

Peppercorn

A library for converting a token stream into a data structure comprised of
sequences, mappings, and scalars, developed primarily for converting HTTP
form post data into a richer data structure. It runs on Python 2.7, 3.4, 3.5,
3.6 and 3.7.

Example "bare" usage:

>>> fields = [
... ('name', 'project1'),
... ('title', 'Cool project'),
... ('__start__', 'series:mapping'),
... ('name', 'date series 1'),
... ('__start__', 'dates:sequence'),
... ('__start__', 'date:sequence'),
... ('day', '10'),
... ('month', '12'),
... ('year', '2008'),
... ('__end__', 'date:sequence'),
... ('__start__', 'date:sequence'),
... ('day', '10'),
... ('month', '12'),
... ('year', '2009'),
... ('__end__', 'date:sequence'),
... ('__end__', 'dates:sequence'),
... ('__start__', ':ignore'),
... ('selectall', ''),
... ('__end__', ''),
... ('__end__', 'series:mapping'),
...]
 >>> from peppercorn import parse
 >>> return pprint.pprint(parse(fields))
 {'series':
 {'name':'date series 1',
 'dates': [['10', '12', '2008'], ['10', '12', '2009']]},
 'name': 'project1',
 'title': 'Cool project'}

A __start__ token pushes a data structure onto the stack. Its
value is composed of a name and a type, separated by a colon
(e.g. date:sequence). Four __start__ token types exist:

	sequence: begins a sequence. Subsequent data elements will be
added as positional elements in the sequence.

	mapping: begins a mapping. Subsequent data elements will be
added as key/value pairs in the mapping.

	rename: begins a special mode. The value of the first
subsequent data element in the stream will be used within its
parent sequence or mapping; any remaining data elements until the
corresponding __end__ marker are ignored.

If the parent is a mapping, the key used in the mapping will be the
name of the rename token (when value="something:rename", the
key will be something). The value will be the value of the
first data element.

If the parent is a sequence, the rename token name is ignored,
and the value of the first data element is placed into the sequence.

rename is mostly for radio controls; we surround sets of radio
controls in a rename in order to provide a surrogate naming for
a group of radio control elements. Radio control name
attributes are used by the browser to perform grouping, so each
radio control that is a member of a the same group must share a
name attribute value. Moreover, this group name must be unique
amongst all controls on the form to prevent "select bleeding"
between radio controls. However, on the server side, we're
uninterested in participating in this disambiguation process and
it's easier to not know about it when the form is posted. We just
want the selected value back in the pstruct to be recorded under a
well-known name. This name will be the name of the rename token
surrounding some radio controls.

	ignore: The subsequent data elements will be ignored (not added
to the mapping or sequence) until the next __end__ token. Useful
when forms include a field designed for client side scripting, such
as a "select all" checkbox in the middle of a series of checkboxes.

__start__ markers can be unnamed; they are unnamed when their
value does not contain a colon. For example, the start marker
('__start__', 'mapping') begins a mapping with the implied name
'' (the empty string).

A sequence or mapping is closed when the corresponding __end__
token for its __start__ token is processed. Mappings and
sequences can be nested arbitrarily. The value of an __end__
token is optional; it is useful as documentation, but they are
not required by Peppercorn.

The data structure returned from peppercorn.parse() will always
be a mapping.

To use Peppercorn in a web application, create a form that has the
tokens in order. For instance, the below form will generate the above
token stream:

<form action="." method="post" enctype="multipart/form-data">
 <input name="name"/>
 <input name="title"/>
 <input type="hidden" name="__start__" value="series:mapping"/>
 <input name="name"/>
 <input type="hidden" name="__start__" value="dates:sequence"/>
 <input type="hidden" name="__start__" value="date:sequence"/>
 <input name="day"/>
 <input name="month"/>
 <input name="year"/>
 <input type="hidden" name="__end__"/>
 <input type="hidden" name="__start__" value="date:sequence"/>
 <input name="day"/>
 <input name="month"/>
 <input name="year"/>
 <input type="hidden" name="__start__" value="sex:rename"/>
 <input type="radio" name="sex1" value="male"/>
 <input type="radio" name="sex1" value="female"/>
 <input type="hidden" name="__end__"/>
 <input type="hidden" name="__end__"/>
 <input type="hidden" name="__end__"/>
 <input type="hidden" name="__end__"/>
</form>

Then when the web post reaches the application, call the
peppercorn.parse() function with the ordered field pairs. For a
WebOb request, this means using the items method of a
Webob MultiDict such as request.POST:

	1
2

	fields = request.POST.items()
peppercorn.parse(fields)

The list attribute of a Python cgi.FieldStorage object can
also be used as a source of information:

	1
2
3
4
5
6
7
8
9

	fields = []
if fs.list:
 for field in fs.list:
 if field.filename:
 fields.append((field.name, field))
 else:
 fields.append((field.name, field.value))

peppercorn.parse(fields)

	API Documentation

	Glossary

Resources

See the plope.com article about the genesis of Peppercorn [https://web.archive.org/web/20170201033638/http://www.plope.com/peppercorn].

Indices and tables

	Index

	Module Index

	Search Page

API Documentation

	
peppercorn.parse(tokens)

	Infer a data structure from the ordered set of fields and
return it.

Glossary

	WebOb

	WebOb [https://webob.org/] is a WSGI request/response library created by Ian Bicking.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 peppercorn	

Index

 P
 | W

P

 	
 	parse() (in module peppercorn)

 	
 	peppercorn (module)

W

 	
 	WebOb

 nav.xhtml

 Table of Contents

 		
 Peppercorn

 		
 API Documentation

 		
 Glossary

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

