
plaster Documentation
Release 1.1.2

Michael Merickel

Nov 21, 2022

Contents

1 Protocols 3

2 Known Loaders 5

3 Installation 7

4 Usage 9

5 Acknowledgments 13

6 More Information 15

7 Indices and tables 25

Python Module Index 27

Index 29

i

ii

plaster Documentation, Release 1.1.2

plaster is a loader interface around arbitrary config file formats. It exists to define a common API for applications
to use when they wish to load configuration settings. The library itself does not aim to handle anything except a basic
API that applications may use to find and load configuration settings. Any specific constraints should be implemented
in a pluggable loader which can be registered via an entrypoint.

The library helps your application find an appropriate loader based on a config uri and a desired set of loader protocol
identifiers.

Some possible config_uri formats:

• development.ini

• development.ini#myapp

• development.ini?http_port=8080#main

• ini://development.conf

• pastedeploy+ini:///path/to/development.ini

• pastedeploy+ini://development.ini#foo

• egg:MyApp?debug=false#foo

An example application that does not care what file format the settings are sourced from, as long as they are in a
section named my-settings:

import plaster
import sys

if __name__ == '__main__':
config_uri = sys.argv[1]
settings = plaster.get_settings(config_uri, 'my-settings')

This script can support any config format so long as the application (or the user) has installed the loader they ex-
pect to use. For example, pip install plaster_pastedeploy. The loader is then found by plaster.
get_settings() based on the specific config uri provided. The application does not need to configure the loaders.
They are discovered via pkg_resources entrypoints and registered for specific schemes.

Contents 1

http://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points

plaster Documentation, Release 1.1.2

2 Contents

CHAPTER 1

Protocols

plaster supports custom loader protocols which loaders may choose to implement to provide extra functionality
over the basic plaster.ILoader interface. A loader protocol is intentionally very loosely defined but it basi-
cally boils down to a loader object that supports extra methods with agreed-upon signatures. Right now the only
officially-supported protocol is wsgi which defines a loader that should implement the plaster.protocols.
IWSGIProtocol interface.

3

plaster Documentation, Release 1.1.2

4 Chapter 1. Protocols

CHAPTER 2

Known Loaders

• plaster_pastedeploy officially supported

File types:

– file+ini, ini, pastedeploy+ini

– egg, pastedeploy+egg

Protocols:

– wsgi - plaster.protocols.IWSGIProtocol

5

https://github.com/Pylons/plaster_pastedeploy

plaster Documentation, Release 1.1.2

6 Chapter 2. Known Loaders

CHAPTER 3

Installation

3.1 Stable release

To install plaster, run this command in your terminal:

$ pip install plaster

If you don’t have pip installed, this Python installation guide can guide you through the process.

3.2 From sources

The sources for plaster can be downloaded from the Github repo.

$ git clone https://github.com/Pylons/plaster.git

Once you have a copy of the source, you can install it with:

$ pip install -e .

7

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/Pylons/plaster

plaster Documentation, Release 1.1.2

8 Chapter 3. Installation

CHAPTER 4

Usage

4.1 Loading settings

A goal of plaster is to allow a configuration source to be used for multiple purposes. For example, an INI file is
split into separate sections which provide settings for separate applications. This works because each application can
parse the INI file easily and pull out only the section it cares about. In order to load settings, use the plaster.
get_settings().

The application may accept a path to a config file, allowing the user to specify the name of the section (myapp) to be
loaded:

import plaster

config_uri = 'development.ini#myapp'
settings = plaster.get_settings(config_uri)

Alternatively, the application may depend on a specifically named section:

import plaster

config_uri = 'development.ini#myapp'
settings = plaster.get_settings(config_uri, section='thisapp')

4.2 Configuring logging

plaster requires a loader to provide a way to configure Python’s stdlib logging module. In order to utilize this
feature, simply call plaster.setup_logging() from your application.

import plaster

config_uri = 'redis://username@password:hostname/db?opt=val'
plaster.setup_logging(config_uri)

9

plaster Documentation, Release 1.1.2

4.3 Finding a loader

At the heart of plaster is the config_uri format. This format is basically <scheme>://<path> with a few
variations. The scheme is used to find an plaster.ILoaderFactory .

import plaster

config_uri = 'pastedeploy+ini://development.ini#myapp'
loader = plaster.get_loader(config_uri, protocols=['wsgi'])
settings = loader.get_settings()

A config_uri may be a file path or an RFC 3986 URI. In the case of a file path, the file extension is used as the
scheme. In either case the scheme and the protocols are the only items that plaster cares about with respect to
finding an plaster.ILoaderFactory .

It’s also possible to lookup the exact loader by prefixing the scheme with the name of the package containing the
loader:

settings = plaster.get_settings('plaster_pastedeploy+ini://')

4.4 Writing your own loader

plaster finds loaders registered for the plaster.loader_factory entry point in your setup.py:

from setuptools import setup

setup(
name='myapp',
...
entry_points={

'plaster.loader_factory': [
'dict = myapp:Loader',

],
},

)

In this example the importable myapp.Loader class will be used as plaster.ILoaderFactory for creating
plaster.ILoader objects. Each loader is passed a plaster.PlasterURL instance, the result of parsing the
config_uri to determine the scheme and fragment.

If the loader should be found automatically via file extension then it should broadcast support for the spe-
cial file+<extension> scheme. For example, to support development.ini instead of myscheme://
development.ini the loader should be registered for the file+ini scheme.

import plaster

class Loader(plaster.ILoader):
def __init__(self, uri):

self.uri = uri

def get_sections(self):
return ['myapp', 'yourapp']

def get_settings(self, section=None, defaults=None):
(continues on next page)

10 Chapter 4. Usage

https://tools.ietf.org/html/rfc3986.html

plaster Documentation, Release 1.1.2

(continued from previous page)

fallback to the fragment from config_uri if no section is given
if not section:

section = self.uri.fragment
if section is still none we could fallback to some
loader-specific default

result = {}
if defaults is not None:

result.update(defaults)
if section == 'myapp':

result.update({'a': 1})
elif section == 'yourapp':

result.update({'b': 1})
return result

This loader may then be used:

import plaster

settings = plaster.get_settings('dict://', section='myapp')
assert settings['a'] == 1

settings2 = plaster.get_settings('myapp+dict://', section='myapp')
assert settings == settings2

4.4.1 Supporting a custom protocol

By default, loaders are exposed via the plaster.loader_factory entry point. In order to register a loader that
supports a custom protocol it should register itself on a plaster.<protocol>_loader_factory entry point.

A scheme MUST point to the same loader factory for every protocol, including the default (empty) protocol. If it does
not then no compatible loader will be found if the end-user requests a loader satisfying both protocols.

4.4. Writing your own loader 11

plaster Documentation, Release 1.1.2

12 Chapter 4. Usage

CHAPTER 5

Acknowledgments

This API is heavily inspired by conversations, contributions, and design put forth in https://github.com/inklesspen/
montague and https://metaclassical.com/announcing-montague-the-new-way-to-configure-python-applications/.

13

https://github.com/inklesspen/montague
https://github.com/inklesspen/montague
https://metaclassical.com/announcing-montague-the-new-way-to-configure-python-applications/

plaster Documentation, Release 1.1.2

14 Chapter 5. Acknowledgments

CHAPTER 6

More Information

6.1 plaster API

6.1.1 Application API

plaster.get_settings(config_uri, section=None, defaults=None)
Load the settings from a named section.

settings = plaster.get_settings(...)
print(settings['foo'])

Parameters

• config_uri – Anything that can be parsed by plaster.parse_uri().

• section – The name of the section in the config file. If this is None then it is up to the
loader to determine a sensible default usually derived from the fragment in the path#name
syntax of the config_uri.

• defaults – A dict of default values used to populate the settings and support variable
interpolation. Any values in defaults may be overridden by the loader prior to returning
the final configuration dictionary.

Returns A dict of settings. This should return a dictionary object even if no data is available.

plaster.setup_logging(config_uri, defaults=None)
Execute the logging configuration defined in the config file.

This function should, at least, configure the Python standard logging module. However, it may also be used to
configure any other logging subsystems that serve a similar purpose.

Parameters

• config_uri – Anything that can be parsed by plaster.parse_uri().

15

plaster Documentation, Release 1.1.2

• defaults – A dict of default values used to populate the settings and support variable
interpolation. Any values in defaults may be overridden by the loader prior to returning
the final configuration dictionary.

plaster.get_loader(config_uri, protocols=None)
Find a plaster.ILoader object capable of handling config_uri.

Parameters

• config_uri – Anything that can be parsed by plaster.parse_uri().

• protocols – Zero or more loader protocol identifiers that the loader must implement to
match the desired config_uri.

Returns A plaster.ILoader object.

Raises

• plaster.LoaderNotFound – If no loader could be found.

• plaster.MultipleLoadersFound – If multiple loaders match the requested criteria.
If this happens, you can disambiguate the lookup by appending the package name to the
scheme for the loader you wish to use. For example if ini is ambiguous then specify
ini+myapp to use the ini loader from the myapp package.

plaster.find_loaders(scheme, protocols=None)
Find all loaders that match the requested scheme and protocols.

Parameters

• scheme – Any valid scheme. Examples would be something like ini or
pastedeploy+ini.

• protocols – Zero or more loader protocol identifiers that the loader must implement. If
None then only generic loaders will be returned.

Returns A list containing zero or more plaster.ILoaderInfo objects.

class plaster.ILoaderInfo
An info object describing a specific plaster.ILoader.

Variables

• scheme – The full scheme of the loader.

• protocols – Zero or more supported loader protocol identifiers.

• factory – The plaster.ILoaderFactory .

load(config_uri)
Create and return an plaster.ILoader instance.

Parameters config_uri – Anything that can be parsed by plaster.parse_uri().

6.1.2 Loader API

class plaster.ILoader
An abstraction over an source of configuration settings.

It is required to implement get_sections, get_settings and setup_logging.

Optionally, it may also implement other loader protocol interfaces to provide extra functionality. For example,
plaster.protocols.IWSGIProtocol which requires get_wsgi_app, and get_wsgi_server

16 Chapter 6. More Information

plaster Documentation, Release 1.1.2

for loading WSGI configurations. Services that depend on such functionality should document the required
functionality behind a particular loader protocol which custom loaders can implement.

Variables uri – The plaster.PlasterURL object used to find the plaster.
ILoaderFactory .

get_sections()
Load the list of section names available.

get_settings(section=None, defaults=None)
Load the settings for the named section.

Parameters

• section – The name of the section in the config file. If this is None then it is up
to the loader to determine a sensible default usually derived from the fragment in the
path#name syntax of the config_uri.

• defaults – A dict of default values used to populate the settings and support variable
interpolation. Any values in defaultsmay be overridden by the loader prior to returning
the final configuration dictionary.

Returns A dict of settings. This should return a dictionary object even if the section is missing.

Raises ValueError – If a section name is missing and cannot be determined from the
config_uri.

setup_logging(defaults=None)
Execute the logging configuration defined in the config file.

This function should, at least, configure the Python standard logging module. However, it may also be
used to configure any other logging subsystems that serve a similar purpose.

Parameters defaults – A dict of default values used to populate the settings and support
variable interpolation. Any values in defaults may be overridden by the loader prior to
returning the final configuration dictionary.

class plaster.ILoaderFactory

__call__(uri)
A factory which accepts a plaster.PlasterURL and returns a plaster.ILoader object.

plaster.parse_uri(config_uri)
Parse the config_uri into a plaster.PlasterURL object.

config_uri can be a relative or absolute file path such as development.ini or /path/to/
development.ini. The file must have an extension that can be handled by a plaster.ILoader regis-
tered with the system.

Alternatively, config_uri may be a RFC 1738-style string.

class plaster.PlasterURL(scheme, path=”, options=None, fragment=”)
Represents the components of a URL used to locate a plaster.ILoader.

Variables

• scheme – The name of the loader backend.

• path – The loader-specific path string. This is the entirety of the config_uri passed
to plaster.parse_uri() without the scheme, fragment and options. If this value is
falsey it is replaced with an empty string.

6.1. plaster API 17

https://tools.ietf.org/html/rfc1738.html

plaster Documentation, Release 1.1.2

• options – A dictionary of options parsed from the query string as url-encoded key=value
pairs.

• fragment – A loader-specific default section name. This parameter may be used by load-
ers in scenarios where they provide APIs that support a default name. For example, a loader
that provides get_wsgi_app may use the fragment to determine the name of the section
containing the WSGI app if none was explicitly defined. If this value is falsey it is replaced
with an empty string.

6.1.3 Protocols

class plaster.protocols.IWSGIProtocol

get_wsgi_app(name=None, defaults=None)
Create a WSGI application object.

An example application object may be:

def app(environ, start_response):
start_response(b'200 OK', [(b'Content-Type', b'text/plain')])
yield [b'hello world\n']

Parameters

• name – The name of the application referenced in the config. If None then it should
default to the plaster.PlasterURL.fragment, if available.

• defaults – A dict of default values used to populate the settings and support variable
interpolation. Any values in defaultsmay be overridden by the loader prior to returning
the final configuration dictionary.

Raises LookupError – If a WSGI application cannot be found by the specified name.

get_wsgi_app_settings(name=None, defaults=None)
Return the settings for a WSGI application.

This is similar to plaster.ILoader.get_settings() for a WSGI application.

Parameters

• name – The name of the application referenced in the config. If None then it should
default to the plaster.PlasterURL.fragment, if available.

• defaults – A dict of default values used to populate the settings and support variable
interpolation. Any values in defaultsmay be overridden by the loader prior to returning
the final configuration dictionary.

Raises LookupError – If a WSGI application cannot be found by the specified name.

get_wsgi_filter(name=None, defaults=None)
Create a composable WSGI middleware object.

An example middleware filter may be:

class Filter(object):
def __init__(self, app):

self.app = app

(continues on next page)

18 Chapter 6. More Information

plaster Documentation, Release 1.1.2

(continued from previous page)

def __call__(self, environ, start_response):
return self.app(environ, start_response)

Parameters

• name – The name of the application referenced in the config. If None then it should
default to the plaster.PlasterURL.fragment, if available.

• defaults – A dict of default values used to populate the settings and support variable
interpolation. Any values in defaultsmay be overridden by the loader prior to returning
the final configuration dictionary.

Raises LookupError – If a WSGI filter cannot be found by the specified name.

get_wsgi_server(name=None, defaults=None)
Create a WSGI server runner.

An example server runner may be:

def runner(app):
from wsgiref.simple_server import make_server
server = make_server('0.0.0.0', 8080, app)
server.serve_forever()

Parameters

• name – The name of the application referenced in the config. If None then it should
default to the plaster.PlasterURL.fragment, if available.

• defaults – A dict of default values used to populate the settings and support variable
interpolation. Any values in defaultsmay be overridden by the loader prior to returning
the final configuration dictionary.

Raises LookupError – If a WSGI server cannot be found by the specified name.

6.1.4 Exceptions

exception plaster.PlasterError
A base exception for any error generated by plaster.

exception plaster.InvalidURI(uri, message=None)
Raised by plaster.parse_uri() when failing to parse a config_uri.

Variables uri – The user-supplied config_uri string.

exception plaster.LoaderNotFound(scheme, protocols=None, message=None)
Raised by plaster.get_loader() when no loaders match the requested scheme.

Variables

• scheme – The scheme being matched.

• protocols – Zero or more loader protocol identifiers that were requested when finding a
loader.

exception plaster.MultipleLoadersFound(scheme, loaders, protocols=None, message=None)
Raised by plaster.get_loader() when more than one loader matches the requested scheme.

Variables

6.1. plaster API 19

plaster Documentation, Release 1.1.2

• scheme – The scheme being matched.

• protocols – Zero or more loader protocol identifiers that were requested when finding a
loader.

• loaders – A list of plaster.ILoaderInfo objects.

6.2 Glossary

config uri In most cases this is simply an absolute or relative path to a config file on the system. However, it can also
be a RFC 1738-style string pointing at a remote service or a specific parser without relying on the file extension.
For example, my-ini://foo.ini may point to a loader named my-ini that can parse the relative foo.
ini file.

loader An object conforming to the plaster.ILoader interface. A loader is responsible for locating and parsing
the underlying configuration format for the given config uri.

loader protocol A loader may implement zero or more custom named protocols. An example would
be the wsgi protocol which requires that a loader implement certain methods like wsgi_app =
get_wsgi_app(name=None, defaults=None).

6.3 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.3.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/Pylons/plaster/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

20 Chapter 6. More Information

https://tools.ietf.org/html/rfc1738.html
https://github.com/Pylons/plaster/issues

plaster Documentation, Release 1.1.2

Write Documentation

plaster could always use more documentation, whether as part of the official plaster docs, in docstrings, or even on the
web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Pylons/plaster/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.3.2 Get Started!

Ready to contribute? Here’s how to set up plaster for local development.

1. Fork the plaster repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/plaster.git

3. Install your local copy into a virtualenv:

$ python3 -m venv env
$ env/bin/pip install -e .[docs,testing]
$ env/bin/pip install tox

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ env/bin/tox

6. Add your name to the CONTRIBUTORS.txt file in the root of the repository.

7. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

8. Submit a pull request through the GitHub website.

6.3. Contributing 21

https://github.com/Pylons/plaster/issues

plaster Documentation, Release 1.1.2

6.3.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5, 3.6, and for PyPy. Check https://travis-ci.org/Pylons/
plaster/pull_requests and make sure that the tests pass for all supported Python versions.

6.3.4 Tips

To run a subset of tests:

$ env/bin/py.test tests.test_plaster

6.4 Changes

6.4.1 1.1.2 (2022-11-20)

• Fix a bug in which plaster would crash harder than expected if a URI is specified to a distribution that does not
have the specified entry points. Now a LoaderNotFound exception will be raised instead of a bad unpacking of
tuples.

6.4.2 1.1.1 (2022-11-20)

• Add support for Python 3.11.

• Fix an bug introduced in 1.1 on some systems where plaster.exceptions.MultipleLoadersFound
would be raised due to lib and lib64 being symlinked to each other and both added to the sys.path. See
https://github.com/Pylons/plaster/pull/27

6.4.3 1.1 (2022-10-06)

• Drop support for Python 2.7, 3.4, 3.5, 3.6.

• Add support for Python 3.8, 3.9, 3.10.

• Drop runtime dependency on setuptools / pkg_resources by switching to importlib.metadata.

6.4.4 1.0 (2017-10-11)

• Improve the exception message for InvalidURI to show the config_uri. See https://github.com/Pylons/
plaster/pull/17

22 Chapter 6. More Information

https://travis-ci.org/Pylons/plaster/pull_requests
https://travis-ci.org/Pylons/plaster/pull_requests
https://github.com/Pylons/plaster/pull/27
https://github.com/Pylons/plaster/pull/17
https://github.com/Pylons/plaster/pull/17

plaster Documentation, Release 1.1.2

6.4.5 0.5 (2017-06-02)

• When a scheme is not supplied, plaster.parse_uri will now autogenerate a scheme from the file exten-
sion with the format file+<ext> instead of simply <ext> (for example, file+ini instead of ini). See
https://github.com/Pylons/plaster/pull/16

• Absolute lookups are now pulled from the start of the scheme instead of the end. This means that if you
want to explicitly define the package that the loader is pulled from, use package+scheme instead of
scheme+package. See https://github.com/Pylons/plaster/pull/16

6.4.6 0.4 (2017-03-30)

• Removed the plaster.NoSectionError exception. It’s expected that individual loaders should return an
empty dictionary of settings in the case that a section cannot be found. See https://github.com/Pylons/plaster/
pull/12

• Expect the wsgi protocol to raise LookupError exceptions when a named wsgi component cannot be found.
See https://github.com/Pylons/plaster/pull/12

6.4.7 0.3 (2017-03-27)

• Lookup now works differently. First “foo+bar” looks for an installed project distribution named “bar” with a
loader named “foo”. If this fails then it looks for any loader named “foo+bar”.

• Rename the loader entry point to plaster.loader_factory.

• Add the concept of protocols to plaster.get_loader and plaster.find_loaders.

• plaster.find_loaders now works on just schemes and protocols instead of full PlasterURL objects
and implements the lookup algorithm for finding loader factories.

• Change the ILoaderInfo interface to avoid being coupled to a particular uri. ILoaderInfo.load now
takes a config_uri parameter.

• Add a options dictionary to PlasterURL containing any arguments decoded from the query string. Loaders
may use these for whatever they wish but one good option is default values in a config file.

• Define the IWSGIProtocol interface which addons can use to implement a loader that can return full wsgi
apps, servers and filters.

• The scheme is now case-insensitive.

6.4.8 0.2 (2016-06-15)

• Allow config_uri syntax scheme:path alongside scheme://path. See https://github.com/Pylons/
plaster/issues/3

• Improve errors to show the user-supplied values in the error message. See https://github.com/Pylons/plaster/
pull/4

• Add plaster.find_loaders which can be used by people who need a way to recover when ambiguous
loaders are discovered via plaster.get_loader. See https://github.com/Pylons/plaster/pull/5

• Rename plaster.Loader to plaster.ILoader to signify its purpose as an interface with no actual
implementation. See https://github.com/Pylons/plaster/pull/5

• Introduce plaster.ILoaderFactory to document what the entry point targets are expected to implement.
See https://github.com/Pylons/plaster/pull/5

6.4. Changes 23

https://github.com/Pylons/plaster/pull/16
https://github.com/Pylons/plaster/pull/16
https://github.com/Pylons/plaster/pull/12
https://github.com/Pylons/plaster/pull/12
https://github.com/Pylons/plaster/pull/12
https://github.com/Pylons/plaster/issues/3
https://github.com/Pylons/plaster/issues/3
https://github.com/Pylons/plaster/pull/4
https://github.com/Pylons/plaster/pull/4
https://github.com/Pylons/plaster/pull/5
https://github.com/Pylons/plaster/pull/5
https://github.com/Pylons/plaster/pull/5

plaster Documentation, Release 1.1.2

6.4.9 0.1 (2016-06-12)

• Initial release.

24 Chapter 6. More Information

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

plaster Documentation, Release 1.1.2

26 Chapter 7. Indices and tables

Python Module Index

p
plaster, 15

27

plaster Documentation, Release 1.1.2

28 Python Module Index

Index

Symbols
__call__() (plaster.ILoaderFactory method), 17

C
config uri, 20

F
find_loaders() (in module plaster), 16

G
get_loader() (in module plaster), 16
get_sections() (plaster.ILoader method), 17
get_settings() (in module plaster), 15
get_settings() (plaster.ILoader method), 17
get_wsgi_app() (plaster.protocols.IWSGIProtocol

method), 18
get_wsgi_app_settings() (plas-

ter.protocols.IWSGIProtocol method), 18
get_wsgi_filter() (plas-

ter.protocols.IWSGIProtocol method), 18
get_wsgi_server() (plas-

ter.protocols.IWSGIProtocol method), 19

I
ILoader (class in plaster), 16
ILoaderFactory (class in plaster), 17
ILoaderInfo (class in plaster), 16
InvalidURI, 19
IWSGIProtocol (class in plaster.protocols), 18

L
load() (plaster.ILoaderInfo method), 16
loader, 20
loader protocol, 20
LoaderNotFound, 19

M
MultipleLoadersFound, 19

P
parse_uri() (in module plaster), 17
plaster (module), 15
PlasterError, 19
PlasterURL (class in plaster), 17

R
RFC

RFC 1738, 17, 20
RFC 3986, 10

S
setup_logging() (in module plaster), 15
setup_logging() (plaster.ILoader method), 17

29

	Protocols
	Known Loaders
	Installation
	Usage
	Acknowledgments
	More Information
	Indices and tables
	Python Module Index
	Index

