.

4.15.2 Unlocking a Resource

To unlock a resource:

from substanced.locking import unlock_resource
from pyramid.security import has_permission

if has_permission('sdi.lock', someresource, request):
unlock_resource(someresource, request.user)

If the resource is already locked by a user other than the owner supplied as owner_or_ownerid (the parameter
filled by request.user above) or the resource isn’t already locked with this lock type, calling this function will
raise a substanced.locking.UnlockError exception. Otherwise the lock will be removed.

Using the substanced.locking.unlock_resource() function has the side effect of creating a “Lock Ser-
vice” (named locks) in the Substance D root if one does not already exist.

Warning: Callers should assert that the owner has the sdi.lock permission against the resource before calling
unlock_resource() to ensure that a user can’t lock a resource he is not permitted to.

To unlock a resource using an explicit lock token:

from substanced.locking import unlock_token
from pyramid.security import has_permission

if has_permission('sdi.lock', someresource, request):
unlock_token(someresource, token, request.user)

If the lock identified by token belongs to a user other than the owner supplied as owner_or_ownerid (the
parameter filled by request.user above) or if no lock exists under token , calling this function will raise a
substanced.locking.LockError exception. Otherwise the lock will be removed.

Using the substanced.locking.unlock_token() function has the side effect of creating a “Lock Service”
(named locks) in the Substance D root if one does not already exist.

Warning: Callers should assert that the owner has the sdi.lock permission against the resource before calling
unlock_token() to ensure that a user can’t lock a resource he is not permitted to.

66 Chapter 4. Narrative Documentation

Substance D Documentation, Release 0.0

4.15.3 Discovering Existing Locks

To discover any existing locks for a resource:

from substanced.locking import discover_resource_locks

locks = discover_resource_locks(someresource)
"locks" will be a sequence

The substanced.locking.discover_resource_locks() function will return a sequence of
substanced.locking.Lock objects related to the resource for the lock type provided to the function.
By default, only valid locks are returned. Invalid locks for the resource may exist, but they are not returned unless the
include_invalid argument passed to :discover_resource_locks() is True.

Under normal circumstances, the length of the sequence returned will be either 0 (if there are no locks) or 1 (if there is
any lock). In some special circumstances, however, when the substanced.locking.lock_resource() API
is not used to create locks, there may be more than one lock related to a resource of the same type.

By default, the discover_resource_locks API returns locks for the provided object, plus locks on any object
in its lineage. To suppress this default, pass include_lineage=False, e.g.:

locks = discover_resource_locks(someresource)
"locks" will be only those set on 'someresource'

In some applications, the important thing is to ensure that a particular user could lock a resource before updating it
(e.g., from a browser view on a property sheet). The :could_lock_resource() API is designed for these cases:
if the supplied userid could not lock the resource, it raises a substanced.locking.LockError exception:

from substanced.locking import could_lock_resource, LockError

try:
could_lock_resource(someresource, request.user)

except LockError as e:
raise FormError('locked by "%s"' % e.lock.owner.__name__)

4.15.4 Viewing The Lock Service

Once some locks have been created, a lock service will have been created. The lock service is an object named locks
in the Substance D root.

You can use the SDI UI of this locks service to delete and edit existing locks. It’s a good idea to periodically use the
“Delete Expired” button in this UI to clear out any existing expired locks that were orphaned by buggy or interrupted
clients.

4.16 Configuration

While writing a Substance D application is very similar to writing a Pyramid application, there are a few extra consid-
erations to keep in mind.

4.16.1 Scan and Include

When writing Pyramid applications, the Configurator supports config.include and config.scan Because of
ordering effects, do all your config.include calls before any of your config.scan calls.

4.16. Configuration 67

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage

Substance D Documentation, Release 0.0

4.16.2 Using RelStorage

Content in Substance D is stored in a Python object database called the ZODB. The ZODB has deep integration with
Pyramid. When developing Python applications that use ZODB, you have a number of storage options:

• FileStorage is the simplest and is used in the development scaffolds for Substance D. That is,
development.ini is configured use FileStorage. Just a file on disk, no long-running server process.

• ZEO keeps a file on disk but runs a server process that manages transactions over a socket. This allows multiple
app servers on multiple boxes, or background processes such as deferred indexing, to access the database.

• RelStorage stores and retrieves the Python objects from a relational database. This is the preferred deployment
option for applications that need trusted reliability and scalability.

Switching between storages is mostly a matter of editing your configuration file and choosing a different storage.

Note: While RelStorage uses an RDBMS for transactions, storage, retrieval, failover, and other features, it does not
use SQL or decompose your Python objects into columns and joined tables.

Although RelStorage supports a number of RDBMS packages, we’ll focus on PostgreSQL in these docs.

RelStorage + PostgreSQL Configuration

First, read the RelStorage docs, focusing on the PostgreSQL section and the command line needed for database setup.
In particular, make sure that you:

• Have a system user account named database:

$ sudo su - postgres
$ createuser --pwprompt zodbuser
$ createdb -O zodbuser zodb

• The user that you created (e.g. zodbuser) can make local connections

Next, we’ll make some changes to some of the configuration files. In your setup.py, indicate that you need the
RelStorage package as well as the psycopg2 Python binding for PostgreSQL. This presumes that the binaries
for the PostgreSQL client are available on your path.

In your configuration file (e.g. production.ini), the [app:main] section should have:

zodbconn.uri = zconfig://%(here)s/relstorage.conf

We thus need a relstorage.conf file:

%import relstorage
<zodb main>

<relstorage>
blob-dir ../var/blobs
<postgresql>

dsn dbname='zodb' user='zodbuser' host='localhost' password='zodbuser'
</postgresql>

</relstorage>
cache-size 100000

</zodb>

68 Chapter 4. Narrative Documentation

http://en.wikipedia.org/wiki/Zope_Object_Database
http://docs.pylonsproject.org/projects/pyramid_cookbook/en/latest/database/zodb_zeo.html
http://pypi.python.org/pypi/RelStorage
http://pypi.python.org/pypi/RelStorage/1.5.1#postgresql

Substance D Documentation, Release 0.0

Resetting Your Substance D Database

During development you frequently need to blow away all your data and start over. You can do this via evolution, but
usually it isn’t worth the work.

This is very easy with FileStorage: just rm var/Data.fs* and restart your app server. It is also easy with
ZEO: shut down the supervisor service, remove the data as above, restart it, and restart the app server.

With RelStorage, you get a rich set of existing tools such as pgadmin to browse and modify table data. You can,
though, do it the quickie way via bin/pshell and just delete the root object, then commit the transaction.

If you need to remove evolve data as well, open up pshell and do root._p_jar.root(). You’ll see the ZODB
root (not the app root). Inside of it is the app root and the evolve data.

4.17 Gathering Runtime Statistics

Problems can come up in production. When they do, you usually want forensics that show aspects of the system under
load, over a period of time.

Of course, you don’t want the collection of such data to affect performance. What’s needed is a mechanism to log data
all the time, in a lightweight way, that can later be analyzed in productive ways. This system needs both built-in hooks
at the Substance D framework level as well as extension points to analyze function points in the application you are
writing.

Three components are involved in the process of collecting statistics:

• substanced.stats exposes Python API to collect data and sends it to to a StatsD
<https://github.com/etsy/statsd> agent

• The StatsD agent aggregates data and sends it to backend service

• A backend service displays graphs based on stored data. The service can be self-hosted such as Graphite or it
can be a SaaS solution such as DataDog.

4.17.1 Setting Up

To enable statistics gathering in your site, edit your .ini configuration file and add the following lines to your
[app:main] section:

substanced.statsd.enabled = true
substanced.statsd.host = localhost
substanced.statsd.port = 8125
substanced.statsd.prefix = substanced

Using DataDog with SubstanceD statistics

Substance D supports DataDog, a Software-as-a-Service (SaaS) provider for monitoring and visualizing performance
data. DataDog installs an dogstatsd agent for sending custom metrics on your local system. The agent is based on
StatsD.

Using DataDog is an an easy way to get started with Substance D statistics. Sign up for an account with DataDog.
This will provide you with the instructions for downloading and running the local agent. You’ll need to get the agent
installed before proceeding.

4.17. Gathering Runtime Statistics 69

http://graphite.readthedocs.org/en/latest/
http://www.datadoghq.com
https://github.com/etsy/statsd
https://www.datadoghq.com/signup/

Substance D Documentation, Release 0.0

Once you’ve got the agent installed, and the proper settings in your Substance D ini file, you will be able to see
statistics in the DataDog user interface. Once you log into your DataDog dashboard, click on Infrastructure
and you’ll see any hosts configured as part of your account:

The substanced entry in Apps table column is from the substanced.statsd.prefix configured in Settings
up section. Clicking on that brings up Substance D specific monitoring in DataDog:

Clicking settings symbol on a graph will lead you to graph editor, where you can change how DataDog interprets and
renders your graphs. A good resource how the editor works is Graphing Primer.

DataDog also supports Metric Alerts allowing you to send alerts when your statistics reach certain state.

70 Chapter 4. Narrative Documentation

http://docs.datadoghq.com/graphing/#editor
https://app.datadoghq.com/alerts

Substance D Documentation, Release 0.0

Logging Custom Statistics

Over time, Substance D itself will include more framework points where statistics are collected. Most likely, though,
you’ll want some statistics that are very meaningful to your application’s specific functionality.

If you look at the docs for the Python statsd module you will see three main types:

• Counters for simply incrementing a value,

• Timers for logging elapsed time in a code block, and

• Gauges for tracking a constant at a particular point in time

Each of these map to methods in substanced.stats.StatsdHelper. This class is available as an instance
available via import:

from substanced.stats import statsd_gauge

Your application code can then make calls to these stats-gathering methods. For example, substanced.
principal.User does the following to note that check password was used:

statsd_gauge('check_password', 1)

Here is an example in substanced.catalog.Catalog.index_resource() that measures elapsed indexing
time inside a Python with block:

with statsd_timer('catalog.index_resource'):
if oid is None:

oid = oid_from_resource(resource)
for index in self.values():

index.index_resource(resource, oid=oid, action_mode=action_mode)
self.objectids.insert(oid)

4.18 Virtual Rooting

You can present a folder other than the physical Substance D root object as the “SDI root” to people. For example, if
you have the following structure from your physical Substance D root:

root--
\-- folder1
|
|-- folder2

You can present either folder1 or folder2 to the user as a virtual root when people log in to the SDI.

To do so, you have to pass an X-Vhm-Root header to SubstanceD in each request. It’s easiest to do this with Apache
or another frontend web server. Here’s a sample configuration which assumes you are telling Apache to proxy to a
Substance D application that runs on localhost on port 6543:

<VirtualHost *:80>
ServerAdmin webmaster@agendaless.com
ServerName example.com
ErrorLog /var/log/apache2/example.com-error.log
CustomLog /var/log/apache2/example.com-access.log combined
RewriteEngine On
RewriteRule ^(.*) http://127.0.0.1:6543/$1 [L,P]

(continues on next page)

4.18. Virtual Rooting 71

http://statsd.readthedocs.org/en/v0.5.0/types.html

Substance D Documentation, Release 0.0

(continued from previous page)

ProxyPreserveHost On
RequestHeader add X-Vhm-Root /folder1

</VirtualHost>

In the above configuration, when users log in on http://example.com/manage, the root they see in the SDI
will be /folder1 instead of the real root. They will not be able to access the real root.

Note that retail requests (requests without /manage) to the same hostname will also be rooted at folder1.

This feature requires Pyramid version 1.4.4 or better.

4.19 Building a Retail Application

It’s not the intent that normal unprivileged users of an application you build using Substance D ever see the SDI
management interface. That interface is reserved for privileged users, like you and your staff.

To build a “retail” application, you just use normal Pyramid view configuration to associate objects with view logic
based on the content types provided to you by Substance D and the content types you’ve defined.

For example, here’s a view that will respond on the root Substance D object and return its SDI title:

1 from pyramid.view import view_config
2

3 @view_config(content_type='Root')
4 def hello(request):
5 html = u'<html><head></head><body>Hello from %s!</body></html>'
6 request.response.text = html % request.context.sdi_title
7 return request.response

Note that we did not use the substanced.sdi.mgmt_view decorator. Instead we used the pyramid.view.
view_config decorator, which will expose the view to normal site visitors, not just those visiting the resource via
the SDI.

To see that code working, create a retail package within the myproj package (that is the inner myproj folder that
contains the __init__.py, resources.py and views.py files). The package will have two files: an empty
__init__.py and a views.py with the code snippet above. If you now visit http://localhost:6543/
you will see the “Hello from. . . ” message.

To display actual content stored in the database, Substance D exposes a resource tree that you can hang views from
to build your application. You’ll want to read up on traversal to understand how to associate view configuration with
resource objects.

4.20 Substance D Command-Line Utilities

Substance D installs a number of helper scripts for performing admin-related tasks. To get full command-line syntax
for any script, run it with the option --help.

4.20.1 sd_adduser

Add a new user, making them part of the ‘admins’ group. Useful when recovering from a forgotten password for the
default ‘admin’ user. E.g.:

72 Chapter 4. Narrative Documentation

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-configuration
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-traversal

Substance D Documentation, Release 0.0

$ /path/to/virtualenv/bin/sd_adduser /path/to/virtualenv/etc/production.ini phred
→˓password

4.20.2 sd_drain_indexing

Process deferred indexing actions. E.g., run this from a cron job to drain the queue every two minutes:

0-59/2 * * * * /path/to/virtualenv/bin/sd_drain_indexing /path/to/virtualenv/etc/
→˓production.ini

4.20.3 sd_dump

Dump an object (and its subobjects) to the filesystem:

sd_dump [--source=ZODB-PATH] [--dest=FILESYSTEM-PATH] config_uri
Dumps the object at ZODB-PATH and all of its subobjects to a
filesystem path. Such a dump can be loaded (programmatically)
by using the substanced.dump.load function

E.g.:

$ /path/to/virtualenv/bin/sd_dump --source=/ --dest=/tmp/dump /path/to/virtualenv/etc/
→˓development.ini

4.20.4 sd_evolve

Query for pending evolution steps, or run them to get the database up-to-date. See Running an Evolution from the
Command Line.

4.20.5 sd_reindex

Reindex the catalog. E.g.:

$ /path/to/virtualenv/bin/sd_reindex /path/to/virtualenv/etc/development.ini

4.21 Installing python-magic

Use of the substanced.file.USE_MAGIC constant for guessing file types from stream content requires the
python-magic library, which works without extra help on most systems, but may require special dependency
installations on Mac OS and Windows systems. You’ll need to follow these steps on those platforms to use this
feature:

Mac OS X

http://www.brambraakman.com/blog/comments/installing_libmagic_in_mac_os_x_for_python-magic/

Windows

“Installation on Win32” in https://github.com/ahupp/python-magic

4.21. Installing python-magic 73

http://www.brambraakman.com/blog/comments/installing_libmagic_in_mac_os_x_for_python-magic/
https://github.com/ahupp/python-magic

Substance D Documentation, Release 0.0

74 Chapter 4. Narrative Documentation

CHAPTER 5

API Documentation

5.1 substanced API

substanced.includeme(config)
Do the work of substanced.include(), then substanced.scan(). Makes config.
include(substanced) work.

substanced.include(config)
Perform all config.include tasks required for Substance D and the default aspects of the SDI to work.

substanced.scan(config)
Perform all config.scan tasks required for Substance D and the default aspects of the SDI to work.

5.2 substanced.audit API

class substanced.audit.AuditLog(max_layers=10, layer_size=100, entries=None)

add(_name, _oid, **kw)
Add a record the audit log. _name should be the event name, _oid should be an object oid or None, and
kw should be a json-serializable dictionary

latest_id()
Return the generation and the index id as a tuple, representing the latest audit log entry

newer(generation, index_id, oids=None)
Return the events newer than the combination of generation and oid. Filter using oids if supplied.

5.3 substanced.catalog API

class substanced.catalog.Text(**kw)

75

Substance D Documentation, Release 0.0

class substanced.catalog.Field(**kw)

class substanced.catalog.Keyword(**kw)

class substanced.catalog.Facet(**kw)

class substanced.catalog.Allowed(**kw)

class substanced.catalog.Path(**kw)

class substanced.catalog.Catalog(family=None)

__setitem__(name, other)
Set object other into this folder under the name name.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the system default encoding.

name cannot be the empty string.

When other is seated into this folder, it will also be decorated with a __parent__ attribute (a reference
to the folder into which it is being seated) and __name__ attribute (the name passed in to this function.
It must not already have a __parent__ attribute before being seated into the folder, or an exception will
be raised.

If a value already exists in the foldr under the name name, raise KeyError.

When this method is called, the object will be added to the objectmap, an substanced.event.
ObjectWillBeAdded event will be emitted before the object obtains a __name__ or __parent__
value, then a substanced.event.ObjectAdded will be emitted after the object obtains a
__name__ and __parent__ value.

__getitem__(name)
Return the object named name added to this folder or raise KeyError if no such object exists. name
must be a Unicode object or directly decodeable to Unicode using the system default encoding.

Retrieve an index.

get(name, default=None)
Return the object named by name or the default.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the system default encoding.

Retrieve an index or return failobj.

flush(all=True)
Flush pending indexing actions for all indexes in this catalog.

If all is True, all pending indexing actions will be immediately executed regardless of the action’s mode.

If all is False, pending indexing actions which are MODE_ATCOMMIT will be executed but actions
which are MODE_DEFERRED will not be executed.

index_resource(resource, oid=None, action_mode=None)
Register the resource in indexes of this catalog using oid as the indexing identifier. If oid is not supplied,
the __oid__ attribute of the resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None, MODE_IMMEDIATE, MODE_ATCOMMIT or
MODE_DEFERRED, indicating when the updates should take effect. The action_mode value will over-
rule any action mode a member index has been configured with except None which explicitly indicates
that you’d like to use the index’s action_mode value.

76 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

reindex(dry_run=False, commit_interval=3000, indexes=None, path_re=None, output=None, reg-
istry=None)

Reindex all objects in the catalog using the existing set of indexes immediately.

If dry_run is True, do no actual work but send what would be changed to the logger.

commit_interval controls the number of objects indexed between each call to transaction.
commit() (to control memory consumption).

indexes, if not None, should be a list of index names that should be reindexed. If indexes is None,
all indexes are reindexed.

path_re, if it is not None should be a regular expression object that will be matched against each object’s
path. If the regular expression matches, the object will be reindexed, if it does not, it won’t.

output, if passed should be one of None, False or a function. If it is a function, the function should
accept a single message argument that will be used to record the actions taken during the reindex. If
False is passed, no output is done. If None is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

registry, if passed, should be a Pyramid registry. If one is not passed, the
get_current_registry() function will be used to look up the current registry. This func-
tion needs the registry in order to access content catalog views.

reindex_resource(resource, oid=None, action_mode=None)
Register the resource in indexes of this catalog using oid as the indexing identifier. If oid is not supplied,
the __oid__ attribute of resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None, MODE_IMMEDIATE, MODE_ATCOMMIT or
MODE_DEFERRED indicating when the updates should take effect. The action_mode value will over-
rule any action mode a member index has been configured with except None which explicitly indicates
that you’d like to use the index’s action_mode value.

The result of calling this method is logically the same as calling unindex_resource, then
index_resource with the same resource, but calling those two methods in succession is often more
expensive than calling this single method, as member indexes can choose to do smarter things during a
reindex than what they would do during an unindex followed by a successive index.

reset()
Reset all indexes in this catalog and clear self.objectids.

transaction = <module 'transaction' from '/home/docs/checkouts/readthedocs.org/user_builds/substanced/envs/latest/local/lib/python2.7/site-packages/transaction/__init__.pyc'>

unindex_resource(resource_or_oid, action_mode=None)
Deregister the resource in indexes of this catalog using the indexing identifier resource_or_oid. If
resource_or_oid is an integer, it will be used as the indexing identifier; if resource_or_oid is a
resource, its __oid__ attribute will be used as the indexing identifier.

action_mode, if supplied, should be one of None, MODE_IMMEDIATE, MODE_ATCOMMIT or
MODE_DEFERRED indicating when the updates should take effect. The action_mode value will over-
rule any action mode a member index has been configured with except None which explicitly indicates
that you’d like to use the index’s action_mode value.

update_indexes(registry=None, dry_run=False, output=None, replace=False, reindex=False,
**reindex_kw)

Use the candidate indexes registered via config.add_catalog_factory to populate this catalog.
Any indexes which are present in the candidate indexes, but not present in the catalog will be created. Any
indexes which are present in the catalog but not present in the candidate indexes will be deleted.

registry, if passed, should be a Pyramid registry. If one is not passed, the
get_current_registry() function will be used to look up the current registry. This func-
tion needs the registry in order to access content catalog views.

5.3. substanced.catalog API 77

Substance D Documentation, Release 0.0

If dry_run is True, don’t commit the changes made when this function is called, just send what would
have been done to the logger.

output, if passed should be one of None, False or a function. If it is a function, the function should
accept a single message argument that will be used to record the actions taken during the reindex. If
False is passed, no output is done. If None is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

This function does not reindex new indexes added to the catalog unless reindex=True is passed.

Arguments to this method captured as kw are passed to substanced.catalog.Catalog.
reindex() if reindex is True, otherwise kw is ignored.

If replace is True, an existing catalog index that is not in the category supplied but which has the
same name as a candidate index will be replaced. If replace is False, existing indexes will never be
replaced.

class substanced.catalog.CatalogsService(data=None, family=None)

class Catalog(family=None)

flush(all=True)
Flush pending indexing actions for all indexes in this catalog.

If all is True, all pending indexing actions will be immediately executed regardless of the action’s
mode.

If all is False, pending indexing actions which are MODE_ATCOMMIT will be executed but actions
which are MODE_DEFERRED will not be executed.

index_resource(resource, oid=None, action_mode=None)
Register the resource in indexes of this catalog using oid as the indexing identifier. If oid is not
supplied, the __oid__ attribute of the resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None, MODE_IMMEDIATE, MODE_ATCOMMIT or
MODE_DEFERRED, indicating when the updates should take effect. The action_mode value will
overrule any action mode a member index has been configured with except None which explicitly
indicates that you’d like to use the index’s action_mode value.

reindex(dry_run=False, commit_interval=3000, indexes=None, path_re=None, output=None,
registry=None)

Reindex all objects in the catalog using the existing set of indexes immediately.

If dry_run is True, do no actual work but send what would be changed to the logger.

commit_interval controls the number of objects indexed between each call to transaction.
commit() (to control memory consumption).

indexes, if not None, should be a list of index names that should be reindexed. If indexes is
None, all indexes are reindexed.

path_re, if it is not None should be a regular expression object that will be matched against each
object’s path. If the regular expression matches, the object will be reindexed, if it does not, it won’t.

output, if passed should be one of None, False or a function. If it is a function, the function
should accept a single message argument that will be used to record the actions taken during the
reindex. If False is passed, no output is done. If None is passed (the default), the output will wind
up in the substanced.catalog Python logger output at info level.

78 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

registry, if passed, should be a Pyramid registry. If one is not passed, the
get_current_registry() function will be used to look up the current registry. This function
needs the registry in order to access content catalog views.

reindex_resource(resource, oid=None, action_mode=None)
Register the resource in indexes of this catalog using oid as the indexing identifier. If oid is not
supplied, the __oid__ attribute of resource will be used as the indexing identifier.

action_mode, if supplied, should be one of None, MODE_IMMEDIATE, MODE_ATCOMMIT or
MODE_DEFERRED indicating when the updates should take effect. The action_mode value will
overrule any action mode a member index has been configured with except None which explicitly
indicates that you’d like to use the index’s action_mode value.

The result of calling this method is logically the same as calling unindex_resource, then
index_resource with the same resource, but calling those two methods in succession is often
more expensive than calling this single method, as member indexes can choose to do smarter things
during a reindex than what they would do during an unindex followed by a successive index.

reset()
Reset all indexes in this catalog and clear self.objectids.

transaction = <module 'transaction' from '/home/docs/checkouts/readthedocs.org/user_builds/substanced/envs/latest/local/lib/python2.7/site-packages/transaction/__init__.pyc'>

unindex_resource(resource_or_oid, action_mode=None)
Deregister the resource in indexes of this catalog using the indexing identifier resource_or_oid.
If resource_or_oid is an integer, it will be used as the indexing identifier; if
resource_or_oid is a resource, its __oid__ attribute will be used as the indexing identifier.

action_mode, if supplied, should be one of None, MODE_IMMEDIATE, MODE_ATCOMMIT or
MODE_DEFERRED indicating when the updates should take effect. The action_mode value will
overrule any action mode a member index has been configured with except None which explicitly
indicates that you’d like to use the index’s action_mode value.

update_indexes(registry=None, dry_run=False, output=None, replace=False, reindex=False,
**reindex_kw)

Use the candidate indexes registered via config.add_catalog_factory to populate this cat-
alog. Any indexes which are present in the candidate indexes, but not present in the catalog will be
created. Any indexes which are present in the catalog but not present in the candidate indexes will be
deleted.

registry, if passed, should be a Pyramid registry. If one is not passed, the
get_current_registry() function will be used to look up the current registry. This function
needs the registry in order to access content catalog views.

If dry_run is True, don’t commit the changes made when this function is called, just send what
would have been done to the logger.

output, if passed should be one of None, False or a function. If it is a function, the function
should accept a single message argument that will be used to record the actions taken during the
reindex. If False is passed, no output is done. If None is passed (the default), the output will wind
up in the substanced.catalog Python logger output at info level.

This function does not reindex new indexes added to the catalog unless reindex=True is passed.

Arguments to this method captured as kw are passed to substanced.catalog.Catalog.
reindex() if reindex is True, otherwise kw is ignored.

If replace is True, an existing catalog index that is not in the category supplied but which has
the same name as a candidate index will be replaced. If replace is False, existing indexes will
never be replaced.

5.3. substanced.catalog API 79

Substance D Documentation, Release 0.0

add_catalog(name, update_indexes=True)
Create and add a catalog named name to this catalogs service. Return the newly created catalog object. If
a catalog named name already exists in this catalogs service, an exception will be raised.

Example usage in a root created subscriber:

@subscribe_created(content_type='Root')
def created(event):

root = event.object
service = root['catalogs']
catalog = service.add_catalog('app1', update_indexes=True)

If update_indexes is True, indexes in the named catalog factory will be added to the newly created
catalog.

substanced.catalog.is_catalogable(resource, registry=None)

substanced.catalog.catalog_factory(name)
Decorator for a class which acts as a template for index creation.:

from substanced.catalog import Text

@catalog_factory('myapp')
class MyAppIndexes(object):

text = Text()
title = Field()

When scanned, this catalog factory will be added to the registry as if substanced.catalog.
add_catalog_factory() were called like:

config.add_catalog_factory('myapp', MyAppIndexes)

substanced.catalog.includeme(config)

substanced.catalog.add_catalog_factory(config, name, cls)
Directive which adds a named catalog factory to the configuration state. The cls argument should be a class
that has named index factory instances as attributes. The name argument should be a string.

substanced.catalog.add_indexview(self, *arg, **kw)
Directive which adds an index view to the configuration state state. The view argument should be function that
is an indeview function, or or a class with a __call__ method that acts as an indexview method. For example:

def title(resource, default):
return getattr(resource, 'title', default)

config.add_indexview(title, catalog_name='myapp', index_name='title')

Or, a class:

class IndexViews(object):
def __init__(self, resource):

self.resource = resource

def __call__(self, default):
return getattr(self.resource, 'title', default)

config.add_indexview(
IndexViews, catalog_name='myapp', index_name='title'
)

80 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

If an attr arg is supplied to add_indexview, you can use a different attribute of the class instad of
__call__:

class IndexViews(object):
def __init__(self, resource):

self.resource = resource

def title(self, default):
return getattr(self.resource, 'title', default)

def name(self, default):
return getattr(self.resource, 'name', default)

config.add_indexview(
IndexViews, catalog_name='myapp', index_name='title', attr='title'
)

config.add_indexview(
IndexViews, catalog_name='myapp', index_name='name', attr='name'
)

In this way you can use the same class to represent a bunch of different index views. An index view will be
looked up by the cataloging machinery when it wants to insert value into a particular catalog type’s index. The
catalog_name you use specify which catalog name this indeview is good for; it should match the string
passed to add_catalog_factory as a name. The index_name argument should match an index name
used within such a catalog.

Index view lookups work a bit like Pyramid view lookups: you can use the context argument to pass an
interface or class which should be used to register the index view; such an index view will only be used when
the resource being indexed has that class or interface. Eventually we’ll provide a way to add predicates other
than context too.

The substanced.catalog.indexview decorator provides a declarative analogue to using this configu-
ration directive.

class substanced.catalog.indexview(**settings)
A class decorator which, when applied to an index view class method, will mark the method as an index view.
This decorator accepts all the arguments accepted by substanced.catalog.add_indexview(), and
each has the same meaning.

class substanced.catalog.indexview_defaults(**settings)
A class decorator which, when applied to a class, will provide defaults for all index view configurations defined
in the class. This decorator accepts all the arguments accepted by substanced.catalog.indexview(),
and each has the same meaning.

5.4 substanced.catalog.indexes API

class substanced.catalog.indexes.FieldIndex(discriminator=None, family=None, ac-
tion_mode=None)

class substanced.catalog.indexes.KeywordIndex(discriminator=None, family=None, ac-
tion_mode=None)

class substanced.catalog.indexes.TextIndex(discriminator=None, lexicon=None,
index=None, family=None, ac-
tion_mode=None)

class substanced.catalog.indexes.FacetIndex(discriminator=None, facets=None, fam-
ily=None, action_mode=None)

5.4. substanced.catalog.indexes API 81

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-decorator
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-decorator

Substance D Documentation, Release 0.0

class substanced.catalog.indexes.PathIndex(discriminator=None, family=None)
Uses the substanced.objectmap.ObjectMap.pathlookup() to apply a query to retrieve object
identifiers at or under a path.

path can be passed to methods as:

• resource object

• tuple of strings (usually returned value of pyramid.traverse.resource_path_tuple())

• a string path (e.g. /foo/bar)

Query methods accept following parameters:

• include_origin (by default True), see substanced.objectmap.ObjectMap.pathlookup() for
explanation.

• depth (by default None) see substanced.objectmap.ObjectMap.pathlookup() for explana-
tion.

Query types supported:

• Eq

• NotEq

class substanced.catalog.indexes.AllowedIndex(discriminator, family=None)
An index which defers to objectmap.allowed as part of a query intersection.

allows(principals, permission)
principals may either be 1) a sequence of principal indentifiers, 2) a single principal identifier, or 3) a
Pyramid request, which indicates that all the effective principals implied by the request are used.

permission must be a permission name.

5.5 hypatia.query API

5.5.1 Comparators

class hypatia.query.Contains(index, value)
Contains query.

CQE equivalent: ‘foo’ in index

class hypatia.query.Eq(index, value)
Equals query.

CQE equivalent: index == ‘foo’

class hypatia.query.NotEq(index, value)
Not equal query.

CQE eqivalent: index != ‘foo’

class hypatia.query.Gt(index, value)
Greater than query.

CQE equivalent: index > ‘foo’

class hypatia.query.Lt(index, value)
Less than query.

CQE equivalent: index < ‘foo’

82 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

class hypatia.query.Ge(index, value)
Greater (or equal) query.

CQE equivalent: index >= ‘foo’

class hypatia.query.Le(index, value)
Less (or equal) query.

CQE equivalent: index <= ‘foo

class hypatia.query.Contains(index, value)
Contains query.

CQE equivalent: ‘foo’ in index

class hypatia.query.NotContains(index, value)
CQE equivalent: ‘foo’ not in index

class hypatia.query.Any(index, value)
Any of query.

CQE equivalent: index in any([‘foo’, ‘bar’])

class hypatia.query.NotAny(index, value)
Not any of query (ie, None of query)

CQE equivalent: index not in any([‘foo’, ‘bar’])

class hypatia.query.All(index, value)
All query.

CQE equivalent: index in all([‘foo’, ‘bar’])

class hypatia.query.NotAll(index, value)
NotAll query.

CQE equivalent: index not in all([‘foo’, ‘bar’])

class hypatia.query.InRange(index, start, end, start_exclusive=False, end_exclusive=False)
Index value falls within a range.

CQE eqivalent: lower < index < upper lower <= index <= upper

class hypatia.query.NotInRange(index, start, end, start_exclusive=False, end_exclusive=False)
Index value falls outside a range.

CQE eqivalent: not(lower < index < upper) not(lower <= index <= upper)

5.5.2 Boolean Operators

class hypatia.query.Or(*queries)
Boolean Or of multiple queries.

class hypatia.query.And(*queries)
Boolean And of multiple queries.

class hypatia.query.Not(query)
Negation of a query.

5.5. hypatia.query API 83

Substance D Documentation, Release 0.0

5.5.3 Other Helpers

class hypatia.query.Name(name)
A variable name in an expression, evaluated at query time. Can be used to defer evaluation of variables used
inside of expressions until query time.

Example:

from hypatia.query import Eq
from hypatia.query import Name

Define query at module scope
find_cats = Eq('color', Name('color')) & Eq('sex', Name('sex'))

Use query in a search function, evaluating color and sex at the
time of the query
def search_cats(catalog, resolver, color='tabby', sex='female'):

Let resolver be some function which can retrieve a cat object
from your application given a docid.
params = dict(color=color, sex=sex)
count, docids = catalog.query(find_cats, params)
for docid in docids:

yield resolver(docid)

hypatia.query.parse_query(expr, catalog, optimize_query=True)
Parses the given expression string and returns a query object. Requires Python >= 2.6.

5.6 hypatia.util API

class hypatia.util.ResultSet(ids, numids, resolver, sort_type=None)
Implements hypatia.interfaces.IResultSet

intersect(docids)
Intersect this resultset with a sequence of docids or another resultset. Returns a new ResultSet.

interface hypatia.interfaces.IResultSet
Iterable sequence of documents or document identifiers.

sort(index, reverse=False, limit=None, sort_type=None, raise_unsortable=True)
Return another IResultSet sorted using the index (an IIndexSort) passed to it after performing the sort
using the index and the limit, reverse, and sort_type parameters.

If sort_type is not None, it should be the value hypatia.interfaces.STABLE to specify that
the sort should be stable or hypatia.interfaces.OPTIMAL to specify that the sort algorithm chosen
should be optimal (but not necessarily stable). It’s usually unnecessary to pass this value, even if you’re
resorting an already-sorted set of docids, because the implementation of IResultSet will internally ensure
that subsequent sorts of the returned result set of an initial sort will be stable; if you don’t want this
behavior, explicitly pass hypatia.interfaces.OPTIMAL on the second and subsequent sorts of a
set of docids.

If raise_unsortable is True (the default), if the index cannot resolve any of the docids in the set of
docids in this result set, a hypatia.exc.Unsortable exception will be raised during iteration over
the sorted docids.

all(resolve=True)
Return a sequence representing all elements in the resultset. If ‘‘resolve‘ is True, and the result set has

84 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

a valid resolver, return an iterable of the resolved documents, otherwise return an iterable containing the
document id of each document.

ids
An iterable sequence of document identifiers

one(resolve=True)
Return the element in the resultset, asserting that there is only one result. If the resultset has more than one
element, raise an hypatia.exc.MultipleResults exception. If the resultset has no elements, raise
an hypatia.exc.NoResults exception. If ‘‘resolve‘ is True, and the result set has a valid resolver,
return the resolved document, otherwise return the document id of the document.

__iter__()
Return an iterator over the results of self.all()

resolver
A callable which accepts a document id and which returns a document. May be None, in which case,
resolution performed by result set methods is not performed, and document identifiers are returned unre-
solved.

__len__()
Return the length of the result set

first(resolve=True)
Return the first element in the sequence. If resolve is True, and the result set has a valid resolver, return
the resolved document, otherwise return the document id of the first document.

5.7 substanced.content API

class substanced.content.content(content_type, factory_type=None, **meta)
Use as a decorator for a content factory (usually a class). Accepts a content type, a factory type (optionally),
and a set of meta keywords. These values mean the same thing as they mean for substanced.content.
add_content_type(). This decorator attaches information to the object it decorates which is used to call
add_content_type() during a scan.

class substanced.content.service(content_type, factory_type=None, **meta)
This class is meant to be used as a decorator for a content factory that creates a service object (aka a service
factory). A service object is an instance of a content type that can be looked up by name and which provides a
service to application code. Services have well-known names within a folder. For example, the principals
service within a folder is ‘the principals service’, the catalog object within a folder is ‘the catalog service’
and so on.

This decorator accepts a content type, a factory type (optionally), and a set of meta keywords. These values
mean the same thing as they mean for the substanced.content.content decorator and substanced.
content.add_content_type(). The decorator attaches information to the object it decorates which is
used to call add_content_type() during a scan.

There is only one difference between using the substanced.content.content decorator and the
substanced.service.service decorator. The service decorator honors a service_name key-
word argument. If this argument is passed, and a service already exists in the folder by this name, the service
will not be shown as addable in the add-content dropdown in the SDI UI.

substanced.content.add_content_type(config, content_type, factory, factory_type=None,
**meta)

Configurator directive method which register a content type factory with the Substance D type system. Call via
config.add_content_type during Pyramid configuration phase.

content_type is a hashable object (usually a string) representing the content type.

5.7. substanced.content API 85

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-scan
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-scan

Substance D Documentation, Release 0.0

factory is a class or function which produces a content instance. It must be a global object (e.g. it cannot be
a callable which is a method of a class or a callable instance). If factory is a function rather than a class, a
factory wrapper is used (see below).

**meta is an arbitrary set of keywords associated with the content type in the content registry.

Some of the keywords in **meta have special meaning:

• If meta contains the keyword propertysheets, the content type will obtain a tab in the SDI that
allows users to manage its properties.

• If meta contains the keyword icon, this value will be used as the icon for the content type that shows up
next to the content in a folder content view.

Other keywords in meta will just be stored, and have no special meaning.

factory_type is an optional argument that can be used if the same factory must be used for two different
content types; it is used during content type lookup (e.g. substanced.util.get_content_type())
to figure out which content type a constructed object is an instance of; it only needs to be used when the same
factory is used for two different content types. Note that two content types cannot have the same factory type,
unless it is None.

If factory_type is passed, the supplied factory will be wrapped in a factory wrapper which adds a
__factory_type__ attribute to the constructed instance. The value of this attribute will be used to de-
termine the content type of objects created by the factory.

If the factory is a function rather than a class, a factory wrapper is used unconditionally.

The upshot wrt to factory_type: if your factory is a class and you pass a factory_type or if your
factory is a function, you won’t be able to successfully use the ‘bare’ factory callable to construct an instance
of this content in your code, because the resulting instance will not have a __factory_type__ attribute.
Instead, you’ll be required to use substanced.content.Content.create() to create an instance of
the object with a proper __factory_type__ attribute. But if your factory is a class, and you don’t pass
factory_type (the ‘garden path’), you’ll be able to use the class’ constructor directly in your code to create
instances of your content objects, which is more convenient and easier to unit test.

substanced.content.add_service_type(config, content_type, factory, factory_type=None,
**meta)

Configurator directive method which registers a service factory. Call via config.add_service_type
during Pyramid configuration phase. All arguments mean the same thing as they mean for the substanced.
content.add_content_type.

A service factory is a special kind of content factory. A service factory creates a service object. A service object
is an instance of a content type that can be looked up by name and which provides a service to application code.
Services often have well-known names within the services folder. For example, the principals object within
a services folder is ‘the principals service’, the catalog object within a services folder is ‘the catalog service’
and so on.

There is only one difference between using the substanced.content.add_content_type function
and the substanced.service.add_service_type decorator. The add_service_type function
honors a service_name keyword argument in its **meta. If this argument is passed, and a service already
exists in a folder by this name, the service will not be shown as addable in the add-content dropdown in the SDI
UI of the folder.

class substanced.content.ContentRegistry(registry)
An object accessible as registry.content (aka request.registry.content, aka config.
registry.content) that contains information about Substance D content types.

add(content_type, factory_type, factory, **meta)
Add a content type to this registry

86 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

all()
Return all content types known my this registry as a sequence.

create(content_type, *arg, **kw)
Create an instance of content_type by calling its factory with *arg and **kw. If the meta of the
content type has an after_create value, call it (if it’s a string, it’s assumed to be a method of the
created object, and if it’s a sequence, each value should be a string or a callable, which will be called in
turn); then send a substanced.event.ContentCreatedEvent. Return the created object.

If the key __oid is in the kw arguments, it will be used as the created object’s oid.

exists(content_type)
Return True if content_type has been registered within this content registry, False otherwise.

factory_type_for_content_type(content_type)
Return the factory_type value for the content_type requested

find(resource, content_type)
Return the first object in the lineage of the resource that supplies the content_type or None if no
such object can be found.

See also pyramid.traversal.find_interface() to find object by an interface or a class.

istype(resource, content_type)
Return True if resource is of content type content_type, False otherwise.

metadata(resource, name, default=None)
Return a metadata value for the content type of resource based on the **meta value passed to add().
If a value in that content type’s metadata was passed using name as its name, the value will be returned,
otherwise default will be returned.

typeof(resource)
Return the content type of resource

substanced.content.includeme(config)

5.8 substanced.db API

substanced.db.root_factory(request, t=<module ’transaction’ from
’/home/docs/checkouts/readthedocs.org/user_builds/substanced/envs/latest/local/lib/python2.7/site-
packages/transaction/__init__.pyc’>, g=<function
get_connection>, mark_unfinished_as_finished=<function
mark_unfinished_as_finished>)

A function which can be used as a Pyramid root_factory. It accepts a request and returns an instance of
the Root content type.

5.9 substanced.dump API

substanced.db.includeme(config)

5.10 substanced.editable API

interface substanced.editable.IEditable
Adapter interface for editing content as a file.

5.8. substanced.db API 87

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/traversal.html#pyramid.traversal.find_interface

Substance D Documentation, Release 0.0

put(fileish)
Update context based on the contents of fileish.

• fileish is a file-type object: its read method should return the (new) file representation of the
context.

get()
Return (body_iter, mimetype) representing the context.

• body_iter is an iterable, whose chunks are bytes represenating the context as an editable file.

• mimetype is the MIMEType corresponding to body_iter.

class substanced.editable.FileEditable(context, request)
IEditable adapter for stock SubstanceD ‘File’ objects.

substanced.editable.register_editable_adapter(config, adapter, iface)
Configuration directive: register IEditable adapter for iface.

• adapter is the adapter factory (a class or other callable taking (context, request)).

• iface is the interface / class for which the adapter is registered.

substanced.editable.get_editable_adapter(context, request)
Return an editable adapter for the context

Return None if no editable adapter is registered.

5.11 substanced.event API

class substanced.event.ObjectAdded(object, parent, name, duplicating=False, moving=False,
loading=False)

An event sent just after an object has been added to a folder.

class substanced.event.ObjectWillBeAdded(object, parent, name, duplicating=False, mov-
ing=False, loading=False)

An event sent just before an object has been added to a folder.

class substanced.event.ObjectRemoved(object, parent, name, removed_oids, moving=False,
loading=False)

An event sent just after an object has been removed from a folder.

class substanced.event.ObjectWillBeRemoved(object, parent, name, moving=False, load-
ing=False)

An event sent just before an object has been removed from a folder.

removed_oids
Helper property that caches oids that will be removed as the result of this event. Will return an empty
sequence if objectmap cannot be found on self.parent.

class substanced.event.ObjectModified(object)
An event sent when an object has been modified.

class substanced.event.ACLModified(object, old_acl, new_acl)

class substanced.event.LoggedIn(login, user, context, request)

class substanced.event.RootAdded(object)

class substanced.event.AfterTransition(object, old_state, new_state, transition)
Event sent after any workflow transition happens

88 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

class substanced.event.subscribe_added(obj=None, container=None, **predicates)
Decorator for registering an object added event subscriber (a subscriber for ObjectAdded).

event = <InterfaceClass substanced.interfaces.IObjectAdded>

class substanced.event.subscribe_removed(obj=None, container=None, **predicates)
Decorator for registering an object removed event subscriber (a subscriber for ObjectRemoved).

event = <InterfaceClass substanced.interfaces.IObjectRemoved>

class substanced.event.subscribe_will_be_added(obj=None, container=None, **predi-
cates)

Decorator for registering an object will-be-added event subscriber (a subscriber for ObjectWillBeAdded).

event = <InterfaceClass substanced.interfaces.IObjectWillBeAdded>

class substanced.event.subscribe_will_be_removed(obj=None, container=None, **predi-
cates)

Decorator for registering an object will-be-removed event subscriber (a subscriber for ObjectWillBeRemoved).

event = <InterfaceClass substanced.interfaces.IObjectWillBeRemoved>

class substanced.event.subscribe_modified(obj=None, **predicates)
Decorator for registering an object modified event subscriber (a subscriber for ObjectModified).

event = <InterfaceClass substanced.interfaces.IObjectModified>

class substanced.event.subscribe_acl_modified(obj=None, **predicates)
Decorator for registering an acl modified event subscriber (a subscriber for ObjectModified).

event = <InterfaceClass substanced.interfaces.IACLModified>

class substanced.event.subscribe_logged_in(**predicates)
Decorator for registering an event listener for when a user is logged in

event = <InterfaceClass substanced.interfaces.ILoggedIn>

class substanced.event.subscribe_root_added(**predicates)
Decorator for registering an event listener for when a root object has a database connection

event = <InterfaceClass substanced.interfaces.IRootAdded>

class substanced.event.subscribe_after_transition(**predicates)
Decorator for registering an event listener for when a transition has been done on an object

event = <InterfaceClass substanced.interfaces.IAfterTransition>

5.12 substanced.evolution API

substanced.evolution.add_evolution_step(config, func, before=None, after=None,
name=None)

A configurator directive which adds an evolution step. An evolution step can be used to perform upgrades or
migrations of data structures in existing databases to meet expectations of new code.

func should be a function that performs the evolution logic. It should accept two arguments (conventionally-
named) root and registry. ``root will be the root of the ZODB used to serve your Substance D site,
and registry will be the Pyramid application registry.

before should either be None, another evolution step function, or the dotted name to such a function. By
default, it is None, which means execute in the order defined by the calling order of add_evolution_step.

after should either be None, another evolution step function, or the dotted name to such a function. By
default, it is None.

5.12. substanced.evolution API 89

Substance D Documentation, Release 0.0

name is the name of the evolution step. It must be unique between all registered evolution steps. If it is not
provided, the dotted name of the function used as func will be used as the evolution step name.

substanced.evolution.mark_unfinished_as_finished(app_root, registry, t=None)
Given the root object of a Substance D site as app_root and a Pyramid registry, mark all pending evolution
steps as completed without actually executing them.

substanced.evolution.includeme(config)

5.13 substanced.file API

substanced.file.USE_MAGIC
A constant value used as an argument to various methods of the substanced.file.File class.

class substanced.file.File(stream=None, mimetype=None, title=u”)

__init__(stream=None, mimetype=None, title=u”)
The constructor of a File object.

stream should be a filelike object (an object with a read method that takes a size argument) or None.
If stream is None, the blob attached to this file object is created empty.

title must be a string or Unicode object.

mimetype may be any of the following:

• None, meaning set this file object’s mimetype to application/octet-stream (the default).

• A mimetype string (e.g. image/gif)

• The constant substanced.file.USE_MAGIC, which will derive the mimetype from the stream
content (if stream is also supplied) using the python-magic library.

Warning: On non-Linux systems, successful use of substanced.file.USE_MAGIC re-
quires the installation of additional dependencies. See Installing python-magic.

blob
The ZODB blob object associated with this file.

mimetype
The mimetype of this file object (a string).

get_etag()
Return a token identifying the “version” of the file.

get_response(**kw)
Return a WebOb-compatible response object which uses the blob content as the stream data and the mime-
type of the file as the content type. The **kw arguments will be passed to the pyramid.response.
FileResponse constructor as its keyword arguments.

get_size()
Return the size in bytes of the data in the blob associated with the file

upload(stream, mimetype_hint=None)
Replace the current contents of this file’s blob with the contents of stream. stream must be a filelike
object (it must have a read method that takes a size argument).

mimetype_hint can be any of the following:

90 Chapter 5. API Documentation

https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html#pyramid.response.FileResponse
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html#pyramid.response.FileResponse

Substance D Documentation, Release 0.0

• None, meaning don’t reset the current mimetype. This is the default. If you already know the
file’s mimetype, and you don’t want it divined from a filename or stream content, use None as the
mimetype_hint value, and set the mimetype attribute of the file object directly before or after
calling this method.

• A string containing a filename that has an extension; the mimetype will be derived from the extension
in the filename using the Python mimetypes module, and the result will be set as the mimetype
attribute of this object.

• The constant substanced.file.USE_MAGIC, which will derive the mimetype using the
python-magic library based on the stream’s actual content. The result will be set as the mimetype
attribute of this object.

Warning: On non-Linux systems, successful use of substanced.file.USE_MAGIC re-
quires the installation of additional dependencies. See Installing python-magic.

5.14 substanced.folder API

class substanced.folder.FolderKeyError

class substanced.folder.Folder(data=None, family=None)
A folder implementation which acts much like a Python dictionary.

Keys must be Unicode strings; values must be arbitrary Python objects.

__init__(data=None, family=None)
Constructor. Data may be an initial dictionary mapping object name to object.

order
A tuple of name values. If set, controls the order in which names should be returned from __iter__(),
keys(), values(), and items(). If not set, use an effectively random order.

add(name, other, send_events=True, reserved_names=(), duplicating=None, moving=None, load-
ing=False, registry=None)
Same as __setitem__.

If send_events is False, suppress the sending of folder events. Don’t allow names in the
reserved_names sequence to be added.

If duplicating not None, it must be the object which is being duplicated; a result of a non-None
duplicating means that oids will be replaced in objectmap. If moving is not None, it must be the folder
from which the object is moving; this will be the moving attribute of events sent by this function too. If
loading is True, the loading attribute of events sent as a result of calling this method will be True
too.

This method returns the name used to place the subobject in the folder (a derivation of name, usually the
result of self.check_name(name)).

add_service(name, obj, registry=None, **kw)
Add a service to this folder named name.

check_name(name, reserved_names=())
Perform all the validation checks implied by validate_name() against the name supplied but also
fail with a FolderKeyError if an object with the name name already exists in the folder.

clear(registry=None)
Clear all items from the folder. This is the equivalent of calling .remove with each key that exists in the
folder.

5.14. substanced.folder API 91

Substance D Documentation, Release 0.0

copy(name, other, newname=None, registry=None)
Copy a subobject named name from this folder to the folder represented by other. If newname is not
none, it is used as the target object name; otherwise the existing subobject name is used.

find_service(service_name)
Return a service named by service_name in this folder or any parent service folder or None if no such
service exists. A shortcut for substanced.service.find_service().

find_services(service_name)
Returns a sequence of service objects named by service_name in this folder’s lineage or an empty
sequence if no such service exists. A shortcut for substanced.service.find_services()

get(name, default=None)
Return the object named by name or the default.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the system default encoding.

is_ordered()
Return true if the folder has a manually set ordering, false otherwise.

is_reorderable()
Return true if the folder can be reordered, false otherwise.

items()
Return an iterable sequence of (name, value) pairs in the folder.

Respect order, if set.

keys()
Return an iterable sequence of object names present in the folder.

Respect order, if set.

load(name, newobject, registry=None)
A replace method used by the code that loads an existing dump. Events sent during this replace will have
a true loading flag.

move(name, other, newname=None, registry=None)
Move a subobject named name from this folder to the folder represented by other. If newname is not
none, it is used as the target object name; otherwise the existing subobject name is used.

This operation is done in terms of a remove and an add. The Removed and WillBeRemoved events as well
as the Added and WillBeAdded events sent will indicate that the object is moving.

order
Return an iterable sequence of object names present in the folder.

Respect order, if set.

pop(name, default=<object object>, registry=None)
Remove the item stored in the under name and return it.

If name doesn’t exist in the folder, and default is not passed, raise a KeyError.

If name doesn’t exist in the folder, and default is passed, return default.

When the object stored under name is removed from this folder, remove its __parent__ and
__name__ values.

When this method is called, emit an substanced.event.ObjectWillBeRemoved event be-
fore the object loses its __name__ or __parent__ values. Emit an substanced.event.
ObjectRemoved after the object loses its __name__ and __parent__ value,

92 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

remove(name, send_events=True, moving=None, loading=False, registry=None)
Same thing as __delitem__.

If send_events is false, suppress the sending of folder events.

If moving is not None, the moving argument must be the folder to which the named object will be
moving. This value will be passed along as the moving attribute of the events sent as the result of this
action. If loading is True, the loading attribute of events sent as a result of calling this method will
be True too.

rename(oldname, newname, registry=None)
Rename a subobject from oldname to newname.

This operation is done in terms of a remove and an add. The Removed and WillBeRemoved events sent
will indicate that the object is moving.

reorder(names, before)
Move one or more items from a folder into new positions inside that folder. names is a list of ids of
existing folder subobject names, which will be inserted in order before the item named before. All other
items are left in the original order. If before is None, the items will be appended after the last item in
the current order. If this method is called on a folder which does not have an order set, or which is not
reorderable, a ValueError will be raised. A KeyError is raised, if before does not correspond to
any item, and is not None.

replace(name, newobject, send_events=True, registry=None)
Replace an existing object named name in this folder with a new object newobject. If there isn’t an
object named name in this folder, an exception will not be raised; instead, the new object will just be
added.

This operation is done in terms of a remove and an add. The Removed and WillBeRemoved events will be
sent for the old object, and the WillBeAdded and Added events will be sent for the new object.

set_order(names, reorderable=None)
Sets the folder order. names is a list of names for existing folder items, in the desired order. All names
that currently exist in the folder must be mentioned in names, or a ValueError will be raised.

If reorderable is passed, value, it must be None, True or False. If it is None, the reorderable flag
will not be reset from its current value. If it is anything except None, it will be treated as a boolean and
the reorderable flag will be set to that value. The reorderable value of a folder will be returned by that
folder’s is_reorderable() method. The is_reorderable() method is used by the SDI folder
contents view to indicate that the folder can or cannot be reordered via the web UI.

If reorderable is set to True, the reorder() method will work properly, otherwise it will raise a
ValueError when called.

unset_order()
Remove set order from a folder, making it unordered, and non-reorderable.

validate_name(name, reserved_names=())
Validate the name passed to ensure that it’s addable to the folder. Returns the name decoded to Unicode
if it passes all addable checks. It’s not addable if:

• the name is not decodeable to Unicode.

• the name starts with @@ (conflicts with explicit view names).

• the name has slashes in it (WSGI limitation).

• the name is empty.

If any of these conditions are untrue, raise a ValueError. If the name passed is in the list of
reserved_names, raise a ValueError.

5.14. substanced.folder API 93

Substance D Documentation, Release 0.0

values()
Return an iterable sequence of the values present in the folder.

Respect order, if set.

class substanced.folder.SequentialAutoNamingFolder(data=None, family=None, au-
toname_length=None, auton-
ame_start=None)

An auto-naming folder which autonames a subobject by sequentially incrementing the maximum key of the
folder.

Example names: 0000001, then 0000002, and so on.

This class implements the substanced.interfaces.IAutoNamingFolder interface and inherits from
substanced.folder.Folder.

This class is typically used as a base class for a custom content type.

__init__(data=None, family=None, autoname_length=None, autoname_start=None)
Constructor. Data may be an initial dictionary mapping object name to object. Autoname length may be
supplied. If it is not, it will default to 7. Autoname start may be supplied. If it is not, it will default to -1.

add_next(subobject, send_events=True, duplicating=None, moving=None, registry=None)
Add a subobject, naming it automatically, giving it the name returned by this folder’s next_namemethod.
It has the same effect as calling substanced.folder.Folder.add(), but you needn’t provide a
name argument.

This method returns the name of the subobject.

next_name(subobject)
Return a name string based on:

• intifying the maximum key of this folder and adding one.

• zero-filling the left hand side of the result with as many zeroes as are in the value of this folder’s
autoname_length constructor value.

If the folder has no items in it, the initial value used as a name will be the value of this folder’s
autoname_start constructor value.

add(name, other, send_events=True, reserved_names=(), duplicating=None, moving=None, load-
ing=False, registry=None)
The add method of a SequentialAutoNamingFolder will raise a ValueError if the name it is passed
is not intifiable, as its next_name method relies on controlling the types of names that are added to it
(they must be intifiable). It will also zero-fill the name passed based on this folder’s autoname_length
constructor value. It otherwise just calls its superclass’ add method and returns the result.

class substanced.folder.RandomAutoNamingFolder(data=None, family=None, auton-
ame_length=None)

An auto-naming folder which autonames a subobject using a random string.

Example names: MXF937A, FLTP2F9.

This class implements the substanced.interfaces.IAutoNamingFolder interface and inherits from
substanced.folder.Folder.

This class is typically used as a base class for a custom content type.

__init__(data=None, family=None, autoname_length=None)
Constructor. Data may be an initial dictionary mapping object name to object. Autoname length may be
supplied. If it is not, it will default to 7.

add_next(subobject, send_events=True, duplicating=None, moving=None, registry=None)
Add a subobject, naming it automatically, giving it the name returned by this folder’s next_namemethod.

94 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

It has the same effect as calling substanced.folder.Folder.add(), but you needn’t provide a
name argument.

This method returns the name of the subobject.

next_name(subobject)
Return a name string based on generating a random string composed of digits and uppercase letters of
a length determined by this folder’s autoname_length constructor value. It tries generatoing values
continuously until one that is unused is found.

5.15 substanced.folder.views API

5.16 substanced.form API

class substanced.form.Form(schema, action=”, method=’POST’, buttons=(), formid=’deform’,
use_ajax=False, ajax_options=’{}’, autocomplete=None, **kw)

Subclass of deform.form.Form which uses a custom resource registry designed for Substance D. XXX
point at deform docs.

class substanced.form.FormView(context, request)
A class which can be used as a view which introspects a schema to present the form. XXX describe better using
pyramid_deform documentation.

form_class
alias of Form

class substanced.form.FileUploadTempStore(request)
A Deform FileUploadTempStore implementation that stores file upload data in the Pyramid session and
on disk. The request passed to its constructor must be a fully-initialized Pyramid request (it have a registry
attribute, which must have a settings attribute, which must be a dictionary). The substanced.
uploads_tempdir variable in the settings dictionary must be set to the path of an existing directory
on disk. This directory will temporarily store file upload data on behalf of Deform and Substance D when a
form containing a file upload widget fails validation.

See the Deform documentation for more information about FileUploadTempStore objects.

5.17 substanced.locking API

Advisory exclusive DAV-style locks for content objects.

When a resource is locked, it is presumed that its SDI UI will display a warning to users who do not hold the lock.
The locking service can also be used by add-ons such as DAV implementations.

class substanced.locking.Lock(infinite=False, timeout=3600, comment=None,
last_refresh=None)

A persistent object representing a lock.

ownerid
The owner oid for this lock.

owner
The owner object of this lock (a User).

resourceid
The oid of the resource related to this lock.

5.15. substanced.folder.views API 95

Substance D Documentation, Release 0.0

resource
The resource object related to this lock.

commit_suicide()
Remove this lock from the lock service.

expires()
Return the future datetime at which this lock will expire.

For invalid locks, the returned value indicates the point in the past at which the lock expired.

is_valid(when=None)
Return True if the lock has not expired and its resource exists.

refresh(timeout=None, when=None)
Refresh the lock.

If the timeout is not None, set the timeout for this lock too.

class substanced.locking.LockError(lock)
Raised when a lock cannot be created due to a conflicting lock.

Instances of this class have a lock attribute which is a substanced.locking.Lock object, representing
the conflicting lock.

class substanced.locking.UnlockError(lock)
Raised when a lock cannot be removed

This may be because the owner suplied in the unlock request does not match the owner of the lock, or becaues
the lock no longer exists.

Instances of this class have a lock attribute which is a substanced.locking.Lock object, representing
the conflicting lock, or None if there was no lock to unlock.

substanced.locking.lock_resource(resource, owner_or_ownerid, timeout=None,
comment=None, locktype=<ReferenceClass sub-
stanced.interfaces.WriteLock>, infinite=False)

Lock a resource using the lock service.

If the resource is already locked by the owner supplied as owner_or_ownerid, refresh the lock using timeout.

If the resource is not already locked by another user, create a new lock with the given values.

If the resource is already locked by a different user, raise a substanced.locking.LockError

If a Lock Service does not already exist in the lineage, a ValueError will be raised.

Warning: Callers should assert that the owner has the sdi.lock permission against the resource before
calling this function to ensure that a user can’t lock a resource he is not permitted to.

substanced.locking.unlock_resource(resource, owner_or_ownerid, locktype=<ReferenceClass
substanced.interfaces.WriteLock>)

Unlock a resource using the lock service.

If the resource is already locked by a user other than the owner supplied as owner_or_ownerid or the
resource isn’t already locked with this lock type, raise a substanced.locking.UnlockError exception.

Otherwise, remove the lock.

If a Lock Service does not already exist in the lineage, a ValueError will be raised.

96 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

Warning: Callers should assert that the owner has the sdi.lock permission against the re-
source before calling this function to ensure that a user can’t lock a resource he is not permitted
to.

substanced.locking.discover_resource_locks(resource, include_invalid=False,
include_lineage=True, lock-
type=<ReferenceClass sub-
stanced.interfaces.WriteLock>)

Return locks related to resource for the given locktype.

Return a sequence of substanced.locking.Lock objects.

By default, only valid locks are returned.

Invalid locks for the resource may exist, but they are not returned unless include_invalid is True.

Under normal circumstances, the length of the sequence returned will be either 0 (if there are no locks) or 1 (if
there is any lock).

In some special circumstances, however, when the substanced.locking.lock_resource API is not
used to create locks, there may be more than one lock of the same type related to a resource.

5.18 substanced.objectmap API

class substanced.objectmap.ObjectMap(root, family=None)

add(obj, path_tuple, duplicating=False, moving=False)
Add a new object to the object map at the location specified by path_tuple (must be the path of the
object in the object graph as a tuple, as returned by Pyramid’s resource_path_tuple function).

If duplicating is True, replace the oid of the added object even if it already has one and adjust extents
involving the new oid.

If moving is True, don’t add any extents.

It is an error to pass a true value for both duplicating and moving.

allowed(oids, principals, permission)
For the set of oids present in oids, return a sequence of oids that are permitted permission against
each oid if the implied user is a member of the set of principals implied by principals. This method
uses the data collected via the set_acl method of this class.

connect(source, target, reftype)
Connect a source object or objectid to a target object or objectid using reference type reftype

disconnect(source, target, reftype)
Disconnect a source object or objectid from a target object or objectid using reference type reftype

get_extent(name, default=())
Return the extent for name (typically a factory name, e.g. the dotted name of the content class). It will be a
TreeSet composed entirely of oids. If no extent exist by this name, this will return the value of default.

get_reftypes()
Return a sequence of reference types known by this objectmap.

has_references(obj, reftype=None)
Return true if the object participates in any reference as a source or a target. obj may be an object or an
oid.

5.18. substanced.objectmap API 97

Substance D Documentation, Release 0.0

new_objectid()
Obtain an unused integer object identifier

object_for(objectid_or_path_tuple, context=None)
Returns an object or None given an object id or a path tuple

objectid_for(obj_or_path_tuple)
Returns an objectid or None, given an object or a path tuple

order_sources(targetid, reftype, order=<object object>)
Set the ordering of the source ids of a reference relative to the targetid. order should be a tuple or list
of oids or objects in the order that they should be kept in the reference map. If the reftyp+targetid combina-
tion has existing reference values, the values in order must mention all of their oids, or a ValueError
will be raised. You can unset an order for this targetid+reftype combination by passing None as the order.

order_targets(sourceid, reftype, order=<object object>)
Set the ordering of the target ids of a reference type. order should be a tuple (or list) of oids or objects in
the order that they should be kept in the reference map. If the reference type has existing reference values,
the values in order must mention all of their oids, or a ValueError will be raised. You can unset an
ordering by passing None as the order.

path_for(objectid)
Returns an path or None given an object id

pathcount(obj_or_path_tuple, depth=None, include_origin=True)
Return the total number of objectids under a given path given an object or a path tuple. If depth is None,
count all object ids under the path. If depth is an integer, use that depth instead. If include_origin
is True, count the object identifier of the object that was passed, otherwise omit it.

pathlookup(obj_or_path_tuple, depth=None, include_origin=True)
Return a set of objectids under a given path given an object or a path tuple. If depth is None, return all
object ids under the path. If depth is an integer, use that depth instead. If include_origin is True,
include the object identifier of the object that was passed, otherwise omit it from the returned set.

remove(obj_objectid_or_path_tuple, moving=False)
Remove an object from the object map give an object, an object id or a path tuple. If moving is False,
also remove any references added via connect and any extents related to the removed objects.

Return a set of removed oids (including the oid related to the object passed).

set_acl(obj_objectid_or_path_tuple, acl)
For the resource implied by obj_objectid_or_path_tuple, set the cached version of its ACL (for
later used by allowed) to the ACL passed as acl

sourceids(obj, reftype)
Return a set of object identifiers of the objects connected to obj a source using reference type reftype

sources(obj, reftype)
Return a generator which will return the objects connected to obj as a source using reference type
reftype

targetids(obj, reftype)
Return a set of object identifiers of the objects connected to obj a target using reference type reftype

targets(obj, reftype)
Return a generator which will return the objects connected to obj as a target using reference type
reftype

class substanced.objectmap.Multireference(context, objectmap, reftype, ignore_missing, re-
solve, orientation, ordered=False)

An iterable of objects (if resolve is true) or oids (if resolve is false). Also supports the Python sequence
protocol.

98 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

Additionally supports connect, disconnect, and clear methods for mutating the relationships implied
by the reference.

clear()
Clear all references in this relationship.

connect(objects, ignore_missing=None)
Connect objects to this reference’s relationship. objects should be a sequence of content objects or
object identifiers.

disconnect(objects, ignore_missing=None)
Disconnect objects from this reference’s relationship. objects should be a sequence of content
objects or object identifiers.

substanced.objectmap.reference_sourceid_property(reftype)
Returns a property which, when set, establishes an object map reference between the property’s instance (the
source) and another object in the objectmap (the target) based on the reference type reftype. It is comparable
to a Python ‘weakref’ between the persistent object instance which the property is attached to and the persistent
target object id; when the target object or the object upon which the property is defined is removed from the
system, the reference is destroyed.

The reftype argument is a reference type, a hashable object that describes the type of the relation. See
substanced.objectmap.ObjectMap.connect() for more information about reference types.

You can set, get, and delete the value. When you set the value, a relation is formed between the object which
houses the property and the target object id. When you get the value, the related value (or None if no relation
exists) is returned, when you delete the value, the relation is destroyed and the value will revert to None.

For example:

1 # definition
2

3 from substanced.content import content
4 from substanced.objectmap import reference_sourceid_property
5

6 @content('Profile')
7 class Profile(Persistent):
8 user_id = reference_sourceid_property('profile-to-userid')
9

10 # subsequent usage of the property in a view...
11

12 profile = registry.content.create('Profile')
13 somefolder['profile'] = profile
14 profile.user_id = get_oid(request.user)
15 print profile.user_id # will print the oid of the user
16

17 # if the user is later deleted by unrelated code...
18

19 print profile.user_id # will print None
20

21 # or if you delete the value explicitly...
22

23 del profile.user_id
24 print profile.user_id # will print None

substanced.objectmap.reference_source_property(reftype)
Exactly like substanced.objectmap.reference_sourceid_property(), except its getter re-
turns the instance related to the target instead of the target object id. Likewise, its setter will accept another
persistent object instance that has an object id.

5.18. substanced.objectmap API 99

Substance D Documentation, Release 0.0

For example:

1 # definition
2

3 from substanced.content import content
4 from substanced.objectmap import reference_source_property
5

6 @content('Profile')
7 class Profile(Persistent):
8 user = reference_source_property('profile-to-user')
9

10 # subsequent usage of the property in a view...
11

12 profile = registry.content.create('Profile')
13 somefolder['profile'] = profile
14 profile.user = request.user
15 print profile.user # will print the user object
16

17 # if the user is later deleted by unrelated code...
18

19 print profile.user # will print None
20

21 # or if you delete the value explicitly...
22

23 del profile.user
24 print profile.user # will print None

substanced.objectmap.reference_targetid_property(reftype)
Same as substanced.objectmap.reference_sourceid_property(), except the object upon
which the property is defined is the target of the reference and any object assigned to the property is the source.

substanced.objectmap.reference_target_property(reftype)
Same as substanced.objectmap.reference_source_property(), except the object upon which
the property is defined is the target of the reference and any object assigned to the property is the source.

substanced.objectmap.multireference_sourceid_property(reftype, ig-
nore_missing=False, or-
dered=None)

Like substanced.objectmap.reference_sourceid_property(), but maintains a
substanced.objectmap.Multireference rather than an object id. If ignore_missing is
True, attempts to connect or disconnect unresolveable object identifiers will not cause an exception. If
ordered is True, the relative ordering of references in a sequence will be maintained when you assign that
sequence to the property and when you use the .connect method of the property. If ordered is None,
defers to the appropriate attribute on the reftype.

substanced.objectmap.multireference_source_property(reftype, ignore_missing=False,
ordered=None)

Like substanced.objectmap.reference_source_property(), but maintains a substanced.
objectmap.Multireference rather than a single object reference. If ignore_missing is True, at-
tempts to connect or disconnect unresolveable object identifiers will not cause an exception. If ordered is
True, the relative ordering of references in a sequence will be maintained when you assign that sequence to
the property and when you use the .connect method of the property. If ordered is None, defers to the
appropriate attribute on the reftype.

substanced.objectmap.multireference_targetid_property(reftype, ig-
nore_missing=False, or-
dered=None)

Like substanced.objectmap.reference_targetid_property(), but maintains a
substanced.objectmap.Multireference rather than an object id. If ignore_missing is

100 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

True, attempts to connect or disconnect unresolveable object identifiers will not cause an exception. If
ordered is True, the relative ordering of references in a sequence will be maintained when you assign that
sequence to the property and when you use the .connect method of the property. If ordered is None,
defers to the appropriate attribute on the reftype.

substanced.objectmap.multireference_target_property(reftype, ignore_missing=False,
ordered=None)

Like substanced.objectmap.reference_target_property(), but maintains a substanced.
objectmap.Multireference rather than a single object reference. If ignore_missing is True, at-
tempts to connect or disconnect unresolveable object identifiers will not cause an exception. If ordered is
True, the relative ordering of references in a sequence will be maintained when you assign that sequence to
the property and when you use the .connect method of the property. If ordered is None, defers to the
appropriate attribute on the reftype.

class substanced.objectmap.ReferentialIntegrityError(obj, reftype, oids)
Exception raised when a referential integrity constraint is violated. Raised before an object involved in a relation
with an integrity constraint is removed from a folder.

Attributes:

obj: the object which would have been removed were its removal not
prevented by the raising of this exception

reftype: the reference type (usually a class)

oids: the oids that reference the to-be-removed object.

get_objects()
Return the objects which hold a reference to the object inovlved in the integrity error.

class substanced.objectmap.SourceIntegrityError(obj, reftype, oids)

class substanced.objectmap.TargetIntegrityError(obj, reftype, oids)

5.19 substanced.principal API

5.20 substanced.property API

class substanced.property.PropertySheet(context, request)
Bases: object

Convenience base class for concrete property sheet implementations

before_render(form)
Hook: allow subclasses to scribble on form.

Called by substanced.property.views.PropertySheetsView.before, after building the
form but before rendering it.

substanced.property.add_propertysheet(self, *arg, **kw)
Add a propertysheet for the content types implied by iface and predicates.

The propsheet argument represents a propertysheet class (or a dotted Python name which identifies such a
class); it will be called with two objects: context and request whenever Substance D determines that the
propertysheet is necessary to display. The iface may be an interface or a class or a dotted Python name to a
global object representing an interface or a class.

Using the default iface value, None will cause the propertysheet to be registered for all content types.

5.19. substanced.principal API 101

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-dotted-python-name
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-dotted-python-name

Substance D Documentation, Release 0.0

Any number of predicate keyword arguments may be passed in **predicates. Each predicate named
will narrow the set of circumstances in which the propertysheet will be invoked. Each named predicate must
have been registered via pyramid.config.Configurator.add_propertysheet_predicate()
before it can be used.

substanced.property.add_propertysheet_predicate(self, *arg, **kw)
Adds a property sheet predicate factory. The associated property sheet predicate can later be named as a keyword
argument to pyramid.config.Configurator.add_propertysheet() in the **predicates
anonymous keyword argument dictionary.

name should be the name of the predicate. It must be a valid Python identifier (it will be used as a
**predicates keyword argument to add_propertysheet()).

factory should be a predicate factory or dotted Python name which refers to a predicate factory.

class substanced.property.PropertySheet(context, request)
Convenience base class for concrete property sheet implementations

before_render(form)
Hook: allow subclasses to scribble on form.

Called by substanced.property.views.PropertySheetsView.before, after building the
form but before rendering it.

5.21 substanced.schema API

class substanced.schema.Schema(*arg, **kw)
A colander.Schema subclass which generates and validates a CSRF token automatically. You must use it
like so:

from substanced.schema import Schema as CSRFSchema
import colander

class MySchema(CSRFSchema):
my_value = colander.SchemaNode(colander.String())

And in your application code, bind the schema, passing the request as a keyword argument:

def aview(request):
schema = MySchema().bind(request=request)

In order for the CRSFSchema to work, you must configure a session factory in your Pyramid application. This
is usually done by Substance D itself, but may not be done for you in extremely custom configurations.

schema_type
alias of RemoveCSRFMapping

class substanced.schema.NameSchemaNode(*arg, **kw)
Convenience Colander schemanode used to represent the name (aka __name__) of an object in a propertysheet
or add form which allows for customizing the detection of whether editing or adding is being done, and setting
a max length for the name.

By default it uses the context’s check_name API to ensure that the name provided is valid, and limits filename
length to a default of 100 characters. Some usage examples follow.

This sets up the name_node to assume that it’s in ‘add’ mode with the default 100 character max limit.:

102 Chapter 5. API Documentation

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-predicate-factory
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-dotted-python-name

Substance D Documentation, Release 0.0

name_node = NameSchemaNode()

This sets up the name_node to assume that it’s in ‘add’ mode, and that the maximum length of the name provided
is 20 characters:

name_node = NameSchemaNode(max_len=20)

This sets up the name_node to assume that it’s in ‘edit’ mode (check_name will be called on the parent of
the bind context, not on the context itself):

name_node = NameSchemaNode(editing=True)

This sets up the name_node to condition whether it’s in edit mode on the result of a function:

def i_am_editing(context, request):
return request.registry.content.istype(context, 'Document')

name_node = NameSchemaNode(editing=i_am_editing)

class substanced.schema.PermissionsSchemaNode(*arg, **kw)
A SchemaNode which represents a set of permissions; uses a widget which collects all permissions from the
introspection system. Deserializes to a set.

5.22 substanced.sdi API

substanced.schema.LEFT

substanced.schema.MIDDLE

substanced.schema.RIGHT

5.23 substanced.root API

class substanced.root.Root(data=None, family=None)
An object representing the root of a Substance D application (the object represented in the root of the SDI). It is
a subclass of substanced.folder.Folder.

When created as the result of registry.content.create, an instance of a Root will contain a
principals service. The principals service will contain a user whose name is specified via the
substanced.initial_login deployment setting with a password taken from the substanced.
initial_password setting. This user will also be a member of an admins group. The admins group
will be granted the ALL_PERMISSIONS special permission in the root.

If this class is created by hand, its after_create method must be called manually to create its objectmap,
the services, the user, and the group.

5.24 substanced.stats API

substanced.stats.statsd_timer()
Return a context manager that can be used for statsd timing, e.g.:

5.22. substanced.sdi API 103

Substance D Documentation, Release 0.0

with statsd_timer('addlotsofstuff'):
add lots of stuff

name is the statsd stat name, rate is the sample rate (a float between 0 and 1), and registry can be passed
to speed up lookups (it should be the Pyramid registry).

substanced.stats.statsd_gauge()
Register a statsd gauge value. For example:

statsd_gauge('connections', numconnections)

name is the statsd stat name, rate is the sample rate (a float between 0 and 1), and registry can be passed
to speed up lookups (it should be the Pyramid registry).

substanced.stats.statsd_incr()
Incremement or decrement a statsd counter value. For example:

statsd_incr('hits', 1)

To decrement::

statsd_incr('numusers', -1)

name is the statsd stat name, rate is the sample rate (a float between 0 and 1), and registry can be passed
to speed up lookups (it should be the Pyramid registry).

5.25 substanced.util API

substanced.util.acquire(resource, name, default=<object object>)

substanced.util.get_oid(resource, default=<object object>)
Return the object identifer of resource. If resource has no object identifier, raise an AttributeError excep-
tion unless default was passed a value; if default was passed a value, return the default in that case.

substanced.util.set_oid(resource, oid)
Set the object id of the resource to oid.

substanced.util.get_acl(resource, default=<object object>)
Return the ACL of the object or the default if the object has no ACL. If no default is passed, an
AttributeError will be raised if the object doesn’t have an ACL.

substanced.util.set_acl(resource, new_acl, registry=None)
Change the ACL on resource to new_acl, which may be a valid ACL or None. If new_acl is None, any
existing non-None __acl__ attribute of the resource will be removed (via del resource.__acl__).
Otherwise, if the resource’s __acl__ and the new_acl differ, set the resource’s __acl__ to new_acl via
setattr.

If the new ACL and the object’s original ACL differ, send a substanced.event.ACLModified event
with the new ACL and the original ACL (the __acl__ attribute of the resource, or None if it doesn’t have one)
as arguments to the event.

This function will return True if a mutation to the resource’s __acl__ was performed, and False otherwise.

If registry is passed, it should be a Pyramid registry; if it is not passed, this function will use the current
threadlocal registry to send the event.

substanced.util.get_interfaces(obj, classes=True)
Return the set of interfaces provided by obj. Include its __class__ if classes is True.

104 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

substanced.util.get_content_type(resource, registry=None)
Return the content type of a resource or None if the object has no content type. If registry is not supplied,
the current Pyramid registry will be looked up as a thread local in order to find the Substance D content registry.

substanced.util.find_content(resource, content_type, registry=None)
Return the first object in the lineage of the resource that supplies the content_type. If registry is not
supplied, the current Pyramid registry will be looked up as a thread local in order to find the Substance D content
registry.

substanced.util.find_service(resource, name, *subnames)
Find the first service named name in the lineage of resource or return None if no such-named service could
be found.

If subnames is supplied, when a service named name is found in the lineage, it will attempt to traverse the
service as a folder, finding a content object inside the service, and it will return it instead of the service ob-
ject itself. For example, find_service(resource, 'principals', 'users') would find and re-
turn the users subobject in the principals service. find_service(resource, 'principals',
'users', 'fred') would find and return the fred subobject of the users subobject of the principals service,
and so forth. If subnames are supplied, and the named object cannot be found, the lineage search continues.

substanced.util.find_services(resource, name, *subnames)
Finds all services named name in the lineage of resource and returns a sequence containing those service
objects. The sequence will begin with the most deepest nested service and will end with the least deeply nested
service. Returns an empty sequence if no such-named service could be found.

If subnames is supplied, when a service named name is found in the lineage, it will attempt to traverse the
service as a folder, finding a content object inside the service, and this API will append this object rather than the
service itself to the list of things returned. For example, find_services(resource, 'principals',
'users') would find the users subobject in the principals service. find_services(resource,
'principals', 'users', 'fred') would find the fred subobject of the users subobject of the princi-
pals service, and so forth. If subnames are supplied, whether or not the named object can be found, the lineage
search continues.

substanced.util.find_objectmap(context)
Returns the object map for the root object in the lineage of the context or None if no objectmap can be found.

substanced.util.find_catalogs(resource, name=None)
Return all catalogs in the lineage. If name is supplied, return only catalogs that have this name in the lineage,
otherwise return all catalogs in the lineage.

substanced.util.find_catalog(resource, name)
Return the first catalog named name in the lineage of the resource

substanced.util.find_index(resource, catalog_name, index_name)
Find the first catalog named catalog_name in the lineage of the resource, and ask it for its index_name
index; return the resulting index. If either a catalog of the provided name or an index of the provided name does
not exist, this function will return None.

substanced.util.get_principal_repr(principal_or_id)
Given as principal_or_id a resource object that has a __principal_repr__ method, return the result
of calling that method (without arguments); it must be a string that uniquely identifies the principal amongst all
principals in the system.

Given as principal_or_id a resource object that does not have a __principal_repr__method, return
the result of the stringification of the __oid__ attribute of the resource object.

Given an integer as principal_or_id, return a stringification of the integer.

Given any other string value, return it.

5.25. substanced.util API 105

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage

Substance D Documentation, Release 0.0

substanced.util.is_folder(resource)
Return True if the object is a folder, False if not.

substanced.util.is_service(resource)
Returns True if the resource is a service, False if not.

substanced.util.get_factory_type(resource)
If the resource has a __factory_type__ attribute, return it. Otherwise return the full Python dotted name of the
resource’s class.

substanced.util.coarse_datetime_repr(date)
Convert a datetime to an integer with 100 second granularity.

The granularity reduces the number of index entries in a fieldindex when it’s used in an indexview to convert a
datetime value to an integer.

substanced.util.postorder(startnode)
Walks over nodes in a folder recursively. Yields deepest nodes first.

substanced.util.merge_url_qs(url, **kw)
Merge the query string elements of a URL with the ones in kw. If any query string element exists in url that
also exists in kw, replace it.

substanced.util.chunks(stream, chunk_size=10000)
Return a generator that will iterate over a stream (a filelike object) chunk_size bytes at a time.

substanced.util.renamer()
Returns a property. The getter of the property returns the __name__ attribute of the instance on which it’s
defined. The setter of the property calls rename() on the __parent__ of the instance on which it’s defined
if the new value doesn’t match the existing __name__ of the instance (this will cause __name__ to be reset
if the parent is a normal Substance D folder). Sample usage:

class SomeContentType(Persistent):
name = renamer()

substanced.util.get_dotted_name(g)
Return the dotted name of a global object.

substanced.util.get_icon_name(resource, request)
Returns the content registry icon name of the resource or None if the resource type has no icon in the content
registry.

substanced.util.get_auditlog(context)
Returns the current substanced.audit.AuditLog object or None if no audit database is configured

class substanced.util.Batch(seq, request, url=None, default_size=10, toggle_size=40, se-
qlen=None)

Given a sequence named seq, and a Pyramid request, return an object with the following attributes:

items

A list representing a slice of seq. It will contain the number of elements in request.
params['batch_size'] or the default_size number if such a key does not exist in re-
quest.params or the key is invalid. The slice will begin at request.params['batch_num'] or
zero if such a key does not exist in request.params or the batch_num key could not success-
fully be converted to a positive integer.

This value can be iterated over via the __iter__ of the batch object.

size

106 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

The value obtained from request.params['batch_size'] or default_size if no
batch_size parameter exists in request.params or the batch_size parameter could not
successfully be converted to a positive interger.

num

The value obtained from request.params['batch_num'] or 0 if no batch_num parameter
exists in request.params or if the batch_num parameter could not successfully be converted
to a positive integer. Batch numbers are indexed from zero, so batch 0 is the first batch, batch 1 the
second, and so forth.

length

This is length of the current batch. It is usually equal to size but may be different in the very last
batch. For example, if the seq is [1,2,3,4] and the batch size is 3, the first batch’s length will
be 3 because the batch content will be [1,2,3]; but the second and final batch’s length will be
1 because the batch content will be [4].

last

The batch number computed from the sequence length of the last batch (indexed from zero).

first_url

The URL of the first batch. This will be a URL with batch_num and batch_size in its query
string. The base URL will be taken from the url value passed to this function. If a url value is not
passed to this function, the URL will be taken from request.url. This value will be None if the
current batch_num is 0.

prev_url

The URL of the previous batch. This will be a URL with batch_num and batch_size in its
query string. The base URL will be taken from the url value passed to this function. If a url value
is not passed to this function, the URL will be taken from request.url. This value will be None
if there is no previous batch.

next_url

The URL of the next batch. This will be a URL with batch_num and batch_size in its query
string. The base URL will be taken from the url value passed to this function. If a url value is
not passed to this function, the URL will be taken from request.url. This value will be None if
there is no next batch.

last_url

The URL of the next batch. This will be a URL with batch_num and batch_size in its query
string. The base URL will be taken from the url value passed to this function. If a url value is
not passed to this function, the URL will be taken from request.url. This value will be None if
there is no next batch.

required

True if either next_url or prev_url are True (meaning batching is required).

multicolumn

True if the current view should be rendered in multiple columns.

toggle_url

The URL to be used for the multicolumn/single column toggle button. The batch_size,
batch_num, and multicolumn parameters are converted to their multicolumn or single column
equivalents. If a user is viewing items 40-80 in multiple columns, the toggle will switch to items

5.25. substanced.util API 107

Substance D Documentation, Release 0.0

40-50 in a single column. If a user is viewing items 50-60 in a single column, the toggle will switch
to items 40-80 in multiple columns.

toggle_text

The text to display on the multi-column/single column toggle.

make_columns

A method to split items into a nested list representing columns.

seqlen

This is total length of the sequence (across all batches).

startitem

The item number that starts this batch (indexed from zero).

enditem

The item number that ends this batch (indexed from zero).

make_columns(column_size=10, num_columns=4)
Break self.items into a nested list representing columns.

5.26 substanced.workflow API

class substanced.workflow.ACLState(acl=None, **kw)
Bases: dict

class substanced.workflow.ACLWorkflow(initial_state, type, name=”, description=”)
Bases: substanced.workflow.Workflow

class substanced.workflow.Workflow(initial_state, type, name=”, description=”)
Bases: object

Finite state machine.

Implements substanced.interfaces.IWorkflow.

Parameters

• initial_state (string) – Initial state of the workflow assigned to the content

• type (string) – Identifier to separate multiple workflows on same content.

• name (string) – Display name.

• description (string) – Not used internally, provided as help text to describe what
workflow does.

add_state(state_name, callback=None, **kw)
Add a new workflow state.

Parameters

• state_name – Unique name of the state for this workflow.

• callback (callable) – Will be called when content enters this state. Meaning
Workflow.reset(), Workflow.initialize(), Workflow.transition()
and Workflow.transition_to_state() will trigger callback if entering this
state.

• **kw – Metadata assigned to this state.

108 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

Raises WorkflowError if state already exists.

Callback is called with content as a single positional argument and the keyword arguments workflow,
transition, and request. Be aware that methods as Workflow.initialize() pass transition as an
empty dictionary.

Note: **kw must not contain the key callback. This name is reserved for internal use.

add_transition(transition_name, from_state, to_state, callback=None, permission=None, **kw)
Add a new workflow transition.

Parameters

• transition_name – Unique name of transition for this workflow.

• callback (callable) – Will be called when transition is executed. Mean-
ing Workflow.transition() and Workflow.transition_to_state() will
trigger callback if this transition is executed.

• **kw – Metadata assigned to this transition.

Raises WorkflowError if transition already exists.

Raises WorkflowError if from_state or to_state don’t exist.

Callback is called with content as a single positional argument and the keyword arguments workflow,
transition, and request.

Note: **kw must not contain any of the keys from_state, name, to_state, or callback; these
are reserved for internal use.

check()
Check the consistency of the workflow state machine.

Raises WorkflowError if workflow is inconsistent.

get_states(content, request, from_state=None)
Return all states for the workflow.

Parameters

• content – Object to be operated on

• request – pyramid.request.Request instance

• from_state – State of the content. If None, Workflow.state_of() will be used
on content.

Return type list of dicts

Returns Where dictionary contains information about the transition, such as title, ini-
tial, current, transitions and data. transitions is return value of Workflow.
get_transitions() call for current state. data is a dictionary containing at least call-
back.

Note: States that fail has_permission check for their transition are left out.

get_transitions(content, request, from_state=None)
Get all transitions from the content state.

5.26. substanced.workflow API 109

Substance D Documentation, Release 0.0

Parameters

• content – Object to be operated on.

• request – pyramid.request.Request instance

• from_state – Name of the state to retrieve transitions. If None, Workflow.
state_of() will be used on content.

Return type list of dicts

Returns Where dictionary contains information about the transition, such as from_state,
to_state, callback, permission and name.

Note: Transitions that fail has_permission check are left out.

has_state(content)
Return True if the content has state for this workflow, False if not.

initialize(content, request=None)
Initialize the content object to the initial state of this workflow.

Parameters

• content – Object to be operated on

• request – pyramid.request.Request instance

Returns (initial_state, msg)

msg is a string returned by the state callback.

reset(content, request=None)
Reset the content workflow by calling the callback of it’s current state and setting its state attr.

If content has no current state, it will be initialized for this workflow (see initialize).

msg is a string returned by the state callback.

Parameters

• content – Object to be operated on

• request – pyramid.request.Request instance

Returns (state, msg)

state_of(content)
Return the current state of the content object or None if the content object does not have this workflow.

transition(content, request, transition_name)
Execute a transition using a transition_name on content.

Parameters

• content – Object to be operated on.

• request – pyramid.request.Request instance

• transition_name – Name of transition to execute.

Raises WorkflowError if no transition is found

Raises WorkflowError if transition doesn’t pass has_permission check

110 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

transition_to_state(content, request, to_state, skip_same=True)
Execute a transition to another state using a state name (to_state). All possible transitions towards to_state
will be tried until one if found that passes without exception.

Parameters

• content – Object to be operated on.

• request – pyramid.request.Request instance

• to_state – State to transition to.

• skip_same – If True and the to_state is the same as the content state, no transition is
issued.

Raises WorkflowError if no transition is found

exception substanced.workflow.WorkflowError
Bases: exceptions.Exception

Exception raised for anything related to substanced.workflow .

substanced.workflow.add_workflow(config, workflow, content_types=(None,))
Configurator method for adding a workflow.

If no content_types is given, workflow is registered globally.

Parameters

• config – Pyramid configurator

• workflow – Workflow instance

• content_types (iterable) – Register workflow for given content_types

Raises ConfigurationError if Workflow.check() fails

Raises ConfigurationError if content_type does not exist

Raises DoesNotImplement if workflow does not implement IWorkflow

substanced.workflow.get_workflow(request, type, content_type=None)
Return a workflow based on a content_type and the workflow type.

Parameters

• request – pyramid.request.Request instance

• type – Workflow type

• content_type – Substanced content type or None for default workflow.

5.27 substanced.interfaces

These represent interfaces implemented by various Substance D objects.

interface substanced.interfaces.IACLModified
Extends: zope.interface.interfaces.IObjectEvent

May be sent when an object’s ACL is modified

old_acl
The object ACL before the modification

5.27. substanced.interfaces 111

Substance D Documentation, Release 0.0

object
The object being modified

new_acl
The object ACL after the modification

interface substanced.interfaces.IAfterTransition
An event type sent after a transition has been done

transition
The transition name

new_state
The new state of the object

object
The object on which the transition has been done

initial_state
The initial state of the object

interface substanced.interfaces.ICatalog
A collection of indices.

reset()
Clear all indexes in this catalog and clear self.objectids.

__getitem__(name)
Return the index named name

update_indexes(registry=None, dry_run=False, output=None, replace=False, reindex=False,
**kw)

Use the candidate indexes registered via config.add_catalog_factory to populate this catalog.

reindex_resource(resource, oid=None, action_mode=None)
Register the resource in indexes of this catalog using objectid oid. If oid is not supplied, the
__oid__ of the resource will be used. action_mode, if supplied, should be one of None,
MODE_IMMEDIATE, MODE_ATCOMMIT or MODE_DEFERRED indicating when the updates should take
effect. The action_mode value will overrule any action mode that a member index has been configured
with.

The result of calling this method is logically the same as calling unindex_resource, then
index_resource for the same resource/oid combination, but calling those two methods in succes-
sion is often more expensive than calling this single method, as member indexes can choose to do smarter
things during a reindex than what they would do during an unindex then an index.

reindex(dry_run=False, commit_interval=200, indexes=None, path_re=None, output=None)
Reindex all objects in this collection of indexes.

If dry_run is True, do no actual work but send what would be changed to the logger.

commit_interval controls the number of objects indexed between each call to transaction.
commit() (to control memory consumption).

indexes, if not None, should be a list of index names that should be reindexed. If indexes is None,
all indexes are reindexed.

path_re, if it is not None should be a regular expression object that will be matched against each object’s
path. If the regular expression matches, the object will be reindexed, if it does not, it won’t.

output, if passed should be one of None, False or a function. If it is a function, the function should
accept a single message argument that will be used to record the actions taken during the reindex. If

112 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

False is passed, no output is done. If None is passed (the default), the output will wind up in the
substanced.catalog Python logger output at info level.

unindex_resource(resource_or_oid, action_mode=None)
Deregister the resource in indexes of this catalog using objectid or resource resource_or_oid. If
resource_or_oid is an integer, it will be used as the oid; if resource_or_oid is a resource,
its __oid__ attribute will be used as the oid. action_mode, if supplied, should be one of None,
MODE_IMMEDIATE, MODE_ATCOMMIT or MODE_DEFERRED.

index_resource(resource, oid=None, action_mode=None)
Register the resource in indexes of this catalog using objectid oid. If oid is not supplied, the __oid__ of
the resource will be used. action_mode, if supplied, should be one of None, MODE_IMMEDIATE,
MODE_ATCOMMIT or MODE_DEFERRED.

objectids
a sequence of objectids that are cataloged in this catalog

flush(immediate=True)
Flush any pending indexing actions for all indexes in this catalog. If immediate is True, all actions
will be immediately executed. If immediate is False, MODE_DEFERRED actions will be sent to the
actions processor if one is active, and all other actions will be executed immediately.

interface substanced.interfaces.IContentCreated
An event type sent when a Substance D content object is created via registry.content.create

object
The freshly created content object. It will not yet have been seated into any folder.

meta
The metainformation about the content type in the content registry

content_type
The content type of the object that was created

interface substanced.interfaces.IDefaultWorkflow
Marker interface used internally for workflows that aren’t associated with a particular content type

interface substanced.interfaces.IEditable
Adapter interface for editing content as a file.

put(fileish)
Update context based on the contents of fileish.

• fileish is a file-type object: its read method should return the (new) file representation of the
context.

get()
Return (body_iter, mimetype) representing the context.

• body_iter is an iterable, whose chunks are bytes represenating the context as an editable file.

• mimetype is the MIMEType corresponding to body_iter.

interface substanced.interfaces.IEvolutionSteps
Utility for obtaining evolution step data

interface substanced.interfaces.IFile
An object representing file content

mimetype
The mimetype of the file content

5.27. substanced.interfaces 113

Substance D Documentation, Release 0.0

upload(stream, mimetype_hint=False)
Replace the current contents of this file’s blob with the contents of stream. mimetype_hint can be
any of the folliwing:

• None, meaning don’t reset the current mimetype. This is the default.

• A string containing a filename with an extension; the mimetype will be derived from the extension in
the filename.

• The constant substanced.file.USE_MAGIC, which will derive the content type using the
python-magic library based on the stream’s actual content.

get_size()
Return the size in bytes of the data in the blob associated with the file

blob
The ZODB blob object holding the file content

get_response(**kw)
Return a WebOb-compatible response object which uses the blob content as the stream data and the mime-
type of the file as the content type. The **kw arguments will be passed to the pyramid.response.
FileResponse constructor as its keyword arguments.

interface substanced.interfaces.IFolder
A Folder which stores objects using Unicode keys.

All methods which accept a name argument expect the name to either be Unicode or a byte string decodable
using the default system encoding or the UTF-8 encoding.

rename(oldname, newname)
Rename a subobject from oldname to newname.

This operation is done in terms of a remove and an add. The Removed and WillBeRemoved events sent
will indicate that the object is moving.

load(name, newobject)
Same as substanced.interfaces.IFolder.replace() except it causes the loading flag of
added and removed events sent during the add and remove events implied by the replacement to be True.

move(name, other, newname=None)
Move a subobject named name from this folder to the folder represented by other. If newname is not
none, it is used as the target object name; otherwise the existing subobject name is used.

This operation is done in terms of a remove and an add. The Removed and WillBeRemoved events sent
will indicate that the object is moving.

set_order(value, reorderable=None)
Makes the folder orderable and sets its order to the list of names provided in value. Names should be
existing names for objects contained in the folder at the time order is set.

If reorderable is passed, value, it must be None, True or False. If it is None, the reorderable flag
will not be reset from its current value. If it is anything except None, it will be treated as a boolean and
the reorderable flag will be set to that value. The reorderable value of a folder will be returned by that
folder’s is_reorderable() method.

The is_reorderable() method is used by the SDI folder contents view to indicate that the folder can
or cannot be reordered via the web UI.

If reorderable is set to True, the reorder() method will work properly, otherwise it will raise a
ValueError when called.

pop(name, default=None)
Remove the item stored in the under name and return it.

114 Chapter 5. API Documentation

https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html#pyramid.response.FileResponse
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html#pyramid.response.FileResponse

Substance D Documentation, Release 0.0

If name doesn’t exist in the folder, and default is not passed, raise a KeyError.

If name doesn’t exist in the folder, and default is passed, return default.

When the object stored under name is removed from this folder, remove its __parent__ and
__name__ values.

When this method is called, emit an IObjectWillBeRemoved event before the object loses its
__name__ or __parent__ values. Emit an ObjectRemoved after the object loses its __name__
and __parent__ value,

replace(name, newobject)
Replace an existing object named name in this folder with a new object newobject. If there isn’t an
object named name in this folder, an exception will not be raised; instead, the new object will just be
added.

This operation is done in terms of a remove and an add. The Removed and WillBeRemoved events will be
sent for the old object, and the WillBeAdded and Add events will be sent for the new object.

__contains__(name)
Does the container contains an object named by name?

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the system default encoding or the UTF-8
encoding.

is_reorderable()
Return true if the folder can be reordered, false otherwise.

keys()
Return an iterable sequence of object names present in the folder.

Respect order, if set.

add(name, other, send_events=True, reserved_names=(), duplicating=None, moving=None, load-
ing=False, registry=None)
Same as __setitem__.

If send_events is false, suppress the sending of folder events. Disallow the addition of the name
provided is in the reserved_names list. If duplicating is not None, it must be the object be-
ing duplicated; when non-None, the ObjectWillBeAdded and ObjectAdded events sent will be marked
as ‘duplicating’, which typically has the effect that the subobject’s object id will be overwritten instead
of reused. If registry is passed, it should be a Pyramid registry object; otherwise the pyramid.
threadlocal.get_current_registry() function is used to look up the current registry.

This method returns the name used to place the subobject in the folder (a derivation of name, usually the
result of self.check_name(name)).

__len__()
Return the number of subobjects in this folder.

sort(oids, reverse=False, limit=None)
Return the intersection of the oids of the folder’s order with the oids passed in. If reverse is True,
reverse the result set. If limit is an integer, return only that number of items (after reversing, if reverse
is True).

__getitem__(name)
Return the object represented by name in this folder or raise a KeyError if no such object exists.

get(name, default=None)
Return the object named by name or the default.

name must be a Unicode object or a bytestring object.

5.27. substanced.interfaces 115

https://docs.pylonsproject.org/projects/pyramid/en/latest/api/threadlocal.html#pyramid.threadlocal.get_current_registry
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/threadlocal.html#pyramid.threadlocal.get_current_registry

Substance D Documentation, Release 0.0

If name is a bytestring object, it must be decodable using the system default encoding or the UTF-8
encoding.

is_ordered()
Return True if the folder has a manual ordering (e.g. its order attribute has been set), False otherwise.

unset_order()
Removes the folder internal ordering, making it an unordered folder.

validate_name(name, reserved_names=())
Checks the name passed for validity. If the name is valid and is not present in reserved_names returns
a validated name. Otherwise a ValueError will be raised.

__iter__()
An alias for keys.

Respect order, if set.

check_name(name, reserved_names=())
Performs all checks associated with validate_name but also raises a substanced.folder.
FolderKeyError if an object with the name name already exists in the folder. Returns the name
(with any modifications) returned by validate_name.

__delitem__(name)
Remove the object from this folder stored under name.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the system default encoding or the UTF-8
encoding.

If no object is stored in the folder under name, raise a KeyError.

When the object stored under name is removed from this folder, remove its __parent__ and
__name__ values.

When this method is called, emit an IObjectWillBeRemoved event before the object loses its
__name__ or __parent__ values. Emit an IObjectRemoved after the object loses its __name__
and __parent__ value,

__nonzero__()
Always return True

items()
Return an iterable sequence of (name, value) pairs in the folder.

Respect order, if set.

clear()
Clear all objects from the folder. Calling this is equivalent to calling .remove for each key in the folder.

__setitem__(name, other)
Set object other into this folder under the name name.

name must be a Unicode object or a bytestring object.

If name is a bytestring object, it must be decodable using the system default encoding or the UTF-8
encoding.

name cannot be the empty string.

When other is seated into this folder, it will also be decorated with a __parent__ attribute (a reference
to the folder into which it is being seated) and __name__ attribute (the name passed in to this function.

If a value already exists in the foldr under the name name, raise KeyError.

116 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

When this method is called, emit an IObjectWillBeAdded event before the object obtains a
__name__ or __parent__ value. Emit an IObjectAdded event after the object obtains a
__name__ and __parent__ value.

remove(name, send_events=True, moving=None, loading=False)
Same thing as __delitem__.

If send_events is false, suppress the sending of folder events. If moving is not None, it should be the
folder object from which the object is being moved; the events sent will indicate that a move is in process.

values()
Return an iterable sequence of the values present in the folder.

Respect order, if set.

reorder(items, before)
Move one or more items from a folder into new positions inside that folder. items is a list of ids of
existing folder items, which will be inserted in order before the item named before. All other items are
left in the original order. If this method is called on a folder which does not have an order set, or which is
not reorderable, a ValueError will be raised.

interface substanced.interfaces.IGroup
Extends: substanced.interfaces.IPrincipal

Marker interface representing a group

interface substanced.interfaces.IGroups
Marker interface representing a collection of groups

interface substanced.interfaces.IIndexFactory
A factory for an index

interface substanced.interfaces.IIndexingActionProcessor
Processor of deferred indexing/unindexing actions of catalogs in the system

interface substanced.interfaces.ILock
Represents a lock to be applied by the lock service

interface substanced.interfaces.ILoggedIn
An event type sent when a user supplies a valid username and password to a login view. Note that this event is
not sent on every request that the user initiates, just ones which result in an interactive login.

request
The request which resulted in the login

user
The user object computed by Substance D

context
The context resource that was active during login

login
The login name used by the user

interface substanced.interfaces.IObjectAdded
Extends: zope.interface.interfaces.IObjectEvent

An event type sent when an object is added

loading
Boolean indicating that this add is part of a load (during a dump load process)

name
The name of the object within the folder

5.27. substanced.interfaces 117

Substance D Documentation, Release 0.0

parent
The folder to which the object is being added

object
The object being added

duplicating
The object being duplicated or None

moving
None or the folder from which the object being added was moved

interface substanced.interfaces.IObjectMap
A map of objects to paths and a reference engine

pathlookup(obj_or_path_tuple, depth=None, include_origin=True)
Returns an iterator of document ids within obj_or_path_tuple (a traversable object or a path tuple). If depth
is specified, returns only objects at that depth. If include_origin is True, returns the docid of the
object passed as obj_or_path_tuple in the returned set, otherwise it omits it.

disconnect(src, target, reftype)
Disonnect src_object from target_object using the reference type reftype. src and target
may be objects or object identifiers

path_for(objectid)
Return the path tuple for objectid

objectid_for(obj_or_path_tuple)
Return the object id for obj_or_path_tuple

remove(obj_objectid_or_path_tuple)
Removes an object from the object map using the object itself, an object id, or a path tuple. Returns a set
of objectids (children, inclusive) removed as the result of removing this object from the object map.

targets(obj, reftype)
Return a generator consisting of objects which have obj as a relationship target using reftype. obj
can be an object or an object id.

sources(obj, reftype)
Return a generator consisting of objects which have obj as a relationship source using reftype. obj
can be an object or an object id.

add(obj)
Add a new object to the object map. Assigns a new objectid to obj.__oid__ to the object if it doesn’t
already have one. The object’s path or objectid must not already exist in the map. Returns the object id.

connect(src, target, reftype)
Connect src_object to target_object using the reference type reftype. src and target
may be objects or object identifiers.

targetids(obj, reftype)
Return a set of objectids which have obj as a relationship target using reftype. obj can be an object
or an object id.

object_for(objectid)
Return the object associated with objectid or None if the object cannot be found.

sourceids(obj, reftype)
Return a set of objectids which have obj as a relationship source using reftype. obj can be an object
or an object id.

118 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

interface substanced.interfaces.IObjectModified
Extends: zope.interface.interfaces.IObjectEvent

May be sent when an object is modified

object
The object being modified

interface substanced.interfaces.IObjectRemoved
Extends: zope.interface.interfaces.IObjectEvent

An event type sent when an object is removed

loading
Boolean indicating that this remove is part of a load (during a dump load process)

name
The name of the object within the folder

parent
The folder from which the object is being removed

object
The object being removed

moving
None or the folder to which the object being removed will be moved

removed_oids
The set of oids removed as the result of this object being removed (including the oid of the object itself).
This may be any number of oids if the object was folderish

interface substanced.interfaces.IObjectWillBeAdded
Extends: zope.interface.interfaces.IObjectEvent

An event type sent when an before an object is added

loading
Boolean indicating that this add is part of a load (during a dump load process)

name
The name which the object is being added to the folder with

parent
The folder to which the object is being added

object
The object being added

duplicating
The object being duplicated or None

moving
None or the folder from which the object being added was moved

interface substanced.interfaces.IObjectWillBeRemoved
Extends: zope.interface.interfaces.IObjectEvent

An event type sent before an object is removed

loading
Boolean indicating that this remove is part of a load (during a dump load process)

name
The name of the object within the folder

5.27. substanced.interfaces 119

Substance D Documentation, Release 0.0

parent
The folder from which the object is being removed

object
The object being removed

moving
None or the folder to which the object being removed will be moved

interface substanced.interfaces.IPasswordReset
Marker interface represent a password reset request

interface substanced.interfaces.IPasswordResets
Marker interface representing a collection of password reset requests

interface substanced.interfaces.IPrincipal
Marker interface representing a user or group

interface substanced.interfaces.IPrincipals
Marker interface representing a container of users and groups

interface substanced.interfaces.IPropertySheet
Interface for objects with a set of properties defined by a Colander schema. The class substanced.
property.PropertySheet (which is meant to be subclassed for specialization) implements this interface.

set(struct, omit=())
Accept struct (a dictionary representing the property state) and persist it to the context, refraining from
persisting the keys in the struct that are named in omit (a sequence of strings or a string). The data
structure will have already been validated against the propertysheet schema.

You can return a value from this method. It will be passed as changed into the after_set method. It
should be False if your set implementation did not change any persistent data. Any other return value
will be conventionally interpreted as the implementation having changed persistent data.

get()
Return a dictionary representing the current property state compatible with the schema for serialization

request
The current request

context
The context of the property sheet (a resource)

after_set(changed)
Perform operations after a successful set. changed is the value returned from the set method.

The default propertysheet implementation sends an ObjectModified event if the changed value is not
False.

schema
The Colander schema instance which defines the fields related to this property sheet

interface substanced.interfaces.IRootAdded
An event type sent when the Substance D root object has a connection to the database as its _p_jar attribute.

object
The root object

interface substanced.interfaces.ISDIAPI
Easy access to common templating operations on all views. This object is available as request.sdiapi.

120 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

mgmt_path(obj, *arg, **kw)
Return the route_path inside the SDI for an object

sdi_title()
The sdi_title of the virtual root or “Substance D” if not defined

mgmt_views(context)
The list of management views on a resource

breadcrumbs()
Return a sequence of dicts for the breadcrumb information. Each dict contains:

• url: The request.mgmt_path to that resource

• name: The resource __name__ or ‘Home’ for the root

• active: Boolean representing whether the resource is in the breadcrumb is the current context

• icon: The full path to the icon for that resource type

get_macro(asset_spec, name=None)
Return a Chameleon template macro based on the asset spec (e.g. somepackage:templates/foo.
pt) and the name. If the name is None, the bare template implementation is returned, otherwise the named
macro from within the template is returned.

mgmt_url(obj, *arg, **kw)
Return the route_url inside the SDI for an object

main_template
The loaded master.pt which can be used in view templates with metal:use-macro="request.
sdiapi.main_template".

flash_with_undo(msg, queue=”, allow_duplicate=True)
Display a Pyramid flash message to the appropriate queue with a button to allow an undo of the
commit.

interface substanced.interfaces.IService
Marker for items which are showin in the “Services” tab.

interface substanced.interfaces.IUser
Extends: substanced.interfaces.IPrincipal

Marker interface representing a user

interface substanced.interfaces.IUserLocator
Adapter responsible for returning a user by his login name and/or userid as well as group objects of a user by
his userid.

get_groupids(userid)
Return all the group-related principal identifiers for a user with the user principal identifier userid as a
sequence. If no user exists under userid, return None.

get_user_by_email(email)
Return an IUser object or None if no such user exists. The email argument is the email address of the
user.

get_user_by_userid(userid)
Return an IUser object or None if no such user exists. The userid argument is the user id of the user
(usually an oid).

get_user_by_login(login)
Return an IUser object or None if no such user exists. The login argument is the login name of the user,
not an oid.

5.27. substanced.interfaces 121

Substance D Documentation, Release 0.0

interface substanced.interfaces.IUsers
Marker interface representing a collection of users

interface substanced.interfaces.IWorkflow

reset(content, request=None)

has_state(content)

get_transitions(content, request, from_state=None)

add_state(name, callback=None, **kw)

transition(content, request, transition_name)

state_of(content)

check()

get_states(content, request, from_state=None)

initialize(content, request=None)

transition_to_state(content, request, to_state, skip_same=True)

add_transition(name, from_state, to_state, callback=None, **kw)

interface substanced.interfaces.MODE_ATCOMMIT
Sentinel indicating that an indexing action should take place at the successful end of the current transaction.

interface substanced.interfaces.MODE_DEFERRED
Sentinel indicating that an indexing action should be performed by an external indexing processor (e.g.
drain_catalog_indexing) if one is active at the successful end of the current transaction. If an in-
dexing processor is unavailable at the successful end of the current transaction, this mode will be taken to imply
the same thing as MODE_ATCOMMIT.

interface substanced.interfaces.MODE_IMMEDIATE
Sentinel indicating that an indexing action should take place as immediately as possible.

class substanced.interfaces.ReferenceClass(*arg, **kw)
Bases: zope.interface.interface.InterfaceClass

interface substanced.interfaces.UserToLock
Extends: substanced.interfaces.ReferenceType

A reference type which represents the relationship from a user to his set of locks

interface substanced.interfaces.WriteLock
Extends: substanced.interfaces.ReferenceType

Represents a DAV-style writelock. It’s a Substance D reference type from resource object to lock object

5.28 Substance D SDI Permission Names

sdi.add-content

Protects views which allow users to add content to a folder.

sdi.add-group

Protects views which add groups to a groups collection within a principals service.

sdi.add-services

122 Chapter 5. API Documentation

Substance D Documentation, Release 0.0

Protects views which add built-in Substance D services.

sdi.add-user

Protects views which add users to a users collection within a principals service.

sdi.change-acls

Protects arbitrary locations, allowing certain people to execute views the under that location which change
ACLs associated with a resource.

sdi.change-password

Protects views of a user which allow for the changing of passwords.

sdi.lock

Protects views which allow users to lock or unlock a resource.

sdi.manage-catalog

Protects views which allow users to manage catalog data and indexes within a catalog service.

sdi.manage-contents

Protects views which allow users to add, remove, and rename items within folders.

sdi.manage-database

Protects the “manage database” view at the root.

sdi.manage-references

Protects views which allow users to manage the references associated with a resource.

sdi.manage-user-groups

Protects views which allow admin users to update groups for users.

sdi.manage-workflow

Protects the views associated with managing the workflows of an object.

sdi.undo

Protects the capability of users to execute views which undo transactions.

sdi.view

Protects whether a user can view the SDI management pages associated with a resource.

sdi.view-services

Protects whether a user can view the “Services” tab in a folder.

sdi.edit-properties

Allows for the editing of the properties of a property sheet for an object.

sdi.view-auditlog

Allows the user to view the audit log event stream (auditstream-sse) view.

5.28. Substance D SDI Permission Names 123

Substance D Documentation, Release 0.0

124 Chapter 5. API Documentation

CHAPTER 6

Support / Reporting Bugs / Development Versions

Visit http://github.com/Pylons/substanced to download development or tagged versions.

Visit http://github.com/Pylons/substanced/issues to report bugs.

The mailing list exists at https://groups.google.com/group/substanced-users

The IRC channel is at irc://freenode.net/#substanced

125

http://github.com/Pylons/substanced
http://github.com/Pylons/substanced/issues
https://groups.google.com/group/substanced-users
irc://freenode.net/#substanced

Substance D Documentation, Release 0.0

126 Chapter 6. Support / Reporting Bugs / Development Versions

CHAPTER 7

Copyright, Trademarks, and Attributions

7.1 Copyright, Trademarks, and Attributions

Substance D

by Chris McDonough

Copyright © 2011-2013, Agendaless Consulting.

All rights reserved. This documentation is offered under a (BSD-like) license .

All terms mentioned in this documentation that are known to be trademarks or service marks have been appropriately
capitalized. However, use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Every effort has been made to make this documentation as complete and as accurate as possible, but no warranty of
fitness is implied. The information provided is on as “as-is” basis. The author and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book. No patent liability is assumed with respect to the use of the information contained herein.

7.1.1 Attributions

Editor: TBD

Contributors: Steve Piercy, Eric Rasmussen, Domen Kožar, Paul Everitt, Carlos de la Guardia, Balazs Ree, Douglas
Cerna, and a number of people with only pseudonyms on GitHub.

SubstanceD.net Website Theme: The assets in the directory assets are not open source; they are copyrighted by
Tamerlan Soziev and released under a proprietary license. To purchase a license for these assets, visit https:
//wrapbootstrap.com/theme/venera-responsive-multipurpose-template- WB059C895

Documentation Template: Steve Piercy based on the Venera theme. Used by permission.

Some Substance D Interface images copyright Rokey, in particular http://www.iconarchive.com/show/
smooth-icons-by-rokey/capsule-icon.html

127

http://repoze.org/license.html
http://www.substanced.net/
https://wrapbootstrap.com/theme/venera-responsive-multipurpose-template
https://wrapbootstrap.com/theme/venera-responsive-multipurpose-template
http://www.stevepiercy.com/
http://www.iconarchive.com/artist/rokey.html
http://www.iconarchive.com/show/smooth-icons-by-rokey/capsule-icon.html
http://www.iconarchive.com/show/smooth-icons-by-rokey/capsule-icon.html

Substance D Documentation, Release 0.0

7.1.2 Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries, and other business communications to Agendaless
Consulting. For software and other technical queries see Support / Reporting Bugs / Development Versions.

7.1.3 HTML Version and Source Code

The source code for the examples used in this documentation are available within the Substance D software distribu-
tion, available via https://github.com/Pylons/substanced

128 Chapter 7. Copyright, Trademarks, and Attributions

mailto:webmaster@agendaless.com
mailto:webmaster@agendaless.com
https://github.com/Pylons/substanced

CHAPTER 8

Indices and tables

• Glossary

• genindex

• modindex

• search

8.1 Glossary

Colander A schema library which can be used used to describe arbitrary data structures. See http://docs.
pylonsproject.org/projects/colander/en/latest/ for more information.

Content A resource which is particularly well-behaved when viewed via the Substance D management interface.

Content type An interface associated with a particular kind of content object. A content type also has metadata like
an icon, an add view name, and other things.

DataDog A Software-as-a-Service (SaaS) provider for monitoring and visualizing performance data that is compatible
with the statsd statistics output channel used by Substance D. See http://www.datadoghq.com

Deform A form library that draws and validates forms based on Colander schemas. See http://docs.pylonsproject.
org/projects/deform/en/latest/ for more information.

Factory Wrapper A function that wraps a content factory when the content factory is not a class or when a
factory_name is used within the content type declaration.

Folder A resource object which contains other resource objects. See substanced.folder.Folder.

Global Object A Python object that can be obtained via an import statement.

Manage prefix The prepended portion of the URL (usually /manage) which signifies that view lookup should be
done only amongst the set of views registered as management view types. This can be changed by setting the
substanced.manage_prefix key in your development.ini or production.ini configuration
files.

129

http://docs.pylonsproject.org/projects/colander/en/latest/
http://docs.pylonsproject.org/projects/colander/en/latest/
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface
http://www.datadoghq.com
http://docs.pylonsproject.org/projects/deform/en/latest/
http://docs.pylonsproject.org/projects/deform/en/latest/

Substance D Documentation, Release 0.0

Management view A view configuration that is only invoked when a user visits a URL prepended with the manage
prefix.

Object Map A Substance D service which maps the object IDs of persistent objects to paths and object IDs to other
object IDs in the system.

Object Map Reference A relationship kept in the object map between two persistent objects. It is composed of a
source, some number of targets, and a reference type.

Pyramid A web framework.

Reference Type A hashable object describing the type of relationship between two objects in the object map. It’s
usually a string.

Resource An object representing a node in the resource tree of your Substance D application. A resource becomes
the context of a view when someone visits a URL in your application.

Resource factory An object which creates a resource when it’s called. It’s often just a class that implements the
resource itself.

Resource tree A nested set of folder objects and other kinds of content objects, each of which is a resource. Your
content objects are laid out hierarchically in the resource tree as they’re added.

SDI An acronym for the “Substance D (Management) Interface”. What you see when you visit /manage.

Service A persistent object in the resource tree that exposes an API to application developers. For example, the
principals service.

Service A Substance D content object which provides a service to application code (such as a catalog or a principals
service).

State

States TODO

Transition

Transitions TODO

Workflow

Workflows TODO

Zope An application server from which much of the spirit of Substance D is derived. See http://zope.org.

130 Chapter 8. Indices and tables

https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-configuration
http://pylonsproject.org
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view
http://zope.org

Python Module Index

h
hypatia.query, 82
hypatia.util, 84

s
substanced, 75
substanced.audit, 75
substanced.catalog, 75
substanced.catalog.indexes, 81
substanced.content, 85
substanced.db, 87
substanced.editable, 87
substanced.event, 88
substanced.evolution, 89
substanced.file, 90
substanced.folder, 91
substanced.form, 95
substanced.interfaces, 111
substanced.locking, 95
substanced.objectmap, 97
substanced.property, 101
substanced.root, 103
substanced.schema, 102
substanced.stats, 103
substanced.util, 104
substanced.workflow, 108

131

Substance D Documentation, Release 0.0

132 Python Module Index

Index

Symbols
__contains__() (substanced.interfaces.IFolder method),

115
__delitem__() (substanced.interfaces.IFolder method),

116
__getitem__() (substanced.catalog.Catalog method), 76
__getitem__() (substanced.interfaces.ICatalog method),

112
__getitem__() (substanced.interfaces.IFolder method),

115
__init__() (substanced.file.File method), 90
__init__() (substanced.folder.Folder method), 91
__init__() (substanced.folder.RandomAutoNamingFolder

method), 94
__init__() (substanced.folder.SequentialAutoNamingFolder

method), 94
__iter__() (hypatia.interfaces.IResultSet method), 85
__iter__() (substanced.interfaces.IFolder method), 116
__len__() (hypatia.interfaces.IResultSet method), 85
__len__() (substanced.interfaces.IFolder method), 115
__nonzero__() (substanced.interfaces.IFolder method),

116
__setitem__() (substanced.catalog.Catalog method), 76
__setitem__() (substanced.interfaces.IFolder method),

116

A
ACLModified (class in substanced.event), 88
ACLState (class in substanced.workflow), 108
ACLWorkflow (class in substanced.workflow), 108
acquire() (in module substanced.util), 104
add() (substanced.audit.AuditLog method), 75
add() (substanced.content.ContentRegistry method), 86
add() (substanced.folder.Folder method), 91
add() (substanced.folder.SequentialAutoNamingFolder

method), 94
add() (substanced.interfaces.IFolder method), 115
add() (substanced.interfaces.IObjectMap method), 118
add() (substanced.objectmap.ObjectMap method), 97

add_catalog() (substanced.catalog.CatalogsService
method), 79

add_catalog_factory() (in module substanced.catalog), 80
add_content_type() (in module substanced.content), 85
add_evolution_step() (in module substanced.evolution),

89
add_indexview() (in module substanced.catalog), 80
add_next() (substanced.folder.RandomAutoNamingFolder

method), 94
add_next() (substanced.folder.SequentialAutoNamingFolder

method), 94
add_propertysheet() (in module substanced.property),

101
add_propertysheet_predicate() (in module sub-

stanced.property), 102
add_service() (substanced.folder.Folder method), 91
add_service_type() (in module substanced.content), 86
add_state() (substanced.interfaces.IWorkflow method),

122
add_state() (substanced.workflow.Workflow method),

108
add_transition() (substanced.interfaces.IWorkflow

method), 122
add_transition() (substanced.workflow.Workflow

method), 109
add_workflow() (in module substanced.workflow), 111
after_set() (substanced.interfaces.IPropertySheet

method), 120
AfterTransition (class in substanced.event), 88
All (class in hypatia.query), 83
all() (hypatia.interfaces.IResultSet method), 84
all() (substanced.content.ContentRegistry method), 86
Allowed (class in substanced.catalog), 76
allowed() (substanced.objectmap.ObjectMap method), 97
AllowedIndex (class in substanced.catalog.indexes), 82
allows() (substanced.catalog.indexes.AllowedIndex

method), 82
And (class in hypatia.query), 83
Any (class in hypatia.query), 83
AuditLog (class in substanced.audit), 75

133

Substance D Documentation, Release 0.0

B
Batch (class in substanced.util), 106
before_render() (substanced.property.PropertySheet

method), 101, 102
blob (substanced.file.File attribute), 90
blob (substanced.interfaces.IFile attribute), 114
breadcrumbs() (substanced.interfaces.ISDIAPI method),

121

C
Catalog (class in substanced.catalog), 76
catalog_factory() (in module substanced.catalog), 80
CatalogsService (class in substanced.catalog), 78
CatalogsService.Catalog (class in substanced.catalog), 78
check() (substanced.interfaces.IWorkflow method), 122
check() (substanced.workflow.Workflow method), 109
check_name() (substanced.folder.Folder method), 91
check_name() (substanced.interfaces.IFolder method),

116
chunks() (in module substanced.util), 106
clear() (substanced.folder.Folder method), 91
clear() (substanced.interfaces.IFolder method), 116
clear() (substanced.objectmap.Multireference method),

99
coarse_datetime_repr() (in module substanced.util), 106
Colander, 129
commit_suicide() (substanced.locking.Lock method), 96
connect() (substanced.interfaces.IObjectMap method),

118
connect() (substanced.objectmap.Multireference

method), 99
connect() (substanced.objectmap.ObjectMap method), 97
Contains (class in hypatia.query), 82, 83
Content, 129
content (class in substanced.content), 85
Content type, 129
content_type (substanced.interfaces.IContentCreated at-

tribute), 113
ContentRegistry (class in substanced.content), 86
context (substanced.interfaces.ILoggedIn attribute), 117
context (substanced.interfaces.IPropertySheet attribute),

120
copy() (substanced.folder.Folder method), 91
create() (substanced.content.ContentRegistry method), 87

D
DataDog, 129
Deform, 129
disconnect() (substanced.interfaces.IObjectMap method),

118
disconnect() (substanced.objectmap.Multireference

method), 99
disconnect() (substanced.objectmap.ObjectMap method),

97

discover_resource_locks() (in module sub-
stanced.locking), 97

duplicating (substanced.interfaces.IObjectAdded at-
tribute), 118

duplicating (substanced.interfaces.IObjectWillBeAdded
attribute), 119

E
Eq (class in hypatia.query), 82
event (substanced.event.subscribe_acl_modified at-

tribute), 89
event (substanced.event.subscribe_added attribute), 89
event (substanced.event.subscribe_after_transition

attribute), 89
event (substanced.event.subscribe_logged_in attribute),

89
event (substanced.event.subscribe_modified attribute), 89
event (substanced.event.subscribe_removed attribute), 89
event (substanced.event.subscribe_root_added attribute),

89
event (substanced.event.subscribe_will_be_added at-

tribute), 89
event (substanced.event.subscribe_will_be_removed at-

tribute), 89
exists() (substanced.content.ContentRegistry method), 87
expires() (substanced.locking.Lock method), 96

F
Facet (class in substanced.catalog), 76
FacetIndex (class in substanced.catalog.indexes), 81
Factory Wrapper, 129
factory_type_for_content_type() (sub-

stanced.content.ContentRegistry method),
87

Field (class in substanced.catalog), 75
FieldIndex (class in substanced.catalog.indexes), 81
File (class in substanced.file), 90
FileEditable (class in substanced.editable), 88
FileUploadTempStore (class in substanced.form), 95
find() (substanced.content.ContentRegistry method), 87
find_catalog() (in module substanced.util), 105
find_catalogs() (in module substanced.util), 105
find_content() (in module substanced.util), 105
find_index() (in module substanced.util), 105
find_objectmap() (in module substanced.util), 105
find_service() (in module substanced.util), 105
find_service() (substanced.folder.Folder method), 92
find_services() (in module substanced.util), 105
find_services() (substanced.folder.Folder method), 92
first() (hypatia.interfaces.IResultSet method), 85
flash_with_undo() (substanced.interfaces.ISDIAPI

method), 121
flush() (substanced.catalog.Catalog method), 76

134 Index

Substance D Documentation, Release 0.0

flush() (substanced.catalog.CatalogsService.Catalog
method), 78

flush() (substanced.interfaces.ICatalog method), 113
Folder, 129
Folder (class in substanced.folder), 91
FolderKeyError (class in substanced.folder), 91
Form (class in substanced.form), 95
form_class (substanced.form.FormView attribute), 95
FormView (class in substanced.form), 95

G
Ge (class in hypatia.query), 82
get() (substanced.catalog.Catalog method), 76
get() (substanced.editable.IEditable method), 88
get() (substanced.folder.Folder method), 92
get() (substanced.interfaces.IEditable method), 113
get() (substanced.interfaces.IFolder method), 115
get() (substanced.interfaces.IPropertySheet method), 120
get_acl() (in module substanced.util), 104
get_auditlog() (in module substanced.util), 106
get_content_type() (in module substanced.util), 104
get_dotted_name() (in module substanced.util), 106
get_editable_adapter() (in module substanced.editable),

88
get_etag() (substanced.file.File method), 90
get_extent() (substanced.objectmap.ObjectMap method),

97
get_factory_type() (in module substanced.util), 106
get_groupids() (substanced.interfaces.IUserLocator

method), 121
get_icon_name() (in module substanced.util), 106
get_interfaces() (in module substanced.util), 104
get_macro() (substanced.interfaces.ISDIAPI method),

121
get_objects() (substanced.objectmap.ReferentialIntegrityError

method), 101
get_oid() (in module substanced.util), 104
get_principal_repr() (in module substanced.util), 105
get_reftypes() (substanced.objectmap.ObjectMap

method), 97
get_response() (substanced.file.File method), 90
get_response() (substanced.interfaces.IFile method), 114
get_size() (substanced.file.File method), 90
get_size() (substanced.interfaces.IFile method), 114
get_states() (substanced.interfaces.IWorkflow method),

122
get_states() (substanced.workflow.Workflow method),

109
get_transitions() (substanced.interfaces.IWorkflow

method), 122
get_transitions() (substanced.workflow.Workflow

method), 109
get_user_by_email() (substanced.interfaces.IUserLocator

method), 121

get_user_by_login() (substanced.interfaces.IUserLocator
method), 121

get_user_by_userid() (sub-
stanced.interfaces.IUserLocator method),
121

get_workflow() (in module substanced.workflow), 111
Global Object, 129
Gt (class in hypatia.query), 82

H
has_references() (substanced.objectmap.ObjectMap

method), 97
has_state() (substanced.interfaces.IWorkflow method),

122
has_state() (substanced.workflow.Workflow method), 110
hypatia.query (module), 82
hypatia.util (module), 84

I
IACLModified (interface in substanced.interfaces), 111
IAfterTransition (interface in substanced.interfaces), 112
ICatalog (interface in substanced.interfaces), 112
IContentCreated (interface in substanced.interfaces), 113
IDefaultWorkflow (interface in substanced.interfaces),

113
ids (hypatia.interfaces.IResultSet attribute), 85
IEditable (interface in substanced.editable), 87
IEditable (interface in substanced.interfaces), 113
IEvolutionSteps (interface in substanced.interfaces), 113
IFile (interface in substanced.interfaces), 113
IFolder (interface in substanced.interfaces), 114
IGroup (interface in substanced.interfaces), 117
IGroups (interface in substanced.interfaces), 117
IIndexFactory (interface in substanced.interfaces), 117
IIndexingActionProcessor (interface in sub-

stanced.interfaces), 117
ILock (interface in substanced.interfaces), 117
ILoggedIn (interface in substanced.interfaces), 117
include() (in module substanced), 75
includeme() (in module substanced), 75
includeme() (in module substanced.catalog), 80
includeme() (in module substanced.content), 87
includeme() (in module substanced.db), 87
includeme() (in module substanced.evolution), 90
index_resource() (substanced.catalog.Catalog method),

76
index_resource() (substanced.catalog.CatalogsService.Catalog

method), 78
index_resource() (substanced.interfaces.ICatalog

method), 113
indexview (class in substanced.catalog), 81
indexview_defaults (class in substanced.catalog), 81
initial_state (substanced.interfaces.IAfterTransition at-

tribute), 112

Index 135

Substance D Documentation, Release 0.0

initialize() (substanced.interfaces.IWorkflow method),
122

initialize() (substanced.workflow.Workflow method), 110
InRange (class in hypatia.query), 83
intersect() (hypatia.util.ResultSet method), 84
IObjectAdded (interface in substanced.interfaces), 117
IObjectMap (interface in substanced.interfaces), 118
IObjectModified (interface in substanced.interfaces), 118
IObjectRemoved (interface in substanced.interfaces), 119
IObjectWillBeAdded (interface in substanced.interfaces),

119
IObjectWillBeRemoved (interface in sub-

stanced.interfaces), 119
IPasswordReset (interface in substanced.interfaces), 120
IPasswordResets (interface in substanced.interfaces), 120
IPrincipal (interface in substanced.interfaces), 120
IPrincipals (interface in substanced.interfaces), 120
IPropertySheet (interface in substanced.interfaces), 120
IResultSet (interface in hypatia.interfaces), 84
IRootAdded (interface in substanced.interfaces), 120
is_catalogable() (in module substanced.catalog), 80
is_folder() (in module substanced.util), 105
is_ordered() (substanced.folder.Folder method), 92
is_ordered() (substanced.interfaces.IFolder method), 116
is_reorderable() (substanced.folder.Folder method), 92
is_reorderable() (substanced.interfaces.IFolder method),

115
is_service() (in module substanced.util), 106
is_valid() (substanced.locking.Lock method), 96
ISDIAPI (interface in substanced.interfaces), 120
IService (interface in substanced.interfaces), 121
istype() (substanced.content.ContentRegistry method), 87
items() (substanced.folder.Folder method), 92
items() (substanced.interfaces.IFolder method), 116
IUser (interface in substanced.interfaces), 121
IUserLocator (interface in substanced.interfaces), 121
IUsers (interface in substanced.interfaces), 121
IWorkflow (interface in substanced.interfaces), 122

K
keys() (substanced.folder.Folder method), 92
keys() (substanced.interfaces.IFolder method), 115
Keyword (class in substanced.catalog), 76
KeywordIndex (class in substanced.catalog.indexes), 81

L
latest_id() (substanced.audit.AuditLog method), 75
Le (class in hypatia.query), 83
LEFT (in module substanced.schema), 103
load() (substanced.folder.Folder method), 92
load() (substanced.interfaces.IFolder method), 114
loading (substanced.interfaces.IObjectAdded attribute),

117

loading (substanced.interfaces.IObjectRemoved at-
tribute), 119

loading (substanced.interfaces.IObjectWillBeAdded at-
tribute), 119

loading (substanced.interfaces.IObjectWillBeRemoved
attribute), 119

Lock (class in substanced.locking), 95
lock_resource() (in module substanced.locking), 96
LockError (class in substanced.locking), 96
LoggedIn (class in substanced.event), 88
login (substanced.interfaces.ILoggedIn attribute), 117
Lt (class in hypatia.query), 82

M
main_template (substanced.interfaces.ISDIAPI attribute),

121
make_columns() (substanced.util.Batch method), 108
Manage prefix, 129
Management view, 130
mark_unfinished_as_finished() (in module sub-

stanced.evolution), 90
merge_url_qs() (in module substanced.util), 106
meta (substanced.interfaces.IContentCreated attribute),

113
metadata() (substanced.content.ContentRegistry method),

87
mgmt_path() (substanced.interfaces.ISDIAPI method),

120
mgmt_url() (substanced.interfaces.ISDIAPI method), 121
mgmt_views() (substanced.interfaces.ISDIAPI method),

121
MIDDLE (in module substanced.schema), 103
mimetype (substanced.file.File attribute), 90
mimetype (substanced.interfaces.IFile attribute), 113
MODE_ATCOMMIT (interface in sub-

stanced.interfaces), 122
MODE_DEFERRED (interface in substanced.interfaces),

122
MODE_IMMEDIATE (interface in sub-

stanced.interfaces), 122
move() (substanced.folder.Folder method), 92
move() (substanced.interfaces.IFolder method), 114
moving (substanced.interfaces.IObjectAdded attribute),

118
moving (substanced.interfaces.IObjectRemoved at-

tribute), 119
moving (substanced.interfaces.IObjectWillBeAdded at-

tribute), 119
moving (substanced.interfaces.IObjectWillBeRemoved

attribute), 120
Multireference (class in substanced.objectmap), 98
multireference_source_property() (in module sub-

stanced.objectmap), 100

136 Index

Substance D Documentation, Release 0.0

multireference_sourceid_property() (in module sub-
stanced.objectmap), 100

multireference_target_property() (in module sub-
stanced.objectmap), 101

multireference_targetid_property() (in module sub-
stanced.objectmap), 100

N
Name (class in hypatia.query), 84
name (substanced.interfaces.IObjectAdded attribute), 117
name (substanced.interfaces.IObjectRemoved attribute),

119
name (substanced.interfaces.IObjectWillBeAdded at-

tribute), 119
name (substanced.interfaces.IObjectWillBeRemoved at-

tribute), 119
NameSchemaNode (class in substanced.schema), 102
new_acl (substanced.interfaces.IACLModified attribute),

112
new_objectid() (substanced.objectmap.ObjectMap

method), 97
new_state (substanced.interfaces.IAfterTransition at-

tribute), 112
newer() (substanced.audit.AuditLog method), 75
next_name() (substanced.folder.RandomAutoNamingFolder

method), 95
next_name() (substanced.folder.SequentialAutoNamingFolder

method), 94
Not (class in hypatia.query), 83
NotAll (class in hypatia.query), 83
NotAny (class in hypatia.query), 83
NotContains (class in hypatia.query), 83
NotEq (class in hypatia.query), 82
NotInRange (class in hypatia.query), 83

O
object (substanced.interfaces.IACLModified attribute),

111
object (substanced.interfaces.IAfterTransition attribute),

112
object (substanced.interfaces.IContentCreated attribute),

113
object (substanced.interfaces.IObjectAdded attribute),

118
object (substanced.interfaces.IObjectModified attribute),

119
object (substanced.interfaces.IObjectRemoved attribute),

119
object (substanced.interfaces.IObjectWillBeAdded

attribute), 119
object (substanced.interfaces.IObjectWillBeRemoved at-

tribute), 120
object (substanced.interfaces.IRootAdded attribute), 120
Object Map, 130

Object Map Reference, 130
object_for() (substanced.interfaces.IObjectMap method),

118
object_for() (substanced.objectmap.ObjectMap method),

98
ObjectAdded (class in substanced.event), 88
objectid_for() (substanced.interfaces.IObjectMap

method), 118
objectid_for() (substanced.objectmap.ObjectMap

method), 98
objectids (substanced.interfaces.ICatalog attribute), 113
ObjectMap (class in substanced.objectmap), 97
ObjectModified (class in substanced.event), 88
ObjectRemoved (class in substanced.event), 88
ObjectWillBeAdded (class in substanced.event), 88
ObjectWillBeRemoved (class in substanced.event), 88
old_acl (substanced.interfaces.IACLModified attribute),

111
one() (hypatia.interfaces.IResultSet method), 85
Or (class in hypatia.query), 83
order (substanced.folder.Folder attribute), 91, 92
order_sources() (substanced.objectmap.ObjectMap

method), 98
order_targets() (substanced.objectmap.ObjectMap

method), 98
owner (substanced.locking.Lock attribute), 95
ownerid (substanced.locking.Lock attribute), 95

P
parent (substanced.interfaces.IObjectAdded attribute),

117
parent (substanced.interfaces.IObjectRemoved attribute),

119
parent (substanced.interfaces.IObjectWillBeAdded

attribute), 119
parent (substanced.interfaces.IObjectWillBeRemoved at-

tribute), 119
parse_query() (in module hypatia.query), 84
Path (class in substanced.catalog), 76
path_for() (substanced.interfaces.IObjectMap method),

118
path_for() (substanced.objectmap.ObjectMap method),

98
pathcount() (substanced.objectmap.ObjectMap method),

98
PathIndex (class in substanced.catalog.indexes), 81
pathlookup() (substanced.interfaces.IObjectMap

method), 118
pathlookup() (substanced.objectmap.ObjectMap

method), 98
PermissionsSchemaNode (class in substanced.schema),

103
pop() (substanced.folder.Folder method), 92
pop() (substanced.interfaces.IFolder method), 114

Index 137

Substance D Documentation, Release 0.0

postorder() (in module substanced.util), 106
PropertySheet (class in substanced.property), 101, 102
put() (substanced.editable.IEditable method), 87
put() (substanced.interfaces.IEditable method), 113
Pyramid, 130

R
RandomAutoNamingFolder (class in substanced.folder),

94
Reference Type, 130
reference_source_property() (in module sub-

stanced.objectmap), 99
reference_sourceid_property() (in module sub-

stanced.objectmap), 99
reference_target_property() (in module sub-

stanced.objectmap), 100
reference_targetid_property() (in module sub-

stanced.objectmap), 100
ReferenceClass (class in substanced.interfaces), 122
ReferentialIntegrityError (class in sub-

stanced.objectmap), 101
refresh() (substanced.locking.Lock method), 96
register_editable_adapter() (in module sub-

stanced.editable), 88
reindex() (substanced.catalog.Catalog method), 76
reindex() (substanced.catalog.CatalogsService.Catalog

method), 78
reindex() (substanced.interfaces.ICatalog method), 112
reindex_resource() (substanced.catalog.Catalog method),

77
reindex_resource() (sub-

stanced.catalog.CatalogsService.Catalog
method), 79

reindex_resource() (substanced.interfaces.ICatalog
method), 112

remove() (substanced.folder.Folder method), 92
remove() (substanced.interfaces.IFolder method), 117
remove() (substanced.interfaces.IObjectMap method),

118
remove() (substanced.objectmap.ObjectMap method), 98
removed_oids (substanced.event.ObjectWillBeRemoved

attribute), 88
removed_oids (substanced.interfaces.IObjectRemoved at-

tribute), 119
rename() (substanced.folder.Folder method), 93
rename() (substanced.interfaces.IFolder method), 114
renamer() (in module substanced.util), 106
reorder() (substanced.folder.Folder method), 93
reorder() (substanced.interfaces.IFolder method), 117
replace() (substanced.folder.Folder method), 93
replace() (substanced.interfaces.IFolder method), 115
request (substanced.interfaces.ILoggedIn attribute), 117
request (substanced.interfaces.IPropertySheet attribute),

120

reset() (substanced.catalog.Catalog method), 77
reset() (substanced.catalog.CatalogsService.Catalog

method), 79
reset() (substanced.interfaces.ICatalog method), 112
reset() (substanced.interfaces.IWorkflow method), 122
reset() (substanced.workflow.Workflow method), 110
resolver (hypatia.interfaces.IResultSet attribute), 85
Resource, 130
resource (substanced.locking.Lock attribute), 95
Resource factory, 130
Resource tree, 130
resourceid (substanced.locking.Lock attribute), 95
ResultSet (class in hypatia.util), 84
RIGHT (in module substanced.schema), 103
Root (class in substanced.root), 103
root_factory() (in module substanced.db), 87
RootAdded (class in substanced.event), 88

S
scan() (in module substanced), 75
Schema (class in substanced.schema), 102
schema (substanced.interfaces.IPropertySheet attribute),

120
schema_type (substanced.schema.Schema attribute), 102
SDI, 130
sdi_title() (substanced.interfaces.ISDIAPI method), 121
SequentialAutoNamingFolder (class in sub-

stanced.folder), 94
Service, 130
service (class in substanced.content), 85
set() (substanced.interfaces.IPropertySheet method), 120
set_acl() (in module substanced.util), 104
set_acl() (substanced.objectmap.ObjectMap method), 98
set_oid() (in module substanced.util), 104
set_order() (substanced.folder.Folder method), 93
set_order() (substanced.interfaces.IFolder method), 114
sort() (hypatia.interfaces.IResultSet method), 84
sort() (substanced.interfaces.IFolder method), 115
sourceids() (substanced.interfaces.IObjectMap method),

118
sourceids() (substanced.objectmap.ObjectMap method),

98
SourceIntegrityError (class in substanced.objectmap),

101
sources() (substanced.interfaces.IObjectMap method),

118
sources() (substanced.objectmap.ObjectMap method), 98
State, 130
state_of() (substanced.interfaces.IWorkflow method), 122
state_of() (substanced.workflow.Workflow method), 110
States, 130
statsd_gauge() (in module substanced.stats), 104
statsd_incr() (in module substanced.stats), 104
statsd_timer() (in module substanced.stats), 103

138 Index

Substance D Documentation, Release 0.0

subscribe_acl_modified (class in substanced.event), 89
subscribe_added (class in substanced.event), 88
subscribe_after_transition (class in substanced.event), 89
subscribe_logged_in (class in substanced.event), 89
subscribe_modified (class in substanced.event), 89
subscribe_removed (class in substanced.event), 89
subscribe_root_added (class in substanced.event), 89
subscribe_will_be_added (class in substanced.event), 89
subscribe_will_be_removed (class in substanced.event),

89
substanced (module), 75
substanced.audit (module), 75
substanced.catalog (module), 75
substanced.catalog.indexes (module), 81
substanced.content (module), 85
substanced.db (module), 87
substanced.editable (module), 87
substanced.event (module), 88
substanced.evolution (module), 89
substanced.file (module), 90
substanced.folder (module), 91
substanced.form (module), 95
substanced.interfaces (module), 111
substanced.locking (module), 95
substanced.objectmap (module), 97
substanced.property (module), 101
substanced.root (module), 103
substanced.schema (module), 102
substanced.stats (module), 103
substanced.util (module), 104
substanced.workflow (module), 108

T
targetids() (substanced.interfaces.IObjectMap method),

118
targetids() (substanced.objectmap.ObjectMap method),

98
TargetIntegrityError (class in substanced.objectmap), 101
targets() (substanced.interfaces.IObjectMap method), 118
targets() (substanced.objectmap.ObjectMap method), 98
Text (class in substanced.catalog), 75
TextIndex (class in substanced.catalog.indexes), 81
transaction (substanced.catalog.Catalog attribute), 77
transaction (substanced.catalog.CatalogsService.Catalog

attribute), 79
Transition, 130
transition (substanced.interfaces.IAfterTransition at-

tribute), 112
transition() (substanced.interfaces.IWorkflow method),

122
transition() (substanced.workflow.Workflow method),

110
transition_to_state() (substanced.interfaces.IWorkflow

method), 122

transition_to_state() (substanced.workflow.Workflow
method), 110

Transitions, 130
typeof() (substanced.content.ContentRegistry method),

87

U
unindex_resource() (substanced.catalog.Catalog method),

77
unindex_resource() (sub-

stanced.catalog.CatalogsService.Catalog
method), 79

unindex_resource() (substanced.interfaces.ICatalog
method), 113

unlock_resource() (in module substanced.locking), 96
UnlockError (class in substanced.locking), 96
unset_order() (substanced.folder.Folder method), 93
unset_order() (substanced.interfaces.IFolder method),

116
update_indexes() (substanced.catalog.Catalog method),

77
update_indexes() (substanced.catalog.CatalogsService.Catalog

method), 79
update_indexes() (substanced.interfaces.ICatalog

method), 112
upload() (substanced.file.File method), 90
upload() (substanced.interfaces.IFile method), 113
USE_MAGIC (in module substanced.file), 90
user (substanced.interfaces.ILoggedIn attribute), 117
UserToLock (interface in substanced.interfaces), 122

V
validate_name() (substanced.folder.Folder method), 93
validate_name() (substanced.interfaces.IFolder method),

116
values() (substanced.folder.Folder method), 93
values() (substanced.interfaces.IFolder method), 117

W
Workflow, 130
Workflow (class in substanced.workflow), 108
WorkflowError, 111
Workflows, 130
WriteLock (interface in substanced.interfaces), 122

Z
Zope, 130

Index 139

	Overview
	Installation
	Demonstration Application
	Narrative Documentation
	API Documentation
	Support / Reporting Bugs / Development Versions
	Copyright, Trademarks, and Attributions
	Indices and tables
	Python Module Index

