

translationstring

A library used by various Pylons Project [https://pylonsproject.org]
packages for internationalization (i18n) duties.

This package provides a translation string class, a
translation string factory class, translation and
pluralization primitives, and a utility that helps Chameleon
templates use translation facilities of this package. It does not
depend on Babel, but its translation and pluralization
services are meant to work best when provided with an instance of the
babel.support.Translations class.

	Translation Strings
	Using The TranslationString Class

	Using the TranslationStringFactory Class

	Translation

	Pluralization

	Chameleon Translate Function Support

	API Documentation

	Glossary

Index and Glossary

	Glossary

	Index

	Module Index

	Search Page

Translation Strings

While you write your software, you can insert specialized markup into
your Python code that makes it possible for the system to translate
text values into the languages used by your application's users. This
markup generates a translation string. A translation string
is an object that behave mostly like a normal Unicode object, except
that it also carries around extra information related to its job as
part of a higher-level system's translation machinery.

Note

Using a translation string can be thought of as equivalent
to using a "lazy string" object in other i18n systems.

Using The TranslationString Class

The most primitive way to create a translation string is to use the
translationstring.TranslationString callable:

	1
2

	from translationstring import TranslationString
ts = TranslationString('Add')

This creates a Unicode-like object that is a
translationstring.TranslationString.

Note

For people familiar with Zope internationalization, a
TranslationString is a lot like a zope.i18nmessageid.Message
object. It is not a subclass, however.

The first argument to translationstring.TranslationString is the
msgid; it is required. It represents the key into the translation
mappings provided by a particular localization. The msgid argument
must be a Unicode object or an ASCII string. The msgid may optionally
contain replacement markers. For instance:

	1
2

	from translationstring import TranslationString
ts = TranslationString('Add ${number}')

Within the string above, ${stuff} is a replacement marker. It
will be replaced by whatever is in the mapping for a translation
string when the translationstring.TranslationString.interpolate() method
is called. The mapping may be supplied at the same time as the
replacement marker itself:

	1
2

	from translationstring import TranslationString
ts = TranslationString('Add ${number}', mapping={'number':1})

You can also create a new translation string instance with a mapping
using the standard python %-operator:

	1
2

	from translationstring import TranslationString
ts = TranslationString('Add ${number}') % {'number': 1}

You may interpolate a translation string with a mapping:

	1
2
3

	from translationstring import TranslationString
ts = TranslationString('Add ${number}', mapping={'number':1})
result = ts.interpolate()

The above result will be Add 1.

Any number of replacement markers can be present in the msgid value,
any number of times. Only markers which can be replaced by the values
in the mapping will be replaced at translation time. The others
will not be interpolated and will be output literally.

Replacement markers may also be spelled without squiggly braces:

	1
2

	from translationstring import TranslationString
ts = TranslationString('Add $number', mapping={'number':1})

The Add $number msgid above is equivalent to Add ${number}.

A translation string should also usually carry a domain. The domain
represents a translation category to disambiguate it from other
translations of the same msgid, in case they conflict.

	1
2
3

	from translationstring import TranslationString
ts = TranslationString('Add ${number}', mapping={'number':1},
 domain='form')

The above translation string named a domain of form. A
translator function (see Translation) will often use
the domain to locate the right translator file on the filesystem which
contains translations for a given domain. In this case, if it were
trying to translate to our msgid to German, it might try to find a
translation from a gettext file within a translation
directory like this one:

locale/de/LC_MESSAGES/form.mo

In other words, it would want to take translations from the form.mo
translation file in the German language.

Finally, the TranslationString constructor accepts a default
argument. If a default argument is supplied, it replaces usages
of the msgid as the default value for the translation string.
When default is None, the msgid value passed to a
TranslationString is used as an implicit message identifier. Message
identifiers are matched with translations in translation files, so it
is often useful to create translation strings with "opaque" message
identifiers unrelated to their default text:

	1
2
3

	from translationstring import TranslationString
ts = TranslationString('add-number', default='Add ${number}',
 domain='form', mapping={'number':1})

When a default value is used, the default may contain replacement
markers and the msgid should not contain replacement markers.

Using the TranslationStringFactory Class

Another way to generate a translation string is to use the
translationstring.TranslationStringFactory object. This object is a
translation string factory. Basically a translation string factory
presets the domain value of any translation string
generated by using it. For example:

	1
2
3

	from translationstring import TranslationStringFactory
_ = TranslationStringFactory('bfg')
ts = _('add-number', default='Add ${number}', mapping={'number':1})

Note

We assigned the translation string factory to the name
_. This is a convention which will be supported by translation
file generation tools.

After assigning _ to the result of a
translationstring.TranslationStringFactory(), the subsequent
result of calling _ will be a
translationstring.TranslationString instance. Even though a
domain value was not passed to _ (as would have been necessary
if the translationstring.TranslationString constructor were
used instead of a translation string factory), the domain
attribute of the resulting translation string will be bfg. As a
result, the previous code example is completely equivalent (except for
spelling) to:

	1
2
3

	from translationstring import TranslationString as _
ts = _('add-number', default='Add ${number}', mapping={'number':1},
 domain='bfg')

You can set up your own translation string factory much like the one
provided above by using the
translationstring.TranslationStringFactory class. For example,
if you'd like to create a translation string factory which presets the
domain value of generated translation strings to form, you'd
do something like this:

	1
2
3

	from translationstring import TranslationStringFactory
_ = TranslationStringFactory('form')
ts = _('add-number', default='Add ${number}', mapping={'number':1})

Note

For people familiar with Zope internationalization, a
TranslationStringFactory is a lot like a
zope.i18nmessageid.MessageFactoy object. It is not a subclass,
however.

Pickleability

Translation strings may be pickled and unpickled.

Translation

translationstring provides a function named
translationstring.Translator() which is used to create a
translator object.

It is called like so:

	1
2
3
4

	import gettext
from translationstring import Translator
translations = gettext.translations(.. the right arguments ...)
translator = Translator(translations)

The translations argument is required; it should be an object
supporting at least the Python gettext.NullTranslations API
but ideally the babel.support.Translations API, which has
support for domain lookups like dugettext.

The callable returned accepts three arguments: a translation string
tstring (required), domain (optional), and mapping
(optional). When called, it will translate the tstring
translation string to a unicode object using the translations
object provided and interpolate the result.

	1
2
3
4
5
6
7
8

	from gettext import translations
from translationstring import Translator
from translationstring import TranslationString

t = translations(.. the right arguments ...)
translator = Translator(t)
ts = TranslationString('Add ${number}', domain='foo', mapping={'number':1})
translator(ts)

If translations is None, the result of interpolation of the
msgid or default value of the translation string is returned.

The translation function can also deal with plain Unicode objects.
The optional domain argument can be used to specify or override
the domain of the tstring argument (useful when tstring is a
normal string rather than a translation string). The optional
mapping argument can specify the interpolation mapping, useful
when the tstring argument is not a translation string. If
tstring is a translation string its mapping data, if present, is
combined with the data from the mapping argument.

	1
2
3
4
5
6
7

	from gettext import translations
from translationstring import Translator
from translationstring import TranslationString

t = translations(.. the right arguments ...)
translator = Translator(t)
translator('Add ${number}', domain='foo', mapping={'number':1})

The translationstring.Translator() function accepts an
additional optional argument named policy. policy should be a
callable which accepts three arguments: translations, tstring
and domain. It must perform the actual translation lookup. If
policy is None, the translationstring.dugettext_policy()
policy will be used.

Pluralization

translationstring.Pluralizer() provides a gettext "plural forms"
pluralization service.

It is called like so:

	1
2
3
4

	import gettext
from translationstring import Pluralizer
translations = gettext.translations(.. the right arguments ...)
pluralizer = Pluralizer(translations)

The translations argument is required; it should be an object
supporting at least the Python gettext.NullTranslations API
but ideally the babel.support.Translations API, which has
support for domain lookups like dungettext.

The object returned will be a callable which has the following
signature:

	1
2

	def pluralizer(singular, plural, n, domain=None, mapping=None):
 """ Pluralize """

The singular and plural arguments passed may be translation
strings or unicode strings. n represents the number of elements.
domain is the translation domain to use to do the pluralization,
and mapping is the interpolation mapping that should be used on
the result. The pluralizer will return the plural form or the
singular form, translated, as necessary.

Note

if the objects passed are translation strings, their domains and
mappings are ignored. The domain and mapping arguments must be used
instead. If the domain is not supplied, a default domain is
used (usually messages).

If translations is None, a gettext.NullTranslations
object is created for the pluralizer to use.

The translationstring.Pluralizer() function accepts an
additional optional argument named policy. policy should be a
callable which accepts five arguments: translations, singular
and plural, n and domain. It must perform the actual
pluralization lookup. If policy is None, the
translationstring.dungettext_policy() policy will be used.

Chameleon Translate Function Support

translationstring.ChameleonTranslate() is a function which
returns a callable suitable for use as the translate argument to
various PageTemplate* constructors.

	1
2
3
4
5
6
7
8
9

	from chameleon.zpt.template import PageTemplate
from translationstring import ChameleonTranslate
from translationstring import Translator
import gettext

translations = gettext.translations(...)
translator = Translator(translations)
translate = ChameleonTranslate(translate)
pt = PageTemplate('<html></html>', translate=translate)

The translator provided should be a callable which accepts a
single argument translation_string (a
translationstring.TranslationString instance) which returns a
unicode object as a translation; usually the result of calling
translationstring.Translator(). translator may also
optionally be None, in which case no translation is performed (the
msgid or default value is returned untranslated).

API Documentation

	
class TranslationString

	The constructor for a translation string. A translation
string is a Unicode-like object that has some extra metadata.

This constructor accepts one required argument named msgid.
msgid must be the message identifier for the
translation string. It must be a unicode object or a str
object encoded in the default system encoding.

Optional keyword arguments to this object's constructor include
domain, default, and mapping.

domain represents the translation domain. By default,
the translation domain is None, indicating that this
translation string is associated with the default translation
domain (usually messages).

default represents an explicit default text for this
translation string. Default text appears when the translation
string cannot be translated. Usually, the msgid of a
translation string serves double duty as its default text.
However, using this option you can provide a different default
text for this translation string. This feature is useful when the
default of a translation string is too complicated or too long to
be used as a message identifier. If default is provided, it
must be a unicode object or a str object encoded in the
default system encoding (usually means ASCII). If default is
None (its default value), the msgid value used by this
translation string will be assumed to be the value of default.

mapping, if supplied, must be a dictionary-like object which
represents the replacement values for any translation
string replacement marker instances found within the msgid
(or default) value of this translation string.

context represents the translation context. By default,
the translation context is None.

After a translation string is constructed, it behaves like most
other unicode objects; its msgid value will be displayed
when it is treated like a unicode object. Only when its
ugettext method is called will it be translated.

Its default value is available as the default attribute of the
object, its translation domain is available as the
domain attribute, and the mapping is available as the
mapping attribute. The object otherwise behaves much like a
Unicode string.

	
interpolate(translated=None)

	Interpolate the value translated which is assumed to
be a Unicode object containing zero or more replacement
markers ($foo or ${bar}) using the mapping
dictionary attached to this instance. If the mapping
dictionary is empty or None, no interpolation is
performed.

If translated is None, interpolation will be performed
against the default value.

	
TranslationStringFactory(factory_domain)

	Create a factory which will generate translation strings
without requiring that each call to the factory be passed a
domain value. A single argument is passed to this class'
constructor: domain. This value will be used as the
domain values of translationstring.TranslationString
objects generated by the __call__ of this class. The
msgid, mapping, and default values provided to the
__call__ method of an instance of this class have the meaning
as described by the constructor of the
translationstring.TranslationString

	
ChameleonTranslate(translator)

	When necessary, use the result of calling this function as a
Chameleon template 'translate' function (e.g. the translate
argument to the chameleon.zpt.template.PageTemplate
constructor) to allow our translation machinery to drive template
translation. A single required argument translator is
passsed. The translator provided should be a callable which
accepts a single argument translation_string (a
translationstring.TranslationString instance) which
returns a unicode object as a translation. translator may
also optionally be None, in which case no translation is
performed (the msgid or default value is returned
untranslated).

	
Translator(translations=None, policy=None)

	Return a translator object based on the translations and
policy provided. translations should be an object
supporting at least the Python gettext.NullTranslations
API but ideally the babel.support.Translations API, which
has support for domain lookups like dugettext.

policy should be a callable which accepts three arguments:
translations, tstring and domain. It must perform the
actual translation lookup. If policy is None, the
translationstring.dugettext_policy() policy will be used.

The callable returned accepts three arguments: tstring
(required), domain (optional) and mapping (optional).
When called, it will translate the tstring translation string
to a unicode object using the translations provided. If
translations is None, the result of interpolation of the
default value is returned. The optional domain argument can
be used to specify or override the domain of the tstring
(useful when tstring is a normal string rather than a
translation string). The optional mapping argument can
specify or override the tstring interpolation mapping, useful
when the tstring argument is a simple string instead of a
translation string.

	
dugettext_policy(translations, tstring, domain, context)

	A translator policy function which assumes the use of a
babel.support.Translations translations object, which
supports the dugettext API; fall back to ugettext.

	
ugettext_policy(translations, tstring, domain, context)

	A translator policy function which unconditionally uses the
ugettext API on the translations object.

	
Pluralizer(translations=None, policy=None)

	Return a pluralizer object based on the translations and
policy provided. translations should be an object
supporting at least the Python gettext.NullTranslations
API but ideally the babel.support.Translations API, which
has support for domain lookups like dugettext.

policy should be a callable which accepts five arguments:
translations, singular and plural, n and
domain. It must perform the actual pluralization lookup. If
policy is None, the
translationstring.dungettext_policy() policy will be used.

The object returned will be a callable which has the following
signature:

def pluralizer(singular, plural, n, domain=None, mapping=None):
 ...

The singular and plural objects passed may be translation
strings or unicode strings. n represents the number of
elements. domain is the translation domain to use to do the
pluralization, and mapping is the interpolation mapping that
should be used on the result. Note that if the objects passed are
translation strings, their domains and mappings are ignored. The
domain and mapping arguments must be used instead. If the domain is
not supplied, a default domain is used (usually messages).

	
dungettext_policy(translations, singular, plural, n, domain, context)

	A pluralizer policy function which assumes the use of the
babel.support.Translations class, which supports the
dungettext API; falls back to ungettext.

	
ungettext_policy(translations, singular, plural, n, domain, context)

	A pluralizer policy function which unconditionally uses the
ungettext API on the translations object.

Glossary

	Babel

	A collection of tools [http://babel.pocoo.org/en/latest/] for
internationalizing Python applications.

	Chameleon

	chameleon [https://chameleon.readthedocs.io/en/latest/] is templating
language written and maintained by Malthe Borch.

	Gettext

	The GNU gettext [http://www.gnu.org/software/gettext/]
library, used by the translationstring locale translation
machinery.

	Message Identifier

	An unchanging string that is the identifier for a particular
translation string. For example, you may have a translation
string which has the default "the fox jumps over the lazy
dog", but you might give this translation string a message
identifier of foxdog to reduce the chances of minor spelling
or wording changes breaking your translations. The message
identifier of a translation string is represented as its
msgid argument.

	Translation Directory

	A translation directory is a gettext translation
directory. It contains language folders, which themselves
contain LC_MESSAGES folders, which contain .mo files.
Each .mo file represents a set of translations for a language
in a translation domain. The name of the .mo file
(minus the .mo extension) is the translation domain name.

	Translation Domain

	A string representing the "context" in which a particular
translation was made. For example the word "java" might be
translated differently if the translation domain is
"programming-languages" than would be if the translation domain
was "coffee". Every translation string has an associated
translation domain.

	Translation String

	An instance of translationstring.TranslationString,
which is a class that behaves like a Unicode string, but has
several extra attributes such as domain, msgid, and
mapping for use during translation. Translation strings are
usually created by hand within software, but are sometimes
created on the behalf of the system for automatic template
translation. For more information, see
API Documentation.

	Translation String Factory

	A factory for generating translation string objects which
predefines a translation domain.

	Translator

	A callable which receives a translation string and
returns a translated Unicode object for the purposes of
internationalization.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 translationstring	

Index

 B
 | C
 | D
 | G
 | I
 | M
 | P
 | T
 | U

B

 	
 	Babel

C

 	
 	Chameleon

 	
 	ChameleonTranslate() (in module translationstring)

D

 	
 	dugettext_policy() (in module translationstring)

 	
 	dungettext_policy() (in module translationstring)

G

 	
 	Gettext

I

 	
 	interpolate() (TranslationString method)

M

 	
 	Message Identifier

P

 	
 	Pluralizer() (in module translationstring)

T

 	
 	Translation Directory

 	Translation Domain

 	Translation String

 	Translation String Factory

 	
 	TranslationString (class in translationstring)

 	translationstring (module)

 	TranslationStringFactory() (in module translationstring)

 	Translator

 	Translator() (in module translationstring)

U

 	
 	ugettext_policy() (in module translationstring)

 	
 	ungettext_policy() (in module translationstring)

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		translationstring

 		Translation Strings

 		Using The TranslationString Class

 		Using the TranslationStringFactory Class

 		Pickleability

 		Translation

 		Pluralization

 		Chameleon Translate Function Support

 		API Documentation

 		Glossary

_static/up.png

_static/up-pressed.png

