
venusian Documentation
Release 3.0.0

Pylons Project

Jan 12, 2022

CONTENTS

1 Overview 3

2 Using Venusian 5

3 Scan Categories 9

4 onerror Scan Callback 11

5 ignore Scan Argument 13

6 Limitations and Audience 15

7 API Documentation / Glossary 17
7.1 API Documentation for Venusian . 17
7.2 Glossary . 20

8 Indices and tables 21

Python Module Index 23

Index 25

i

ii

venusian Documentation, Release 3.0.0

Venusian is a library which allows you to defer the action of decorators. Instead of taking actions when a function,
method, or class decorator is executed at import time, you can defer the action until a separate "scan" phase.

This library is most useful for framework authors. It is compatible with CPython versions 3.5+. It is also known to
work on PyPy 6.0.0 (Python 3.5+).

Note: The name "Venusian" is a riff on a library named Martian (which had its genesis in the Grok web framework),
from which the idea for Venusian was stolen. Venusian is similar to Martian, but it offers less functionality, making it
slightly simpler to use.

CONTENTS 1

venusian Documentation, Release 3.0.0

2 CONTENTS

CHAPTER

ONE

OVERVIEW

Offering a decorator that wraps a function, method, or class can be a convenience to your framework's users. But the
very purpose of a decorator makes it likely to impede testability of the function or class it decorates: use of a decorator
often prevents the function it decorates from being called with the originally passed arguments, or a decorator may
modify the return value of the decorated function. Such modifications to behavior are "hidden" in the decorator code
itself.

For example, let's suppose your framework defines a decorator function named jsonify which can wrap a function
that returns an arbitrary Python data structure and renders it to a JSON serialization:

1 import json
2

3 def jsonify(wrapped):
4 def json_wrapper(request):
5 result = wrapped(request)
6 dumped = json.dumps(result)
7 return dumped
8 return json_wrapper

Let's also suppose a user has written an application using your framework, and he has imported your jsonify decorator
function, and uses it to decorate an application function:

1 from theframework import jsonify
2

3 @jsonify
4 def logged_in(request):
5 return {'result':'Logged in'}

As a result of an import of the module containing the logged_in function, a few things happen:

• The user's logged_in function is replaced by the json_wrapper function.

• The only reference left to the original logged_in function is inside the frame stack of the call to the jsonify
decorator.

This means, from the perspective of the application developer that the original logged_in function has effectively
"disappeared" when it is decorated with your jsonify decorator. Without bothersome hackery, it can no longer be
imported or retrieved by its original author.

More importantly, it also means that if the developer wants to unit test the logged_in function, he'll need to do so
only indirectly: he'll need to call the json_wrapper wrapper decorator function and test that the json returned by the
function contains the expected values. This will often imply using the json.loads function to turn the result of the
function back into a Python dictionary from the JSON representation serialized by the decorator.

3

venusian Documentation, Release 3.0.0

If the developer is a stickler for unit testing, however, he'll want to test only the function he has actually defined, not the
wrapper code implied by the decorator your framework has provided. This is the very definition of unit testing (testing
a "unit" without any other integration with other code). In this case, it is also more convenient for him to be able to
test the function without the decorator: he won't need to use the json.loads function to turn the result back into a
dictionary to make test assertions against. It's likely such a developer will try to find ways to get at the original function
for testing purposes.

To do so, he might refactor his code to look like this:

1 from theframework import jsonify
2

3 @jsonify
4 def logged_in(request):
5 return _logged_in(request)
6

7 def _logged_in(request):
8 return {'result':'Logged in'}

Then in test code he might import only the _logged_in function instead of the decorated logged_in function for
purposes of unit testing. In such a scenario, the conscientious unit testing app developer has to define two functions for
each decorated function. If you're thinking "that looks pretty tedious", you're right.

To give the intrepid tester an "out", you might be tempted as a framework author to leave a reference to the original
function around somewhere that the unit tester can import and use only for testing purposes. You might modify the
jsonify decorator like so in order to do that:

1 import json
2 def jsonify(wrapped):
3 def json_wrapper(request):
4 result = wrapped(request)
5 dumped = json.dumps(result)
6 return dumped
7 json_wrapper.original_function = wrapped
8 return json_wrapper

The line json_wrapper.original_function = wrapped is the interesting one above. It means that the application
developer has a chance to grab a reference to his original function:

1 from myapp import logged_in
2 result = logged_in.original_func(None)
3 self.assertEqual(result['result'], 'Logged in')

That works. But it's just a little weird. Since the jsonify decorator function has been imported by the developer from
a module in your framework, the developer probably shouldn't really need to know how it works. If he needs to read
its code, or understand documentation about how the decorator functions for testing purposes, your framework might
be less valuable to him on some level. This is arguable, really. If you use some consistent pattern like this for all your
decorators, it might be a perfectly reasonable solution.

However, what if the decorators offered by your framework were passive until activated explicitly? This is the promise
of using Venusian within your decorator implementations. You may use Venusian within your decorators to associate
a wrapped function, class, or method with a callback. Then you can return the originally wrapped function. Instead of
your decorators being "active", the callback associated with the decorator is passive until a "scan" is initiated.

4 Chapter 1. Overview

CHAPTER

TWO

USING VENUSIAN

The most basic use of Venusian within a decorator implementation is demonstrated below.

1 import venusian
2

3 def jsonify(wrapped):
4 def callback(scanner, name, ob):
5 print 'jsonified'
6 venusian.attach(wrapped, callback)
7 return wrapped

As you can see, this decorator actually calls into venusian, but then simply returns the wrapped object. Effectively this
means that this decorator is "passive" when the module is imported.

Usage of the decorator:

1 from theframework import jsonify
2

3 @jsonify
4 def logged_in(request):
5 return {'result':'Logged in'}

Note that when we import and use the function, the fact that it is decorated with the jsonify decorator is immaterial.
Our decorator doesn't actually change its behavior.

1 >>> from theapp import logged_in
2 >>> logged_in()
3 {'result':'Logged in'}
4 >>>

This is the intended result. During unit testing, the original function can be imported and tested despite the fact that it
has been wrapped with a decorator.

However, we can cause something to happen when we invoke a scan.

1 import venusian
2 import theapp
3

4 scanner = venusian.Scanner()
5 scanner.scan(theapp)

Above we've imported a module named theapp. The logged_in function which we decorated with our jsonify dec-
orator lives in this module. We've also imported the venusian module, and we've created an instance of the venusian.

5

venusian Documentation, Release 3.0.0

Scanner class. Once we've created the instance of venusian.Scanner, we invoke its venusian.Scanner.scan()
method, passing the theapp module as an argument to the method.

Here's what happens as a result of invoking the venusian.Scanner.scan() method:

1. Every object defined at module scope within the theapp Python module will be inspected to see if it has had a
Venusian callback attached to it.

2. For every object that does have a Venusian callback attached to it, the callback is called.

We could have also passed the scan method a Python package instead of a module. This would recursively import
each module in the package (as well as any modules in subpackages), looking for callbacks.

Note: During scan, the only Python files that are processed are Python source (.py) files. Compiled Python files
(.pyc, .pyo files) without a corresponding source file are ignored.

In our case, because the callback we defined within the jsonify decorator function prints jsonified when it is
invoked, which means that the word jsonified will be printed to the console when we cause venusian.Scanner.
scan() to be invoked. How is this useful? It's not! At least not yet. Let's create a more realistic example.

Let's change our jsonify decorator to perform a more useful action when a scan is invoked by changing the body of
its callback.

1 import venusian
2

3 def jsonify(wrapped):
4 def callback(scanner, name, ob):
5 def jsonified(request):
6 result = wrapped(request)
7 return json.dumps(result)
8 scanner.registry.add(name, jsonified)
9 venusian.attach(wrapped, callback)

10 return wrapped

Now if we invoke a scan, we'll get an error:

1 import venusian
2 import theapp
3

4 scanner = venusian.Scanner()
5 scanner.scan(theapp)
6

7 AttributeError: Scanner has no attribute 'registry'.

The venusian.Scanner class constructor accepts any key-value pairs; for each key/value pair passed to the scanner's
constructor, an attribute named after the key which points at the value is added to the scanner instance. So when you
do:

1 import venusian
2 scanner = venusian.Scanner(a=1)

Thereafter, scanner.a will equal the integer 1.

Any number of key-value pairs can be passed to a scanner. The purpose of being able to pass arbitrary key/value pairs
to a scanner is to allow cooperating decorator callbacks to access these values: each callback is passed the scanner
constructed when a scan is invoked.

6 Chapter 2. Using Venusian

venusian Documentation, Release 3.0.0

Let's fix our example by creating an object named registry that we'll pass to our scanner's constructor:

1 import venusian
2 import theapp
3

4 class Registry(object):
5 def __init__(self):
6 self.registered = []
7

8 def add(self, name, ob):
9 self.registered.append((name, ob))

10

11 registry = Registry()
12 scanner = venusian.Scanner(registry=registry)
13 scanner.scan(theapp)

At this point, we have a system which, during a scan, for each object that is wrapped with a Venusian-aware decorator,
a tuple will be appended to the registered attribute of a Registry object. The first element of the tuple will be the
decorated object's name, the second element of the tuple will be a "truly" decorated object. In our case, this will be a
jsonify-decorated callable.

Our framework can then use the information in the registry to decide which view function to call when a request comes
in.

Venusian callbacks must accept three arguments:

scanner

This will be the instance of the scanner that has had its scan method invoked.

name

This is the module-level name of the object being decorated.

ob

This is the object being decorated if it's a function or an instance; if the object being decorated is a method,
however, this value will be the class.

If you consider that the decorator and the scanner can cooperate, and can perform arbitrary actions together, you can
probably imagine a system where a registry will be populated that informs some higher-level system (such as a web
framework) about the available decorated functions.

7

venusian Documentation, Release 3.0.0

8 Chapter 2. Using Venusian

CHAPTER

THREE

SCAN CATEGORIES

Because an application may use two separate Venusian-using frameworks, Venusian allows for the concept of "scan
categories".

The venusian.attach() function accepts an additional argument named category.

For example:

1 import venusian
2

3 def jsonify(wrapped):
4 def callback(scanner, name, ob):
5 def jsonified(request):
6 result = wrapped(request)
7 return json.dumps(result)
8 scanner.registry.add(name, jsonified)
9 venusian.attach(wrapped, callback, category='myframework')

10 return wrapped

Note the category='myframework' argument in the call to venusian.attach(). This tells Venusian to attach the
callback to the wrapped object under the specific scan category myframework. The default scan category is None.

Later, during venusian.Scanner.scan(), a user can choose to activate all the decorators associated only with a
particular set of scan categories by passing a categories argument. For example:

1 import venusian
2 scanner = venusian.Scanner(a=1)
3 scanner.scan(theapp, categories=('myframework',))

The default categories argument is None, which means activate all Venusian callbacks during a scan regardless of
their category.

9

venusian Documentation, Release 3.0.0

10 Chapter 3. Scan Categories

CHAPTER

FOUR

ONERROR SCAN CALLBACK

New in version 1.0.

By default, when Venusian scans a package, it will propagate all exceptions raised while attempting to import code.
You can use an onerror callback argument to venusian.Scanner.scan() to change this behavior.

The onerror argument should either be None or a callback function which behaves the same way as the onerror
callback function described in http://docs.python.org/library/pkgutil.html#pkgutil.walk_packages .

Here's an example onerror callback that ignores all ImportError exceptions:

1 import sys
2 def onerror(name):
3 if not issubclass(sys.exc_info()[0], ImportError):
4 raise # reraise the last exception

Here's how we'd use this callback:

1 import venusian
2 scanner = venusian.Scanner()
3 scanner.scan(theapp, onerror=onerror)

The onerror callback should execute raise at some point if any exception is to be propagated, otherwise it can
simply return. The name passed to onerror is the module or package dotted name that could not be imported due to
an exception.

11

http://docs.python.org/library/pkgutil.html#pkgutil.walk_packages

venusian Documentation, Release 3.0.0

12 Chapter 4. onerror Scan Callback

CHAPTER

FIVE

IGNORE SCAN ARGUMENT

New in version 1.0a3.

The ignore to scan allows you to ignore certain modules, packages, or global objects during a scan. It should be
a sequence containing strings and/or callables that will be used to match against the full dotted name of each object
encountered during the scanning process. If the ignore value you provide matches a package name, global objects
contained by that package as well any submodules and subpackages of the package (and any global objects contained
by them) will be ignored. If the ignore value you provide matches a module name, any global objects in that module
will be ignored. If the ignore value you provide matches a global object that lives in a package or module, only that
particular global object will be ignored.

The sequence can contain any of these three types of objects:

• A string representing a full dotted name. To name an object by dotted name, use a string representing the full
dotted name. For example, if you want to ignore the my.package package and any of its subobjects during
the scan, pass ignore=['my.package']. If the string matches a global object (e.g. ignore=['my.package.
MyClass']), only that object will be ignored and the rest of the objects in the module or package that contains
the object will be processed.

• A string representing a relative dotted name. To name an object relative to the package passed to this method, use
a string beginning with a dot. For example, if the package you've passed is imported as my.package, and you
pass ignore=['.mymodule'], the my.package.mymodule module and any of its subobjects will be omitted
during scan processing. If the string matches a global object (e.g. ignore=['my.package.MyClass']), only
that object will be ignored and the rest of the objects in the module or package that contains the object will be
processed.

• A callable that accepts a full dotted name string of an object as its single positional argument and returns True
or False. If the callable returns True or anything else truthy, the module, package, or global object is ignored, if
it returns False or anything else falsy, it is not ignored. If the callable matches a package name, the package as
well as any of that package's submodules and subpackages (recursively) will be ignored. If the callable matches a
module name, that module and any of its contained global objects will be ignored. If the callable matches a global
object name, only that object name will be ignored. For example, if you want to skip all packages, modules,
and global objects that have a full dotted name that ends with the word "tests", you can use ignore=[re.
compile('tests$').search].

Here's an example of how we might use the ignore argument to scan to ignore an entire package (and any of its
submodules and subpackages) by absolute dotted name:

1 import venusian
2 scanner = venusian.Scanner()
3 scanner.scan(theapp, ignore=['theapp.package'])

Here's an example of how we might use the ignore argument to scan to ignore an entire package (and any of its
submodules and subpackages) by relative dotted name (theapp.package):

13

venusian Documentation, Release 3.0.0

1 import venusian
2 scanner = venusian.Scanner()
3 scanner.scan(theapp, ignore=['.package'])

Here's an example of how we might use the ignore argument to scan to ignore a particular class object:

1 import venusian
2 scanner = venusian.Scanner()
3 scanner.scan(theapp, ignore=['theapp.package.MyClass'])

Here's an example of how we might use the ignore argument to scan to ignore any module, package, or global object
that has a name which ends with the string tests:

1 import re
2 import venusian
3 scanner = venusian.Scanner()
4 scanner.scan(theapp, ignore=[re.compile('tests$').search])

You can mix and match the three types in the list. For example, scanner.scan(my, ignore=['my.package', '.
someothermodule', re.compile('tests$').search]) would cause my.package (and all its submodules and
subobjects) to be ignored, my.someothermodule to be ignored, and any modules, packages, or global objects found
during the scan that have a full dotted path that ends with the word tests to be ignored beneath the my package.

Packages and modules matched by any ignore in the list will not be imported, and their top-level code will not be run
as a result.

14 Chapter 5. ignore Scan Argument

CHAPTER

SIX

LIMITATIONS AND AUDIENCE

Venusian is not really a tool that is maximally useful to an application developer. It would be a little silly to use it every
time you needed a decorator. Instead, it's most useful for framework authors, in order to be able to say to their users
"the frobozz decorator doesn't change the output of your function at all" in documentation. This is a lot easier than
telling them how to test methods/functions/classes decorated by each individual decorator offered by your frameworks.

15

venusian Documentation, Release 3.0.0

16 Chapter 6. Limitations and Audience

CHAPTER

SEVEN

API DOCUMENTATION / GLOSSARY

7.1 API Documentation for Venusian

class venusian.Scanner(**kw)

scan(package, categories=None, onerror=None, ignore=None)
Scan a Python package and any of its subpackages. All top-level objects will be considered; those marked
with venusian callback attributes related to category will be processed.

The package argument should be a reference to a Python package or module object.

The categories argument should be sequence of Venusian callback categories (each category usually a
string) or the special value None which means all Venusian callback categories. The default is None.

The onerror argument should either be None or a callback function which behaves the same way
as the onerror callback function described in http://docs.python.org/library/pkgutil.html#pkgutil.walk_
packages . By default, during a scan, Venusian will propagate all errors that happen during its code im-
porting process, including ImportError. If you use a custom onerror callback, you can change this
behavior.

Here's an example onerror callback that ignores ImportError:

import sys
def onerror(name):

if not issubclass(sys.exc_info()[0], ImportError):
raise # reraise the last exception

The name passed to onerror is the module or package dotted name that could not be imported due to an
exception.

New in version 1.0: the onerror callback

The ignore argument allows you to ignore certain modules, packages, or global objects during a scan. It
should be a sequence containing strings and/or callables that will be used to match against the full dotted
name of each object encountered during a scan. The sequence can contain any of these three types of
objects:

• A string representing a full dotted name. To name an object by dotted name, use a string representing
the full dotted name. For example, if you want to ignore the my.package package and any of its
subobjects or subpackages during the scan, pass ignore=['my.package'].

• A string representing a relative dotted name. To name an object relative to the package passed to this
method, use a string beginning with a dot. For example, if the package you've passed is imported as
my.package, and you pass ignore=['.mymodule'], the my.package.mymodule mymodule and
any of its subobjects or subpackages will be omitted during scan processing.

17

http://docs.python.org/library/pkgutil.html#pkgutil.walk_packages
http://docs.python.org/library/pkgutil.html#pkgutil.walk_packages

venusian Documentation, Release 3.0.0

• A callable that accepts a full dotted name string of an object as its single positional argument and
returns True or False. For example, if you want to skip all packages, modules, and global objects with
a full dotted path that ends with the word "tests", you can use ignore=[re.compile('tests$').
search]. If the callable returns True (or anything else truthy), the object is ignored, if it returns False
(or anything else falsy) the object is not ignored. Note that unlike string matches, ignores that use a
callable don't cause submodules and subobjects of a module or package represented by a dotted name
to also be ignored, they match individual objects found during a scan, including packages, modules,
and global objects.

You can mix and match the three types of strings in the list. For example, if the package being scanned
is my, ignore=['my.package', '.someothermodule', re.compile('tests$').search] would
cause my.package (and all its submodules and subobjects) to be ignored, my.someothermodule to be
ignored, and any modules, packages, or global objects found during the scan that have a full dotted name
that ends with the word tests to be ignored.

Note that packages and modules matched by any ignore in the list will not be imported, and their top-level
code will not be run as a result.

A string or callable alone can also be passed as ignore without a surrounding list.

New in version 1.0a3: the ignore argument

class venusian.AttachInfo(**kw)
An instance of this class is returned by the venusian.attach() function. It has the following attributes:

scope

One of exec, module, class, function call or unknown (each a string). This is the scope detected
while executing the decorator which runs the attach function.

module

The module in which the decorated function was defined.

locals

A dictionary containing decorator frame's f_locals.

globals

A dictionary containing decorator frame's f_globals.

category

The category argument passed to attach (or None, the default).

codeinfo

A tuple in the form (filename, lineno, function, sourceline) representing the context of
the venusian decorator used. Eg. ('/home/chrism/projects/venusian/tests/test_advice.
py', 81, 'testCallInfo', 'add_handler(foo, bar)')

venusian.attach(wrapped, callback, category=None, name=None)
Attach a callback to the wrapped object. It will be found later during a scan. This function returns an instance
of the venusian.AttachInfo class.

category should be None or a string representing a decorator category name.

name should be None or a string representing a subcategory within the category. This will be used by the lift
class decorator to determine if decorations of a method should be inherited or overridden.

class venusian.lift(categories=None)
A class decorator which 'lifts' superclass venusian configuration decorations into subclasses. For example:

18 Chapter 7. API Documentation / Glossary

venusian Documentation, Release 3.0.0

from venusian import lift
from somepackage import venusian_decorator

class Super(object):
@venusian_decorator()
def boo(self): pass

@venusian_decorator()
def hiss(self): pass

@venusian_decorator()
def jump(self): pass

@lift()
class Sub(Super):

def boo(self): pass

def hiss(self): pass

@venusian_decorator()
def smack(self): pass

The above configuration will cause the callbacks of seven venusian decorators. The ones attached to Super.boo,
Super.hiss, and Super.jump plus ones attached to Sub.boo, Sub.hiss, Sub.hump and Sub.smack.

If a subclass overrides a decorator on a method, its superclass decorators will be ignored for the subclass. That
means that in this configuration:

from venusian import lift
from somepackage import venusian_decorator

class Super(object):
@venusian_decorator()
def boo(self): pass

@venusian_decorator()
def hiss(self): pass

@lift()
class Sub(Super):

def boo(self): pass

@venusian_decorator()
def hiss(self): pass

Only four, not five decorator callbacks will be run: the ones attached to Super.boo and Super.hiss, the inherited
one of Sub.boo and the non-inherited one of Sub.hiss. The inherited decorator on Super.hiss will be ignored for
the subclass.

The lift decorator takes a single argument named 'categories'. If supplied, it should be a tuple of category
names. Only decorators in this category will be lifted if it is suppled.

class venusian.onlyliftedfrom
A class decorator which marks a class as 'only lifted from'. Decorations made on methods of the class won't have

7.1. API Documentation for Venusian 19

venusian Documentation, Release 3.0.0

their callbacks called directly, but classes which inherit from only-lifted-from classes which also use the lift
class decorator will use the superclass decoration callbacks.

For example:

from venusian import lift, onlyliftedfrom
from somepackage import venusian_decorator

@onlyliftedfrom()
class Super(object):

@venusian_decorator()
def boo(self): pass

@venusian_decorator()
def hiss(self): pass

@lift()
class Sub(Super):

def boo(self): pass

def hiss(self): pass

Only two decorator callbacks will be run: the ones attached to Sub.boo and Sub.hiss. The inherited decorators
on Super.boo and Super.hiss will be not be registered.

7.2 Glossary

Grok A Zope-based web framework <http://grok.zope.org>.

Martian The package venusian was inspired by, part of the Grok project.

scan Walk a module or package executing callbacks defined by venusian-aware decorators along the way.

20 Chapter 7. API Documentation / Glossary

CHAPTER

EIGHT

INDICES AND TABLES

• Glossary

• modindex

• search

21

venusian Documentation, Release 3.0.0

22 Chapter 8. Indices and tables

PYTHON MODULE INDEX

v
venusian, 17

23

venusian Documentation, Release 3.0.0

24 Python Module Index

INDEX

A
attach() (in module venusian), 18
AttachInfo (class in venusian), 18

G
Grok, 20

L
lift (class in venusian), 18

M
Martian, 20
module

venusian, 17

O
onlyliftedfrom (class in venusian), 19

S
scan, 20
scan() (venusian.Scanner method), 17
Scanner (class in venusian), 17

V
venusian
module, 17

25

	Overview
	Using Venusian
	Scan Categories
	onerror Scan Callback
	ignore Scan Argument
	Limitations and Audience
	API Documentation / Glossary
	API Documentation for Venusian
	Glossary

	Indices and tables
	Python Module Index
	Index

