
AcidFS Documentation
Release 1.0

Chris Rossi

Apr 12, 2018

Contents

1 Features 3

2 Motivation 5

3 Limitations 7

4 Usage 9

5 Commit Metadata 11

6 API 13

Python Module Index 17

i

ii

AcidFS Documentation, Release 1.0

The filesystem on ACID

AcidFS allows interaction with the filesystem using transactions with ACID semantics. Git is used as a back end, and
AcidFS integrates with the transaction package allowing use of multiple databases in a single transaction.

Contents 1

http://pypi.python.org/pypi/transaction

AcidFS Documentation, Release 1.0

2 Contents

CHAPTER 1

Features

• Changes to the filesystem will only be persisted when a transaction is committed and if the transaction succeeds.

• Within the scope of a transaction, your application will only see a view of the filesystem consistent with that
filesystem’s state at the beginning of the transaction. Concurrent writes do not affect the current context.

• A full history of all changes is available, since files are stored in a backing Git repository. The standard Git
toolchain can be used to recall past states, roll back particular changes, replicate the repository remotely, etc.

• Changes to a AcidFS filesystem are synced automatically with any other database making use of the transaction
package and its two phase commit protocol, eg. ZODB or SQLAlchemy.

• Most common concurrent changes can be merged. There’s even a decent chance concurrent modifications to the
same text file can be merged.

• Transactions can be started from an arbitrary commit point, allowing, for example, a web application to apply
the results of a form submission to the state of your data at the time the form was rendered, making concurrent
edits to the same resource less risky and effectively giving you transactions that can span request boundaries.

3

AcidFS Documentation, Release 1.0

4 Chapter 1. Features

CHAPTER 2

Motivation

The motivation for this package is the fact that it often is convenient for certain very simple problems to simply write
and read data from a fileystem, but often a database of some sort winds up being used simply because of the power
and safety available with a system which uses transactions and ACID semantics. For example, you wouldn’t want a
web application with any amount of concurrency at all to be writing directly to the filesystem, since it would be easy
for two threads or processes to both attempt to write to the same file at the same time, with the result that one change
is clobbered by another, or even worse, the application is left in an inconsistent, corrupted state. After thinking about
various ways to attack this problem and looking at Git’s datastore and plumbing commands, it was determined that
Git was a very good fit, allowing a graceful solution to this problem.

5

AcidFS Documentation, Release 1.0

6 Chapter 2. Motivation

CHAPTER 3

Limitations

In a nutshell:

• Only platforms where fcntl is available are supported. This excludes Microsoft Windows and probably the JVM
as well.

• Kernel level locking is used to manage concurrency. This means AcidFS cannot handle multiple application
servers writing to a shared network drive.

• The type of locking used only synchronizes other instances of AcidFS. Other processes manipulating the Git
repository without using AcidFS could cause a race condition. A repository used by AcidFS should only be
written to by AcidFS in order to avoid unpleasant race conditions.

All of the above limitations are a result of the locking used to synchronize commits. For the most part, during a
transaction, nothing special needs to be done to manage concurrency since Git’s storage model makes management
of multiple, parallel trees trivially easy. At commit time, however, any new data has to be merged with the current
head which may have changed since the transaction began. This last step should be synchronized such that only one
instance of AcidFS is attempting this at a time. The mechanism, currently, for doing this is use of the fcntl module
which takes advantage of an advisory locking mechanism available in Unix kernels.

7

AcidFS Documentation, Release 1.0

8 Chapter 3. Limitations

CHAPTER 4

Usage

AcidFS is easy to use. Just create an instance of acidfs.AcidFS and start using the filesystem:

import acidfs

fs = acidfs.AcidFS('path/to/my/repo')
fs.mkdir('foo')
with fs.open('/foo/bar', 'w') as f:

print >> f, 'Hello!'

If there is not already a Git repository at the path specified, one is created. An instance of AcidFS is not thread safe.
The same AcidFS instance should not be shared across threads or greenlets, etc.

The transaction package is used to commit and abort transactions:

import transaction

transaction.commit()
If no exception has been thrown, then changes are saved! Yeah!

Note: If you’re using Pyramid, you should use pyramid_tm. For other WSGI frameworks there is also repoze.tm2.

9

http://pypi.python.org/pypi/transaction
http://www.pylonsproject.org/
http://pypi.python.org/pypi/pyramid_tm
http://pypi.python.org/pypi/repoze.tm2

AcidFS Documentation, Release 1.0

10 Chapter 4. Usage

CHAPTER 5

Commit Metadata

The transaction package has built in support for providing metadata about a particular transaction. This metadata
is used to set the commit data for the underlying git commit for a transaction. Use of these hooks is optional but
recommended to provide meaningful audit information in the history of your repository. An example is the best
illustration:

import transaction

current = transaction.get()
current.note('Added blog entry: "Bedrock Bro Culture: Yabba Dabba Dude!"')
current.setUser('Fred Flintstone')
current.setExtendedInfo('email', 'fred@bed.rock')

A users’s name may also be set by using the setExtendedInfo method:

current.setExtendedInfo('user', 'Fred Flintstone')

The keys acidfs_user and acidfs_email are available in extended info in case you are sharing a transaction
with a system that has a different notion of what user and email should be set to. Substance D, for examples, sets the
user to an integer OID that represents the user in its system, but that might not be what you want to see in the Git log
for your repository:

current.setExtendedInfo('acidfs_user', 'Fred Flintstone')
current.setExtendedInfo('acidfs_email', 'fred@bed.rock')

The transaction might look something like this in the git log:

commit 3aa61073ea755f2c642ef7e258abe77215fe54a2
Author: Fred Flintstone <fred@bed.rock>
Date: Sun Sep 16 22:08:08 2012 -0400

Added blog entry: "Bedrock Bro Culture: Yabba Dabba Dude!"

11

http://pypi.python.org/pypi/transaction

AcidFS Documentation, Release 1.0

12 Chapter 5. Commit Metadata

CHAPTER 6

API

class acidfs.AcidFS(repo, head=’HEAD’, create=True, bare=False, user_name=None,
user_email=None, name=’AcidFS’, path_encoding=’ascii’)

An instance of AcidFS exposes a transactional filesystem view of a Git repository. Instances of AcidFS are not
threadsafe and should not be shared across threads, greenlets, etc.

Paths

Many methods take a path as an argument. All paths use forward slash / as a separator, regardless of the path
separator of the underlying operating system. The path / represents the root folder of the repository. Paths
may be relative or absolute: paths beginning with a / are absolute with respect to the repository root, paths not
beginning with a / are relative to the current working directory. The current working directory always starts
at the root of the repository. The current working directory can be changed using the chdir() and cd()
methods.

Constructor Arguments

repo

The path to the repository in the real, local filesystem.

head

The name of a branch to use as the head for this transaction. Changes made using this instance will
be merged to the given head. The default, if omitted, is to use the repository’s current head.

create

If there is not a Git repository in the indicated directory, should one be created? The default is True.

bare

If the Git repository is to be created, create it as a bare repository. If the repository is already created
or create is False, this argument has no effect.

user_name

If the Git repository is to be created, set the user name for the repository to this value. This is the
same as creating the repository and running git config user.name “<user_name>”.

13

AcidFS Documentation, Release 1.0

user_email

If the Git repository is to be created, set the user email for the repository to this value. This is the
same as creating the repository and running git config user.email “<user_email>”.

name

Name to be used as a sort key when ordering the various databases (datamanagers in the parlance of
the transaction package) during a commit. It is exceedingly rare that you would need to use anything
other than the default, here.

path_encoding

Encode paths with this encoding. The default is ascii.

open(path, mode=’r’, buffering=-1, encoding=None, errors=None, newline=None)
Open a file for reading or writing.

Implements the semantics of the open function in Python’s io module, which is the default implementation
in Python 3. Opening a file in text mode will return a file-like object which reads or writes unicode strings,
while opening a file in binary mode will return a file-like object which reads or writes raw bytes.

Because the underlying implementation uses a pipe to a Git plumbing command, opening for update (read
and write) is not supported, nor is seeking.

cwd()
Returns the path to the current working directory in the repository.

chdir(path)
Change the current working directory in repository.

cd(path)
A context manager that changes the current working directory only in the scope of the ‘with’ context. Eg:

import acidfs

fs = acidfs.AcidFS('myrepo')
with fs.cd('some/folder'):

fs.open('a/file') # relative to /some/folder
fs.open('another/file') # relative to /

listdir(path=”)
Return list of files in indicated directory. If path is omitted, the current working directory is used.

mkdir(path)
Create a new directory. The parent of the new directory must already exist.

mkdirs(path)
Create a new directory, including any ancestors which need to be created in order to create the directory
with the given path.

rm(path)
Remove a single file.

rmdir(path)
Remove a single directory. The directory must be empty.

rmtree(path)
Remove a directory and any of its contents.

mv(src, dst)
Move a file or directory from src path to dst path.

14 Chapter 6. API

http://docs.python.org/library/io.html#io.open
http://docs.python.org/py3k/library/functions.html#open

AcidFS Documentation, Release 1.0

exists(path)
Returns boolean indicating whether a file or directory exists at the given path.

isdir(path)
Returns boolean indicating whether the given path is a directory.

empty(path)
Returns boolean indicating whether the directory indicated by path is empty.

get_base()
Returns the id of the commit that is the current base for the transaction.

set_base(commit)
Sets the base commit for the current transaction. The commit argument may be the SHA1 of a commit or
the name of a reference (eg. branch or tag). The current transaction must be clean. If any changes have
been made in the transaction, a ConflictError will be raised.

hash(path=”)
Returns the sha1 hash of the object referred to by path. If path is omitted the current working directory is
used.

15

AcidFS Documentation, Release 1.0

16 Chapter 6. API

Python Module Index

a
acidfs, 13

17

AcidFS Documentation, Release 1.0

18 Python Module Index

Index

A
AcidFS (class in acidfs), 13
acidfs (module), 13

C
cd() (acidfs.AcidFS method), 14
chdir() (acidfs.AcidFS method), 14
cwd() (acidfs.AcidFS method), 14

E
empty() (acidfs.AcidFS method), 15
exists() (acidfs.AcidFS method), 14

G
get_base() (acidfs.AcidFS method), 15

H
hash() (acidfs.AcidFS method), 15

I
isdir() (acidfs.AcidFS method), 15

L
listdir() (acidfs.AcidFS method), 14

M
mkdir() (acidfs.AcidFS method), 14
mkdirs() (acidfs.AcidFS method), 14
mv() (acidfs.AcidFS method), 14

O
open() (acidfs.AcidFS method), 14

R
rm() (acidfs.AcidFS method), 14
rmdir() (acidfs.AcidFS method), 14
rmtree() (acidfs.AcidFS method), 14

S
set_base() (acidfs.AcidFS method), 15

19

	Features
	Motivation
	Limitations
	Usage
	Commit Metadata
	API
	Python Module Index

