
Churro Documentation
Release 1.0a1

Chris Rossi

July 05, 2016

Contents

1 Defining Persistent Types 3

2 Adding Objects to the Repository 5

3 Committing a Transaction 7

4 Persistent Properties 9

5 Mutable Property Values 11

6 API Reference 13

Python Module Index 15

i

ii

Churro Documentation, Release 1.0a1

Churro is a simplistic persistent storage for Python objects which stores a tree of hierchically nested objects as folders
and flat files in a filesystem. Churro uses AcidFS to provide ACID transaction semantics. Changes to any Churro
object tree are only persisted when a transaction successfully commits. Churro uses JSON to serialize objects. Churro
is meant to be lightweight and durable. Use of JSON, a universally understood and human readable text file format,
insures that data stored by Churro is portable to other applications and platforms across space and time.

In addition to these docs, it couldn’t hurt to look over the AcidFS documentation.

Contents 1

http://pypi.python.org/pypi/acidfs/1.0b2
http://acidfs.readthedocs.org/

Churro Documentation, Release 1.0a1

2 Contents

CHAPTER 1

Defining Persistent Types

In order for an object to be saved in a Churro repository, it must inherit from Persistent or
PersistentFolder. Attributes of your persistent objects that you want to be persisted must be derived from
PersistentProperty . Probably the best way to illustrate is by example, so let’s say you’re writing an applica-
tion that saves contacts in an address book. We might write some code that looks like this:

from churro import Persistent
from churro import PersistentProperty
from churro import PersistentFolder

class AddressBook(PersistentFolder):
title = PersistentProperty()

def __init__(self, title):
self.title = title

class Contact(Persistent):
name = PersistentProperty()
address = PersistentProperty()

def __init__(self, name, address):
self.name = name
self.address = address

You can see that defining your persistent types is pretty straightforward. Next you’ll want to open a repository and
start storing some data.

3

Churro Documentation, Release 1.0a1

4 Chapter 1. Defining Persistent Types

CHAPTER 2

Adding Objects to the Repository

from churro import Churro

repo = Churro('/path/to/folder')
root = repo.root()
contacts = AddressBook('My Contacts')
root['contacts'] = contacts

contacts['fred'] = Contact('Fred Flintstone', '1 Rocky Road')
contacts['barney'] = Contact('Barney Rubble', '6 Bronto Lane')

Above, we create an instance of Churro where the argument is the folder in the filesystem where the repository will
live. If the folder does not exist, it will be created and an empty repository will be initialized. Otherwise an existing
repository will be opened. The call to repo.root() gets the root folder of the repository, the starting point for
traversing to any other objects in the repository. From there, adding data to the repository is as easy as instantiating
data objects using folders as Python dicts.

5

Churro Documentation, Release 1.0a1

6 Chapter 2. Adding Objects to the Repository

CHAPTER 3

Committing a Transaction

So far no data has actually been stored yet. You’ll need to commit a transaction:

import transaction

transaction.commit()

Note: If you’re using Pyramid, you should avoid committing the transaction yourself and use pyramid_tm. For other
WSGI frameworks there is also repoze.tm2.

7

http://www.pylonsproject.org/
http://pypi.python.org/pypi/pyramid_tm
http://pypi.python.org/pypi/repoze.tm2

Churro Documentation, Release 1.0a1

8 Chapter 3. Committing a Transaction

CHAPTER 4

Persistent Properties

PersistentProperty and its subclasses are responsible for serializing individual attributes of your Python ob-
jects to JSON. PersistentProperty can handle values of any type natively serializable to JSON. These include
strings, booleans, numbers, lists, and dictionaries. Persistent properties can also hold as values other Persistent
objects, allowing objects to be nested inside of each other.

Two additional property types, PersistentDate and PersistentDatetime are included for storing date-
time.date and datetime.datetime objects respectively.

For other types you’ll need to provide a means for converting the type to something serializable by JSON and
then converting back to a Python object. This is done by extending PersistentProperty and overriding the
to_json(), from_json(), and validate() methods. The following is an actual example from Churro code
that illustrates this:

import datetime

class PersistentDate(PersistentProperty):

def from_json(self, value):
if value:

return datetime.date(*map(int, value.split('-')))
return value

def to_json(self, value):
if value:

return '%s-%s-%s' % (value.year, value.month, value.day)
return value

def validate(self, value):
if value is not None and not isinstance(value, datetime.date):

raise ValueError("%s is not an instance of datetime.date")
return value

You can use the new property type in your class definitions:

class Contact(Persistent):
name = PersistentProperty()
address = PersistentProperty()
birthday = PersistentDate()

def __init__(self, name, address):
self.name = name
self.address = address

9

Churro Documentation, Release 1.0a1

10 Chapter 4. Persistent Properties

CHAPTER 5

Mutable Property Values

Churro automatically keeps track of which objects have been mutated and saves those objects at transaction commit
time. Churro does this by keeping track of when a setter is called on a property and marking that object as dirty. So
simply assigning a value to a property will cause that object to get persisted at commit time:

daniela.birthday = datetime.date(2010, 5, 12)

You can find yourself in a situation, however, where the assigned value is a mutable structure and instead of assigning
a new value to the property you simply mutate the structure. Let’s say that we add a list of friends to our Contact class:

class Contact(Persistent):
name = PersistentProperty()
address = PersistentProperty()
birthday = PersistentDate()
friends = PersistentProperty()

def __init__(self, name, address):
self.name = name
self.address = address
self.friends = []

If we have a Contact instance that is clean and the only change we make is to add a friend to the list, Churro will not
detect the mutation and the change will not be persisted at commit time:

This change won't be persisted
daniela.friends.append('Katy')

One way to get around this problem is to call the set_dirty() method on the object that needs to be saved:

Unless you call this method
daniela.set_dirty()

This brute force method is always available, whatever you’re doing. Churro does, however, provide helpers for the
two most common types of mutable data, dicts and lists. These are PersistentDict and PersistentList
respectively. We could rewrite the example above to a use a PersistentList instead of a plain Python list:

from churro import PersistentList

class Contact(Persistent):
name = PersistentProperty()
address = PersistentProperty()
birthday = PersistentDate()
friends = PersistentProperty()

def __init__(self, name, address):

11

Churro Documentation, Release 1.0a1

self.name = name
self.address = address
self.friends = PersistentList()

Now you don’t need to call set_dirty() when adding a friend to a contact’s friend list:

Don't need to call set_dirty, this change will be persisted
daniela.friends.append('Silas')

12 Chapter 5. Mutable Property Values

CHAPTER 6

API Reference

class churro.Churro(repo, head=’HEAD’, factory=None, create=True, bare=False)
Constructor Arguments

repo

The path to the repository in the real, local filesystem.

head

The name of a branch to use as the head for this transaction. Changes made using this instance will
be merged to the given head. The default, if omitted, is to use the repository’s current head.

factory

A callable that returns the root database object to be stored as the root when creating a new database.
The default factory returns an instance of churro.PersistentFolder. This has no effect if the repository
has already been created.

create

If there is not a Git repository in the indicated directory, should one be created? The default is True.

bare

If the Git repository is to be created, create it as a bare repository. If the repository is already created
or create is False, this argument has no effect.

flush()
Writes any unsaved data to the underlying AcidFS filesystem without committing the transaction.

root()
Gets the root folder of the repository. This is the starting point for traversing to other objects in the
repository.

class churro.Persistent
This is the base class from which all persistent classes for Churro must be derived. Only objects which are
instances of a class derived from Persistent may be stored in a Churro repository.

deactivate()
Calling this method on a persistent object detaches that object, and its children, from the in memory
persistent object tree, potentially allowing it to be garbage collected if there are no other references to the
object.

set_dirty()
Calling this method alerts Churro that this object is dirty and should be persisted at commit time. It is
usually not necesary to call this method from application code, since Churro tries to detect object mutation
whenever possible. You may need to call this method from your application code, however, if you use

13

Churro Documentation, Release 1.0a1

mutable data structures that are not themselves Persistent as values of persistent properties, as Churro has
no way of detecting mutations to those structures.

class churro.PersistentFolder
Classes which derive from this class are not only persistent in Churro but have dict-like properties allowing
them to contain children which are other persistent objects or folders. Storing an instance of PersistentFolder in
a Churro repository, creates a folder in the underlying filesystem, in which child objects are stored. Instances of
PersistentFolder are dict-like and are interacted with in the same way as standard Python dictionaries.

get(name, default=None)
Returns the child object of the given name. Returns default if the child is not found.

items()
Returns an iterator over (child object’s name, child object) tuples.

keys()
Returns the names of child objects.

remove(name)
Removes the child with the given name from the folder. Raises KeyError if there is no child with the given
name.

values()
Returns an iterator over child objects.

class churro.PersistentDict(*args)
A PersistentDict is a Python dict work alike that marks its parent object as dirty whenever it is mutated, solving
the problem of using mutable datastructures as values for persistent properties with Churro and eliminating the
need to call set_dirty() in application code when updating the dictionary.

class churro.PersistentList(*args)
A PersistentList is a Python dict work alike that marks its parent object as dirty whenever it is mutated, solving
the problem of using mutable datastructures as values for persistent properties with Churro and eliminating the
need to call set_dirty() in application code when updating the list.

class churro.PersistentProperty
The base type for all persistent properties. This property type can handle any data type as a value that is
serializable natively to JSON. Other types are implemented by extending this class and overriding the from_json,
to_json, and validate methods.

from_json(value)
Converts a value from its JSON representation to a Python object.

to_json(value)
Converts a value from a Python object to an object that can be serialized as JSON.

validate(value)
Used at assignment time to validate a value. If a value is not of the proper type and cannot be converted
to the proper type, a ValueError is raised, otherwise the valua is returned, including any transformation or
coercion that has been performed.

class churro.PersistentDate
A persistent attribute type that can store instances of datetime.date.

class churro.PersistentDatetime
A persistent attribute type that can store instances of datetime.datetime.

14 Chapter 6. API Reference

Python Module Index

c
churro, 13

15

Churro Documentation, Release 1.0a1

16 Python Module Index

Index

C
Churro (class in churro), 13
churro (module), 13

D
deactivate() (churro.Persistent method), 13

F
flush() (churro.Churro method), 13
from_json() (churro.PersistentProperty method), 14

G
get() (churro.PersistentFolder method), 14

I
items() (churro.PersistentFolder method), 14

K
keys() (churro.PersistentFolder method), 14

P
Persistent (class in churro), 13
PersistentDate (class in churro), 14
PersistentDatetime (class in churro), 14
PersistentDict (class in churro), 14
PersistentFolder (class in churro), 14
PersistentList (class in churro), 14
PersistentProperty (class in churro), 14

R
remove() (churro.PersistentFolder method), 14
root() (churro.Churro method), 13

S
set_dirty() (churro.Persistent method), 13

T
to_json() (churro.PersistentProperty method), 14

V
validate() (churro.PersistentProperty method), 14
values() (churro.PersistentFolder method), 14

17

	Defining Persistent Types
	Adding Objects to the Repository
	Committing a Transaction
	Persistent Properties
	Mutable Property Values
	API Reference
	Python Module Index

