
Pylons Reference Documentation
Release 1.0.2

Ben Bangert, Graham Higgins, James Gardner, Philip Jenvey

January 12, 2018

Contents

1 Getting Started 1
1.1 Requirements . 1
1.2 Installing . 1
1.3 Creating a Pylons Project . 3
1.4 Running the application . 4
1.5 Hello World . 4

2 Concepts of Pylons 7
2.1 The ‘Why’ of a Pylons Project . 7
2.2 WSGI Applications . 8
2.3 WSGI Middleware . 8
2.4 Controller Dispatch . 10
2.5 Paster . 10
2.6 Loading the Application . 11

3 Controllers 13
3.1 Standard Controllers . 14
3.2 Using the WSGI Controller to provide a WSGI service . 16
3.3 Using the REST Controller with a RESTful API . 17
3.4 Using the XML-RPC Controller for XML-RPC requests . 20

4 Views 23
4.1 Templates . 24
4.2 Passing Variables to Templates . 24
4.3 Default Template Variables . 25
4.4 Configuring Template Engines . 26
4.5 Custom render() functions . 27
4.6 Templating with Mako . 28

5 Models 31
5.1 About the model . 31
5.2 Model Basics . 32
5.3 Organizing . 34
5.4 Creating a Model . 34
5.5 Adding a Relation . 35
5.6 Creating the Database . 36
5.7 A brief guide to using model objects in the Controller . 36

i

5.8 Logging . 41
5.9 About SQLAlchemy . 41

6 Advanced Models 43
6.1 Advanced SQLAlchemy . 43
6.2 Non-SQLAlchemy libraries . 47
6.3 Object Databases . 48
6.4 Popular No-SQL Databases . 48

7 Configuration 49
7.1 Runtime Configuration . 49
7.2 Environment . 51
7.3 URL Configuration . 51
7.4 Middleware . 53
7.5 Application Setup . 55

8 Logging 57
8.1 Logging messages . 57
8.2 Basic Logging configuration . 58
8.3 Filtering log messages . 59
8.4 Advanced Configuration . 60
8.5 Request logging with Paste’s TransLogger . 60
8.6 Logging to wsgi.errors . 61

9 Helpers 67
9.1 Pagination . 67
9.2 Secure Form Tag Helpers . 72

10 Forms 73
10.1 The basics . 73
10.2 Getting Started . 73
10.3 Using the Helpers . 75
10.4 File Uploads . 75
10.5 Validating user input with FormEncode . 76
10.6 Other Form Tools . 79

11 Internationalization and Localization 81
11.1 Introduction . 81
11.2 Getting Started . 82
11.3 Using Babel . 83
11.4 Back To Work . 85
11.5 Testing the Application . 86
11.6 Fallback Languages . 87
11.7 Translations Within Templates . 88
11.8 Lazy Translations . 88
11.9 Producing a Python Egg . 89
11.10 Plural Forms . 90
11.11 Summary . 90
11.12 Further Reading . 90
11.13 babel.core – Babel core classes . 91
11.14 babel.localedata — Babel locale data . 103
11.15 babel.dates – Babel date classes . 103
11.16 babel.numbers – Babel number classes . 105

12 Sessions 109

ii

12.1 Sessions . 109
12.2 The Session Object . 109
12.3 Configuring the Session . 110
12.4 Storing SQLAlchemy mapped objects in Beaker sessions . 111
12.5 Custom and caching middleware . 111
12.6 Using Session in Internationalization . 111
12.7 Using Session in Secure Forms . 112
12.8 Hacking the session for no cookies . 112
12.9 Using middleware (Beaker) with a composite app . 113

13 Caching 115
13.1 Types of Caching . 115
13.2 Namespaces and Keys . 116
13.3 Configuring . 116
13.4 Browser-Side . 117
13.5 Controller Actions . 118
13.6 Templates . 119
13.7 Arbitrary Functions . 119
13.8 Fragments . 120

14 Unit and functional testing 121
14.1 Unit Testing with webtest . 121
14.2 Example: Testing a Controller . 122
14.3 Testing Pylons Objects . 124
14.4 Testing Your Own Objects . 124
14.5 Unit Testing . 125
14.6 Functional Testing . 125

15 Errors, Troubleshooting, and Debugging 127
15.1 Error Middleware . 127
15.2 Interactive Debugging . 129
15.3 E-mailing Errors . 130
15.4 Programmatically Handling Errors . 130

16 Upgrading 133
16.1 1.0 -> 1.0.1 . 133
16.2 0.9.7 -> 1.0 . 133

17 Packaging and Deployment Overview 137
17.1 Egg Files . 137
17.2 Installing as a Non-root User . 138
17.3 Understanding the Setup Process . 138
17.4 Deploying the Application . 140
17.5 Advanced Usage . 140

18 Running Pylons Apps with Other Web Servers 141
18.1 Using Fast-CGI . 141
18.2 Apache Configuration . 142
18.3 PrefixMiddleware . 142
18.4 Using Java Web Servers with Jython . 143

19 Documenting Your Application 145
19.1 Introduction . 145
19.2 Tutorial . 145
19.3 Learning ReStructuredText . 146

iii

19.4 Using Docstrings . 146
19.5 Using doctest . 147
19.6 Summary . 147

20 Distributing Your Application 149
20.1 Running Your Application . 150

21 Python 2.3 Installation Instructions 151
21.1 Advice of end of support for Python 2.3 . 151
21.2 Preparation . 151
21.3 System-wide Install . 151

22 Windows Notes 153
22.1 For Win2K or WinXP . 153
22.2 For Windows 95, 98 and ME . 154
22.3 Finally . 154

23 Pylons on Jython 155
23.1 Installation . 155
23.2 Deploying to Java Web servers . 155

24 Security policy for bugs 157
24.1 Receiving Security Updates . 157
24.2 Reporting Security Issues . 157
24.3 Minimising Risk . 158

25 WSGI support 159
25.1 Paste and WSGI . 159
25.2 Using a WSGI Application as a Pylons 0.9 Controller . 160
25.3 Running a WSGI Application From Within a Controller . 160
25.4 Configuring Middleware Within a Pylons Application . 161
25.5 The Cascade . 162
25.6 Useful Resources . 162

26 Advanced Pylons 163
26.1 WSGI, CLI scripts . 163
26.2 Adding commands to Paster . 165
26.3 Creating Paste templates . 168
26.4 Using Entry Points to Write Plugins . 172

27 Pylons Execution Analysis 175
27.1 The sample application . 175
27.2 Pylons’ dependencies . 176
27.3 The analysis . 177

28 Pylons Modules 187
28.1 pylons.commands – Command line functions . 187
28.2 pylons.configuration – Configuration object and defaults setup 189
28.3 pylons.controllers – Controllers . 190
28.4 pylons.controllers.core – WSGIController Class . 190
28.5 pylons.controllers.util – Controller Utility functions . 191
28.6 pylons.controllers.xmlrpc – XMLRPCController Class 193
28.7 pylons.decorators – Decorators . 194
28.8 pylons.decorators.cache – Cache Decorators . 195
28.9 pylons.decorators.rest – REST-ful Decorators . 196

iv

28.10 pylons.decorators.secure – Secure Decorators . 196
28.11 pylons.error – Error handling support . 197
28.12 pylons.i18n.translation – Translation/Localization functions 197
28.13 pylons.log – Logging for WSGI errors . 199
28.14 pylons.middleware – WSGI Middleware . 199
28.15 pylons.templating – Render functions and helpers . 201
28.16 pylons.test – Test related functionality . 203
28.17 pylons.util – Paste Template and Pylons utility functions . 204
28.18 pylons.wsgiapp – PylonsWSGI App Creator . 204

29 Third-party components 207
29.1 FormEncode . 207
29.2 weberror – Weberror . 237
29.3 webtest – WebTest . 242
29.4 webob – Request/Response objects . 248

30 Glossary 253

Python Module Index 257

v

vi

CHAPTER 1

Getting Started

This section is intended to get Pylons up and running as fast as possible and provide a quick overview of the project.
Links are provided throughout to encourage exploration of the various aspects of Pylons.

1.1 Requirements

• Python 2 series above and including 2.4 (Python 3 or later not supported at this time)

1.2 Installing

To avoid conflicts with system-installed Python libraries, Pylons comes with a boot-strap Python script that sets up a
“virtual” Python environment. Pylons will then be installed under the virtual environment.

By the Way

virtualenv is a useful tool to create isolated Python environments. In addition to isolating packages from possible
system conflicts, it makes it easy to install Python libraries using easy_install without dumping lots of packages into
the system-wide Python.

The other great benefit is that no root access is required since all modules are kept under the desired directory. This
makes it easy to setup a working Pylons install on shared hosting providers and other systems where system-wide
access is unavailable.

1. Download the go-pylons.py script.

2. Run the script and specify a directory for the virtual environment to be created under:

$ python go-pylons.py mydevenv

1

http://www.pylonshq.com/download/1.0/go-pylons.py

Pylons Reference Documentation, Release 1.0.2

Tip

The two steps can be combined on unix systems with curl using the following short-cut:

$ curl https://raw.githubusercontent.com/Pylons/pylons/master/scripts/go-pylons.py |
→˓python - mydevenv

To isolate further from additional system-wide Python libraries, run with the –no-site-packages option:

$ python go-pylons.py --no-site-packages mydevenv

How it Works

The go-pylons.py script is little more than a basic virtualenv bootstrap script, that then does easy_install
Pylons==1.0. You could do the equivilant steps by manually fetching the virtualenv.py script and then
installing Pylons like so:

curl -O http://bitbucket.org/ianb/virtualenv/raw/8dd7663d9811/virtualenv.py
python virtualenv.py mydevenv
mydevenv/bin/easy_install Pylons==1.0

This will leave a functional virtualenv and Pylons installation.

Activate the virtual environment (scripts may also be run by specifying the full path to the mydevenv/bin dir):

$ source mydevenv/bin/activate

Or on Window to activate:

> mydevenv\Scripts\activate.bat

Note: If you get an error such as:

ImportError: No module named _md5

during the install. It is likely that your Python installation is missing standard libraries needed to run Pylons. Debian
and other systems using debian packages most frequently encounter this, make sure to install the python-dev
packages and python-hashlib packages.

1.2.1 Working Directly From the Source Code

Mercurial must be installed to retrieve the latest development source for Pylons. Mercurial packages are also available
for Windows, MacOSX, and other OS’s.

Check out the latest code:

$ hg clone http://bitbucket.org/bbangert/pylons/

To tell setuptools to use the version in the Pylons directory:

2 Chapter 1. Getting Started

http://www.selenic.com/mercurial/wiki/
http://www.selenic.com/mercurial/wiki/index.cgi/BinaryPackages

Pylons Reference Documentation, Release 1.0.2

$ cd pylons
$ python setup.py develop

The active version of Pylons is now the copy in this directory, and changes made there will be reflected for Pylons
apps running.

1.3 Creating a Pylons Project

Create a new project named helloworld with the following command:

$ paster create -t pylons helloworld

Note: Windows users must configure their PATH as described in Windows Notes, otherwise they must specify the full
path to the paster command (including the virtual environment bin directory).

Running this will prompt for two choices:

1. which templating engine to use

2. whether to include SQLAlchemy support

Hit enter at each prompt to accept the defaults (Mako templating, no SQLAlchemy).

Here is the created directory structure with links to more information:

• helloworld

– MANIFEST.in

– README.txt

– development.ini - Runtime Configuration

– docs

– ez_setup.py

– helloworld (See the nested helloworld directory)

– helloworld.egg-info

– setup.cfg

– setup.py - Application Setup

– test.ini

The nested helloworld directory looks like this:

• helloworld

– __init__.py

– config

* environment.py - Environment

* middleware.py - Middleware

* routing.py - URL Configuration

– controllers - Controllers

1.3. Creating a Pylons Project 3

Pylons Reference Documentation, Release 1.0.2

– lib

* app_globals.py - app_globals

* base.py

* helpers.py - Helpers

– model - Models

– public

– templates - Templates

– tests - Unit and functional testing

– websetup.py - Runtime Configuration

1.4 Running the application

Run the web application:

$ cd helloworld
$ paster serve --reload development.ini

The command loads the project’s server configuration file in development.ini and serves the Pylons application.

Note: The --reload option ensures that the server is automatically reloaded if changes are made to Python files
or the development.ini config file. This is very useful during development. To stop the server press Ctrl+c or
the platform’s equivalent.

The paster serve command can be run anywhere, as long as the development.ini path is properly specified. Generally
during development it’s run in the root directory of the project.

Visiting http://127.0.0.1:5000/ when the server is running will show the welcome page.

1.5 Hello World

To create the basic hello world application, first create a controller in the project to handle requests:

$ paster controller hello

Open the helloworld/controllers/hello.py module that was created. The default controller will return
just the string ‘Hello World’:

import logging

from pylons import request, response, session, tmpl_context as c, url
from pylons.controllers.util import abort, redirect

from helloworld.lib.base import BaseController, render

log = logging.getLogger(__name__)

class HelloController(BaseController):

4 Chapter 1. Getting Started

http://127.0.0.1:5000/

Pylons Reference Documentation, Release 1.0.2

def index(self):
Return a rendered template
#return render('/hello.mako')
or, Return a response
return 'Hello World'

At the top of the module, some commonly used objects are imported automatically.

Navigate to http://127.0.0.1:5000/hello/index where there should be a short text string saying “Hello World” (start up
the app if needed):

Tip

URL Configuration explains how URL’s get mapped to controllers and their methods.

Add a template to render some of the information that’s in the environ.

First, create a hello.mako file in the templates directory with the following contents:

Hello World, the environ variable looks like:

${request.environ}

The request variable in templates is used to get information about the current request. Template globals lists all the
variables Pylons makes available for use in templates.

Next, update the controllers/hello.py module so that the index method is as follows:

1.5. Hello World 5

http://127.0.0.1:5000/hello/index

Pylons Reference Documentation, Release 1.0.2

class HelloController(BaseController):

def index(self):
return render('/hello.mako')

Refreshing the page in the browser will now look similar to this:

6 Chapter 1. Getting Started

CHAPTER 2

Concepts of Pylons

Understanding the basic concepts of Pylons, the flow of a request and response through the stack and how Pylons
operates makes it easier to customize when needed, in addition to clearing up misunderstandings about why things
behave the way they do.

This section acts as a basic introduction to the concept of a WSGI application, and WSGI Middleware in addition to
showing how Pylons utilizes them to assemble a complete working web framework.

To follow along with the explanations below, create a project following the Getting Started Guide.

2.1 The ‘Why’ of a Pylons Project

A new Pylons project works a little differently than in many other web frameworks. Rather than loading the framework,
which then finds a new projects code and runs it, Pylons creates a Python package that does the opposite. That is, when
its run, it imports objects from Pylons, assembles the WSGI Application and stack, and returns it.

If desired, a new project could be completely cleared of the Pylons imports and run any arbitrary WSGI application
instead. This is done for a greater degree of freedom and flexibility in building a web application that works the way
the developer needs it to.

By default, the project is configured to use standard components that most developers will need, such as sessions,
template engines, caching, high level request and response objects, and an ORM. By having it all setup in the project
(rather than hidden away in ‘framework’ code), the developer is free to tweak and customize as needed.

In this manner, Pylons has setup a project with its opinion of what may be needed by the developer, but the developer
is free to use the tools needed to accomplish the projects goals. Pylons offers an unprecedented level of customization
by exposing its functionality through the project while still maintaining a remarkable amount of simplicity by retaining
a single standard interface between core components (WSGI).

7

Pylons Reference Documentation, Release 1.0.2

2.2 WSGI Applications

WSGI is a basic specification known as PEP 333, that describes a method for interacting with a HTTP server. This
involves a way to get access to HTTP headers from the request, and how set HTTP headers and return content on the
way back out.

A ‘Hello World’ WSGI Application:

def simple_app(environ, start_response):
start_response('200 OK', [('Content-type', 'text/html')])
return ['<html><body>Hello World</body></html>']

This WSGI application does nothing but set a 200 status code for the response, set the HTTP ‘Content-type’ header,
and return some HTML.

The WSGI specification lays out a set of keys that will be set in the environ dict.

The WSGI interface, that is, this method of calling a function (or method of a class) with two arguments, and handling
a response as shown above, is used throughout Pylons as a standard interface for passing control to the next component.

Inside a new project’s config/middleware.py, the make_app function is responsible for creating a WSGI ap-
plication, wrapping it in WSGI middleware (explained below) and returning it so that it may handle requests from a
HTTP server.

2.3 WSGI Middleware

Within config/middleware.py a Pylons application is wrapped in successive layers which add functionality.
The process of wrapping the Pylons application in middleware results in a structure conceptually similar to the layers
in an onion.

8 Chapter 2. Concepts of Pylons

https://www.python.org/dev/peps/pep-0333
http://www.python.org/dev/peps/pep-0333/#environ-variables

Pylons Reference Documentation, Release 1.0.2

Once the middleware has been used to wrap the Pylons application, the make_app function returns the completed app
with the following structure (outermost layer listed first):

Registry Manager
Status Code Redirect

Error Handler
Cache Middleware

Session Middleware
Routes Middleware

Pylons App (WSGI Application)

WSGI middleware is used extensively in Pylons to add functionality to the base WSGI application. In Pylons, the
‘base’ WSGI Application is the PylonsApp. It’s responsible for looking in the environ dict that was passed in (from
the Routes Middleware).

To see how this functionality is created, consider a small class that looks at the HTTP_REFERER header to see if it’s
Google:

2.3. WSGI Middleware 9

Pylons Reference Documentation, Release 1.0.2

class GoogleRefMiddleware(object):
def __init__(self, app):

self.app = app

def __call__(self, environ, start_response):
environ['google'] = False
if 'HTTP_REFERER' in environ:

if environ['HTTP_REFERER'].startswith('http://google.com'):
environ['google'] = True

return self.app(environ, start_response)

This is considered WSGI Middleware as it still can be called and returns like a WSGI Application, however, it’s adding
something to environ, and then calls a WSGI Application that it is initialized with. That’s how the layers are built up
in the WSGI Stack that is configured for a new Pylons project.

Some of the layers, like the Session, Routes, and Cache middleware, only add objects to the environ dict, or add HTTP
headers to the response (the Session middleware for example adds the session cookie header). Others, such as the
Status Code Redirect, and the Error Handler may fully intercept the request entirely, and change how it’s responded
to.

2.4 Controller Dispatch

When the request passes down the middleware, the incoming URL gets parsed in the RoutesMiddleware, and if it
matches a URL (See URL Configuration), the information about the controller that should be called is put into the
environ dict for use by PylonsApp.

The PylonsApp then attempts to find a controller in the controllers directory that matches the name of the con-
troller, and searches for a class inside it by a similar scheme (controller name + ‘Controller’, ie, HelloController). Upon
finding a controller, its then called like any other WSGI application using the same WSGI interface that PylonsApp
was called with.

New in version 1.0: Controller name can also be a dotted path to the module / callable that should be imported and
called. For example, to use a controller named ‘Foo’ that is in the ‘bar.controllers’ package, the controller name would
be bar.controllers:Foo.

This is why the BaseController that resides in a project’s lib/base.py module inherits from WSGIController
and has a __call__ method that takes the environ and start_response. The WSGIController locates a method in
the class that corresponds to the action that Routes found, calls it, and returns the response completing the request.

2.5 Paster

Running the paster command all by itself will show the sets of commands it accepts:

$ paster
Usage: paster [paster_options] COMMAND [command_options]

Options:
--version show program's version number and exit
--plugin=PLUGINS Add a plugin to the list of commands (plugins are Egg

specs; will also require() the Egg)
-h, --help Show this help message

Commands:
create Create the file layout for a Python distribution

10 Chapter 2. Concepts of Pylons

Pylons Reference Documentation, Release 1.0.2

grep Search project for symbol
help Display help
make-config Install a package and create a fresh config file/directory
points Show information about entry points
post Run a request for the described application
request Run a request for the described application
serve Serve the described application
setup-app Setup an application, given a config file

pylons:
controller Create a Controller and accompanying functional test
restcontroller Create a REST Controller and accompanying functional test
shell Open an interactive shell with the Pylons app loaded

If paster is run inside of a Pylons project, this should be the output that will be printed. The last section, pylons will
be absent if it is not run inside a Pylons project. This is due to a dynamic plugin system the paster script uses, to
determine what sets of commands should be made available.

Inside a Pylons project, there is a directory ending in .egg-info, that has a paster_plugins.txt file in it. This
file is looked for and read by the paster script, to determine what other packages should be searched dynamically
for commands. Pylons makes several commands available for use in a Pylons project, as shown above.

2.6 Loading the Application

Running (and thus loading) an application is done using the paster command:

$ paster serve development.ini

This instructs the paster script to go into a ‘serve’ mode. It will attempt to load both a server and a WSGI application
that should be served, by parsing the configuration file specified. It looks for a [server] block to determine what server
to use, and an [app] block for what WSGI application should be used.

The basic egg block in the development.ini for a helloworld project:

[app:main]
use = egg:helloworld

That will tell paster that it should load the helloworld egg to locate a WSGI application. A new Pylons application
includes a line in the setup.py that indicates what function should be called to make the WSGI application:

entry_points="""
[paste.app_factory]
main = helloworld.config.middleware:make_app

[paste.app_install]
main = pylons.util:PylonsInstaller
""",

Here, the make_app function is specified as the main WSGI application that Paste (the package that paster comes
from) should use.

The make_app function from the project is then called, and the server (by default, a HTTP server) runs the WSGI
application.

2.6. Loading the Application 11

Pylons Reference Documentation, Release 1.0.2

12 Chapter 2. Concepts of Pylons

CHAPTER 3

Controllers

In the MVC paradigm the controller interprets the inputs, commanding the model and/or the view to change as appro-
priate. Under Pylons, this concept is extended slightly in that a Pylons controller is not directly interpreting the client’s
request, but is acting to determine the appropriate way to assemble data from the model, and render it with the correct

13

Pylons Reference Documentation, Release 1.0.2

template.

The controller interprets requests from the user and calls portions of the model and view as necessary to fulfill the
request. So when the user clicks a Web link or submits an HTML form, the controller itself doesn’t output anything
or perform any real processing. It takes the request and determines which model components to invoke and which
formatting to apply to the resulting data.

Pylons uses a class, where the superclass provides the WSGI interface and the subclass implements the application-
specific controller logic.

The Pylons WSGI Controller handles incoming web requests that are dispatched from the Pylons WSGI application
PylonsApp.

These requests result in a new instance of the WSGIController being created, which is then called with the dict
options from the Routes match. The standard WSGI response is then returned with start_response called as per the
WSGI spec.

Since Pylons controllers are actually called with the WSGI interface, normal WSGI applications can also be Pylons
‘controllers’.

3.1 Standard Controllers

Standard Controllers intended for subclassing by web developers

3.1.1 Keeping methods private

The default route maps any controller and action, so you will likely want to prevent some controller methods from
being callable from a URL.

Pylons uses the default Python convention of private methods beginning with _. To hide a method edit_generic
in this class, just changing its name to begin with _ will be sufficient:

class UserController(BaseController):
def index(self):

return "This is the index."

def _edit_generic(self):
"""I can't be called from the web!"""
return True

3.1.2 Special methods

Special controller methods you may define:

__before__ This method is called before your action is, and should be used for setting up variables/objects, re-
stricting access to other actions, or other tasks which should be executed before the action is called.

__after__ This method is called after the action is, unless an unexpected exception was raised. Subclasses of
HTTPException (such as those raised by redirect_to and abort) are expected; e.g. __after__ will
be called on redirects.

14 Chapter 3. Controllers

Pylons Reference Documentation, Release 1.0.2

3.1.3 Adding Controllers dynamically

It is possible for an application to add controllers without restarting the application. This requires telling Routes to
re-scan the controllers directory.

New controllers may be added from the command line with the paster command (recommended as that also creates
the test harness file), or any other means of creating the controller file.

For Routes to become aware of new controllers present in the controller directory, an internal flag is toggled to indicate
that Routes should rescan the directory:

from routes import request_config

mapper = request_config().mapper
mapper._created_regs = False

On the next request, Routes will rescan the controllers directory and those routes that use the :controller dynamic
part of the path will be able to match the new controller.

3.1.4 Customizing the Controller Name

By default, Pylons looks for a controller named ‘Something’Controller. This naming scheme can be overridden by
supplying an optional module-level variable called __controller__ to indicate the desired controller class:

import logging

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

from helloworld.lib.base import BaseController, render

log = logging.getLogger(__name__)

__controller__ = 'Hello'

class Hello(BaseController):

def index(self):
Return a rendered template
#return render('/hello.mako')
or, return a string
return 'Hello World'

3.1.5 Attaching WSGI apps

Note: This recipe assumes a basic level of familiarity with the WSGI Specification (PEP 333)

WSGI runs deep through Pylons, and is present in many parts of the architecture. Since Pylons controllers are actually
called with the WSGI interface, normal WSGI applications can also be Pylons ‘controllers’.

Optionally, if a full WSGI app should be mounted and handle the remainder of the URL, Routes can automati-
cally move the right part of the URL into the SCRIPT_NAME, so that the WSGI application can properly handle
its PATH_INFO part.

3.1. Standard Controllers 15

Pylons Reference Documentation, Release 1.0.2

This recipe will demonstrate adding a basic WSGI app as a Pylons controller.

Create a new controller file in your Pylons project directory:

$ paster controller wsgiapp

This sets up the basic imports that you may want available when using other WSGI applications.

Edit your controller so it looks like this:

import logging

from YOURPROJ.lib.base import *

log = logging.getLogger(__name__)

def WsgiappController(environ, start_response):
start_response('200 OK', [('Content-type', 'text/plain')])
return ["Hello World"]

When hooking up other WSGI applications, they will expect the part of the URL that was used to get to this controller
to have been moved into SCRIPT_NAME. Routes can properly adjust the environ if a map route for this controller
is added to the config/routing.py file:

CUSTOM ROUTES HERE

Map the WSGI application
map.connect('wsgiapp/{path_info:.*}', controller='wsgiapp')

By specifying the path_info dynamic path, Routes will put everything leading up to the path_info in the
SCRIPT_NAME and the rest will go in the PATH_INFO.

3.2 Using the WSGI Controller to provide a WSGI service

3.2.1 The Pylons WSGI Controller

Pylons’ own WSGI Controller follows the WSGI spec for calling and return values

The Pylons WSGI Controller handles incoming web requests that are dispatched from PylonsApp. These requests
result in a new instance of the WSGIController being created, which is then called with the dict options from the
Routes match. The standard WSGI response is then returned with start_response() called as per the WSGI
spec.

3.2.2 WSGIController methods

Special WSGIController methods you may define:

__before__ This method will be run before your action is, and should be used for setting up variables/objects,
restricting access to other actions, or other tasks which should be executed before the action is called.

__after__ Method to run after the action is run. This method will always be run after your method, even if it raises
an Exception or redirects.

Each action to be called is inspected with _inspect_call() so that it is only passed the arguments in the
Routes match dict that it asks for. The arguments passed into the action can be customized by overriding the
_get_method_args() function which is expected to return a dict.

16 Chapter 3. Controllers

Pylons Reference Documentation, Release 1.0.2

In the event that an action is not found to handle the request, the Controller will raise an “Action Not Found” error if
in debug mode, otherwise a 404 Not Found error will be returned.

3.3 Using the REST Controller with a RESTful API

3.3.1 Using the paster restcontroller template

$ paster restcontroller --help

Create a REST Controller and accompanying functional test

The RestController command will create a REST-based Controller file for use with the resource() REST-based
dispatching. This template includes the methods that resource() dispatches to in addition to doc strings for clari-
fication on when the methods will be called.

The first argument should be the singular form of the REST resource. The second argument is the plural form of the
word. If its a nested controller, put the directory information in front as shown in the second example below.

Example usage:

$ paster restcontroller comment comments
Creating yourproj/yourproj/controllers/comments.py
Creating yourproj/yourproj/tests/functional/test_comments.py

If you’d like to have controllers underneath a directory, just include the path as the controller name and the necessary
directories will be created for you:

$ paster restcontroller admin/trackback admin/trackbacks
Creating yourproj/controllers/admin
Creating yourproj/yourproj/controllers/admin/trackbacks.py
Creating yourproj/yourproj/tests/functional/test_admin_trackbacks.py

3.3.2 An Atom-Style REST Controller for Users

From http://pylonshq.com/pasties/503
import logging

from formencode.api import Invalid
from pylons import url
from simplejson import dumps

from restmarks.lib.base import *

log = logging.getLogger(__name__)

class UsersController(BaseController):
"""REST Controller styled on the Atom Publishing Protocol"""
To properly map this controller, ensure your
config/routing.py file has a resource setup:
map.resource('user', 'users')

def index(self, format='html'):
"""GET /users: All items in the collection.

@param format the format passed from the URI.

3.3. Using the REST Controller with a RESTful API 17

Pylons Reference Documentation, Release 1.0.2

"""
#url('users')
users = model.User.select()
if format == 'json':

data = []
for user in users:

d = user._state['original'].data
del d['password']
d['link'] = url('user', id=user.name)
data.append(d)

response.headers['content-type'] = 'text/javascript'
return dumps(data)

else:
c.users = users
return render('/users/index_user.mako')

def create(self):
"""POST /users: Create a new item."""
url('users')
user = model.User.get_by(name=request.params['name'])
if user:

The client tried to create a user that already exists
abort(409, '409 Conflict',

headers=[('location', url('user', id=user.name))])
else:

try:
Validate the data that was sent to us
params = model.forms.UserForm.to_python(request.params)

except Invalid, e:
Something didn't validate correctly
abort(400, '400 Bad Request -- %s' % e)

user = model.User(**params)
model.objectstore.flush()
response.headers['location'] = url('user', id=user.name)
response.status_code = 201
c.user_name = user.name
return render('/users/created_user.mako')

def new(self, format='html'):
"""GET /users/new: Form to create a new item.

@param format the format passed from the URI.
"""
url('new_user')
return render('/users/new_user.mako')

def update(self, id):
"""PUT /users/id: Update an existing item.

@param id the id (name) of the user to be updated
"""
Forms posted to this method should contain a hidden field:
<input type="hidden" name="_method" value="PUT" />
Or using helpers:
h.form(url('user', id=ID),
method='put')
url('user', id=ID)
old_name = id
new_name = request.params['name']
user = model.User.get_by(name=id)

18 Chapter 3. Controllers

Pylons Reference Documentation, Release 1.0.2

if user:
if (old_name != new_name) and model.User.get_by(name=new_name):

abort(409, '409 Conflict')
else:

params = model.forms.UserForm.to_python(request.params)
user.name = params['name']
user.full_name = params['full_name']
user.email = params['email']
user.password = params['password']
model.objectstore.flush()
if user.name != old_name:

abort(301, '301 Moved Permanently',
[('Location', url('users', id=user.name))])

else:
return

def delete(self, id):
"""DELETE /users/id: Delete an existing item.

@param id the id (name) of the user to be updated
"""
Forms posted to this method should contain a hidden field:
<input type="hidden" name="_method" value="DELETE" />
Or using helpers:
h.form(url('user', id=ID),
method='delete')
url('user', id=ID)
user = model.User.get_by(name=id)
user.delete()
model.objectstore.flush()
return

def show(self, id, format='html'):
"""GET /users/id: Show a specific item.

@param id the id (name) of the user to be updated.
@param format the format of the URI requested.

"""
url('user', id=ID)
user = model.User.get_by(name=id)
if user:

if format=='json':
data = user._state['original'].data
del data['password']
data['link'] = url('user', id=user.name)
response.headers['content-type'] = 'text/javascript'
return dumps(data)

else:
c.data = user
return render('/users/show_user.mako')

else:
abort(404, '404 Not Found')

def edit(self, id, format='html'):
"""GET /users/id;edit: Form to edit an existing item.

@param id the id (name) of the user to be updated.
@param format the format of the URI requested.

"""
url('edit_user', id=ID)

3.3. Using the REST Controller with a RESTful API 19

Pylons Reference Documentation, Release 1.0.2

user = model.User.get_by(name=id)
if not user:

abort(404, '404 Not Found')
Get the form values from the table
c.values = model.forms.UserForm.from_python(user.__dict__)
return render('/users/edit_user.mako')

3.4 Using the XML-RPC Controller for XML-RPC requests

In order to deploy this controller you will need at least a passing familiarity with XML-RPC itself. We will first review
the basics of XML-RPC and then describe the workings of the Pylons XMLRPCController. Finally, we will
show an example of how to use the controller to implement a simple web service.

After you’ve read this document, you may be interested in reading the companion document: “A blog publishing web
service in XML-RPC” which takes the subject further, covering details of the MetaWeblog API (a popular XML-RPC
service) and demonstrating how to construct some basic service methods to act as the core of a MetaWeblog blog
publishing service.

3.4.1 A brief introduction to XML-RPC

XML-RPC is a specification that describes a Remote Procedure Call (RPC) interface by which an application can use
the Internet to execute a specified procedure call on a remote XML-RPC server. The name of the procedure to be
called and any required parameter values are “marshalled” into XML. The XML forms the body of a POST request
which is despatched via HTTP to the XML-RPC server. At the server, the procedure is executed, the returned value(s)
is/are marshalled into XML and despatched back to the application. XML-RPC is designed to be as simple as possible,
while allowing complex data structures to be transmitted, processed and returned.

3.4.2 XML-RPC Controller that speaks WSGI

Pylons uses Python’s xmlrpclib library to provide a specialised XMLRPCController class that gives you the full
range of these XML-RPC Introspection facilities for use in your service methods and provides the foundation for
constructing a set of specialised service methods that provide a useful web service — such as a blog publishing
interface.

This controller handles XML-RPC responses and complies with the XML-RPC Specification as well as the XML-RPC
Introspection specification.

As part of its basic functionality an XML-RPC server provides three standard introspection procedures or “service
methods” as they are called. The Pylons XMLRPCController class provides these standard service methods ready-
made for you:

• system.listMethods() Returns a list of XML-RPC methods for this XML-RPC resource

• system.methodSignature() Returns an array of arrays for the valid signatures for a method. The first
value of each array is the return value of the method. The result is an array to indicate multiple signatures a
method may be capable of.

• system.methodHelp() Returns the documentation for a method

By default, methods with names containing a dot are translated to use an underscore. For example, the system.
methodHelp is handled by the method system_methodHelp().

Methods in the XML-RPC controller will be called with the method given in the XML-RPC body. Methods may be
annotated with a signature attribute to declare the valid arguments and return types.

20 Chapter 3. Controllers

http://www.xmlrpc.com/spec
http://scripts.incutio.com/xmlrpc/introspection.html
http://scripts.incutio.com/xmlrpc/introspection.html

Pylons Reference Documentation, Release 1.0.2

For example:

class MyXML(XMLRPCController):
def userstatus(self):

return 'basic string'
userstatus.signature = [['string']]

def userinfo(self, username, age=None):
user = LookUpUser(username)
result = {'username': user.name}
if age and age > 10:

result['age'] = age
return result

userinfo.signature = [['struct', 'string'],
['struct', 'string', 'int']]

Since XML-RPC methods can take different sets of data, each set of valid arguments is its own list. The first value in
the list is the type of the return argument. The rest of the arguments are the types of the data that must be passed in.

In the last method in the example above, since the method can optionally take an integer value, both sets of valid
parameter lists should be provided.

Valid types that can be checked in the signature and their corresponding Python types:

XMLRPC Python
string str
array list
boolean bool
int int
double float
struct dict
dateTime.iso8601 xmlrpclib.DateTime
base64 xmlrpclib.Binary

Note, requiring a signature is optional.

Also note that a convenient fault handler function is provided.

def xmlrpc_fault(code, message):
"""Convenience method to return a Pylons response XMLRPC Fault"""

(The XML-RPC Home page and the XML-RPC HOW-TO both provide further detail on the XML-RPC specification.)

3.4.3 A simple XML-RPC service

This simple service test.battingOrder accepts a positive integer < 51 as the parameter posn and returns a
string containing the name of the US state occupying that ranking in the order of ratifying the constitution / joining
the union.

import xmlrpclib

from pylons import request
from pylons.controllers import XMLRPCController

states = ['Delaware', 'Pennsylvania', 'New Jersey', 'Georgia',
'Connecticut', 'Massachusetts', 'Maryland', 'South Carolina',

3.4. Using the XML-RPC Controller for XML-RPC requests 21

http://www.xmlrpc.com/
http://www.faqs.org/docs/Linux-HOWTO/XML-RPC-HOWTO.html

Pylons Reference Documentation, Release 1.0.2

'New Hampshire', 'Virginia', 'New York', 'North Carolina',
'Rhode Island', 'Vermont', 'Kentucky', 'Tennessee', 'Ohio',
'Louisiana', 'Indiana', 'Mississippi', 'Illinois', 'Alabama',
'Maine', 'Missouri', 'Arkansas', 'Michigan', 'Florida', 'Texas',
'Iowa', 'Wisconsin', 'California', 'Minnesota', 'Oregon',
'Kansas', 'West Virginia', 'Nevada', 'Nebraska', 'Colorado',
'North Dakota', 'South Dakota', 'Montana', 'Washington', 'Idaho',
'Wyoming', 'Utah', 'Oklahoma', 'New Mexico', 'Arizona', 'Alaska',
'Hawaii']

class RpctestController(XMLRPCController):

def test_battingOrder(self, posn):
"""This docstring becomes the content of the
returned value for system.methodHelp called with
the parameter "test.battingOrder"). The method
signature will be appended below ...
"""
XML-RPC checks agreement for arity and parameter datatype, so
by the time we get called, we know we have an int.
if posn > 0 and posn < 51:

return states[posn-1]
else:

Technically, the param value is correct: it is an int.
Raising an error is inappropriate, so instead we
return a facetious message as a string.
return 'Out of cheese error.'

test_battingOrder.signature = [['string', 'int']]

3.4.4 Testing the service

For developers using OS X, there’s an XML/RPC client that is an extremely useful diagnostic tool when developing
XML-RPC (it’s free . . . but not entirely bug-free). Or, you can just use the Python interpreter:

>>> from pprint import pprint
>>> import xmlrpclib
>>> srvr = xmlrpclib.Server("http://example.com/rpctest/")
>>> pprint(srvr.system.listMethods())
['system.listMethods',
'system.methodHelp',
'system.methodSignature',
'test.battingOrder']

>>> print srvr.system.methodHelp('test.battingOrder')
This docstring becomes the content of the
returned value for system.methodHelp called with
the parameter "test.battingOrder"). The method
signature will be appended below ...

Method signature: [['string', 'int']]
>>> pprint(srvr.system.methodSignature('test.battingOrder'))
[['string', 'int']]
>>> pprint(srvr.test.battingOrder(12))
'North Carolina'

To debug XML-RPC servers from Python, create the client object using the optional verbose=1 parameter. You can
then use the client as normal and watch as the XML-RPC request and response is displayed in the console.

22 Chapter 3. Controllers

http://www.ditchnet.org/xmlrpc/

CHAPTER 4

Views

In the MVC paradigm the view manages the presentation of the model.

The view is the interface the user sees and interacts with. For Web applications, this has historically been an HTML
interface. HTML remains the dominant interface for Web apps but new view options are rapidly appearing.

23

Pylons Reference Documentation, Release 1.0.2

These include Macromedia Flash, JSON and views expressed in alternate markup languages like XHTML, XML/XSL,
WML, and Web services. It is becoming increasingly common for web apps to provide specialised views in the form
of a REST API that allows programmatic read/write access to the data model.

More complex APIs are quite readily implemented via SOAP services, yet another type of view on to the data model.

The growing adoption of RDF, the graph-based representation scheme that underpins the Semantic Web, brings a
perspective that is strongly weighted towards machine-readability.

Handling all of these interfaces in an application is becoming increasingly challenging. One big advantage of MVC is
that it makes it easier to create these interfaces and develop a web app that supports many different views and thereby
provides a broad range of services.

Typically, no significant processing occurs in the view; it serves only as a means of outputting data and allowing the
user (or the application) to act on that data, irrespective of whether it is an online store or an employee list.

4.1 Templates

Template rendering engines are a popular choice for handling the task of view presentation.

To return a processed template, it must be rendered and returned by the controller:

from helloworld.lib.base import BaseController, render

class HelloController(BaseController):
def sample(self):

return render('/sample.mako')

Using the default Mako template engine, this will cause Mako to look in the helloworld/templates directory
(assuming the project is called ‘helloworld’) for a template filed called sample.mako.

The render() function used here is actually an alias defined in your projects’ base.py for Pylons’
render_mako() function.

4.1.1 Directly-supported template engines

Pylons provides pre-configured options for using the Mako, Genshi and Jinja2 template rendering engines. They are
setup automatically during the creation of a new Pylons project, or can be added later manually.

4.2 Passing Variables to Templates

To pass objects to templates, the standard Pylons method is to attach them to the tmpl_context (aliased as c in con-
trollers and templates, by default) object in the Controllers:

import logging

from pylons import request, response, session, tmpl_context as c, url
from pylons.controllers.util import abort, redirect

from helloworld.lib.base import BaseController, render

log = logging.getLogger(__name__)

class HelloController(BaseController):

24 Chapter 4. Views

http://www.makotemplates.org/
http://genshi.edgewall.org/
http://jinja.pocoo.org/

Pylons Reference Documentation, Release 1.0.2

def index(self):
c.name = "Fred Smith"
return render('/sample.mako')

Using the variable in the template:

Hi there ${c.name}!

4.2.1 Strict vs Attribute-Safe tmpl_context objects

The tmpl_context object is created at the beginning of every request, and by default is an instance of the
AttribSafeContextObj class, which is an Attribute-Safe object. This means that accessing attributes on it
that do not exist will return an empty string instead of raising an AttributeError error.

This can be convenient for use in templates since it can act as a default:

Hi there ${c.name}

That will work when c.name has not been set, and is a bit shorter than what would be needed with the strict
ContextObj context object.

Switching to the strict version of the tmpl_context object can be done in the config/environment.py by adding
(after the config.init_app):

config['pylons.strict_c'] = True

4.3 Default Template Variables

By default, all templates have a set of variables present in them to make it easier to get to common objects. The full
list of available names present in the templates global scope:

• c – Template context object (Alias for tmpl_context)

• tmpl_context – Template context object

• config – Pylons PylonsConfig object (acts as a dict)

• g – Project application globals object (Alias for app_globals)

• app_globals – Project application globals object

• h – Project helpers module reference

• request – Pylons Request object for this request

• response – Pylons Response object for this request

• session – Pylons session object (unless Sessions are removed)

• translator – Gettext translator object configured for current locale

• ungettext() – Unicode capable version of gettext’s ngettext function (handles plural translations)

• _() – Unicode capable gettext translate function

• N_() – gettext no-op function to mark a string for translation, but doesn’t actually translate

• url – An instance of the routes.util.URLGenerator configured for this request.

4.3. Default Template Variables 25

Pylons Reference Documentation, Release 1.0.2

4.4 Configuring Template Engines

A new Pylons project comes with the template engine setup inside the projects’ config/environment.py file.
This section creates the Mako template lookup object and attaches it to the app_globals object, for use by the template
rendering function.

these imports are at the top
from mako.lookup import TemplateLookup
from pylons.error import handle_mako_error

this section is inside the load_environment function
Create the Mako TemplateLookup, with the default auto-escaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(

directories=paths['templates'],
error_handler=handle_mako_error,
module_directory=os.path.join(app_conf['cache_dir'], 'templates'),
input_encoding='utf-8', default_filters=['escape'],
imports=['from webhelpers.html import escape'])

4.4.1 Using Multiple Template Engines

Since template engines are configured in the config/environment.py section, then used by render functions,
it’s trivial to setup additional template engines, or even differently configured versions of a single template engine.
However, custom render functions will frequently be needed to utilize the additional template engine objects.

Example of additional Mako template loader for a different templates directory for admins, which falls back to the
normal templates directory:

Add the additional path for the admin template
paths = dict(root=root,

controllers=os.path.join(root, 'controllers'),
static_files=os.path.join(root, 'public'),
templates=[os.path.join(root, 'templates')],
admintemplates=[os.path.join(root, 'admintemplates'),

os.path.join(root, 'templates')])

config['pylons.app_globals'].mako_admin_lookup = TemplateLookup(
directories=paths['admin_templates'],
error_handler=handle_mako_error,
module_directory=os.path.join(app_conf['cache_dir'], 'admintemplates'),
input_encoding='utf-8', default_filters=['escape'],
imports=['from webhelpers.html import escape'])

That adds the additional template lookup instance, next a custom render function is needed that utilizes it:

from pylons.templating import cached_template, pylons_globals

def render_mako_admin(template_name, extra_vars=None, cache_key=None,
cache_type=None, cache_expire=None):

Create a render callable for the cache function
def render_template():

Pull in extra vars if needed
globs = extra_vars or {}

Second, get the globals
globs.update(pylons_globals())

26 Chapter 4. Views

Pylons Reference Documentation, Release 1.0.2

Grab a template reference
template = globs['app_globals'].mako_admin_lookup.get_template(template_name)

return template.render(**globs)

return cached_template(template_name, render_template, cache_key=cache_key,
cache_type=cache_type, cache_expire=cache_expire)

The only change from the render_mako() function that comes with Pylons is to use the mako_admin_lookup rather
than the mako_lookup that is used by default.

4.5 Custom render() functions

Writing custom render functions can be used to access specific features in a template engine, such as Genshi, that go
beyond the default render_genshi() functionality or to add support for additional template engines.

Two helper functions for use with the render function are provided to make it easier to include the common Pylons
globals that are useful in a template in addition to enabling easy use of cache capabilities. The pylons_globals()
and cached_template() functions can be used if desired.

Generally, the custom render function should reside in the project’s lib/ directory, probably in base.py.

Here’s a sample Genshi render function as it would look in a project’s lib/base.py that doesn’t fully render the
result to a string, and rather than use c assumes that a dict is passed in to be used in the templates global namespace.
It also returns a Genshi stream instead the rendered string.

from pylons.templating import pylons_globals

def render(template_name, tmpl_vars):
First, get the globals
globs = pylons_globals()

Update the passed in vars with the globals
tmpl_vars.update(globs)

Grab a template reference
template = globs['app_globals'].genshi_loader.load(template_name)

Render the template
return template.generate(**tmpl_vars)

Using the pylons_globals() function also makes it easy to get to the app_globals object which is where the
template engine was attached in config/environment.py.

Changed in version 0.9.7: Prior to 0.9.7, all templating was handled through a layer called ‘Buffet’. This layer fre-
quently made customization of the template engine difficult as any customization required additional plugin modules
being installed. Pylons 0.9.7 now deprecates use of the Buffet plug-in layer.

See also:

pylons.templating - Pylons templating API

4.5. Custom render() functions 27

Pylons Reference Documentation, Release 1.0.2

4.6 Templating with Mako

4.6.1 Introduction

The template library deals with the view, presenting the model. It generates (X)HTML code, CSS and Javascript that
is sent to the browser. (In the examples for this section, the project root is ‘‘myapp‘‘.)

Static vs. dynamic

Templates to generate dynamic web content are stored in myapp/templates, static files are stored in myapp/public.

Both are served from the server root, if there is a name conflict the static files will be served in preference

4.6.2 Making a template hierarchy

Create a base template

In myapp/templates create a file named base.mako and edit it to appear as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
${self.head_tags()}

</head>
<body>
${self.body()}

</body>
</html>

A base template such as the very basic one above can be used for all pages rendered by Mako. This is useful for giving
a consistent look to the application.

• Expressions wrapped in ${. . . } are evaluated by Mako and returned as text

• ${ and } may span several lines but the closing brace should not be on a line by itself (or Mako throws an error)

• Functions that are part of the self namespace are defined in the Mako templates

Create child templates

Create another file in myapp/templates called my_action.mako and edit it to appear as follows:

<%inherit file="/base.mako" />

<%def name="head_tags()">
<!-- add some head tags here -->

</%def>

<h1>My Controller</h1>

<p>Lorem ipsum dolor ...</p>

This file define the functions called by base.mako.

28 Chapter 4. Views

Pylons Reference Documentation, Release 1.0.2

• The inherit tag specifies a parent file to pass program flow to

• Mako defines functions with <%def name=”function_name()”>. . . </%def>, the contents of the tag are returned

• Anything left after the Mako tags are parsed out is automatically put into the body() function

A consistent feel to an application can be more readily achieved if all application pages refer back to single file (in this
case base.mako)..

Check that it works

In the controller action, use the following as a return() value,

return render('/my_action.mako')

Now run the action, usually by visiting something like http://localhost:5000/my_controller/
my_action in a browser. Selecting ‘View Source’ in the browser should reveal the following output:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<!-- add some head tags here -->
</head>
<body>

<h1>My Controller</h1>

<p>Lorem ipsum dolor ...</p>

</body>
</html>

See also:

The Mako documentation Reasonably straightforward to follow

See the Internationalization and Localization Provides more help on making your application more worldly.

4.6. Templating with Mako 29

http://www.makotemplates.org/docs/

Pylons Reference Documentation, Release 1.0.2

30 Chapter 4. Views

CHAPTER 5

Models

5.1 About the model

31

Pylons Reference Documentation, Release 1.0.2

In the MVC paradigm the model manages the behavior and data of the application domain, responds to requests for
information about its state and responds to instructions to change state.

The model represents enterprise data and business rules. It is where most of the processing takes place when using the
MVC design pattern. Databases are in the remit of the model, as are component objects such as EJBs and ColdFusion
Components.

The data returned by the model is display-neutral, i.e. the model applies no formatting. A single model can provide
data for any number of display interfaces. This reduces code duplication as model code is written only once and is
then reused by all of the views.

Because the model returns data without applying any formatting, the same components can be used with any interface.
For example, most data is typically formatted with HTML but it could also be formatted with Macromedia Flash or
WAP.

The model also isolates and handles state management and data persistence. For example, a Flash site or a wireless
application can both rely on the same session-based shopping cart and e-commerce processes.

Because the model is self-contained and separate from the controller and the view, changing the data layer or business
rules is less painful. If it proves necessary to switch databases, e.g. from MySQL to Oracle, or change a data source
from an RDBMS to LDAP, the only required task is that of altering the model. If the view is written correctly, it won’t
care at all whether a list of users came from a database or an LDAP server.

This freedom arises from the way that the three parts of an MVC-based application act as black boxes, the inner
workings of each one are hidden from, and are independent of, the other two. The approach promotes well-defined
interfaces and self-contained components.

Note: adapted from an Oct 2002 TechRepublic article by by Brian Kotek: “MVC design pattern brings about better
organization and code reuse” - http://articles.techrepublic.com.com/5100-10878_11-1049862.html

5.2 Model Basics

Pylons provides a model package to put your database code in but does not offer a database engine or API. Instead
there are several third-party APIs to choose from.

The recommended and most commonly-adopted approach used in Pylons applications is to use SQLAlchemy with the
declarative configuration style and develop with a relational database (Postgres, MySQL, etc).

This is the documented and recommended approach for creating a Pylons project with a SQL database.

5.2.1 Install SQLAlchemy

We’ll assume you’ve already installed Pylons and have the easy_install command. At the command line, run:

easy_install SQLAlchemy

Next you’ll have to install a database engine and its Python bindings. If you don’t know which one to choose, SQLite
is a good one to start with. It’s small and easy to install, and Python 2.5 includes bindings for it. Installing the database
engine is beyond the scope of this article, but here are the Python bindings you’ll need for the most popular engines:

easy_install pysqlite # If you use SQLite and Python 2.4 (not needed for Python 2.5)
easy_install MySQL-python # If you use MySQL
easy_install psycopg2 # If you use PostgreSQL

32 Chapter 5. Models

http://articles.techrepublic.com.com/5100-10878_11-1049862.html

Pylons Reference Documentation, Release 1.0.2

See the Python Package Index (formerly the Cheeseshop) for other database drivers.

Tip: Checking Your Version

To see which version of SQLAlchemy you have, go to a Python shell and look at sqlalchemy.__version__ :

>>> import sqlalchemy
>>> sqlalchemy.__version__
0.5.8

5.2.2 Create a Pylons Project with SQLAlchemy

When creating a Pylons project, one of the questions asked as part of the project creation dialogue is whether the
project should be configured with SQLAlchemy. Before continuing, ensure that the project was created with this
option, if it’s missing the model/meta.py file, then the project should be re-created with this option.

Tip: The project doesn’t need to be deleted to add this option, just re-run the paster command in the project’s parent
directory and answer “yes” to the SQLAlchemy prompt. The files will then be added and existing files will present a
prompt on whether to replace them or leave the current file.

5.2.3 Configure SQLAlchemy

When your Pylons application runs, it needs to know which database to connect to. Normally you put this information
in development.ini and activate the model in environment.py: put the following in development.ini in the [app:main]
section, depending on your database,

For SQLite

sqlalchemy.url = sqlite:///%(here)s/mydatabasefilename.sqlite

Where mydatabasefilename.db is the path to your SQLite database file. “%(here)s” represents the direc-
tory containing the development.ini file. If you’re using an absolute path, use four slashes after the colon:
“sqlite:////var/lib/myapp/database.sqlite”. Don’t use a relative path (three slashes) because the current directory could
be anything. The example has three slashes because the value of “%(here)s” always starts with a slash (or the platform
equivalent; e.g., “C:\foo” on Windows).

For MySQL

sqlalchemy.url = mysql://username:password@host:port/database
sqlalchemy.pool_recycle = 3600

Enter your username, password, host (localhost if it is on your machine), port number (usually 3306) and the name of
your database. The second line is an example of setting engine options.

It’s important to set “pool_recycle” for MySQL to prevent “MySQL server has gone away” errors. This is because
MySQL automatically closes idle database connections without informing the application. Setting the connection
lifetime to 3600 seconds (1 hour) ensures that the connections will be expired and recreated before MySQL notices
they’re idle.

5.2. Model Basics 33

http://pypi.python.org/
http://www.sqlalchemy.org/docs/04/dbengine.html#dbengine_options

Pylons Reference Documentation, Release 1.0.2

Don’t be tempted to use the “.echo” option to enable SQL logging because it may cause duplicate log output. Instead
see the Logging section below to integrate MySQL logging into Paste’s logging system.

For PostgreSQL

sqlalchemy.url = postgres://username:password@host:port/database

Enter your username, password, host (localhost if it is on your machine), port number (usually 5432) and the name of
your database.

5.3 Organizing

When you answer “yes” to the SQLAlchemy question when creating a Pylons project, it configures a simple default
model. The model consists of two files: model/__init__.py and model/meta.py.

5.3.1 model/__init__.py

The file model/__init__.py contains the table definitions, the ORM classes and an init_model() function.
This init_model() function must be called at application startup. In the Pylons default project template this call
is made in the load_environment() function (in the file config/environment.py).

5.3.2 model/meta.py

model/meta.py is merely a container for a few housekeeping objects required by SQLAlchemy such as Session,
metadata and engine to avoid import issues. In the context of the default Pylons application, only the Session
object is instantiated.

The objects are optional in the context of other applications that do not make use of them and so if you answer “no”
to the SQLAlchemy question when creating a Pylons project, the creation of model/meta.py is simply skipped.

It is recommended that, for each model, a new module inside the model/ directory should be created. This keeps the
models tidy when they get larger as more domain specific code is added to each one.

5.4 Creating a Model

SQLAlchemy 0.5 has an optional Declarative syntax which offers the convenience of defining the table and the ORM
class in one step. This is the recommended usage of SQLAlchemy.

Create a model/person.py module:

"""Person model"""
from sqlalchemy import Column
from sqlalchemy.types import Integer, String

from myapp.model.meta import Base

class Person(Base):
__tablename__ = "person"

id = Column(Integer, primary_key=True)

34 Chapter 5. Models

Pylons Reference Documentation, Release 1.0.2

name = Column(String(100))
email = Column(String(100))

def __init__(self, name='', email=''):
self.name = name
self.email = email

def __repr__(self):
return "<Person('%s')" % self.name

Note: Base is imported from model/meta.py to prevent recursive import problems when added to model/
__init__.py in the next step.

Then for convenience when using the models, import it in model/__init__.py:

"""The application's model objects"""
from myapp.model.meta import Session, Base

from myapp.model.person import Person

def init_model(engine):
"""Call me before using any of the tables or classes in the model"""
Session.configure(bind=engine)

5.5 Adding a Relation

Here’s an example of a Person and an Address class with a one-to-many relationship on person.addresses.

First, add a model/address.py module:

"""Address model"""
from sqlalchemy import Column, ForeignKey
from sqlalchemy.types import Integer, String
from sqlalchemy.orm import relation, backref

from myapp.model.meta import Base

class Address(Base):
__tablename__ = "address"

id = Column(Integer, primary_key=True)
address = Column(String(100))
city = Column(String(100))
state = Column(String(2))
person_id = Column(Integer, ForeignKey('person.id'))

person = relation('Person', backref=backref('addresses', order_by=id))

def __repr__(self):
return "<Person('%s')" % self.name

When models are created using the declarative Base, each one is added by name to a mapping. This allows the
relation option above to locate the model it should be related to based on the text string 'Person'.

5.5. Adding a Relation 35

Pylons Reference Documentation, Release 1.0.2

Then add the import to the model/__init__.py file:

"""The application's model objects"""
from myapp.model.meta import Session, Base

from myapp.model.address import Address
from myapp.model.person import Person

def init_model(engine):
"""Call me before using any of the tables or classes in the model"""
Session.configure(bind=engine)

See also:

Building a Relation and SQLAlchemy manual

5.6 Creating the Database

To actually create the tables in the database, you call the metadata’s .create_all() method. You can do this interactively
or use paster’s application initialization feature. To do this, put the code in myapp/websetup.py. After the
load_environment() call, put:

from myapp.model.meta import Base, Session
log.info("Creating tables")
Base.metadata.drop_all(checkfirst=True, bind=Session.bind)
Base.metadata.create_all(bind=Session.bind)
log.info("Successfully setup")

Then run the following on the command line:

$ paster setup-app development.ini

5.7 A brief guide to using model objects in the Controller

In which we: query a model, update a model entity, create a model entity and delete several model entities, all inside
a Pylons controller.

To illustrate some typical ways of handling model objects in the Controller, we will draw from the example
PagesController code of the QuickWiki Tutorial.

5.7.1 The Session

The SQLAlchemy-provided Session object is a crucially important facet when working with models and model
object entities.

The SQLAlchemy documentation describes the Session thus: “In the most general sense, the Session establishes
all conversations with the database and represents a “holding zone” for all the mapped instances which you’ve loaded
or created during its lifespan.”

All of the model access that takes place in a Pylons controller is done in the context of a Session providing a
database connection reference that is created at the start of the processing of each request and destroyed at the end of
the processing of the request.

36 Chapter 5. Models

http://www.sqlalchemy.org/docs/05/ormtutorial.html#building-a-relation
http://www.sqlalchemy.org/docs/

Pylons Reference Documentation, Release 1.0.2

These creation and destruction operations are performed automatically by the BaseController instantiated in
MYAPP/lib/base.py which is in turn subclassed for each standard Pylons controller, ensuring that subclassed
controllers can access the database only in a request-specific context which, in turn, protects against data accidentally
leaking across requests.

See also:

SQLAlchemy documentation for the Session object

The net effect of this is that a fully-instantiated Session object is available for import and immediate use in the
controller for, e.g. querying the model.

5.7.2 Querying the model

The Session object provides a query() function that, when applied to a class of mapped model object, returns a
SQLAlchemy Query object that can be passed around and repeatedly consulted.

See also:

SQLAlchemy documentation for the Query object

Standard usage is illustrated in this code for the __before__() function of the QuickWiki PagesController
in which self.page_q is bound to the Query object returned by Session.query(Page) - where Page is the
class of mapped model object that will be the subject of the queries.

from MYAPP.lib.base import Session
from MYAPP.model import Page

class PagesController(BaseController):

def __before__(self):
self.page_q = Session.query(Page)

[...]

The Query object that is bound to self.page_q is now specialised to perform queries of the Page declarative
base entity / mapped model entity.

See also:

SQLAlchemy documentation for the Querying the database

Here, in the context of a controller’s index() action, it is used in a very straighforward manner - self.page_q.
all() - to fuel a list comprehension that returns a list containing the title of every Page object in the database:

def index(self):
c.titles = [page.title for page in self.page_q.all()]
return render('/pages/index.mako')

and self.page_q is used in similarly direct manner for the show() action that retrieves a Page with a given value
of title and then calls the Page’s get_wiki_content() class method.

def show(self, title):
page = self.page_q.filter_by(title=title).first()
if page:

c.content = page.get_wiki_content()
return render('/pages/show.mako')

elif wikiwords.match(title):
return render('/pages/new.mako')

abort(404)

5.7. A brief guide to using model objects in the Controller 37

http://www.sqlalchemy.org/docs/session.html
http://www.sqlalchemy.org/docs/reference/orm/query.html
http://www.sqlalchemy.org/docs/ormtutorial.html#querying

Pylons Reference Documentation, Release 1.0.2

Note: the title argument to the function is bound when the request is dispatched by the Routes map, typically of
the form:

map.connect('show_page', '/page/show/{title}', controller='page', action='show')

The Query object has many other features, including filtering on conditions, ordering the results, grouping, etc. These
are excellently described in the SQLAlchemy manual. See especially the Data Mapping and Session / Unit of Work
chapters.

5.7.3 Creating, updating and deleting model entities

When performing operations that change the state of the database, the recommended approach is for Pylons users to
take full advantage of the abstraction provided by the SQLAlchemy ORM and simply treat the retrieved or created
model entities as Python objects, make changes to them in a conventional Pythonic way, add them to or delete them
from the Session “holding zone” and call Session.commit() to commit the changes to the database.

The three examples shown below are condensed illustrations of how these operations are typically performed in con-
troller actions.

Creating a model entity

SQLAlchemy’s Declarative Base syntax allows model entity classes to act as constructors, accepting keyworded args
and values. In this example, a new Page is created with the given title, the created model entity object is then added to
the Session and then the change is committed.

def create(self, title):
page = Page(title=title)
Session.add(page)
Session.commit()
redirect_to('show_page', title=title)

Updating a model entity

Perhaps the most straighforward use - a model entity object is retrieved from the database, a field value is updated and
the change committed.

(Note, this example is considerably abbreviated as a controller action - preliminary content checking has been omitted,
as has exception handling for the database query.)

def save(self, title):
page = self.page_q.filter_by(title=title).first()
page.content=escape(request.POST.getone('content'))
Session.commit()
redirect_to('show_page', title=title)

Deleting a model entity

This example of shows the freedom that the Pylons user has to make repeated changes to the model (in this in-
stance, repeatedly deleting entities from the database) before finally committing those changes by calling Session.

38 Chapter 5. Models

http://www.sqlalchemy.org/docs/
http://www.sqlalchemy.org/docs/datamapping.html
http://www.sqlalchemy.org/docs/unitofwork.html

Pylons Reference Documentation, Release 1.0.2

commit().

def delete(self):
titles = request.POST.getall('title')
pages = self.page_q.filter(Page.title.in_(titles))
for page in pages:

Session.delete(page)
Session.commit()
redirect_to('pages')

The Object Relational tutorial in the SQLAlchemy documentation covers a basic SQLAlchemy object-relational map-
ping scenario in much more detail and the SQL Expression tutorial covers the details of manipulating and marshalling
the model entity objects.

5.7.4 Using multiple databases

In order to use multiple databases, in MYAPP/model/meta.py create as many instances of Base as there are
databases to connect to:

"""SQLAlchemy Metadata and Session object"""
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import scoped_session, sessionmaker

__all__ = ['Base','Base2', 'Session']

SQLAlchemy session manager. Updated by model.init_model()
Session = scoped_session(sessionmaker())

The declarative Base
Base = declarative_base()
Base2 = declarative_base()

Declare the different database URLs in development.ini, appending an integer to the sqlalchemy keyword in
order to differentiate between them.

sqlalchemy.url = sqlite:///%(here)s/database_one.sqlite
sqlalchemy.echo = true
sqlalchemy2.url = sqlite:///%(here)s/database_two.sqlite
sqlalchemy2.echo = false

In MYAPP/config/environment.py, pick up those db URL declarations by using the different keywords (in
this example: sqlalchemy and sqlalchemy2). Create the engines and call model.init_model(), passing through
both engines as parameters.

Setup the SQLAlchemy database engine
Engine 0
engine = engine_from_config(config, 'sqlalchemy.')
engine2 = engine_from_config(config, 'sqlalchemy2.')
model.init_model(engine, engine2)

Bind the engines appropriately to the Base-specific metadata in MYAPP/model/__init__.py - note
init_model() is expecting both engines to be supplied as formal parameters.

def init_model(engine, engine2):
meta.Base.metadata.bind = engine
meta.Base2.metadata.bind = engine2

5.7. A brief guide to using model objects in the Controller 39

http://www.sqlalchemy.org/docs/ormtutorial.html
http://www.sqlalchemy.org/docs/sqlexpression.html

Pylons Reference Documentation, Release 1.0.2

Then import Base and/or Base2

from MYAPP.model.meta import Base, Base2

and use as required, e.g.

class Author(Base2):
__tablename__ = 'authors'
id = Column(Integer, primary_key=True)
keywords = relation("Keyword", secondary=keywords)

5.7.5 Avoiding the “circular imports” problem of model interdependency

Closely-interdependent models can sometimes cause “circular import” problems, where importing one model file
causes a dependent model file to be imported, which then cause the first model file to be imported, and so on round
and round in circles.

In order to break the circle, define the model entities as globals in MYAPP/model/meta.py

"""The application's model objects"""
import sqlalchemy as sa
from MYAPP.model import meta
from sqlalchemy.orm import scoped_session, sessionmaker

def init_model(engine):
"""Call me before using any of the tables or classes in the model"""
meta.Base.metadata.bind = engine

import MYAPP.model.user
User = MYAPP.model.user.User
global User

import MYAPP.model.newsletter
Newsletter = MYAPP.model.newsletter.Newsletter
global Newsletter

import MYAPP.model.submission
Submission = MYAPP.model.submission.Submission
global Submission

5.7.6 Testing the Models

Normal model usage works fine in model tests, however to use the metadata you must specify an engine connection
for it. To have your tables created for every unit test in your project, use a test_models.py such as:

from myapp.tests import *
from myapp import model
from myapp.model import meta

class TestModels(TestController):

def setUp(self):
meta.Session.remove()
meta.Base.metadata.create_all(meta.engine)

40 Chapter 5. Models

Pylons Reference Documentation, Release 1.0.2

def test_index(self):
test your models
pass

Note: Notice that the tests inherit from TestController. This is to ensure that the application is setup so that the models
will work.

“nosetests –with-pylons=/path/to/test.ini . . . ” is another way to ensure that your model is properly initialized before
the tests are run. This can be used when running non-controller tests.

5.8 Logging

SQLAlchemy has several loggers that chat about the various aspects of its operation. To log all SQL statements
executed along with their parameter values, put the following in development.ini:

[logger_sqlalchemy]
level = INFO
handlers =
qualname = sqlalchemy.engine

Then modify the “[loggers]” section to enable your new logger:

[loggers]
keys = root, myapp, sqlalchemy

To log the results along with the SQL statements, set the level to DEBUG. This can cause a lot of output! To stop
logging the SQL, set the level to WARN or ERROR.

SQLAlchemy has several other loggers you can configure in the same way. “sqlalchemy.pool” level INFO tells when
connections are checked out from the engine’s connection pool and when they’re returned. “sqlalchemy.orm” and
buddies log various ORM operations. See “Configuring Logging” in the SQLAlchemy manual.

5.9 About SQLAlchemy

SQLAlchemy is by far the most common approach for Pylons databases. It provides a connection pool, a SQL
statement builder, an object-relational mapper (ORM), and transaction support. SQLAlchemy works with several
database engines (MySQL, PostgreSQL, SQLite, Oracle, Firebird, MS-SQL, Access via ODBC, etc) and understands
the peculiar SQL dialect of each, making it possible to port a program from one engine to another by simply changing
the connection string. Although its API is still changing gradually, SQLAlchemy is well tested, widely deployed, has
excellent documentation, and its mailing list is quick with answers.

SQLAlchemy lets you work at three different levels, and you can even use multiple levels in the same program:

• The object-relational mapper (ORM) lets you interact with the database using your own object classes rather
than writing SQL code.

• The SQL expression language has many methods to create customized SQL statements, and the result cursor is
more friendly than DBAPI’s.

• The low-level execute methods accept literal SQL strings if you find something the SQL builder can’t do, such
as adding a column to an existing table or modifying the column’s type. If they return results, you still get the
benefit of SQLAlchemy’s result cursor.

5.8. Logging 41

http://www.sqlalchemy.org/docs/
http://www.sqlalchemy.org/

Pylons Reference Documentation, Release 1.0.2

The first two levels are database neutral, meaning they hide the differences between the databases’ SQL dialects.
Changing to a different database is merely a matter of supplying a new connection URL. Of course there are limits to
this, but SQLAlchemy is 90% easier than rewriting all your SQL queries.

The SQLAlchemy manual should be your next stop for questions not covered here. It’s very well written and thorough.

5.9.1 SQLAlchemy add-ons

Most of these provide a higher-level ORM, either by combining the table definition and ORM class definition into one
step, or supporting an “active record” style of access.

Please take the time to learn how to do things “the regular way” before using these shortcuts in a production appli-
cation.

Understanding what these add-ons do behind the scenes will help if you have to troubleshoot a database error or work
around a limitation in the add-on later.

SQLSoup, an extension to SQLAlchemy, provides a quick way to generate ORM classes based on existing database
tables.

If you’re familiar with ActiveRecord, used in Ruby on Rails, then you may want to use the Elixir layer on top of
SQLAlchemy. This approach is less common since the introduction of the declarative extension, but has other features
the declarative does not.

42 Chapter 5. Models

http://www.sqlalchemy.org/docs/
http://www.sqlalchemy.org/docs/05/plugins.html#plugins_sqlsoup
http://elixir.ematia.de/

CHAPTER 6

Advanced Models

Pylons works well with many different types of databases, in addition to other database object-relational mappers.

6.1 Advanced SQLAlchemy

6.1.1 Alternative SQLAlchemy Styles

In addition to the declarative style, SQLAlchemy has a default more verbose and explicit approach.

Definitions using the default SQLAlchemy approach

Here is a sample model/__init__.py with a “persons” table, based on the default SQLAlchemy approach:

"""The application's model objects"""
import sqlalchemy as sa
from sqlalchemy import orm

from myapp.model import meta

def init_model(engine):
meta.Session.configure(bind=engine)
meta.engine = engine

t_persons = sa.Table("persons", meta.metadata,
sa.Column("id", sa.types.Integer, primary_key=True),
sa.Column("name", sa.types.String(100), primary_key=True),
sa.Column("email", sa.types.String(100)),
)

class Person(object):
pass

43

Pylons Reference Documentation, Release 1.0.2

orm.mapper(Person, t_persons)

This model has one table, “persons”, assigned to the variable t_persons. Person is an ORM class which is bound
to the table via the mapper.

Relation example

Here’s an example of a Person and an Address class with a many:many relationship on people.my_addresses. See
Relational Databases for People in a Hurry and the ‘SQLAlchemy manual‘_ for details.

t_people = sa.Table('people', meta.metadata,
sa.Column('id', sa.types.Integer, primary_key=True),
sa.Column('name', sa.types.String(100)),
sa.Column('email', sa.types.String(100)),
)

t_addresses_people = sa.Table('addresses_people', meta.metadata,
sa.Column('id', sa.types.Integer, primary_key=True),
sa.Column('person_id', sa.types.Integer, sa.ForeignKey('people.id')),
sa.Column('address_id', sa.types.Integer, sa.ForeignKey('addresses.id')),
)

t_addresses = sa.Table('addresses', meta.metadata,
sa.Column('id', sa.types.Integer, primary_key=True),
sa.Column('address', sa.types.String(100)),
)

class Person(object):
pass

class Address(object):
pass

orm.mapper(Address, t_addresses)
orm.mapper(Person, t_people, properties = {

'my_addresses' : orm.relation(Address, secondary = t_addresses_people),
})

Definitions using “reflection” of an existing database table

If the table already exists, SQLAlchemy can read the column definitions directly from the database. This is called
reflecting the table.

The advantage of this approach is that it allows you to dispense with the task of specifying the column types in Python
code.

Reflecting existing database tables must be done inside init_model() because to perform the reflection, a live
database engine is required and this is not available when the module is imported. A live database engine is bound
explicitly in the init_model() function and so enables reflection.

(An engine is a SQLAlchemy object that knows how to connect to a particular database.)

Here’s the second example with reflection:

44 Chapter 6. Advanced Models

http://wiki.pylonshq.com/display/pylonscookbook/Relational+databases+for+people+in+a+hurry

Pylons Reference Documentation, Release 1.0.2

"""The application's model objects"""
import sqlalchemy as sa
from sqlalchemy import orm

from myapp.model import meta

def init_model(engine):
"""Call me before using any of the tables or classes in the model"""
Reflected tables must be defined and mapped here
global t_persons
t_persons = sa.Table("persons", meta.metadata, autoload=True,

autoload_with=engine)
orm.mapper(Person, t_persons)

meta.Session.configure(bind=engine)
meta.engine = engine

t_persons = None

class Person(object):
pass

Note how t_persons and the orm.mapper() call moved into init_model(), while the Person class didn’t
have to. Also note the global t_persons statement. This tells Python that t_persons is a global variable
outside the function. global is required when assigning to a global variable inside a function. It’s not required if
you’re merely modifying a mutable object in place, which is why meta doesn’t have to be declared global.

Using the model standalone

You now have everything necessary to use the model in a standalone script such as a cron job, or to test it interactively.
You just need to create a SQLAlchemy engine and connect it to the model. This example uses a database “test.sqlite”
in the current directory:

% python
Python 2.5.1 (r251:54863, Oct 5 2007, 13:36:32)
[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sqlalchemy as sa
>>> engine = sa.create_engine("sqlite:///test.sqlite")
>>> from myapp import model
>>> model.init_model(engine)

Now you can use the tables, classes, and Session as described in the ‘SQLAlchemy manual‘_. For example:

#!/usr/bin/env python
import sqlalchemy as sa
import tmpapp.model as model
import tmpapp.model.meta as meta

DB_URL = "sqlite:///test.sqlite"

engine = sa.create_engine(DB_URL)
model.init_model(engine)

Create all tables, overwriting them if they exist.

6.1. Advanced SQLAlchemy 45

Pylons Reference Documentation, Release 1.0.2

if hasattr(model, "_Base"):
SQLAlchemy 0.5 Declarative syntax
model._Base.metadata.drop_all(bind=engine, checkfirst=True)
model._Base.metadata.create_all(bind=engine)

else:
SQLAlchemy 0.4 and 0.5 syntax without Declarative
meta.metadata.drop_all(bind=engine, checkfirst=True)
meta.metadataa.create_all(bind=engine)

Create two records and insert them into the database using the ORM.
a = model.Person()
a.name = "Aaa"
a.email = "aaa@example.com"
meta.Session.add(a)

b = model.Person()
b.name = "Bbb"
b.email = "bbb@example.com"
meta.Session.add(b)

meta.Session.commit()

Display all records in the persons table.
print "Database data:"
for p in meta.Session.query(model.Person):

print "id:", p.id
print "name:", p.name
print "email:", p.email
print

6.1.2 Talking to Multiple Databases at Once

Some applications need to connect to multiple databases (engines). Some always bind certain tables to the same
engines (e.g., a general database and a logging database); this is called “horizontal partitioning”. Other applications
have several databases with the same structure, and choose one or another depending on the current request. A
blogging app with a separate database for each blog, for instance. A few large applications store different records from
the same logical table in different databases to prevent the database size from getting too large; this is called “vertical
partitioning” or “sharding”. The pattern above can accommodate any of these schemes with a few minor changes.

First, you can define multiple engines in your config file like this:

sqlalchemy.default.url = "mysql://..."
sqlalchemy.default.pool_recycle = 3600
sqlalchemy.log.url = "sqlite://..."

This defines two engines, “default” and “log”, each with its own set of options. Now you have to instantiate every
engine you want to use.

default_engine = engine_from_config(config, 'sqlalchemy.default.')
log_engine = engine_from_config(config, 'sqlalchemy.log.')
init_model(default_engine, log_engine)

Of course you’ll have to modify init_model() to accept both arguments and create two engines.

To bind different tables to different databases, but always with a particular table going to the same engine, use the
binds argument to sessionmaker rather than bind:

46 Chapter 6. Advanced Models

Pylons Reference Documentation, Release 1.0.2

binds = {"table1": engine1, "table2": engine2}
Session = scoped_session(sessionmaker(binds=binds))

To choose the bindings on a per-request basis, skip the sessionmaker bind(s) argument, and instead put this in your
base controller’s __call__ method before the superclass call, or directly in a specific action method:

meta.Session.configure(bind=meta.engine)

binds= works the same way here too.

Multiple Application Instances

If you’re running multiple instances of the _same_ Pylons application in the same WSGI process (e.g., with Paste
HTTPServer’s “composite” application), you may run into concurrency issues. The problem is that Session is thread
local but not application-instance local. We’re not sure how much this is really an issue if Session.remove() is
properly called in the base controller, but just in case it becomes an issue, here are possible remedies:

1. Attach the engine(s) to pylons.g (aka. config["pylons.g"]) rather than to the meta module. The
globals object is not shared between application instances.

2. Add a scoping function. This prevents the application instances from sharing the same session objects. Add the
following function to your model, and pass it as the second argument to scoped_session:

def pylons_scope():
import thread
from pylons import config
return "Pylons|%s|%s" % (thread.get_ident(), config._current_obj())

Session = scoped_session(sessionmaker(), pylons_scope)

If you’re affected by this, or think you might be, please bring it up on the pylons-discuss mailing list. We need feedback
from actual users in this situation to verify that our advice is correct.

6.2 Non-SQLAlchemy libraries

Most of these expose only the object-relational mapper; their SQL builder and connection pool are not meant to be
used directly.

Storm

Geniusql

6.2.1 DB-API

All the SQL libraries above are built on top of Python’s DB-API, which provides a common low-level interface
for interacting with several database engines: MySQL, PostgreSQL, SQLite, Oracle, Firebird, MS-SQL, Access via
ODBC, etc. Most programmers do not use DB-API directly because its API is low-level and repetitive and does
not provide a connection pool. There’s no “DB-API package” to install because it’s an abstract interface rather than
software. Instead, install the Python package for the particular engine you’re interested in. Python’s Database Topic
Guide describes the DB-API and lists the package required for each engine. The sqlite3 package for SQLite is included
in Python 2.5.

6.2. Non-SQLAlchemy libraries 47

http://storm.canonical.com
http://www.aminus.net/geniusql
http://www.python.org/topics/database/
http://www.python.org/topics/database/
http://docs.python.org/lib/module-sqlite3.html

Pylons Reference Documentation, Release 1.0.2

6.3 Object Databases

Object databases store Python dicts, lists, and classes in pickles, allowing you to access hierarchical data using normal
Python statements rather than having to map them to tables, relations, and a foreign language (SQL).

ZODB

Durus1

6.4 Popular No-SQL Databases

Pylons can also work with other database systems, such as the following:

Schevo uses Durus to combine some features of relational and object databases. It is written in Python.

CouchDb is a document-based database. It features a Python API.

The Datastore database in Google App Engine.

1 Durus is not thread safe, so you should use its server mode if your application writes to the database. Do not share connections between
threads. ZODB is thread safe, so it may be a more convenient alternative.

48 Chapter 6. Advanced Models

http://wiki.zope.org/ZODB/FrontPage
http://www.mems-exchange.org/software/durus/
http://schevo.org/
http://couchdb.org/
http://code.google.com/p/couchdb-python/

CHAPTER 7

Configuration

Pylons comes with two main ways to configure an application:

• The configuration file (Runtime Configuration)

• The application’s config directory

The files in the config directory change certain aspects of how the application behaves. Any options that the
webmaster should be able to change during deployment should be specified in a configuration file.

Tip: A good indicator of whether an option should be set in the config directory code vs. the configuration file
is whether or not the option is necessary for the functioning of the application. If the application won’t function
without the setting, it belongs in the appropriate config/ directory file. If the option should be changed depending
on deployment, it belongs in the Runtime Configuration.

The applications config/ directory includes:

• config/environment.py described in Environment

• config/middleware.py described in Middleware

• config/deployment.ini_tmpl described in Production Configuration Files

• config/routing.py described in URL Configuration

Each of these files allows developers to change key aspects of how the application behaves.

7.1 Runtime Configuration

When a new project is created a sample configuration file called development.ini is automatically produced as
one of the project files. This default configuration file contains sensible options for development use, for example
when developing a Pylons application it is very useful to be able to see a debug report every time an error occurs. The
development.ini file includes options to enable debug mode so these errors are shown.

49

Pylons Reference Documentation, Release 1.0.2

Since the configuration file is used to determine which application is run, multiple configuration files can be used
to easily toggle sets of options. Typically a developer might have a development.ini configuration file for
testing and a production.ini file produced by the paster make-config command for testing the command
produces sensible production output. A test.ini configuration is also included in the project for test-specific
options.

To specify a configuration file to use when running the application, change the last part of the paster serve to
include the desired config file:

$ paster serve production.ini

See also:

Configuration file format and options are described in great detail in the Paste Deploy documentation.

7.1.1 Getting Information From Configuration Files

All information from the configuration file is available in the pylons.config object. pylons.config also
contains application configuration as defined in the project’s config.environment module.

from pylons import config

pylons.config behaves like a dictionary. For example, if the configuration file has an entry under the
[app:main] block:

cache_dir = %(here)s/data

That can then be read in the projects code:

from pylons import config
cache_dir = config['cache.dir']

Or the current debug status like this:

debug = config['debug']

Evaluating Non-string Data in Configuration Files

By default, all the values in the configuration file are considered strings. To make it easier to handle boolean values,
the Paste library comes with a function that will convert true and false to proper Python boolean values:

from paste.deploy.converters import asbool

debug = asbool(config['debug'])

This is used already in the default projects’ Middleware to toggle middleware that should only be used in development
mode (with debug) set to true.

7.1.2 Production Configuration Files

To change the defaults of the configuration INI file that should be used when deploying the application, edit the
config/deployment.ini_tmpl file. This is the file that will be used as a template during deployment, so that
the person handling deployment has a starting point of the minimum options the application needs set.

50 Chapter 7. Configuration

http://pythonpaste.org/deploy/

Pylons Reference Documentation, Release 1.0.2

One of the most important options set in the deployment ini is the debug = true setting. The email options should
be setup so that errors can be e-mailed to the appropriate developers or webmaster in the event of an application error.

Generating the Production Configuration

To generate the production.ini file from the projects’ config/deployment.ini_tmpl it must first be installed
either as an egg or under development mode. Assuming the name of the Pylons application is helloworld, run:

$ paster make-config helloworld production.ini

Note: This command will also work from inside the project when its being developed.

It is the responsibility of the developer to ensure that a sensible set of default configuration values exist when the
webmaster uses the paster make-config command.

Warning: Always make sure that the debug is set to false when deploying a Pylons application.

7.2 Environment

The config/environment.py module sets up the basic Pylons environment variables needed to run the ap-
plication. Objects that should be setup once for the entire application should either be setup here, or in the lib/
app_globals __init__() method.

It also calls the URL Configuration function to setup how the URL’s will be matched up to Controllers, creates the
app_globals object, configures which module will be referred to as h, and is where the template engine is setup.

When using SQLAlchemy it’s recommended that the SQLAlchemy engine be setup in this module. The de-
fault SQLAlchemy configuration that Pylons comes with creates the engine here which is then used in model/
__init__.py.

7.3 URL Configuration

A Python library called Routes handles mapping URLs to controllers and their methods, or their action as Routes
refers to them. By default, Pylons sets up the following routes (found in config/routing.py):

map.connect('/{controller}/{action}')
map.connect('/{controller}/{action}/{id}')

Changed in version 0.9.7: Prior to Routes 1.9, all map.connect statements required variable parts to begin with a
: like map.connect(':controller/:action'). This syntax is now optional, and the new {} syntax is
recommended.

Any part of the path inside the curly braces is a variable (a variable part) that will match any text in the URL for that
‘part’. A ‘part’ of the URL is the text between two forward slashes. Every part of the URL must be present for the
route to match, otherwise a 404 will be returned.

The routes above are translated by the Routes library into regular expressions for high performance URL matching. By
default, all the variable parts (except for the special case of {controller}) become a matching regular expression
of [^/]+ to match anything except for a forward slash. This can be changed easily, for example to have the {id}
only match digits:

7.2. Environment 51

Pylons Reference Documentation, Release 1.0.2

map.connect('/{controller}/{action}/{id:\d+}')

If the desired regular expression includes the {}, then it should be specified separately for the variable part. To limit
the {id} to only match at least 2-4 digits:

map.connect('/{controller}/{action}/{id}', requirements=dict(id='\d{2,4}'))

The controller and action can also be specified as keyword arguments so that they don’t need to be included in the
URL:

Archives by 2 digit year -> /archives/08
map.connect('/archives/{year:\d\d}', controller='articles', action='archives')

Any variable part, or keyword argument in the map.connect statement will be available for use in the action used.
For the route above, which resolves to the articles controller:

class ArticlesController(BaseController):

def archives(self, year):
...

The part of the URL that matched as the year is available by name in the function argument.

Note: Routes also includes the ability to attempt to ‘minimize’ the URL. This behavior is generally not intuitive, and
starting in Pylons 0.9.7 is turned off by default with the map.minimization=False setting.

The default mapping can match to any controller and any of their actions which means the following URLs will match:

/hello/index >> controller: hello, action: index
/entry/view/4 >> controller: entry, action: view, id:4
/comment/edit/2 >> controller: comment, action: edit, id:2

This simple scheme can be suitable for even large applications when complex URL’s aren’t needed.

Controllers can be organized into directories as well. For example, if the admins should have a separate comments
controller:

$ paster controller admin/comments

Will create the admin directory along with the appropriate comments controller under it. To get to the comments
controller:

/admin/comments/index >> controller: admin/comments, action: index

Note: The {controller} match is special, in that it doesn’t always stop at the next forward slash (/). As the
example above demonstrates, it is able to match controllers nested under a directory should they exist.

7.3.1 Adding a route to match /

The controller and action can be specified directly in the map.connect() statement, as well as the raw URL to be
matched:

52 Chapter 7. Configuration

Pylons Reference Documentation, Release 1.0.2

map.connect('/', controller='main', action='index')

results in / being handled by the index method of the main controller.

Note: By default, projects’ static files (in the public/ directory) are served in preference to controllers. New Pylons
projects include a welcome page (public/index.html) that shows up at the / url. You’ll want to remove this file
before mapping a route there.

7.3.2 Generating URLs

URLs are generated via the callable routes.util.URLGenerator object. Pylons provides an instance of this
special object at pylons.url. It accepts keyword arguments indicating the desired controller, action and additional
variables defined in a route.

generates /content/view/2
url(controller='content', action='view', id=2)

To generate the URL of the matched route of the current request, call routes.util.URLGenerator.
current():

Generates /content/view/3 during a request for /content/view/3
url.current()

routes.util.URLGenerator.current() also accepts the same arguments as url(). This uses Routes mem-
ory to generate a small change to the current URL without the need to specify all the relevant arguments:

Generates /content/view/2 during a request for /content/view/3
url.current(id=2)

See also:

Routes manual Full details and source code.

7.4 Middleware

A projects WSGI stack should be setup in the config/middleware.py module. Ideally this file should import
middleware it needs, and set it up in the make_app function.

The default stack that is setup for a Pylons application is described in detail in WSGI Middleware.

Default middleware stack:

The Pylons WSGI app
app = PylonsApp()

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)

if asbool(full_stack):

7.4. Middleware 53

http://routes.groovie.org/manual.html#route-memory
http://routes.groovie.org/manual.html#route-memory
http://routes.groovie.org/manual.html

Pylons Reference Documentation, Release 1.0.2

Handle Python exceptions
app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

Display error documents for 401, 403, 404 status codes (and
500 when debug is disabled)
if asbool(config['debug']):

app = StatusCodeRedirect(app)
else:

app = StatusCodeRedirect(app, [400, 401, 403, 404, 500])

Establish the Registry for this application
app = RegistryManager(app)

if asbool(static_files):
Serve static files
static_app = StaticURLParser(config['pylons.paths']['static_files'])
app = Cascade([static_app, app])

return app

Since each piece of middleware wraps the one before it, the stack needs to be assembled in reverse order from the
order in which its called. That is, the very last middleware that wraps the WSGI Application, is the very first that will
be called by the server.

The last piece of middleware in the stack, called Cascade, is used to serve static content files during development.
For top performance, consider disabling the Cascade middleware via setting the static_files = false in the
configuration file. Then have the webserver or a CDN serve static files.

Warning: When unsure about whether or not to change the middleware, don’t. The order of the middleware is
important to the proper functioning of a Pylons application, and shouldn’t be altered unless needed.

7.4.1 Adding custom middleware

Custom middleware should be included in the config/middleware.py at comment marker:

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)

For example, to add a middleware component named MyMiddleware, include it in config/middleware.py:

The Pylons WSGI app
app = PylonsApp()

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)
app = MyMiddleware(app)

The app object is simply passed as a parameter to the MyMiddleware middleware which in turn should return a wrapped
WSGI application.

Care should be taken when deciding in which layer to place custom middleware. In most cases middleware should
be placed before the Pylons WSGI application and its supporting Routes/Session/Cache middlewares, however if the

54 Chapter 7. Configuration

Pylons Reference Documentation, Release 1.0.2

middleware should run after the CacheMiddleware:

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)

MyMiddleware can only see the cache object, nothing *above* here
app = MyMiddleware(app)

app = CacheMiddleware(app, config)

7.4.2 What is full_stack?

In the Pylons ini file {development.ini or production.ini} this block determines if the flag full_stack is
set to true or false:

[app:main]
use = egg:app_name
full_stack = true

The full_stack flag determines if the ErrorHandler and StatusCodeRedirect is included as a layer in the middleware
wrapping process. The only condition in which this option would be set to false is if multiple Pylons applications are
running and will be wrapped in the appropriate middleware elsewhere.

7.5 Application Setup

There are two kinds of ‘Application Setup’ that are occasionally referenced with regards to a project using Pylons.

• Setting up a new application

• Configuring project information and package dependencies

7.5.1 Setting Up a New Application

To make it easier to setup a new instance of a project, such as setting up the basic database schema, populating
necessary defaults, etc. a setup script can be created.

In a Pylons project, the setup script to be run is located in the projects’ websetup.py file. The default script loads
the projects configuration to make it easier to write application setup steps:

import logging

from helloworld.config.environment import load_environment

log = logging.getLogger(__name__)

def setup_app(command, conf, vars):
"""Place any commands to setup helloworld here"""
load_environment(conf.global_conf, conf.local_conf)

Note: If the project was configured during creation to use SQLAlchemy this file will include some commands to
setup the database connection to make it easier to setup database tables.

7.5. Application Setup 55

Pylons Reference Documentation, Release 1.0.2

To run the setup script using the development configuration:

$ paster setup-app development.ini

7.5.2 Configuring the Package

A newly created project with Pylons is a standard Python package. As a Python package, it has a setup.py file that
records meta-information about the package. Most of the options in it are fairly self-explanatory, the most important
being the ‘install_requires’ option:

install_requires=[
"Pylons>=0.9.7",

],

These lines indicate what packages are required for the proper functioning of the application, and should be updated
as needed. To re-parse the setup.py line for new dependencies:

$ python setup.py develop

In addition to updating the packages as needed so that the dependency requirements are made, this command will
ensure that this package is active in the system (without requiring the traditional python setup.py install).

See also:

Declaring Dependencies

56 Chapter 7. Configuration

http://peak.telecommunity.com/DevCenter/setuptools#declaring-dependencies

CHAPTER 8

Logging

8.1 Logging messages

As of Pylons 0.9.6, Pylons controllers (created via paster controller/restcontroller) and websetup.
py create their own Logger objects via Python’s logging module.

For example, in the helloworld project’s hello controller (helloworld/controllers/hello.py):

import logging

from pylons import request, response, session, tmpl_context as c, url
from pylons.controllers.util import abort, redirect

log = logging.getLogger(__name__)

class HelloController(BaseController):

def index(self):
...

Python’s special __name__ variable refers to the current module’s fully qualified name; in this case, helloworld.
controllers.hello.

To log messages, simply use methods available on that Logger object:

import logging

from pylons import request, response, session, tmpl_context as c, url
from pylons.controllers.util import abort, redirect

log = logging.getLogger(__name__)

class HelloController(BaseController):

def index(self):

57

http://docs.python.org/lib/module-logging.html

Pylons Reference Documentation, Release 1.0.2

content_type = 'text/plain'
content = 'Hello World!'

log.debug('Returning: %s (content-type: %s)', content, content_type)
response.content_type = content_type
return content

Which will result in the following printed to the console, on stderr:

16:20:20,440 DEBUG [helloworld.controllers.hello] Returning: Hello World!
(content-type: text/plain)

8.2 Basic Logging configuration

As of Pylons 0.9.6, the default ini files include a basic configuration for the logging module. Paste ini files use the
Python standard ConfigParser format; the same format used for the Python logging module’s Configuration file format.

paster, when loading an application via the paster serve, shell or setup-app commands, calls the log-
ging.fileConfig function on that specified ini file if it contains a ‘loggers’ entry. logging.fileConfig reads the
logging configuration from a ConfigParser file.

Logging configuration is provided in both the default development.ini and the production ini file (created via
paster make-config <package_name> <ini_file>). The production ini’s logging setup is a little sim-
pler than the development.ini’s, and is as follows:

Logging configuration
[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s] [%(threadName)s] %(message)s

One root Logger is created that logs only messages at a level above or equal to the INFO level to stderr, with the
following format:

2007-08-17 15:04:08,704 INFO [helloworld.controllers.hello] Loading resource, id: 86

For those familiar with the logging.basicConfig function, this configuration is equivalent to the code:

58 Chapter 8. Logging

http://docs.python.org/lib/module-ConfigParser.html
http://docs.python.org/lib/logging-config-fileformat.html
http://docs.python.org/lib/logging-config-api.html
http://docs.python.org/lib/logging-config-api.html

Pylons Reference Documentation, Release 1.0.2

logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)-5.5s [%(name)s] %(message)s')

The default development.ini’s logging section has a couple of differences: it uses a less verbose timestamp, and
defaults your application’s log messages to the DEBUG level (described in the next section).

Pylons and many other libraries (such as Beaker, SQLAlchemy, Paste) log a number of messages for debugging
purposes. Switching the root Logger level to DEBUG reveals them:

[logger_root]
#level = INFO
level = DEBUG
handlers = console

8.3 Filtering log messages

Often there’s too much log output to sift through, such as when switching the root Logger’s level to DEBUG.

An example: you’re diagnosing database connection issues in your application and only want to see SQLAlchemy’s
DEBUG messages in relation to database connection pooling. You can leave the root Logger’s level at the less verbose
INFO level and set that particular SQLAlchemy Logger to DEBUG on its own, apart from the root Logger:

[logger_sqlalchemy.pool]
level = DEBUG
handlers =
qualname = sqlalchemy.pool

then add it to the list of Loggers:

[loggers]
keys = root, sqlalchemy.pool

No Handlers need to be configured for this Logger as by default non root Loggers will propagate their log records up
to their parent Logger’s Handlers. The root Logger is the top level parent of all Loggers.

This technique is used in the default development.ini. The root Logger’s level is set to INFO, whereas the
application’s log level is set to DEBUG:

Logging configuration
[loggers]
keys = root, helloworld

[logger_helloworld]
level = DEBUG
handlers =
qualname = helloworld

All of the child Loggers of the helloworld Logger will inherit the DEBUG level unless they’re explicitly set differently.
Meaning the helloworld.controllers.hello, helloworld.websetup (and all your app’s modules’)
Loggers by default have an effective level of DEBUG too.

For more advanced filtering, the logging module provides a Filter object; however it cannot be used directly from the
configuration file.

8.3. Filtering log messages 59

http://docs.python.org/lib/node423.html

Pylons Reference Documentation, Release 1.0.2

8.4 Advanced Configuration

To capture log output to a separate file, use a FileHandler (or a RotatingFileHandler):

[handler_accesslog]
class = FileHandler
args = ('access.log','a')
level = INFO
formatter = generic

Before it’s recognized, it needs to be added to the list of Handlers:

[handlers]
keys = console, accesslog

and finally utilized by a Logger.

[logger_root]
level = INFO
handlers = console, accesslog

These final 3 lines of configuration directs all of the root Logger’s output to the access.log as well as the console; we’ll
want to disable this for the next section.

8.5 Request logging with Paste’s TransLogger

Paste provides the TransLogger middleware for logging requests using the Apache Combined Log Format. TransLog-
ger combined with a FileHandler can be used to create an access.log file similar to Apache’s.

Like any standard middleware with a Paste entry point, TransLogger can be configured to wrap your application in the
[app:main] section of the ini file:

filter-with = translogger

[filter:translogger]
use = egg:Paste#translogger
setup_console_handler = False

This is equivalent to wrapping your app in a TransLogger instance via the bottom of your project’s config/
middleware.py file:

from paste.translogger import TransLogger
app = TransLogger(app, setup_console_handler=False)
return app

TransLogger will automatically setup a logging Handler to the console when called with no arguments, so it ‘just
works’ in environments that don’t configure logging. Since we’ve configured our own logging Handlers, we need to
disable that option via setup_console_handler = False.

With the filter in place, TransLogger’s Logger (named the ‘wsgi’ Logger) will propagate its log messages to the parent
Logger (the root Logger), sending its output to the console when we request a page:

00:50:53,694 INFO [helloworld.controllers.hello] Returning: Hello World!
(content-type: text/plain)

00:50:53,695 INFO [wsgi] 192.168.1.111 - - [11/Aug/2007:20:09:33 -0700] "GET /hello

60 Chapter 8. Logging

http://docs.python.org/lib/node412.html
http://docs.python.org/lib/node413.html
http://pythonpaste.org/module-paste.translogger.html
http://httpd.apache.org/docs/2.2/logs.html#combined

Pylons Reference Documentation, Release 1.0.2

HTTP/1.1" 404 - "-"
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6) Gecko/20070725
Firefox/2.0.0.6"

To direct TransLogger to the access.log FileHandler defined above, we need to add that FileHandler to the wsgi
Logger’s list of Handlers:

Logging configuration
[loggers]
keys = root, wsgi

[logger_wsgi]
level = INFO
handlers = handler_accesslog
qualname = wsgi
propagate = 0

As mentioned above, non-root Loggers by default propagate their log Records to the root Logger’s Handlers (currently
the console Handler). Setting propagate to 0 (false) here disables this; so the wsgi Logger directs its records only
to the accesslog Handler.

Finally, there’s no need to use the generic Formatter with TransLogger as TransLogger itself provides all the
information we need. We’ll use a Formatter that passes-through the log messages as is:

[formatters]
keys = generic, accesslog

[formatter_accesslog]
format = %(message)s

Then wire this new accesslog Formatter into the FileHandler:

[handler_accesslog]
class = FileHandler
args = ('access.log','a')
level = INFO
formatter = accesslog

8.6 Logging to wsgi.errors

Pylons provides a custom logging Handler class, pylons.log.WSGIErrorsHandler, for logging output to
environ['wsgi.errors']: the WSGI server’s error stream (see the WSGI Spefification, PEP 333 for more
information). wsgi.errors can be useful to log to in certain situations, such as when deployed under Apache
mod_wsgi/mod_python, where the wsgi.errors stream is the Apache error log.

To configure logging of only ERROR (and CRITICAL) messages to wsgi.errors, add the following to the ini file:

[handlers]
keys = console, wsgierrors

[handler_wsgierrors]
class = pylons.log.WSGIErrorsHandler
args = ()

8.6. Logging to wsgi.errors 61

http://pylonshq.com/docs/class-pylons.log.WSGIErrorsHandler.html
http://www.python.org/dev/peps/pep-0333/

Pylons Reference Documentation, Release 1.0.2

level = ERROR
format = generic

then add the new Handler name to the list of Handlers used by the root Logger:

[logger_root]
level = INFO
handlers = console, wsgierrors

Warning: WSGIErrorsHandler does not receive log messages created during application startup. This is due
to the wsgi.errors stream only being available through the environ dictionary; which isn’t available until a
request is made.

8.6.1 Lumberjacking with log4j’s Chainsaw

Java’s log4j project provides the Java GUI application Chainsaw for viewing and managing log messages. Among
its features are the ability to filter log messages on the fly, and customizable color highlighting of log messages.

We can configure Python’s logging module to output to a format parsable by Chainsaw, log4j’s XMLLayout format.

To do so, we first need to install the Python XMLLayout package:

$ easy_install XMLLayout

It provides a log Formatter that generates XMLLayout XML. It also provides RawSocketHandler; like the log-
ging module’s SocketHandler, it sends log messages across the network, but does not pickle them.

The following is an example configuration for sending XMLLayout log messages across the network to Chainsaw, if
it were listening on localhost port 4448:

[handlers]
keys = console, chainsaw

[formatters]
keys = generic, xmllayout

[logger_root]
level = INFO
handlers = console, chainsaw

[handler_chainsaw]
class = xmllayout.RawSocketHandler
args = ('localhost', 4448)
level = NOTSET
formatter = xmllayout

[formatter_xmllayout]
class = xmllayout.XMLLayout

This configures any log messages handled by the root Logger to also be sent to Chainsaw. The default
development.ini configures the root Logger to the INFO level, however in the case of using Chainsaw, it is
preferable to configure the root Logger to NOTSET so all log messages are sent to Chainsaw. Instead, we can restrict
the console handler to the INFO level:

62 Chapter 8. Logging

http://logging.apache.org/log4j/docs/chainsaw.html
http://logging.apache.org/log4j/docs/api/org/apache/log4j/xml/XMLLayout.html
http://pypi.python.org/pypi/XMLLayout

Pylons Reference Documentation, Release 1.0.2

[logger_root]
level = NOTSET
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = INFO
formatter = generic

Chainsaw can be downloaded from its home page, but can also be launched directly from a Java-enabled browser via
the link: Chainsaw web start.

It can be configured from the GUI, but it also supports reading its configuration from a log4j.xml file.

The following log4j.xml file configures Chainsaw to listen on port 4448 for XMLLayout style log messages. It
also hides Chainsaw’s own logging messages under the WARN level, so only your app’s log messages are displayed:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration>
<configuration xmlns="http://logging.apache.org/">

<plugin name="XMLSocketReceiver" class="org.apache.log4j.net.XMLSocketReceiver">
<param name="decoder" value="org.apache.log4j.xml.XMLDecoder"/>
<param name="port" value="4448"/>

</plugin>

<logger name="org.apache.log4j">
<level value="warn"/>

</logger>

<root>
<level value="debug"/>

</root>

</configuration>

Chainsaw will prompt for a configuration file upon startup. The configuration can also be loaded later by clicking
File/Load Log4J File. . . . You should see an XMLSocketReceiver instance loaded in Chainsaw’s Receiver list, config-
ured at port 4448, ready to receive log messages.

Here’s how the Pylons stack’s log messages can look with colors defined (using Chainsaw on OS X):

8.6. Logging to wsgi.errors 63

http://logging.apache.org/log4j/docs/chainsaw.html
http://logging.apache.org/log4j/docs/webstart/chainsaw/chainsawWebStart.jnlp

Pylons Reference Documentation, Release 1.0.2

8.6.2 Alternate Logging Configuration style

Pylons’ default ini files include a basic configuration for Python’s logging module. Its format matches the standard
Python logging module’s config file format . If a more concise format is preferred, here is Max Ischenko’s demon-
stration of an alternative style to setup logging.

The following function is called at the application start up (e.g. Global ctor):

def setup_logging():
logfile = config['logfile']
if logfile == 'STDOUT': # special value, used for unit testing

logging.basicConfig(stream=sys.stdout, level=logging.DEBUG,
#format='%(name)s %(levelname)s %(message)s',
#format='%(asctime)s,%(msecs)d %(levelname)s %(message)s',
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S')

else:
logdir = os.path.dirname(os.path.abspath(logfile))
if not os.path.exists(logdir):

os.makedirs(logdir)
logging.basicConfig(filename=logfile, mode='at+',

level=logging.DEBUG,
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%Y-%b-%d %H:%M:%S')

64 Chapter 8. Logging

http://docs.python.org/lib/logging-config-fileformat.html

Pylons Reference Documentation, Release 1.0.2

setup_thirdparty_logging()

The setup_thirdparty_logging function searches through the certain keys of the application .ini file which specify
logging level for a particular logger (module).

def setup_thirdparty_logging():
for key in config:

if not key.endswith('logging'):
continue

value = config.get(key)
key = key.rstrip('.logging')
loglevel = logging.getLevelName(value)
log.info('Set %s logging for %s', logging.getLevelName(loglevel), key)
logging.getLogger(key).setLevel(loglevel)

Relevant section of the .ini file (example):

sqlalchemy.logging = WARNING
sqlalchemy.orm.unitofwork.logging = INFO
sqlalchemy.engine.logging = DEBUG
sqlalchemy.orm.logging = INFO
routes.logging = WARNING

This means that routes logger (and all sub-loggers such as routes.mapper) only passes through messages of at least
WARNING level; sqlalachemy defaults to WARNING level but some loggers are configured with more verbose level
to aid debugging.

8.6. Logging to wsgi.errors 65

Pylons Reference Documentation, Release 1.0.2

66 Chapter 8. Logging

CHAPTER 9

Helpers

Helpers are functions intended for usage in templates, to assist with common HTML and text manipulation, higher
level constructs like a HTML tag builder (that safely escapes variables), and advanced functionality like Pagination of
data sets.

The majority of the helpers available in Pylons are provided by the webhelpers package. Some of these helpers are
also used in controllers to prepare data for use in the template by other helpers, such as the secure_form_tag()
function which has a corresponding authenticate_form().

To make individual helpers available for use in templates under h, the appropriate functions need to be imported in
lib/helpers.py. All the functions available in this file are then available under h just like any other module
reference.

By customizing the lib/helpers.py module you can quickly add custom functions and classes for use in your
templates.

Helper functions are organized into modules by theme. All HTML generators are under the webhelpers_html
package, except for a few third-party modules which are directly under webhelpers. The webhelpers modules are
separately documented, see webhelpers.

9.1 Pagination

Note: The paginate module is not compatible to the deprecated pagination module that was provided with former
versions of the Webhelpers package.

9.1.1 Purpose of a paginator

When you display large amounts of data like a result from an SQL query then usually you cannot display all the results
on a single page. It would simply be too much. So you divide the data into smaller chunks. This is what a paginator
does. It shows one page of chunk of data at a time. Imagine you are providing a company phonebook through the web
and let the user search the entries. Assume the search result contains 23 entries. You may decide to display no more

67

Pylons Reference Documentation, Release 1.0.2

than 10 entries per page. The first page contains entries 1-10, the second 11-20 and the third 21-23. And you also
show a navigational element like Page 1 of 3: [1] 2 3 that allows the user to switch between the available
pages.

9.1.2 The Page class

The webhelpers package provides a paginate module that can be used for this purpose. It can create pages from
simple Python lists as well as SQLAlchemy queries and SQLAlchemy select objects. The module provides a Page
object that represents a single page of items from a larger result set. Such a Page mainly behaves like a list of items
on that page. Let’s take the above example of 23 items spread across 3 pages:

Create a list of items from 1 to 23
>>> items = range(1,24)

Import the paginate module
>>> import webhelpers.paginate

Create a Page object from the 'items' for the second page
>>> page2 = webhelpers.paginate.Page(items, page=2, items_per_page=10)

The Page object can be printed (__repr__) to show details on the page
>>> page2

Page:
Collection type: <type 'list'>
(Current) page: 2
First item: 11
Last item: 20
First page: 1
Last page: 3
Previous page: 1
Next page: 3
Items per page: 10
Number of items: 23
Number of pages: 3

Show the items on this page
>>> list(page2)

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Print the items in a for loop
>>> for i in page2: print "This is entry", i

This is entry 11
This is entry 12
This is entry 13
This is entry 14
This is entry 15
This is entry 16
This is entry 17
This is entry 18
This is entry 19
This is entry 20

There are further parameters to invoking a Page object. Please see webhelpers.paginate.Page

68 Chapter 9. Helpers

http://sluggo.scrapping.cc/python/WebHelpers/modules/paginate.html#webhelpers.paginate.Page

Pylons Reference Documentation, Release 1.0.2

Note: Page numbers and item numbers start from 1. If you are accessing the items on the page by their index please
note that the first item is item[1] instead of item[0].

9.1.3 Switching between pages using a pager

The user needs a way to get to another page. This is usually done with a list of links like Page 3 of 41 - 1 2
[3] 4 5 .. 41. Such a list can be created by the Page’s pager() method. Take the above example again:

>>> page2.pager()

1
2
3

Without the HTML tags it looks like 1 [2] 3. The links point to a URL where the respective page is found. And
the current page (2) is highlighted.

The appearance of a pager can be customized. By default the format string is ~2~ which means it shows adjacent
pages from the current page with a maximal radius of 2. In a larger set this would look like 1 .. 34 35 [36] 37
38 .. 176. The radius of 2 means that two pages before and after the current page 36 are shown.

Several special variables can be used in the format string. See pager() for a complete list. Some examples for a
pager of 20 pages while being on page 10 currently:

>>> page.pager()

1 .. 8 9 [10] 11 12 .. 20

>>> page.pager('~4~')

1 .. 6 7 8 9 [10] 11 12 13 14 .. 20

>>> page.pager('Page $page of $page_count - ~3~')

Page 10 of 20 - 1 .. 7 8 9 [10] 11 12 13 .. 20

>>> page.pager('$link_previous $link_next ~2~')

< > 1 .. 8 9 [10] 11 12 .. 20

>>> page.pager('Items $first_item - $last_item / ~2~')

Items 91 - 100 / 1 .. 8 9 [10] 11 12 .. 20

9.1.4 Paging over an SQLAlchemy query

If the data to page over comes from a database via SQLAlchemy then the paginate module can access a query
object directly. This is useful when using ORM-mapped models. Example:

>>> employee_query = Session.query(Employee)
>>> page2 = webhelpers.paginate.Page(

employee_query,
page=2,

9.1. Pagination 69

http://sluggo.scrapping.cc/python/WebHelpers/modules/paginate.html#webhelpers.paginate.Page.pager
http://sluggo.scrapping.cc/python/WebHelpers/modules/paginate.html#webhelpers.paginate.Page.pager

Pylons Reference Documentation, Release 1.0.2

items_per_page=10)
>>> for employee in page2: print employee.first_name

John
Jack
Joseph
Kay
Lars
Lynn
Pamela
Sandra
Thomas
Tim

The paginate module is smart enough to only query the database for the objects that are needed on this page. E.g. if
a page consists of the items 11-20 then SQLAlchemy will be asked to fetch exactly that 10 rows through LIMIT and
OFFSET in the actual SQL query. So you must not load the complete result set into memory and pass that. Instead
always pass a query when creating a Page.

9.1.5 Paging over an SQLAlchemy select

SQLAlchemy also allows to run arbitrary SELECTs on database tables. This is useful for non-ORM queries. paginate
can use such select objects, too. Example:

>>> selection = sqlalchemy.select([Employee.c.first_name])
>>> page2 = webhelpers.paginate.Page(

selection,
page=2,
items_per_page=10,
sqlalchemy_session=model.Session)

>>> for first_name in page2: print first_name

John
Jack
Joseph
Kay
Lars
Lynn
Pamela
Sandra
Thomas
Tim

The only difference to using SQLAlchemy query objects is that you need to pass an SQLAlchemy session via the
sqlalchemy_session parameter. A bare select does not have a database connection assigned. But the session
has.

9.1.6 Usage in a Pylons controller and template

A simple example to begin with.

Controller:

def list(self):
c.employees = webhelpers.paginate.Page(

70 Chapter 9. Helpers

Pylons Reference Documentation, Release 1.0.2

model.Session.query(model.Employee),
page = int(request.params['page']),
items_per_page = 5)

return render('/employees/list.mako')

Template:

${c.employees.pager('Page $page: $link_previous $link_next ~4~')}

% for employee in c.employees:

${employee.first_name} ${employee.last_name}
% endfor

The pager() creates links to the previous URL and just sets the page parameter appropriately. That’s why you need to
pass the requested page number (request.params['page']) when you create a Page.

9.1.7 Partial updates with AJAX

Updating a page partially is easy. All it takes is a little Javascript that - instead of loading the complete page - updates
just the part of the page containing the paginated items. The pager() method accepts an onclick parameter for
that purpose. This value is added as an onclick parameter to the A-HREF tags. So the href parameter points to
a URL that loads the complete page while the onclick parameter provides Javascript that loads a partial page. An
example (using the jQuery Javascript library for simplification) may help explain that.

Controller:

def list(self):
c.employees = webhelpers.paginate.Page(

model.Session.query(model.Employee),
page = int(request.params['page']),
items_per_page = 5)

if 'partial' in request.params:
Render the partial page
return render('/employees/list-partial.mako')

else:
Render the full page
return render('/employees/list-full.mako')

Template list-full.mako:

<html>
<head>

${webhelpers.html.tags.javascript_link('/public/jQuery.js')}
</head>
<body>

<div id="page-area">
<%include file="list-partial.mako"/>

</div>
</body>

</html>

Template list-partial.mako:

${c.employees.pager(
'Page $page: $link_previous $link_next ~4~',

9.1. Pagination 71

Pylons Reference Documentation, Release 1.0.2

onclick="$('#my-page-area').load('%s'); return false;")}

% for employee in c.employees:

${employee.first_name} ${employee.last_name}
% endfor

To avoid code duplication in the template the full template includes the partial template. If a partial page load
is requested then just the list-partial.mako gets rendered. And if a full page load is requested then the
list-full.mako is rendered which in turn includes the list-partial.mako.

The %s variable in the onclick string gets replaced with a URL pointing to the respective page with a partial=1
added (the name of the parameter can be customized through the partial_param parameter). Example:

• href parameter points to /employees/list?page=3

• onclick parameter contains Javascript loading /employees/list?page=3&partial=1

jQuery’s syntax to load a URL into a certain DOM object (e.g. a DIV) is simply:

$('#some-id').load('/the/url')

The advantage of this technique is that it degrades gracefully. If the user does not have Javascript enabled then a full
page is loaded. And if Javascript works then a partial load is done through the onclick action.

9.2 Secure Form Tag Helpers

For prevention of Cross-site request forgery (CSRF) attacks.

Generates form tags that include client-specific authorization tokens to be verified by the destined web app.

Authorization tokens are stored in the client’s session. The web app can then verify the request’s submitted authoriza-
tion token with the value in the client’s session.

This ensures the request came from the originating page. See the wikipedia entry for Cross-site request forgery for
more information.

Pylons provides an authenticate_form decorator that does this verification on the behalf of controllers.

These helpers depend on Pylons’ session object. Most of them can be easily ported to another framework by
changing the API calls.

The helpers are implemented in such a way that it should be easy for developers to create their own helpers if using
helpers for AJAX calls.

authentication_token() returns the current authentication token, creating one and storing it in the session if
it doesn’t already exist.

auth_token_hidden_field() creates a hidden field containing the authentication token.

secure_form() is form() plus auth_token_hidden_field().

72 Chapter 9. Helpers

http://en.wikipedia.org/wiki/Cross-site_request_forgery

CHAPTER 10

Forms

10.1 The basics

When a user submits a form on a website the data is submitted to the URL specified in the action attribute of the
<form> tag. The data can be submitted either via HTTP GET or POST as specified by the method attribute of the
<form> tag. If your form doesn’t specify an action, then it’s submitted to the current URL, generally you’ll want to
specify an action. When a file upload field such as <input type=”file” name=”file” /> is present, then the HTML
<form> tag must also specify enctype=”multipart/form-data” and method must be POST.

10.2 Getting Started

Add two actions that looks like this:

in the controller

def form(self):
return render('/form.mako')

def email(self):
return 'Your email is: %s' % request.params['email']

Add a new template called form.mako in the templates directory that contains the following:

<form name="test" method="GET" action="/hello/email">
Email Address: <input type="text" name="email" />
<input type="submit" name="submit" value="Submit" />
</form>

If the server is still running (see the Getting Started Guide) you can visit http://localhost:5000/hello/form and you
will see the form. Try entering the email address test@example.com and clicking Submit. The URL should change
to http://localhost:5000/hello/email?email=test%40example.com and you should see the text
Your email is test@example.com.

73

http://localhost:5000/hello/form

Pylons Reference Documentation, Release 1.0.2

In Pylons all form variables can be accessed from the request.params object which behaves like a dictionary.
The keys are the names of the fields in the form and the value is a string with all the characters entity decoded. For
example note how the @ character was converted by the browser to %40 in the URL and was converted back ready
for use in request.params.

Note: request and response are objects from the WebOb library. Full documentation on their attributes and methods
is here.

If you have two fields with the same name in the form then using the dictionary interface will return the first string.
You can get all the strings returned as a list by using the .getall() method. If you only expect one value and want to
enforce this you should use .getone() which raises an error if more than one value with the same name is submitted.

By default if a field is submitted without a value, the dictionary interface returns an empty string. This means that
using .get(key, default) on request.params will only return a default if the value was not present in the form.

10.2.1 POST vs GET and the Re-Submitted Data Problem

If you change the form.mako template so that the method is POST and you re-run the example you will see the same
message is displayed as before. However, the URL displayed in the browser is simply http://localhost:5000/hello/email
without the query string. The data is sent in the body of the request instead of the URL, but Pylons makes it available
in the same way as for GET requests through the use of request.params.

Note: If you are writing forms that contain password fields you should usually use POST to prevent the password
being visible to anyone who might be looking at the user’s screen.

When writing form-based applications you will occasionally find users will press refresh immediately after submitting
a form. This has the effect of repeating whatever actions were performed the first time the form was submitted but often
the user will expect that the current page be shown again. If your form was submitted with a POST, most browsers
will display a message to the user asking them if they wish to re-submit the data, this will not happen with a GET so
POST is preferable to GET in those circumstances.

Of course, the best way to solve this issue is to structure your code differently so:

in the controller

def form(self):
return render('/form.mako')

def email(self):
Code to perform some action based on the form data
...
redirect(url(controller='home', action='result'))

def result(self):
return 'Your data was successfully submitted'

In this case once the form is submitted the data is saved and an HTTP redirect occurs so that the browser redirects
to http://localhost:5000/hello/result. If the user then refreshes the page, it simply redisplays the message rather than
re-performing the action.

74 Chapter 10. Forms

http://pythonpaste.org/webob/
http://localhost:5000/hello/email
http://localhost:5000/hello/result

Pylons Reference Documentation, Release 1.0.2

10.3 Using the Helpers

Creating forms can also be done using WebHelpers, which comes with Pylons. Here is the same form created in the
previous section but this time using the helpers:

${h.form(h.url(action='email'), method='get')}
Email Address: ${h.text('email')}
${h.submit('Submit')}
${h.end_form()}

Before doing this you’ll have to import the helpers you want to use into your project’s lib/helpers.py file; then they’ll
be available under Pylons’ h global. Most projects will want to import at least these:

from webhelpers.html import escape, HTML, literal, url_escape
from webhelpers.html.tags import *

There are many other helpers for text formatting, container objects, statistics, and for dividing large query results into
pages. See the WebHelpers documentation to choose the helpers you’ll need.

10.4 File Uploads

File upload fields are created by using the file input field type. The file_field helper provides a shortcut for creating
these form fields:

${h.file_field('myfile')}

The HTML form must have its enctype attribute set to multipart/form-data to enable the browser to upload the file.
The form helper’s multipart keyword argument provides a shortcut for setting the appropriate enctype value:

${h.form(h.url(action='upload'), multipart=True)}
Upload file: ${h.file_field('myfile')}

File description: ${h.text_field('description')}

${h.submit('Submit')}
${h.end_form()}

When a file upload has succeeded, the request.POST (or request.params) MultiDict will contain a cgi.FieldStorage
object as the value of the field.

FieldStorage objects have three important attributes for file uploads:

filename The name of file uploaded as it appeared on the uploader’s filesystem.

file A file(-like) object from which the file’s data can be read: A python tempfile or a StringIO object.

value The content of the uploaded file, eagerly read directly from the file object.

The easiest way to gain access to the file’s data is via the value attribute: it returns the entire contents of the file as a
string:

def upload(self):
myfile = request.POST['myfile']
return 'Successfully uploaded: %s, size: %i, description: %s' % \

(myfile.filename, len(myfile.value), request.POST['description'])

However reading the entire contents of the file into memory is undesirable, especially for large file uploads. A common
means of handling file uploads is to store the file somewhere on the filesystem. The FieldStorage typically reads the

10.3. Using the Helpers 75

Pylons Reference Documentation, Release 1.0.2

file onto filesystem, however to a non permanent location, via a python tempfile object (though for very small uploads
it stores the file in a StringIO object instead).

Python tempfiles are secure file objects that are automatically destroyed when they are closed (including an implicit
close when the object is garbage collected). One of their security features is that their path cannot be determined: a
simple os.rename from the tempfile’s path isn’t possible. Alternatively, shutil.copyfileobj can perform an efficient copy
of the file’s data to a permanent location:

permanent_store = '/uploads/'

class Uploader(BaseController):
def upload(self):

myfile = request.POST['myfile']
permanent_file = open(os.path.join(permanent_store,

myfile.filename.lstrip(os.sep)),
'w')

shutil.copyfileobj(myfile.file, permanent_file)
myfile.file.close()
permanent_file.close()

return 'Successfully uploaded: %s, description: %s' % \
(myfile.filename, request.POST['description'])

Warning: The previous basic example allows any file uploader to overwrite any file in the permanent_store
directory that your web application has permissions to.

Also note the use of myfile.filename.lstrip(os.sep) here: without it, os.path.join is unsafe. os.path.join won’t join abso-
lute paths (beginning with os.sep), i.e. os.path.join(‘/uploads/’, ‘/uploaded_file.txt’) == ‘/uploaded_file.txt’. Always
check user submitted data to be used with os.path.join.

10.5 Validating user input with FormEncode

10.5.1 Validation the Quick Way

At the moment you could enter any value into the form and it would be displayed in the message, even if it wasn’t a
valid email address. In most cases this isn’t acceptable since the user’s input needs validating. The recommended tool
for validating forms in Pylons is FormEncode.

For each form you create you also create a validation schema. In our case this is fairly easy:

import formencode

class EmailForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
email = formencode.validators.Email(not_empty=True)

Note: We usually recommend keeping form schemas together so that you have a single place you can go to update
them. It’s also convenient for inheritance since you can make new form schemas that build on existing ones. If you put
your forms in a models/form.py file, you can easily use them throughout your controllers as model.form.EmailForm in

76 Chapter 10. Forms

http://www.formencode.org

Pylons Reference Documentation, Release 1.0.2

the case shown.

Our form actually has two fields, an email text field and a submit button. If extra fields are submitted FormEncode’s
default behavior is to consider the form invalid so we specify allow_extra_fields = True. Since we don’t want to use
the values of the extra fields we also specify filter_extra_fields = True. The final line specifies that the email field
should be validated with an Email() validator. In creating the validator we also specify not_empty=True so that the
email field will require input.

Pylons comes with an easy to use validate decorator, if you wish to use it import it in your lib/base.py like this:

other imports

from pylons.decorators import validate

Using it in your controller is pretty straight-forward:

in the controller

def form(self):
return render('/form.mako')

@validate(schema=EmailForm(), form='form')
def email(self):

return 'Your email is: %s' % self.form_result.get('email')

Validation only occurs on POST requests so we need to alter our form definition so that the method is a POST:

${h.form(h.url(action='email'), method='post')}

If validation is successful, the valid result dict will be saved as self.form_result so it can be used in the action. Other-
wise, the action will be re-run as if it was a GET request to the controller action specified in form, and the output will
be filled by FormEncode’s htmlfill to fill in the form field errors. For simple cases this is really handy because it also
avoids having to write code in your templates to display error messages if they are present.

This does exactly the same thing as the example above but works with the original form definition and in fact will
work with any HTML form regardless of how it is generated because the validate decorator uses formencode.htmlfill
to find HTML fields and replace them with the values were originally submitted.

Note: Python 2.3 doesn’t support decorators so rather than using the @validate() syntax you need to put email =
validate(schema=EmailForm(), form=’form’)(email) after the email function’s declaration.

10.5.2 Validation the Long Way

The validate decorator covers up a bit of work, and depending on your needs it’s possible you could need direct access
to FormEncode abilities it smoothes over.

Here’s the longer way to use the EmailForm schema:

in the controller

def email(self):
schema = EmailForm()
try:

form_result = schema.to_python(request.params)
except formencode.validators.Invalid, error:

10.5. Validating user input with FormEncode 77

Pylons Reference Documentation, Release 1.0.2

return 'Invalid: %s' % error
else:

return 'Your email is: %s' % form_result.get('email')

If the values entered are valid, the schema’s to_python() method returns a dictionary of the validated and coerced
form_result. This means that you can guarantee that the form_result dictionary contains values that are valid and
correct Python objects for the data types desired.

In this case the email address is a string so request.params[‘email’] happens to be the same as form_result[‘email’].
If our form contained a field for age in years and we had used a formencode.validators.Int() validator, the value in
form_result for the age would also be the correct type; in this case a Python integer.

FormEncode comes with a useful set of validators but you can also easily create your own. If you do create your own
validators you will find it very useful that all FormEncode schemas’ .to_python() methods take a second argument
named state. This means you can pass the Pylons c object into your validators so that you can set any variables that
your validators need in order to validate a particular field as an attribute of the c object. It can then be passed as the c
object to the schema as follows:

c.domain = 'example.com'
form_result = schema.to_python(request.params, c)

The schema passes c to each validator in turn so that you can do things like this:

class SimpleEmail(formencode.validators.Email):
def _to_python(self, value, c):

if not value.endswith(c.domain):
raise formencode.validators.Invalid(

'Email addresses must end in: %s' % \
c.domain, value, c)

return formencode.validators.Email._to_python(self, value, c)

For this to work, make sure to change the EmailForm schema you’ve defined to use the new SimpleEmail validator. In
other words,

email = formencode.validators.Email(not_empty=True)
becomes:
email = SimpleEmail(not_empty=True)

In reality the invalid error message we get if we don’t enter a valid email address isn’t very useful. We really want to
be able to redisplay the form with the value entered and the error message produced. Replace the line:

return 'Invalid: %s' % error

with the lines:

c.form_result = error.value
c.form_errors = error.error_dict or {}
return render('/form.mako')

Now we will need to make some tweaks to form.mako. Make it look like this:

${h.form(h.url(action='email'), method='get')}

% if c.form_errors:
<h2>Please correct the errors</h2>
% else:
<h2>Enter Email Address</h2>
% endif

78 Chapter 10. Forms

Pylons Reference Documentation, Release 1.0.2

% if c.form_errors:
Email Address: ${h.text_field('email', value=c.form_result['email'] or '')}
<p>${c.form_errors['email']}</p>
% else:
Email Address: ${h.text_field('email')}
% endif

${h.submit('Submit')}
${h.end_form()}

Now when the form is invalid the form.mako template is re-rendered with the error messages.

10.6 Other Form Tools

If you are going to be creating a lot of forms you may wish to consider using FormBuild to help create your forms. To
use it you create a custom Form object and use that object to build all your forms. You can then use the API to modify
all aspects of the generation and use of all forms built with your custom Form by modifying its definition without any
need to change the form templates.

Here is an one example of how you might use it in a controller to handle a form submission:

in the controller

def form(self):
results, errors, response = formbuild.handle(

schema=Schema(), # Your FormEncode schema for the form
to be validated

template='form.mako', # The template containg the code
that builds your form

form=Form # The FormBuild Form definition you wish to use
)
if response:

The form validation failed so re-display
the form with the auto-generted response
containing submitted values and errors or
do something with the errors
return response

else:
The form validated, do something useful with results.
...

Full documentation of all features is available in the FormBuild manual which you should read before looking at Using
FormBuild in Pylons

Looking forward it is likely Pylons will soon be able to use the TurboGears widgets system which will probably
become the recommended way to build forms in Pylons.

10.6. Other Form Tools 79

http://formbuild.org
http://formbuild.org/manual.html
http://formbuild.org/pylons.html
http://formbuild.org/pylons.html

Pylons Reference Documentation, Release 1.0.2

80 Chapter 10. Forms

CHAPTER 11

Internationalization and Localization

11.1 Introduction

Internationalization and localization are means of adapting software for non-native environments, especially for other
nations and cultures.

Parts of an application which might need to be localized might include:

• Language

• Date/time format

• Formatting of numbers e.g. decimal points, positioning of separators, character used as separator

• Time zones (UTC in internationalized environments)

• Currency

• Weights and measures

The distinction between internationalization and localization is subtle but important. Internationalization is the adap-
tation of products for potential use virtually everywhere, while localization is the addition of special features for use
in a specific locale.

For example, in terms of language used in software, internationalization is the process of marking up all strings that
might need to be translated whilst localization is the process of producing translations for a particular locale.

Pylons provides built-in support to enable you to internationalize language but leaves you to handle any other aspects
of internationalization which might be appropriate to your application.

Note: Internationalization is often abbreviated as I18N (or i18n or I18n) where the number 18 refers to the number
of letters omitted. Localization is often abbreviated L10n or l10n in the same manner. These abbreviations also avoid
picking one spelling (internationalisation vs. internationalization, etc.) over the other.

In order to represent characters from multiple languages, you will need to utilize Unicode. This document assumes
you have read the unicode.

81

Pylons Reference Documentation, Release 1.0.2

By now you should have a good idea of what Unicode is, how to use it in Python and which areas of you application
need to pay specific attention to decoding and encoding Unicode data.

This final section will look at the issue of making your application work with multiple languages.

Pylons uses the Python gettext module for internationalization. It is based off the GNU gettext API.

11.2 Getting Started

Everywhere in your code where you want strings to be available in different languages you wrap them in the _()
function. There are also a number of other translation functions which are documented in the API reference at http:
//pylonshq.com/docs/module-pylons.i18n.translation.html

Note: The _() function is a reference to the ugettext() function. _() is a convention for marking text to be
translated and saves on keystrokes. ugettext() is the Unicode version of gettext(); it returns unicode strings.

In our example we want the string 'Hello' to appear in three different languages: English, French and Spanish. We
also want to display the word 'Hello' in the default language. We’ll then go on to use some plural words too.

Lets call our project translate_demo:

$ paster create -t pylons translate_demo

Now lets add a friendly controller that says hello:

$ cd translate_demo
$ paster controller hello

Edit controllers/hello.py to make use of the _() function everywhere where the string Hello appears:

import logging

from pylons.i18n import get_lang, set_lang

from translate_demo.lib.base import *

log = logging.getLogger(__name__)

class HelloController(BaseController):

def index(self):
response.write('Default: %s
' % _('Hello'))
for lang in ['fr','en','es']:

set_lang(lang)
response.write("%s: %s
" % (get_lang(), _('Hello')))

When writing wrapping strings in the gettext functions, it is important not to piece sentences together manually; certain
languages might need to invert the grammars. Don’t do this:

BAD!
msg = _("He told her ")
msg += _("not to go outside.")

but this is perfectly acceptable:

82 Chapter 11. Internationalization and Localization

http://docs.python.org/lib/module-gettext.html
http://www.gnu.org/software/gettext/
http://pylonshq.com/docs/module-pylons.i18n.translation.html
http://pylonshq.com/docs/module-pylons.i18n.translation.html

Pylons Reference Documentation, Release 1.0.2

GOOD
msg = _("He told her not to go outside")

The controller has now been internationalized, but it will raise a LanguageError until we have setup the alternative
language catalogs.

GNU gettext use three types of files in the translation framework.

11.2.1 POT (Portable Object Template) files

The first step in the localization process. A program is used to search through your project’s source code and pick out
every string passed to one of the translation functions, such as _(). This list is put together in a specially-formatted
template file that will form the basis of all translations. This is the .pot file.

11.2.2 PO (Portable Object) files

The second step in the localization process. Using the POT file as a template, the list of messages are translated and
saved as a .po file.

11.2.3 MO (Machine Object) files

The final step in the localization process. The PO file is run through a program that turns it into an optimized machine-
readable binary file, which is the .mo file. Compiling the translations to machine code makes the localized program
much faster in retrieving the translations while it is running.

GNU gettext provides a suite of command line programs for extracting messages from source code and working with
the associated gettext catalogs. The Babel project provides pure Python alternative versions of these tools. Unlike the
GNU gettext tool xgettext, Babel supports extracting translatable strings from Python templating languages (currently
Mako and Genshi).

11.3 Using Babel

To use Babel, you must first install it via easy_install. Run the command:

$ easy_install Babel

Pylons (as of 0.9.6) includes some sane defaults for Babel’s distutils commands in the setup.cfg file.

It also includes an extraction method mapping in the setup.py file. It is commented out by default, to avoid distutils
warning about it being an unrecognized option when Babel is not installed. These lines should be uncommented before
proceeding with the rest of this walk through:

message_extractors = {'translate_demo': [
('**.py', 'python', None),
('templates/**.mako', 'mako', None),
('public/**', 'ignore', None)]},

11.3. Using Babel 83

http://babel.edgewall.org/

Pylons Reference Documentation, Release 1.0.2

We’ll use Babel to extract messages to a .pot file in your project’s i18n directory. First, the directory needs to be
created. Don’t forget to add it to your revision control system if one is in use:

$ cd translate_demo
$ mkdir translate_demo/i18n
$ svn add translate_demo/i18n

Next we can extract all messages from the project with the following command:

$ python setup.py extract_messages
running extract_messages
extracting messages from translate_demo/__init__.py
extracting messages from translate_demo/websetup.py
...
extracting messages from translate_demo/tests/functional/test_hello.py
writing PO template file to translate_demo/i18n/translate_demo.pot

This will create a .pot file in the i18n directory that looks something like this:

Translations template for translate_demo.
Copyright (C) 2007 ORGANIZATION
This file is distributed under the same license as the translate_demo project.
FIRST AUTHOR <EMAIL@ADDRESS>, 2007.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: translate_demo 0.0.0\n"
"Report-Msgid-Bugs-To: EMAIL@ADDRESS\n"
"POT-Creation-Date: 2007-08-02 18:01-0700\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 0.9dev-r215\n"

#: translate_demo/controllers/hello.py:10 translate_demo/controllers/hello.py:13
msgid "Hello"
msgstr ""

The .pot details that appear here can be customized via the extract_messages configuration in your project’s
setup.cfg (See the Babel Command-Line Interface Documentation for all configuration options).

Next, we’ll initialize a catalog (.po file) for the Spanish language:

$ python setup.py init_catalog -l es
running init_catalog
creating catalog 'translate_demo/i18n/es/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'

Then we can edit the last line of the new Spanish .po file to add a translation of "Hello":

msgid "Hello"
msgstr "¡Hola!"

Finally, to utilize these translations in our application, we need to compile the .po file to a .mo file:

84 Chapter 11. Internationalization and Localization

http://babel.edgewall.org/wiki/Documentation/cmdline.html#extract

Pylons Reference Documentation, Release 1.0.2

$ python setup.py compile_catalog
running compile_catalog
1 of 1 messages (100%) translated in 'translate_demo/i18n/es/LC_MESSAGES/translate_
→˓demo.po'
compiling catalog 'translate_demo/i18n/es/LC_MESSAGES/translate_demo.po' to
'translate_demo/i18n/es/LC_MESSAGES/translate_demo.mo'

We can also use the update_catalog command to merge new messages from the .pot to the .po files. For
example, if we later added the following line of code to the end of HelloController’s index method:

response.write('Goodbye: %s' % _('Goodbye'))

We’d then need to re-extract the messages from the project, then run the update_catalog command:

$ python setup.py extract_messages
running extract_messages
extracting messages from translate_demo/__init__.py
extracting messages from translate_demo/websetup.py
...
extracting messages from translate_demo/tests/functional/test_hello.py
writing PO template file to translate_demo/i18n/translate_demo.pot
$ python setup.py update_catalog
running update_catalog
updating catalog 'translate_demo/i18n/es/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'

We’d then edit our catalog to add a translation for “Goodbye”, and recompile the .po file as we did above.

For more information, see the Babel documentation and the GNU Gettext Manual.

11.4 Back To Work

Next we’ll need to repeat the process of creating a .mo file for the en and fr locales:

$ python setup.py init_catalog -l en
running init_catalog
creating catalog 'translate_demo/i18n/en/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'
$ python setup.py init_catalog -l fr
running init_catalog
creating catalog 'translate_demo/i18n/fr/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'

Modify the last line of the fr catalog to look like this:

#: translate_demo/controllers/hello.py:10 translate_demo/controllers/hello.py:13
msgid "Hello"
msgstr "Bonjour"

Since our original messages are already in English, the en catalog can stay blank; gettext will fallback to the original.

Once you’ve edited these new .po files and compiled them to .mo files, you’ll end up with an i18n directory
containing:

i18n/translate_demo.pot
i18n/en/LC_MESSAGES/translate_demo.po

11.4. Back To Work 85

http://babel.edgewall.org/wiki/Documentation/index.html
http://www.gnu.org/software/gettext/manual/gettext.html

Pylons Reference Documentation, Release 1.0.2

i18n/en/LC_MESSAGES/translate_demo.mo
i18n/es/LC_MESSAGES/translate_demo.po
i18n/es/LC_MESSAGES/translate_demo.mo
i18n/fr/LC_MESSAGES/translate_demo.po
i18n/fr/LC_MESSAGES/translate_demo.mo

11.5 Testing the Application

Start the server with the following command:

$ paster serve --reload development.ini

Test your controller by visiting http://localhost:5000/hello. You should see the following output:

Default: Hello
fr: Bonjour
en: Hello
es: ¡Hola!

You can now set the language used in a controller on the fly.

For example this could be used to allow a user to set which language they wanted your application to work in. You
could save the value to the session object:

session['lang'] = 'en'
session.save()

then on each controller call the language to be used could be read from the session and set in your controller’s
__before__() method so that the pages remained in the same language that was previously set:

def __before__(self):
if 'lang' in session:

set_lang(session['lang'])

Pylons also supports defining the default language to be used in the configuration file. Set a lang variable to the
desired default language in your development.ini file, and Pylons will automatically call set_lang with that
language at the beginning of every request.

E.g. to set the default language to Spanish, you would add lang = es to your development.ini:

[app:main]
use = egg:translate_demo
lang = es

If you are running the server with the --reload option the server will automatically restart if you change the
development.ini file. Otherwise restart the server manually and the output would this time be as follows:

Default: ¡Hola!
fr: Bonjour
en: Hello
es: ¡Hola!

86 Chapter 11. Internationalization and Localization

http://localhost:5000/hello

Pylons Reference Documentation, Release 1.0.2

11.6 Fallback Languages

If your code calls _() with a string that doesn’t exist at all in your language catalog, the string passed to _() is
returned instead.

Modify the last line of the hello controller to look like this:

response.write("%s %s, %s" % (_('Hello'), _('World'), _('Hi!')))

Warning: Of course, in real life breaking up sentences in this way is very dangerous because some grammars
might require the order of the words to be different.

If you run the example again the output will be:

Default: ¡Hola!
fr: Bonjour World!
en: Hello World!
es: ¡Hola! World!

This is because we never provided a translation for the string 'World!' so the string itself is used.

Pylons also provides a mechanism for fallback languages, so that you can specify other languages to be used if the
word is omitted from the main language’s catalog.

In this example we choose fr as the main language but es as a fallback:

import logging

from pylons.i18n import set_lang

from translate_demo.lib.base import *

log = logging.getLogger(__name__)

class HelloController(BaseController):

def index(self):
set_lang(['fr', 'es'])
return "%s %s, %s" % (_('Hello'), _('World'), _('Hi!'))

If Hello is in the fr .mo file as Bonjour, World is only in es as Mundo and none of the catalogs contain Hi!,
you’ll get the multilingual message: Bonjour Mundo, Hi!. This is a combination of the French, Spanish and
original (English in this case, as defined in our source code) words.

You can also add fallback languages after calling set_lang via the pylons.i18n.add_fallback function.
Translations will be tested in the order you add them.

Note: Fallbacks are reset after calling set_lang(lang) – that is, fallbacks are associated with the currently
selected language.

One case where using fallbacks in this way is particularly useful is when you wish to display content based on the
languages requested by the browser in the HTTP_ACCEPT_LANGUAGE header. Typically the browser may submit a
number of languages so it is useful to be add fallbacks in the order specified by the browser so that you always try to
display words in the language of preference and search the other languages in order if a translation cannot be found.

11.6. Fallback Languages 87

Pylons Reference Documentation, Release 1.0.2

The languages defined in the HTTP_ACCEPT_LANGUAGE header are available in Pylons as request.languages
and can be used like this:

for lang in request.languages:
add_fallback(lang)

11.7 Translations Within Templates

You can also use the _() function within templates in exactly the same way you do in code. For example, in a Mako
template:

${_('Hello')}

would produce the string 'Hello' in the language you had set.

Babel currently supports extracting gettext messages from Mako and Genshi templates. The Mako extractor also
provides support for translator comments. Babel can be extended to extract messages from other sources via a custom
extraction method plugin.

Pylons (as of 0.9.6) automatically configures a Babel extraction mapping for your Python source code and Mako
templates. This is defined in your project’s setup.py file:

message_extractors = {'translate_demo': [
('**.py', 'python', None),
('templates/**.mako', 'mako', None),
('public/**', 'ignore', None)]},

For a project using Genshi instead of Mako, the Mako line might be replaced with:

('templates/**.html, 'genshi', None),

See Babel’s documentation on Message Extraction for more information.

11.8 Lazy Translations

Occasionally you might come across a situation when you need to translate a string when it is accessed, not when the
_() or other functions are called.

Consider this example:

import logging

from pylons.i18n import get_lang, set_lang

from translate_demo.lib.base import *

log = logging.getLogger(__name__)

text = _('Hello')

class HelloController(BaseController):

def index(self):
response.write('Default: %s
' % _('Hello'))

88 Chapter 11. Internationalization and Localization

http://babel.edgewall.org/wiki/Documentation/messages.html#writing-extraction-methods
http://babel.edgewall.org/wiki/Documentation/messages.html#writing-extraction-methods
http://babel.edgewall.org/wiki/Documentation/messages.html#message-extraction

Pylons Reference Documentation, Release 1.0.2

for lang in ['fr','en','es']:
set_lang(lang)

response.write("%s: %s
" % (get_lang(), _('Hello')))
response.write('Text: %s
' % text)

If we run this we get the following output:

Default: Hello
['fr']: Bonjour
['en']: Good morning
['es']: Hola
Text: Hello

This is because the function _('Hello') just after the imports is called when the default language is en so the
variable text gets the value of the English translation even though when the string was used the default language was
Spanish.

The rule of thumb in these situations is to try to avoid using the translation functions in situations where they are not
executed on each request. For situations where this isn’t possible, perhaps because you are working with legacy code
or with a library which doesn’t support internationalization, you need to use lazy translations.

If we modify the above example so that the import statements and assignment to text look like this:

from pylons.i18n import get_lang, lazy_gettext, set_lang

from helloworld.lib.base import *

log = logging.getLogger(__name__)

text = lazy_gettext('Hello')

then we get the output we expected:

Default: Hello
['fr']: Bonjour
['en']: Good morning
['es']: Hola
Text: Hola

There are lazy versions of all the standard Pylons translation functions.

There is one drawback to be aware of when using the lazy translation functions: they are not actually strings. This
means that if our example had used the following code it would have failed with an error cannot concatenate
'str' and 'LazyString' objects:

response.write('Text: ' + text + '
')

For this reason you should only use the lazy translations where absolutely necessary and should always ensure they
are converted to strings by calling str() or repr() before they are used in operations with real strings.

11.9 Producing a Python Egg

Finally you can produce an egg of your project which includes the translation files like this:

$ python setup.py bdist_egg

11.9. Producing a Python Egg 89

http://pylonshq.com/docs/module-pylons.i18n.translation.html

Pylons Reference Documentation, Release 1.0.2

The setup.py automatically includes the .mo language catalogs your application needs so that your application can
be distributed as an egg. This is done with the following line in your setup.py file:

package_data={'translate_demo': ['i18n/*/LC_MESSAGES/*.mo']},

11.10 Plural Forms

Pylons also provides the ungettext() function. It’s designed for internationalizing plural words, and can be used
as follows:

ungettext('There is %(num)d file here', 'There are %(num)d files here',
n) % {'num': n}

Plural forms have a different type of entry in .pot/.po files, as described in The Format of PO Files in GNU Gettext’s
Manual:

#: translate_demo/controllers/hello.py:12
#, python-format
msgid "There is %(num)d file here"
msgid_plural "There are %(num)d files here"
msgstr[0] ""
msgstr[1] ""

One thing to keep in mind is that other languages don’t have the same plural forms as English. While English only has
2 plural forms, singular and plural, Slovenian has 4! That means that you must use ugettext for proper pluralization.
Specifically, the following will not work:

BAD!
if n == 1:

msg = _("There was no dog.")
else:

msg = _("There were no dogs.")

11.11 Summary

This document only covers the basics of internationalizing and localizing a web application.

GNU Gettext is an extensive library, and the GNU Gettext Manual is highly recommended for more information.

Babel also provides support for interfacing to the CLDR (Common Locale Data Repository), providing access to
various locale display names, localized number and date formatting, etc.

You should also be able to internationalize and then localize your application using Pylons’ support for GNU gettext.

11.12 Further Reading

http://en.wikipedia.org/wiki/Internationalization

Please feel free to report any mistakes to the Pylons mailing list or to the author. Any corrections or clarifications
would be gratefully received.

90 Chapter 11. Internationalization and Localization

http://www.gnu.org/software/gettext/manual/html_chapter/gettext_10.html#PO-Files
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://en.wikipedia.org/wiki/Internationalization

Pylons Reference Documentation, Release 1.0.2

Note: This is a work in progress. We hope the internationalization, localization and Unicode support in Pylons is now
robust and flexible but we would appreciate hearing about any issues we have. Just drop a line to the pylons-discuss
mailing list on Google Groups.

11.13 babel.core – Babel core classes

11.13.1 babel

Integrated collection of utilities that assist in internationalizing and localizing applications.

This package is basically composed of two major parts:

• tools to build and work with gettext message catalogs

• a Python interface to the CLDR (Common Locale Data Repository), providing access to various locale display
names, localized number and date formatting, etc.

copyright

3. 2013 by the Babel Team.

license BSD, see LICENSE for more details.

11.13.2 Module Contents

class babel.Locale(language, territory=None, script=None, variant=None)
Representation of a specific locale.

>>> locale = Locale('en', 'US')
>>> repr(locale)
"Locale('en', territory='US')"
>>> locale.display_name
u'English (United States)'

A Locale object can also be instantiated from a raw locale string:

>>> locale = Locale.parse('en-US', sep='-')
>>> repr(locale)
"Locale('en', territory='US')"

Locale objects provide access to a collection of locale data, such as territory and language names, number and
date format patterns, and more:

>>> locale.number_symbols['decimal']
u'.'

If a locale is requested for which no locale data is available, an UnknownLocaleError is raised:

>>> Locale.parse('en_XX')
Traceback (most recent call last):

...
UnknownLocaleError: unknown locale 'en_XX'

For more information see RFC 3066.

11.13. babel.core – Babel core classes 91

https://tools.ietf.org/html/rfc3066.html

Pylons Reference Documentation, Release 1.0.2

character_order
The text direction for the language.

>>> Locale('de', 'DE').character_order
'left-to-right'
>>> Locale('ar', 'SA').character_order
'right-to-left'

currencies
Mapping of currency codes to translated currency names. This only returns the generic form of the cur-
rency name, not the count specific one. If an actual number is requested use the babel.numbers.
get_currency_name() function.

>>> Locale('en').currencies['COP']
u'Colombian Peso'
>>> Locale('de', 'DE').currencies['COP']
u'Kolumbianischer Peso'

currency_formats
Locale patterns for currency number formatting.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').currency_formats['standard']
<NumberPattern u'\xa4#,##0.00'>
>>> Locale('en', 'US').currency_formats['accounting']
<NumberPattern u'\xa4#,##0.00;(\xa4#,##0.00)'>

currency_symbols
Mapping of currency codes to symbols.

>>> Locale('en', 'US').currency_symbols['USD']
u'$'
>>> Locale('es', 'CO').currency_symbols['USD']
u'US$'

date_formats
Locale patterns for date formatting.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').date_formats['short']
<DateTimePattern u'M/d/yy'>
>>> Locale('fr', 'FR').date_formats['long']
<DateTimePattern u'd MMMM y'>

datetime_formats
Locale patterns for datetime formatting.

Note: The format of the value returned may change between Babel versions.

92 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

>>> Locale('en').datetime_formats['full']
u"{1} 'at' {0}"
>>> Locale('th').datetime_formats['medium']
u'{1} {0}'

datetime_skeletons
Locale patterns for formatting parts of a datetime.

>>> Locale('en').datetime_skeletons['MEd']
<DateTimePattern u'E, M/d'>
>>> Locale('fr').datetime_skeletons['MEd']
<DateTimePattern u'E dd/MM'>
>>> Locale('fr').datetime_skeletons['H']
<DateTimePattern u"HH 'h'">

day_period_rules
Day period rules for the locale. Used by get_period_id.

day_periods
Locale display names for various day periods (not necessarily only AM/PM).

These are not meant to be used without the relevant day_period_rules.

days
Locale display names for weekdays.

>>> Locale('de', 'DE').days['format']['wide'][3]
u'Donnerstag'

decimal_formats
Locale patterns for decimal number formatting.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').decimal_formats[None]
<NumberPattern u'#,##0.###'>

classmethod default(category=None, aliases={’el’: ’el_GR’, ’fi’: ’fi_FI’, ’bg’: ’bg_BG’, ’uk’:
’uk_UA’, ’tr’: ’tr_TR’, ’ca’: ’ca_ES’, ’de’: ’de_DE’, ’fr’: ’fr_FR’, ’da’:
’da_DK’, ’fa’: ’fa_IR’, ’ar’: ’ar_SY’, ’mk’: ’mk_MK’, ’bs’: ’bs_BA’, ’cs’:
’cs_CZ’, ’et’: ’et_EE’, ’gl’: ’gl_ES’, ’id’: ’id_ID’, ’es’: ’es_ES’, ’he’:
’he_IL’, ’ru’: ’ru_RU’, ’nl’: ’nl_NL’, ’pt’: ’pt_PT’, ’nn’: ’nn_NO’, ’no’:
’nb_NO’, ’ko’: ’ko_KR’, ’sv’: ’sv_SE’, ’km’: ’km_KH’, ’ja’: ’ja_JP’,
’lv’: ’lv_LV’, ’lt’: ’lt_LT’, ’en’: ’en_US’, ’sk’: ’sk_SK’, ’th’: ’th_TH’,
’sl’: ’sl_SI’, ’it’: ’it_IT’, ’hu’: ’hu_HU’, ’ro’: ’ro_RO’, ’is’: ’is_IS’, ’pl’:
’pl_PL’})

Return the system default locale for the specified category.

>>> for name in ['LANGUAGE', 'LC_ALL', 'LC_CTYPE', 'LC_MESSAGES']:
... os.environ[name] = ''
>>> os.environ['LANG'] = 'fr_FR.UTF-8'
>>> Locale.default('LC_MESSAGES')
Locale('fr', territory='FR')

The following fallbacks to the variable are always considered:

• LANGUAGE

11.13. babel.core – Babel core classes 93

Pylons Reference Documentation, Release 1.0.2

• LC_ALL

• LC_CTYPE

• LANG

Parameters

• category – one of the LC_XXX environment variable names

• aliases – a dictionary of aliases for locale identifiers

display_name
The localized display name of the locale.

>>> Locale('en').display_name
u'English'
>>> Locale('en', 'US').display_name
u'English (United States)'
>>> Locale('sv').display_name
u'svenska'

Type unicode

english_name
The english display name of the locale.

>>> Locale('de').english_name
u'German'
>>> Locale('de', 'DE').english_name
u'German (Germany)'

Type unicode

eras
Locale display names for eras.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').eras['wide'][1]
u'Anno Domini'
>>> Locale('en', 'US').eras['abbreviated'][0]
u'BC'

first_week_day
The first day of a week, with 0 being Monday.

>>> Locale('de', 'DE').first_week_day
0
>>> Locale('en', 'US').first_week_day
6

get_display_name(locale=None)
Return the display name of the locale using the given locale.

The display name will include the language, territory, script, and variant, if those are specified.

94 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

>>> Locale('zh', 'CN', script='Hans').get_display_name('en')
u'Chinese (Simplified, China)'

Parameters locale – the locale to use

get_language_name(locale=None)
Return the language of this locale in the given locale.

>>> Locale('zh', 'CN', script='Hans').get_language_name('de')
u'Chinesisch'

New in version 1.0.

Parameters locale – the locale to use

get_script_name(locale=None)
Return the script name in the given locale.

get_territory_name(locale=None)
Return the territory name in the given locale.

interval_formats
Locale patterns for interval formatting.

Note: The format of the value returned may change between Babel versions.

How to format date intervals in Finnish when the day is the smallest changing component:

>>> Locale('fi_FI').interval_formats['MEd']['d']
[u'E d. \u2013 ', u'E d.M.']

See also:

The primary API to use this data is babel.dates.format_interval().

Return type dict[str, dict[str, list[str]]]

language = None
the language code

language_name
The localized language name of the locale.

>>> Locale('en', 'US').language_name
u'English'

languages
Mapping of language codes to translated language names.

>>> Locale('de', 'DE').languages['ja']
u'Japanisch'

See ISO 639 for more information.

list_patterns
Patterns for generating lists

11.13. babel.core – Babel core classes 95

http://www.loc.gov/standards/iso639-2/

Pylons Reference Documentation, Release 1.0.2

Note: The format of the value returned may change between Babel versions.

>>> Locale('en').list_patterns['start']
u'{0}, {1}'
>>> Locale('en').list_patterns['end']
u'{0}, and {1}'
>>> Locale('en_GB').list_patterns['end']
u'{0} and {1}'

measurement_systems
Localized names for various measurement systems.

>>> Locale('fr', 'FR').measurement_systems['US']
u'am\xe9ricain'
>>> Locale('en', 'US').measurement_systems['US']
u'US'

meta_zones
Locale display names for meta time zones.

Meta time zones are basically groups of different Olson time zones that have the same GMT offset and
daylight savings time.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').meta_zones['Europe_Central']['long']['daylight']
u'Central European Summer Time'

New in version 0.9.

min_week_days
The minimum number of days in a week so that the week is counted as the first week of a year or month.

>>> Locale('de', 'DE').min_week_days
4

months
Locale display names for months.

>>> Locale('de', 'DE').months['format']['wide'][10]
u'Oktober'

classmethod negotiate(preferred, available, sep=’_’, aliases={’el’: ’el_GR’, ’fi’: ’fi_FI’, ’bg’:
’bg_BG’, ’uk’: ’uk_UA’, ’tr’: ’tr_TR’, ’ca’: ’ca_ES’, ’de’: ’de_DE’, ’fr’:
’fr_FR’, ’da’: ’da_DK’, ’fa’: ’fa_IR’, ’ar’: ’ar_SY’, ’mk’: ’mk_MK’,
’bs’: ’bs_BA’, ’cs’: ’cs_CZ’, ’et’: ’et_EE’, ’gl’: ’gl_ES’, ’id’: ’id_ID’,
’es’: ’es_ES’, ’he’: ’he_IL’, ’ru’: ’ru_RU’, ’nl’: ’nl_NL’, ’pt’: ’pt_PT’,
’nn’: ’nn_NO’, ’no’: ’nb_NO’, ’ko’: ’ko_KR’, ’sv’: ’sv_SE’, ’km’:
’km_KH’, ’ja’: ’ja_JP’, ’lv’: ’lv_LV’, ’lt’: ’lt_LT’, ’en’: ’en_US’, ’sk’:
’sk_SK’, ’th’: ’th_TH’, ’sl’: ’sl_SI’, ’it’: ’it_IT’, ’hu’: ’hu_HU’, ’ro’:
’ro_RO’, ’is’: ’is_IS’, ’pl’: ’pl_PL’})

Find the best match between available and requested locale strings.

96 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

>>> Locale.negotiate(['de_DE', 'en_US'], ['de_DE', 'de_AT'])
Locale('de', territory='DE')
>>> Locale.negotiate(['de_DE', 'en_US'], ['en', 'de'])
Locale('de')
>>> Locale.negotiate(['de_DE', 'de'], ['en_US'])

You can specify the character used in the locale identifiers to separate the differnet components. This
separator is applied to both lists. Also, case is ignored in the comparison:

>>> Locale.negotiate(['de-DE', 'de'], ['en-us', 'de-de'], sep='-')
Locale('de', territory='DE')

Parameters

• preferred – the list of locale identifers preferred by the user

• available – the list of locale identifiers available

• aliases – a dictionary of aliases for locale identifiers

number_symbols
Symbols used in number formatting.

Note: The format of the value returned may change between Babel versions.

>>> Locale('fr', 'FR').number_symbols['decimal']
u','

ordinal_form
Plural rules for the locale.

>>> Locale('en').ordinal_form(1)
'one'
>>> Locale('en').ordinal_form(2)
'two'
>>> Locale('en').ordinal_form(3)
'few'
>>> Locale('fr').ordinal_form(2)
'other'
>>> Locale('ru').ordinal_form(100)
'other'

classmethod parse(identifier, sep=’_’, resolve_likely_subtags=True)
Create a Locale instance for the given locale identifier.

>>> l = Locale.parse('de-DE', sep='-')
>>> l.display_name
u'Deutsch (Deutschland)'

If the identifier parameter is not a string, but actually a Locale object, that object is returned:

>>> Locale.parse(l)
Locale('de', territory='DE')

This also can perform resolving of likely subtags which it does by default. This is for instance useful to
figure out the most likely locale for a territory you can use 'und' as the language tag:

11.13. babel.core – Babel core classes 97

Pylons Reference Documentation, Release 1.0.2

>>> Locale.parse('und_AT')
Locale('de', territory='AT')

Parameters

• identifier – the locale identifier string

• sep – optional component separator

• resolve_likely_subtags – if this is specified then a locale will have its likely
subtag resolved if the locale otherwise does not exist. For instance zh_TW by itself is not a
locale that exists but Babel can automatically expand it to the full form of zh_hant_TW.
Note that this expansion is only taking place if no locale exists otherwise. For instance
there is a locale en that can exist by itself.

Raises

• ValueError – if the string does not appear to be a valid locale identifier

• UnknownLocaleError – if no locale data is available for the requested locale

percent_formats
Locale patterns for percent number formatting.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').percent_formats[None]
<NumberPattern u'#,##0%'>

periods
Locale display names for day periods (AM/PM).

>>> Locale('en', 'US').periods['am']
u'AM'

plural_form
Plural rules for the locale.

>>> Locale('en').plural_form(1)
'one'
>>> Locale('en').plural_form(0)
'other'
>>> Locale('fr').plural_form(0)
'one'
>>> Locale('ru').plural_form(100)
'many'

quarters
Locale display names for quarters.

>>> Locale('de', 'DE').quarters['format']['wide'][1]
u'1. Quartal'

scientific_formats
Locale patterns for scientific number formatting.

98 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').scientific_formats[None]
<NumberPattern u'#E0'>

script = None
the script code

script_name
The localized script name of the locale if available.

>>> Locale('sr', 'ME', script='Latn').script_name
u'latinica'

scripts
Mapping of script codes to translated script names.

>>> Locale('en', 'US').scripts['Hira']
u'Hiragana'

See ISO 15924 for more information.

territories
Mapping of script codes to translated script names.

>>> Locale('es', 'CO').territories['DE']
u'Alemania'

See ISO 3166 for more information.

territory = None
the territory (country or region) code

territory_name
The localized territory name of the locale if available.

>>> Locale('de', 'DE').territory_name
u'Deutschland'

text_direction
The text direction for the language in CSS short-hand form.

>>> Locale('de', 'DE').text_direction
'ltr'
>>> Locale('ar', 'SA').text_direction
'rtl'

time_formats
Locale patterns for time formatting.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').time_formats['short']
<DateTimePattern u'h:mm a'>

11.13. babel.core – Babel core classes 99

http://www.evertype.com/standards/iso15924/
http://www.iso.org/iso/en/prods-services/iso3166ma/

Pylons Reference Documentation, Release 1.0.2

>>> Locale('fr', 'FR').time_formats['long']
<DateTimePattern u'HH:mm:ss z'>

time_zones
Locale display names for time zones.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').time_zones['Europe/London']['long']['daylight']
u'British Summer Time'
>>> Locale('en', 'US').time_zones['America/St_Johns']['city']
u'St. John\u2019s'

unit_display_names
Display names for units of measurement.

See also:

You may want to use babel.units.get_unit_name() instead.

Note: The format of the value returned may change between Babel versions.

variant = None
the variant code

variants
Mapping of script codes to translated script names.

>>> Locale('de', 'DE').variants['1901']
u'Alte deutsche Rechtschreibung'

weekend_end
The day the weekend ends, with 0 being Monday.

>>> Locale('de', 'DE').weekend_end
6

weekend_start
The day the weekend starts, with 0 being Monday.

>>> Locale('de', 'DE').weekend_start
5

zone_formats
Patterns related to the formatting of time zones.

Note: The format of the value returned may change between Babel versions.

>>> Locale('en', 'US').zone_formats['fallback']
u'%(1)s (%(0)s)'
>>> Locale('pt', 'BR').zone_formats['region']
u'Hor\xe1rio %s'

100 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

New in version 0.9.

babel.default_locale(category=None, aliases={’el’: ’el_GR’, ’fi’: ’fi_FI’, ’bg’: ’bg_BG’, ’uk’:
’uk_UA’, ’tr’: ’tr_TR’, ’ca’: ’ca_ES’, ’de’: ’de_DE’, ’fr’: ’fr_FR’, ’da’:
’da_DK’, ’fa’: ’fa_IR’, ’ar’: ’ar_SY’, ’mk’: ’mk_MK’, ’bs’: ’bs_BA’, ’cs’:
’cs_CZ’, ’et’: ’et_EE’, ’gl’: ’gl_ES’, ’id’: ’id_ID’, ’es’: ’es_ES’, ’he’: ’he_IL’,
’ru’: ’ru_RU’, ’nl’: ’nl_NL’, ’pt’: ’pt_PT’, ’nn’: ’nn_NO’, ’no’: ’nb_NO’,
’ko’: ’ko_KR’, ’sv’: ’sv_SE’, ’km’: ’km_KH’, ’ja’: ’ja_JP’, ’lv’: ’lv_LV’, ’lt’:
’lt_LT’, ’en’: ’en_US’, ’sk’: ’sk_SK’, ’th’: ’th_TH’, ’sl’: ’sl_SI’, ’it’: ’it_IT’,
’hu’: ’hu_HU’, ’ro’: ’ro_RO’, ’is’: ’is_IS’, ’pl’: ’pl_PL’})

Returns the system default locale for a given category, based on environment variables.

>>> for name in ['LANGUAGE', 'LC_ALL', 'LC_CTYPE']:
... os.environ[name] = ''
>>> os.environ['LANG'] = 'fr_FR.UTF-8'
>>> default_locale('LC_MESSAGES')
'fr_FR'

The “C” or “POSIX” pseudo-locales are treated as aliases for the “en_US_POSIX” locale:

>>> os.environ['LC_MESSAGES'] = 'POSIX'
>>> default_locale('LC_MESSAGES')
'en_US_POSIX'

The following fallbacks to the variable are always considered:

• LANGUAGE

• LC_ALL

• LC_CTYPE

• LANG

Parameters

• category – one of the LC_XXX environment variable names

• aliases – a dictionary of aliases for locale identifiers

babel.negotiate_locale(preferred, available, sep=’_’, aliases={’el’: ’el_GR’, ’fi’: ’fi_FI’, ’bg’:
’bg_BG’, ’uk’: ’uk_UA’, ’tr’: ’tr_TR’, ’ca’: ’ca_ES’, ’de’: ’de_DE’, ’fr’:
’fr_FR’, ’da’: ’da_DK’, ’fa’: ’fa_IR’, ’ar’: ’ar_SY’, ’mk’: ’mk_MK’, ’bs’:
’bs_BA’, ’cs’: ’cs_CZ’, ’et’: ’et_EE’, ’gl’: ’gl_ES’, ’id’: ’id_ID’, ’es’:
’es_ES’, ’he’: ’he_IL’, ’ru’: ’ru_RU’, ’nl’: ’nl_NL’, ’pt’: ’pt_PT’, ’nn’:
’nn_NO’, ’no’: ’nb_NO’, ’ko’: ’ko_KR’, ’sv’: ’sv_SE’, ’km’: ’km_KH’,
’ja’: ’ja_JP’, ’lv’: ’lv_LV’, ’lt’: ’lt_LT’, ’en’: ’en_US’, ’sk’: ’sk_SK’, ’th’:
’th_TH’, ’sl’: ’sl_SI’, ’it’: ’it_IT’, ’hu’: ’hu_HU’, ’ro’: ’ro_RO’, ’is’: ’is_IS’,
’pl’: ’pl_PL’})

Find the best match between available and requested locale strings.

>>> negotiate_locale(['de_DE', 'en_US'], ['de_DE', 'de_AT'])
'de_DE'
>>> negotiate_locale(['de_DE', 'en_US'], ['en', 'de'])
'de'

Case is ignored by the algorithm, the result uses the case of the preferred locale identifier:

>>> negotiate_locale(['de_DE', 'en_US'], ['de_de', 'de_at'])
'de_DE'

11.13. babel.core – Babel core classes 101

Pylons Reference Documentation, Release 1.0.2

>>> negotiate_locale(['de_DE', 'en_US'], ['de_de', 'de_at'])
'de_DE'

By default, some web browsers unfortunately do not include the territory in the locale identifier for many lo-
cales, and some don’t even allow the user to easily add the territory. So while you may prefer using qualified
locale identifiers in your web-application, they would not normally match the language-only locale sent by such
browsers. To workaround that, this function uses a default mapping of commonly used langauge-only locale
identifiers to identifiers including the territory:

>>> negotiate_locale(['ja', 'en_US'], ['ja_JP', 'en_US'])
'ja_JP'

Some browsers even use an incorrect or outdated language code, such as “no” for Norwegian, where the correct
locale identifier would actually be “nb_NO” (Bokmål) or “nn_NO” (Nynorsk). The aliases are intended to take
care of such cases, too:

>>> negotiate_locale(['no', 'sv'], ['nb_NO', 'sv_SE'])
'nb_NO'

You can override this default mapping by passing a different aliases dictionary to this function, or you can
bypass the behavior althogher by setting the aliases parameter to None.

Parameters

• preferred – the list of locale strings preferred by the user

• available – the list of locale strings available

• sep – character that separates the different parts of the locale strings

• aliases – a dictionary of aliases for locale identifiers

babel.parse_locale(identifier, sep=’_’)
Parse a locale identifier into a tuple of the form (language, territory, script, variant).

>>> parse_locale('zh_CN')
('zh', 'CN', None, None)
>>> parse_locale('zh_Hans_CN')
('zh', 'CN', 'Hans', None)

The default component separator is “_”, but a different separator can be specified using the sep parameter:

>>> parse_locale('zh-CN', sep='-')
('zh', 'CN', None, None)

If the identifier cannot be parsed into a locale, a ValueError exception is raised:

>>> parse_locale('not_a_LOCALE_String')
Traceback (most recent call last):
...

ValueError: 'not_a_LOCALE_String' is not a valid locale identifier

Encoding information and locale modifiers are removed from the identifier:

>>> parse_locale('it_IT@euro')
('it', 'IT', None, None)
>>> parse_locale('en_US.UTF-8')
('en', 'US', None, None)

102 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

>>> parse_locale('de_DE.iso885915@euro')
('de', 'DE', None, None)

See RFC 4646 for more information.

Parameters

• identifier – the locale identifier string

• sep – character that separates the different components of the locale identifier

Raises ValueError – if the string does not appear to be a valid locale identifier

11.14 babel.localedata — Babel locale data

11.14.1 babel.localedata

Low-level locale data access.

note The Locale class, which uses this module under the hood, provides a more convenient interface for
accessing the locale data.

copyright

3. 2013 by the Babel Team.

license BSD, see LICENSE for more details.

babel.localedata.exists(name)
Check whether locale data is available for the given locale.

Returns True if it exists, False otherwise.

Parameters name – the locale identifier string

babel.localedata.exists(name)
Check whether locale data is available for the given locale.

Returns True if it exists, False otherwise.

Parameters name – the locale identifier string

11.15 babel.dates – Babel date classes

11.15.1 babel.dates

Locale dependent formatting and parsing of dates and times.

The default locale for the functions in this module is determined by the following environment variables, in that order:

• LC_TIME,

• LC_ALL, and

• LANG

copyright

3. 2013 by the Babel Team.

11.14. babel.localedata — Babel locale data 103

https://tools.ietf.org/html/rfc4646.html

Pylons Reference Documentation, Release 1.0.2

license BSD, see LICENSE for more details.

11.15.2 Module Contents

class babel.dates.DateTimeFormat(value, locale)

format_frac_seconds(num)
Return fractional seconds.

Rounds the time’s microseconds to the precision given by the number of digits passed in.

format_weekday(char=’E’, num=4)
Return weekday from parsed datetime according to format pattern.

>>> format = DateTimeFormat(date(2016, 2, 28), Locale.parse('en_US'))
>>> format.format_weekday()
u'Sunday'

‘E’: Day of week - Use one through three letters for the abbreviated day name, four for the full (wide) name,
five for the narrow name, or six for the short name.

>>> format.format_weekday('E',2)
u'Sun'

‘e’: Local day of week. Same as E except adds a numeric value that will depend on the local starting day of the
week, using one or two letters. For this example, Monday is the first day of the week.

>>> format.format_weekday('e',2)
'01'

‘c’: Stand-Alone local day of week - Use one letter for the local numeric value (same as ‘e’), three for the
abbreviated day name, four for the full (wide) name, five for the narrow name, or six for the short
name.

>>> format.format_weekday('c',1)
'1'

Parameters

• char – pattern format character (‘e’,’E’,’c’)

• num – count of format character

get_week_number(day_of_period, day_of_week=None)
Return the number of the week of a day within a period. This may be the week number in a year or the
week number in a month.

Usually this will return a value equal to or greater than 1, but if the first week of the period is so short that
it actually counts as the last week of the previous period, this function will return 0.

>>> format = DateTimeFormat(date(2006, 1, 8), Locale.parse('de_DE'))
>>> format.get_week_number(6)
1

104 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

>>> format = DateTimeFormat(date(2006, 1, 8), Locale.parse('en_US'))
>>> format.get_week_number(6)
2

Parameters

• day_of_period – the number of the day in the period (usually either the day of month
or the day of year)

• day_of_week – the week day; if ommitted, the week day of the current date is assumed

class babel.dates.DateTimePattern(pattern, format)

11.16 babel.numbers – Babel number classes

11.16.1 babel.numbers

Locale dependent formatting and parsing of numeric data.

The default locale for the functions in this module is determined by the following environment variables, in that order:

• LC_NUMERIC,

• LC_ALL, and

• LANG

copyright

3. 2013 by the Babel Team.

license BSD, see LICENSE for more details.

11.16.2 Module Contents

class babel.numbers.NumberFormatError
Exception raised when a string cannot be parsed into a number.

class babel.numbers.NumberPattern(pattern, prefix, suffix, grouping, int_prec, frac_prec,
exp_prec, exp_plus)

babel.numbers.format_number(number, locale=’en_US_POSIX’)
Return the given number formatted for a specific locale.

>>> format_number(1099, locale='en_US')
u'1,099'
>>> format_number(1099, locale='de_DE')
u'1.099'

Parameters

• number – the number to format

• locale – the Locale object or locale identifier

babel.numbers.format_decimal(number, format=None, locale=’en_US_POSIX’)
Return the given decimal number formatted for a specific locale.

11.16. babel.numbers – Babel number classes 105

Pylons Reference Documentation, Release 1.0.2

>>> format_decimal(1.2345, locale='en_US')
u'1.234'
>>> format_decimal(1.2346, locale='en_US')
u'1.235'
>>> format_decimal(-1.2346, locale='en_US')
u'-1.235'
>>> format_decimal(1.2345, locale='sv_SE')
u'1,234'
>>> format_decimal(1.2345, locale='de')
u'1,234'

The appropriate thousands grouping and the decimal separator are used for each locale:

>>> format_decimal(12345.5, locale='en_US')
u'12,345.5'

Parameters

• number – the number to format

• format –

• locale – the Locale object or locale identifier

babel.numbers.format_percent(number, format=None, locale=’en_US_POSIX’)
Return formatted percent value for a specific locale.

>>> format_percent(0.34, locale='en_US')
u'34%'
>>> format_percent(25.1234, locale='en_US')
u'2,512%'
>>> format_percent(25.1234, locale='sv_SE')
u'2\xa0512\xa0%'

The format pattern can also be specified explicitly:

>>> format_percent(25.1234, u'#,##0\u2030', locale='en_US')
u'25,123\u2030'

Parameters

• number – the percent number to format

• format –

• locale – the Locale object or locale identifier

babel.numbers.format_scientific(number, format=None, locale=’en_US_POSIX’)
Return value formatted in scientific notation for a specific locale.

>>> format_scientific(10000, locale='en_US')
u'1E4'

The format pattern can also be specified explicitly:

>>> format_scientific(1234567, u'##0E00', locale='en_US')
u'1.23E06'

106 Chapter 11. Internationalization and Localization

Pylons Reference Documentation, Release 1.0.2

Parameters

• number – the number to format

• format –

• locale – the Locale object or locale identifier

babel.numbers.parse_number(string, locale=’en_US_POSIX’)
Parse localized number string into an integer.

>>> parse_number('1,099', locale='en_US')
1099
>>> parse_number('1.099', locale='de_DE')
1099

When the given string cannot be parsed, an exception is raised:

>>> parse_number('1.099,98', locale='de')
Traceback (most recent call last):

...
NumberFormatError: '1.099,98' is not a valid number

Parameters

• string – the string to parse

• locale – the Locale object or locale identifier

Returns the parsed number

Raises NumberFormatError – if the string can not be converted to a number

babel.numbers.parse_decimal(string, locale=’en_US_POSIX’)
Parse localized decimal string into a decimal.

>>> parse_decimal('1,099.98', locale='en_US')
Decimal('1099.98')
>>> parse_decimal('1.099,98', locale='de')
Decimal('1099.98')

When the given string cannot be parsed, an exception is raised:

>>> parse_decimal('2,109,998', locale='de')
Traceback (most recent call last):

...
NumberFormatError: '2,109,998' is not a valid decimal number

Parameters

• string – the string to parse

• locale – the Locale object or locale identifier

Raises NumberFormatError – if the string can not be converted to a decimal number

11.16. babel.numbers – Babel number classes 107

Pylons Reference Documentation, Release 1.0.2

108 Chapter 11. Internationalization and Localization

CHAPTER 12

Sessions

12.1 Sessions

Pylons includes a session object: a session is a server-side, semi-permanent storage for data associated with a client.

The session object is provided by the Beaker library which also provides caching functionality as described in Caching.

12.2 The Session Object

The Pylons session object is available at pylons.session. Controller modules created via paster
controller/restcontroller import the session object by default.

The basic session API is simple, it implements a dict-like interface with a few additional methods. The following is
an example of using the session to store a token identifying if a client is logged in.

class LoginController(BaseController):

def authenicate(self):
name = request.POST['name']
password = request.POST['password']
user = Session.query(User).filter_by(name=name,

password=password).first()
if user:

msg = 'Successfully logged in as %s' % name
location = url('index')
session['logged_in'] = True
session.save()

else:
msg = 'Invalid username/password'
location = url('login')

flash(msg)
redirect(location)

109

http://beaker.groovie.org

Pylons Reference Documentation, Release 1.0.2

def logout(self):
Clear all values in the session associated with the client
session.clear()
session.save()

Subsequent requests can then determine if a client is logged in or not by checking the session:

if not session.get('logged_in'):
flash('Please login')
redirect(url('login'))

The session object acts lazily: it does not load the session data (from disk or whichever backend is used) until the data
is first accessed. This lazyness is facilitated via an intermediary beaker.session.SessionObject that wraps
the actual beaker.session.Session object. Furthermore the session will not write changes to its backend
without an explicit call to its beaker.session.Session.save() method (unless configured with the auto
option).

Session data is generally serialized for storage via the Python pickle module, so anything stored in the session must
be pickleable.

The lightweight SessionObject wrapper is created by the: beaker.middleware.SessionMiddleware WSGI
middleware. SessionMiddleware stores the wrapper in the WSGI environ where Pylons sets a reference to it from
pylons.session.

Sessions are associated with a client via a client-side cookie. The WSGI middleware is also responsible for sending
said cookie to the client.

12.3 Configuring the Session

The basic session defaults are:

• File based sessions (session data is stored on disk)

• Session cookies have no expiration date (cookies expire at the end of the browser session)

• Session cookie domain/path matches the current host/path

Pylons projects by default sets the following couple of session options via their .ini files. All Beaker specific session
options in the ini file are prefixed with beaker.session:

cache_dir = %(here)s/data
beaker.session.key = foo
beaker.session.secret = somesecret

cache_dir acts a base directory for both session and cache storage. Session data is stored in this location under a
sessions/ sub-directory.

session.key is the name attribute of the cookie sent to the browser. This defaults to your project’s name.

session.secret is the secret token used to hash the cookie data sent to the client. This should be a secret, ideally
randomly generated value on production environments. paster make-config will generate a random secret for
you when creating a production ini file.

12.3.1 Other Session Options

Some other commonly used session options are:

110 Chapter 12. Sessions

Pylons Reference Documentation, Release 1.0.2

• type The type of the back-end for storing session data. Beaker supports many different backends, see Beaker
Configuration Documentation for the choices. Defaults to ‘file’.

• cookie_domain The domain name to use for the session Cookie. For example, when using sub-domains, set
this to the parent domain name so that the cookie is valid for all sub-domains.

To enable pure Cookie-based Sessions and force the cookie domain to be valid for all sub-domains of ‘example.com’,
add the following to your Pylons ini file:

beaker.session.type = cookie
beaker.session.cookie_domain = .example.com

See the Beaker Configuration Documentation for an exhaustive list of Session options.

12.4 Storing SQLAlchemy mapped objects in Beaker sessions

Mapped objects from SQLAlchemy can be serialized into the beaker session, but care must be taken when retrieving
these objects back from the beaker session. They will not be associated with the SQLAlchemy Unit-of-Work Session,
however these objects can be reconciled via the SQLAlchemy Session’s merge method, as follows:

address = DBSession.query(Address).get(id)
session[id] = address
...
address = session.get(id)
address = DBSession.merge(address)

12.5 Custom and caching middleware

Care should be taken when deciding in which layer to place custom middleware. In most cases middleware should
be placed between the Pylons WSGI application instantiation and the Routes middleware; however, if the middleware
should run before the session object or routing is handled:

Routing/Session Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)

MyMiddleware can only see the cache object, nothing *above* here
app = MyMiddleware(app)

app = CacheMiddleware(app, config)

Some of the Pylons middleware layers such as the Session, Routes, and Cache middleware, only add objects to
the environ dict, or add HTTP headers to the response (the Session middleware for example adds the session cookie
header). Others, such as the Status Code Redirect, and the Error Handler may fully intercept the request
entirely, and change how its responded to.

12.6 Using Session in Internationalization

How to set the language used in a controller on the fly.

For example this could be used to allow a user to set which language they wanted your application to work in. Save
the value to the session object:

12.4. Storing SQLAlchemy mapped objects in Beaker sessions 111

http://beaker.groovie.org/configuration.html#session-options
http://beaker.groovie.org/configuration.html#session-options
http://beaker.groovie.org/sessions.html#cookie-based
http://beaker.groovie.org/configuration.html#session-options

Pylons Reference Documentation, Release 1.0.2

session['lang'] = 'en'
session.save()

then on each controller call the language to be used could be read from the session and set in the controller’s
__before__() method so that the pages remained in the same language that was previously set:

def __before__(self):
if 'lang' in session:

set_lang(session['lang'])

12.7 Using Session in Secure Forms

Authorization tokens are stored in the client’s session. The web app can then verify the request’s submitted authoriza-
tion token with the value in the client’s session.

This ensures the request came from the originating page. See the wikipedia entry for Cross-site request forgery for
more information.

Pylons provides an authenticate_form decorator that does this verification on the behalf of controllers.

These helpers depend on Pylons’ session object. Most of them can be easily ported to another framework by
changing the API calls.

12.8 Hacking the session for no cookies

(From a paste #441 baked by Ben Bangert)

Set the session to not use cookies in the dev.ini file

beaker.session.use_cookies = False

with this as the mode d’emploi in the controller action

from beaker.session import Session as BeakerSession

Get the actual session object through the global proxy
real_session = session._get_current_obj()

Duplicate the session init options to avoid screwing up other sessions in
other threads
params = real_session.__dict__['_params']

Now set the id param used to make a session to our session maker,
if id is None, a new id will be made automatically
params['id'] = find_id_func()
real_session.__dict__['_sess'] = BeakerSession({}, **params)

Now we can use the session as usual
session['fred'] = 42
session.save()

At the end, we need to see if the session was used and handle its id
if session.is_new:

112 Chapter 12. Sessions

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://pylonshq.com/pasties/441

Pylons Reference Documentation, Release 1.0.2

do something with session.id to make sure its around next time
pass

12.9 Using middleware (Beaker) with a composite app

How to allow called WSGI apps to share a common session management utility.

(From a paste #616 baked by Mark Luffel)

Here's an example of configuring multiple apps to use a common
middleware filter
The [app:home] section is a standard pylons app
The ``/servicebroker`` and ``/proxy`` apps both want to be able
to use the same session management

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 5000

[filter-app:main]
use = egg:Beaker#beaker_session
next = sessioned
beaker.session.key = my_project_key
beaker.session.secret = i_wear_two_layers_of_socks

[composite:sessioned]
use = egg:Paste#urlmap
/ = home
/servicebroker = servicebroker
/proxy = cross_domain_proxy

[app:servicebroker]
use = egg:Appcelerator#service_broker

[app:cross_domain_proxy]
use = egg:Appcelerator#cross_domain_proxy

[app:home]
use = egg:my_project
full_stack = true
cache_dir = %(here)s/data

12.9. Using middleware (Beaker) with a composite app 113

http://pylonshq.com/pasties/616

Pylons Reference Documentation, Release 1.0.2

114 Chapter 12. Sessions

CHAPTER 13

Caching

Inevitably, there will be occasions during applications development or deployment when some task is revealed to be
taking a significant amount of time to complete. When this occurs, the best way to speed things up is with caching.

Caching is enabled in Pylons using Beaker, the same package that provides session handling. Beaker supports a variety
of caching backends: in-memory, database, Google Datastore, filesystem, and memcached. Additional extensions are
available that support Tokyo Cabinet, Redis, Dynomite, and Ringo. Back-ends can be added with Beaker’s extension
system.

See also:

Beaker Extension Add-ons

13.1 Types of Caching

Pylons offers a variety of caching options depending on the granularity of caching desired. Fine-grained caching
down to specific sub-sections of a template, arbitrary Python functions, all the way up to entire controller actions and
browser-side full-page caching are available.

Available caching options (ordered by granularity, least to most specific):

• Browser-side - HTTP/1.1 supports the ETag caching system that allows the browser to use its own cache instead
of requiring regeneration of the entire page. ETag-based caching avoids repeated generation of content but if
the browser has never seen the page before, the page will still be generated. Therefore using ETag caching
in conjunction with one of the other types of caching listed here will achieve optimal throughput and avoid
unnecessary calls on resource-intensive operations.

• Controller Actions - A Pylons controller action can have its entire result cached, including response headers if
desired.

• Templates - The results of an entire rendered template can be cached using the 3 cache keyword
arguments to the render calls. These render commands can also be used inside templates.

• Arbitrary Functions - Any function can be independently cached using Beaker’s cache decorators. This allows
fine-grained caching of just the parts of the code that can be cached.

115

http://beaker.groovie.org
http://github.com/didip/beaker_extensions/tree/master

Pylons Reference Documentation, Release 1.0.2

• Template Fragments - Built-in caching options are available for both Mako and Myghty template engines.
They allow fine-grained caching of only certain sections of the template. This is also sometimes called fragment
caching since individual fragments of a page can be cached.

13.2 Namespaces and Keys

Beaker is used for caching arbitrary Python functions, template results, and in Mako for caching individual <def>
blocks. Browser-side caching does not utilize Beaker.

The two primary concepts to bear in mind when caching with Beaker are:

1. Caches have a namespace, this is to organize a cache such that variations of the same thing being cached are
associated under a single place.

2. Variations of something being cached, are keys which are under that namespace.

For example, if we want to cache a function, the function name along with a unique name for it would be considered
the namespace. The arguments it takes to differentiate the output to cache, are the keys.

An example of caching with the cache_region() decorator:

@cache_region('short_term', 'search_func')
def get_results(search_param):

do something to retrieve data
data = get_data(search_param)
return data

results = get_results('gophers')

In this example, the namespace will be the function name + module + ‘search_func’. Since a single module might have
multiple methods of the same name you wish to cache, the cache_region() decorator takes another argument in
addition to the region to use, which is added to the namespace.

The key in this example is the search_param value. For each value of it, a separate result will be cached.

See also:

Stephen Pierzchala’s Caching for Performance (stephen@pierzchala.com) Beaker Caching Docs

13.3 Configuring

Beaker’s cache options can be easily configured in the project’s INI file. Beaker’s configuration documentation ex-
plains how to setup the most common options.

The cache options specified will be used in the absence of more specific keyword arguments to individual cache
functions. Functions that support Cache Regions will use the settings for that region.

13.3.1 Cache Regions

Cache regions are named groupings of related options. For example, in many web applications, there might be a few
cache strategies used in a company, with short-term cached objects ending up in Memcached, and longer-term cached
objects stored in the filesystem or a database.

Using cache regions makes it easy to declare the cache strategies in one place, then use them throughout the application
by referencing the cache strategy name.

116 Chapter 13. Caching

http://www.makotemplates.org/
http://www.myghty.org/docs/cache.myt
http://beaker.groovie.org
http://www.makotemplates.org/
http://beaker.groovie.org
http://beaker.groovie.org
http://web.archive.org/web/20060424171425/http://www.webperformance.org/caching/caching_for_performance.pdf
mailto:stephen@pierzchala.com
http://beaker.groovie.org/caching.html
http://beaker.groovie.org
http://beaker.groovie.org/configuration.html

Pylons Reference Documentation, Release 1.0.2

Cache regions should be setup in the development.ini file, but can also be configured and passed directly into
the CacheManager instance that is created in the lib/app_globals.py file.

Example INI section for two cache regions (put these under your [app:main] section):

beaker.cache.regions = short_term, long_term
beaker.cache.short_term.type = ext:memcached
beaker.cache.short_term.url = 127.0.0.1:11211
beaker.cache.short_term.expire = 3600

beaker.cache.long_term.type = ext:database
beaker.cache.long_term.url = mysql://dbuser:dbpass@127.0.0.1/cache_db
beaker.cache.long_term.expire = 86400

This sets up two cache regions, short_term and long_term.

13.4 Browser-Side

Browser-side caching can utilize one of several methods. The entire page can have cache headers associated with it to
indicate to the browser that it should be cached. Or, using the ETag Cache header, a page can have more fine-grained
caching rules applied.

13.4.1 Cache Headers

Cache headers may be set directly on the Response object by setting the headers directly using the headers()
property, or by using the cache header helpers.

To ensure pages aren’t accidentally cached in dynamic web applications, Pylons default behavior sets the Pragma and
Cache-Control headers to no-cache. Before setting cache headers, these default values should be cleared.

Clearing the default no-cache response headers:

class SampleController(BaseController):
def index(self):

Clear the default cache headers
del response.headers['Cache-Control']
del response.headers['Pragma']

return render('/index.html)

Using the response cache helpers:

Set an action response to expires in 30 seconds
class SampleController(BaseController):

def index(self):
Clear the default cache headers
del response.headers['Cache-Control']
del response.headers['Pragma']

response.cache_expires(seconds=30)
return render('/index.html')

Set the cache-control to private with a max-age of 30 seconds
class SampleController(BaseController):

def index(self):
Clear the default cache headers

13.4. Browser-Side 117

Pylons Reference Documentation, Release 1.0.2

del response.headers['Cache-Control']
del response.headers['Pragma']

response.cache_control = {'max-age': 30, 'public': True}
return render('/index.html')

All of the values that can be passed to the cache_control property dict, also may be passed into the cache_expires
function call. It’s recommended that you use the cache_expires helper as it also sets the Last-Modified and Expires
headers to the second interval as well.

See also:

Cache Control Header RFC

13.4.2 E-Tag Caching

Caching via ETag involves sending the browser an ETag header so that it knows to save and possibly use a cached
copy of the page from its own cache, instead of requesting the application to send a fresh copy.

Because the ETag cache relies on sending headers to the browser, it works in a slightly different manner to the other
caching mechanisms.

The etag_cache() function will set the proper HTTP headers if the browser doesn’t yet have a copy of the page.
Otherwise, a 304 HTTP Exception will be thrown that is then caught by Paste middleware and turned into a proper
304 response to the browser. This will cause the browser to use its own locally-cached copy.

ETag-based caching requires a single key which is sent in the ETag HTTP header back to the browser. The RFC
specification for HTTP headers indicates that an ETag header merely needs to be a string. This value of this string
does not need to be unique for every URL as the browser itself determines whether to use its own copy, this decision
is based on the URL and the ETag key.

def my_action(self):
etag_cache('somekey')
return render('/show.myt', cache_expire=3600)

Or to change other aspects of the response:

def my_action(self):
etag_cache('somekey')
response.headers['content-type'] = 'text/plain'
return render('/show.myt')

The frequency with which an ETag cache key is changed will depend on the web application and the developer’s
assessment of how often the browser should be prompted to fetch a fresh copy of the page.

13.5 Controller Actions

The beaker_cache() decorator is for caching the results of a complete controller action.

Example:

from pylons.decorators.cache import beaker_cache

class SampleController(BaseController):

Cache this controller action forever (until the cache dir is

118 Chapter 13. Caching

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Pylons Reference Documentation, Release 1.0.2

cleaned)
@beaker_cache()
def home(self):

c.data = expensive_call()
return render('/home.myt')

Cache this controller action by its GET args for 10 mins to memory
@beaker_cache(expire=600, type='memory', query_args=True)
def show(self, id):

c.data = expensive_call(id)
return render('/show.myt')

By default the decorator uses a composite of all of the decorated function’s arguments as the cache key. It can
alternatively use a composite of the request.GET query args as the cache key when the query_args option is enabled.

The cache key can be further customized via the key argument.

Warning: By default, the beaker_cache() decorator will cache the entire response object. This means
the headers that were generated during the action will be cached as well. This can be disabled by providing
cache_response = False to the decorator.

13.6 Templates

All render commands have caching functionality built in. To use it, merely add the appropriate cache keyword to
the render call.

class SampleController(BaseController):
def index(self):

Cache the template for 10 mins
return render('/index.html', cache_expire=600)

def show(self, id):
Cache this version of the template for 3 mins
return render('/show.html', cache_key=id, cache_expire=180)

def feed(self):
Cache for 20 mins to memory
return render('/feed.html', cache_type='memory', cache_expire=1200)

def home(self, user):
Cache this version of a page forever (until the cache dir
is cleaned)
return render('/home.html', cache_key=user, cache_expire='never')

Note: At the moment, these functions do not support the use of cache region pre-defined argument sets.

13.7 Arbitrary Functions

Any Python function that returns a pickle-able result can be cached using Beaker. The recommended way to cache
functions is to use the cache_region() decorator. This decorator requires the Cache Regions to be configured.

13.6. Templates 119

http://beaker.groovie.org

Pylons Reference Documentation, Release 1.0.2

Using the cache_region() decorator:

@cache_region('short_term', 'search_func')
def get_results(search_param):

do something to retrieve data
data = get_data(search_param)
return data

results = get_results('gophers')

See also:

Beaker Caching Documentation

13.7.1 Invalidating

A cached function can be manually invalidated by using the region_invalidate() function.

Example:

region_invalidate(get_results, None, 'search_func', search_param)

13.8 Fragments

Individual template files, and <def> blocks within them can be independently cached. Since the caching system
utilizes Beaker, any available Beaker back-ends are present in Mako as well.

Example:

<%def name="mycomp" cached="True" cache_timeout="30" cache_type="memory">
other text

</%def>

See also:

Mako Caching Documentation

120 Chapter 13. Caching

http://beaker.groovie.org/caching.html
http://beaker.groovie.org
http://beaker.groovie.org
http://www.makotemplates.org/
http://www.makotemplates.org/docs/caching.html

CHAPTER 14

Unit and functional testing

14.1 Unit Testing with webtest

Pylons provides powerful unit testing capabilities for your web application utilizing webtest to emulate requests to
your web application. You can then ensure that the response was handled appropriately and that the controller set
things up properly.

To run the test suite for your web application, Pylons utilizes the nose test runner/discovery package. Running
nosetests in your project directory will run all the tests you create in the tests directory. If you don’t have nose
installed on your system, it can be installed via setuptools with:

$ easy_install -U nose

To avoid conflicts with your development setup, the tests use the test.ini configuration file when run. This means
you must configure any databases, etc. in your test.ini file or your tests will not be able to find the database
configuration.

Warning: Nose can trigger errors during its attempt to search for doc tests since it will try and import all your
modules one at a time before your app was loaded. This will cause files under models/ that rely on your app to be
running, to fail.

Pylons 0.9.6.1 and later includes a plugin for nose that loads the app before the doctests scan your modules, allowing
models to be doctested. You can use this option from the command line with nose:

nosetests --with-pylons=test.ini

Or by setting up a [nosetests] block in your setup.cfg:

[nosetests]
verbose=True
verbosity=2
with-pylons=test.ini

121

http://pythonpaste.org/webtest/
http://somethingaboutorange.com/mrl/projects/nose/

Pylons Reference Documentation, Release 1.0.2

detailed-errors=1
with-doctest=True

Then just run:

python setup.py nosetests

to run the tests.

14.2 Example: Testing a Controller

First let’s create a new project and controller for this example:

$ paster create -t pylons TestExample
$ cd TestExample
$ paster controller comments

You’ll see that it creates two files when you create a controller. The stub controller, and a test for it under
testexample/tests/functional/.

Modify the testexample/controllers/comments.py file so it looks like this:

from testexample.lib.base import *

class CommentsController(BaseController):

def index(self):
return 'Basic output'

def sess(self):
session['name'] = 'Joe Smith'
session.save()
return 'Saved a session'

Then write a basic set of tests to ensure that the controller actions are functioning properly, modify testexample/
tests/functional/test_comments.py to match the following:

from testexample.tests import *

class TestCommentsController(TestController):
def test_index(self):

response = self.app.get(url(controller='/comments'))
assert 'Basic output' in response

def test_sess(self):
response = self.app.get(url(controller='/comments', action='sess'))
assert response.session['name'] == 'Joe Smith'
assert 'Saved a session' in response

Run nosetests in your main project directory and you should see them all pass:

..
--
Ran 2 tests in 2.999s

OK

122 Chapter 14. Unit and functional testing

Pylons Reference Documentation, Release 1.0.2

Unfortunately, a plain assert does not provide detailed information about the results of an assertion should it fail, unless
you specify it a second argument. For example, add the following test to the test_sess function:

assert response.session.has_key('address') == True

When you run nosetests you will get the following, not-very-helpful result:

.F
==
FAIL: test_sess (testexample.tests.functional.test_comments.TestCommentsController)
--
Traceback (most recent call last):
File "~/TestExample/testexample/tests/functional/test_comments.py", line 12, in test_
→˓sess
assert response.session.has_key('address') == True
AssertionError:

--
Ran 2 tests in 1.417s

FAILED (failures=1)

You can augment this result by doing the following:

assert response.session.has_key('address') == True, "address not found in session"

Which results in:

.F
==
FAIL: test_sess (testexample.tests.functional.test_comments.TestCommentsController)
--
Traceback (most recent call last):
File "~/TestExample/testexample/tests/functional/test_comments.py", line 12, in test_
→˓sess
assert response.session.has_key('address') == True
AssertionError: address not found in session

--
Ran 2 tests in 1.417s

FAILED (failures=1)

But detailing every assert statement could be time consuming. Our TestController subclasses the standard Python
unittest.TestCase class, so we can use utilize its helper methods, such as assertEqual, that can automati-
cally provide a more detailed AssertionError. The new test line looks like this:

self.assertEqual(response.session.has_key('address'), True)

Which provides the more useful failure message:

.F
==
FAIL: test_sess (testexample.tests.functional.test_comments.TestCommentsController)
--
Traceback (most recent call last):

14.2. Example: Testing a Controller 123

Pylons Reference Documentation, Release 1.0.2

File "~/TestExample/testexample/tests/functional/test_comments.py", line 12, in test_
→˓sess
self.assertEqual(response.session.has_key('address'), True)
AssertionError: False != True

14.3 Testing Pylons Objects

Pylons will provide several additional attributes for the webtest webtest.TestResponse object that let you
access various objects that were created during the web request:

config The configured Pylons applications.

session Session object

req Request object

tmpl_context Object containing variables passed to templates

app_globals Globals object

To use them, merely access the attributes of the response after you’ve used a get/post command:

response = app.get('/some/url')
assert response.session['var'] == 4
assert 'REQUEST_METHOD' in response.req.environ

Note: The response object already has a TestRequest object assigned to it, therefore Pylons assigns its request
object to the response as req.

14.3.1 Accessing Special Globals

Sometimes, you might wish to modify or check a global Pylons variable such as app_globals before running the rest
of your unit tests. The non-request specific variables are available from a special URL that will respond only in unit
testing situations.

For example, to get the app_globals object without sending a request to your actual applications:

response = app.get('/_test_vars')
app_globals = response.app_globals

14.4 Testing Your Own Objects

WebTest’s fixture testing allows you to designate your own objects that you’d like to access in your tests. This
powerful functionality makes it easy to test the value of objects that are normally only retained for the duration of a
single request.

Before making objects available for testing, its useful to know when your application is being tested. WebTest will
provide an environ variable called paste.testing that you can test for the presence and truth of so that your
application only populates the testing objects when it has to.

Populating the webtest response object with your objects is done by adding them to the environ dict under the key
paste.testing_variables. Pylons creates this dict before calling your application, so testing for its existence

124 Chapter 14. Unit and functional testing

Pylons Reference Documentation, Release 1.0.2

and adding new values to it is recommended. All variables assigned to the paste.testing_variables dict will
be available on the response object with the key being the attribute name.

Note: WebTest is an extracted stand-alone version of a Paste component called paste.fixture. For backwards compat-
ibility, WebTest continues to honor the paste.testing_variables key in the environ.

Example:

testexample/lib/base.py

from pylons import request
from pylons.controllers import WSGIController
from pylons.templating import render_mako as render

class BaseController(WSGIController):
def __call__(self, environ, start_response):

Create a custom email object
email = MyCustomEmailObj()
email.name = 'Fred Smith'
if 'paste.testing_variables' in request.environ:

request.environ['paste.testing_variables']['email'] = email
return WSGIController.__call__(self, environ, start_response)

testexample/tests/functional/test_controller.py
from testexample.tests import *

class TestCommentsController(TestController):
def test_index(self):

response = self.app.get(url(controller='/'))
assert response.email.name == 'Fred Smith'

See also:

WebTest Documentation Documentation covering webtest and its usage

WebTest Module docs Module API reference for methods available for use when testing the application

14.5 Unit Testing

XXX: Describe unit testing an applications models, libraries

14.6 Functional Testing

XXX: Describe functional/integrated testing, WebTest

14.5. Unit Testing 125

http://pythonpaste.org/webtest/

Pylons Reference Documentation, Release 1.0.2

126 Chapter 14. Unit and functional testing

CHAPTER 15

Errors, Troubleshooting, and Debugging

When a web application has an error in production, a few different options for handling it are available. Pylons comes
with error handlers to allow the following options:

• E-mail the traceback as HTML to the administrators

• Show the Interactive Debugging interface to the developer

• Programmatically handle the error in another controller

• Display a plain error on the web page

Some of these options can be combined by enabling or disabling the appropriate middleware.

15.1 Error Middleware

In a new Pylons project, the error handling middleware is configured in the projects config/middleware.py:

Excerpt of applicable section

if asbool(full_stack):
Handle Python exceptions
app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

Display error documents for 401, 403, 404 status codes (and
500 when debug is disabled)
if asbool(config['debug']):

app = StatusCodeRedirect(app)
else:

app = StatusCodeRedirect(app, [400, 401, 403, 404, 500])

The first middleware configured, ErrorHandler(), actually configures one of two WebError middlewares de-
pending on whether the project is in debug mode or not. If it is in debug mode, then the Interactive Debugging is
enabled, otherwise, the e-mail error handling will be used.

127

Pylons Reference Documentation, Release 1.0.2

The second middleware configured is the StatusCodeRedirect middleware. This middleware watches the re-
quest, and if the application returns a response containing one of the status code’s listed, it will call back into the
application to the error controller, and use that output instead.

None of these are required for a Pylons project to run, and commenting them all out results in the plain text of the
error to display on the web page.

Warning: If no middleware at all is used, the error will appear on the screen in its entirety, including full traceback
output.

15.1.1 Recommended Configurations

• For plain-text output or errors and non-200 status codes, comment out the StatusCodeRedirect. Trace-
backs will be e-mailed to you in production, and the Interactive Debugging will be used during development.

• For programmatic error and non-200 status code handling, keep the stack as-is.

• To not have tracebacks e-mailed, remove only the ErrorHandler() middleware. This will also disable
Interactive Debugging however. To retain Interactive Debugging but disable traceback e-mails:

if asbool(config['debug']):
app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

Note: To only capture specific non-200 status codes, the StatusCodeRedirect middleware can be passed a
list of the codes that it should intercept and redirect to the error controller. When in non-debug mode, it captures the
400-404, and 500 status codes. Altering the list will capture more or less types of requests as desired.

15.1.2 Avoiding Displaying Tracebacks

When disabling the ErrorHandler() middleware, a replacement middleware should be created and used that cap-
tures exceptions and changes them into a normal WSGI response, otherwise the raw traceback error will be displayed
on the browser.

An example middleware that just captures exceptions and changes them to a 500 error:

from webob import Request, Response

class EatExceptions(object):
def __init__(self, app):

self.app = app

def __call__(self, environ, start_response):
req = Request(environ)
try:

response = req.get_response(self.app)
except:

response = Response()
response.status_int = 500
response.body = 'An error has occured'

return response(environ, start_response)

Replacing the ErrorHandler with this middleware will cause tracebacks to not be displayed to the user.

128 Chapter 15. Errors, Troubleshooting, and Debugging

Pylons Reference Documentation, Release 1.0.2

15.2 Interactive Debugging

Things break, and when they do, quickly pinpointing what went wrong and why makes a huge difference. By default,
Pylons uses a customized version of Ian Bicking’s EvalException middleware that also includes full Mako/Myghty
Traceback information.

15.2.1 The Debugging Screen

The debugging screen has three tabs at the top:

Traceback Provides the raw exception trace with the interactive debugger

Extra Data Displays CGI, WSGI variables at the time of the exception, in addition to configuration information

Template Human friendly traceback for Mako or Myghty templates

Since Mako and Myghty compile their templates to Python modules, it can be difficult to accurately figure out what
line of the template resulted in the error. The Template tab provides the full Mako or Myghty traceback which contains
accurate line numbers for your templates, and where the error originated from. If your exception was triggered before
a template was rendered, no Template information will be available in this section.

15.2.2 Example: Exploring the Traceback

Using the interactive debugger can also be useful to gain a deeper insight into objects present only during the web
request like the session and request objects.

To trigger an error so that we can explore what’s happening just raise an exception inside an action you’re curious
about. In this example, we’ll raise an error in the action that’s used to display the page you’re reading this on. Here’s
what the docs controller looks like:

class DocsController(BaseController):
def view(self, url):

if request.path_info.endswith('docs'):
redirect(url('/docs/'))

return render('/docs/' + url)

Since we want to explore the session and request, we’ll need to bind them first. Here’s what our action now
looks like with the binding and raising an exception:

def view(self, url):
raise "hi"
if request.path_info.endswith('docs'):

redirect(url('/docs/'))
return render('/docs/' + url)

Here’s what exploring the Traceback from the above example looks like (Excerpt of the relevant portion):

15.2. Interactive Debugging 129

http://blog.ianbicking.org/

Pylons Reference Documentation, Release 1.0.2

15.3 E-mailing Errors

You can make various of changes to how the debugging works. For example if you disable the debug variable in the
config file Pylons will email you an error report instead of displaying it as long as you provide your email address at
the top of the config file:

error_email_from = you@example.com

This is very useful for a production site. Emails are sent via SMTP so you need to specify a valid SMTP server too.

15.4 Programmatically Handling Errors

By default, the StatusCodeRedirect will redirect any response with the designated status codes back into the
application again. This will result in the error controller in the Pylons project being called. This is why there is a
default route in config/routing.py of:

map.connect('/error/{action}', controller='error')
map.connect('/error/{action}/{id}', controller='error')

The error controller allows a project to theme the error message appropriately by changing it to render a template, or
redirect as desired.

15.4.1 Original Request Information

The original request and response that resulted in the error controller being called is available inside the error controller
as:

Original request
request.environ['pylons.original_request']

Original response
request.environ['pylons.original_response']

130 Chapter 15. Errors, Troubleshooting, and Debugging

Pylons Reference Documentation, Release 1.0.2

If an HTTPException was thrown in the controller (the abort() function throws these), the original object is
available as:

request.environ['pylons.controller.exception']

This allows access to the error message on the exception object.

15.4. Programmatically Handling Errors 131

Pylons Reference Documentation, Release 1.0.2

132 Chapter 15. Errors, Troubleshooting, and Debugging

CHAPTER 16

Upgrading

16.1 1.0 -> 1.0.1

No changes are necessary, however to take advantage of MarkupSafe’s faster HTML escaping, the default filter in
environment.py that Mako is configured with should be changed from:

from webhelpers.html import escape

To:: from markupsafe import escape

MarkupSafe utilizes a C extension where available for faster escaping which can help on larger pages with substantial
variable substitutions.

16.2 0.9.7 -> 1.0

Upgrading your project is slightly different depending on which versions you’re upgrading from and to. It’s recom-
mended that upgrades be done in minor revision steps, as deprecation warnings are added between revisions to help in
the upgrade process.

For any project prior to 0.9.7, you should first follow the applicable docs to upgrade to 0.9.7 before proceeding.

To upgrade to 1.0, first upgrade your project to 0.10. This is a Pylons release that is fully backwards-compatible with
0.9.7. However under 0.10 a variety of warnings will be issued about the various things that need to be changed before
upgrading to 1.0.

Tip: Since Pylons 0.10 is only out as a beta at this point, upgrade using the actual URL, for example:

$ easy_install -U http://pylonshq.com/download/0.10/Pylons-0.10.tar.gz

Beyond the warnings issued, you should also read the following list and ensure these changes have been applied.

Pylons changes from 0.9.7 to 1.0:

133

Pylons Reference Documentation, Release 1.0.2

• The config object created in environment.py is now passed around explicitly. There are also some other
minor updates as follows.

Update config/environment.py to initialize and return the config:

Add to the imports:
from pylons.configuration import PylonsConfig

Add under 'def load_environment':
config = PylonsConfig()

Replace the make_map / app globals line with
config['routes.map'] = make_map(config)
config['pylons.app_globals'] = app_globals.Globals(config)

Optionally, if removing the CacheMiddleware and using the
cache in the new 1.0 style, add under the previous lines:
import pylons
pylons.cache._push_object(config['pylons.app_globals'].cache)

Add at the end of the load_environment function:
return config

Update config/middleware.py to use the returned config:

modify the load_environment call:
config = load_environment(global_conf, app_conf)

update the middleware calls

The Pylons WSGI app
app = PylonsApp(config=config)

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)

Add right before 'return app':
app.config = config

Note: The CacheMiddleware is no longer setup by default through middleware, its now setup under
app_globals inside its instantiation in lib/app_globals.py.

Update config/routing.py to accept the config:

Replace the def line with
def make_map(config):

Update lib/app_globals.py to accept the config:

Replace the __init__ line with
def __init__(self, config):

Optionally, if you decided to remove the CacheMiddleware

134 Chapter 16. Upgrading

Pylons Reference Documentation, Release 1.0.2

Add these imports
from beaker.cache import CacheManager
from beaker.util import parse_cache_config_options

and add this line in __init__:
self.cache = CacheManager(**parse_cache_config_options(config))

Update tests/__init__.py as needed:

from unittest import TestCase

from paste.deploy import loadapp
from paste.script.appinstall import SetupCommand
from pylons import url
from routes.util import URLGenerator
from webtest import TestApp

import pylons.test

__all__ = ['environ', 'url', 'TestController']

Invoke websetup with the current config file
SetupCommand('setup-app').run([pylons.test.pylonsapp.config['__file__']])

environ = {}

class TestController(TestCase):

def __init__(self, *args, **kwargs):
wsgiapp = pylons.test.pylonsapp
config = wsgiapp.config
self.app = TestApp(wsgiapp)
url._push_object(URLGenerator(config['routes.map'], environ))
TestCase.__init__(self, *args, **kwargs)

Note: Change the use of url_for in your tests to use url, which is imported from tests/
__init__.py in your unit tests.

Finally, update websetup.py to avoid the duplicate app creation that previously could occur during
the unit tests:

Add to the imports
import pylons.test

Add under the 'def setup_app':

Don't reload the app if it was loaded under the testing environment
if not pylons.test.pylonsapp:

load_environment(conf.global_conf, conf.local_conf)

• Change all instances of redirect_to(...) -> redirect(url(...))

redirect_to processed arguments in a slightly ‘magical’ manner in that some of them went to
the url_for while sometimes. . . not. redirect() issues a redirect and nothing more, so to
generate a url, the url instance should be used (import: from pylons import url).

• Ensure that all use of g is switched to using the new name, app_globals

16.2. 0.9.7 -> 1.0 135

Pylons Reference Documentation, Release 1.0.2

• Change all instances of url_for to url.

Note that url does not retain the current route memory like url_for did by default. To get a route
generated using the current route, call url.current.

For example:

Rather than url_for() for the current route
url.current()

url can be imported from pylons.

• Change config import statement if needed

Previously, the config object could be imported as if it was a module:

import pylons.config

The config object is now an object in pylons/__init__.py so the import needs to be changed
to:

from pylons import config

• Routes is now explicit by default

This won’t affect those already using url as it ignores route memory. This change does mean that
some routes which relied on a default controller of ‘content’ and a default action of ‘index’ will not
work.

To restore the old behavior, in config/routing.py, set the mapper to explicit:

map.explicit = True

• By default, the tmpl_context (a.k.a ‘c’), is no longer a AttribSafeContextObj. This means accessing
attributes that don’t exist will raise an AttributeError.

To use the attribute-safe tmpl_context, add this line to the config/environment.py:

config['pylons.strict_tmpl_context'] = False

136 Chapter 16. Upgrading

CHAPTER 17

Packaging and Deployment Overview

TODO: some of this is redundant to the (more current) Configuration doc – should be consolidated and cross-
referenced

This document describes how a developer can take advantage of Pylons’ application setup functionality to allow
webmasters to easily set up their application.

Installation refers to the process of downloading and installing the application with easy_install whereas setup refers
to the process of setting up an instance of an installed application so it is ready to be deployed.

For example, a wiki application might need to create database tables to use. The webmaster would only install the
wiki .egg file once using easy_install but might want to run 5 wikis on the site so would setup the wiki 5 times, each
time specifying a different database to use so that 5 wikis can run from the same code, but store their data in different
databases.

17.1 Egg Files

Before you can understand how a user configures an application you have to understand how Pylons applications are
distributed. All Pylons applications are distributed in .egg format. An egg is simply a Python executable package
that has been put together into a single file.

You create an egg from your project by going into the project root directory and running the command:

$ python setup.py bdist_egg

If everything goes smoothly a .egg file with the correct name and version number appears in a newly created dist
directory.

When a webmaster wants to install a Pylons application he will do so by downloading the egg and then installing it.

137

Pylons Reference Documentation, Release 1.0.2

17.2 Installing as a Non-root User

It’s quite possible when using shared hosting accounts that you do not have root access to install packages. In this
case you can install setuptools based packages like Pylons and Pylons web applications in your home directory using
a virtualenv setup. This way you can install all the packages you want to use without super-user access.

17.3 Understanding the Setup Process

Say you have written a Pylons wiki application called wiki. When a webmaster wants to install your wiki application
he will run the following command to generate a config file:

$ paster make-config wiki wiki_production.ini

He will then edit the config file for his production environment with the settings he wants and then run this command
to setup the application:

$ paster setup-app wiki_production.ini

Finally he might choose to deploy the wiki application through the paste server like this (although he could have
chosen CGI/FastCGI/SCGI etc):

$ paster serve wiki_production.ini

The idea is that an application only needs to be installed once but if necessary can be set up multiple times, each with
a different configuration.

All Pylons applications are installed in the same way, so you as the developer need to know how the above commands
work.

17.3.1 Make Config

The paster make-config command looks for the file deployment.ini_tmpl and uses it as a basis for
generating a new .ini file.

Using our new wiki example again, the wiki/config/deployment.ini_tmpl file contains the text:

[DEFAULT]
debug = true
email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 5000

[app:main]
use = egg:wiki
full_stack = true
static_files = true
cache_dir = %(here)s/data
beaker.session.key = wiki
beaker.session.secret = ${app_instance_secret}

138 Chapter 17. Packaging and Deployment Overview

Pylons Reference Documentation, Release 1.0.2

app_instance_uuid = ${app_instance_uuid}

If you'd like to fine-tune the individual locations of the cache data dirs
for the Cache data, or the Session saves, un-comment the desired settings
here:
#beaker.cache.data_dir = %(here)s/data/cache
#beaker.session.data_dir = %(here)s/data/sessions

WARNING: *THE LINE BELOW MUST BE UNCOMMENTED ON A PRODUCTION ENVIRONMENT*
Debug mode will enable the interactive debugging tool, allowing ANYONE to
execute malicious code after an exception is raised.
set debug = false

Logging configuration
[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s] [%(threadName)s] %(message)s

When the command paster make-config wiki wiki_production.ini is run, the contents of this file
are produced so you should tweak this file to provide sensible default configuration for production deployment of your
app.

17.3.2 Setup App

The paster setup-app command references the newly created .ini file and calls the function wiki.
websetup.setup_app() to set up the application. If your application needs to be set up before it can be used,
you should edit the websetup.py file.

Here’s an example which just prints the location of the cache directory via Python’s logging facilities:

"""Setup the helloworld application"""
import logging

from pylons import config
from helloworld.config.environment import load_environment

log = logging.getLogger(__name__)

17.3. Understanding the Setup Process 139

Pylons Reference Documentation, Release 1.0.2

def setup_app(command, conf, vars):
"""Place any commands to setup helloworld here"""
load_environment(conf.global_conf, conf.local_conf)
log.info("Using cache dirctory %s" % config['cache.dir'])

For a more useful example, say your application needs a database set up and loaded with initial data. The user
will specify the location of the database to use by editing the config file before running the paster setup-app
command. The setup_app() function will then be able to load the configuration and act on it in the function body.
This way, the setup_app() function can be used to initialize the database when paster setup-app is run.
Using the optional SQLAlchemy project template support when creating a Pylons project will set all of this up for you
in a basic way. The quickwiki_tutorial illustrates an example of this configuration.

17.4 Deploying the Application

Once the application is setup it is ready to be deployed. There are lots of ways of deploying an application, one of
which is to use the paster serve command which takes the configuration file that has already been used to setup
the application and serves it on a local HTTP server for production use:

$ paster serve wiki_production.ini

More information on Paste deployment options is available on the Paste website at http://pythonpaste.org. See Running
Pylons Apps with Other Web Servers for alternative Pylons deployment scenarios.

17.5 Advanced Usage

So far everything we have done has happened through the paste.script.appinstall.Installer class
which looks for the deployment.ini_tmpl and websetup.py file and behaves accordingly.

If you need more control over how your application is installed you can use your own installer class. Create a file, for
example wiki/installer.py and code your new installer class in the file by deriving it from the existing one:

from paste.script.appinstall import Installer
class MyInstaller(Installer):

pass

You then override the functionality as necessary (have a look at the source code for Installer as a basis. You then
change your application’s setup.py file so that the paste.app_install entry point main points to your new
installer:

entry_points="""
...
[paste.app_install]
main=wiki.installer:MyInstaller
...
""",

Depending on how you code your MyInstaller class you may not even need your websetup.py or
deployment.ini_tmpl as you might have decided to create the .ini file and setup the application in an en-
tirely different way.

140 Chapter 17. Packaging and Deployment Overview

http://pythonpaste.org

CHAPTER 18

Running Pylons Apps with Other Web Servers

This document assumes that you have already installed a Pylons web application, and Runtime Configuration for it.
Pylons applications use PasteDeploy to start up your Pylons WSGI application, and can use the flup package to provide
a Fast-CGI, SCGI, or AJP connection to it.

18.1 Using Fast-CGI

Fast-CGI is a gateway to connect web severs like Apache and lighttpd to a CGI-style application. Out of the box,
Pylons applications can run with Fast-CGI in either a threaded or forking mode. (Threaded is the recommended
choice)

Setting a Pylons application to use Fast-CGI is very easy, and merely requires you to change the config line like so:

default
[server:main]
use = egg:Paste#http

Use Fastcgi threaded
[server:main]
use = egg:PasteScript#flup_fcgi_thread
host = 0.0.0.0
port = 6500

Note that you will need to install the flup package, which can be installed via easy_install:

$ easy_install -U flup

The options in the config file are passed onto flup. The two common ways to run Fast CGI is either using a socket to
listen for requests, or listening on a port/host which allows a webserver to send your requests to web applications on a
different machine.

To configure for a socket, your server:main section should look like this:

141

http://pythonpaste.org/deploy/
http://fastcgi.com/
http://httpd.apache.org/
http://lighttpd.net/
http://www.saddi.com/software/flup/dist/

Pylons Reference Documentation, Release 1.0.2

[server:main]
use = egg:PasteScript#flup_fcgi_thread
socket = /location/to/app.socket

If you want to listen on a host/port, the configuration cited in the first example will do the trick.

18.2 Apache Configuration

For this example, we will assume you’re using Apache 2, though Apache 1 configuration will be very similar. First,
make sure that you have the Apache mod_fastcgi module installed in your Apache.

There will most likely be a section where you declare your FastCGI servers, and whether they’re external:

<IfModule mod_fastcgi.c>
FastCgiIpcDir /tmp
FastCgiExternalServer /some/path/to/app/myapp.fcgi -host some.host.com:6200
</IfModule>

In our example we’ll assume you’re going to run a Pylons web application listening on a host/port. Changing -host
to -socket will let you use a Pylons web application listening on a socket.

The filename you give in the second option does not need to physically exist on the webserver, URIs that Apache
resolve to this filename will be handled by the FastCGI application.

The other important line to ensure that your Apache webserver has is to indicate that fcgi scripts should be handled
with Fast-CGI:

AddHandler fastcgi-script .fcgi

Finally, to configure your website to use the Fast CGI application you will need to indicate the script to be used:

<VirtualHost *:80>
ServerAdmin george@monkey.com
ServerName monkey.com
ServerAlias www.monkey.com
DocumentRoot /some/path/to/app

ScriptAliasMatch ^(/.*)$ /some/path/to/app/myapp.fcgi$1
</VirtualHost>

Other useful directives should be added as needed, for example, the ErrorLog directive, etc. This configuration will
result in all requests being sent to your FastCGI application.

18.3 PrefixMiddleware

PrefixMiddleware provides a way to manually override the root prefix (SCRIPT_NAME) of your application for
certain situations.

When running an application under a prefix (such as ‘/james’) in FastCGI/apache, the SCRIPT_NAME environment
variable is automatically set to to the appropriate value: ‘/james’. Pylons’ URL generators such as url always take
the SCRIPT_NAME value into account.

One situation where PrefixMiddleware is required is when an application is accessed via a reverse proxy with a
prefix. The application is accessed through the reverse proxy via the the URL prefix ‘/james’, whereas the reverse
proxy forwards those requests to the application at the prefix ‘/’.

142 Chapter 18. Running Pylons Apps with Other Web Servers

http://fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html

Pylons Reference Documentation, Release 1.0.2

The reverse proxy, being an entirely separate web server, has no way of specifying the SCRIPT_NAME variable;
it must be manually set by a PrefixMiddleware instance. Without setting SCRIPT_NAME, url will generate
URLs such as: ‘/purchase_orders/1’, when it should be generating: ‘/james/purchase_orders/1’.

To filter your application through a PrefixMiddleware instance, add the following to the ‘[app:main]’ section
of your .ini file:

filter-with = proxy-prefix

[filter:proxy-prefix]
use = egg:PasteDeploy#prefix
prefix = /james

The name proxy-prefix simply acts as an identifier of the filter section; feel free to rename it.

These .ini settings are equivalent to adding the following to the end of your application’s config/middleware.
py, right before the return app line:

This app is served behind a proxy via the following prefix (SCRIPT_NAME)
app = PrefixMiddleware(app, global_conf, prefix='/james')

This requires the additional import line:

from paste.deploy.config import PrefixMiddleware

Whereas the modification to config/middleware.py will setup an instance of PrefixMiddleware under
every environment (.ini).

18.4 Using Java Web Servers with Jython

See Deploying to Java Web servers.

18.4. Using Java Web Servers with Jython 143

Pylons Reference Documentation, Release 1.0.2

144 Chapter 18. Running Pylons Apps with Other Web Servers

CHAPTER 19

Documenting Your Application

TODO: this needs to be rewritten – Pudge is effectively dead

While the information in this document should be correct, it may not be entirely complete. . . Pudge is somewhat
unruly to work with at this time, and you may need to experiment to find a working combination of package versions.
In particular, it has been noted that an older version of Kid, like 0.9.1, may be required. You might also need to install
{{RuleDispatch}} if you get errors related to {{FormEncode}} when attempting to build documentation.

Apologies for this suboptimal situation. Considerations are being taken to fix Pudge or supplant it for future versions
of Pylons.

19.1 Introduction

Pylons comes with support for automatic documentation generation tools like Pudge.

Automatic documentation generation allows you to write your main documentation in the docs directory of your
project as well as throughout the code itself using docstrings.

When you run a simple command all the documentation is built into sophisticated HTML.

19.2 Tutorial

First create a project as described in Getting Started.

You will notice a docs directory within your main project directory. This is where you should write your main docu-
mentation.

There is already an index.txt file in docs so you can already generate documentation. First we’ll install Pudge and
buildutils. By default, Pylons sets an option to use Pygments for syntax-highlighting of code in your documentation,
so you’ll need to install it too (unless you wish to remove the option from setup.cfg):

$ easy_install pudge buildutils
$ easy_install Pygments

145

http://pudge.lesscode.org
http://pygments.org

Pylons Reference Documentation, Release 1.0.2

then run the following command from your project’s main directory where the setup.py file is:

$ python setup.py pudge

Note: The pudge command is currently disabled by default. Run the following command first to enable it:

..code-block:: bash

$ python setup.py addcommand -p buildutils.pudge_command

Thanks to Yannick Gingras for the tip.

Pudge will produce output similar to the following to tell you what it is doing and show you any problems:

running pudge
generating documentation
copying: pudge\template\pythonpaste.org\rst.css -> do/docs/html\rst.css
copying: pudge\template\base\pudge.css -> do/docs/html\pudge.css
copying: pudge\template\pythonpaste.org\layout.css -> do/docs/html\layout.css
rendering: pudge\template\pythonpaste.org\site.css.kid -> site.css
colorizing: do/docs/html\do/__init__.py.html
colorizing: do/docs/html\do/tests/__init__.py.html
colorizing: do/docs/html\do/i18n/__init__.py.html
colorizing: do/docs/html\do/lib/__init__.py.html
colorizing: do/docs/html\do/controllers/__init__.py.html
colorizing: do/docs/html\do/model.py.html

Once finished you will notice a docs/html directory. The index.html is the main file which was generated from
docs/index.txt.

19.3 Learning ReStructuredText

Python programs typically use a rather odd format for documentation called reStructuredText. It is designed so that
the text file used to generate the HTML is as readable as possible but as a result can be a bit confusing for beginners.

Read the reStructuredText tutorial which is part of the docutils project.

Once you have mastered reStructuredText you can write documentation until your heart’s content.

19.4 Using Docstrings

Docstrings are one of Python’s most useful features if used properly. They are described in detail in the Python
documentation but basically allow you to document any module, class, method or function, in fact just about anything.
Users can then access this documentation interactively.

Try this:

>>> import pylons
>>> help(pylons)
...

As you can see if you tried it you get detailed information about the pylons module including the information in the
docstring.

146 Chapter 19. Documenting Your Application

http://docutils.sourceforge.net/rst.html
http://docutils.sf.net

Pylons Reference Documentation, Release 1.0.2

Docstrings are also extracted by Pudge so you can describe how to use all the controllers, actions and modules that
make up your application. Pudge will extract that information and turn it into useful API documentation automatically.

Try clicking the Modules link in the HTML documentation you generated earlier or look at the Pylons source code
for some examples of how to use docstrings.

19.5 Using doctest

The final useful thing about docstrings is that you can use the doctest module with them. doctest again is
described in the Python documentation but it looks through your docstrings for things that look like Python code
written at a Python prompt. Consider this example:

>>> a = 2
>>> b = 3
>>> a + b
5

If doctest was run on this file it would have found the example above and executed it. If when the expression a +
b is executed the result was not 5, doctest would raise an Exception.

This is a very handy way of checking that the examples in your documentation are actually correct.

To run doctest on a module use:

if __name__ == "__main__":
import doctest
doctest.testmod()

The if __name__ == "__main__": part ensures that your module won’t be tested if it is just imported, only if
it is run from the command line

To run doctest on a file use:

import doctest
doctest.testfile("docs/index.txt")

You might consider incorporating this functionality in your tests/test.py file to improve the testing of your
application.

19.6 Summary

So if you write your documentation in reStructuredText, in the docs directory and in your code’s docstrings, liberally
scattered with example code, Pylons provides a very useful and powerful system for you.

If you want to find out more information have a look at the Pudge documentation or try tinkering with your project’s
setup.cfg file which contains the Pudge settings.

19.5. Using doctest 147

Pylons Reference Documentation, Release 1.0.2

148 Chapter 19. Documenting Your Application

CHAPTER 20

Distributing Your Application

TODO: this assumes helloworld tutorial context that is no longer present, and could be consolidated with packaging
info in Packaging and Deployment Overview

As mentioned earlier eggs are a convenient format for packaging applications. You can create an egg for your project
like this:

$ cd helloworld
$ python setup.py bdist_egg

Your egg will be in the dist directory and will be called helloworld-0.0.0dev-py2.4.egg.

You can change options in setup.py to change information about your project. For example change version to
version="0.1.0", and run python setup.py bdist_egg again to produce a new egg with an updated
version number.

You can then register your application with the Python Package Index (PyPI) with the following command:

$ python setup.py register

Note: You should not do this unless you actually want to register a package!

If users want to install your software and have installed easy_install they can install your new egg as follows:

$ easy_install helloworld==0.1.0

This will retrieve the package from PyPI and install it. Alternatively you can install the egg locally:

$ easy_install -f C:\path\with\the\egg\files\in helloworld==0.1.0

In order to use the egg in a website you need to use Paste. You have already used Paste to create your Pylons template
and to run a test server to test the tutorial application.

Paste is a set of tools available at http://pythonpaste.org for providing a uniform way in which all compatible Python
web frameworks can work together. To run a paste application such as any Pylons application you need to create

149

http://pypi.python.org/pypi
http://pythonpaste.org

Pylons Reference Documentation, Release 1.0.2

a Paste configuration file. The idea is that the your paste configuration file will contain all the configuration for
all the different Paste applications you run. A configuration file suitable for development is in the helloworld/
development.ini file of the tutorial but the idea is that the person using your egg will add relevant configuration
options to their own Paste configuration file so that your egg behaves they way they want. See the section below for
more on this configuration.

Paste configuration files can be run in many different ways, from CGI scripts, as standalone servers, with FastCGI,
SCGI, mod_python and more. This flexibility means that your Pylons application can be run in virtually any environ-
ment and also take advantage of the speed benefits that the deployment option offers.

See also:

Running Pylons Apps with Other Web Servers

20.1 Running Your Application

In order to run your application your users will need to install it as described above but then generate a config file and
setup your application before deploying it. This is described in Runtime Configuration and Packaging and Deployment
Overview.

150 Chapter 20. Distributing Your Application

CHAPTER 21

Python 2.3 Installation Instructions

21.1 Advice of end of support for Python 2.3

Warning: END OF SUPPORT FOR PYTHON 2.3 This is the LAST version to support Python 2.3 BEGIN
UPGRADING OR DIE

21.2 Preparation

First, please note that Python 2.3 users on Windows will need to install subprocess.exe before beginning the installation
(whereas Python 2.4 users on Windows do not). All windows users also should read the section Windows Notes after
installation. Users of Ubuntu/debian will also likely need to install the python-dev package.

21.3 System-wide Install

To install Pylons so it can be used by everyone (you’ll need root access).

If you already have easy install:

$ easy_install Pylons==0.9.7

Note: On rare occasions, the python.org Cheeseshop goes down. It is still possible to install Pylons and its depen-
dencies however by specifying our local package directory for installation with:

$ easy_install -f http://pylonshq.com/download/ Pylons==0.9.7

Which will use the packages necessary for the latest release. If you’re using an older version of Pylons, you can get
the packages that went with it by specifying the version desired:

151

http://www.pylonshq.com/download/subprocess-0.1-20041012.win32-py2.3.exe

Pylons Reference Documentation, Release 1.0.2

$ easy_install -f http://pylonshq.com/download/0.9.7/ Pylons==0.9.7

Otherwise:

1. Download the easy install setup file from http://peak.telecommunity.com/dist/ez_setup.py

2. Run:

$ python ez_setup.py Pylons==0.9.7

Warning: END OF SUPPORT FOR PYTHON 2.3 This is the LAST version to support Python 2.3 BEGIN
UPGRADING OR DIE

152 Chapter 21. Python 2.3 Installation Instructions

http://peak.telecommunity.com/dist/ez_setup.py

CHAPTER 22

Windows Notes

Python scripts installed as part of the Pylons install process will be put in the Scripts directory of your Python
installation, typically in C:\Python24\Scripts. By default on Windows, this directory is not in your PATH; this
can cause the following error message when running a command such as paster from the command prompt:

C:\Documents and Settings\James>paster
'paster' is not recognized as an internal or external command,
operable program or batch file.

To run the scripts installed with Pylons either the full path must be specified:

C:\Documents and Settings\James>C:\Python24\Scripts\paster
Usage: C:\Python24\Scripts\paster-script.py COMMAND
usage: paster-script.py [paster_options] COMMAND [command_options]

options:
--version show program's version number and exit
--plugin=PLUGINS Add a plugin to the list of commands (plugins are Egg

specs; will also require() the Egg)
-h, --help Show this help message

... etc ...

or (the preferable solution) the Scripts directory must be added to the PATH as described below.

22.1 For Win2K or WinXP

1. From the desktop or Start Menu, right click My Computer and click Properties.

2. In the System Properties window, click on the Advanced tab.

3. In the Advanced section, click the Environment Variables button.

153

Pylons Reference Documentation, Release 1.0.2

4. Finally, in the Environment Variables window, highlight the path variable in the Systems Variable section and
click edit. Add or modify the path lines with the paths you wish the computer to access. Each different directory
is separated with a semicolon as shown below:

C:\Program Files;C:\WINDOWS;C:\WINDOWS\System32

1. Add the path to your scripts directory:

C:\Program Files;C:\WINDOWS;C:\WINDOWS\System32;C:\Python24\Scripts

See Finally below.

22.2 For Windows 95, 98 and ME

Edit autoexec.bat, and add the following line to the end of the file:

set PATH=%PATH%;C:\Python24\Scripts

See Finally below.

22.3 Finally

Restarting your computer may be required to enable the change to the PATH. Then commands may be entered from
any location:

C:\Documents and Settings\James>paster
Usage: C:\Python24\Scripts\paster-script.py COMMAND
usage: paster-script.py [paster_options] COMMAND [command_options]

options:
--version show program's version number and exit
--plugin=PLUGINS Add a plugin to the list of commands (plugins are Egg

specs; will also require() the Egg)
-h, --help Show this help message

... etc ...

All documentation assumes the PATH is setup correctly as described above.

154 Chapter 22. Windows Notes

CHAPTER 23

Pylons on Jython

Pylons supports Jython as of v0.9.7.

23.1 Installation

The installation process is the same as CPython, as described in Getting Started. At least Jython 2.5b2 is required.

23.2 Deploying to Java Web servers

The Java platform defines the Servlet API for creating web applications. The modjy library included with Jython
provides a gateway between Java Servlets and WSGI applications.

The snakefight tool can create a WAR file from a Pylons application (and modjy) that’s suitable for deployment to the
various Servlet containers (such as Apache Tomcat or Sun’s Glassfish).

23.2.1 Creating .wars with snakefight

First, install snakefight:

$ easy_install snakefight

This adds an additional command to distutils: bdist_war.

Pylons applications are loaded from Paste, via its paste.app_factory entry point and a Paste style configuration
file. bdist_war knows how to setup Paste apps for deployment when specified the --paste-config option:

$ paster make-config MyApp production.ini
$ jython setup.py bdist_war --paste-config production.ini

155

http://www.jython.org
http://en.wikipedia.org/wiki/Java_Servlet
http://modjy.xhaus.com/
http://pypi.python.org/pypi/snakefight
http://en.wikipedia.org/wiki/Sun_WAR_(file_format)
http://en.wikipedia.org/wiki/Servlet_container
http://tomcat.apache.org/
http://glassfish.org/

Pylons Reference Documentation, Release 1.0.2

As with any distutils command the preferred options can instead be added to the setup.cfg in the root directory of
the project:

[bdist_war]
paste-config = production.ini

Then we can simply run:

$ jython setup.py bdist_war

bdist_war creates a .war with the following:

• Jython’s jar files in WEB-INF/lib

• Jython’s stdlib in WEB-INF/lib-python

• Your application’s required eggs in WEB-INF/lib-python

With the --paste-config option, it also:

• Creates a simple loader for the application/config

• Generates a web.xml deployment descriptor configuring modjy to load the application with the simple loader

For further information/usages, see snakefight’s documentation.

156 Chapter 23. Pylons on Jython

http://pypi.python.org/pypi/snakefight

CHAPTER 24

Security policy for bugs

24.1 Receiving Security Updates

The Pylons team have set up a mailing list at wsgi-security-announce@googlegroups.com to which any security vul-
nerabilities that affect Pylons will be announced. Anyone wishing to be notified of vulnerabilities in Pylons should
subscribe to this list. Security announcements will only be made once a solution to the problem has been discovered.

24.2 Reporting Security Issues

Please report security issues by email to both the lead developers of Pylons at the following addresses:

ben groovie.org

security 3aims.com

Please DO NOT announce the vulnerability to any mailing lists or on the ticket system because we would not want
any malicious person to be aware of the problem before a solution is available.

In the event of a confirmed vulnerability in Pylons itself, we will take the following actions:

• Acknowledge to the reporter that we’ve received the report and that a fix is forthcoming. We’ll give a rough
timeline and ask the reporter to keep the issue confidential until we announce it.

• Halt all other development as long as is needed to develop a fix, including patches against the current release.

• Publicly announce the vulnerability and the fix as soon as it is available to the WSGI security list at wsgi-
security-announce@googlegroups.com.

This will probably mean a new release of Pylons, but in some cases it may simply be the release of documentation
explaining how to avoid the vulnerability.

In the event of a confirmed vulnerability in one of the components that Pylons uses, we will take the following actions:

• Acknowledge to the reporter that we’ve received the report and ask the reporter to keep the issue confidential
until we announce it.

157

mailto:wsgi-security-announce@googlegroups.com
mailto:wsgi-security-announce@googlegroups.com
mailto:wsgi-security-announce@googlegroups.com

Pylons Reference Documentation, Release 1.0.2

• Contact the developer or maintainer of the package containing the vulnerability.

• If the developer or maintainer fails to release a new version in a reasonable time-scale and the vulnerability is
serious we will either create documentation explaining how to avoid the problem or as a last resort, create a
patched version.

• Publicly announce the vulnerability and the fix as soon as it is available to the WSGI security list at wsgi-
security-announce@googlegroups.com.

24.3 Minimising Risk

• Only use official production versions of Pylons released publicly on the Python Package Index.

• Only use stable releases of third party software not development, alpha, beta or release candidate code.

• Do not assume that related software is of the same quality as Pylons itself, even if Pylons users frequently make
use of it.

• Subscribe to the wsgi-security-announce@googlegroups.com mailing list to be informed of security issues and
their solutions.

158 Chapter 24. Security policy for bugs

mailto:wsgi-security-announce@googlegroups.com
mailto:wsgi-security-announce@googlegroups.com
http://python.org/pypi
mailto:wsgi-security-announce@googlegroups.com

CHAPTER 25

WSGI support

The Web Server Gateway Interface defined in PEP 333 is a standard interface between web servers and Python web
applications or frameworks, to promote web application portability across a variety of web servers.

Pylons supports the Web Server Gateway Interface (or WSGI for short, pronounced “wizgy”) throughout its stack. This
is important for developers because it means that as well coming with all the features you would expect of a modern
web framework, Pylons is also extremely flexible. With the WSGI it is possible to change any part of the Pylons stack
to add new functionality or modify a request or a response without having to take apart the whole framework.

25.1 Paste and WSGI

Most of Pylons’ WSGI capability comes from its close integration with Paste. Paste provides all the tools and mid-
dleware necessary to deploy WSGI applications. It can be thought of as a low-level WSGI framework designed for
other web frameworks to build upon. Pylons is an example of a framework which makes full use of the possibilities
of Paste.

If you want to, you can get the WSGI application object from your Pylons configuration file like this:

from paste.deploy import loadapp
wsgi_app = loadapp('config:/path/to/config.ini')

You can then serve the file using a WSGI server. Here is an example using the WSGI Reference Implementation
included with Python 2.5:

from paste.deploy import loadapp
wsgi_app = loadapp('config:/path/to/config.ini')

from wsgiref import simple_server
httpd = simple_server.WSGIServer(('',8000), simple_server.WSGIRequestHandler)
httpd.set_app(wsgi_app)
httpd.serve_forever()

159

http://www.python.org/dev/peps/pep-0333/

Pylons Reference Documentation, Release 1.0.2

The paster serve command you will be used to using during the development of Pylons projects combines these
two steps of creating a WSGI app from the config file and serving the resulting file to give the illusion that it is serving
the config file directly.

Because the resulting Pylons application is a WSGI application it means you can do the same things with
it that you can do with any WSGI application. For example add a middleware chain to it or serve it via
FastCGI/SCGI/CGI/mod_python/AJP or standalone.

You can also configure extra WSGI middleware, applications and more directly using the configuration file. The
various options are described in the Paste Deploy Documentation so we won’t repeat them here.

25.2 Using a WSGI Application as a Pylons 0.9 Controller

In Pylons 0.9 controllers are derived from pylons.controllers.WSGIController and are also valid WSGI
applications. Unless your controller is derived from the legacy pylons.controllers.Controller class it is
also assumed to be a WSGI application. This means that you don’t actually need to use a Pylons controller class in
your controller, any WSGI application will work as long as you give it the same name.

For example, if you added a hello controller by executing paster controller hello, you could modify it
to look like this:

def HelloController(environ, start_response):
start_response('200 OK', [('Content-Type','text/html')])
return ['Hello World!']

or use yield statements like this:

def HelloController(environ, start_response):
start_response('200 OK', [('Content-Type','text/html')])
yield 'Hello '
yield 'World!'

or use the standard Pylons Response object which is a valid WSGI response which takes care of calling
start_response() for you:

def HelloController(environ, start_response):
return Response('Hello World!')

and you could use the render() and render_response() objects exactly like you would in a normal controller
action.

As well as writing your WSGI application as a function you could write it as a class:

class HelloController:

def __call__(self, environ, start_response):
start_response('200 OK', [('Content-Type','text/html')])
return ['Hello World!']

All the standard Pylons middleware defined in config/middleware.py is still available.

25.3 Running a WSGI Application From Within a Controller

There may be occasions where you don’t want to replace your entire controller with a WSGI application but simply
want to run a WSGI application from with a controller action. If your project was called test and you had a WSGI

160 Chapter 25. WSGI support

http://pythonpaste.org/deploy/

Pylons Reference Documentation, Release 1.0.2

application called wsgi_app you could even do this:

from test.lib.base import *

def wsgi_app(environ, start_response):
start_response('200 OK',[('Content-type','text/html')])
return ['<html>\n<body>\nHello World!\n</body>\n</html>']

class HelloController(BaseController):
def index(self):

return wsgi_app(request.environ, self.start_response)

25.4 Configuring Middleware Within a Pylons Application

A Pylons application middleware stack is directly exposed in the project’s config/middleware.py file. This
means that you can add and remove pieces from the stack as you choose.

Warning: If you remove any of the default middleware you are likely to find that various parts of Pylons stop
working!

As an example, if you wanted to add middleware that added a new key to the environ dictionary you might do this:

YOUR MIDDLEWARE
Put your own middleware here, so that any problems are caught by the error
handling middleware underneath

class KeyAdder:
def __init__(self, app, key, value):

self.app = app
if '.' not in key:

raise Exception("WSGI environ keys must contain a '.' character")
self.key = key
self.value = value

def __call__(self, environ, start_response):
environ[self.key] = self.value
return self.app(environ, start_response)

app = KeyAdder(app, 'test.hello', 'Hello World')

Then in your controller you could write:

return Response(request.environ['test.hello'])

and you would see your Hello World! message.

Of course, this isn’t a particularly useful thing to do. Middleware classes can do one of four things or a combination
of them:

• Change the environ dictionary

• Change the status

• Change the HTTP headers

• Change the response body of the application

25.4. Configuring Middleware Within a Pylons Application 161

Pylons Reference Documentation, Release 1.0.2

With the ability to do these things as a middleware you can create authentication code, error handling middleware and
more but the great thing about WSGI is that someone probably already has so you can consult the wsgi.org middleware
list or have a look at the Paste project and reuse an exisiting piece of middleware.

25.5 The Cascade

Towards the end of the middleware stack in your project’s config/middleware.py file you will find a special
piece of middleware called the cascade:

app = Cascade([static_app, javascripts_app, app])

Passed a list of applications, Cascade will try each of them in turn. If one returns a 404 status code then the next
application is tried until one of the applications returns a code other than 404 in which case its response is returned.
If all applications fail, then the last application’s failure response is used.

The three WSGI applications in the cascade serve files from your project’s public directory first then if nothing
matches, the WebHelpers module JavaScripts are searched and finally if no JavaScripts are found your Pylons app is
tried. This is why the public/index.html file is served before your controller is executed and why you can put
/javascripts/ into your HTML and the files will be found.

You are free to change the order of the cascade or add extra WSGI applications to it before app so that other locations
are checked before your Pylons application is executed.

25.6 Useful Resources

Whilst other frameworks have put WSGI adapters at the end of their stacks so that their applications can be served by
WSGI servers, we hope you can see how fully Pylons embraces WSGI throughout its design to be the most flexible
and extensible of the main Python web frameworks.

To find out more about the Web Server Gateway Interface you might find the following resources useful:

• PEP 333

• The WSGI website at wsgi.org

• XML.com articles: Introducing WSGI - Pythons Secret Web Weapon.html Part 1 Part 2

162 Chapter 25. WSGI support

http://wsgi.org/wsgi/Middleware_and_Utilities
http://wsgi.org/wsgi/Middleware_and_Utilities
http://pythonpaste.org
http://www.python.org/dev/peps/pep-0333/
http://wsgi.org
http://www.xml.com/pub/a/2006/09/27/introducing-wsgi-pythons-secret-web-weapon.html
http://www.xml.com/pub/a/2006/10/04/introducing-wsgi-pythons-secret-web-weapon-part-two.html

CHAPTER 26

Advanced Pylons

26.1 WSGI, CLI scripts

26.1.1 Working with wsgiwrappers.WSGIRequest

Pylons uses a specialised WSGIRequest class that is accessible via the paste.wsgiwrappers module.

The wsgiwrappers.WSGIRequest object represents a WSGI request that has a more programmer-friendly in-
terface. This interface does not expose every detail of the WSGI environment (why?) and does not attempt to express
anything beyond what is available in the environment dictionary.

The only state maintained in this object is the desired charset, an associated errors handler and a
decode_param_names option.

Unicode notes

When charset is set, the incoming parameter values will be automatically coerced to unicode objects
of the charset encoding.

When unicode is expected, charset will be overridden by the the value of the charset parameter set in
the Content-Type header, if one was specified by the client.

The incoming parameter names are not decoded to unicode unless the decode_param_names option is
enabled.

The class variable defaults specifies default values for charset, errors, and language. These default values can be
overridden for the current request via the registry (what’s a registry?).

The language default value is considered the fallback during i18n translations to ensure in odd cases that mixed
languages don’t occur should the language file contain the string but not another language in the accepted languages
list. The language value only applies when getting a list of accepted languages from the HTTP Accept header.

This behavior is duplicated from Aquarium, and may seem strange but is very useful. Normally, everything in the code
is in “en-us”. However, the “en-us” translation catalog is usually empty. If the user requests [“en-us”, “zh-cn”] and a
translation isn’t found for a string in “en-us”, you don’t want gettext to fallback to “zh-cn”. You want it to just use the
string itself. Hence, if a string isn’t found in the language catalog, the string in the source code will be used.

163

Pylons Reference Documentation, Release 1.0.2

All other state is kept in the environment dictionary; this is essential for interoperability.

You are free to subclass this object.

26.1.2 Attributes

GET

A dictionary-like object representing the QUERY_STRING parameters. Always present, possibly empty.

If the same key is present in the query string multiple times, a list of its values can be retrieved from the MultiDict
via the :meth:getall method.

Returns a MultiDict container or, when charset is set, a UnicodeMultiDict.

POST

A dictionary-like object representing the POST body.

Most values are encoded strings, or unicode strings when charset is set. There may also be FieldStorage objects
representing file uploads. If this is not a POST request, or the body is not encoded fields (e.g., an XMLRPC request)
then this will be empty.

This will consume wsgi.input when first accessed if applicable, but the raw version will be put in envi-
ron[‘paste.parsed_formvars’].

Returns a MultiDict container or a UnicodeMultiDict when charset is set.

cookies

A dictionary of cookies, keyed by cookie name.

Just a plain dictionary, may be empty but not None.

defaults

{'errors': 'replace',
'decode_param_names': False,
'charset': None,
'language': 'en-us'}

host

The host name, as provided in HTTP_HOST with a fall-back to SERVER_NAME

is_xhr

Returns a boolean if X-Requested-With is present and is a XMLHttpRequest

languages

Returns a (possibly empty) list of preferred languages, most preferred first.

164 Chapter 26. Advanced Pylons

Pylons Reference Documentation, Release 1.0.2

params

A dictionary-like object of keys from POST, GET, URL dicts

Return a key value from the parameters, they are checked in the following order: POST, GET, URL

26.1.3 Additional methods supported:

getlist(key)

Returns a list of all the values by that key, collected from POST, GET, URL dicts

Returns a MultiDict container or a UnicodeMultiDict when charset is set.

urlvars

Return any variables matched in the URL (e.g. wsgiorg.routing_args).

26.1.4 Methods

__init__(self, environ)

determine_browser_charset(self)

Determine the encoding as specified by the browser via the Content-Type’s charset parameter, if one is set

match_accept(self, mimetypes)

Return a list of specified mime-types that the browser’s HTTP Accept header allows in the order provided.

26.2 Adding commands to Paster

26.2.1 Paster command

The command line will be paster my-command arg1 arg2 if the current directory is the application egg, or
paster --plugin=MyPylonsApp my-command arg1 arg2 otherwise. In the latter case, MyPylonsApp
must have been installed via easy_install or python setup.py develop.

Make a package directory for your commands:

$ mkdir myapp/commands
$ touch myapp/commands/__init__.py

Create a module myapp/commands/my_command.py like this:

from paste.script.command import Command

class MyCommand(Command):
Parser configuration
summary = "--NO SUMMARY--"
usage = "--NO USAGE--"

26.2. Adding commands to Paster 165

Pylons Reference Documentation, Release 1.0.2

group_name = "myapp"
parser = Command.standard_parser(verbose=False)

def command(self):
import pprint
print "Hello, app script world!"
print
print "My options are:"
print " ", pprint.pformat(vars(self.options))
print "My args are:"
print " ", pprint.pformat(self.args)
print
print "My parser help is:"
print
print self.parser.format_help()

Note: The class _must_ define .command, .parser, and .summary

Modify the entry_points argument in setup.py to contain:

[paste.paster_command]
my-command = myapp.commands.my_command:MyCommand

Run python setup.py develop or easy_install . to update the entry points in the egg in sys.path.

Now you should be able to run:

$ paster --plugin=MyApp my-command arg1 arg2
Hello, MyApp script world!

My options are:
{'interactive': False, 'overwrite': False, 'quiet': 0, 'verbose': 0}

My args are:
['arg1', 'arg2']

My parser help is:

Usage: /usr/local/bin/paster my-command [options] --NO USAGE--
--NO SUMMARY--

Options:
-h, --help show this help message and exit

$ paster --plugin=MyApp --help
Usage: paster [paster_options] COMMAND [command_options]

...
myapp:

my-command --NO SUMMARY--

pylons:
controller Create a Controller and accompanying functional test
restcontroller Create a REST Controller and accompanying functional test
shell Open an interactive shell with the Pylons app loaded

166 Chapter 26. Advanced Pylons

Pylons Reference Documentation, Release 1.0.2

26.2.2 Required class attributes

In addition to the .command method, the class should define .parser and .summary.

26.2.3 Command-line options

Command.standard_parser() returns a Python OptionParser. Calling parser.add_option enables
the developer to add as many options as desired. Inside the .command method, the user’s options are available under
self.options, and any additional arguments are in self.args.

There are several other class attributes that affect the parser; see them defined in paste.script.
command:Command. The most useful attributes are .usage, .description, .min_args, and .max_args.
.usage is the part of the usage string _after_ the command name. The .standard_parser()method has several
optional arguments to add standardized options; some of these got added to my parser although I don’t see how.

See the paster shell command, pylons.commands:ShellCommand, for an example of using command-
line options and loading the .ini file and model.

Also see “paster setup-app” where it is defined in paste.script.appinstall.SetupCommand. This is ev-
ident from the entry point in PasteScript (PasteScript-VERSION.egg/EGG_INFO/entry_points.txt).
It is a complex example of reading a config file and delegating to another entry point.

The code for calling myapp.websetup:setup_config is in paste.script.appinstall.

The Command class also has several convenience methods to handle console prompts, enable logging, verify direc-
tories exist and that files have expected content, insert text into a file, run a shell command, add files to Subversion,
parse “var=value” arguments, add variables to an .ini file.

26.2.4 Using paster to access a Pylons app

Paster provides request and post commands for running requests on an application. These commands will be run
in the full configuration context of a normal application. Useful for cron jobs, the error handler will also be in place
and you can get email reports of failed requests.

Because arguments all just go in QUERY_STRING, request.GET and request.PARAMS won’t look like you
expect. But you can parse them with something like:

parser = optparse.OptionParser()
parser.add_option(etc)

args = [item[0] for item in
cgi.parse_qsl(request.environ['QUERY_STRING'])]

options, args = parser.parse_args(args)

paster request / post

Usage: paster request / post [options] CONFIG_FILE URL [OPTIONS/ARGUMENTS]

Run a request for the described application

This command makes an artifical request to a web application that uses a paste.deploy configuration file for the
server and application. Use ‘paster request config.ini /url’ to request /url.

Use ‘paster post config.ini /url < data’ to do a POST with the given request body.

If the URL is relative (i.e. doesn’t begin with /) it is interpreted as relative to /.command/.

26.2. Adding commands to Paster 167

Pylons Reference Documentation, Release 1.0.2

The variable environ['paste.command_request'] will be set to True in the request, so your application can
distinguish these calls from normal requests.

Note that you can pass options besides the options listed here; any unknown options will be passed to the application
in environ['QUERY_STRING'].

Options:
-h, --help show this help message and exit
-v, --verbose
-q, --quiet
-n NAME, --app-name=NAME

Load the named application (default main)
--config-var=NAME:VALUE

Variable to make available in the config for %()s
substitution (you can use this option multiple times)

--header=NAME:VALUE Header to add to request (you can use this option
multiple times)

--display-headers Display headers before the response body

Future development

A Pylons controller that handled some of this would probably be quite useful. Probably even nicer with additions
to the current template, so that /.command/ all gets routed to a single controller that uses actions for the various
sub-commands, and can provide a useful response to /.command/?-h, etc.

26.3 Creating Paste templates

26.3.1 Introduction

Python Paste is an extremely powerful package that isn’t just about WSGI middleware. The related document Using
Entry Points to Write Plugins demonstrates how to use entry_points to create simple plugins. This document describes
how to write just such a plugin for use Paste’s project template creation facility and how to add a command to Paste’s
paster script.

The example task is to create a template for an imaginary content management system. The template is going to
produce a project directory structure for a Python package, so we need to be able to specify a package name.

26.3.2 Creating The Directory Structure and Templates

The directory structure for the new project needs to look like this:

- default_project
- +package+

- __init__.py
- static

- layout
- region
- renderer

- service
- layout

- __init__.py
- region

- __init__.py

168 Chapter 26. Advanced Pylons

http://pythonpaste.org/

Pylons Reference Documentation, Release 1.0.2

- renderer
- __init__.py

- setup.py_tmpl
- setup.cfg_tmpl
- development.ini_tmpl
- README.txt_tmpl
- ez_setup.py

Of course, the actual project’s directory structure might look very different. In fact the paster create command
can even be used to generate directory structures which aren’t project templates — although this wasn’t what it was
designed for.

When the paster create command is run, any directories with +package+ in their name will have that portion
of the name replaced by a simplified package name and likewise any directories with +egg+ in their name will have
that portion replaced by the name of the egg directory, although we don’t make use of that feature in this example.

All of the files with _tmpl at the end of their filenames are treated as templates and will have the variables they
contain replaced automatically. All other files will remain unchanged.

Note: The small templating language used with paster create in files ending in _tmpl is described in detail in
the Paste util module documentation

When specifying a package name it can include capitalisation and _ characters but it should be borne in mind that
the actual name of the package will be the lowercase package name with the _ characters removed. If the package
name contains an _, the egg name will contain a _ character so occasionally the +egg+ name is different to the
+package+ name.

To avoid difficulty always recommend to users that they stick with package names that contain no _ characters so that
the names remain unique when made lowercase.

26.3.3 Implementing the Code

Now that the directory structure has been defined, the next step is to implement the commands that will convert this to
a ready-to-run project. The template creation commands are implemented by a class derived from paste.script.
templates.Template. This is how our example appears:

from paste.script.templates import Template, var

vars = [
var('version', 'Version (like 0.1)'),
var('description', 'One-line description of the package'),
var('long_description', 'Multi-line description (in reST)'),
var('keywords', 'Space-separated keywords/tags'),
var('author', 'Author name'),
var('author_email', 'Author email'),
var('url', 'URL of homepage'),
var('license_name', 'License name'),
var('zip_safe', 'True/False: if the package can be distributed as a .zip file',

default=False),
]

class ArtProjectTemplate(Template):
_template_dir = 'templates/default_project'
summary = 'Art project template'
vars = vars

26.3. Creating Paste templates 169

http://pythonpaste.org/module-paste.util.template.html

Pylons Reference Documentation, Release 1.0.2

The vars arguments can all be set at run time and will be available to be used as (in this instance) Cheetah template
variables in the files which end _tmpl. For example the setup.py_tmpl file for the default_project might
look like this:

from setuptools import setup, find_packages

version = ${repr(version)|"0.0"}

setup(name=${repr(project)},
version=version,
description="${description|nothing}",
long_description="""\
${long_description|nothing}""",
classifiers=[],
keywords=${repr(keywords)|empty},
author=${repr(author)|empty},
author_email=${repr(author_email)|empty},
url=${repr(url)|empty},
license=${repr(license_name)|empty},
packages=find_packages(exclude=['ez_setup']),
include_package_data=True,
zip_safe=${repr(bool(zip_safe))|False},
install_requires=[

Extra requirements go here
],
entry_points="""

[paste.app_factory]
main=${package}:make_app

""",
)

Note how the variables specified in vars earlier are used to generate the actual setup.py file.

In order to use the new templates they must be hooked up to the paster create command by means of an entry
point. In the setup.py file of the project (in which created the project template is going to be stored) we need to add
the following:

entry_points="""
[paste.paster_create_template]
art_project=art.entry.template:ArtProjectTemplate

""",

We also need to add PasteScript>=1.3 to the install_requires line.

install_requires=["PasteScript>=1.3"],

We just need to install the entry points now by running:

python setup.py develop

We should now be able to see a list of available templates with this command:

$ paster create --list-templates

Note: Windows users will need to add their Python scripts directory to their path or enter the full version of the
command, similar to this:

170 Chapter 26. Advanced Pylons

Pylons Reference Documentation, Release 1.0.2

C:\Python24\Scripts\paster.exe create --list-templates

You should see the following:

Available templates:
art_project: Art project template
basic_package: A basic setuptools-enabled package

There may be other projects too.

26.3.4 Troubleshooting

If the Art entries don’t show up, check whether it is possible to import the template.py file because any errors are
simply ignored by the paster create command rather than output as a warning.

If the code is correct, the issue might be that the entry points data hasn’t been updated. Examine the Python
site-packages directory and delete the Art.egg-link files, any Art*.egg files or directories and remove
any entries for art from easy_install.pth (replacing Art with the name chosen for the project of course). Then
re-run python setup.py develop to install the correct information.

If problems are still evident, then running the following code will print out a list of all entry points. It might help track
the problem down:

import pkg_resources
for x in pkg_resources.iter_group_name(None, None):

print x

26.3.5 Using the Template

Now that the entry point is working, a new project can be created:

$ paster create --template=art TestProject

Paster will ask lots of questions based on the variables set up in vars earlier. Pressing return will cause the default
to be used. The final result is a nice project template ready for people to start coding with.

26.3.6 Implementing Pylons Templates

If the development context is subject to a frequent need to create lots of Pylons projects, each with a slightly different
setup from the standard Pylons defaults then it is probably desirable to create a customised Pylons template to use
when generating projects. This can be done in exactly the way described in this document.

First, set up a new Python package, perhaps called something like CustomPylons (obviously, don’t use the Py-
lons name because Pylons itself is already using it). Then check out the Pylons source code and copy the py-
lons/templates/default_project directory into the new project as a starting point. The next stage is to add the custom
vars and Template class and set up the entry points in the CustomPylons setup.py file.

After those tasks have been completed, it is then possible to create customised templates (ultimately based on the
Pylons one) by using the CustomPylons package.

26.3. Creating Paste templates 171

http://pylonshq.com/project/pylonshq/browser/Pylons/trunk/pylons/templates/default_project
http://pylonshq.com/project/pylonshq/browser/Pylons/trunk/pylons/templates/default_project

Pylons Reference Documentation, Release 1.0.2

26.4 Using Entry Points to Write Plugins

26.4.1 Introduction

An entry point is a Python object in a project’s code that is identified by a string in the project’s setup.py file.
The entry point is referenced by a group and a name so that the object may be discoverable. This means that another
application can search for all the installed software that has an entry point with a particular group name, and then
access the Python object associated with that name.

This is extremely useful because it means it is possible to write plugins for an appropriately-designed application that
can be loaded at run time. This document describes just such an application.

It is important to understand that entry points are a feature of the new Python eggs package format and are not a
standard feature of Python. To learn about eggs, their benefits, how to install them and how to set them up, see:

• Python Eggs

• Easy Install

• Setuptools

If reading the above documentation is inconvenient, suffice it to say that eggs are created via a similar setup.py file
to the one used by Python’s own distutils module — except that eggs have some powerful extra features such as entry
points and the ability to specify module dependencies and have them automatically installed by easy_install
when the application itself is installed.

For those developers unfamiliar with distutils: it is the standard mechanism by which Python packages should
be distributed. To use it, add a setup.py file to the desired project, insert the required metadata and specify the
important files. The setup.py file can be used to issue various commands which create distributions of the pacakge
in various formats for users to install.

26.4.2 Creating Plugins

This document describes how to use entry points to create a plugin mechansim which allows new types of content to
be added to a content management system but we are going to start by looking at the plugin.

Say the standard way the CMS creates a plugin is with the make_plugin() function. In order for a plugin to
be a plugin it must therefore have the function which takes the same arguments as the make_plugin() function
and returns a plugin. We are going to add some image plugins to the CMS so we setup a project with the following
directory structure:

+ image_plugins
+ __init__.py

+ setup.py

The image_plugins/__init__.py file looks like this:

def make_jpeg_image_plugin():
return "This would return the JPEG image plugin"

def make_png_image_plugin():
return "This would return the PNG image plugin"

We have now defined our plugins so we need to define our entry points. First lets write a basic setup.py for the
project:

172 Chapter 26. Advanced Pylons

http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/setuptools
http://docs.python.org/lib/module-distutils.html

Pylons Reference Documentation, Release 1.0.2

from setuptools import setup, find_packages

setup(
name='ImagePlugins',
version="1.0",
description="Image plugins for the imaginary CMS 1.0 project",
author="James Gardner",
packages=find_packages(),
include_package_data=True,

)

When using setuptools we can specify the find_packages() function and
include_package_data=True rather than having to manually list all the modules and package data like
we had to do in the old distutils setup.py.

Because the plugin is designed to work with the (imaginary) CMS 1.0 package, we need to specify that the plugin
requires the CMS to be installed too and so we add this line to the setup() function:

install_requires=["CMS>=1.0"],

Now when the plugins are installed, CMS 1.0 or above will be installed automatically if it is not already present.

There are lots of other arguments such as author_email or url which you can add to the setup.py function
too.

We are interested in adding the entry points. We need to decide on a group name for the entry points. It is traditional
to use the name of the package using the entry point, separated by a . character and then use a name that describes
what the entry point does. For our example cms.plugin might be an appropriate name for the entry point. Since
the image_plugin module contains two plugins we will need two entries. Add the following to the setup.py
function:

entry_points="""
[cms.plugin]
jpg_image=image_plugin:make_jpeg_image_plugin
png_image=image_plugin:make_png_image_plugin

""",

Group names are specified in square brackets, plugin names are specified in the format name=module.import.
path:object_within_the_module. The object doesn’t have to be a function and can have any valid Python
name. The module import path doesn’t have to be a top level component as it is in this example and the name of the
entry point doesn’t have to be the same as the name of the object it is pointing to.

The developer can add as many entries as desired in each group as long as the names are different and the same holds
for adding groups. It is also possible to specify the entry points as a Python dictionary rather than a string if that
approach is preferred.

There are two more things we need to do to complete the plugin. The first is to include an ez_setup module so
that if the user installing the plugin doesn’t have setuptools installed, it will be installed for them. We do this by
adding the following to the very top of the setup.py file before the import:

from ez_setup import use_setuptools
use_setuptools()

We also need to download the ez_setup.py file into our project directory at the same level as setup.py.

Note: If you keep your project in SVN there is a trick you can use with the ‘SVN:externals to keep the ez_setup.
py file up to date.

26.4. Using Entry Points to Write Plugins 173

http://peak.telecommunity.com/DevCenter/setuptools#managing-multiple-projects

Pylons Reference Documentation, Release 1.0.2

Finally in order for the CMS to find the plugins we need to install them. We can do this with:

$ python setup.py install

as usual or, since we might go on to develop the plugins further we can install them using a special development mode
which sets up the paths to run the plugins from the source rather than installing them to Python’s site-packages
directory:

$ python setup.py develop

Both commands will download and install setuptools if you don’t already have it installed.

26.4.3 Using Plugins

Now that the plugin is written we need to write the code in the CMS package to load it. Luckily this is even easier.

There are actually lots of ways of discovering plugins. For example: by distribution name and version requirement
(such as ImagePlugins>=1.0) or by the entry point group and name (eg jpg_image). For this example we are
choosing the latter, here is a simple script for loading the plugins:

from pkg_resources import iter_entry_points
for entry_point in iter_entry_points(group='cms.plugin', name=None):

print(entry_point)

from pkg_resources import iter_entry_points
available_methods = []
for entry_point in iter_entry_points(group='authkit.method', name=None):

available_methods.append(entry_point.load())

Executing this short script, will result in the following output:

This would return the JPEG image plugin
This would return the PNG image plugin

The iter_entry_points() function has looped though all the objects in the cms.plugin group and returned
the function they were associated with. The application then called the function that the entry point was pointing to.

We hope that we have demonstrated the power of entry points for building extensible code and developers are encour-
aged to read the pkg_resources module documentation to learn about some more features of the eggs format.

174 Chapter 26. Advanced Pylons

http://peak.telecommunity.com/DevCenter/PkgResources

CHAPTER 27

Pylons Execution Analysis

By Mike Orr and Alfredo Deza

This chapter shows how Pylons calls your application, and how Pylons interacts with Paste, Routes, Mako, and its
other dependencies. We’ll create a simple application and then analyze the Python code executed starting from the
moment we run the “paster serve” command.

Abbreviations: $APP is your top-level application directory. $SP is the site-packages directory where Pylons is
installed. $BIN is the location of paster and other executables. $SP paths are shown in pip style ($SP/pylons)
rather than easy_install style ($SP/Pylons-VERSION.egg/pylons).

27.1 The sample application

1. Create an application called “Analysis” with a controller called “main”:

$ paster create -t pylons Analysis
$ cd Analysis
$ paster controller main

Press Enter at all question prompts.

2. Edit analysis/controllers/main.py to look like this:

from analysis.lib.base import BaseController

class MainController(BaseController):

def index(self):
return '<h1>Welcome to the Analysis Demo</h1>Here is a

→˓link.'

def page2(self):
return 'Thank you for using the Analysis Demo. Home'

175

Pylons Reference Documentation, Release 1.0.2

There are two shortcuts here which you would not use in a normal application. One, we’re returning incomplete
HTML documents. Two, we’ve hardcoded the URLs to make the analysis easier to follow, rather than using the
url object.

3. Now edit analysis/config/routing.py. Add these lines after “CUSTOM ROUTES HERE” (line 21):

map.connect("home", "/", controller="main", action="index")
map.connect("page2", "/page2", controller="main", action="page2")

4. Delete the file analysis/public/index.html.

5. Now run the server. (Press ctrl-C to quit it.)

$ paster serve development.ini
Starting server in PID 7341.
serving on http://127.0.0.1:5000

27.2 Pylons’ dependencies

Pylons 1.0 has the following direct and indirect dependencies, which will be found in your site-packages directory
($SP):

• Beaker 1.5.4

• decorator 3.2.0

• FormEncode 1.2.2

• Mako 0.3.4

• MarkupSafe 0.9.3

• Nose 0.11.4

• Paste 1.7.3.1

• PasteDeploy 1.3.3

• PasteScript 1.7.3

• Routes 1.12.3

• simplejson 2.0.9 (if Python < 2.6)

• Tempita 0.4

• WebError 0.10.2

• WebHelpers 1.2

• WebOb 0.9.8

• Webtest 1.2.1

These are the current versions as of August 29, 2010. Your installation may have slightly newer or older versions.

176 Chapter 27. Pylons Execution Analysis

Pylons Reference Documentation, Release 1.0.2

27.3 The analysis

27.3.1 Startup (PasteScript)

When you run paster serve development.ini, it runs the “$BIN/paster” program. This is a platform-
specific stub created by pip or easy_install. It does this:

__requires__ = 'PasteScript==1.7.3'
import sys
from pkg_resources import load_entry_point

sys.exit(
load_entry_point('PasteScript==1.7.3', 'console_scripts', 'paster')()

)

This says to load a Python object “paster” located in an egg “PasteScript”, version 1.7.3, under the entry point group
[console_scripts].

To explain what this means we have to get into Setuptools. Setuptools is Python’s de facto package manager, and
was installed as part of your virtualenv or Pylons installation. (If you’re using Distribute 0.6, an alternative package
manager, it works the same way.) load_entry_point is a function that looks up a Python object via entry point
and returns it.

So what’s an entry point? It’s an alias for a Python object. Here’s the entry point itself:

[console_scripts]
paster=paste.script.command:run

This is from $SP/PasteScript-VERSION.egg-info/entry_points.txt. (If you used easy_install rather than pip, the path
would be slightly different: $APP/PasteScript-VERSION.egg/EGG-INFO/entry_points.txt.)

“console_scripts” is the entry point group. “paster” is the entry point. The right side of the value tells which module to
import (paste.script.command) and which object in it to return (the run function). (To create an entry point,
define it in your package’s setup.py. Pip or easy_install will create the egg_info metadata from that. If you modify a
package’s entry points, you must reinstall the package to update the egg_info.)

The most common use case for entry points is for plugins. So Nose for instance defines an entry point group by which
it will look for plugins. Any other package can provide plugins for Nose by defining entry points in that group. Paster
uses plugins extensively, as we’ll soon see.

So to make a long story short, “paster serve” calls this run function. I inserted print statements into paste.
script.command to figure out what it does. Here’s a simplified description:

1. The run() function parses the command-line options into a subcommand "serve" with arguments
["development.ini"].

2. It calls get_commands(), which loads Paster commands from plugins located at various entry points. (You
can add custom commands with the “–plugin” command-line argument.) Paste’s standard commands are listed
in the same entry_points.txt file we saw above:

[paste.global_paster_command]
serve=paste.script.serve:ServeCommand [Config]
#... other commands like "make-config", "setup-app", etc ...

3. It calls invoke(), which essentially does paste.script.serve.
ServeCommand(["development.ini"]).run(). This in turn calls ServeCommand.command(),
which handles daemonizing and other top-level stuff. Since our command line is short, there’s no top-level stuff
to do. It creates ‘server’ and ‘app’ objects based on the configuration file, and calls server(app).

27.3. The analysis 177

Pylons Reference Documentation, Release 1.0.2

27.3.2 Loading the server and the application (PasteDeploy)

This all happens during step 3 of the application startup. We need to find and instantiate the WSGI application and
server based on the configuration file. The application is our Analysis application. The server is Paste’s built-in
multithreaded HTTP server. A simplified version of the code is:

Inside paste.script.serve module, ServeCommand.command() method.
from paste.deploy.loadwsgi import loadapp, loadserver
server = self.loadserver(server_spec, name=server_name,

relative_to=base, global_conf=vars)
app = self.loadapp(app_spec, name=app_name,

relative_to=base, global_conf=vars)

loadserver() and loadapp() are defined in module paste.deploy.loadwsgi. The code here is complex,
so we’ll just look at its general behavior. Both functions see the “config:” URI and read our config file. Since there is
no server name or app name they both default to “main”. Therefore loadserver() looks for a “[server:main]” section in
the config file, and loadapp()‘ looks for “[app:main]”. Here’s what they find in “development.ini”:

[server:main]
use = egg:Paste#http
host = 127.0.0.1
port = 5000

[app:main]
use = egg:Analysis
full_stack = true
static_files = true
...

The “use =” line in each section tells which object to load. The other lines are configuration parameters for that object,
or for plugins that object is expected to load. We can also put custom parameters in [app:main] for our application to
read directly.

Server loading

1. loadserver()’s args are uri="config:development.ini", name=None,
relative_to="$APP".

2. A “config:” URI means to read a config file.

3. A server name was not specified so it defaults to “main”. So loadserver() looks for a section “[server:main]”. The
“server” part comes from the loadwsgi._Server.config_prefixes class attribute in $SP/paste/deploy/loadwsgi.py).

4. “use = egg:Paste#http” says to load an egg called “Paste”.

5. loadwsgi._Server.egg_protocols lists two protocols it supports: “server_factory” and “server_runner”.

6. “paste.server_runner” is an entry point group in the “Paste” egg, and it has an entry point “http”. The relevant
lines in $SP/Paste*.egg_info/entry_points.txt are:

[paste.server_runner]
http = paste.httpserver:server_runner

7. There’s a server_runner() function in the paste.httpserver module ($SP/paste/httpserver.py).

We’ll stop here for a moment and look at how the application is loaded.

178 Chapter 27. Pylons Execution Analysis

Pylons Reference Documentation, Release 1.0.2

Application loading

1. loadapp() looks for a section “[app:main]” in the config file. The “app” part comes from the load-
wsgi._App.config_prefixes class attribute (in $SP/paste/deploy/loadwsgi.py).

2. “use = egg:Analysis” says to find an egg called “Analysis”.

3. loadwsgi._App.egg_protocols lists “paste.app_factory” as one of the protocols it supports.

4. “paste.app_factory” is also an entry point group in the egg, as seen in $APP/Analysis.egg-info/entry_points.txt:

[paste.app_factory]
main = analysis.config.middleware:make_app

5. The line “main = analysis.config.middleware:make_app” means to look for a make_app() object
in the analysis package. This is a function imported from analysis.config.middleware
($APP/analysis/config/middleware.py).

27.3.3 Instantiating the application (Analysis)

Here’s a closer look at our application’s make_app function:

In $APP/analysis/config/middleware.py
def make_app(global_conf, full_stack=True, static_files=True, **app_conf):

config = load_environment(global_conf, app_conf)
app = PylonsApp(config=config)
app = SomeMiddleware(app, ...) # Repeated for several middlewares.
app.config = config
return app

This sets up the Pylons environment (next subsection), creates the application object (following subsection), wraps it
in several layers of middleware (listed in “Anatomy of a Request” below), and returns the complete application object.

The [DEFAULT] section of the config file is passed as dict global_conf. The [app:main] section is passed as
keyword arguments into dict app_conf.

full_stack defaults to True because we’re running the application standalone. If we were embedding this ap-
plication as a WSGI component of some larger application, we’d set full_stack to False to disable some of the
middleware.

static_files=Truemeans to serve static files from our public directory ($APP/analysis/public). Advanced users
can arrange for Apache to serve the static files itself, and put “static_files = false” in their configuration file to gain a
bit of efficiency.

load_environment & pylons.config

Before we begin, remember that pylons.config, pylons.app_globals, pylons.request, pylons.
response, pylons.session, pylons.url, and pylons.cache are special globals that change value de-
pending on the current request. The objects are proxies which maintain a thread-local stack of real values. Pylons
pushes the actual values onto them at the beginning of a request, and pops them off at the end. (Some of them it also
pushes at other times so they can be used outside of requests.) The proxies delegate attribute access and key access
to the topmost actual object on the stack. (You can also call myproxy._current_obj() to get the actual object
itself.) The proxy code is in paste.registry.StackedObjectProxy, so these are called “StackedObject-
Proxies”, or “SOPs” for short.

The first thing analysis.config.middleware.make_app() does is call analysis.config.
environment.load_environment():

27.3. The analysis 179

Pylons Reference Documentation, Release 1.0.2

def load_environment(global_conf, app_conf):
config = PylonsConfig()
root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
paths = dict(root=root,

controllers=os.path.join(root, 'controllers'),
static_files=os.path.join(root, 'public'),
templates=[os.path.join(root, 'templates')])

Initialize config with the basic options
config.init_app(global_conf, app_conf, package='analysis',

paths=paths)
config['routes.map'] = make_map(config)
config['pylons.app_globals'] = app_globals.Globals(config)
config['pylons.h'] = analysis.lib.helpers

Setup cache object as early as possible
import pylons
pylons.cache._push_object(config['pylons.app_globals'].cache)

Create the Mako TemplateLookup, with the default auto-escaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(

directories=paths['templates'],
error_handler=handle_mako_error,
module_directory=os.path.join(app_conf['cache_dir'], 'templates'),
input_encoding='utf-8', default_filters=['escape'],
imports=['from webhelpers.html import escape'])

CONFIGURATION OPTIONS HERE (note: all config options will override
any Pylons config options)

return config

config is the Pylons configuration object, which will later be pushed onto pylons.config. It’s an instance of
pylons.configuration.PylonsConfig, a dict subclass. config.init_app() initializes the dict’s keys.
It sets the keys to a merger of app_conf and global_conf (with app_conf overriding). It also adds “app_conf” and
“global_conf” keys so you can access the original app_conf and global_conf if desired. It also adds several Pylons-
specific keys.

config["routes.map"] is the Routes map defined in analysis.config.routing.make_map().

config["pylons.app_globals"] is the application’s globals object, which will later be pushed onto
pylons.app_globals. It’s an instance of analysis.lib.app_globals.Globals.

config["pylons.h"] is the helpers module, analysis.lib.helpers. Pylons will assign it to h in the
templates’ namespace.

The “cache” lines push pylons.app_globals.cache onto pylons.cache for backward compatibility. This
gives a preview of how StackedObjectProxies work.

The Mako stanza creates a TemplateLookup, which render() will use to find templates. The object is put on
app_globals.

If you’ve used older versions of Pylons, you’ll notice a couple differences in 1.0. The config object is created as a
local variable and returned, and it’s passed explicitly to the route map factory and globals factory. Previous versions
pushed it onto pylons.config immediately and used it from there. This was changed to make it easier to nest
Pylons applications inside other Pylons applications.

The other difference is that Buffet is gone, and along with it the template_engine argument and template config
options. Pylons 1.0 gets out of the business of initializing template engines. You use one of the standard render

180 Chapter 27. Pylons Execution Analysis

Pylons Reference Documentation, Release 1.0.2

functions such as render_mako or write your own, and define any attributes in app_globals that your render
function depends on.

PylonsApp

The second line of make_app() creates a Pylons application object based on your configuration. Again the config
object is passed around explicitly, unlike older versions of Pylons. A Pylons application is an instance of pylons.
wsgiapp.PylonsApp instance. (Older versions of Pylons had a PylonsBaseWSGIApp superclass, but that has
been merged into PylonsApp.)

Middleware

make_app() then wraps the application (the app variable) in several layers of middleware. Each middleware
provides an optional add-on service.

Mid-
dle-
ware

Service Effect if disabled

RoutesMid-
dle-
ware

Use Routes to manage URLs. Routes and pylons.url won’t work.

Ses-
sion-
Mid-
dle-
ware

HTTP sessions using Beaker, with flexible persistence
backends (disk, memached, database).

pylons.session won’t work.

Er-
rorHan-
dler

Display interactive traceback if an exception occurs. In
production mode, email the traceback to the site admin.

Paste will catch exceptions and convert them
to Internal Server Error.

Status-
CodeRedi-
rect

If an HTTP error occurs, make a subrequest to display
a fancy styled HTML error page.

If an HTTP error occurs, display a plain white
HTML page with the error message.

Reg-
istry-
Man-
ager

Handles the special globals (pylons.request,
etc).

The special globals won’t work. There are
other ways to access the objects without go-
ing through the special globals.

Static-
URL-
Parser

Serve the static files in the application’s public direc-
tory.

The static files won’t be found. Presumably
you’ve configured Apache to serve them di-
rectly.

Cas-
cade

Call several sub-middlewares in order, and use the first
one that doesn’t return “404 Not Found”. Used in con-
junction with StaticURLParser.

No cascading through alternative apps.

At the end of the function, app.config is set to the config object, so that any part of the application can access
the config without going through the special global.

27.3.4 Anatomy of a request

Let’s say you’re running the demo and click the “link” link on the home page. The browser sends a request for
“http://localhost:5000/page2”. In my Firefox the HTTP request headers are:

27.3. The analysis 181

http://localhost:5000/page2

Pylons Reference Documentation, Release 1.0.2

GET /page2
Host: 127.0.0.1:5000
User-Agent: Mozilla/5.0 ...
Accept: text/html,...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://127.0.0.1/5000/
Cache-Control max-age=0

The response is:

HTTP/1.x 200 OK
Server: PasteWSGIServer/0.5 Python/2.6.4
Date: Sun, 06 Dec 2009 14:06:05 GMT
Content-Type: text/html; charset=utf-8
Pragma: no-cache
Cache-Control: no-cache
Content-Length: 59

Thank you for using the Analysis Demo. Home

Here’s the processing sequence:

1. server(app) is still running, called by ServeCommand.command() in $SP/paste/script/serve.py.

2. server is actually paste.httpserver.server_runner() in $SP/paste/httpserver. The only keyword
args are ‘host’ and ‘port’ extracted from the config file. server_runner de-stringifies the arguments and
calls serve(wsgi_app, **kwargs) (same module).

3. serve()’s ‘use_threadpool’ arg defaults to True, so it creates a WSGIThreadPoolServer instance called
(server) with the following inheritance:

SocketServer.BaseServer # In SocketServer.py in Python stdlib.
BaseHTTPServer.HTTPServer # In BaseHTTPServer.py in Python stdlib.
paste.httpserver.SecureHTTPServer # Adds SSL (HTTPS).
paste.httpserver.WSGIServerBase # Adds WSGI.
paste.httpserver.WSGIThreadPoolServer

multiple inheritance: ThreadPoolMixIn <= ThreadPool

Note that SecureHTTPServer overrides the implementation of Python's
SocketServer.TCPServer

4. It calls server.serve_forever(), implemented by the ThreadPoolMixIn superclass. This calls
self.handle_request() in a loop until self.running becomes false. That initiates this call stack:

In paste.httpserver.serve(), calling 'server.serve_forever()'
ThreadPoolMixIn.serve_forever() # Defined in paste.httpserver.
-> TCPServer.handle_request() # Called for every request.
-> WSGIServerBase.get_request()
-> SecureHTTPServer.get_request()
-> self.socket.accept() # Defined in stdlib socket module.

self.socket.accept() blocks, waiting for the next request.

5. The request arrives and self.socket.accept() returns a new socket for the connection. TCPServer.
handle_request() continues. It calls ThreadPoolMixIn.process_request(), which puts the

182 Chapter 27. Pylons Execution Analysis

Pylons Reference Documentation, Release 1.0.2

request in a thread queue:

self.thread_pooladd.add_task(
lambda: self.process_request_in_thread(request, client_address))
'request' is the connection socket.

The thread pool is defined in the ThreadPool class. It spawns a number of threads which each wait on the
queue for a callable to run. In this case the callable will be a complete Web transaction including sending the
HTML page to the client. Each thread will repeatedly process transactions from the queue until they receive a
sentinel value ordering them to die.

The main thread goes back to listening for other requests, so we’re no longer interested in it.

6. Thread #2 pulls the lambda out of the queue and calls it:

lambda
-> ThreadPoolMixIn.process_request_in_thread()
-> BaseServer.finish_request()
-> self.RequestHandlerClass(request, client_address, self) # Instantiates this.

The class instantiated is paste.httpserver.WSGIHandler; i.e., the 'handler'
→˓variable in serve().

7. The newly-created request handler takes over:

SocketServer.BaseRequestHandler.__init__(request, client_address, server)
-> WSGIHandler.handle()
-> BaseHTTPRequestHandler.handle() # In stdlib BaseHTTPServer.py

Handles requests in a loop until self.close_connection is true. (For HTTP
→˓keepalive?)
-> WSGIHandler.handle_one_request()

Reads the command from the socket. The command is
"GET /page2 HTTP/1.1" plus the HTTP headers above.
BaseHTTPRequestHandler.parse_request() parses this into attributes
.command, .path, .request_version, and .headers.

-> WSGIHandlerMixin.wsgi_execute().
-> WSGIHandlerMixin.wsgi_setup()

Creates the .wsgi_environ dict.

The WSGI environment dict is described in PEP 333, the WSGI specification. It contains various keys specifying
the URL to fetch, query parameters, server info, etc. All keys required by the CGI specification are present, as
are other keys specific to WSGI or to paricular middleware. The application will calculate a response based on
the dict. The application is wrapped in layers of middleware – nested function calls – which modify the dict on
the way in and modify the response on the way out.

8. The request handler, still in WSGIHandlerMixin.wsgi_execute(), calls the application thus:

result = self.server.wsgi_application(self.wsgi_environ,
self.wsgi_start_response)

wsgi_start_response is a callable mandated by the WSGI spec. The application will call it to specify the
HTTP headers. The return value is an iteration of strings, which when concatenated form the HTML document
to send to the browser. Other MIME types are handled analagously.

9. The application, as we remember, was returned by analysis.config.middleware.make_app(). It’s
wrapped in several layers of middleware, so calling it will execute the middleware in reverse order of how they’re
listed in $APP/analysis/config/middleware.py and $SP/pylons/wsgiapp.py:

• Cascade (defined in $SP/paste/cascade.py) lists a series of applications which will be tried in
order (Skipped if static_files is set to False):

27.3. The analysis 183

Pylons Reference Documentation, Release 1.0.2

(a) StaticURLParser (defined in $SP/paste/urlparser) looks for a file URL under
$APP/analysis/public that matches the URL. The demo has no static files.

(b) If that fails the cascader tries your application. But first there are other middleware to go
through. . .

• RegistryManager (defined in $SP/paste/registry.py) makes Pylons special globals both
thread-local and middleware-local. This includes app_globals, cache, request, re-
sponse, session, tmpl_context, url, and any other StackedObjectProxy listed in
$SP/pylons/__init__.py. (h is a module so it doesn’t need a proxy.)

• StatusCodeRedirect (defined in $SP/pylons/middleware.py) intercepts any HTTP error
status returned by the application (e.g., “Page Not Found”, “Internal Server Error”) and sends
another request to the application to get the appropriate error page to display instead. (Skipped
if full_stack argument was false.)

• ErrorHandler (defined in $SP/pylons/middleware.py) sends an interactive traceback to the
browser if the app raises an exception, if “debug” is true in the config file. Otherwise it attempts
to email the traceback to the site administrator, and substitutes a generic Internal Server Error
for the response. (Skipped if full_stack argument was false.

• User-defined middleware goes here.

• SessionMiddleware (wsgiapp.py) adds Beaker session support (the pylons.session
object). (Skipped if the WSGI environment has a key ‘session’ – it doesn’t in this demo.)

• RoutesMiddleware (wsgiapp.py) compares the request URI against the routing rules
in $APP/analysis/config/routing.py and sets ‘wsgi.routing_args’ to the routing match dict
(useful) and ‘routes.route’ to the Route (probably not useful). Pylons 1.0 apps have a
singleton=False argument that suppresses initializing the deprecated url_for() func-
tion. Routes now puts a URL generator in the WSGI environment, which Pylons aliases to
pylons.url.

• The innermost middleware calls the PylonsApp instance it was initialized with.

Note: CacheMiddleware is no longer used in Pylons 1.0. Instead, app_globals creates the cache
as an attribute, and a line in environment.py aliases pylons.cache to it.

10. Surprise! PylonsApp is itself middleware. Its .__call__() method does:

self.setup_app_env(environ, start_response)
controller = self.resolve(environ, start_response)
response = self.dispatch(controller, environ, start_response)
return response

.setup_app_env() registers all those special globals.

.resolve() calculates the controller class based on the route chosen by the RoutesMiddleware, and returns
the controller class.

.dispatch instantiates the controller class and calls in the WSGI manner. If the controller does not exist
(.resolve() returned None), raise an Exception that tells you what controller did not have any content.

This method also handles the special URL “/_test_vars”, which is enabled if the application is running under
a Nose test. This URL initializes Pylons’ special globals, for tests that have to access them before making a
regular request.

11. analysis.controllers.main.MainController does not have a .__call__() method, so
control falls to its parent, analysis.lib.base.BaseController. This trivially calls the grandparent,
pylons.controllers.WSGIController. It calls the action method MainController.page2().
The action method may have any number of positional arguments as long as they correspond to variables in the

184 Chapter 27. Pylons Execution Analysis

http://beaker.groovie.org/

Pylons Reference Documentation, Release 1.0.2

routing match dict. (GET/POST variables are in the request.params dict.) If the method has a **kwargs
argument, all other match variables are put there. Any variables passed to the action method are also put on the
tmpl_context object as attributes. If an action method name starts with “_”, it’s private and HTTPNotFound is
raised.

12. If the controller has .__before__() and/or .__after__() methods, they are called before and after the action,
respectively. These can perform authorization, lock OS resources, etc. These methods can have arguments in
the same manner as the action method. However, if the code is used by all controllers, most Pylons programmers
prefer to it in the base controller’s .__call__ method instead.

13. The action method returns a string, unicode, Response object, or is a generator of strings. In this trivial
case it returns a string. A typical Pylons action would set some tmpl_context attributes and ‘return ren-
der(‘/some/template.html”)’ . In either case the global response object’s body would be set to the string.

14. WSGIController.__call__() continues, converting the Response object to an appropriate WSGI
return value. (First it calls the start_response callback to specify the HTTP headers, then it returns an iteration of
strings. The Response object converts unicode to utf-8 encoded strings, or whatever encoding you’ve specified
in the config file.)

15. The stack of middleware calls unwinds, each modifying the return value and headers if it desires.

16. The server receives the final return value. (We’re way back in paste.httpserver.
WSGIHandlerMixin.wsgi_execute() now.) The outermost middleware has called back to server.
start_response(), which has saved the status and HTTP headers in .wsgi_curr_headers.
.wsgi_execute() then iterates the application’s return value, calling .wsgi_write_chunk(chunk)
for each encoded string yielded. .wsgi_write_chunk('') formats the status and HTTP headers and
sends them on the socket if they haven’t been sent yet, then sends the chunk. The convoluted header behavior
here is mandated by the WSGI spec.

17. Control returns to BaseHTTPRequestHandler.handle(). .close_connection is true so
this method returns. The call stack continues unwinding all the way to paste.httpserver.
ThreadPoolMixIn.process_request_in_thread(). This tries to finish the request first and then
close it unless it finds errors in it to end raising an Exception.

18. The request lambda finishes and control returns to ThreadPool.worker_thread_callback(). It waits
for another request in the thread queue. If the next item in the queue is the shutdown sentinel value, thread #2
dies.

Thus endeth our request’s long journey, and this analysis is finished too.

27.3. The analysis 185

Pylons Reference Documentation, Release 1.0.2

186 Chapter 27. Pylons Execution Analysis

CHAPTER 28

Pylons Modules

28.1 pylons.commands – Command line functions

Paster Commands, for use with paster in your project

The following commands are made available via paster utilizing setuptools points discovery. These can be used from
the command line when the directory is the Pylons project.

Commands available:

controller Create a Controller and accompanying functional test

restcontroller Create a REST Controller and accompanying functional test

shell Open an interactive shell with the Pylons app loaded

Example usage:

~/sample$ paster controller account
Creating /Users/ben/sample/sample/controllers/account.py
Creating /Users/ben/sample/sample/tests/functional/test_account.py
~/sample$

How it Works

paster is a command line script (from the PasteScript package) that allows the creation of context sensitive com-
mands. paster looks in the current directory for a .egg-info directory, then loads the paster_plugins.txt
file.

Using setuptools entry points, paster looks for functions registered with setuptools as paste.
paster_command(). These are defined in the entry_points block in each packages setup.py module.

This same system is used when running paster create to determine what templates are available when creating
new projects.

187

Pylons Reference Documentation, Release 1.0.2

28.1.1 Module Contents

class pylons.commands.ControllerCommand(name)
Create a Controller and accompanying functional test

The Controller command will create the standard controller template file and associated functional test to speed
creation of controllers.

Example usage:

yourproj% paster controller comments
Creating yourproj/yourproj/controllers/comments.py
Creating yourproj/yourproj/tests/functional/test_comments.py

If you’d like to have controllers underneath a directory, just include the path as the controller name and the
necessary directories will be created for you:

yourproj% paster controller admin/trackback
Creating yourproj/controllers/admin
Creating yourproj/yourproj/controllers/admin/trackback.py
Creating yourproj/yourproj/tests/functional/test_admin_trackback.py

class pylons.commands.RestControllerCommand(name)
Create a REST Controller and accompanying functional test

The RestController command will create a REST-based Controller file for use with the resource() REST-
based dispatching. This template includes the methods that resource() dispatches to in addition to doc
strings for clarification on when the methods will be called.

The first argument should be the singular form of the REST resource. The second argument is the plural form of
the word. If its a nested controller, put the directory information in front as shown in the second example below.

Example usage:

yourproj% paster restcontroller comment comments
Creating yourproj/yourproj/controllers/comments.py
Creating yourproj/yourproj/tests/functional/test_comments.py

If you’d like to have controllers underneath a directory, just include the path as the controller name and the
necessary directories will be created for you:

yourproj% paster restcontroller admin/tracback admin/trackbacks
Creating yourproj/controllers/admin
Creating yourproj/yourproj/controllers/admin/trackbacks.py
Creating yourproj/yourproj/tests/functional/test_admin_trackbacks.py

class pylons.commands.ShellCommand(name)
Open an interactive shell with the Pylons app loaded

The optional CONFIG_FILE argument specifies the config file to use for the interactive shell. CONFIG_FILE
defaults to ‘development.ini’.

This allows you to test your mapper, models, and simulate web requests using paste.fixture.

Example:

$ paster shell my-development.ini

188 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

28.2 pylons.configuration – Configuration object and defaults
setup

Configuration object and defaults setup

The PylonsConfig object is initialized in pylons projects inside the config/environment.py module. Importing
the config object from module causes the PylonsConfig object to be created, and setup in app-safe manner so that
multiple apps being setup avoid conflicts.

After importing config, the project should then call init_app() with the appropriate options to setup the config-
uration. In the config data passed with init_app(), various defaults are set use with Paste and Routes.

28.2.1 Module Contents

class pylons.configuration.PylonsConfig
Pylons configuration object

The Pylons configuration object is a per-application instance object that retains the information regarding the
global and app conf’s as well as per-application instance specific data such as the mapper, and the paths for this
instance.

The config object is available in your application as the Pylons global pylons.config. For example:

from pylons import config

template_paths = config['pylons.paths']['templates']

There’s several useful keys of the config object most people will be interested in:

pylons.paths A dict of absolute paths that were defined in the applications config/environment.py
module.

pylons.environ_config Dict of environ keys for where in the environ to pickup various objects for
registering with Pylons. If these are present then PylonsApp will use them from environ rather than using
default middleware from Beaker. Valid keys are: session, cache

pylons.strict_tmpl_context Whether or not the tmpl_context object should throw an attribute
error when access is attempted to an attribute that doesn’t exist. Defaults to True.

pylons.tmpl_context_attach_args Whethor or not Routes variables should automatically be at-
tached to the tmpl_context object when specified in a controllers method.

pylons.request_options A dict of Content-Type related default settings for new instances of
Request. May contain the values charset and errors and decode_param_names. Overrides
the Pylons default values specified by the request_defaults dict.

pylons.response_options A dict of Content-Type related default settings for new instances of
Response. May contain the values content_type, charset and errors. Overrides the Pylons
default values specified by the response_defaults dict.

routes.map Mapper object used for Routing. Yes, it is possible to add routes after your application has
started running.

init_app(global_conf, app_conf, package=None, paths=None)
Initialize configuration for the application

global_conf Several options are expected to be set for a Pylons web application. They will be loaded
from the global_config which has the main Paste options. If debug is not enabled as a global config
option, the following option must be set:

28.2. pylons.configuration – Configuration object and defaults setup 189

Pylons Reference Documentation, Release 1.0.2

• error_to - The email address to send the debug error to

The optional config options in this case are:

• smtp_server - The SMTP server to use, defaults to ‘localhost’

• error_log - A logfile to write the error to

• error_subject_prefix - The prefix of the error email subject

• from_address - Whom the error email should be from

app_conf Defaults supplied via the [app:main] section from the Paste config file. load_config only
cares about whether a ‘prefix’ option is set, if so it will update Routes to ensure URL’s take that into
account.

package The name of the application package, to be stored in the app_conf.

Changed in version 1.0: template_engine option is no longer supported.

28.3 pylons.controllers – Controllers

This module makes available the WSGIController and XMLRPCController for easier importing.

28.4 pylons.controllers.core – WSGIController Class

The core WSGIController

28.4.1 Module Contents

class pylons.controllers.core.WSGIController
WSGI Controller that follows WSGI spec for calling and return values

The Pylons WSGI Controller handles incoming web requests that are dispatched from the PylonsBaseWS-
GIApp. These requests result in a new instance of the WSGIController being created, which is then called with
the dict options from the Routes match. The standard WSGI response is then returned with start_response called
as per the WSGI spec.

Special WSGIController methods you may define:

__before__ This method is called before your action is, and should be used for setting up variables/objects,
restricting access to other actions, or other tasks which should be executed before the action is called.

__after__ This method is called after the action is, unless an unexpected exception was raised. Subclasses of
HTTPException (such as those raised by redirect_to and abort) are expected; e.g. __after__
will be called on redirects.

Each action to be called is inspected with _inspect_call() so that it is only passed the arguments in the
Routes match dict that it asks for. The arguments passed into the action can be customized by overriding the
_get_method_args() function which is expected to return a dict.

In the event that an action is not found to handle the request, the Controller will raise an “Action Not Found”
error if in debug mode, otherwise a 404 Not Found error will be returned.

__call__(environ, start_response)
The main call handler that is called to return a response

190 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

_dispatch_call()
Handles dispatching the request to the function using Routes

_get_method_args()
Retrieve the method arguments to use with inspect call

By default, this uses Routes to retrieve the arguments, override this method to customize the arguments
your controller actions are called with.

This method should return a dict.

_inspect_call(func)
Calls a function with arguments from _get_method_args()

Given a function, inspect_call will inspect the function args and call it with no further keyword args than
it asked for.

If the function has been decorated, it is assumed that the decorator preserved the function signature.

_perform_call(func, args)
Hide the traceback for everything above this method

28.5 pylons.controllers.util – Controller Utility functions

Utility functions and classes available for use by Controllers

Pylons subclasses the WebOb webob.Request and webob.Response classes to provide backwards compatible
functions for earlier versions of Pylons as well as add a few helper functions to assist with signed cookies.

For reference use, refer to the Request and Response below.

Functions available:

abort(), forward(), etag_cache(), mimetype() and redirect()

28.5.1 Module Contents

class pylons.controllers.util.Request(environ, charset=None, unicode_errors=None, de-
code_param_names=None, **kw)

Bases: webob.request.BaseRequest

WebOb Request subclass

The WebOb webob.Request has no charset, or other defaults. This subclass adds defaults, along with several
methods for backwards compatibility with paste.wsgiwrappers.WSGIRequest.

determine_browser_charset()
Legacy method to return the webob.Request.accept_charset

languages

match_accept(mimetypes)

signed_cookie(name, secret)
Extract a signed cookie of name from the request

The cookie is expected to have been created with Response.signed_cookie, and the secret
should be the same as the one used to sign it.

Any failure in the signature of the data will result in None being returned.

28.5. pylons.controllers.util – Controller Utility functions 191

http://pythonpaste.org/webob/

Pylons Reference Documentation, Release 1.0.2

class pylons.controllers.util.Response(body=None, status=None, headerlist=None,
app_iter=None, content_type=None, condi-
tional_response=None, charset=<object object>,
**kw)

Bases: webob.response.Response

WebOb Response subclass

The WebOb Response has no default content type, or error defaults. This subclass adds defaults, along with
several methods for backwards compatibility with paste.wsgiwrappers.WSGIResponse.

content
The body of the response, as a bytes. This will read in the entire app_iter if necessary.

determine_charset()

get_content()

has_header(header)

signed_cookie(name, data, secret=None, **kwargs)
Save a signed cookie with secret signature

Saves a signed cookie of the pickled data. All other keyword arguments that WebOb.set_cookie
accepts are usable and passed to the WebOb set_cookie method after creating the signed cookie value.

wsgi_response()

pylons.controllers.util.abort(status_code=None, detail=”, headers=None, comment=None)
Aborts the request immediately by returning an HTTP exception

In the event that the status_code is a 300 series error, the detail attribute will be used as the Location header
should one not be specified in the headers attribute.

pylons.controllers.util.etag_cache(key=None)
Use the HTTP Entity Tag cache for Browser side caching

If a “If-None-Match” header is found, and equivilant to key, then a 304 HTTP message will be returned with
the ETag to tell the browser that it should use its current cache of the page.

Otherwise, the ETag header will be added to the response headers.

Suggested use is within a Controller Action like so:

import pylons

class YourController(BaseController):
def index(self):

etag_cache(key=1)
return render('/splash.mako')

Note: This works because etag_cache will raise an HTTPNotModified exception if the ETag received matches
the key provided.

pylons.controllers.util.forward(wsgi_app)
Forward the request to a WSGI application. Returns its response.

return forward(FileApp('filename'))

pylons.controllers.util.redirect(url, code=302)
Raises a redirect exception to the specified URL

192 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

Optionally, a code variable may be passed with the status code of the redirect, ie:

redirect(url(controller='home', action='index'), code=303)

28.6 pylons.controllers.xmlrpc – XMLRPCController Class

The base WSGI XMLRPCController

28.6.1 Module Contents

class pylons.controllers.xmlrpc.XMLRPCController
XML-RPC Controller that speaks WSGI

This controller handles XML-RPC responses and complies with the XML-RPC Specification as well as the
XML-RPC Introspection specification.

By default, methods with names containing a dot are translated to use an underscore. For example, the sys-
tem.methodHelp is handled by the method system_methodHelp().

Methods in the XML-RPC controller will be called with the method given in the XMLRPC body. Methods may
be annotated with a signature attribute to declare the valid arguments and return types.

For example:

class MyXML(XMLRPCController):
def userstatus(self):

return 'basic string'
userstatus.signature = [['string']]

def userinfo(self, username, age=None):
user = LookUpUser(username)
response = {'username':user.name}
if age and age > 10:

response['age'] = age
return response

userinfo.signature = [['struct', 'string'],
['struct', 'string', 'int']]

Since XML-RPC methods can take different sets of data, each set of valid arguments is its own list. The first
value in the list is the type of the return argument. The rest of the arguments are the types of the data that must
be passed in.

In the last method in the example above, since the method can optionally take an integer value both sets of valid
parameter lists should be provided.

Valid types that can be checked in the signature and their corresponding Python types:

'string' - str
'array' - list
'boolean' - bool
'int' - int
'double' - float
'struct' - dict
'dateTime.iso8601' - xmlrpclib.DateTime
'base64' - xmlrpclib.Binary

28.6. pylons.controllers.xmlrpc – XMLRPCController Class 193

http://www.xmlrpc.com/spec
http://scripts.incutio.com/xmlrpc/introspection.html

Pylons Reference Documentation, Release 1.0.2

The class variable allow_none is passed to xmlrpclib.dumps; enabling it allows translating None to XML
(an extension to the XML-RPC specification)

Note: Requiring a signature is optional.

__call__(environ, start_response)
Parse an XMLRPC body for the method, and call it with the appropriate arguments

system_listMethods()
Returns a list of XML-RPC methods for this XML-RPC resource

system_methodHelp(name)
Returns the documentation for a method

system_methodSignature(name)
Returns an array of array’s for the valid signatures for a method.

The first value of each array is the return value of the method. The result is an array to indicate multiple
signatures a method may be capable of.

28.7 pylons.decorators – Decorators

Pylons Decorators

Common decorators intended for use in controllers. Additional decorators for use with controllers are in the cache,
rest and secure modules.

28.7.1 Module Contents

pylons.decorators.jsonify(func)
Action decorator that formats output for JSON

Given a function that will return content, this decorator will turn the result into JSON, with a content-type of
‘application/json’ and output it.

pylons.decorators.validate(schema=None, validators=None, form=None, vari-
able_decode=False, dict_char=’.’, list_char=’-’, post_only=True,
state=None, on_get=False, **htmlfill_kwargs)

Validate input either for a FormEncode schema, or individual validators

Given a form schema or dict of validators, validate will attempt to validate the schema or validator list.

If validation was successful, the valid result dict will be saved as self.form_result. Otherwise, the action
will be re-run as if it was a GET, and the output will be filled by FormEncode’s htmlfill to fill in the form field
errors.

schema Refers to a FormEncode Schema object to use during validation.

form Method used to display the form, which will be used to get the HTML representation of the form for
error filling.

variable_decode Boolean to indicate whether FormEncode’s variable decode function should be run on
the form input before validation.

dict_char Passed through to FormEncode. Toggles the form field naming scheme used to determine what
is used to represent a dict. This option is only applicable when used with variable_decode=True.

194 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

list_char Passed through to FormEncode. Toggles the form field naming scheme used to determine what
is used to represent a list. This option is only applicable when used with variable_decode=True.

post_only Boolean that indicates whether or not GET (query) variables should be included during validation.

Warning: post_only applies to where the arguments to be validated come from. It does not restrict
the form to only working with post, merely only checking POST vars.

state Passed through to FormEncode for use in validators that utilize a state object.

on_get Whether to validate on GET requests. By default only POST requests are validated.

Example:

class SomeController(BaseController):

def create(self, id):
return render('/myform.mako')

@validate(schema=model.forms.myshema(), form='create')
def update(self, id):

Do something with self.form_result
pass

28.8 pylons.decorators.cache – Cache Decorators

Caching decorator

28.8.1 Module Contents

pylons.decorators.cache.beaker_cache(key=’cache_default’, expire=’never’, type=None,
query_args=False, cache_headers=(’content-type’,
’content-length’), invalidate_on_startup=False,
cache_response=True, **b_kwargs)

Cache decorator utilizing Beaker. Caches action or other function that returns a pickle-able object as a result.

Optional arguments:

key None - No variable key, uses function name as key “cache_default” - Uses all function arguments as the
key string - Use kwargs[key] as key list - Use [kwargs[k] for k in list] as key

expire Time in seconds before cache expires, or the string “never”. Defaults to “never”

type Type of cache to use: dbm, memory, file, memcached, or None for Beaker’s default

query_args Uses the query arguments as the key, defaults to False

cache_headers A tuple of header names indicating response headers that will also be cached.

invalidate_on_startup If True, the cache will be invalidated each time the application starts or is
restarted.

cache_response Determines whether the response at the time beaker_cache is used should be cached or
not, defaults to True.

28.8. pylons.decorators.cache – Cache Decorators 195

Pylons Reference Documentation, Release 1.0.2

Note: When cache_response is set to False, the cache_headers argument is ignored as none of the response
is cached.

If cache_enabled is set to False in the .ini file, then cache is disabled globally.

28.9 pylons.decorators.rest – REST-ful Decorators

REST decorators

28.9.1 Module Contents

pylons.decorators.rest.dispatch_on(**method_map)
Dispatches to alternate controller methods based on HTTP method

Multiple keyword arguments should be passed, with the keyword corresponding to the HTTP method to dispatch
on (DELETE, POST, GET, etc.) and the value being the function to call. The value should be a string indicating
the name of the function to dispatch to.

Example:

from pylons.decorators import rest

class SomeController(BaseController):

@rest.dispatch_on(POST='create_comment')
def comment(self):

Do something with the comment

def create_comment(self, id):
Do something if its a post to comment

pylons.decorators.rest.restrict(*methods)
Restricts access to the function depending on HTTP method

Example:

from pylons.decorators import rest

class SomeController(BaseController):

@rest.restrict('GET')
def comment(self, id):

28.10 pylons.decorators.secure – Secure Decorators

Security related decorators

196 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

28.10.1 Module Contents

pylons.decorators.secure.authenticate_form(func)
Decorator for authenticating a form

This decorator uses an authorization token stored in the client’s session for prevention of certain Cross-site
request forgery (CSRF) attacks (See http://en.wikipedia.org/wiki/Cross-site_request_forgery for more informa-
tion).

For use with the webhelpers.html.secure_form helper functions.

pylons.decorators.secure.https(url_or_callable=None)
Decorator to redirect to the SSL version of a page if not currently using HTTPS. Apply this decorator to con-
troller methods (actions).

Takes a url argument: either a string url, or a callable returning a string url. The callable will be called with no
arguments when the decorated method is called. The url’s scheme will be rewritten to https if necessary.

Non-HTTPS POST requests are aborted (405 response code) by this decorator.

Example:

redirect to HTTPS /pylons
@https('/pylons')
def index(self):

do_secure()

redirect to HTTPS /auth/login, delaying the url() call until
later (as the url object may not be functional when the
decorator/method are defined)
@https(lambda: url(controller='auth', action='login'))
def login(self):

do_secure()

redirect to HTTPS version of myself
@https()
def get(self):

do_secure()

28.11 pylons.error – Error handling support

Custom EvalException support

Provides template engine HTML error formatters for the Template tab of EvalException.

28.12 pylons.i18n.translation – Translation/Localization func-
tions

Translation/Localization functions.

Provides gettext translation functions via an app’s pylons.translator and get/set_lang for changing the
language translated to.

28.11. pylons.error – Error handling support 197

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Pylons Reference Documentation, Release 1.0.2

28.12.1 Module Contents

exception pylons.i18n.translation.LanguageError
Exception raised when a problem occurs with changing languages

class pylons.i18n.translation.LazyString(func, *args, **kwargs)
Has a number of lazily evaluated functions replicating a string. Just override the eval() method to produce the
actual value.

This method copied from TurboGears.

pylons.i18n.translation.lazify(func)
Decorator to return a lazy-evaluated version of the original

pylons.i18n.translation.gettext_noop(value)
Mark a string for translation without translating it. Returns value.

Used for global strings, e.g.:

foo = N_('Hello')

class Bar:
def __init__(self):

self.local_foo = _(foo)

h.set_lang('fr')
assert Bar().local_foo == 'Bonjour'
h.set_lang('es')
assert Bar().local_foo == 'Hola'
assert foo == 'Hello'

pylons.i18n.translation.gettext(value)
Mark a string for translation. Returns the localized string of value.

Mark a string to be localized as follows:

gettext('This should be in lots of languages')

pylons.i18n.translation.ugettext(value)
Mark a string for translation. Returns the localized unicode string of value.

Mark a string to be localized as follows:

_('This should be in lots of languages')

pylons.i18n.translation.ngettext(singular, plural, n)
Mark a string for translation. Returns the localized string of the pluralized value.

This does a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup
in the catalog, while n is used to determine which plural form to use. The returned message is a string.

Mark a string to be localized as follows:

ngettext('There is %(num)d file here', 'There are %(num)d files here',
n) % {'num': n}

pylons.i18n.translation.ungettext(singular, plural, n)
Mark a string for translation. Returns the localized unicode string of the pluralized value.

This does a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup
in the catalog, while n is used to determine which plural form to use. The returned message is a Unicode string.

198 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

Mark a string to be localized as follows:

ungettext('There is %(num)d file here', 'There are %(num)d files here',
n) % {'num': n}

pylons.i18n.translation.set_lang(lang, set_environ=True, **kwargs)
Set the current language used for translations.

lang should be a string or a list of strings. If a list of strings, the first language is set as the main and the
subsequent languages are added as fallbacks.

pylons.i18n.translation.get_lang()
Return the current i18n language used

pylons.i18n.translation.add_fallback(lang, **kwargs)
Add a fallback language from which words not matched in other languages will be translated to.

This fallback will be associated with the currently selected language – that is, resetting the language via
set_lang() resets the current fallbacks.

This function can be called multiple times to add multiple fallbacks.

28.13 pylons.log – Logging for WSGI errors

Logging related functionality

This logging Handler logs to environ['wsgi.errors'] as designated in PEP 333.

28.13.1 Module Contents

class pylons.log.WSGIErrorsHandler(cache=False, *args, **kwargs)
A handler class that writes logging records to environ[‘wsgi.errors’].

This code is derived from CherryPy’s cherrypy._cplogging.WSGIErrorHandler.

cache Whether the wsgi.errors stream is cached (instead of looked up via pylons.request.environ per every
logged message). Enabling this option is not recommended (particularly for the use case of logging to
wsgi.errors outside of a request) as the behavior of a cached wsgi.errors stream is not strictly defined. In
particular, mod_wsgi’s wsgi.errors will raise an exception when used outside of a request.

emit(record)
Emit a record

flush()
Flushes the stream

get_wsgierrors()
Return the wsgi.errors stream

Raises a TypeError when outside of a web request (pylons.request is not setup)

28.14 pylons.middleware – WSGI Middleware

Pylons’ WSGI middlewares

28.13. pylons.log – Logging for WSGI errors 199

https://www.python.org/dev/peps/pep-0333
http://www.modwsgi.org

Pylons Reference Documentation, Release 1.0.2

28.14.1 Module Contents

class pylons.middleware.StatusCodeRedirect(app, errors=(400, 401, 403, 404),
path=’/error/document’)

Internally redirects a request based on status code

StatusCodeRedirect watches the response of the app it wraps. If the response is an error code in the errors
sequence passed the request will be re-run with the path URL set to the path passed in.

This operation is non-recursive and the output of the second request will be used no matter what it is.

Should an application wish to bypass the error response (ie, to purposely return a 401), set
environ['pylons.status_code_redirect'] = True in the application.

__init__(app, errors=(400, 401, 403, 404), path=’/error/document’)
Initialize the ErrorRedirect

errors A sequence (list, tuple) of error code integers that should be caught.

path The path to set for the next request down to the application.

pylons.middleware.ErrorHandler(app, global_conf, **errorware)
ErrorHandler Toggle

If debug is enabled, this function will return the app wrapped in the WebError EvalException middleware
which displays interactive debugging sessions when a traceback occurs.

Otherwise, the app will be wrapped in the WebError ErrorMiddleware, and the errorware dict will be
passed into it. The ErrorMiddleware handles sending an email to the address listed in the .ini file, under
email_to.

Note:

The errorware dictionary is constructed from the settings in the DEFAULT section of development.ini. the recognised keys and settings at initialization are:

• error_email = conf.get(‘email_to’)

• error_log = conf.get(‘error_log’, None)

• smtp_server = conf.get(‘smtp_server’,’localhost’)

• error_subject_prefix = conf.get(‘error_subject_prefix’, ‘WebApp Error: ‘)

• from_address = conf.get(‘from_address’, conf.get(‘error_email_from’, ‘pylons@yourapp.com’))

• error_message = conf.get(‘error_message’, ‘An internal server error occurred’)

28.14.2 Referenced classes

Pylons middleware uses WebError to effect the error-handling. The two classes implicated are:

ErrorMiddleware

weberror.errormiddleware weberror.errormiddleware.ErrorMiddleware

200 Chapter 28. Pylons Modules

mailto:'pylons@yourapp.com

Pylons Reference Documentation, Release 1.0.2

EvalException

weberror.evalexception weberror.evalexception.EvalException

28.15 pylons.templating – Render functions and helpers

Render functions and helpers

28.15.1 Render functions and helpers

pylons.templating includes several basic render functions, render_mako(), render_genshi() and
render_jinja2() that render templates from the file-system with the assumption that variables intended for the
will be attached to tmpl_context (hereafter referred to by its short name of c which it is commonly imported as).

The default render functions work with the template language loader object that is setup on the app_globals object
in the project’s config/environment.py.

Usage

Generally, one of the render functions will be imported in the controller. Variables intended for the template are
attached to the c object. The render functions return unicode (they actually return literal objects, a subclass of
unicode).

Tip

tmpl_context (template context) is abbreviated to c instead of its full name since it will likely be used extensively
and it’s much faster to use c. Of course, for users that can’t tolerate one-letter variables, feel free to not import
tmpl_context as c since both names are available in templates as well.

Example of rendering a template with some variables:

from pylons import tmpl_context as c
from pylons.templating import render_mako as render

from sampleproject.lib.base import BaseController

class SampleController(BaseController):

def index(self):
c.first_name = "Joe"
c.last_name = "Smith"
return render('/some/template.mako')

And the accompanying Mako template:

Hello ${c.first name}, I see your lastname is ${c.last_name}!

Your controller will have additional default imports for commonly used functions.

28.15. pylons.templating – Render functions and helpers 201

Pylons Reference Documentation, Release 1.0.2

Template Globals

Templates rendered in Pylons should include the default Pylons globals as the render_mako(),
render_genshi() and render_jinja2() functions. The full list of Pylons globals that are included in the
template’s namespace are:

• c – Template context object

• tmpl_context – Template context object

• config – Pylons PylonsConfig object (acts as a dict)

• app_globals – Project application globals object

• h – Project helpers module reference

• request – Pylons Request object for this request

• response – Pylons Response object for this request

• session – Pylons session object (unless Sessions are removed)

• url – Routes url generator object

• translator – Gettext translator object configured for current locale

• ungettext() – Unicode capable version of gettext’s ngettext function (handles plural translations)

• _() – Unicode capable gettext translate function

• N_() – gettext no-op function to mark a string for translation, but doesn’t actually translate

Configuring the template language

The template engine is created in the projects config/environment.py and attached to the app_globals (g)
instance. Configuration options can be directly passed into the template engine, and are used by the render functions.

Warning: Don’t change the variable name on app_globals that the template loader is attached to if you
want to use the render_* functions that pylons.templating comes with. The render_* functions look for the
template loader to render the template.

28.15.2 Module Contents

pylons.templating.pylons_globals()
Create and return a dictionary of global Pylons variables

Render functions should call this to retrieve a list of global Pylons variables that should be included in the global
template namespace if possible.

Pylons variables that are returned in the dictionary: c, h, _, N_, config, request, response, translator,
ungettext, url

If SessionMiddleware is being used, session will also be available in the template namespace.

pylons.templating.cached_template(template_name, render_func, ns_options=(),
cache_key=None, cache_type=None, cache_expire=None,
**kwargs)

Cache and render a template

Cache a template to the namespace template_name, along with a specific key if provided.

202 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

Basic Options

template_name Name of the template, which is used as the template namespace.

render_func Function used to generate the template should it no longer be valid or doesn’t exist in the
cache.

ns_options Tuple of strings, that should correspond to keys likely to be in the kwargs that should be
used to construct the namespace used for the cache. For example, if the template language supports the
‘fragment’ option, the namespace should include it so that the cached copy for a template is not the same
as the fragment version of it.

Caching options (uses Beaker caching middleware)

cache_key Key to cache this copy of the template under.

cache_type Valid options are dbm, file, memory, database, or memcached.

cache_expire Time in seconds to cache this template with this cache_key for. Or use ‘never’ to designate
that the cache should never expire.

The minimum key required to trigger caching is cache_expire='never' which will cache the template
forever seconds with no key.

pylons.templating.render_mako(template_name, extra_vars=None, cache_key=None,
cache_type=None, cache_expire=None)

Render a template with Mako

Accepts the cache options cache_key, cache_type, and cache_expire.

pylons.templating.render_mako_def(template_name, def_name, cache_key=None,
cache_type=None, cache_expire=None, **kwargs)

Render a def block within a Mako template

Takes the template name, and the name of the def within it to call. If the def takes arguments, they should be
passed in as keyword arguments.

Example:

To call the def 'header' within the 'layout.mako' template
with a title argument
render_mako_def('layout.mako', 'header', title='Testing')

Also accepts the cache options cache_key, cache_type, and cache_expire.

pylons.templating.render_genshi(template_name, extra_vars=None, cache_key=None,
cache_type=None, cache_expire=None, method=’xhtml’)

Render a template with Genshi

Accepts the cache options cache_key, cache_type, and cache_expire in addition to method which
are passed to Genshi’s render function.

28.16 pylons.test – Test related functionality

Test related functionality

Adds a Pylons plugin to nose that loads the Pylons app before scanning for doc tests.

This can be configured in the projects setup.cfg under a [nosetests] block:

[nosetests]
with-pylons=development.ini

28.16. pylons.test – Test related functionality 203

http://www.somethingaboutorange.com/mrl/projects/nose/

Pylons Reference Documentation, Release 1.0.2

Alternate ini files may be specified if the app should be loaded using a different configuration.

28.16.1 Module Contents

class pylons.test.PylonsPlugin
Nose plugin extension

For use with nose to allow a project to be configured before nose proceeds to scan the project for doc tests and
unit tests. This prevents modules from being loaded without a configured Pylons environment.

28.17 pylons.util – Paste Template and Pylons utility functions

Paste Template and Pylons utility functions

PylonsTemplate is a Paste Template sub-class that configures the source directory and default plug-ins for a new Pylons
project. The minimal template a more minimal template with less additional directories and layout.

28.17.1 Module Contents

class pylons.util.PylonsContext
Pylons context object

All the Pylons Stacked Object Proxies are also stored here, for use in generators and async based operation
where the globals can’t be used.

This object is attached in WSGIController instances as _py_object. For example:

class MyController(WSGIController):
def index(self):

pyobj = self._py_object
return "Environ is %s" % pyobj.request.environ

class pylons.util.ContextObj
The tmpl_context object, with strict attribute access (raises an Exception when the attribute does not exist)

class pylons.util.AttribSafeContextObj
The tmpl_context object, with lax attribute access (returns ‘’ when the attribute does not exist)

28.18 pylons.wsgiapp – PylonsWSGI App Creator

WSGI App Creator

This module is responsible for creating the basic Pylons WSGI application (PylonsApp). It’s generally assumed that
it will be called by Paste, though any WSGI server could create and call the WSGI app as well.

28.18.1 Module Contents

class pylons.wsgiapp.PylonsApp(config=None, **kwargs)
Pylons WSGI Application

204 Chapter 28. Pylons Modules

Pylons Reference Documentation, Release 1.0.2

This basic WSGI app is provided should a web developer want to get access to the most basic Pylons web
application environment available. By itself, this Pylons web application does little more than dispatch to a
controller and setup the context object, the request object, and the globals object.

Additional functionality like sessions, and caching can be setup by altering the environ['pylons.
environ_config'] setting to indicate what key the session and cache functionality should come from.

Resolving the URL and dispatching can be customized by sub-classing or “monkey-patching” this class. Sub-
classing is the preferred approach.

__call__(environ, start_response)
Setup and handle a web request

PylonsApp splits its functionality into several methods to make it easier to subclass and customize core
functionality.

The methods are called in the following order:

1. setup_app_env()

2. load_test_env() (Only if operating in testing mode)

3. resolve()

4. dispatch()

The response from dispatch() is expected to be an iterable (valid PEP 333 WSGI response), which is
then sent back as the response.

dispatch(controller, environ, start_response)
Dispatches to a controller, will instantiate the controller if necessary.

Override this to change how the controller dispatch is handled.

find_controller(controller)
Locates a controller by attempting to import it then grab the SomeController instance from the imported
module.

Controller name is assumed to be a module in the controllers directory unless it contains a ‘.’ or ‘:’ which
is then assumed to be a dotted path to the module and name of the controller object.

Override this to change how the controller object is found once the URL has been resolved.

load_test_env(environ)
Sets up our Paste testing environment

register_globals(environ)
Registers globals in the environment, called from setup_app_env()

Override this to control how the Pylons API is setup. Note that a custom render function will need to be
used if the pylons.app_globals global is not available.

resolve(environ, start_response)
Uses dispatching information found in environ['wsgiorg.routing_args'] to retrieve a con-
troller name and return the controller instance from the appropriate controller module.

Override this to change how the controller name is found and returned.

setup_app_env(environ, start_response)
Setup and register all the Pylons objects with the registry

After creating all the global objects for use in the request, register_globals() is called to register
them in the environment.

28.18. pylons.wsgiapp – PylonsWSGI App Creator 205

https://www.python.org/dev/peps/pep-0333

Pylons Reference Documentation, Release 1.0.2

206 Chapter 28. Pylons Modules

CHAPTER 29

Third-party components

29.1 FormEncode

FormEncode is a validation and form generation package. The validation can be used separately from the form
generation. The validation works on compound data structures, with all parts being nestable. It is separate from HTTP
or any other input mechanism.

These module API docs are divided into section by category.

29.1.1 Core API

formencode.api

These functions are used mostly internally by FormEncode. Core classes for validation.

formencode.api.is_validator(obj)
Returns whether obj is a validator object or not.

class formencode.api.Invalid(msg, value, state, error_list=None, error_dict=None)
This is raised in response to invalid input. It has several public attributes:

msg: The message, without values substituted. For instance, if you want HTML quoting of values, you can
apply that.

substituteArgs: The arguments (a dictionary) to go with msg.

str(self): The message describing the error, with values substituted.

value: The offending (invalid) value.

state: The state that went with this validator. This is an application-specific object.

error_list: If this was a compound validator that takes a repeating value, and sub-validator(s) had errors,
then this is a list of those exceptions. The list will be the same length as the number of values – valid
values will have None instead of an exception.

207

Pylons Reference Documentation, Release 1.0.2

error_dict: Like error_list, but for dictionary compound validators.

__init__(msg, value, state, error_list=None, error_dict=None)

unpack_errors(encode_variables=False, dict_char=’.’, list_char=’-’)
Returns the error as a simple data structure – lists, dictionaries, and strings.

If encode_variables is true, then this will return a flat dictionary, encoded with variable_encode

class formencode.api.Validator(*args, **kw)
The base class of most validators. See IValidator for more, and FancyValidator for the more common
(and more featureful) class.

Messages

all_messages()
Return a dictionary of all the messages of this validator, and any subvalidators if present. Keys are message
names, values may be a message or list of messages. This is really just intended for documentation
purposes, to show someone all the messages that a validator or compound validator (like Schemas) can
produce.

@@: Should this produce a more structured set of messages, so that messages could be unpacked into a
rendered form to see the placement of all the messages? Well, probably so.

if_missing
alias of NoDefault

subvalidators()
Return any validators that this validator contains. This is not useful for functional, except to inspect what
values are available. Specifically the .all_messages() method uses this to accumulate all possible
messages.

class formencode.api.FancyValidator(*args, **kw)
FancyValidator is the (abstract) superclass for various validators and converters. A subclass can validate, convert,
or do both. There is no formal distinction made here.

Validators have two important external methods:

.to_python(value, state): Attempts to convert the value. If there is a problem, or the value is not
valid, an Invalid exception is raised. The argument for this exception is the (potentially HTML-formatted)
error message to give the user.

.from_python(value, state): Reverses .to_python().

These two external methods make use of the following four important internal methods that can be overridden.
However, none of these have to be overridden, only the ones that are appropriate for the validator.

._convert_to_python(value, state): This method converts the source to a Python value. It returns
the converted value, or raises an Invalid exception if the conversion cannot be done. The argument to this
exception should be the error message. Contrary to .to_python() it is only meant to convert the value,
not to fully validate it.

._convert_from_python(value, state): Should undo ._convert_to_python() in some
reasonable way, returning a string.

._validate_other(value, state): Validates the source, before ._convert_to_python(), or
after ._convert_from_python(). It’s usually more convenient to use ._validate_python()
however.

._validate_python(value, state): Validates a Python value, either the result of .
_convert_to_python(), or the input to ._convert_from_python().

208 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

You should make sure that all possible validation errors are raised in at least one these four methods, not matter
which.

Subclasses can also override the __init__() method if the declarative.Declarative model doesn’t
work for this.

Validators should have no internal state besides the values given at instantiation. They should be reusable and
reentrant.

All subclasses can take the arguments/instance variables:

if_empty: If set, then this value will be returned if the input evaluates to false (empty list, empty string,
None, etc), but not the 0 or False objects. This only applies to .to_python().

not_empty: If true, then if an empty value is given raise an error. (Both with .to_python() and also
.from_python() if ._validate_python is true).

strip: If true and the input is a string, strip it (occurs before empty tests).

if_invalid: If set, then when this validator would raise Invalid during .to_python(), instead return this
value.

if_invalid_python: If set, when the Python value (converted with .from_python()) is invalid, this
value will be returned.

accept_python: If True (the default), then ._validate_python() and ._validate_other()
will not be called when .from_python() is used.

These parameters are handled at the level of the external methods .to_python() and .from_python
already; if you overwrite one of the internal methods, you usually don’t need to care about them.

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

base64encode(value)
Encode a string in base64, stripping whitespace and removing newlines.

if_empty
alias of NoDefault

if_invalid
alias of NoDefault

if_invalid_python
alias of NoDefault

formencode.schema

The FormEncode schema is one of the most important parts of using FormEncode, as it lets you organize validators
into parts that can be re-used between schemas. Generally, a single schema will represent an entire form, but may
inherit other schemas for re-usable validation parts (ie, maybe multiple forms all requires first and last name).

class formencode.schema.Schema(*args, **kw)
A schema validates a dictionary of values, applying different validators (be key) to the different values. If
allow_extra_fields=True, keys without validators will be allowed; otherwise they will raise Invalid. If fil-
ter_extra_fields is set to true, then extra fields are not passed back in the results.

29.1. FormEncode 209

Pylons Reference Documentation, Release 1.0.2

Validators are associated with keys either with a class syntax, or as keyword arguments (class syntax is usually
easier). Something like:

class MySchema(Schema):
name = Validators.PlainText()
phone = Validators.PhoneNumber()

These will not be available as actual instance variables, but will be collected in a dictionary. To remove a
validator in a subclass that is present in a superclass, set it to None, like:

class MySubSchema(MySchema):
name = None

Note that missing fields are handled at the Schema level. Missing fields can have the ‘missing’ message set to
specify the error message, or if that does not exist the schema message ‘missingValue’ is used.

Messages

badDictType: The input must be dict-like (not a %(type)s: %(value)r)

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

missingValue: Missing value

noneType: The input must be a string (not None)

notExpected: The input field %(name)s was not expected.

singleValueExpected: Please provide only one value

class formencode.schema.SimpleFormValidator(*args, **kw)
This validator wraps a simple function that validates the form.

The function looks something like this:

>>> def validate(form_values, state, validator):
... if form_values.get('country', 'US') == 'US':
... if not form_values.get('state'):
... return dict(state='You must enter a state')
... if not form_values.get('country'):
... form_values['country'] = 'US'

This tests that the field ‘state’ must be filled in if the country is US, and defaults that country value to ‘US’. The
validator argument is the SimpleFormValidator instance, which you can use to format messages or keep
configuration state in if you like (for simple ad hoc validation you are unlikely to need it).

To create a validator from that function, you would do:

>>> from formencode.schema import SimpleFormValidator
>>> validator = SimpleFormValidator(validate)
>>> validator.to_python({'country': 'US', 'state': ''}, None)
Traceback (most recent call last):

...
Invalid: state: You must enter a state
>>> sorted(validator.to_python({'state': 'IL'}, None).items())
[('country', 'US'), ('state', 'IL')]

The validate function can either return a single error message (that applies to the whole form), a dictionary that
applies to the fields, None which means the form is valid, or it can raise Invalid.

210 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

Note that you may update the value_dict in place, but you cannot return a new value.

Another way to instantiate a validator is like this:

>>> @SimpleFormValidator.decorate()
... def MyValidator(value_dict, state):
... return None # or some more useful validation

After this MyValidator will be a SimpleFormValidator instance (it won’t be your function).

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

29.1.2 Validators

Validator/Converters for use with FormEncode.

class formencode.validators.Bool(*args, **kw)
Always Valid, returns True or False based on the value and the existance of the value.

If you want to convert strings like 'true' to booleans, then use StringBool.

Examples:

>>> Bool.to_python(0)
False
>>> Bool.to_python(1)
True
>>> Bool.to_python('')
False
>>> Bool.to_python(None)
False

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.CIDR(*args, **kw)
Formencode validator to check whether a string is in correct CIDR notation (IP address, or IP address plus
/mask).

Examples:

>>> cidr = CIDR()
>>> cidr.to_python('127.0.0.1')
'127.0.0.1'
>>> cidr.to_python('299.0.0.1')
Traceback (most recent call last):

...
Invalid: The octets must be within the range of 0-255 (not '299')
>>> cidr.to_python('192.168.0.1/1')
Traceback (most recent call last):

...

29.1. FormEncode 211

Pylons Reference Documentation, Release 1.0.2

Invalid: The network size (bits) must be within the range of 8-32 (not '1')
>>> cidr.to_python('asdf')
Traceback (most recent call last):

...
Invalid: Please enter a valid IP address (a.b.c.d) or IP network (a.b.c.d/e)

Messages

badFormat: Please enter a valid IP address (a.b.c.d) or IP network (a.b.c.d/e)

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

illegalBits: The network size (bits) must be within the range of 8-32 (not %(bits)r)

illegalOctets: The octets must be within the range of 0-255 (not %(octet)r)

leadingZeros: The octets must not have leading zeros

noneType: The input must be a string (not None)

class formencode.validators.CreditCardValidator(*args, **kw)
Checks that credit card numbers are valid (if not real).

You pass in the name of the field that has the credit card type and the field with the credit card number. The
credit card type should be one of “visa”, “mastercard”, “amex”, “dinersclub”, “discover”, “jcb”.

You must check the expiration date yourself (there is no relation between CC number/types and expiration
dates).

>>> cc = CreditCardValidator()
>>> sorted(cc.to_python({'ccType': 'visa', 'ccNumber': '4111111111111111'}).
→˓items())
[('ccNumber', '4111111111111111'), ('ccType', 'visa')]
>>> cc.to_python({'ccType': 'visa', 'ccNumber': '411111111111111'})
Traceback (most recent call last):

...
Invalid: ccNumber: You did not enter a valid number of digits
>>> cc.to_python({'ccType': 'visa', 'ccNumber': '411111111111112'})
Traceback (most recent call last):

...
Invalid: ccNumber: You did not enter a valid number of digits
>>> cc().to_python({})
Traceback (most recent call last):

...
Invalid: The field ccType is missing

Messages

badLength: You did not enter a valid number of digits

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalidNumber: That number is not valid

missing_key: The field %(key)s is missing

noneType: The input must be a string (not None)

notANumber: Please enter only the number, no other characters

212 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

class formencode.validators.CreditCardExpires(*args, **kw)
Checks that credit card expiration date is valid relative to the current date.

You pass in the name of the field that has the credit card expiration month and the field with the credit card
expiration year.

>>> ed = CreditCardExpires()
>>> sorted(ed.to_python({'ccExpiresMonth': '11', 'ccExpiresYear': '2250'}).
→˓items())
[('ccExpiresMonth', '11'), ('ccExpiresYear', '2250')]
>>> ed.to_python({'ccExpiresMonth': '10', 'ccExpiresYear': '2005'})
Traceback (most recent call last):

...
Invalid: ccExpiresMonth: Invalid Expiration Date

ccExpiresYear: Invalid Expiration Date

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalidNumber: Invalid Expiration Date

noneType: The input must be a string (not None)

notANumber: Please enter numbers only for month and year

class formencode.validators.CreditCardSecurityCode(*args, **kw)
Checks that credit card security code has the correct number of digits for the given credit card type.

You pass in the name of the field that has the credit card type and the field with the credit card security code.

>>> code = CreditCardSecurityCode()
>>> sorted(code.to_python({'ccType': 'visa', 'ccCode': '111'}).items())
[('ccCode', '111'), ('ccType', 'visa')]
>>> code.to_python({'ccType': 'visa', 'ccCode': '1111'})
Traceback (most recent call last):

...
Invalid: ccCode: Invalid credit card security code length

Messages

badLength: Invalid credit card security code length

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

notANumber: Please enter numbers only for credit card security code

class formencode.validators.DateConverter(*args, **kw)
Validates and converts a string date, like mm/yy, dd/mm/yy, dd-mm-yy, etc. Using month_style you can
support the three general styles mdy = us = mm/dd/yyyy, dmy = euro = dd/mm/yyyy and ymd = iso =
yyyy/mm/dd.

Accepts English month names, also abbreviated. Returns value as a datetime object (you can get mx.DateTime
objects if you use datetime_module='mxDateTime'). Two year dates are assumed to be within 1950-
2020, with dates from 21-49 being ambiguous and signaling an error.

Use accept_day=False if you just want a month/year (like for a credit card expiration date).

29.1. FormEncode 213

Pylons Reference Documentation, Release 1.0.2

>>> d = DateConverter()
>>> d.to_python('12/3/09')
datetime.date(2009, 12, 3)
>>> d.to_python('12/3/2009')
datetime.date(2009, 12, 3)
>>> d.to_python('2/30/04')
Traceback (most recent call last):

...
Invalid: That month only has 29 days
>>> d.to_python('13/2/05')
Traceback (most recent call last):

...
Invalid: Please enter a month from 1 to 12
>>> d.to_python('1/1/200')
Traceback (most recent call last):

...
Invalid: Please enter a four-digit year after 1899

If you change month_style you can get European-style dates:

>>> d = DateConverter(month_style='dd/mm/yyyy')
>>> date = d.to_python('12/3/09')
>>> date
datetime.date(2009, 3, 12)
>>> d.from_python(date)
'12/03/2009'

Messages

badFormat: Please enter the date in the form %(format)s

badType: The input must be a string (not a %(type)s: %(value)r)

dayRange: That month only has %(days)i days

empty: Please enter a value

fourDigitYear: Please enter a four-digit year after 1899

invalidDate: That is not a valid day (%(exception)s)

invalidDay: Please enter a valid day

invalidYear: Please enter a number for the year

monthRange: Please enter a month from 1 to 12

noneType: The input must be a string (not None)

unknownMonthName: Unknown month name: %(month)s

wrongFormat: Please enter the date in the form %(format)s

class formencode.validators.DateValidator(*args, **kw)
Validates that a date is within the given range. Be sure to call DateConverter first if you aren’t expecting
mxDateTime input.

earliest_date and latest_date may be functions; if so, they will be called each time before validating.

after_now means a time after the current timestamp; note that just a few milliseconds before now is invalid!
today_or_after is more permissive, and ignores hours and minutes.

Examples:

214 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

>>> from datetime import datetime, timedelta
>>> d = DateValidator(earliest_date=datetime(2003, 1, 1))
>>> d.to_python(datetime(2004, 1, 1))
datetime.datetime(2004, 1, 1, 0, 0)
>>> d.to_python(datetime(2002, 1, 1))
Traceback (most recent call last):

...
Invalid: Date must be after Wednesday, 01 January 2003
>>> d.to_python(datetime(2003, 1, 1))
datetime.datetime(2003, 1, 1, 0, 0)
>>> d = DateValidator(after_now=True)
>>> now = datetime.now()
>>> d.to_python(now+timedelta(seconds=5)) == now+timedelta(seconds=5)
True
>>> d.to_python(now-timedelta(days=1))
Traceback (most recent call last):

...
Invalid: The date must be sometime in the future
>>> d.to_python(now+timedelta(days=1)) > now
True
>>> d = DateValidator(today_or_after=True)
>>> d.to_python(now) == now
True

Messages

after: Date must be after %(date)s

badType: The input must be a string (not a %(type)s: %(value)r)

before: Date must be before %(date)s

date_format: %%A, %%d %%B %%Y

empty: Please enter a value

future: The date must be sometime in the future

noneType: The input must be a string (not None)

class formencode.validators.DictConverter(*args, **kw)
Converts values based on a dictionary which has values as keys for the resultant values.

If allowNull is passed, it will not balk if a false value (e.g., ‘’ or None) is given (it will return None in these
cases).

to_python takes keys and gives values, from_python takes values and gives keys.

If you give hideDict=True, then the contents of the dictionary will not show up in error messages.

Examples:

>>> dc = DictConverter({1: 'one', 2: 'two'})
>>> dc.to_python(1)
'one'
>>> dc.from_python('one')
1
>>> dc.to_python(3)
Traceback (most recent call last):

....
Invalid: Enter a value from: 1; 2
>>> dc2 = dc(hideDict=True)

29.1. FormEncode 215

Pylons Reference Documentation, Release 1.0.2

>>> dc2.hideDict
True
>>> dc2.dict
{1: 'one', 2: 'two'}
>>> dc2.to_python(3)
Traceback (most recent call last):

....
Invalid: Choose something
>>> dc.from_python('three')
Traceback (most recent call last):

....
Invalid: Nothing in my dictionary goes by the value 'three'. Choose one of: 'one
→˓'; 'two'

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

chooseKey: Enter a value from: %(items)s

chooseValue: Nothing in my dictionary goes by the value %(value)s. Choose one of: %(items)s

empty: Please enter a value

keyNotFound: Choose something

noneType: The input must be a string (not None)

valueNotFound: That value is not known

class formencode.validators.Email(*args, **kw)
Validate an email address.

If you pass resolve_domain=True, then it will try to resolve the domain name to make sure it’s valid. This
takes longer, of course. You must have the dnspython modules installed to look up DNS (MX and A) records.

>>> e = Email()
>>> e.to_python(' test@foo.com ')
'test@foo.com'
>>> e.to_python('test')
Traceback (most recent call last):

...
Invalid: An email address must contain a single @
>>> e.to_python('test@foobar')
Traceback (most recent call last):

...
Invalid: The domain portion of the email address is invalid (the portion after
→˓the @: foobar)
>>> e.to_python('test@foobar.com.5')
Traceback (most recent call last):

...
Invalid: The domain portion of the email address is invalid (the portion after
→˓the @: foobar.com.5)
>>> e.to_python('test@foo..bar.com')
Traceback (most recent call last):

...
Invalid: The domain portion of the email address is invalid (the portion after
→˓the @: foo..bar.com)
>>> e.to_python('test@.foo.bar.com')
Traceback (most recent call last):

...

216 Chapter 29. Third-party components

http://www.dnspython.org/

Pylons Reference Documentation, Release 1.0.2

Invalid: The domain portion of the email address is invalid (the portion after
→˓the @: .foo.bar.com)
>>> e.to_python('nobody@xn--m7r7ml7t24h.com')
'nobody@xn--m7r7ml7t24h.com'
>>> e.to_python('o*reilly@test.com')
'o*reilly@test.com'
>>> e = Email(resolve_domain=True)
>>> e.resolve_domain
True
>>> e.to_python('doesnotexist@colorstudy.com')
'doesnotexist@colorstudy.com'
>>> e.to_python('test@nyu.edu')
'test@nyu.edu'
>>> # NOTE: If you do not have dnspython installed this example won't work:
>>> e.to_python('test@thisdomaindoesnotexistithinkforsure.com')
Traceback (most recent call last):

...
Invalid: The domain of the email address does not exist (the portion after the @:
→˓thisdomaindoesnotexistithinkforsure.com)
>>> e.to_python('test@google.com')
'test@google.com'
>>> e = Email(not_empty=False)
>>> e.to_python('')

Messages

badDomain: The domain portion of the email address is invalid (the portion after the @: %(domain)s)

badType: The input must be a string (not a %(type)s: %(value)r)

badUsername: The username portion of the email address is invalid (the portion before the @:
%(username)s)

domainDoesNotExist: The domain of the email address does not exist (the portion after the @:
%(domain)s)

empty: Please enter an email address

noAt: An email address must contain a single @

noneType: The input must be a string (not None)

socketError: An error occured when trying to connect to the server: %(error)s

class formencode.validators.Empty(*args, **kw)
Invalid unless the value is empty. Use cleverly, if at all.

Examples:

>>> Empty.to_python(0)
Traceback (most recent call last):
...

Invalid: You cannot enter a value here

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

notEmpty: You cannot enter a value here

29.1. FormEncode 217

Pylons Reference Documentation, Release 1.0.2

class formencode.validators.FieldsMatch(*args, **kw)
Tests that the given fields match, i.e., are identical. Useful for password+confirmation fields. Pass the list of
field names in as field_names.

>>> f = FieldsMatch('pass', 'conf')
>>> sorted(f.to_python({'pass': 'xx', 'conf': 'xx'}).items())
[('conf', 'xx'), ('pass', 'xx')]
>>> f.to_python({'pass': 'xx', 'conf': 'yy'})
Traceback (most recent call last):

...
Invalid: conf: Fields do not match

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalid: Fields do not match (should be %(match)s)

invalidNoMatch: Fields do not match

noneType: The input must be a string (not None)

notDict: Fields should be a dictionary

class formencode.validators.FieldStorageUploadConverter(*args, **kw)
Handles cgi.FieldStorage instances that are file uploads.

This doesn’t do any conversion, but it can detect empty upload fields (which appear like normal fields, but have
no filename when no upload was given).

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.FileUploadKeeper(*args, **kw)
Takes two inputs (a dictionary with keys static and upload) and converts them into one value on the Python
side (a dictionary with filename and content keys). The upload takes priority over the static value. The
filename may be None if it can’t be discovered.

Handles uploads of both text and cgi.FieldStorage upload values.

This is basically for use when you have an upload field, and you want to keep the upload around even if the
rest of the form submission fails. When converting back to the form submission, there may be extra values
'original_filename' and 'original_content', which may want to use in your form to show the
user you still have their content around.

To use this, make sure you are using variabledecode, then use something like:

<input type="file" name="myfield.upload">
<input type="hidden" name="myfield.static">

Then in your scheme:

class MyScheme(Scheme):
myfield = FileUploadKeeper()

218 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

Note that big file uploads mean big hidden fields, and lots of bytes passed back and forth in the case of an error.

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.FormValidator(*args, **kw)
A FormValidator is something that can be chained with a Schema.

Unlike normal chaining the FormValidator can validate forms that aren’t entirely valid.

The important method is .validate(), of course. It gets passed a dictionary of the (processed) values from the
form. If you have .validate_partial_form set to True, then it will get the incomplete values as well – check with
the “in” operator if the form was able to process any particular field.

Anyway, .validate() should return a string or a dictionary. If a string, it’s an error message that applies to the
whole form. If not, then it should be a dictionary of fieldName: errorMessage. The special key “form” is the
error message for the form as a whole (i.e., a string is equivalent to {“form”: string}).

Returns None on no errors.

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.IndexListConverter(*args, **kw)
Converts a index (which may be a string like ‘2’) to the value in the given list.

Examples:

>>> index = IndexListConverter(['zero', 'one', 'two'])
>>> index.to_python(0)
'zero'
>>> index.from_python('zero')
0
>>> index.to_python('1')
'one'
>>> index.to_python(5)
Traceback (most recent call last):
Invalid: Index out of range
>>> index(not_empty=True).to_python(None)
Traceback (most recent call last):
Invalid: Please enter a value
>>> index.from_python('five')
Traceback (most recent call last):
Invalid: Item 'five' was not found in the list

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

integer: Must be an integer index

noneType: The input must be a string (not None)

29.1. FormEncode 219

Pylons Reference Documentation, Release 1.0.2

notFound: Item %(value)s was not found in the list

outOfRange: Index out of range

class formencode.validators.Int(*args, **kw)
Convert a value to an integer.

Example:

>>> Int.to_python('10')
10
>>> Int.to_python('ten')
Traceback (most recent call last):

...
Invalid: Please enter an integer value
>>> Int(min=5).to_python('6')
6
>>> Int(max=10).to_python('11')
Traceback (most recent call last):

...
Invalid: Please enter a number that is 10 or smaller

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

integer: Please enter an integer value

noneType: The input must be a string (not None)

tooHigh: Please enter a number that is %(max)s or smaller

tooLow: Please enter a number that is %(min)s or greater

class formencode.validators.IPhoneNumberValidator

class formencode.validators.MACAddress(*args, **kw)
Formencode validator to check whether a string is a correct hardware (MAC) address.

Examples:

>>> mac = MACAddress()
>>> mac.to_python('aa:bb:cc:dd:ee:ff')
'aabbccddeeff'
>>> mac.to_python('aa:bb:cc:dd:ee:ff:e')
Traceback (most recent call last):

...
Invalid: A MAC address must contain 12 digits and A-F; the value you gave has 13
→˓characters
>>> mac.to_python('aa:bb:cc:dd:ee:fx')
Traceback (most recent call last):

...
Invalid: MAC addresses may only contain 0-9 and A-F (and optionally :), not 'x'
>>> MACAddress(add_colons=True).to_python('aabbccddeeff')
'aa:bb:cc:dd:ee:ff'

Messages

badCharacter: MAC addresses may only contain 0-9 and A-F (and optionally :), not %(char)r

badLength: A MAC address must contain 12 digits and A-F; the value you gave has %(length)s charac-
ters

220 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.MaxLength(*args, **kw)
Invalid if the value is longer than maxLength. Uses len(), so it can work for strings, lists, or anything with length.

Examples:

>>> max5 = MaxLength(5)
>>> max5.to_python('12345')
'12345'
>>> max5.from_python('12345')
'12345'
>>> max5.to_python('123456')
Traceback (most recent call last):
...

Invalid: Enter a value less than 5 characters long
>>> max5(accept_python=False).from_python('123456')
Traceback (most recent call last):
...

Invalid: Enter a value less than 5 characters long
>>> max5.to_python([1, 2, 3])
[1, 2, 3]
>>> max5.to_python([1, 2, 3, 4, 5, 6])
Traceback (most recent call last):
...

Invalid: Enter a value less than 5 characters long
>>> max5.to_python(5)
Traceback (most recent call last):
...

Invalid: Invalid value (value with length expected)

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalid: Invalid value (value with length expected)

noneType: The input must be a string (not None)

tooLong: Enter a value less than %(maxLength)i characters long

class formencode.validators.MinLength(*args, **kw)
Invalid if the value is shorter than minlength. Uses len(), so it can work for strings, lists, or anything with length.
Note that you must use not_empty=True if you don’t want to accept empty values – empty values are not
tested for length.

Examples:

>>> min5 = MinLength(5)
>>> min5.to_python('12345')
'12345'
>>> min5.from_python('12345')
'12345'
>>> min5.to_python('1234')
Traceback (most recent call last):
...

29.1. FormEncode 221

Pylons Reference Documentation, Release 1.0.2

Invalid: Enter a value at least 5 characters long
>>> min5(accept_python=False).from_python('1234')
Traceback (most recent call last):
...

Invalid: Enter a value at least 5 characters long
>>> min5.to_python([1, 2, 3, 4, 5])
[1, 2, 3, 4, 5]
>>> min5.to_python([1, 2, 3])
Traceback (most recent call last):
...

Invalid: Enter a value at least 5 characters long
>>> min5.to_python(5)
Traceback (most recent call last):
...

Invalid: Invalid value (value with length expected)

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalid: Invalid value (value with length expected)

noneType: The input must be a string (not None)

tooShort: Enter a value at least %(minLength)i characters long

class formencode.validators.Number(*args, **kw)
Convert a value to a float or integer.

Tries to convert it to an integer if no information is lost.

Example:

>>> Number.to_python('10')
10
>>> Number.to_python('10.5')
10.5
>>> Number.to_python('ten')
Traceback (most recent call last):

...
Invalid: Please enter a number
>>> Number.to_python([1.2])
Traceback (most recent call last):

...
Invalid: Please enter a number
>>> Number(min=5).to_python('6.5')
6.5
>>> Number(max=10.5).to_python('11.5')
Traceback (most recent call last):

...
Invalid: Please enter a number that is 10.5 or smaller

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

222 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

number: Please enter a number

tooHigh: Please enter a number that is %(max)s or smaller

tooLow: Please enter a number that is %(min)s or greater

class formencode.validators.NotEmpty(*args, **kw)
Invalid if value is empty (empty string, empty list, etc).

Generally for objects that Python considers false, except zero which is not considered invalid.

Examples:

>>> ne = NotEmpty(messages=dict(empty='enter something'))
>>> ne.to_python('')
Traceback (most recent call last):
...

Invalid: enter something
>>> ne.to_python(0)
0

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.OneOf(*args, **kw)
Tests that the value is one of the members of a given list.

If testValueList=True, then if the input value is a list or tuple, all the members of the sequence will be
checked (i.e., the input must be a subset of the allowed values).

Use hideList=True to keep the list of valid values out of the error message in exceptions.

Examples:

>>> oneof = OneOf([1, 2, 3])
>>> oneof.to_python(1)
1
>>> oneof.to_python(4)
Traceback (most recent call last):
...

Invalid: Value must be one of: 1; 2; 3 (not 4)
>>> oneof(testValueList=True).to_python([2, 3, [1, 2, 3]])
[2, 3, [1, 2, 3]]
>>> oneof.to_python([2, 3, [1, 2, 3]])
Traceback (most recent call last):
...

Invalid: Value must be one of: 1; 2; 3 (not [2, 3, [1, 2, 3]])

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalid: Invalid value

noneType: The input must be a string (not None)

notIn: Value must be one of: %(items)s (not %(value)r)

29.1. FormEncode 223

Pylons Reference Documentation, Release 1.0.2

class formencode.validators.PhoneNumber

class formencode.validators.PlainText(*args, **kw)
Test that the field contains only letters, numbers, underscore, and the hyphen. Subclasses Regex.

Examples:

>>> PlainText.to_python('_this9_')
'_this9_'
>>> PlainText.from_python(' this ')
' this '
>>> PlainText(accept_python=False).from_python(' this ')
Traceback (most recent call last):
...

Invalid: Enter only letters, numbers, or _ (underscore)
>>> PlainText(strip=True).to_python(' this ')
'this'
>>> PlainText(strip=True).from_python(' this ')
'this'

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalid: Enter only letters, numbers, or _ (underscore)

noneType: The input must be a string (not None)

class formencode.validators.PostalCode

class formencode.validators.Regex(*args, **kw)
Invalid if the value doesn’t match the regular expression regex.

The regular expression can be a compiled re object, or a string which will be compiled for you.

Use strip=True if you want to strip the value before validation, and as a form of conversion (often useful).

Examples:

>>> cap = Regex(r'^[A-Z]+$')
>>> cap.to_python('ABC')
'ABC'

Note that .from_python() calls (in general) do not validate the input:

>>> cap.from_python('abc')
'abc'
>>> cap(accept_python=False).from_python('abc')
Traceback (most recent call last):
...

Invalid: The input is not valid
>>> cap.to_python(1)
Traceback (most recent call last):
...

Invalid: The input must be a string (not a <type 'int'>: 1)
>>> Regex(r'^[A-Z]+$', strip=True).to_python(' ABC ')
'ABC'
>>> Regex(r'this', regexOps=('I',)).to_python('THIS')
'THIS'

224 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

invalid: The input is not valid

noneType: The input must be a string (not None)

class formencode.validators.RequireIfMissing(*args, **kw)
Require one field based on another field being present or missing.

This validator is applied to a form, not an individual field (usually using a Schema’s pre_validators
or chained_validators) and is available under both names RequireIfMissing and
RequireIfPresent.

If you provide a missing value (a string key name) then if that field is missing the field must be entered. This
gives you an either/or situation.

If you provide a present value (another string key name) then if that field is present, the required field must
also be present.

>>> from formencode import validators
>>> v = validators.RequireIfPresent('phone_type', present='phone')
>>> v.to_python(dict(phone_type='', phone='510 420 4577'))
Traceback (most recent call last):

...
Invalid: You must give a value for phone_type
>>> v.to_python(dict(phone=''))
{'phone': ''}

Note that if you have a validator on the optionally-required field, you should probably use
if_missing=None. This way you won’t get an error from the Schema about a missing value. For example:

class PhoneInput(Schema):
phone = PhoneNumber()
phone_type = String(if_missing=None)
chained_validators = [RequireIfPresent('phone_type', present='phone')]

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.Set(*args, **kw)
This is for when you think you may return multiple values for a certain field.

This way the result will always be a list, even if there’s only one result. It’s equivalent to ForE-
ach(convert_to_list=True).

If you give use_set=True, then it will return an actual set object.

>>> Set.to_python(None)
[]
>>> Set.to_python('this')
['this']
>>> Set.to_python(('this', 'that'))
['this', 'that']
>>> s = Set(use_set=True)

29.1. FormEncode 225

Pylons Reference Documentation, Release 1.0.2

>>> s.to_python(None)
set([])
>>> s.to_python('this')
set(['this'])
>>> s.to_python(('this',))
set(['this'])

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.SignedString(*args, **kw)
Encodes a string into a signed string, and base64 encodes both the signature string and a random nonce.

It is up to you to provide a secret, and to keep the secret handy and consistent.

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

badsig: Signature is not correct

empty: Please enter a value

malformed: Value does not contain a signature

noneType: The input must be a string (not None)

class formencode.validators.StateProvince

formencode.validators.String
alias of ByteString

class formencode.validators.StringBool(*args, **kw)
Converts a string to a boolean.

Values like ‘true’ and ‘false’ are considered True and False, respectively; anything in true_values is true,
anything in false_values is false, case-insensitive). The first item of those lists is considered the preferred
form.

>>> s = StringBool()
>>> s.to_python('yes'), s.to_python('no')
(True, False)
>>> s.to_python(1), s.to_python('N')
(True, False)
>>> s.to_python('ye')
Traceback (most recent call last):

...
Invalid: Value should be 'true' or 'false'

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

string: Value should be %(true)r or %(false)r

226 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

class formencode.validators.StripField(*args, **kw)
Take a field from a dictionary, removing the key from the dictionary.

name is the key. The field value and a new copy of the dictionary with that field removed are returned.

>>> StripField('test').to_python({'a': 1, 'test': 2})
(2, {'a': 1})
>>> StripField('test').to_python({})
Traceback (most recent call last):

...
Invalid: The name 'test' is missing

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

missing: The name %(name)s is missing

noneType: The input must be a string (not None)

class formencode.validators.TimeConverter(*args, **kw)
Converts times in the format HH:MM:SSampm to (h, m, s). Seconds are optional.

For ampm, set use_ampm = True. For seconds, use_seconds = True. Use ‘optional’ for either of these to make
them optional.

Examples:

>>> tim = TimeConverter()
>>> tim.to_python('8:30')
(8, 30)
>>> tim.to_python('20:30')
(20, 30)
>>> tim.to_python('30:00')
Traceback (most recent call last):

...
Invalid: You must enter an hour in the range 0-23
>>> tim.to_python('13:00pm')
Traceback (most recent call last):

...
Invalid: You must enter an hour in the range 1-12
>>> tim.to_python('12:-1')
Traceback (most recent call last):

...
Invalid: You must enter a minute in the range 0-59
>>> tim.to_python('12:02pm')
(12, 2)
>>> tim.to_python('12:02am')
(0, 2)
>>> tim.to_python('1:00PM')
(13, 0)
>>> tim.from_python((13, 0))
'13:00:00'
>>> tim2 = tim(use_ampm=True, use_seconds=False)
>>> tim2.from_python((13, 0))
'1:00pm'
>>> tim2.from_python((0, 0))
'12:00am'

29.1. FormEncode 227

Pylons Reference Documentation, Release 1.0.2

>>> tim2.from_python((12, 0))
'12:00pm'

Examples with datetime.time:

>>> v = TimeConverter(use_datetime=True)
>>> a = v.to_python('18:00')
>>> a
datetime.time(18, 0)
>>> b = v.to_python('30:00')
Traceback (most recent call last):

...
Invalid: You must enter an hour in the range 0-23
>>> v2 = TimeConverter(prefer_ampm=True, use_datetime=True)
>>> v2.from_python(a)
'6:00:00pm'
>>> v3 = TimeConverter(prefer_ampm=True,
... use_seconds=False, use_datetime=True)
>>> a = v3.to_python('18:00')
>>> a
datetime.time(18, 0)
>>> v3.from_python(a)
'6:00pm'
>>> a = v3.to_python('18:00:00')
Traceback (most recent call last):

...
Invalid: You may not enter seconds

Messages

badHour: You must enter an hour in the range %(range)s

badMinute: You must enter a minute in the range 0-59

badNumber: The %(part)s value you gave is not a number: %(number)r

badSecond: You must enter a second in the range 0-59

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

minutesRequired: You must enter minutes (after a :)

noAMPM: You must indicate AM or PM

noSeconds: You may not enter seconds

noneType: The input must be a string (not None)

secondsRequired: You must enter seconds

tooManyColon: There are too many :’s

class formencode.validators.UnicodeString(**kw)
Convert things to unicode string.

This is implemented as a specialization of the ByteString class.

Under Python 3.x you can also use the alias String for this validator.

In addition to the String arguments, an encoding argument is also accepted. By default the encoding
will be utf-8. You can overwrite this using the encoding parameter. You can also set inputEncoding

228 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

and outputEncoding differently. An inputEncoding of None means “do not decode”, an outputEn-
coding of None means “do not encode”.

All converted strings are returned as Unicode strings.

>>> UnicodeString().to_python(None) == u''
True
>>> UnicodeString().to_python([]) == u''
True
>>> UnicodeString(encoding='utf-7').to_python('Ni Ni Ni') == u'Ni Ni Ni'
True

Messages

badEncoding: Invalid data or incorrect encoding

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

tooLong: Enter a value not more than %(max)i characters long

tooShort: Enter a value %(min)i characters long or more

class formencode.validators.URL(*args, **kw)
Validate a URL, either http://. . . or https://. If check_exists is true, then we’ll actually make a request for the
page.

If add_http is true, then if no scheme is present we’ll add http://

>>> u = URL(add_http=True)
>>> u.to_python('foo.com')
'http://foo.com'
>>> u.to_python('http://hahaha.ha/bar.html')
'http://hahaha.ha/bar.html'
>>> u.to_python('http://xn--m7r7ml7t24h.com')
'http://xn--m7r7ml7t24h.com'
>>> u.to_python('http://xn--c1aay4a.xn--p1ai')
'http://xn--c1aay4a.xn--p1ai'
>>> u.to_python('http://foo.com/test?bar=baz&fleem=morx')
'http://foo.com/test?bar=baz&fleem=morx'
>>> u.to_python('http://foo.com/login?came_from=http%3A%2F%2Ffoo.com%2Ftest')
'http://foo.com/login?came_from=http%3A%2F%2Ffoo.com%2Ftest'
>>> u.to_python('http://foo.com:8000/test.html')
'http://foo.com:8000/test.html'
>>> u.to_python('http://foo.com/something\nelse')
Traceback (most recent call last):

...
Invalid: That is not a valid URL
>>> u.to_python('https://test.com')
'https://test.com'
>>> u.to_python('http://test')
Traceback (most recent call last):

...
Invalid: You must provide a full domain name (like test.com)
>>> u.to_python('http://test..com')
Traceback (most recent call last):

...
Invalid: That is not a valid URL
>>> u = URL(add_http=False, check_exists=True)

29.1. FormEncode 229

http://
https://
http://

Pylons Reference Documentation, Release 1.0.2

>>> u.to_python('http://google.com')
'http://google.com'
>>> u.to_python('google.com')
Traceback (most recent call last):

...
Invalid: You must start your URL with http://, https://, etc
>>> u.to_python('http://www.formencode.org/does/not/exist/page.html')
Traceback (most recent call last):

...
Invalid: The server responded that the page could not be found
>>> u.to_python('http://this.domain.does.not.exist.example.org/test.html')
...
Traceback (most recent call last):

...
Invalid: An error occured when trying to connect to the server: ...

If you want to allow addresses without a TLD (e.g., localhost) you can do:

>>> URL(require_tld=False).to_python('http://localhost')
'http://localhost'

By default, internationalized domain names (IDNA) in Unicode will be accepted and encoded to ASCII using
Punycode (as described in RFC 3490). You may set allow_idna to False to change this behavior:

>>> URL(allow_idna=True).to_python(
... u'http://\u0433\u0443\u0433\u043b.\u0440\u0444')
'http://xn--c1aay4a.xn--p1ai'
>>> URL(allow_idna=True, add_http=True).to_python(
... u'\u0433\u0443\u0433\u043b.\u0440\u0444')
'http://xn--c1aay4a.xn--p1ai'
>>> URL(allow_idna=False).to_python(
... u'http://\u0433\u0443\u0433\u043b.\u0440\u0444')
Traceback (most recent call last):
...
Invalid: That is not a valid URL

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

badURL: That is not a valid URL

empty: Please enter a value

httpError: An error occurred when trying to access the URL: %(error)s

noScheme: You must start your URL with http://, https://, etc

noTLD: You must provide a full domain name (like %(domain)s.com)

noneType: The input must be a string (not None)

notFound: The server responded that the page could not be found

socketError: An error occured when trying to connect to the server: %(error)s

status: The server responded with a bad status code (%(status)s)

230 Chapter 29. Third-party components

http://
https://

Pylons Reference Documentation, Release 1.0.2

Wrapper Validators

class formencode.validators.ConfirmType(*args, **kw)
Confirms that the input/output is of the proper type.

Uses the parameters:

subclass: The class or a tuple of classes; the item must be an instance of the class or a subclass.

type: A type or tuple of types (or classes); the item must be of the exact class or type. Subclasses are not
allowed.

Examples:

>>> cint = ConfirmType(subclass=int)
>>> cint.to_python(True)
True
>>> cint.to_python('1')
Traceback (most recent call last):

...
Invalid: '1' is not a subclass of <type 'int'>
>>> cintfloat = ConfirmType(subclass=(float, int))
>>> cintfloat.to_python(1.0), cintfloat.from_python(1.0)
(1.0, 1.0)
>>> cintfloat.to_python(1), cintfloat.from_python(1)
(1, 1)
>>> cintfloat.to_python(None)
Traceback (most recent call last):

...
Invalid: None is not a subclass of one of the types <type 'float'>, <type 'int'>
>>> cint2 = ConfirmType(type=int)
>>> cint2(accept_python=False).from_python(True)
Traceback (most recent call last):

...
Invalid: True must be of the type <type 'int'>

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

inSubclass: %(object)r is not a subclass of one of the types %(subclassList)s

inType: %(object)r must be one of the types %(typeList)s

noneType: The input must be a string (not None)

subclass: %(object)r is not a subclass of %(subclass)s

type: %(object)r must be of the type %(type)s

class formencode.validators.Wrapper(*args, **kw)
Used to convert functions to validator/converters.

You can give a simple function for _convert_to_python, _convert_from_python, _validate_python or _vali-
date_other. If that function raises an exception, the value is considered invalid. Whatever value the function
returns is considered the converted value.

Unlike validators, the state argument is not used. Functions like int can be used here, that take a single argument.

Note that as Wrapper will generate a FancyValidator, empty values (those who pass
FancyValidator.is_empty) will return None. To override this behavior you can use

29.1. FormEncode 231

Pylons Reference Documentation, Release 1.0.2

Wrapper(empty_value=callable). For example passing Wrapper(empty_value=lambda
val: val) will return the value itself when is considered empty.

Examples:

>>> def downcase(v):
... return v.lower()
>>> wrap = Wrapper(convert_to_python=downcase)
>>> wrap.to_python('This')
'this'
>>> wrap.from_python('This')
'This'
>>> wrap.to_python('') is None
True
>>> wrap2 = Wrapper(
... convert_from_python=downcase, empty_value=lambda value: value)
>>> wrap2.from_python('This')
'this'
>>> wrap2.to_python('')
''
>>> wrap2.from_python(1)
Traceback (most recent call last):
...

Invalid: 'int' object has no attribute 'lower'
>>> wrap3 = Wrapper(validate_python=int)
>>> wrap3.to_python('1')
'1'
>>> wrap3.to_python('a')
Traceback (most recent call last):
...

Invalid: invalid literal for int()...

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.validators.Constant(*args, **kw)
This converter converts everything to the same thing.

I.e., you pass in the constant value when initializing, then all values get converted to that constant value.

This is only really useful for funny situations, like:

Any evaluates sub validators in reverse order for to_python
fromEmailValidator = Any(

Constant('unknown@localhost'),
Email())

In this case, the if the email is not valid 'unknown@localhost' will be used instead. Of course, you could
use if_invalid instead.

Examples:

>>> Constant('X').to_python('y')
'X'

Messages

232 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

29.1.3 Validator Modifiers

formencode.compound

Validators for applying validations in sequence.

class formencode.compound.Any(*args, **kw)
Check if any of the specified validators is valid.

This class is like an ‘or’ operator for validators. The first validator/converter in the order of evaluation
that validates the value will be used.

The order of evaluation differs depending on if you are validating to Python or from Python as
follows:

The validators are evaluated right to left when validating to Python.

The validators are evaluated left to right when validating from Python.

Examples:

>>> from formencode.validators import DictConverter
>>> av = Any(validators=[DictConverter({2: 1}),
... DictConverter({3: 2}), DictConverter({4: 3})])
>>> av.to_python(3)
2
>>> av.from_python(2)
3

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

class formencode.compound.All(*args, **kw)
Check if all of the specified validators are valid.

This class is like an ‘and’ operator for validators. All validators must work, and the results are passed
in turn through all validators for conversion in the order of evaluation. All is the same as Pipe but
operates in the reverse order.

The order of evaluation differs depending on if you are validating to Python or from Python as
follows:

The validators are evaluated right to left when validating to Python.

The validators are evaluated left to right when validating from Python.

Pipe is more intuitive when predominantly validating to Python.

Examples:

29.1. FormEncode 233

Pylons Reference Documentation, Release 1.0.2

>>> from formencode.validators import DictConverter
>>> av = All(validators=[DictConverter({2: 1}),
... DictConverter({3: 2}), DictConverter({4: 3})])
>>> av.to_python(4)
1
>>> av.from_python(1)
4

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

formencode.foreach

Validator for repeating items.

class formencode.foreach.ForEach(*args, **kw)
Use this to apply a validator/converter to each item in a list.

For instance:

ForEach(AsInt(), InList([1, 2, 3]))

Will take a list of values and try to convert each of them to an integer, and then check if each integer is 1, 2, or
3. Using multiple arguments is equivalent to:

ForEach(All(AsInt(), InList([1, 2, 3])))

Use convert_to_list=True if you want to force the input to be a list. This will turn non-lists into one-element
lists, and None into the empty list. This tries to detect sequences by iterating over them (except strings, which
aren’t considered sequences).

ForEach will try to convert the entire list, even if errors are encountered. If errors are encountered, they will be
collected and a single Invalid exception will be raised at the end (with error_list set).

If the incoming value is a set, then we return a set.

Messages

badType: The input must be a string (not a %(type)s: %(value)r)

empty: Please enter a value

noneType: The input must be a string (not None)

29.1.4 HTML Parsing and Form Filling

formencode.htmlfill

Parser for HTML forms, that fills in defaults and errors. See render.

234 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

formencode.htmlfill.render(form, defaults=None, errors=None, use_all_keys=False,
error_formatters=None, add_attributes=None,
auto_insert_errors=True, auto_error_formatter=None,
text_as_default=False, checkbox_checked_if_present=False,
listener=None, encoding=None, error_class=’error’, pre-
fix_error=True, force_defaults=True, skip_passwords=False,
data_formencode_form=None, data_formencode_ignore=None)

Render the form (which should be a string) given the defaults and errors. Defaults are the values that
go in the input fields (overwriting any values that are there) and errors are displayed inline in the form (and also
effect input classes). Returns the rendered string.

If auto_insert_errors is true (the default) then any errors for which <form:error> tags can’t be
found will be put just above the associated input field, or at the top of the form if no field can be found.

If use_all_keys is true, if there are any extra fields from defaults or errors that couldn’t be used in the form
it will be an error.

error_formatters is a dictionary of formatter names to one-argument functions that format an error into
HTML. Some default formatters are provided if you don’t provide this.

error_class is the class added to input fields when there is an error for that field.

add_attributes is a dictionary of field names to a dictionary of attribute name/values. If the name starts
with + then the value will be appended to any existing attribute (e.g., {'+class': ' important'}).

auto_error_formatter is used to create the HTML that goes above the fields. By default it wraps the
error message in a span and adds a
.

If text_as_default is true (default false) then <input type="unknown"> will be treated as text in-
puts.

If checkbox_checked_if_present is true (default false) then <input type="checkbox"> will be
set to checked if any corresponding key is found in the defaults dictionary, even a value that evaluates to
False (like an empty string). This can be used to support pre-filling of checkboxes that do not have a value at-
tribute, since browsers typically will only send the name of the checkbox in the form submission if the checkbox
is checked, so simply the presence of the key would mean the box should be checked.

listener can be an object that watches fields pass; the only one currently is in
htmlfill_schemabuilder.SchemaBuilder

encoding specifies an encoding to assume when mixing str and unicode text in the template.

prefix_error specifies if the HTML created by auto_error_formatter is put before the input control (default)
or after the control.

force_defaults specifies if a field default is not given in the defaults dictionary then the control asso-
ciated with the field should be set as an unsuccessful control. So checkboxes will be cleared, radio and select
controls will have no value selected, and textareas will be emptied. This defaults to True, which is appropriate
the defaults are the result of a form submission.

skip_passwords specifies if password fields should be skipped when rendering form-content. If disabled
the password fields will not be filled with anything, which is useful when you don’t want to return a user’s
password in plain-text source.

data_formencode_form if a string is passed in (default None) only fields with the html attribute data-
formencode-form that matches this string will be processed. For example: if a HTML fragment has two
forms they can be differentiated to Formencode by decorating the input elements with attributes such as data-
formencode-form=”a” or data-formencode-form=”b”, then instructing render() to only process the “a” or “b”
fields.

29.1. FormEncode 235

Pylons Reference Documentation, Release 1.0.2

data_formencode_ignore if True (default None) fields with the html attribute data-formencode-ignore
will not be processed. This attribute need only be present in the tag: data-formencode-ignore=”1”, data-
formencode-ignore=”“ and data-formencode-ignore without a value are all valid signifiers.

formencode.htmlfill.default_formatter(error)
Formatter that escapes the error, wraps the error in a span with class error-message, and adds a

formencode.htmlfill.none_formatter(error)
Formatter that does nothing, no escaping HTML, nothin’

formencode.htmlfill.escape_formatter(error)
Formatter that escapes HTML, no more.

formencode.htmlfill.escapenl_formatter(error)
Formatter that escapes HTML, and translates newlines to

class formencode.htmlfill.FillingParser(defaults, errors=None, use_all_keys=False,
error_formatters=None, er-
ror_class=’error’, add_attributes=None, lis-
tener=None, auto_error_formatter=None,
text_as_default=False, check-
box_checked_if_present=False, en-
coding=None, prefix_error=True,
force_defaults=True, skip_passwords=False,
data_formencode_form=None,
data_formencode_ignore=None)

Fills HTML with default values, as in a form.

Examples:

>>> defaults = dict(name='Bob Jones',
... occupation='Crazy Cultist',
... address='14 W. Canal\nNew Guinea',
... living='no',
... nice_guy=0)
>>> parser = FillingParser(defaults)
>>> parser.feed('''<input type="text" name="name" value="fill">
... <select name="occupation"> <option value="">Default</option>
... <option value="Crazy Cultist">Crazy cultist</option> </select>
... <textarea cols="20" style="width: 100%" name="address">
... An address</textarea>
... <input type="radio" name="living" value="yes">
... <input type="radio" name="living" value="no">
... <input type="checkbox" name="nice_guy" checked="checked">''')
>>> parser.close()
>>> print (parser.text())
<input type="text" name="name" value="Bob Jones">
<select name="occupation">
<option value="">Default</option>
<option value="Crazy Cultist" selected="selected">Crazy cultist</option>
</select>
<textarea cols="20" style="width: 100%" name="address">14 W. Canal
New Guinea</textarea>
<input type="radio" name="living" value="yes">
<input type="radio" name="living" value="no" checked="checked">
<input type="checkbox" name="nice_guy">

236 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

29.2 weberror – Weberror

29.2.1 weberror.errormiddleware

Error handler middleware

class weberror.errormiddleware.ErrorMiddleware(application, global_conf=None,
debug=<NoDefault>, er-
ror_email=None, error_log=None,
show_exceptions_in_wsgi_errors=<NoDefault>,
from_address=None,
smtp_server=None,
smtp_username=None,
smtp_password=None,
smtp_use_tls=False, er-
ror_subject_prefix=None, er-
ror_message=None, xml-
http_key=None, reporters=None,
show_error_reason=None)

Error handling middleware

Usage:

error_catching_wsgi_app = ErrorMiddleware(wsgi_app)

Settings:

debug: If true, then tracebacks will be shown in the browser.

error_email: an email address (or list of addresses) to send exception reports to

error_log: a filename to append tracebacks to

show_exceptions_in_wsgi_errors: If true, then errors will be printed to wsgi.errors
(frequently a server error log, or stderr).

from_address, smtp_server, error_subject_prefix, smtp_username, smtp_password, smtp_use_tls:
variables to control the emailed exception reports

error_message: When debug mode is off, the error message to show to users.

xmlhttp_key: When this key (default _) is in the request GET variables (not POST!), expect
that this is an XMLHttpRequest, and the response should be more minimal; it should not be a
complete HTML page.

show_error_reason‘: If set to true and when debug mode is off, exception_type and exception_value
are posted after error_message.

Environment Configuration:

paste.throw_errors: If this setting in the request environment is true, then this middleware is
disabled. This can be useful in a testing situation where you don’t want errors to be caught and
transformed.

paste.expected_exceptions: When this middleware encounters an exception listed in this
environment variable and when the start_response has not yet occurred, the exception will
be re-raised instead of being caught. This should generally be set by middleware that may (but
probably shouldn’t be) installed above this middleware, and wants to get certain exceptions. Ex-
ceptions raised after start_response have been called are always caught since by definition
they are no longer expected.

29.2. weberror – Weberror 237

Pylons Reference Documentation, Release 1.0.2

29.2.2 weberror.evalcontext

class weberror.evalcontext.EvalContext(namespace, globs)
Class that represents a interactive interface. It has its own namespace. Use eval_context.exec_expr(expr) to run
commands; the output of those commands is returned, as are print statements.

This is essentially what doctest does, and is taken directly from doctest.

29.2.3 weberror.evalexception

Exception-catching middleware that allows interactive debugging.

This middleware catches all unexpected exceptions. A normal traceback, like produced by weberror.
exceptions.errormiddleware.ErrorMiddleware is given, plus controls to see local variables and eval-
uate expressions in a local context.

This can only be used in single-process environments, because subsequent requests must go back to the same process
that the exception originally occurred in. Threaded or non-concurrent environments both work.

This shouldn’t be used in production in any way. That would just be silly.

If calling from an XMLHttpRequest call, if the GET variable _ is given then it will make the response more compact
(and less Javascripty), since if you use innerHTML it’ll kill your browser. You can look for the header X-Debug-URL
in your 500 responses if you want to see the full debuggable traceback. Also, this URL is printed to wsgi.errors,
so you can open it up in another browser window.

class weberror.evalexception.EvalException(application, global_conf=None, er-
ror_template_filename=None, xml-
http_key=None, media_paths=None, tem-
plating_formatters=None, head_html=”,
footer_html=”, reporters=None, li-
braries=None, debug_url_prefix=None,
**params)

Handles capturing an exception and turning it into an interactive exception explorer

media(req)
Static path where images and other files live

summary(req)
Returns a JSON-format summary of all the cached exception reports

view(req)
View old exception reports

29.2.4 weberror.formatter

Formatters for the exception data that comes from ExceptionCollector.

class weberror.formatter.AbstractFormatter(show_hidden_frames=False, in-
clude_reusable=True, show_extra_data=True,
trim_source_paths=(), **kwargs)

filter_frames(frames)
Removes any frames that should be hidden, according to the values of traceback_hide,
self.show_hidden_frames, and the hidden status of the final frame.

format_frame_end(frame)
Called after each frame ends; may return None to output no text.

238 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

format_frame_start(frame)
Called before each frame starts; may return None to output no text.

long_item_list(lst)
Returns true if the list contains items that are long, and should be more nicely formatted.

pretty_string_repr(s)
Formats the string as a triple-quoted string when it contains newlines.

class weberror.formatter.TextFormatter(show_hidden_frames=False, in-
clude_reusable=True, show_extra_data=True,
trim_source_paths=(), **kwargs)

class weberror.formatter.HTMLFormatter(show_hidden_frames=False, in-
clude_reusable=True, show_extra_data=True,
trim_source_paths=(), **kwargs)

class weberror.formatter.XMLFormatter(show_hidden_frames=False, include_reusable=True,
show_extra_data=True, trim_source_paths=(),
**kwargs)

weberror.formatter.create_text_node(doc, elem, text)

weberror.formatter.html_quote(s)

weberror.formatter.format_html(exc_data, include_hidden_frames=False, **ops)

weberror.formatter.format_text(exc_data, **ops)

weberror.formatter.format_xml(exc_data, **ops)

weberror.formatter.str2html(src, strip=False, indent_subsequent=0, highlight_inner=False,
frame=None, filename=None)

Convert a string to HTML. Try to be really safe about it, returning a quoted version of the string if nothing else
works.

weberror.formatter._str2html(src, strip=False, indent_subsequent=0, highlight_inner=False,
frame=None, filename=None)

weberror.formatter.truncate(string, limit=1000)
Truncate the string to the limit number of characters

weberror.formatter.make_wrappable(html, wrap_limit=60, split_on=’;?&@!$#-/\\"\”)

weberror.formatter.make_pre_wrappable(html, wrap_limit=60, split_on=’;?&@!$#-/\\"\”)
Like make_wrappable() but intended for text that will go in a <pre> block, so wrap on a line-by-line
basis.

29.2.5 weberror.reporter

class weberror.reporter.Reporter(**conf)

class weberror.reporter.EmailReporter(**conf)

class weberror.reporter.LogReporter(**conf)

class weberror.reporter.FileReporter(**conf)

class weberror.reporter.WSGIAppReporter(exc_data)

29.2. weberror – Weberror 239

Pylons Reference Documentation, Release 1.0.2

29.2.6 weberror.collector

An exception collector that finds traceback information plus supplements

class weberror.collector.ExceptionCollector(limit=None)
Produces a data structure that can be used by formatters to display exception reports.

Magic variables:

If you define one of these variables in your local scope, you can add information to tracebacks that happen in that
context. This allows applications to add all sorts of extra information about the context of the error, including
URLs, environmental variables, users, hostnames, etc. These are the variables we look for:

__traceback_supplement__: You can define this locally or globally (unlike all the other variables,
which must be defined locally).

__traceback_supplement__ is a tuple of (factory, arg1, arg2...). When there is an
exception, factory(arg1, arg2, ...) is called, and the resulting object is inspected for supple-
mental information.

__traceback_info__: This information is added to the traceback, usually fairly literally.

__traceback_hide__: If set and true, this indicates that the frame should be hidden from abbreviated
tracebacks. This way you can hide some of the complexity of the larger framework and let the user focus
on their own errors.

By setting it to 'before', all frames before this one will be thrown away. By setting it to 'after'
then all frames after this will be thrown away until 'reset' is found. In each case the frame where it is
set is included, unless you append '_and_this' to the value (e.g., 'before_and_this').

Note that formatters will ignore this entirely if the frame that contains the error wouldn’t normally be
shown according to these rules.

__traceback_reporter__: This should be a reporter object (see the reporter module), or a list/tuple of
reporter objects. All reporters found this way will be given the exception, innermost first.

__traceback_decorator__: This object (defined in a local or global scope) will get the result of this
function (the CollectedException defined below). It may modify this object in place, or return an entirely
new object. This gives the object the ability to manipulate the traceback arbitrarily.

The actually interpretation of these values is largely up to the reporters and formatters.

collect_exception(*sys.exc_info()) will return an object with several attributes:

frames: A list of frames

exception_formatted: The formatted exception, generally a full traceback

exception_type: The type of the exception, like ValueError

exception_value: The string value of the exception, like 'x not in list'

identification_code: A hash of the exception data meant to identify the general exception, so that it
shares this code with other exceptions that derive from the same problem. The code is a hash of all the
module names and function names in the traceback, plus exception_type. This should be shown to users
so they can refer to the exception later. (@@: should it include a portion that allows identification of the
specific instance of the exception as well?)

The list of frames goes innermost first. Each frame has these attributes; some values may be None if they could
not be determined.

modname: the name of the module

filename: the filename of the module

240 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

lineno: the line of the error

revision: the contents of __version__ or __revision__

name: the function name

supplement: an object created from __traceback_supplement__

supplement_exception: a simple traceback of any exception __traceback_supplement__ cre-
ated

traceback_info: the str() of any __traceback_info__ variable found in the local scope (@@: should
it str()-ify it or not?)

traceback_hide: the value of any __traceback_hide__ variable

traceback_log: the value of any __traceback_log__ variable

__traceback_supplement__ is thrown away, but a fixed set of attributes are captured; each of these
attributes is optional.

object: the name of the object being visited

source_url: the original URL requested

line: the line of source being executed (for interpreters, like ZPT)

column: the column of source being executed

expression: the expression being evaluated (also for interpreters)

warnings: a list of (string) warnings to be displayed

getInfo: a function/method that takes no arguments, and returns a string describing any extra information

extraData: a function/method that takes no arguments, and returns a dictionary. The contents of this dic-
tionary will not be displayed in the context of the traceback, but globally for the exception. Results will
be grouped by the keys in the dictionaries (which also serve as titles). The keys can also be tuples of
(importance, title); in this case the importance should be important (shows up at top), normal (shows
up somewhere; unspecified), supplemental (shows up at bottom), or extra (shows up hidden or not
at all).

These are used to create an object with attributes of the same names (getInfo becomes a string attribute, not
a method). __traceback_supplement__ implementations should be careful to produce values that are
relatively static and unlikely to cause further errors in the reporting system – any complex introspection should
go in getInfo() and should ultimately return a string.

Note that all attributes are optional, and under certain circumstances may be None or may not exist at all – the
collector can only do a best effort, but must avoid creating any exceptions itself.

Formatters may want to use __traceback_hide__ as a hint to hide frames that are part of the ‘framework’
or underlying system. There are a variety of rules about special values for this variables that formatters should
be aware of.

TODO:

More attributes in __traceback_supplement__? Maybe an attribute that gives a list of local variables that should
also be collected? Also, attributes that would be explicitly meant for the entire request, not just a single frame.
Right now some of the fixed set of attributes (e.g., source_url) are meant for this use, but there’s no explicit
way for the supplement to indicate new values, e.g., logged-in user, HTTP referrer, environment, etc. Also, the
attributes that do exist are Zope/Web oriented.

More information on frames? cgitb, for instance, produces extensive information on local variables. There exists
the possibility that getting this information may cause side effects, which can make debugging more difficult; but
it also provides fodder for post-mortem debugging. However, the collector is not meant to be configurable, but

29.2. weberror – Weberror 241

Pylons Reference Documentation, Release 1.0.2

to capture everything it can and let the formatters be configurable. Maybe this would have to be a configuration
value, or maybe it could be indicated by another magical variable (which would probably mean ‘show all local
variables below this frame’)

class weberror.collector.ExceptionFrame(**attrs)
This represents one frame of the exception. Each frame is a context in the call stack, typically represented by a
line number and module name in the traceback.

get_source_line(context=0)
Return the source of the current line of this frame. You probably want to .strip() it as well, as it is likely to
have leading whitespace.

If context is given, then that many lines on either side will also be returned. E.g., context=1 will give 3
lines.

weberror.collector.collect_exception(t, v, tb, limit=None)
Collection an exception from sys.exc_info().

Use like:

try:
blah blah

except:
exc_data = collect_exception(*sys.exc_info())

29.3 webtest – WebTest

Routines for testing WSGI applications.

class webtest.TestApp(app, extra_environ=None, relative_to=None, use_unicode=True, cookie-
jar=None, parser_features=None, json_encoder=None, lint=True)

Wraps a WSGI application in a more convenient interface for testing. It uses extended version of webob.
BaseRequest and webob.Response.

Parameters

• app (WSGI application) – May be an WSGI application or Paste Deploy app, like
'config:filename.ini#test'.

New in version 2.0.

It can also be an actual full URL to an http server and webtest will proxy requests with
WSGIProxy2.

• extra_environ (dict) – A dictionary of values that should go into the environment for
each request. These can provide a communication channel with the application.

• relative_to (string) – A directory used for file uploads are calculated relative to
this. Also config: URIs that aren’t absolute.

• cookiejar (CookieJar instance) – cookielib.CookieJar alike API that
keeps cookies across requets.

cookies
A convenient shortcut for a dict of all cookies in cookiejar.

Parameters

• parser_features (string or list) – Passed to BeautifulSoup when parsing re-
sponses.

242 Chapter 29. Third-party components

https://pypi.python.org/pypi/WSGIProxy2/

Pylons Reference Documentation, Release 1.0.2

• json_encoder (A subclass of json.JSONEncoder) – Passed to json.dumps
when encoding json

• lint (A boolean) – If True (default) then check that the application is WSGI compliant

RequestClass
alias of TestRequest

authorization
Allow to set the HTTP_AUTHORIZATION environ key. Value should looks like ('Basic',
('user', 'password'))

If value is None the the HTTP_AUTHORIZATION is removed

delete(url, params=u”, headers=None, extra_environ=None, status=None, expect_errors=False, con-
tent_type=None, xhr=False)

Do a DELETE request. Similar to get().

Returns webtest.TestResponse instance.

delete_json(url, params=<NoDefault>, **kw)
Do a DELETE request. Very like the delete method.

params are dumped to json and put in the body of the request. Content-Type is set to application/
json.

Returns a webtest.TestResponse object.

do_request(req, status=None, expect_errors=None)
Executes the given webob Request (req), with the expected status. Generally get() and post()
are used instead.

To use this:

req = webtest.TestRequest.blank('url', ...args...)
resp = app.do_request(req)

Note: You can pass any keyword arguments to TestRequest.blank(), which will be set on the
request. These can be arguments like content_type, accept, etc.

encode_multipart(params, files)
Encodes a set of parameters (typically a name/value list) and a set of files (a list of (name, filename,
file_body, mimetype)) into a typical POST body, returning the (content_type, body).

get(url, params=None, headers=None, extra_environ=None, status=None, expect_errors=False,
xhr=False)
Do a GET request given the url path.

Parameters

• params – A query string, or a dictionary that will be encoded into a query string. You
may also include a URL query string on the url.

• headers (dictionary) – Extra headers to send.

• extra_environ (dictionary) – Environmental variables that should be added to
the request.

• status (integer or string) – The HTTP status code you expect in response (if
not 200 or 3xx). You can also use a wildcard, like '3*' or '*'.

29.3. webtest – WebTest 243

Pylons Reference Documentation, Release 1.0.2

• expect_errors (boolean) – If this is False, then if anything is written to environ
wsgi.errors it will be an error. If it is True, then non-200/3xx responses are also okay.

• xhr (boolean) – If this is true, then marks response as ajax. The same as headers={‘X-
REQUESTED-WITH’: ‘XMLHttpRequest’, }

Returns webtest.TestResponse instance.

get_authorization()
Allow to set the HTTP_AUTHORIZATION environ key. Value should looks like ('Basic',
('user', 'password'))

If value is None the the HTTP_AUTHORIZATION is removed

head(url, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False)
Do a HEAD request. Similar to get().

Returns webtest.TestResponse instance.

options(url, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False)
Do a OPTIONS request. Similar to get().

Returns webtest.TestResponse instance.

patch(url, params=u”, headers=None, extra_environ=None, status=None, upload_files=None, ex-
pect_errors=False, content_type=None, xhr=False)

Do a PATCH request. Similar to post().

Returns webtest.TestResponse instance.

patch_json(url, params=<NoDefault>, **kw)
Do a PATCH request. Very like the patch method.

params are dumped to json and put in the body of the request. Content-Type is set to application/
json.

Returns a webtest.TestResponse object.

post(url, params=u”, headers=None, extra_environ=None, status=None, upload_files=None, ex-
pect_errors=False, content_type=None, xhr=False)

Do a POST request. Similar to get().

Parameters

• params – Are put in the body of the request. If params is a iterator it will be urlencoded,
if it is string it will not be encoded, but placed in the body directly.

Can be a collections.OrderedDict with webtest.forms.Upload fields included:

app.post(‘/myurl’, collections.OrderedDict([(‘textfield1’, ‘value1’), (‘uploadfield’,
webapp.Upload(‘filename.txt’, ‘contents’), (‘textfield2’, ‘value2’)])))

• upload_files (list) – It should be a list of (fieldname, filename,
file_content). You can also use just (fieldname, filename) and the file
contents will be read from disk.

• content_type (string) – HTTP content type, for example application/json.

• xhr (boolean) – If this is true, then marks response as ajax. The same as headers={‘X-
REQUESTED-WITH’: ‘XMLHttpRequest’, }

Returns webtest.TestResponse instance.

post_json(url, params=<NoDefault>, **kw)
Do a POST request. Very like the post method.

244 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

params are dumped to json and put in the body of the request. Content-Type is set to application/
json.

Returns a webtest.TestResponse object.

put(url, params=u”, headers=None, extra_environ=None, status=None, upload_files=None, ex-
pect_errors=False, content_type=None, xhr=False)
Do a PUT request. Similar to post().

Returns webtest.TestResponse instance.

put_json(url, params=<NoDefault>, **kw)
Do a PUT request. Very like the put method.

params are dumped to json and put in the body of the request. Content-Type is set to application/
json.

Returns a webtest.TestResponse object.

request(url_or_req, status=None, expect_errors=False, **req_params)
Creates and executes a request. You may either pass in an instantiated TestRequest object, or you may
pass in a URL and keyword arguments to be passed to TestRequest.blank().

You can use this to run a request without the intermediary functioning of TestApp.get() etc. For
instance, to test a WebDAV method:

resp = app.request('/new-col', method='MKCOL')

Note that the request won’t have a body unless you specify it, like:

resp = app.request('/test.txt', method='PUT', body='test')

You can use webtest.TestRequest:

req = webtest.TestRequest.blank('/url/', method='GET')
resp = app.do_request(req)

reset()
Resets the state of the application; currently just clears saved cookies.

set_cookie(name, value)
Sets a cookie to be passed through with requests.

set_parser_features(parser_features)
Changes the parser used by BeautifulSoup. See its documentation to know the supported parsers.

class webtest.TestResponse(body=None, status=None, headerlist=None, app_iter=None, con-
tent_type=None, conditional_response=None, charset=<object ob-
ject>, **kw)

Instances of this class are returned by TestApp methods.

click(description=None, linkid=None, href=None, index=None, verbose=False, ex-
tra_environ=None)

Click the link as described. Each of description, linkid, and url are patterns, meaning that they
are either strings (regular expressions), compiled regular expressions (objects with a search method), or
callables returning true or false.

All the given patterns are ANDed together:

• description is a pattern that matches the contents of the anchor (HTML and all – everything
between <a...> and)

29.3. webtest – WebTest 245

Pylons Reference Documentation, Release 1.0.2

• linkid is a pattern that matches the id attribute of the anchor. It will receive the empty string if no
id is given.

• href is a pattern that matches the href of the anchor; the literal content of that attribute, not the
fully qualified attribute.

If more than one link matches, then the index link is followed. If index is not given and more than one
link matches, or if no link matches, then IndexError will be raised.

If you give verbose then messages will be printed about each link, and why it does or doesn’t match. If
you use app.click(verbose=True) you’ll see a list of all the links.

You can use multiple criteria to essentially assert multiple aspects about the link, e.g., where the link’s
destination is.

clickbutton(description=None, buttonid=None, href=None, index=None, verbose=False)
Like click(), except looks for link-like buttons. This kind of button should look like <button
onclick="...location.href='url'...">.

follow(**kw)
If this response is a redirect, follow that redirect. It is an error if it is not a redirect response. Any keyword
arguments are passed to webtest.app.TestApp.get. Returns another TestResponse object.

form
If there is only one form on the page, return it as a Form object; raise a TypeError is there are no form or
multiple forms.

forms
Returns a dictionary containing all the forms in the pages as Form objects. Indexes are both in order (from
zero) and by form id (if the form is given an id).

See forms for more info on form objects.

goto(href, method=’get’, **args)
Go to the (potentially relative) link href, using the given method ('get' or 'post') and any extra
arguments you want to pass to the webtest.app.TestApp.get() or webtest.app.TestApp.
post() methods.

All hostnames and schemes will be ignored.

html
Returns the response as a BeautifulSoup object.

Only works with HTML responses; other content-types raise AttributeError.

json
Return the response as a JSON response. The content type must be one of json type to use this.

lxml
Returns the response as an lxml object. You must have lxml installed to use this.

If this is an HTML response and you have lxml 2.x installed, then an lxml.html.HTML object will be
returned; if you have an earlier version of lxml then a lxml.HTML object will be returned.

maybe_follow(**kw)
Follow all redirects. If this response is not a redirect, do nothing. Any keyword arguments are passed to
webtest.app.TestApp.get. Returns another TestResponse object.

mustcontain(*strings, no=[])
Assert that the response contains all of the strings passed in as arguments.

Equivalent to:

246 Chapter 29. Third-party components

http://www.crummy.com/software/BeautifulSoup/documentation.html
http://codespeak.net/lxml/

Pylons Reference Documentation, Release 1.0.2

assert string in res

Can take a no keyword argument that can be a string or a list of strings which must not be present in the
response.

normal_body
Return the whitespace-normalized body

pyquery
Returns the response as a PyQuery object.

Only works with HTML and XML responses; other content-types raise AttributeError.

showbrowser()
Show this response in a browser window (for debugging purposes, when it’s hard to read the HTML).

unicode_normal_body
Return the whitespace-normalized body, as unicode

xml
Returns the response as an ElementTree object.

Only works with XML responses; other content-types raise AttributeError

class webtest.Form(response, text, parser_features=’html.parser’)
This object represents a form that has been found in a page.

Parameters

• response – webob.response.TestResponse instance

• text – Unparsed html of the form

text
the full HTML of the form.

action
the relative URI of the action.

method
the HTTP method (e.g., 'GET').

id
the id, or None if not given.

enctype
encoding of the form submission

fields
a dictionary of fields, each value is a list of fields by that name. <input type="radio"> and
<select> are both represented as single fields with multiple options.

field_order
Ordered list of field names as found in the html.

FieldClass
alias of Field

get(name, index=None, default=<NoDefault>)
Get the named/indexed field object, or default if no field is found. Throws an AssertionError if no field
is found and no default was given.

lint()
Check that the html is valid:

29.3. webtest – WebTest 247

http://pyquery.org/
http://python.org/doc/current/lib/module-xml.etree.ElementTree.html

Pylons Reference Documentation, Release 1.0.2

• each field must have an id

• each field must have a label

select(name, value=None, text=None, index=None)
Like .set(), except also confirms the target is a <select> and allows selecting options by text.

select_multiple(name, value=None, texts=None, index=None)
Like .set(), except also confirms the target is a <select multiple> and allows selecting options
by text.

set(name, value, index=None)
Set the given name, using index to disambiguate.

submit(name=None, index=None, value=None, **args)
Submits the form. If name is given, then also select that button (using index or value to disam-
biguate)‘‘.

Any extra keyword arguments are passed to the webtest.TestResponse.get() or webtest.
TestResponse.post() method.

Returns a webtest.TestResponse object.

submit_fields(name=None, index=None, submit_value=None)
Return a list of [(name, value), ...] for the current state of the form.

Parameters

• name – Same as for submit()

• index – Same as for submit()

upload_fields()
Return a list of file field tuples of the form:

(field name, file name)

or:

(field name, file name, file contents).

29.4 webob – Request/Response objects

29.4.1 Request

class webob.Request(environ, charset=None, unicode_errors=None, decode_param_names=None,
**kw)

The default request implementation

Parse four Accept* headers used in server-driven content negotiation.

The four headers are Accept, Accept-Charset, Accept-Encoding and Accept-Language.

class webob.acceptparse.Accept
Represent an Accept header.

Base class for AcceptValidHeader, AcceptNoHeader, and AcceptInvalidHeader.

class webob.acceptparse.MIMEAccept(*args, **kw)
Backwards compatibility shim for AcceptValidHeader that acts like the old MIMEAccept from WebOb 1.7.

248 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

Deprecated since version 1.8.

Instead of directly creating the Accept object, please see: create_accept_header(header_value),
which will create the appropriate object.

class webob.byterange.Range(start, end)
Represents the Range header.

Represents the Cache-Control header

class webob.cachecontrol.CacheControl(properties, type)
Represents the Cache-Control header.

By giving a type of 'request' or 'response' you can control what attributes are allowed (some Cache-
Control values only apply to requests or responses).

Does parsing of ETag-related headers: If-None-Matches, If-Matches

Also If-Range parsing

class webob.etag.ETagMatcher(etags)

class webob.etag.IfRange(etag)

29.4.2 Response

class webob.Response(body=None, status=None, headerlist=None, app_iter=None, con-
tent_type=None, conditional_response=None, charset=<object object>,
**kw)

Represents a WSGI response.

If no arguments are passed, creates a Response that uses a variety of defaults. The defaults may be changed
by sub-classing the Response. See the sub-classing notes.

Variables

• body (bytes or text_type) – If body is a text_type, then it will be encoded
using either charset when provided or default_encoding when charset is not
provided if the content_type allows for a charset. This argument is mutually exclu-
sive with app_iter.

• status (int or str) – Either an int or a string that is an integer followed by the
status text. If it is an integer, it will be converted to a proper status that also includes the
status text. Any existing status text will be kept. Non-standard values are allowed.

• headerlist (list) – A list of HTTP headers for the response.

• app_iter (iterable) – An iterator that is used as the body of the response. Should
conform to the WSGI requirements and should provide bytes. This argument is mutually
exclusive with body.

• content_type (str or None) – Sets the Content-Type header.
If no content_type is provided, and there is no headerlist, the
default_content_type will be automatically set. If headerlist is provided
then this value is ignored.

• conditional_response (bool) – Used to change the behavior of the
Response to check the original request for conditional response headers. See
conditional_response_app() for more information.

• charset (str or None) – Adds a charset Content-Type parameter. If no
charset is provided and the Content-Type is text, then the default_charset

29.4. webob – Request/Response objects 249

Pylons Reference Documentation, Release 1.0.2

will automatically be added. Currently the only Content-Type’s that allow for a
charset are defined to be text/*, application/xml, and */*+xml. Any other
Content-Type’s will not have a charset added. If a headerlist is provided this
value is ignored.

All other response attributes may be set on the response by providing them as keyword arguments. A
TypeError will be raised for any unexpected keywords. Sub-classing notes:

• The default_content_type is used as the default for the Content-Type header that is returned
on the response. It is text/html.

• The default_charset is used as the default character set to return on the Content-Type header,
if the Content-Type allows for a charset parameter. Currently the only Content-Type’s that
allow for a charset are defined to be: text/*, application/xml, and */*+xml. Any other
Content-Type’s will not have a charset added.

• The unicode_errors is set to strict, and access on a text will raise an error if it fails to decode
the body.

• default_conditional_response is set to False. This flag may be set to True so that all
Response objects will attempt to check the original request for conditional response headers. See
conditional_response_app() for more information.

• default_body_encoding is set to ‘UTF-8’ by default. It exists to allow users to get/set the
Response object using .text, even if no charset has been set for the Content-Type.

class webob.byterange.ContentRange(start, stop, length)
Represents the Content-Range header

This header is start-stop/length, where start-stop and length can be * (represented as None in the
attributes).

class webob.cachecontrol.CacheControl(properties, type)
Represents the Cache-Control header.

By giving a type of 'request' or 'response' you can control what attributes are allowed (some Cache-
Control values only apply to requests or responses).

29.4.3 Misc Functions

webob.html_escape(s)
HTML-escape a string or object

This converts any non-string objects passed into it to strings (actually, using unicode()). All values returned
are non-unicode strings (using &#num; entities for all non-ASCII characters).

None is treated specially, and returns the empty string.

class webob.response.AppIterRange(app_iter, start, stop)
Wraps an app_iter, returning just a range of bytes.

Gives a multi-value dictionary object (MultiDict) plus several wrappers

class webob.multidict.MultiDict(*args, **kw)
An ordered dictionary that can have multiple values for each key. Adds the methods getall, getone, mixed and
extend and add to the normal dictionary interface.

class webob.multidict.NestedMultiDict(*dicts)
Wraps several MultiDict objects, treating it as one large MultiDict

250 Chapter 29. Third-party components

Pylons Reference Documentation, Release 1.0.2

class webob.multidict.NoVars(reason=None)
Represents no variables; used when no variables are applicable.

This is read-only

29.4.4 Descriptors

class webob.descriptors.environ_getter

class webob.descriptors.header_getter

class webob.descriptors.converter

class webob.descriptors.deprecated_property
Wraps a descriptor, with a deprecation warning or error

29.4. webob – Request/Response objects 251

Pylons Reference Documentation, Release 1.0.2

252 Chapter 29. Third-party components

CHAPTER 30

Glossary

action The class method in a Pylons applications’ controller that handles a request.

API Application Programming Interface. The means of communication between a programmer and a software
program or operating system.

app_globals The app_globals object is created on application instantiation by the Globals class in a projects
lib/app_globals.py module.

This object is created once when the application is loaded by the projects config/environment.py mod-
ule (See Environment). It remains persistent during the lifecycle of the web application, and is not thread-safe
which means that it is best used for global options that should be read-only, or as an object to attach db connec-
tions or other objects which ensure their own access is thread-safe.

c Commonly used alias for tmpl_context to save on the typing when using lots of controller populated variables in
templates.

caching The storage of the results of expensive or length computations for later re-use at a point more quickly
accessed by the end user.

CDN Content Delivery Networks (CDN’s) are generally globally distributed content delivery networks optimized for
low latency for static file distribution. They can significantly increase page-load times by ensuring that the static
resources on a page are delivered by servers geographically close to the client in addition to lightening the load
placed on the application server.

ColdFusion Components CFCs represent an attempt by Macromedia to bring ColdFusion closer to an Object Ori-
ented Programming (OOP) language. ColdFusion is in no way an OOP language, but thanks in part to CFCs, it
does boast some of the attributes that make OOP languages so popular.

config The PylonsConfig instance for a given application. This can be accessed as pylons.config after an
Pylons application has been loaded.

controller The ‘C’ in MVC. The controller is given a request, does the necessary logic to prepare data for display,
then renders a template with the data and returns it to the user. See Controllers.

easy_install A tool that lets you download, build, install and manage Python packages and their dependencies.
easy_install is the end-user facing component of setuptools.

253

http://peak.telecommunity.com/DevCenter/EasyInstall

Pylons Reference Documentation, Release 1.0.2

Pylons can be installed with easy_install, and applications built with Pylons can easily be deployed this
way as well.

See also:

Pylons Packaging and Deployment Overview

dotted name string A reference to a Python module by name using a string to identify it, e.g. pylons.
controllers.util. These strings are evaluated to import the module being referenced without having
to import it in the code used. This is generally used to avoid import-time side-effects.

egg Python egg’s are bundled Python packages, generally installed by a package called setuptools. Unlike normal
Python package installs, egg’s allow a few additional features, such as package dependencies, and dynamic
discovery.

See also:

The Quick Guide to Python Eggs

EJBs Enterprise JavaBeans (EJB) technology is the server-side component architecture for Java Platform, Enterprise
Edition (Java EE). EJB technology enables rapid and simplified development of distributed, transactional, secure
and portable applications based on Java technology.

environ environ is a dictionary passed into all WSGI application. It generally contains unparsed header information,
CGI style variables and other objects inserted by WSGI Middleware.

ETag An ETag (entity tag) is an HTTP response header returned by an HTTP/1.1 compliant web server used to
determine change in content at a given URL. See http://wikipedia.org/wiki/HTTP_ETag

g Alias used in prior versions of Pylons for app_globals.

Google App Engine A cloud computing platform for hosting web applications implemented in Python. Building
Pylons applications for App Engine is facilitated by Ian Bicking’s appengine-monkey project.

See also:

What is Google App Engine? - Official Doc

h The helpers reference, h, is made available for use inside templates to assist with common rendering tasks. h is
just a reference to the lib/helpers.py module and can be used in the same manner as any other module
import.

Model-View-Controller An architectural pattern used in software engineering. In Pylons, the MVC paradigm is
extended slightly with a pipeline that may transform and extend the data available to a controller, as well as the
Pylons WSGI app itself that determines the appropriate Controller to call.

See also:

MVC at Wikipedia

MVC See Model-View-Controller

ORM (Object-Relational Mapper) Maps relational databases such as MySQL, Postgres, Oracle to objects providing
a cleaner API. Most ORM’s also make it easier to prevent SQL Injection attacks by binding variables, and can
handle generating sometimes extensive SQL.

Pylons A Python-based WSGI oriented web framework.

Rails Abbreviated as RoR, Ruby on Rails (also referred to as just Rails) is an open source Web application framework,
written in Ruby

request Refers to the current request being processed. Available to import from pylons and is available for use in
templates by the same name. See Request.

254 Chapter 30. Glossary

http://peak.telecommunity.com/DevCenter/PythonEggs
http://wikipedia.org/wiki/HTTP_ETag
http://code.google.com/p/appengine-monkey/
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://wikipedia.org/wiki/Model-View-Controller

Pylons Reference Documentation, Release 1.0.2

response Refers to the response to the current request. Available to import from pylons and is available for use in
template by the same name. See Response.

route Routes determine how the URL’s are mapped to the controllers and which URL is generated. See URL Con-
figuration

setuptools An extension to the basic distutils, setuptools allows packages to specify package dependencies and have
dynamic discovery of other installed Python packages.

See also:

Building and Distributing Packages with setuptools

SQLAlchemy One of the most popular Python database object-relational mappers (ORM). SQLAlchemy is the
default ORM recommended in Pylons. SQLAlchemy at the ORM level can look similar to Rails ActiveRecord,
but uses the DataMapper pattern for additional flexibility with the ability to map simple to extremely complex
databases.

tmpl_context The tmpl_context is available in the pylons module, and refers to the template context. Objects
attached to it are available in the template namespace as either tmpl_context or c for convenience.

UI User interface. The means of communication between a person and a software program or operating system.

virtualenv A tool to create isolated Python environments, designed to supersede the workingenv package and
virtual python configurations. In addition to isolating packages from possible system conflicts, virtualenv makes
it easy to install Python libraries using easy_install without dumping lots of packages into the system-wide
Python.

The other great benefit is that no root access is required since all modules are kept under the desired directory.
This makes it easy to setup a working Pylons install on shared hosting providers and other systems where
system-wide access is unavailable.

virtualenv is employed automatically by the go-pylons.py script described in Getting Started. The
Pylons wiki has more information on working with virtualenv.

web server gateway interface A specification for web servers and application servers to communicate with web
applications. Also referred to by its initials, as WSGI.

WSGI The WSGI Specification, also commonly referred to as PEP 333 and described by PEP 333.

WSGI Middleware WSGI Middleware refers to the ability of WSGI applications to modify the environ, and/or the
content of other WSGI applications by being placed in between the request and the other WSGI application.

See also:

WSGI Middleware in Concepts of Pylons WSGI Middleware Configuration

255

http://peak.telecommunity.com/DevCenter/setuptools
http://www.sqlalchemy.org/
http://www.martinfowler.com/eaaCatalog/dataMapper.html
http://peak.telecommunity.com/DevCenter/EasyInstall#creating-a-virtual-python
http://pypi.python.org/pypi/virtualenv
http://wiki.pylonshq.com/display/pylonscookbook/Using+a+Virtualenv+Sandbox
http://www.python.org/dev/peps/pep-0333/
https://www.python.org/dev/peps/pep-0333

Pylons Reference Documentation, Release 1.0.2

256 Chapter 30. Glossary

Python Module Index

b
babel, 91
babel.core, 91
babel.dates, 103
babel.localedata, 103
babel.numbers, 105

f
formencode.api, 207
formencode.compound, 233
formencode.foreach, 234
formencode.htmlfill, 234
formencode.schema, 209
formencode.validators, 211

p
pylons.commands, 187
pylons.configuration, 189
pylons.controllers, 190
pylons.controllers.core, 190
pylons.controllers.util, 191
pylons.controllers.xmlrpc, 193
pylons.decorators, 194
pylons.decorators.cache, 195
pylons.decorators.rest, 196
pylons.decorators.secure, 196
pylons.error, 197
pylons.i18n.translation, 197
pylons.log, 199
pylons.middleware, 199
pylons.templating, 201
pylons.test, 203
pylons.util, 204
pylons.wsgiapp, 204

w
weberror, 237
weberror.collector, 240
weberror.errormiddleware, 237

weberror.evalcontext, 238
weberror.evalexception, 238
weberror.formatter, 238
weberror.reporter, 239
webob, 248
webob.acceptparse, 248
webob.byterange, 249
webob.cachecontrol, 249
webob.etag, 249
webob.multidict, 250
webtest, 242

257

Pylons Reference Documentation, Release 1.0.2

258 Python Module Index

Index

Symbols
__call__() (pylons.controllers.core.WSGIController

method), 190
__call__() (pylons.controllers.xmlrpc.XMLRPCController

method), 194
__call__() (pylons.wsgiapp.PylonsApp method), 205
__init__() (formencode.api.Invalid method), 208
__init__() (pylons.middleware.StatusCodeRedirect

method), 200
_dispatch_call() (pylons.controllers.core.WSGIController

method), 190
_get_method_args() (py-

lons.controllers.core.WSGIController method),
191

_inspect_call() (pylons.controllers.core.WSGIController
method), 191

_perform_call() (pylons.controllers.core.WSGIController
method), 191

_str2html() (in module weberror.formatter), 239

A
abort() (in module pylons.controllers.util), 192
AbstractFormatter (class in weberror.formatter), 238
Accept (class in webob.acceptparse), 248
action, 253
action (webtest.Form attribute), 247
add_fallback() (in module pylons.i18n.translation), 199
All (class in formencode.compound), 233
all_messages() (formencode.api.Validator method), 208
Any (class in formencode.compound), 233
API, 253
app_globals, 253
AppIterRange (class in webob.response), 250
AttribSafeContextObj (class in pylons.util), 204
authenticate_form() (in module py-

lons.decorators.secure), 197
authorization (webtest.TestApp attribute), 243

B
babel (module), 91
babel.core (module), 91
babel.dates (module), 103
babel.localedata (module), 103
babel.numbers (module), 105
base64encode() (formencode.api.FancyValidator

method), 209
beaker_cache() (in module pylons.decorators.cache), 195
Bool (class in formencode.validators), 211

C
c, 253
CacheControl (class in webob.cachecontrol), 249, 250
cached_template() (in module pylons.templating), 202
caching, 253
CDN, 253
character_order (babel.Locale attribute), 91
CIDR (class in formencode.validators), 211
click() (webtest.TestResponse method), 245
clickbutton() (webtest.TestResponse method), 246
ColdFusion Components, 253
collect_exception() (in module weberror.collector), 242
config, 253
ConfirmType (class in formencode.validators), 231
Constant (class in formencode.validators), 232
content (pylons.controllers.util.Response attribute), 192
ContentRange (class in webob.byterange), 250
ContextObj (class in pylons.util), 204
controller, 253
ControllerCommand (class in pylons.commands), 188
converter (class in webob.descriptors), 251
cookies (webtest.TestApp attribute), 242
create_text_node() (in module weberror.formatter), 239
CreditCardExpires (class in formencode.validators), 212
CreditCardSecurityCode (class in formen-

code.validators), 213
CreditCardValidator (class in formencode.validators), 212
currencies (babel.Locale attribute), 92

259

Pylons Reference Documentation, Release 1.0.2

currency_formats (babel.Locale attribute), 92
currency_symbols (babel.Locale attribute), 92

D
date_formats (babel.Locale attribute), 92
DateConverter (class in formencode.validators), 213
datetime_formats (babel.Locale attribute), 92
datetime_skeletons (babel.Locale attribute), 93
DateTimeFormat (class in babel.dates), 104
DateTimePattern (class in babel.dates), 105
DateValidator (class in formencode.validators), 214
day_period_rules (babel.Locale attribute), 93
day_periods (babel.Locale attribute), 93
days (babel.Locale attribute), 93
decimal_formats (babel.Locale attribute), 93
default() (babel.Locale class method), 93
default_formatter() (in module formencode.htmlfill), 236
default_locale() (in module babel), 101
delete() (webtest.TestApp method), 243
delete_json() (webtest.TestApp method), 243
deprecated_property (class in webob.descriptors), 251
determine_browser_charset() (py-

lons.controllers.util.Request method), 191
determine_charset() (pylons.controllers.util.Response

method), 192
DictConverter (class in formencode.validators), 215
dispatch() (pylons.wsgiapp.PylonsApp method), 205
dispatch_on() (in module pylons.decorators.rest), 196
display_name (babel.Locale attribute), 94
do_request() (webtest.TestApp method), 243
dotted name string, 254

E
easy_install, 253
egg, 254
EJBs, 254
Email (class in formencode.validators), 216
EmailReporter (class in weberror.reporter), 239
emit() (pylons.log.WSGIErrorsHandler method), 199
Empty (class in formencode.validators), 217
encode_multipart() (webtest.TestApp method), 243
enctype (webtest.Form attribute), 247
english_name (babel.Locale attribute), 94
environ, 254
environ_getter (class in webob.descriptors), 251
environment variable

PATH_INFO, 15, 16
SCRIPT_NAME, 15, 16
SERVER_NAME, 164

eras (babel.Locale attribute), 94
ErrorHandler() (in module pylons.middleware), 200
ErrorMiddleware (class in weberror.errormiddleware),

237
escape_formatter() (in module formencode.htmlfill), 236

escapenl_formatter() (in module formencode.htmlfill),
236

ETag, 254
etag_cache() (in module pylons.controllers.util), 192
ETagMatcher (class in webob.etag), 249
EvalContext (class in weberror.evalcontext), 238
EvalException (class in weberror.evalexception), 238
ExceptionCollector (class in weberror.collector), 240
ExceptionFrame (class in weberror.collector), 242
exists() (in module babel.localedata), 103

F
FancyValidator (class in formencode.api), 208
field_order (webtest.Form attribute), 247
FieldClass (webtest.Form attribute), 247
fields (webtest.Form attribute), 247
FieldsMatch (class in formencode.validators), 217
FieldStorageUploadConverter (class in formen-

code.validators), 218
FileReporter (class in weberror.reporter), 239
FileUploadKeeper (class in formencode.validators), 218
FillingParser (class in formencode.htmlfill), 236
filter_frames() (weberror.formatter.AbstractFormatter

method), 238
find_controller() (pylons.wsgiapp.PylonsApp method),

205
first_week_day (babel.Locale attribute), 94
flush() (pylons.log.WSGIErrorsHandler method), 199
follow() (webtest.TestResponse method), 246
ForEach (class in formencode.foreach), 234
Form (class in webtest), 247
form (webtest.TestResponse attribute), 246
format_decimal() (in module babel.numbers), 105
format_frac_seconds() (babel.dates.DateTimeFormat

method), 104
format_frame_end() (weber-

ror.formatter.AbstractFormatter method),
238

format_frame_start() (weber-
ror.formatter.AbstractFormatter method),
238

format_html() (in module weberror.formatter), 239
format_number() (in module babel.numbers), 105
format_percent() (in module babel.numbers), 106
format_scientific() (in module babel.numbers), 106
format_text() (in module weberror.formatter), 239
format_weekday() (babel.dates.DateTimeFormat

method), 104
format_xml() (in module weberror.formatter), 239
formencode.api (module), 207
formencode.compound (module), 233
formencode.foreach (module), 234
formencode.htmlfill (module), 234
formencode.schema (module), 209

260 Index

Pylons Reference Documentation, Release 1.0.2

formencode.validators (module), 211
forms (webtest.TestResponse attribute), 246
FormValidator (class in formencode.validators), 219
forward() (in module pylons.controllers.util), 192

G
g, 254
get() (webtest.Form method), 247
get() (webtest.TestApp method), 243
get_authorization() (webtest.TestApp method), 244
get_content() (pylons.controllers.util.Response method),

192
get_display_name() (babel.Locale method), 94
get_lang() (in module pylons.i18n.translation), 199
get_language_name() (babel.Locale method), 95
get_script_name() (babel.Locale method), 95
get_source_line() (weberror.collector.ExceptionFrame

method), 242
get_territory_name() (babel.Locale method), 95
get_week_number() (babel.dates.DateTimeFormat

method), 104
get_wsgierrors() (pylons.log.WSGIErrorsHandler

method), 199
gettext() (in module pylons.i18n.translation), 198
gettext_noop() (in module pylons.i18n.translation), 198
Google App Engine, 254
goto() (webtest.TestResponse method), 246

H
h, 254
has_header() (pylons.controllers.util.Response method),

192
head() (webtest.TestApp method), 244
header_getter (class in webob.descriptors), 251
html (webtest.TestResponse attribute), 246
html_escape() (in module webob), 250
html_quote() (in module weberror.formatter), 239
HTMLFormatter (class in weberror.formatter), 239
https() (in module pylons.decorators.secure), 197

I
id (webtest.Form attribute), 247
if_empty (formencode.api.FancyValidator attribute), 209
if_invalid (formencode.api.FancyValidator attribute), 209
if_invalid_python (formencode.api.FancyValidator

attribute), 209
if_missing (formencode.api.Validator attribute), 208
IfRange (class in webob.etag), 249
IndexListConverter (class in formencode.validators), 219
init_app() (pylons.configuration.PylonsConfig method),

189
Int (class in formencode.validators), 220
interval_formats (babel.Locale attribute), 95
Invalid (class in formencode.api), 207

IPhoneNumberValidator (class in formencode.validators),
220

is_validator() (in module formencode.api), 207

J
json (webtest.TestResponse attribute), 246
jsonify() (in module pylons.decorators), 194

L
language (babel.Locale attribute), 95
language_name (babel.Locale attribute), 95
LanguageError, 198
languages (babel.Locale attribute), 95
languages (pylons.controllers.util.Request attribute), 191
lazify() (in module pylons.i18n.translation), 198
LazyString (class in pylons.i18n.translation), 198
lint() (webtest.Form method), 247
list_patterns (babel.Locale attribute), 95
load_test_env() (pylons.wsgiapp.PylonsApp method),

205
Locale (class in babel), 91
LogReporter (class in weberror.reporter), 239
long_item_list() (weberror.formatter.AbstractFormatter

method), 239
lxml (webtest.TestResponse attribute), 246

M
MACAddress (class in formencode.validators), 220
make_pre_wrappable() (in module weberror.formatter),

239
make_wrappable() (in module weberror.formatter), 239
match_accept() (pylons.controllers.util.Request method),

191
MaxLength (class in formencode.validators), 221
maybe_follow() (webtest.TestResponse method), 246
measurement_systems (babel.Locale attribute), 96
media() (weberror.evalexception.EvalException method),

238
meta_zones (babel.Locale attribute), 96
method (webtest.Form attribute), 247
MIMEAccept (class in webob.acceptparse), 248
min_week_days (babel.Locale attribute), 96
MinLength (class in formencode.validators), 221
Model-View-Controller, 254
months (babel.Locale attribute), 96
MultiDict (class in webob.multidict), 250
mustcontain() (webtest.TestResponse method), 246
MVC, 254

N
negotiate() (babel.Locale class method), 96
negotiate_locale() (in module babel), 101
NestedMultiDict (class in webob.multidict), 250
ngettext() (in module pylons.i18n.translation), 198

Index 261

Pylons Reference Documentation, Release 1.0.2

none_formatter() (in module formencode.htmlfill), 236
normal_body (webtest.TestResponse attribute), 247
NotEmpty (class in formencode.validators), 223
NoVars (class in webob.multidict), 250
Number (class in formencode.validators), 222
number_symbols (babel.Locale attribute), 97
NumberFormatError (class in babel.numbers), 105
NumberPattern (class in babel.numbers), 105

O
OneOf (class in formencode.validators), 223
options() (webtest.TestApp method), 244
ordinal_form (babel.Locale attribute), 97
ORM, 254

P
parse() (babel.Locale class method), 97
parse_decimal() (in module babel.numbers), 107
parse_locale() (in module babel), 102
parse_number() (in module babel.numbers), 107
patch() (webtest.TestApp method), 244
patch_json() (webtest.TestApp method), 244
PATH_INFO, 15, 16
percent_formats (babel.Locale attribute), 98
periods (babel.Locale attribute), 98
PhoneNumber (class in formencode.validators), 223
PlainText (class in formencode.validators), 224
plural_form (babel.Locale attribute), 98
post() (webtest.TestApp method), 244
post_json() (webtest.TestApp method), 244
PostalCode (class in formencode.validators), 224
pretty_string_repr() (weber-

ror.formatter.AbstractFormatter method),
239

put() (webtest.TestApp method), 245
put_json() (webtest.TestApp method), 245
Pylons, 254
pylons.commands (module), 187
pylons.configuration (module), 189
pylons.controllers (module), 190
pylons.controllers.core (module), 190
pylons.controllers.util (module), 191
pylons.controllers.xmlrpc (module), 193
pylons.decorators (module), 194
pylons.decorators.cache (module), 195
pylons.decorators.rest (module), 196
pylons.decorators.secure (module), 196
pylons.error (module), 197
pylons.i18n.translation (module), 197
pylons.log (module), 199
pylons.middleware (module), 199
pylons.templating (module), 201
pylons.test (module), 203
pylons.util (module), 204

pylons.wsgiapp (module), 204
pylons_globals() (in module pylons.templating), 202
PylonsApp (class in pylons.wsgiapp), 204
PylonsConfig (class in pylons.configuration), 189
PylonsContext (class in pylons.util), 204
PylonsPlugin (class in pylons.test), 204
pyquery (webtest.TestResponse attribute), 247
Python Enhancement Proposals

PEP 333, 8, 199, 205, 255

Q
quarters (babel.Locale attribute), 98

R
Rails, 254
Range (class in webob.byterange), 249
redirect() (in module pylons.controllers.util), 192
Regex (class in formencode.validators), 224
register_globals() (pylons.wsgiapp.PylonsApp method),

205
render() (in module formencode.htmlfill), 234
render_genshi() (in module pylons.templating), 203
render_mako() (in module pylons.templating), 203
render_mako_def() (in module pylons.templating), 203
Reporter (class in weberror.reporter), 239
request, 254
Request (class in pylons.controllers.util), 191
Request (class in webob), 248
request() (webtest.TestApp method), 245
RequestClass (webtest.TestApp attribute), 243
RequireIfMissing (class in formencode.validators), 225
reset() (webtest.TestApp method), 245
resolve() (pylons.wsgiapp.PylonsApp method), 205
response, 255
Response (class in pylons.controllers.util), 191
Response (class in webob), 249
RestControllerCommand (class in pylons.commands),

188
restrict() (in module pylons.decorators.rest), 196
RFC

RFC 3066, 91
RFC 4646, 103

route, 255

S
Schema (class in formencode.schema), 209
scientific_formats (babel.Locale attribute), 98
script (babel.Locale attribute), 99
SCRIPT_NAME, 15, 16
script_name (babel.Locale attribute), 99
scripts (babel.Locale attribute), 99
select() (webtest.Form method), 248
select_multiple() (webtest.Form method), 248
SERVER_NAME, 164

262 Index

Pylons Reference Documentation, Release 1.0.2

Set (class in formencode.validators), 225
set() (webtest.Form method), 248
set_cookie() (webtest.TestApp method), 245
set_lang() (in module pylons.i18n.translation), 199
set_parser_features() (webtest.TestApp method), 245
setup_app_env() (pylons.wsgiapp.PylonsApp method),

205
setuptools, 255
ShellCommand (class in pylons.commands), 188
showbrowser() (webtest.TestResponse method), 247
signed_cookie() (pylons.controllers.util.Request method),

191
signed_cookie() (pylons.controllers.util.Response

method), 192
SignedString (class in formencode.validators), 226
SimpleFormValidator (class in formencode.schema), 210
SQLAlchemy, 255
StateProvince (class in formencode.validators), 226
StatusCodeRedirect (class in pylons.middleware), 200
str2html() (in module weberror.formatter), 239
String (in module formencode.validators), 226
StringBool (class in formencode.validators), 226
StripField (class in formencode.validators), 226
submit() (webtest.Form method), 248
submit_fields() (webtest.Form method), 248
subvalidators() (formencode.api.Validator method), 208
summary() (weberror.evalexception.EvalException

method), 238
system_listMethods() (py-

lons.controllers.xmlrpc.XMLRPCController
method), 194

system_methodHelp() (py-
lons.controllers.xmlrpc.XMLRPCController
method), 194

system_methodSignature() (py-
lons.controllers.xmlrpc.XMLRPCController
method), 194

T
territories (babel.Locale attribute), 99
territory (babel.Locale attribute), 99
territory_name (babel.Locale attribute), 99
TestApp (class in webtest), 242
TestResponse (class in webtest), 245
text (webtest.Form attribute), 247
text_direction (babel.Locale attribute), 99
TextFormatter (class in weberror.formatter), 239
time_formats (babel.Locale attribute), 99
time_zones (babel.Locale attribute), 100
TimeConverter (class in formencode.validators), 227
tmpl_context, 255
truncate() (in module weberror.formatter), 239

U
ugettext() (in module pylons.i18n.translation), 198
UI, 255
ungettext() (in module pylons.i18n.translation), 198
unicode_normal_body (webtest.TestResponse attribute),

247
UnicodeString (class in formencode.validators), 228
unit_display_names (babel.Locale attribute), 100
unpack_errors() (formencode.api.Invalid method), 208
upload_fields() (webtest.Form method), 248
URL (class in formencode.validators), 229

V
validate() (in module pylons.decorators), 194
Validator (class in formencode.api), 208
variant (babel.Locale attribute), 100
variants (babel.Locale attribute), 100
view() (weberror.evalexception.EvalException method),

238
virtualenv, 255

W
web server gateway interface, 255
weberror (module), 237
weberror.collector (module), 240
weberror.errormiddleware (module), 237
weberror.evalcontext (module), 238
weberror.evalexception (module), 238
weberror.formatter (module), 238
weberror.reporter (module), 239
webob (module), 248
webob.acceptparse (module), 248
webob.byterange (module), 249
webob.cachecontrol (module), 249
webob.etag (module), 249
webob.multidict (module), 250
webtest (module), 242
weekend_end (babel.Locale attribute), 100
weekend_start (babel.Locale attribute), 100
Wrapper (class in formencode.validators), 231
WSGI, 255
WSGI Middleware, 255
wsgi_response() (pylons.controllers.util.Response

method), 192
WSGIAppReporter (class in weberror.reporter), 239
WSGIController (class in pylons.controllers.core), 190
WSGIErrorsHandler (class in pylons.log), 199

X
xml (webtest.TestResponse attribute), 247
XMLFormatter (class in weberror.formatter), 239
XMLRPCController (class in pylons.controllers.xmlrpc),

193

Index 263

Pylons Reference Documentation, Release 1.0.2

Z
zone_formats (babel.Locale attribute), 100

264 Index

	Getting Started
	Requirements
	Installing
	Creating a Pylons Project
	Running the application
	Hello World

	Concepts of Pylons
	The ‘Why’ of a Pylons Project
	WSGI Applications
	WSGI Middleware
	Controller Dispatch
	Paster
	Loading the Application

	Controllers
	Standard Controllers
	Using the WSGI Controller to provide a WSGI service
	Using the REST Controller with a RESTful API
	Using the XML-RPC Controller for XML-RPC requests

	Views
	Templates
	Passing Variables to Templates
	Default Template Variables
	Configuring Template Engines
	Custom render() functions
	Templating with Mako

	Models
	About the model
	Model Basics
	Organizing
	Creating a Model
	Adding a Relation
	Creating the Database
	A brief guide to using model objects in the Controller
	Logging
	About SQLAlchemy

	Advanced Models
	Advanced SQLAlchemy
	Non-SQLAlchemy libraries
	Object Databases
	Popular No-SQL Databases

	Configuration
	Runtime Configuration
	Environment
	URL Configuration
	Middleware
	Application Setup

	Logging
	Logging messages
	Basic Logging configuration
	Filtering log messages
	Advanced Configuration
	Request logging with Paste’s TransLogger
	Logging to wsgi.errors

	Helpers
	Pagination
	Secure Form Tag Helpers

	Forms
	The basics
	Getting Started
	Using the Helpers
	File Uploads
	Validating user input with FormEncode
	Other Form Tools

	Internationalization and Localization
	Introduction
	Getting Started
	Using Babel
	Back To Work
	Testing the Application
	Fallback Languages
	Translations Within Templates
	Lazy Translations
	Producing a Python Egg
	Plural Forms
	Summary
	Further Reading
	babel.core – Babel core classes
	babel.localedata — Babel locale data
	babel.dates – Babel date classes
	babel.numbers – Babel number classes

	Sessions
	Sessions
	The Session Object
	Configuring the Session
	Storing SQLAlchemy mapped objects in Beaker sessions
	Custom and caching middleware
	Using Session in Internationalization
	Using Session in Secure Forms
	Hacking the session for no cookies
	Using middleware (Beaker) with a composite app

	Caching
	Types of Caching
	Namespaces and Keys
	Configuring
	Browser-Side
	Controller Actions
	Templates
	Arbitrary Functions
	Fragments

	Unit and functional testing
	Unit Testing with webtest
	Example: Testing a Controller
	Testing Pylons Objects
	Testing Your Own Objects
	Unit Testing
	Functional Testing

	Errors, Troubleshooting, and Debugging
	Error Middleware
	Interactive Debugging
	E-mailing Errors
	Programmatically Handling Errors

	Upgrading
	1.0 -> 1.0.1
	0.9.7 -> 1.0

	Packaging and Deployment Overview
	Egg Files
	Installing as a Non-root User
	Understanding the Setup Process
	Deploying the Application
	Advanced Usage

	Running Pylons Apps with Other Web Servers
	Using Fast-CGI
	Apache Configuration
	PrefixMiddleware
	Using Java Web Servers with Jython

	Documenting Your Application
	Introduction
	Tutorial
	Learning ReStructuredText
	Using Docstrings
	Using doctest
	Summary

	Distributing Your Application
	Running Your Application

	Python 2.3 Installation Instructions
	Advice of end of support for Python 2.3
	Preparation
	System-wide Install

	Windows Notes
	For Win2K or WinXP
	For Windows 95, 98 and ME
	Finally

	Pylons on Jython
	Installation
	Deploying to Java Web servers

	Security policy for bugs
	Receiving Security Updates
	Reporting Security Issues
	Minimising Risk

	WSGI support
	Paste and WSGI
	Using a WSGI Application as a Pylons 0.9 Controller
	Running a WSGI Application From Within a Controller
	Configuring Middleware Within a Pylons Application
	The Cascade
	Useful Resources

	Advanced Pylons
	WSGI, CLI scripts
	Adding commands to Paster
	Creating Paste templates
	Using Entry Points to Write Plugins

	Pylons Execution Analysis
	The sample application
	Pylons’ dependencies
	The analysis

	Pylons Modules
	pylons.commands – Command line functions
	pylons.configuration – Configuration object and defaults setup
	pylons.controllers – Controllers
	pylons.controllers.core – WSGIController Class
	pylons.controllers.util – Controller Utility functions
	pylons.controllers.xmlrpc – XMLRPCController Class
	pylons.decorators – Decorators
	pylons.decorators.cache – Cache Decorators
	pylons.decorators.rest – REST-ful Decorators
	pylons.decorators.secure – Secure Decorators
	pylons.error – Error handling support
	pylons.i18n.translation – Translation/Localization functions
	pylons.log – Logging for WSGI errors
	pylons.middleware – WSGI Middleware
	pylons.templating – Render functions and helpers
	pylons.test – Test related functionality
	pylons.util – Paste Template and Pylons utility functions
	pylons.wsgiapp – PylonsWSGI App Creator

	Third-party components
	FormEncode
	weberror – Weberror
	webtest – WebTest
	webob – Request/Response objects

	Glossary
	Python Module Index

