

plaster

plaster is a loader interface around arbitrary config file formats. It exists to define a common API for applications to use when they wish to load configuration settings. The library itself does not aim to handle anything except a basic API that applications may use to find and load configuration settings. Any specific constraints should be implemented in a pluggable loader which can be registered via an entrypoint.

The library helps your application find an appropriate loader based on a config uri and a desired set of loader protocol identifiers.

Some possible config_uri formats:

	development.ini

	development.ini#myapp

	development.ini?http_port=8080#main

	ini://development.conf

	pastedeploy+ini:///path/to/development.ini

	pastedeploy+ini://development.ini#foo

	egg:MyApp?debug=false#foo

An example application that does not care what file format the settings are sourced from, as long as they are in a section named my-settings:

import plaster
import sys

if __name__ == '__main__':
 config_uri = sys.argv[1]
 settings = plaster.get_settings(config_uri, 'my-settings')

This script can support any config format so long as the application (or the user) has installed the loader they expect to use. For example, pip install plaster_pastedeploy. The loader is then found by plaster.get_settings() based on the specific config uri provided. The application does not need to configure the loaders. They are discovered via pkg_resources entrypoints [http://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points] and registered for specific schemes.

Protocols

plaster supports custom loader protocols which loaders may choose to implement to provide extra functionality over the basic plaster.ILoader interface. A loader protocol is intentionally very loosely defined but it basically boils down to a loader object that supports extra methods with agreed-upon signatures. Right now the only officially-supported protocol is wsgi which defines a loader that should implement the plaster.protocols.IWSGIProtocol interface.

Known Loaders

	plaster_pastedeploy [https://github.com/Pylons/plaster_pastedeploy] officially supported

File types:

	file+ini, ini, pastedeploy+ini

	egg, pastedeploy+egg

Protocols:

	wsgi - plaster.protocols.IWSGIProtocol

Installation

Stable release

To install plaster, run this command in your terminal:

$ pip install plaster

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide you through the process.

From sources

The sources for plaster can be downloaded from the Github repo [https://github.com/Pylons/plaster].

$ git clone https://github.com/Pylons/plaster.git

Once you have a copy of the source, you can install it with:

$ pip install -e .

Usage

Loading settings

A goal of plaster is to allow a configuration source to be used for multiple purposes. For example, an INI file is split into separate sections which provide settings for separate applications. This works because each application can parse the INI file easily and pull out only the section it cares about. In order to load settings, use the plaster.get_settings().

The application may accept a path to a config file, allowing the user to specify the name of the section (myapp) to be loaded:

import plaster

config_uri = 'development.ini#myapp'
settings = plaster.get_settings(config_uri)

Alternatively, the application may depend on a specifically named section:

import plaster

config_uri = 'development.ini#myapp'
settings = plaster.get_settings(config_uri, section='thisapp')

Configuring logging

plaster requires a loader to provide a way to configure Python’s stdlib logging module. In order to utilize this feature, simply call plaster.setup_logging() from your application.

import plaster

config_uri = 'redis://username@password:hostname/db?opt=val'
plaster.setup_logging(config_uri)

Finding a loader

At the heart of plaster is the config_uri format. This format is basically <scheme>://<path> with a few variations. The scheme is used to find an plaster.ILoaderFactory.

import plaster

config_uri = 'pastedeploy+ini://development.ini#myapp'
loader = plaster.get_loader(config_uri, protocols=['wsgi'])
settings = loader.get_settings()

A config_uri may be a file path or an RFC 3986 [https://tools.ietf.org/html/rfc3986.html] URI. In the case of a file path, the file extension is used as the scheme. In either case the scheme and the protocols are the only items that plaster cares about with respect to finding an plaster.ILoaderFactory.

It’s also possible to lookup the exact loader by prefixing the scheme with the name of the package containing the loader:

settings = plaster.get_settings('plaster_pastedeploy+ini://')

Writing your own loader

plaster finds loaders registered for the plaster.loader_factory entry point in your setup.py:

from setuptools import setup

setup(
 name='myapp',
 # ...
 entry_points={
 'plaster.loader_factory': [
 'dict = myapp:Loader',
],
 },
)

In this example the importable myapp.Loader class will be used as plaster.ILoaderFactory for creating plaster.ILoader objects. Each loader is passed a plaster.PlasterURL instance, the result of parsing the config_uri to determine the scheme and fragment.

If the loader should be found automatically via file extension then it should broadcast support for the special file+<extension> scheme. For example, to support development.ini instead of myscheme://development.ini the loader should be registered for the file+ini scheme.

import plaster

class Loader(plaster.ILoader):
 def __init__(self, uri):
 self.uri = uri

 def get_sections(self):
 return ['myapp', 'yourapp']

 def get_settings(self, section=None, defaults=None):
 # fallback to the fragment from config_uri if no section is given
 if not section:
 section = self.uri.fragment
 # if section is still none we could fallback to some
 # loader-specific default

 result = {}
 if defaults is not None:
 result.update(defaults)
 if section == 'myapp':
 result.update({'a': 1})
 elif section == 'yourapp':
 result.update({'b': 1})
 return result

This loader may then be used:

import plaster

settings = plaster.get_settings('dict://', section='myapp')
assert settings['a'] == 1

settings2 = plaster.get_settings('myapp+dict://', section='myapp')
assert settings == settings2

Supporting a custom protocol

By default, loaders are exposed via the plaster.loader_factory entry point. In order to register a loader that supports a custom protocol it should register itself on a plaster.<protocol>_loader_factory entry point.

A scheme MUST point to the same loader factory for every protocol, including the default (empty) protocol. If it does not then no compatible loader will be found if the end-user requests a loader satisfying both protocols.

Acknowledgments

This API is heavily inspired by conversations, contributions, and design put forth in https://github.com/inklesspen/montague and https://metaclassical.com/announcing-montague-the-new-way-to-configure-python-applications/.

More Information

	plaster API

	Glossary

	Contributing

	Changes

Indices and tables

	Index

	Module Index

	Search Page

plaster API

Application API

	
plaster.get_settings(config_uri, section=None, defaults=None)

	Load the settings from a named section.

settings = plaster.get_settings(...)
print(settings['foo'])

	Parameters

	
	config_uri – Anything that can be parsed by
plaster.parse_uri().

	section – The name of the section in the config file. If this is
None then it is up to the loader to determine a sensible default
usually derived from the fragment in the path#name syntax of the
config_uri.

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in defaults
may be overridden by the loader prior to returning the final
configuration dictionary.

	Returns

	A dict of settings. This should return a dictionary object
even if no data is available.

	
plaster.setup_logging(config_uri, defaults=None)

	Execute the logging configuration defined in the config file.

This function should, at least, configure the Python standard logging
module. However, it may also be used to configure any other logging
subsystems that serve a similar purpose.

	Parameters

	
	config_uri – Anything that can be parsed by
plaster.parse_uri().

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in defaults
may be overridden by the loader prior to returning the final
configuration dictionary.

	
plaster.get_loader(config_uri, protocols=None)

	Find a plaster.ILoader object capable of handling config_uri.

	Parameters

	
	config_uri – Anything that can be parsed by
plaster.parse_uri().

	protocols – Zero or more loader protocol identifiers that
the loader must implement to match the desired config_uri.

	Returns

	A plaster.ILoader object.

	Raises

	
	plaster.LoaderNotFound – If no loader could be found.

	plaster.MultipleLoadersFound – If multiple loaders match the
requested criteria. If this happens, you can disambiguate the lookup
by appending the package name to the scheme for the loader you wish
to use. For example if ini is ambiguous then specify
ini+myapp to use the ini loader from the myapp package.

	
plaster.find_loaders(scheme, protocols=None)

	Find all loaders that match the requested scheme and protocols.

	Parameters

	
	scheme – Any valid scheme. Examples would be something like ini
or ini+pastedeploy.

	protocols – Zero or more loader protocol identifiers that
the loader must implement. If None then only generic loaders will
be returned.

	Returns

	A list containing zero or more plaster.ILoaderInfo
objects.

	
class plaster.ILoaderInfo

	An info object describing a specific plaster.ILoader.

	Variables

	
	scheme – The full scheme of the loader.

	protocols – Zero or more supported loader protocol
identifiers.

	factory – The plaster.ILoaderFactory.

	
load(config_uri)

	Create and return an plaster.ILoader instance.

	Parameters

	config_uri – Anything that can be parsed by
plaster.parse_uri().

Loader API

	
class plaster.ILoader

	An abstraction over an source of configuration settings.

It is required to implement get_sections, get_settings and
setup_logging.

Optionally, it may also implement other loader protocol interfaces
to provide extra functionality. For example,
plaster.protocols.IWSGIProtocol which requires get_wsgi_app,
and get_wsgi_server for loading WSGI configurations. Services that
depend on such functionality should document the required functionality
behind a particular loader protocol which custom loaders can
implement.

	Variables

	uri – The plaster.PlasterURL object used to find the
plaster.ILoaderFactory.

	
get_sections()

	Load the list of section names available.

	
get_settings(section=None, defaults=None)

	Load the settings for the named section.

	Parameters

	
	section – The name of the section in the config file. If this is
None then it is up to the loader to determine a sensible
default usually derived from the fragment in the path#name
syntax of the config_uri.

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in
defaults may be overridden by the loader prior to returning
the final configuration dictionary.

	Returns

	A dict of settings. This should return a dictionary
object even if the section is missing.

	Raises

	ValueError – If a section name is missing and cannot be
determined from the config_uri.

	
setup_logging(defaults=None)

	Execute the logging configuration defined in the config file.

This function should, at least, configure the Python standard logging
module. However, it may also be used to configure any other logging
subsystems that serve a similar purpose.

	Parameters

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in
defaults may be overridden by the loader prior to returning
the final configuration dictionary.

	
class plaster.ILoaderFactory

	
	
__call__(uri)

	A factory which accepts a plaster.PlasterURL and returns a
plaster.ILoader object.

	
plaster.parse_uri(config_uri)

	Parse the config_uri into a plaster.PlasterURL object.

config_uri can be a relative or absolute file path such as
development.ini or /path/to/development.ini. The file must have
an extension that can be handled by a plaster.ILoader
registered with the system.

Alternatively, config_uri may be a RFC 1738 [https://tools.ietf.org/html/rfc1738.html]-style string.

	
class plaster.PlasterURL(scheme, path='', options=None, fragment='')

	Represents the components of a URL used to locate a
plaster.ILoader.

	Variables

	
	scheme – The name of the loader backend.

	path – The loader-specific path string.
This is the entirety of the config_uri passed to
plaster.parse_uri() without the scheme, fragment and options.
If this value is falsey it is replaced with an empty string.

	options – A dictionary of options parsed from the query string as
url-encoded key=value pairs.

	fragment – A loader-specific default section name.
This parameter may be used by loaders in scenarios where they provide
APIs that support a default name. For example, a loader that provides
get_wsgi_app may use the fragment to determine the name of the
section containing the WSGI app if none was explicitly defined.
If this value is falsey it is replaced with an empty string.

Protocols

	
class plaster.protocols.IWSGIProtocol

	
	
get_wsgi_app(name=None, defaults=None)

	Create a WSGI application object.

An example application object may be:

def app(environ, start_response):
 start_response(b'200 OK', [(b'Content-Type', b'text/plain')])
 yield [b'hello world\n']

	Parameters

	
	name – The name of the application referenced in the config.
If None then it should default to the
plaster.PlasterURL.fragment, if available.

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in
defaults may be overridden by the loader prior to returning the
final configuration dictionary.

	Raises

	LookupError – If a WSGI application cannot be found by the
specified name.

	
get_wsgi_app_settings(name=None, defaults=None)

	Create a WSGI application object.

An example application object may be:

def app(environ, start_response):
 start_response(b'200 OK', [(b'Content-Type', b'text/plain')])
 yield [b'hello world\n']

	Parameters

	
	name – The name of the application referenced in the config.
If None then it should default to the
plaster.PlasterURL.fragment, if available.

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in
defaults may be overridden by the loader prior to returning the
final configuration dictionary.

	Raises

	LookupError – If a WSGI application cannot be found by the
specified name.

	
get_wsgi_filter(name=None, defaults=None)

	Create a composable WSGI middleware object.

An example middleware filter may be:

class Filter(object):
 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 return self.app(environ, start_response)

	Parameters

	
	name – The name of the application referenced in the config.
If None then it should default to the
plaster.PlasterURL.fragment, if available.

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in
defaults may be overridden by the loader prior to returning the
final configuration dictionary.

	Raises

	LookupError – If a WSGI filter cannot be found by the
specified name.

	
get_wsgi_server(name=None, defaults=None)

	Create a WSGI server runner.

An example server runner may be:

def runner(app):
 from wsgiref.simple_server import make_server
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

	Parameters

	
	name – The name of the application referenced in the config.
If None then it should default to the
plaster.PlasterURL.fragment, if available.

	defaults – A dict of default values used to populate the
settings and support variable interpolation. Any values in
defaults may be overridden by the loader prior to returning the
final configuration dictionary.

	Raises

	LookupError – If a WSGI server cannot be found by the
specified name.

Exceptions

	
exception plaster.PlasterError

	A base exception for any error generated by plaster.

	
exception plaster.InvalidURI(uri, message=None)

	Raised by plaster.parse_uri() when failing to parse a config_uri.

	Variables

	uri – The user-supplied config_uri string.

	
exception plaster.LoaderNotFound(scheme, protocols=None, message=None)

	Raised by plaster.get_loader() when no loaders match the requested
scheme.

	Variables

	
	scheme – The scheme being matched.

	protocols – Zero or more loader protocol identifiers that
were requested when finding a loader.

	
exception plaster.MultipleLoadersFound(scheme, loaders, protocols=None, message=None)

	Raised by plaster.get_loader() when more than one loader matches the
requested scheme.

	Variables

	
	scheme – The scheme being matched.

	protocols – Zero or more loader protocol identifiers that
were requested when finding a loader.

	loaders – A list of plaster.ILoaderInfo objects.

Glossary

	config uri

	In most cases this is simply an absolute or relative path to a config file on the system. However, it can also be a RFC 1738 [https://tools.ietf.org/html/rfc1738.html]-style string pointing at a remote service or a specific parser without relying on the file extension. For example, my-ini://foo.ini may point to a loader named my-ini that can parse the relative foo.ini file.

	loader

	An object conforming to the plaster.ILoader interface. A loader is responsible for locating and parsing the underlying configuration format for the given config uri.

	loader protocol

	A loader may implement zero or more custom named protocols. An example would be the wsgi protocol which requires that a loader implement certain methods like wsgi_app = get_wsgi_app(name=None, defaults=None).

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/Pylons/plaster/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

plaster could always use more documentation, whether as part of the
official plaster docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/Pylons/plaster/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up plaster for local development.

	Fork the plaster repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/plaster.git

	Install your local copy into a virtualenv:

$ python3 -m venv env
$ env/bin/pip install -e .[docs,testing]
$ env/bin/pip install tox

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and
the tests, including testing other Python versions with tox:

$ env/bin/tox

	Add your name to the CONTRIBUTORS.txt file in the root of the
repository.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5, 3.6, and for PyPy.
Check
https://travis-ci.org/Pylons/plaster/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ env/bin/py.test tests.test_plaster

Changes

1.0 (2017-10-11)

	Improve the exception message for InvalidURI to show the config_uri.
See https://github.com/Pylons/plaster/pull/17

0.5 (2017-06-02)

	When a scheme is not supplied, plaster.parse_uri will now autogenerate
a scheme from the file extension with the format file+<ext> instead of
simply <ext> (for example, file+ini instead of ini).
See https://github.com/Pylons/plaster/pull/16

	Absolute lookups are now pulled from the start of the scheme instead of
the end. This means that if you want to explicitly define the package that
the loader is pulled from, use package+scheme instead of
scheme+package.
See https://github.com/Pylons/plaster/pull/16

0.4 (2017-03-30)

	Removed the plaster.NoSectionError exception. It’s expected that
individual loaders should return an empty dictionary of settings in the
case that a section cannot be found.
See https://github.com/Pylons/plaster/pull/12

	Expect the wsgi protocol to raise LookupError exceptions when
a named wsgi component cannot be found.
See https://github.com/Pylons/plaster/pull/12

0.3 (2017-03-27)

	Lookup now works differently. First “foo+bar” looks for an installed project
distribution named “bar” with a loader named “foo”. If this fails then it
looks for any loader named “foo+bar”.

	Rename the loader entry point to plaster.loader_factory.

	Add the concept of protocols to plaster.get_loader and
plaster.find_loaders.

	plaster.find_loaders now works on just schemes and protocols
instead of full PlasterURL objects and implements the lookup
algorithm for finding loader factories.

	Change the ILoaderInfo interface to avoid being coupled to a
particular uri. ILoaderInfo.load now takes a config_uri
parameter.

	Add a options dictionary to PlasterURL containing any arguments
decoded from the query string. Loaders may use these for whatever they wish
but one good option is default values in a config file.

	Define the IWSGIProtocol interface which addons can use to implement
a loader that can return full wsgi apps, servers and filters.

	The scheme is now case-insensitive.

0.2 (2016-06-15)

	Allow config_uri syntax scheme:path alongside scheme://path.
See https://github.com/Pylons/plaster/issues/3

	Improve errors to show the user-supplied values in the error message.
See https://github.com/Pylons/plaster/pull/4

	Add plaster.find_loaders which can be used by people who need a way
to recover when ambiguous loaders are discovered via plaster.get_loader.
See https://github.com/Pylons/plaster/pull/5

	Rename plaster.Loader to plaster.ILoader to signify its purpose
as an interface with no actual implementation.
See https://github.com/Pylons/plaster/pull/5

	Introduce plaster.ILoaderFactory to document what the entry point targets
are expected to implement.
See https://github.com/Pylons/plaster/pull/5

0.1 (2016-06-12)

	Initial release.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 plaster	

Index

 _
 | C
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S

_

 	
 	__call__() (plaster.ILoaderFactory method)

C

 	
 	config uri

F

 	
 	find_loaders() (in module plaster)

G

 	
 	get_loader() (in module plaster)

 	get_sections() (plaster.ILoader method)

 	get_settings() (in module plaster)

 	(plaster.ILoader method)

 	
 	get_wsgi_app() (plaster.protocols.IWSGIProtocol method)

 	get_wsgi_app_settings() (plaster.protocols.IWSGIProtocol method)

 	get_wsgi_filter() (plaster.protocols.IWSGIProtocol method)

 	get_wsgi_server() (plaster.protocols.IWSGIProtocol method)

I

 	
 	ILoader (class in plaster)

 	ILoaderFactory (class in plaster)

 	
 	ILoaderInfo (class in plaster)

 	InvalidURI

 	IWSGIProtocol (class in plaster.protocols)

L

 	
 	load() (plaster.ILoaderInfo method)

 	loader

 	
 	loader protocol

 	LoaderNotFound

M

 	
 	MultipleLoadersFound

P

 	
 	parse_uri() (in module plaster)

 	plaster (module)

 	
 	PlasterError

 	PlasterURL (class in plaster)

R

 	
 	
 RFC

 	RFC 1738, [1]

 	RFC 3986

S

 	
 	setup_logging() (in module plaster)

 	(plaster.ILoader method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 plaster

 		
 plaster API

 		
 Application API

 		
 Loader API

 		
 Protocols

 		
 Exceptions

 		
 Glossary

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Changes

 		
 1.0 (2017-10-11)

 		
 0.5 (2017-06-02)

 		
 0.4 (2017-03-30)

 		
 0.3 (2017-03-27)

 		
 0.2 (2016-06-15)

 		
 0.1 (2016-06-12)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

