

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pylons 0.9.7 documentation

Pylons Reference Documentation

[image: The First Pylon of the Ramesseum, Thebes is approximately 69m long and 22m high, and marks the entrance to the Main Temple and the First Courtyard.]

Getting Started with Pylons

	Getting Started
	Requirements

	Installing

	Creating a Pylons Project

	Running the application

	Hello World

	Concepts of Pylons
	The ‘Why’ of a Pylons Project

	WSGI Applications

	WSGI Middleware

	Controller Dispatch

	Paster

	Loading the Application

Tutorials

	Pylons Tutorials
	Quickwiki tutorial

	Understanding Unicode

MVC Reference

	Controllers
	Standard Controllers

	Using the WSGI Controller to provide a WSGI service

	Using the REST Controller with a RESTful API

	Using the XML-RPC Controller for XML-RPC requests

	Views
	Templates

	Passing Variables to Templates

	Default Template Variables

	Configuring Template Engines

	Custom render() functions

	Templating with Mako

	Models
	About the model

	Model basics

	Working with SQLAlchemy

Project Configuration and Logging

	Configuration
	Runtime Configuration

	Environment

	URL Configuration

	Middleware

	Application Setup

	Logging
	Logging messages

	Basic Logging configuration

	Filtering log messages

	Advanced Configuration

	Request logging with Paste’s TransLogger

	Logging to wsgi.errors

Forms, Validation, and Helpers

	Helpers
	Pagination

	Secure Form Tag Helpers

	Forms
	The basics

	Getting Started

	Using the Helpers

	File Uploads

	Validating user input with FormEncode

	Other Form Tools

Internationalization, Sessions, and Caching

	Internationalization and Localization
	Introduction

	Getting Started

	Using Babel

	Back To Work

	Testing the Application

	Fallback Languages

	Translations Within Templates

	Lazy Translations

	Producing a Python Egg

	Plural Forms

	Summary

	Further Reading

	babel.core – Babel core classes

	babel.localedata — Babel locale data

	babel.dates – Babel date classes

	babel.numbers – Babel number classes

	Sessions
	Sessions

	Session Objects

	Beaker

	Custom and caching middleware

	Bulk deletion of expired db-held sessions

	Using Session in Internationalization

	Using Session in Secure Forms

	Hacking the session for no cookies

	Using middleware (Beaker) with a composite app

	storing SA mapped objects in Beaker sessions

	Caching
	Using the Cache object

	Using Cache keywords to render

	Using the Cache Decorator

	Caching Arbitrary Functions

	ETag Caching

	Inside the Beaker Cache

Testing, Upgrading, and Deploying

	Unit and functional testing
	Unit Testing with webtest

	Example: Testing a Controller

	Testing Pylons Objects

	Testing Your Own Objects

	Unit Testing

	Functional Testing

	Troubleshooting & Debugging
	Interactive debugging

	The Debugging Screen

	Example: Exploring the Traceback

	Email Options

	Upgrading
	Upgrading from 0.9.6 -> 0.9.7

	Moving from a pre-0.9.6 to 0.9.6

	Packaging and Deployment Overview
	Egg Files

	Installing as a Non-root User

	Understanding the Setup Process

	Deploying the Application

	Advanced Usage

	Running Pylons Apps with Other Web Servers
	Using Fast-CGI

	Apache Configuration

	PrefixMiddleware

	Documenting Your Application
	Introduction

	Tutorial

	Learning ReStructuredText

	Using Docstrings

	Using doctest

	Summary

	Distributing Your Application
	Running Your Application

Installation for Windows / Python 2.3

	Python 2.3 Installation Instructions
	Advice of end of support for Python 2.3

	Preparation

	System-wide Install

	Windows Notes
	For Win2K or WinXP

	For Windows 95, 98 and ME

	Finally

Advanced Pylons

	Security policy for bugs
	Receiving Security Updates

	Reporting Security Issues

	Minimising Risk

	WSGI support
	Paste and WSGI

	Using a WSGI Application as a Pylons 0.9 Controller

	Running a WSGI Application From Within a Controller

	Configuring Middleware Within a Pylons Application

	The Cascade

	Useful Resources

	Advanced Pylons
	WSGI, CLI scripts

	Adding commands to Paster

	Creating Paste templates

	Using Entry Points to Write Plugins

Module Listing

	Pylons Modules
	pylons.commands – Command line functions

	pylons.configuration – Configuration object and defaults setup

	pylons.controllers – Controllers

	pylons.controllers.core – WSGIController Class

	pylons.controllers.util – Controller Utility functions

	pylons.controllers.xmlrpc – XMLRPCController Class

	pylons.decorators – Decorators

	pylons.decorators.cache – Cache Decorators

	pylons.decorators.rest – REST-ful Decorators

	pylons.decorators.secure – Secure Decorators

	pylons.error – Error handling support

	pylons.i18n.translation – Translation/Localization functions

	pylons.log – Logging for WSGI errors

	pylons.middleware – WSGI Middleware

	pylons.templating – Render functions and helpers

	pylons.test – Test related functionality

	pylons.util – Paste Template and Pylons utility functions

	pylons.wsgiapp – PylonsWSGI App Creator

	Third-party components
	beaker – Beaker Caching

	FormEncode

	routes – Route and Mapper core classes

	weberror – Weberror

	webhelpers – Web Helpers package

	webtest – WebTest

	webob – WebOb

	Glossary

For further information, indices are available:

Indices

	Index

	Module Index

	Search Page

	Glossary

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Getting Started

This section is intended to get Pylons up and running as fast as
possible and provide a quick overview of the project. Links are provided
throughout to encourage exploration of the various aspects of Pylons.

Requirements

	Python 2.3+ (Python 2.4+ highly recommended)

Installing

Warning

These instructions require Python 2.4+. For installing with
Python 2.3, see Python 2.3 Installation Instructions.

To avoid conflicts with system-installed Python libraries, Pylons comes with a
boot-strap Python script that sets up a “virtual” Python environment. Pylons will then be installed under the virtual environment.

By the Way

virtualenv is a useful tool to create isolated Python environments.
In addition to isolating packages from possible system conflicts, it makes
it easy to install Python libraries using easy_install without
dumping lots of packages into the system-wide Python.

The other great benefit is that no root access is required since all
modules are kept under the desired directory. This makes it easy
to setup a working Pylons install on shared hosting providers and other
systems where system-wide access is unavailable.

	Download the go-pylons.py [http://www.pylonshq.com/download/0.9.7/go-pylons.py] script.

	Run the script and specify a directory for the virtual environment to be created under:

$ python go-pylons.py mydevenv

Tip

The two steps can be combined on unix systems with curl using the
following short-cut:

$ curl http://pylonshq.com/download/0.9.7/go-pylons.py | python - mydevenv

To isolate further from additional system-wide Python libraries, run
with the –no-site-packages option:

$ python go-pylons.py --no-site-packages mydevenv

This will leave a functional virtualenv and Pylons installation.
Activate the virtual environment (scripts may also be run by specifying the
full path to the mydevenv/bin dir):

$ source mydevenv/bin/activate

Or on Window to activate:

> mydevenv\bin\activate.bat

Working Directly From the Source Code

Mercurial [http://www.selenic.com/mercurial/wiki/] must be installed to retrieve the latest development source for Pylons. Mercurial packages [http://www.selenic.com/mercurial/wiki/index.cgi/BinaryPackages] are also available for Windows, MacOSX, and other OS’s.

Check out the latest code:

$ hg clone https://www.knowledgetap.com/hg/pylons-dev Pylons

To tell setuptools to use the version in the Pylons directory:

$ cd Pylons
$ python setup.py develop

The active version of Pylons is now the copy in this directory, and changes made there will be reflected for Pylons apps running.

Creating a Pylons Project

Create a new project named helloworld with the following command:

$ paster create -t pylons helloworld

Note

Windows users must configure their PATH as described in Windows Notes, otherwise they must specify the full path to the paster command (including the virtual environment bin directory).

Running this will prompt for two choices:

	which templating engine to use

	whether to include SQLAlchemy support

Hit enter at each prompt to accept the defaults (Mako templating, no SQLAlchemy).

Here is the created directory structure with links to more information:

	
	helloworld

	
	MANIFEST.in

	README.txt

	development.ini - Runtime Configuration

	docs

	ez_setup.py

	helloworld (See the nested helloworld directory)

	helloworld.egg-info

	setup.cfg

	setup.py - Application Setup

	test.ini

The nested helloworld directory looks like this:

	
	helloworld

	
	__init__.py

	
	config

	
	environment.py - Environment

	middleware.py - Middleware

	routing.py - URL Configuration

	controllers - Controllers

	
	lib

	
	app_globals.py - app_globals

	base.py

	helpers.py - Helpers

	model - Models

	public

	templates - Templates

	tests - Unit and functional testing

	websetup.py - Runtime Configuration

Running the application

Run the web application:

$ cd helloworld
$ paster serve --reload development.ini

The command loads the project’s server configuration file in development.ini and serves the Pylons application.

Note

The --reload option ensures that the server is automatically reloaded
if changes are made to Python files or the development.ini
config file. This is very useful during development. To stop the server
press Ctrl+c or the platform’s equivalent.

Visiting http://127.0.0.1:5000/ when the server is running will show the welcome page.

Hello World

To create the basic hello world application, first create a
controller in the project to handle requests:

$ paster controller hello

Open the helloworld/controllers/hello.py module that was created.
The default controller will return just the string ‘Hello World’:

import logging

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

from helloworld.lib.base import BaseController, render

log = logging.getLogger(__name__)

class HelloController(BaseController):

 def index(self):
 # Return a rendered template
 #return render('/hello.mako')
 # or, Return a response
 return 'Hello World'

At the top of the module, some commonly used objects are imported automatically.

Navigate to http://127.0.0.1:5000/hello/index where there should be a short text string saying “Hello World” (start up the app if needed):

[image: _images/helloworld.png]

Tip

URL Configuration explains how URL’s get mapped to controllers and
their methods.

Add a template to render some of the information that’s in the environ.

First, create a hello.mako file in the templates
directory with the following contents:

Hello World, the environ variable looks like:

${request.environ}

The request variable in templates is used to get information about the current request. Template globals lists all the variables Pylons makes available for use in templates.

Next, update the controllers/hello.py module so that the
index method is as follows:

class HelloController(BaseController):

 def index(self):
 return render('/hello.mako')

Refreshing the page in the browser will now look similar to this:

[image: _images/hellotemplate.png]

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Concepts of Pylons

Understanding the basic concepts of Pylons, the flow of a request and response
through the stack and how Pylons operates makes it easier to customize when
needed, in addition to clearing up misunderstandings about why things behave
the way they do.

This section acts as a basic introduction to the concept of
a WSGI application, and WSGI Middleware in addition to showing
how Pylons utilizes them to assemble a complete working web framework.

To follow along with the explanations below, create a project following the
Getting Started Guide.

The ‘Why’ of a Pylons Project

A new Pylons project works a little differently than in many other web
frameworks. Rather than loading the framework, which then finds a new
projects code and runs it, Pylons creates a Python package that does the
opposite. That is, when its run, it imports objects from Pylons, assembles
the WSGI Application and stack, and returns it.

If desired, a new project could be completely cleared of the Pylons imports
and run any arbitrary WSGI application instead. This is done for a greater
degree of freedom and flexibility in building a web application that works
the way the developer needs it to.

By default, the project is configured to use standard components that most
developers will need, such as sessions, template engines, caching, high
level request and response objects, and an ORM. By having it all
setup in the project (rather than hidden away in ‘framework’ code), the
developer is free to tweak and customize as needed.

In this manner, Pylons has setup a project with its opinion of what may
be needed by the developer, but the developer is free to use the tools
needed to accomplish the projects goals. Pylons offers an unprecedented
level of customization by exposing its functionality through the project
while still maintaining a remarkable amount of simplicity by retaining a
single standard interface between core components (WSGI).

WSGI Applications

WSGI is a basic specification known as PEP 333 [http://www.python.org/dev/peps/pep-0333], that describes a
method for interacting with a HTTP server. This involves a way to get access
to HTTP headers from the request, and how set HTTP headers and return content
on the way back out.

A ‘Hello World’ WSGI Application:

def simple_app(environ, start_response):
 start_response('200 OK', [('Content-type', 'text/html')])
 return ['<html><body>Hello World</body></html>']

This WSGI application does nothing but set a 200 status code for the response,
set the HTTP ‘Content-type’ header, and return some HTML.

The WSGI specification lays out a set of keys that will be set in the
environ dict [http://www.python.org/dev/peps/pep-0333/#environ-variables].

The WSGI interface, that is, this method of calling a function (or method of
a class) with two arguments, and handling a response as shown above, is used
throughout Pylons as a standard interface for passing control to the next
component.

Inside a new project’s config/middleware.py, the make_app function is
responsible for creating a WSGI application, wrapping it in WSGI middleware
(explained below) and returning it so that it may handle requests from a
HTTP server.

WSGI Middleware

Within config/middleware.py a Pylons application is wrapped in successive layers which add functionality. The process of wrapping the Pylons application in middleware results in a structure conceptually similar to the layers in an onion.

[image: Pylons middleware onion analogy]
Once the middleware has been used to wrap the Pylons application, the make_app
function returns the completed app with the following structure (outermost
layer listed first):

Registry Manager
 Status Code Redirect
 Error Handler
 Cache Middleware
 Session Middleware
 Routes Middleware
 Pylons App (WSGI Application)

WSGI middleware is used extensively in Pylons to add functionality to the
base WSGI application. In Pylons, the ‘base’ WSGI Application is the
PylonsApp. It’s responsible for looking in the
environ dict that was passed in (from the Routes Middleware).

To see how this functionality is created, consider a small class that
looks at the HTTP_REFERER header to see if it’s Google:

class GoogleRefMiddleware(object):
 def __init__(self, app):
 self.app = app

 def __call__(self, environ, start_response):
 environ['google'] = False
 if 'HTTP_REFERER' in environ:
 if environ['HTTP_REFERER'].startswith('http://google.com'):
 environ['google'] = True
 return self.app(environ, start_response)

This is considered WSGI Middleware as it still can be called and returns
like a WSGI Application, however, it’s adding something to environ, and then
calls a WSGI Application that it is initialized with. That’s how the layers
are built up in the WSGI Stack that is configured for a new Pylons project.

Some of the layers, like the Session, Routes, and Cache middleware, only add
objects to the environ dict, or add HTTP headers to the response (the Session middleware for example adds the session cookie header). Others, such
as the Status Code Redirect, and the Error Handler may fully intercept the
request entirely, and change how it’s responded to.

Controller Dispatch

When the request passes down the middleware, the incoming URL gets parsed in
the RoutesMiddleware, and if it matches a URL (See URL Configuration), the
information about the controller that should be called is put into the environ dict for use by PylonsApp.

The PylonsApp then attempts to find a controller in the controllers
directory that matches the name of the controller, and searches for a class
inside it by a similar scheme (controller name + ‘Controller’, ie,
HelloController). Upon finding a controller, its then called like any other
WSGI application using the same WSGI interface that
PylonsApp was called with.

This is why the BaseController that resides in a project’s
lib/base.py module inherits from
WSGIController and has a __call__
method that takes the environ and start_response. The
WSGIController locates a method in the
class that corresponds to the action that Routes found, calls it, and
returns the response completing the request.

Paster

Running the paster command all by itself will
show the sets of commands it accepts:

$ paster
Usage: paster [paster_options] COMMAND [command_options]

Options:
 --version show program's version number and exit
 --plugin=PLUGINS Add a plugin to the list of commands (plugins are Egg
 specs; will also require() the Egg)
 -h, --help Show this help message

Commands:
 create Create the file layout for a Python distribution
 grep Search project for symbol
 help Display help
 make-config Install a package and create a fresh config file/directory
 points Show information about entry points
 post Run a request for the described application
 request Run a request for the described application
 serve Serve the described application
 setup-app Setup an application, given a config file

pylons:
 controller Create a Controller and accompanying functional test
 restcontroller Create a REST Controller and accompanying functional test
 shell Open an interactive shell with the Pylons app loaded

If paster is run inside of a Pylons project, this should be the
output that will be printed. The last section, pylons will be absent if
it is not run inside a Pylons project. This is due to a dynamic plugin
system the paster script uses, to determine what sets of
commands should be made available.

Inside a Pylons project, there is a directory ending in .egg-info, that has
a paster_plugins.txt file in it. This file is looked for and read by
the paster script, to determine what other packages should be
searched dynamically for commands. Pylons makes several commands available
for use in a Pylons project, as shown above.

Loading the Application

Running (and thus loading) an application is done using the paster
command:

$ paster serve development.ini

This instructs the paster script to go into a ‘serve’ mode. It will attempt
to load both a server and a WSGI application that should be served, by
parsing the configuration file specified. It looks for a [server] block to
determine what server to use, and an [app] block for what WSGI application
should be used.

The basic egg block in the development.ini for a helloworld project:

[app:main]
use = egg:helloworld

That will tell paster that it should load the helloworld egg to locate
a WSGI application. A new Pylons application includes a line in the
setup.py that indicates what function should be called to make the
WSGI application:

entry_points="""
[paste.app_factory]
main = helloworld.config.middleware:make_app

[paste.app_install]
main = pylons.util:PylonsInstaller
""",

Here, the make_app function is specified as the main WSGI application that
Paste (the package that paster comes from) should use.

The make_app function from the project is then called, and the server (by
default, a HTTP server) runs the WSGI application.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Pylons Tutorials

A small collection of relevant tutorials.

	Quickwiki tutorial
	Introduction

	Starting at the End

	Developing QuickWiki

	The Model

	Application Setup

	Templates

	Routing

	Controllers

	Publishing the Finished Product

	Security

	Summary

	Thanks

	Todo

	Understanding Unicode
	What is Unicode?

	Unicode in Python

	Unicode Literals in Python Source Code

	Input and Output

	Unicode Filenames

	Request Parameters

	Templating

	Output Encoding

	Databases

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Tutorials

Quickwiki tutorial

Introduction

If you haven’t done so already, please first read the Getting Started guide.

In this tutorial we are going to create a working wiki from scratch using Pylons 0.9.7 and SQLAlchemy [http://www.sqlalchemy.org]. Our wiki will allow visitors to add, edit or delete formatted wiki pages.

Starting at the End

Pylons is designed to be easy for everyone, not just developers, so let’s start by downloading and installing the finished QuickWiki in exactly the same way that end users of QuickWiki might do. Once we have explored its features we will set about writing it from scratch.

After you have installed Easy Install [http://peak.telecommunity.com/DevCenter/EasyInstall] run these commands to install QuickWiki and create a config file:

$ easy_install QuickWiki==0.1.6
$ paster make-config QuickWiki test.ini

Next, ensure that the sqlalchemy.url variable in the [app:main] section of the configuration file (development.ini) specifies a value that is suitable for your setup. The data source name points to the database you wish to use.

Note

The default sqlite:///%(here)s/quickwiki.db uses a (file-based) SQLite database named quickwiki.db in the ini’s top-level directory. This SQLite database will be created for you when running the paster setup-app command below, but you could also use MySQL, Oracle or PostgreSQL. Firebird and MS-SQL may also work. See the SQLAlchemy documentation [http://www.sqlalchemy.org/docs/04/dbengine.html#dbengine_establishing] for more information on how to connect to different databases. SQLite for example requires additional forward slashes in its URI, where the client/server databases should only use two. You will also need to make sure you have the appropriate Python driver for the database you wish to use. If you’re using Python 2.5, a version of the pysqlite adapter [http://www.initd.org/tracker/pysqlite/wiki/pysqlite] is already included, so you can jump right in with the tutorial. You may need to get SQLite itself [http://www.sqlite.org/download.html].

Finally create the database tables and serve the finished application:

$ paster setup-app test.ini
$ paster serve test.ini

That’s it! Now you can visit http://127.0.0.1:5000 and experiment with the finished Wiki.

When you’ve finished, stop the server with Control-C so we can start developing our own version.

If you are interested in looking at the latest version of the QuickWiki source code it can be browsed online at http://www.knowledgetap.com/hg/QuickWiki or can be checked out using Mercurial [http://www.selenic.com/mercurial/]:

$ hg clone http://www.knowledgetap.com/hg/QuickWiki

Note

To run the QuickWiki checked out from the repository, you’ll need to first run python setup.py develop from the project’s root directory. This will install its dependencies and generate Python Egg [http://peak.telecommunity.com/DevCenter/PythonEggs] metadata in a QuickWiki.egg-info directory. The latter is required for the paster command (among other things) .

$ cd QuickWiki
$ python setup.py develop

Developing QuickWiki

If you skipped the “Starting at the End” section you will need to assure yourself that you have Pylons installed. See the Getting Started.

Then create your project:

$ paster create -t pylons QuickWiki

When prompted for which templating engine to use, simply hit enter for the default (Mako). When prompted for SQLAlchemy configuration, enter True.

Now let’s start the server and see what we have:

$ cd QuickWiki
$ paster serve --reload development.ini

Note

We have started paster serve with the --reload option. This means any changes that we make to code will cause the server to restart (if necessary); your changes are immediately reflected on the live site.

Visit http://127.0.0.1:5000 where you will see the introduction page. Now delete the file public/index.html so we can see the front page of the wiki instead of this welcome page. If you now refresh the page, the Pylons built-in error document support will kick in and display an Error 404 page, indicating the file could not be found. We’ll setup a controller to handle this location later.

The Model

Pylons uses a Model-View-Controller architecture; we’ll start by creating the model. We could use any system we like for the model, including SQLAlchemy [http://www.sqlalchemy.org] or SQLObject [http://www.sqlobject.org]. Optional SQLAlchemy integration is provided for new Pylons projects, which we enabled when creating the project, and thus we’ll be using SQLAlchemy for the QuickWiki.

Note

SQLAlchemy [http://www.sqlalchemy.org] is a powerful Python SQL toolkit and Object Relational Mapper (ORM) that is widely used by the Python community.

SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performance database access, adapted into a simple and Pythonic domain language. It has full and detailed documentation available on the SQLAlchemy website: http://sqlalchemy.org/docs/.

The most basic way of using SQLAlchemy is with explicit sessions where you create Session objects as needed.

Pylons applications typically employ a slightly more sophisticated setup, using SQLAlchemy’s “contextual” thread-local sessions created via the sqlalchemy.orm.scoped_session() function. With this configuration, the application can use a single Session instance per web request, avoiding the need to pass it around explicitly. Instantiating a new scoped Session will actually find an existing one in the current thread if available. Pylons has setup a Session for us in the model/meta.py file. For further details, refer to the SQLAlchemy documentation on the Session [http://www.sqlalchemy.org/docs/05/session.html#contextual-thread-local-sessions].

Note

It is important to recognize the difference between SQLAlchemy’s (or possibly another DB abstraction layer’s) Session object and Pylons’ standard session (with a lowercase ‘s’) for web requests. See beaker for more on the latter. It is customary to reference the database session by model.Session or (more recently) Session outside of model classes.

The default imports already present in model/__init__.py provide SQLAlchemy objects such as the sqlalchemy module (aliased as sa) as well as the metadata object. metadata is used when defining and managing tables. Next we’ll use these to build our wiki’s model: we can remove the commented out Foo example and add the following to the end of the model/__init__.py file:

pages_table = sa.Table('pages', meta.metadata,
 sa.Column('title', sa.types.Unicode(40), primary_key=True),
 sa.Column('content', sa.types.Unicode(), default='')
)

We’ve defined a table called pages which has two columns, title (the primary key) and content.

Note

SQLAlchemy also supports reflecting table information directly from a database. If we had already created the pages table in our database, SQLAlchemy could have constructed the pages_table object for us via the autoload=True parameter in place of the Column definitions, like this:

pages_table = sa.Table('pages', meta.metadata, autoload=True
 autoload_with_engine)

The ideal way to create autoloaded tables is within the init_model() function (lazily), so the database isn’t accessed when simply importing the model package. See SQLAlchemy table reflection documentation [http://www.sqlalchemy.org/docs/05/metadata.html#reflecting-tables] for more information.

Note

A primary key is a unique ID for each row in a database table. In the example above we are using the page title as a natural primary key. Some prefer to integer primary keys for all tables, so-called surrogate primary keys. The author of this tutorial uses both methods in his own code and is not advocating one method over the other, what’s important is to choose the best database structure for your application. See the Pylons Cookbook for a quick general overview of relational databases [http://wiki.pylonshq.com/display/pylonscookbook/Relational+databases+for+people+in+a+hurry] if you’re not familiar with these concepts.

A core philosophy of ORMs is that tables and domain classes are different beasts. So next we’ll create the Python class that represents the pages of our wiki, and map these domain objects to rows in the pages table via the sqlalchemy.orm.mapper() [http://www.sqlalchemy.org/docs/05/reference/orm/mapping.html#sqlalchemy.orm.mapper] function. In a more complex application, you could break out model classes into separate .py files in your model directory, but for sake of simplicity in this case, we’ll just stick to __init__.py.

Add this to the bottom of model/__init__.py:

class Page(object):

 def __init__(self, title, content=None):
 self.title = title
 self.content = content

 def __unicode__(self):
 return self.title

 __str__ = __unicode__

orm.mapper(Page, pages_table)

A Page object represents a row in the pages table, so self.title and self.content will be the values of the title and content columns.

Looking ahead, our wiki could use a way of marking up the content field into HTML. Also, any ‘WikiWords’ (words made by joining together two or more capitalized words) should be converted to hyperlinks to wiki pages.

We can use Python’s docutils [http://docutils.sourceforge.net/] library to allow marking up content as reStructuredText. So next we’ll add a method to our Page class that formats content as HTML and converts the WikiWords to hyperlinks. Add the following at the top of the model/__init__.py file:

import logging
import re
import sets
from docutils.core import publish_parts

from pylons import url
from quickwiki.lib.helpers import link_to
from quickwiki.model import meta

log = logging.getLogger(__name__)

disable docutils security hazards:
http://docutils.sourceforge.net/docs/howto/security.html
SAFE_DOCUTILS = dict(file_insertion_enabled=False, raw_enabled=False)
wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)", re.UNICODE)

then add a get_wiki_content() method to the Page class:

class Page(object):

 def __init__(self, title, content=None):
 self.title = title
 self.content = content

 def get_wiki_content(self):
 """Convert reStructuredText content to HTML for display, and
 create links for WikiWords
 """
 content = publish_parts(self.content, writer_name='html',
 settings_overrides=SAFE_DOCUTILS)['html_body']
 titles = sets.Set(wikiwords.findall(content))
 for title in titles:
 title_url = url(controller='pages', action='show', title=title)
 content = content.replace(title, link_to(title, title_url))
 return content

 def __unicode__(self):
 return self.title

 __str__ = __unicode__

The Set object provides us with only unique WikiWord names, so we don’t try replacing them more than once (a “wikiword” is of course defined by the regular expression set globally).

Note

Pylons uses a Model View Controller architecture and so the formatting of objects into HTML should properly be handled in the View, i.e. in a template. However in this example, converting reStructuredText into HTML in a template is inappropriate so we are treating the HTML representation of the content as part of the model. It also gives us the chance to demonstrate that SQLAlchemy domain classes are real Python classes that can have their own methods.

The link_to() and url() functions referenced in the controller code are respectively: a helper imported from the webhelpers.html module indirectly via lib/helpers.py, and a utility function imported directly from the pylons module. They are utilities for creating links to specific controller actions. In this case we have decided that all WikiWords should link to the show() action of the pages controller which we’ll create later. However, we need to ensure that the link_to() function is made available as a helper by adding an import statement to lib/helpers.py:

"""Helper functions

Consists of functions to typically be used within templates, but also
available to Controllers. This module is available to templates as 'h'.
"""
from webhelpers.html.tags import *

Since we have used docutils and SQLAlchemy, both third party packages, we need to edit our setup.py file so that anyone installing QuickWiki with Easy Install [http://peak.telecommunity.com/DevCenter/EasyInstall] will automatically have these dependencies installed too. Edit your setup.py in your project root directory and add a docutils entry to the install_requires line (there will already be one for SQLAlchemy):

install_requires=[
 "Pylons>=0.9.7",
 "SQLAlchemy>=0.5",
 "docutils==0.4",
],

While we are we are making changes to setup.py we might want to complete some of the other sections too. Set the version number to 0.1.6 and add a description and URL which will be used on PyPi when we release it:

version='0.1.6',
description='QuickWiki - Pylons 0.9.7 Tutorial application',
url='http://docs.pylonshq.com/tutorials/quickwiki_tutorial.html',

We might also want to make a full release rather than a development release in which case we would remove the following lines from setup.cfg:

[egg_info]
tag_build = dev
tag_svn_revision = true

To test the automatic installation of the dependencies, run the following command which will also install docutils and SQLAlchemy if you don’t already have them:

$ python setup.py develop

Note

The command python setup.py develop installs your application in a special mode so that it behaves exactly as if it had been installed as an egg file by an end user. This is really useful when you are developing an application because it saves you having to create an egg and install it every time you want to test a change.

Application Setup

Edit websetup.py, used by the paster setup-app command, to look like this:

"""Setup the QuickWiki application"""
import logging

from quickwiki import model
from quickwiki.config.environment import load_environment
from quickwiki.model import meta

log = logging.getLogger(__name__)

def setup_app(command, conf, vars):
 """Place any commands to setup quickwiki here"""
 load_environment(conf.global_conf, conf.local_conf)

 # Create the tables if they don't already exist
 log.info("Creating tables...")
 meta.metadata.create_all(bind=meta.engine)
 log.info("Successfully set up.")

 log.info("Adding front page data...")
 page = model.Page(title=u'FrontPage',
 content=u'**Welcome** to the QuickWiki front page!')
 meta.Session.add(page)
 meta.Session.commit()
 log.info("Successfully set up.")

You can see that config/environment.py‘s load_environment() function is called (which calls model/__init__.py‘s init_model() function), so our engine is ready for binding and we can import the model. A SQLAlchemy MetaData object – which provides some utility methods for operating on database schema – usually needs to be connected to an engine, so the line

meta.metadata.bind = meta.engine

does exactly that and then

model.metadata.create_all(checkfirst=True)

uses the connection we’ve just set up and, creates the table(s) we’ve defined ... if they don’t already exist. After the tables are created, the other lines add some data for the simple front page to our wiki.

By default, SQLAlchemy specifies autocommit=False when creating the Session, which means that operations will be wrapped in a transaction and commit()‘ed atomically (unless your DB doesn’t support transactions, like MySQL’s default MyISAM tables – but that’s beyond the scope of this tutorial).

The database SQLAlchemy will use is specified in the ini file, under the [app:main] section, as sqlalchemy.url. We’ll customize the sqlalchemy.url value to point to a SQLite database named quickwiki.db that will reside in your project’s root directory. Edit the development.ini file in the root directory of your project:

Note

If you’ve decided to use a different database other than SQLite, see the SQLAlchemy note in the Starting at the End section for information on supported database URIs.

[app:main]
use = egg:QuickWiki
#...
Specify the database for SQLAlchemy to use.
SQLAlchemy database URL
sqlalchemy.url = sqlite:///%(here)s/quickwiki.db

You can now run the paster setup-app command to setup your tables in the same way an end user would, remembering to drop and recreate the database if the version tested earlier has already created the tables:

$ paster setup-app development.ini

You should see the SQL sent to the database as the default development.ini is setup to log SQLAlchemy’s SQL statements.

At this stage you will need to ensure you have the appropriate Python database drivers for the database you chose, otherwise you might find SQLAlchemy complains it can’t get the DBAPI module for the dialect it needs.

You should also edit quickwiki/config/deployment.ini_tmpl so that when users run paster make-config the configuration file that is produced for them will also use quickwiki.db. In the [app:main] section:

Specify the database for SQLAlchemy to use.
sqlalchemy.url = sqlite:///%(here)s/quickwiki.db

Templates

Note

Pylons uses the Mako templating engine [http://www.makotemplates.org] by default, although as is the case with most aspects of Pylons, you are free to deviate from the default if you prefer.

In our project we will make use of the Mako inheritance feature [http://www.makotemplates.org/docs/inheritance.html]. Add the main page template in templates/base.mako:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>QuickWiki</title>
 ${h.stylesheet_link('/quick.css')}
 </head>

 <body>
 <div class="content">
 <h1 class="main">${self.header()}</h1>
 ${next.body()}\
 <p class="footer">
 Return to the ${h.link_to('FrontPage', url('FrontPage'))}
 | ${h.link_to('Edit ' + c.title, url('edit_page', title=c.title))}
 </p>
 </div>
 </body>
</html>

We’ll setup all our other templates to inherit from this one: they will be automatically inserted into the ${next.body()} line. Thus the whole page will be returned when we call the render() global from our controller. This lets us easily apply a consistent theme to all our templates.

If you are interested in learning some of the features of Mako templates have a look at the comprehensive Mako Documentation [http://www.makotemplates.org/docs/]. For now we just need to understand that next.body() is replaced with the child template and that anything within ${...} brackets is executed and replaced with the result. By default, the replacement content is HTML-escaped in order to meet modern standards of basic protection from accidentally making the app vulnerable to XSS exploit.

This base.mako also makes use of various helper functions attached to the h object. These are described in the WebHelpers documentation [http://pylonshq.com/WebHelpers/module-index.html]. We need to add some helpers to the h by importing them in the lib/helpers.py module (some are for later use):

"""Helper functions

Consists of functions to typically be used within templates, but also
available to Controllers. This module is available to templates as 'h'.
"""
from webhelpers.html import literal
from webhelpers.html.tags import *
from webhelpers.html.secure_form import secure_form

Note that the helpers module is available to templates as ‘h’, this is a good place to import or define directly any convenience functions that you want to make available to all templates.

Routing

Before we can add the actions we want to be able to route the requests to them correctly. Edit config/routing.py and adjust the ‘Custom Routes’ section to look like this:

CUSTOM ROUTES HERE

map.connect('home', '/', controller='pages', action='show',
 title='FrontPage')
map.connect('pages', '/pages', controller='pages', action='index')
map.connect('show_page', '/pages/show/{title}', controller='pages',
 action='show')
map.connect('edit_page', '/pages/edit/{title}', controller='pages',
 action='edit')
map.connect('save_page', '/pages/save/{title}', controller='pages',
 action='save', conditions=dict(method='POST'))
map.connect('delete_page', '/pages/delete', controller='pages',
 action='delete')

A bonus example - the specified defaults allow visiting
example.com/FrontPage to view the page titled 'FrontPage':
map.connect('/{title}', controller='pages', action='show')

return map

Note that the default route has been replaced. This tells Pylons to route the root URL / to the show() method of the PageController class in controllers/pages.py and specify the title argument as 'FrontPage'. It also says that any URL of the form /SomePage should be routed to the same method but the title argument will contain the value of the first part of the URL, in this case SomePage. Any other URLs that can’t be matched by these maps are routed to the error controller as usual where they will result in a 404 error page being displayed.

One of the main benefits of using the Routes system is that you can also create URLs automatically, simply by specifying the routing arguments. For example if I want the URL for the page FrontPage I can create it with this code:

url(title='FrontPage')

Although the URL would be fairly simple to create manually, with complicated URLs this approach is much quicker. It also has the significant advantage that if you ever deploy your Pylons application at a URL other than /, all the URLs will be automatically adjusted for the new path without you needing to make any manual modifications. This flexibility is a real advantage.

Full information on the powerful things you can do to route requests to controllers and actions can be found in the Routes manual [http://routes.groovie.org/manual.html].

Controllers

Quick Recap: We’ve setup the model, configured the application, added the routes and setup the base template in base.mako, now we need to write the application logic and we do this with controllers. In your project’s root directory, add a controller called pages to your project with this command:

$ paster controller pages

If you are using Subversion, this will automatically be detected and the new controller and tests will be automatically added to your subversion repository.

We are going to need the following actions:

show(self, title)
displays a page based on the title

edit(self, title)
displays a from for editing the page title

save(self, title)
save the page title and show it with a saved message

index(self)
lists all of the titles of the pages in the database

delete(self, title)
deletes a page

show()

Let’s get to work on the new controller in controllers/pages.py. First we’ll import the Page class from our model, and the Session class from the model.meta module. We’ll also import the wikiwords regular expression object, which we’ll use in the show() method. Add this line with the imports at the top of the file:

from quickwiki.model import Page, wikiwords
from quickwiki.model.meta import Session

Next we’ll add the convenience method __before__() to the PagesController, which is a special method Pylons always calls before calling the actual action method. We’ll have __before__() obtain and make available the relevant query object from the database, ready to be queried. Our other action methods will need this query object, so we might as well create it one place.

class PagesController(BaseController):

 def __before__(self):
 self.page_q = Session.query(Page)

Now we can query the database using the query expression language provided by SQLAlchemy.
Add the following show() method to PagesController:

def show(self, title):
 page = self.page_q.filter_by(title=title).first()
 if page:
 c.content = page.get_wiki_content()
 return render('/pages/show.mako')
 elif wikiwords.match(title):
 return render('/pages/new.mako')
 abort(404)

Add a template called templates/pages/show.mako that looks like this:

<%inherit file="/base.mako"/>\

<%def name="header()">${c.title}</%def>

${h.literal(c.content)}

This template simply displays the page title and content.

Note

Pylons automatically assigns all the action parameters to the Pylons context object c so that you don’t have to assign them yourself. In this case, the value of title will be automatically assigned to c.title so that it can be used in the templates. We assign c.content manually in the controller.

We also need a template for pages that don’t already exist. The template needs to display a message and link to the edit() action so that they can be created. Add a template called templates/new.mako that looks like this:

<%inherit file="/base.mako"/>\

<%def name="header()">${c.title}</%def>

<p>This page doesn't exist yet.
 Create the page.
</p>

At this point we can test our QuickWiki to see how it looks. If you don’t already have a server running, start it now with:

$ paster serve --reload development.ini

We can spruce up the appearance of page a little by adding the stylesheet we linked to in the templates/base.mako file earlier. Add the file public/quick.css with the following content and refresh the page to reveal a better looking wiki:

body {
 background-color: #888;
 margin: 25px;
}

div.content {
 margin: 0;
 margin-bottom: 10px;
 background-color: #d3e0ea;
 border: 5px solid #333;
 padding: 5px 25px 25px 25px;
}

h1.main {
 width: 100%;
}

p.footer{
 width: 100%;
 padding-top: 8px;
 border-top: 1px solid #000;
}

a {
 text-decoration: none;
}

a:hover {
 text-decoration: underline;
}

When you run the example you will notice that the word QuickWiki has been turned into a hyperlink by the get_wiki_content() method we added to our Page domain object earlier. You can click the link and will see an example of the new page screen from the new.mako template. If you follow the Create the page link you will see the Pylons automatic error handler kick in to tell you Action edit is not implemented. Well, we better write it next, but before we do, have a play with the Interactive debugging, try clicking on the + or >> arrows and you will be able to interactively debug your application. It is a tremendously useful tool.

edit()

To edit the wiki page we need to get the content from the database without changing it to HTML to display it in a simple form for editing. Add the edit() action:

def edit(self, title):
 page = self.page_q.filter_by(title=title).first()
 if page:
 c.content = page.content
 return render('/pages/edit.mako')

and then create the templates/edit.mako file:

<%inherit file="/base.mako"/>\

<%def name="header()">Editing ${c.title}</%def>

${h.secure_form(url('save_page', title=c.title))}
 ${h.textarea(name='content', rows=7, cols=40, content=c.content)}

 ${h.submit(value='Save changes', name='commit')}
${h.end_form()}

Note

You may have noticed that we only set c.content if the page exists but that it is accessed in h.text_area() even for pages that don’t exist and yet it doesn’t raise an AttributeError.

We are making use of the fact that the c object returns an empty string "" for any attribute that is accessed which doesn’t exist. This can be a very useful feature of the c object, but can catch you on occasions where you don’t expect this behavior. It can be disabled by setting config['pylons.strict_c'] = True in your project’s config/environment.py.

We are making use of the h object to create our form and field objects. This saves a bit of manual HTML writing. The form submits to the save() action to save the new or updated content so let’s write that next.

save()

The first thing the save() action has to do is to see if the page being saved already exists. If not it creates it with page = model.Page(title). Next it needs the updated content. In Pylons you can get request parameters from form submissions via GET and POST requests from the appropriately named request object. For form submissions from only GET or POST requests, use request.GET or request.POST. Only POST requests should generate side effects (like changing data), so the save action will only reference request.POST for the parameters.

Then add the save() action:

@authenticate_form
def save(self, title):
 page = self.page_q.filter_by(title=title).first()
 if not page:
 page = Page(title)
 # In a real application, you should validate and sanitize
 # submitted data throughly! escape is a minimal example here.
 page.content = escape(request.POST.getone('content'))
 Session.add(page)
 Session.commit()
 flash('Successfully saved %s!' % title)
 redirect_to('show_page', title=title)

Note

request.POST is a MultiDict object: an ordered dictionary that may contain multiple values for each key. The MultiDict will always return one value for any existing key via the normal dict accessors request.POST[key] and request.POST.get(). When multiple values are expected, use the request.POST.getall() method to return all values in a list. request.POST.getone() ensures one value for key was sent, raising a KeyError when there are 0 or more than 1 values.

The @authenticate_form() decorator that appears immediately before the save() action checks the value of the hidden form field placed there by the secure_form() helper that we used in templates/edit.mako to create the form. The hidden form field carries an authorization token for prevention of certain Cross-site request forgery (CSRF) [http://en.wikipedia.org/wiki/Cross-site_request_forgery] attacks.

Upon a successful save, we want to redirect back to the show() action and ‘flash’ a Successfully saved message at the top of the page. ‘Flashing’ a status message immediately after an action is a common requirement, and the WebHelpers package provides the webhelpers.pylonslib.Flash class that makes it easy. To utilize it, we’ll create a flash object at the bottom of our lib/helpers.py module:

from webhelpers.pylonslib import Flash as _Flash

flash = _Flash()

And import it into our controllers/pages.py. Our new show() method
is escaping the content via Python’s cgi.escape() function, so we need to
import that too, and also @authenticate_form().

from cgi import escape

from pylons.decorators.secure import authenticate_form

from quickwiki.lib.helpers import flash

And finally utilize the flash object in our templates/base.mako template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>QuickWiki</title>
 ${h.stylesheet_link('/quick.css')}
 </head>

 <body>
 <div class="content">
 <h1 class="main">${self.header()}</h1>

 <% flashes = h.flash.pop_messages() %>
 % if flashes:
 % for flash in flashes:
 <div id="flash">
 ${flash}
 </div>
 % endfor
 % endif

 ${next.body()}\
 <p class="footer">
 Return to the ${h.link_to('FrontPage', url('FrontPage'))}
 | ${h.link_to('Edit ' + c.title, url('edit_page', title=c.title))}
 </p>
 </div>
 </body>
</html>

And add the following to the public/quick.css file:

div#flash .message {
 color: orangered;
}

The % syntax is used for control structures in mako – conditionals and loops. You must ‘close’ them with an ‘end’ tag as shown here. At this point we have a fully functioning wiki that lets you create and edit pages and can be installed and deployed by an end user with just a few simple commands.

Visit http://127.0.0.1:5000 and have a play.

It would be nice to get a title list and to be able to delete pages, so that’s what we’ll do next!

index()

Add the index() action:

def index(self):
 c.titles = [page.title for page in self.page_q.all()]
 return render('/pages/index.mako')

The index() action simply gets all the pages from the database. Create the templates/index.mako file to display the list:

<%inherit file="/base.mako"/>\

<%def name="header()">Title List</%def>

${h.secure_form(url('delete_page'))}

<ul id="titles">
 % for title in c.titles:

 ${h.link_to(title, url('show_page', title=title))} -
 ${h.checkbox('title', title)}

 % endfor

${h.submit('delete', 'Delete')}

${h.end_form()}

This displays a form listing a link to all pages along with a checkbox. When submitted, the selected titles will be sent to a delete() action we’ll create in the next step.

We need to edit templates/base.mako to add a link to the title list in the footer, but while we’re at it, let’s introduce a Mako function to make the footer a little smarter. Edit base.mako like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>QuickWiki</title>
 ${h.stylesheet_link('/quick.css')}
 </head>

 <body>
 <div class="content">
 <h1 class="main">${self.header()}</h1>

 <% flashes = h.flash.pop_messages() %>
 % if flashes:
 % for flash in flashes:
 <div id="flash">
 ${flash}
 </div>
 % endfor
 % endif

 ${next.body()}\

 <p class="footer">
 ${self.footer(request.environ['pylons.routes_dict']['action'])}\
 </p>
 </div>
 </body>
</html>

Don't show links that are redundant for particular pages
<%def name="footer(action)">\
 Return to the ${h.link_to('FrontPage', url('home'))}
 % if action == "index":
 <% return %>
 % endif
 % if action != 'edit':
 | ${h.link_to('Edit ' + c.title, url('edit_page', title=c.title))}
 % endif
 | ${h.link_to('Title List', url('pages'))}
</%def>

The <%def name="footer(action"> creates a Mako function for display logic. As you can see, the function builds the HTML for the footer, but doesn’t display the ‘Edit’ link when you’re on the ‘Title List’ page or already on an edit page. It also won’t show a ‘Title List’ link when you’re already on that page. The <% ... %> tags shown on the return statement are the final new piece of Mako syntax: they’re used much like the ${...} tags, but for arbitrary Python code that does not directly render HTML. Also, the double hash (##) denotes a single-line comment in Mako.

So the footer() function is called in place of our old ‘static’ footer markup. We pass it a value from pylons.routes_dict which holds the name of the action for the current request. The trailing \ character just tells Mako not to render an extra newline.

If you visit http://127.0.0.1:5000/pages you should see the full titles list and you should be able to visit each page.

delete()

We need to add a delete() action that deletes pages submitted from templates/index.mako, then returns us back to the list of titles (excluding those that were deleted):

@authenticate_form
def delete(self):
 titles = request.POST.getall('title')
 pages = self.page_q.filter(Page.title.in_(titles))
 for page in pages:
 Session.delete(page)
 Session.commit()
 # flash only after a successful commit
 for title in titles:
 flash('Deleted %s.' % title)
 redirect_to('pages')

Again we use the @authenticate_form() decorator along with secure_form() used in templates/index.mako. We’re expecting potentially multiple titles, so we use request.POST.getall() to return a list of titles. The titles are used to identify and load the Page objects, which are then deleted.

We use the SQL IN operator to match multiple titles in one query. We can do this via the more flexible filter() method which can accept an in_() clause created via the title column’s attribute.

The filter_by() method we used in previous methods is a shortcut for the most typical filtering clauses. For example, the show() method’s:

self.page_q.filter_by(title=title)

is equivalent to:

self.page_q.filter(Page.title == title)

After deleting the pages, the changes are committed, and only after successfully committing do we flash deletion messages. That way if there was a problem with the commit no flash messages are shown. Finally we redirect back to the index page, which re-renders the list of remaining titles.

Visit http://127.0.0.1:5000/index and have a go at deleting some pages. You may need to go back to the FrontPage and create some more if you get carried away!

That’s it! A working, production-ready wiki in 20 mins. You can visit http://127.0.0.1:5000/ once more to admire your work.

Publishing the Finished Product

After all that hard work it would be good to distribute the finished package wouldn’t it? Luckily this is really easy in Pylons too. In the project root directory run this command:

$ python setup.py bdist_egg

This will create an egg file in the dist directory which contains everything anyone needs to run your program. They can install it with:

$ easy_install QuickWiki-0.1.6-py2.5.egg

You should probably make eggs for each version of Python your users might require by running the above commands with both Python 2.4 and 2.5 to create both versions of the eggs.

If you want to register your project with PyPi at http://www.python.org/pypi you can run the command below. Please only do this with your own projects though because QuickWiki has already been registered!

$ python setup.py register

Warning

The PyPi authentication is very weak and passwords are transmitted in plain text. Don’t use any sign in details that you use for important applications as they could be easily intercepted.

You will be asked a number of questions and then the information you entered in setup.py will be used as a basis for the page that is created.

Now visit http://www.python.org/pypi to see the new index with your new package listed.

Note

A CheeseShop Tutorial [http://wiki.python.org/moin/CheeseShopTutorial] has been written and full documentation on setup.py [http://docs.python.org/dist/dist.html] is available from the Python website. You can even use reStructuredText in the description and long_description areas of setup.py to add formatting to the pages produced on PyPi (PyPi used to be called “the CheeseShop”). There is also another tutorial here [http://www.python.org/~jeremy/weblog/030924.html].

Finally you can sign in to PyPi with the account details you used when you registered your application and upload the eggs you’ve created. If that seems too difficult you can even use this command which should be run for each version of Python supported to upload the eggs for you:

$ python setup.py bdist_egg upload

Before this will work you will need to create a .pypirc file in your home directory containing your username and password so that the upload command knows who to sign in as. It should look similar to this:

[server-login]
username: james
password: password

Note

This works on windows too but you will need to set your HOME environment variable first. If your home directory is C:Documents and SettingsJames you would put your .pypirc file in that directory and set your HOME environment variable with this command:

> SET HOME=C:\Documents and Settings\James

You can now use the python setup.py bdist_egg upload as normal.

Now that the application is on PyPi anyone can install it with the easy_install command exactly as we did right at the very start of this tutorial.

Security

A final word about security.

Warning

Always set debug = false in configuration files for production sites and make sure your users do too.

You should NEVER run a production site accessible to the public with debug mode on. If there was a problem with your application and an interactive error page was shown, the visitor would be able to run any Python commands they liked in the same way you can when you are debugging. This would obviously allow them to do all sorts of malicious things so it is very important you turn off interactive debugging for production sites by setting debug = false in configuration files and also that you make users of your software do the same.

Summary

We’ve gone through the whole cycle of creating and distributing a Pylons application looking at setup and configuration, routing, models, controllers and templates. Hopefully you have an idea of how powerful Pylons is and, once you get used to the concepts introduced in this tutorial, how easy it is to create sophisticated, distributable applications with Pylons.

That’s it, I hope you found the tutorial useful. You are encouraged to email any comments to the Pylons mailing list [http://groups.google.com/group/pylons-discuss] where they will be welcomed.

Thanks

A big thanks to Ches Martin for updating this document and the QuickWiki project for Pylons 0.9.6 / Pylons 0.9.7 / QuickWiki 0.1.5 / QuickWiki 0.1.6, Graham Higgins, and others in the Pylons community who contributed bug fixes and suggestions.

Todo

	Provide paster shell examples

	Incorporate testing into the tutorial

	Explain Ches’s validate_title() method in the actual QuickWiki project

	Provide snapshots of every file modified at each step, to help resolve mistakes

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Tutorials

Understanding Unicode

If you’ve ever come across text in a foreign language that contains lots of ???? characters or have written some Python code and received a message such as UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 6: ordinal not in range(128) then you have run into a problem with character sets, encodings, Unicode and the like.

The truth is that many developers are put off by Unicode because most of the time it is possible to muddle through rather than take the time to learn the basics. To make the problem worse if you have a system that manages to fudge the issues and just about work and then start trying to do things properly with
Unicode it often highlights problems in other parts of your code.

The good news is that Python has great Unicode support, so the rest of
this article will show you how to correctly use Unicode in Pylons to avoid
unwanted ? characters and UnicodeDecodeErrors.

What is Unicode?

When computers were first being used the characters that were most important
were unaccented English letters. Each of these letters could be represented by
a number between 32 and 127 and thus was born ASCII, a character set where
space was 32, the letter “A” was 65 and everything could be stored in 7 bits.

Most computers in those days were using 8-bit bytes so people quickly realized
that they could use the codes 128-255 for their own purposes. Different people
used the codes 128-255 to represent different characters and before long these
different sets of characters were also standardized into code pages. This
meant that if you needed some non-ASCII characters in a document you could also
specify a codepage which would define which extra characters were available.
For example Israel DOS used a code page called 862, while Greek users used 737.
This just about worked for Western languages provided you didn’t want to write
an Israeli document with Greek characters but it didn’t work at all for Asian
languages where there are many more characters than can be represented in 8
bits.

Unicode is a character set that solves these problems by uniquely defining
every character that is used anywhere in the world. Rather than defining a
character as a particular combination of bits in the way ASCII does, each
character is assigned a code point. For example the word hello is made
from code points U+0048 U+0065 U+006C U+006C U+006F. The full list of code
points can be found at http://www.unicode.org/charts/.

There are lots of different ways of encoding Unicode code points into bits but
the most popular encoding is UTF-8. Using UTF-8, every code point from 0-127 is
stored in a single byte. Only code points 128 and above are stored using 2, 3,
in fact, up to 6 bytes. This has the useful side effect that English text looks
exactly the same in UTF-8 as it did in ASCII, because for every
ASCII character with hexadecimal value 0xXY, the corresponding Unicode
code point is U+00XY. This backwards compatibility is why if you are developing
an application that is only used by English speakers you can often get away
without handling characters properly and still expect things to work most of
the time. Of course, if you use a different encoding such as UTF-16 this
doesn’t apply since none of the code points are encoded to 8 bits.

The important things to note from the discussion so far are that:

	Unicode can represent pretty much any character in any writing system in widespread use today

	Unicode uses code points to represent characters and the way these map to bits in memory depends on the encoding

	
	The most popular encoding is UTF-8 which has several convenient properties

	
	It can handle any Unicode code point

	A Unicode string is turned into a string of bytes containing no embedded zero bytes. This avoids byte-ordering issues, and means UTF-8 strings can be processed by C functions such as strcpy() and sent through protocols that can’t handle zero bytes

	A string of ASCII text is also valid UTF-8 text

	UTF-8 is fairly compact; the majority of code points are turned into two bytes, and values less than 128 occupy only a single byte.

	If bytes are corrupted or lost, it’s possible to determine the start of the next UTF-8-encoded code point and resynchronize.

Note

Since Unicode 3.1, some extensions have even been defined so that the defined range is now U+000000 to U+10FFFF (21 bits), and formally, the character set is defined as 31-bits to allow for future expansion. It is a myth that there are 65,536 Unicode code points and that every Unicode letter can really be squeezed into two bytes. It is also incorrect to think that UTF-8 can represent less characters than UTF-16. UTF-8 simply uses a variable number of bytes for a character, sometimes just one byte (8 bits).

Unicode in Python

In Python Unicode strings are expressed as instances of the built-in
unicode type. Under the hood, Python represents Unicode strings as either
16 or 32 bit integers, depending on how the Python interpreter was compiled.

The unicode() constructor has the signature unicode(string[, encoding,
errors]). All of its arguments should be 8-bit strings. The first argument is
converted to Unicode using the specified encoding; if you leave off the
encoding argument, the ASCII encoding is used for the conversion, so characters
greater than 127 will be treated as errors:

>>> unicode('hello')
u'hello'
>>> s = unicode('hello')
>>> type(s)
<type 'unicode'>
>>> unicode('hello' + chr(255))
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 6:
ordinal not in range(128)

The errors argument specifies what to do if the string can’t be decoded to
ascii. Legal values for this argument are 'strict' (raise a
UnicodeDecodeError exception), 'replace' (replace the character that
can’t be decoded with another one), or 'ignore' (just leave the character
out of the Unicode result).

>>> unicode('\x80abc', errors='strict')
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0x80 in position 0:
ordinal not in range(128)
>>> unicode('\x80abc', errors='replace')
u'\ufffdabc'
>>> unicode('\x80abc', errors='ignore')
u'abc'

It is important to understand the difference between encoding and decoding.
Unicode strings are considered to be the Unicode code points but any
representation of the Unicode string has to be encoded to something else, for
example UTF-8 or ASCII. So when you are converting an ASCII or UTF-8 string to
Unicode you are decoding it and when you are converting from Unicode to UTF-8
or ASCII you are encoding it. This is why the error in the example above says
that the ASCII codec cannot decode the byte 0x80 from ASCII to Unicode
because it is not in the range(128) or 0-127. In fact 0x80 is hex for 128
which the first number outside the ASCII range. However if we tell Python that
the character 0x80 is encoded with the 'latin-1', 'iso_8859_1' or
'8859' character sets (which incidentally are different names for the same
thing) we get the result we expected:

>>> unicode('\x80', encoding='latin-1')
u'\x80'

Note

The character encodings Python supports are listed at http://docs.python.org/lib/standard-encodings.html

Unicode objects in Python have most of the same methods that normal Python
strings provide. Python will try to use the 'ascii' codec to convert
strings to Unicode if you do an operation on both types:

>>> a = 'hello'
>>> b = unicode(' world!')
>>> print a + b
u'hello world!'

You can encode a Unicode string using a particular encoding like this:

>>> u'Hello World!'.encode('utf-8')
'Hello World!'

Unicode Literals in Python Source Code

In Python source code, Unicode literals are written as strings prefixed with
the ‘u’ or ‘U’ character:

>>> u'abcdefghijk'
>>> U'lmnopqrstuv'

You can also use ", """` or ''' versions too. For example:

>>> u"""This
... is a really long
... Unicode string"""

Specific code points can be written using the \u escape sequence, which is
followed by four hex digits giving the code point. If you use \U instead
you specify 8 hex digits instead of 4. Unicode literals can also use the same
escape sequences as 8-bit strings, including \x, but \x only takes two
hex digits so it can’t express all the available code points. You can add
characters to Unicode strings using the unichr() built-in function and find
out what the ordinal is with ord().

Here is an example demonstrating the different alternatives:

>>> s = u"\x66\u0072\u0061\U0000006e" + unichr(231) + u"ais"
>>> # ^^^^ two-digit hex escape
>>> # ^^^^^^ four-digit Unicode escape
>>> # ^^^^^^^^^^ eight-digit Unicode escape
>>> for c in s: print ord(c),
...
97 102 114 97 110 231 97 105 115
>>> print s
français

Using escape sequences for code points greater than 127 is fine in small doses
but Python 2.4 and above support writing Unicode literals in any encoding as
long as you declare the encoding being used by including a special comment as
either the first or second line of the source file:

#!/usr/bin/env python
-*- coding: latin-1 -*-
u = u'abcdé'
print ord(u[-1])

If you don’t include such a comment, the default encoding used will be ASCII.
Versions of Python before 2.4 were Euro-centric and assumed Latin-1 as a
default encoding for string literals; in Python 2.4, characters greater than
127 still work but result in a warning. For example, the following program has
no encoding declaration:

#!/usr/bin/env python
u = u'abcdé'
print ord(u[-1])

When you run it with Python 2.4, it will output the following warning:

sys:1: DeprecationWarning: Non-ASCII character '\xe9' in file testas.py on line 2, but
 no encoding declared; see http://www.python.org/peps/pep-0263.html for details

and then the following output:

233

For real world use it is recommended that you use the UTF-8 encoding for your
file but you must be sure that your text editor actually saves the file as
UTF-8 otherwise the Python interpreter will try to parse UTF-8 characters but
they will actually be stored as something else.

Note

Windows users who use the SciTE [http://www.scintilla.org/SciTE.html] editor can specify the encoding of their file from the menu using the File->Encoding.

Note

If you are working with Unicode in detail you might also be interested in the unicodedata module which can be used to find out Unicode properties such as a character’s name, category, numeric value and the like.

Input and Output

We now know how to use Unicode in Python source code but input and output can
also be different using Unicode. Of course, some libraries natively support
Unicode and if these libraries return Unicode objects you will not have to do
anything special to support them. XML parsers and SQL databases frequently
support Unicode for example.

If you remember from the discussion earlier, Unicode data consists of code
points. In order to send Unicode data via a socket or write it to a file you
usually need to encode it to a series of bytes and then decode the data back to
Unicode when reading it. You can of course perform the encoding manually
reading a byte at the time but since encodings such as UTF-8 can have variable
numbers of bytes per character it is usually much easier to use Python’s
built-in support in the form of the codecs module.

The codecs module includes a version of the open() function that
returns a file-like object that assumes the file’s contents are in a specified
encoding and accepts Unicode parameters for methods such as .read() and
.write().

The function’s parameters are open(filename, mode=’rb’, encoding=None,
errors=’strict’, buffering=1). mode can be ‘r’, ‘w’, or ‘a’, just like the
corresponding parameter to the regular built-in open() function. You can
add a + character to update the file. buffering is similar to the
standard function’s parameter. encoding is a string giving the encoding to
use, if not specified or specified as None, a regular Python file object
that accepts 8-bit strings is returned. Otherwise, a wrapper object is
returned, and data written to or read from the wrapper object will be converted
as needed. errors specifies the action for encoding errors and can be one
of the usual values of 'strict', 'ignore', or 'replace' which we
saw right at the begining of this document when we were encoding strings in
Python source files.

Here is an example of how to read Unicode from a UTF-8 encoded file:

import codecs
f = codecs.open('unicode.txt', encoding='utf-8')
for line in f:
 print repr(line)

It’s also possible to open files in update mode, allowing both reading and writing:

f = codecs.open('unicode.txt', encoding='utf-8', mode='w+')
f.write(u"\x66\u0072\u0061\U0000006e" + unichr(231) + u"ais")
f.seek(0)
print repr(f.readline()[:1])
f.close()

Notice that we used the repr() function to display the Unicode data. This
is very useful because if you tried to print the Unicode data directly, Python
would need to encode it before it could be sent the console and depending on
which characters were present and the character set used by the console, an
error might be raised. This is avoided if you use repr().

The Unicode character U+FEFF is used as a byte-order mark or BOM, and is often written as the first character of a file in order to assist with auto-detection of the file’s byte ordering. Some encodings, such as UTF-16, expect a BOM to be present at the start of a file, but with others such as UTF-8 it isn’t necessary.

When such an encoding is used, the BOM will be automatically written as the
first character and will be silently dropped when the file is read. There are
variants of these encodings, such as ‘utf-16-le’ and ‘utf-16-be’ for
little-endian and big-endian encodings, that specify one particular byte
ordering and don’t skip the BOM.

Note

Some editors including SciTE will put a byte order mark (BOM) in the text
file when saved as UTF-8, which is strange because UTF-8 doesn’t need BOMs.

Unicode Filenames

Most modern operating systems support the use of Unicode filenames. The
filenames are transparently converted to the underlying filesystem encoding.
The type of encoding depends on the operating system.

On Windows 9x, the encoding is mbcs.

On Mac OS X, the encoding is utf-8.

On Unix, the encoding is the user’s preference according to the
result of nl_langinfo(CODESET), or None if the nl_langinfo(CODESET) failed.

On Windows NT+, file names are Unicode natively, so no conversion is performed.
getfilesystemencoding still returns mbcs, as this is the encoding that
applications should use when they explicitly want to convert Unicode strings to
byte strings that are equivalent when used as file names.

mbcs is a special encoding for Windows that effectively means “use
whichever encoding is appropriate”. In Python 2.3 and above you can find out
the system encoding with sys.getfilesystemencoding().

Most file and directory functions and methods support Unicode. For example:

filename = u"\x66\u0072\u0061\U0000006e" + unichr(231) + u"ais"
f = open(filename, 'w')
f.write('Some data\n')
f.close()

Other functions such as os.listdir() will return Unicode if you pass a
Unicode argument and will try to return strings if you pass an ordinary 8 bit
string. For example running this example as test.py:

filename = u"Sample " + unichar(5000)
f = open(filename, 'w')
f.close()

import os
print os.listdir('.')
print os.listdir(u'.')

will produce the following output:

['Sample?', 'test.py']
[u'Sample\u1388', u'test.py']

Applying this to Web Programming

So far we’ve seen how to use encoding in source files and seen how to decode
text to Unicode and encode it back to text. We’ve also seen that Unicode
objects can be manipulated in similar ways to strings and we’ve seen how to
perform input and output operations on files. Next we are going to look at how
best to use Unicode in a web app.

The main rule is this:

Your application should use Unicode for all strings internally, decoding any
input to Unicode as soon as it enters the application and encoding the Unicode
to UTF-8 or another encoding only on output.

If you fail to do this you will find that UnicodeDecodeError s will start
popping up in unexpected places when Unicode strings are used with normal 8-bit
strings because Python’s default encoding is ASCII and it will try to decode
the text to ASCII and fail. It is always better to do any encoding or decoding
at the edges of your application otherwise you will end up patching lots of
different parts of your application unnecessarily as and when errors pop up.

Unless you have a very good reason not to it is wise to use UTF-8 as the
default encoding since it is so widely supported.

The second rule is:

Always test your application with characters above 127 and above 255 wherever
possible.

If you fail to do this you might think your application is working fine, but as
soon as your users do put in non-ASCII characters you will have problems.
Using arabic is always a good test and www.google.ae is a good source of sample
text.

The third rule is:

Always do any checking of a string for illegal characters once it’s in the
form that will be used or stored, otherwise the illegal characters might be
disguised.

For example, let’s say you have a content management system that takes a
Unicode filename, and you want to disallow paths with a ‘/’ character. You
might write this code:

def read_file(filename, encoding):
 if '/' in filename:
 raise ValueError("'/' not allowed in filenames")
 unicode_name = filename.decode(encoding)
 f = open(unicode_name, 'r')
 # ... return contents of file ...

This is INCORRECT. If an attacker could specify the ‘base64’ encoding, they
could pass L2V0Yy9wYXNzd2Q= which is the base-64 encoded form of the string
'/etc/passwd' which is a file you clearly don’t want an attacker to get
hold of. The above code looks for / characters in the encoded form and
misses the dangerous character in the resulting decoded form.

Those are the three basic rules so now we will look at some of the places you
might want to perform Unicode decoding in a Pylons application.

Request Parameters

Pylons automatically coerces incoming form parameters (request.POST, GET (quote GET) and params) into unicode objects (as of Pylons 0.9.6).

The request object contains a charset (encoding) attribute defining what the parameters should be decoded to (via value.decode(charset, errors)), and the decoding errors handler.

The unicode conversion of parameters can be disabled when charset is set to
None.

def index(self):
 #request.charset = 'utf-8' # utf-8 is the default charset
 #request.errors = 'replace' # replace is the default error handler
 # a MultiDict-like object of string names and unicode values
 decoded_get = request.GET

 # The raw data is always still available when charset is None
 request.charset = None
 raw_get = request.GET
 raw_params = request.params

Pylons can also be configured to not coerece parameters to unicode objects by
default. This is done by setting the following in the Pylons config object (at
the bottom of your project’s config/environment.py):

Don't coerce parameters to unicode
config['pylons.request_options']['charset'] = None
You can also change the default error handler
#config['pylons.request_options']['errors'] = 'strict'

When the request object is instructed to always automatically decode to
unicode via the request_settings dictionary, the dictionary’s charset
value acts as a fallback charset. If a charset was sent by the browser (via
the Content-Type header), the browser’s value will take precedent: this
takes place when the request object is constructed.

FieldStorage (file upload) objects will be handled specially for unicode
parameters: what’s provided is a copy of the original FieldStorage object
with a unicode version of its filename attribute.

See File Uploads for more information on working with file uploads/FieldStorage objects.

Note

Only parameter values (not their associated names) are decoded to unicode
by default. Since parameter names commonly map directly to Python variable
names (which are restricted to the ASCII character set), it’s usually
preferable to handle them as strings. For example, passing form parameters
to a function as keyword arguments (e.g. **request.params.mixed())
doesn’t work with unicode keys.

To make WSGIRequest decode parameter names anyway, enable the
decode_param_names option on either the WSGIRequest object or the
request_settings dictionary. FieldStorage's name attributes are
also decoded to unicode when this option is enabled.

Templating

Pylons uses Mako as its default templating language. Mako handles all content
as unicode internally. It only deals in raw strings upon the final rendering of
the template (the Mako render() function, used by the Pylons render()
function/Buffet plugin). The encoding of the rendered string can be configured;
Pylons sets the default value to UTF-8. To change this value, edit your
project’s config/environment.py file and add the following option:

Customize templating options via this variable
tmpl_options = config['buffet.template_options']

tmpl_options['mako.output_encoding'] = 'utf-8'

replacing utf-8 with the encoding you wish to use.

More information can be found at Mako’s Unicode Chapter [http://www.makotemplates.org/docs/unicode.html].

Output Encoding

Web pages should be generated with a specific encoding, most likely UTF-8. At
the very least, that means you should specify the following in the <head>
section:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

The charset should also be specified in the Content-Type header (which
Pylons automatically does for you):

response.headers['Content-type'] = 'text/html; charset=utf-8'

Pylons has a notion of response_options, complimenting the
request_options mentioned in the Request Parameters section above. The
default request charset can be changed by setting the following in the Pylons
config object (at the bottom of your project’s config/environment.py):

config['pylons.response_options']['charset'] = 'utf-8'

replacing utf-8 with the charset you wish to use.

If you specify that your output is UTF-8, generally the web browser will
give you UTF-8. If you want the browser to submit data using a different
character set, you can set the encoding by adding the accept-encoding
tag to your form. Here is an example:

<form accept-encoding="US-ASCII" ...>

However, be forewarned that if the user tries to give you non-ASCII
text, then:

	Firefox will translate the non-ASCII text into HTML entities.

	IE will ignore your suggested encoding and give you UTF-8 anyway.

The lesson to be learned is that if you output UTF-8, you had better be
prepared to accept UTF-8 by decoding the data in request.params as
described in the section above entitled Request Parameters‘.

Another technique which is sometimes used to determine the character set is to
use an algorithm to analyse the input and guess the encoding based on
probabilities.

For instance, if you get a file, and you don’t know what encoding it is encoded
in, you can often rename the file with a .txt extension and then try to open it
in Firefox. Then you can use the “View->Character Encoding” menu to try to
auto-detect the encoding.

Databases

Your database driver should automatically convert from Unicode objects to a
particular charset when writing and back again when reading. Again it is normal
to use UTF-8 which is well supported.

You should check your database’s documentation for information on how it handles Unicode.

For example MySQL’s Unicode documentation is here http://dev.mysql.com/doc/refman/5.0/en/charset-unicode.html

Also note that you need to consider both the encoding of the database and the encoding used by the database driver.

If you’re using MySQL together with SQLAlchemy, see the following, as
there are some bugs in MySQLdb that you’ll need to work around:

http://www.mail-archive.com/sqlalchemy@googlegroups.com/msg00366.html

Summary

Hopefully you now understand the history of Unicode, how to use it in Python and where to apply Unicode encoding and decoding in a Pylons application. You should also be able to use Unicode in your web app remembering the basic rule to use UTF-8 to talk to the world, do the encode and decode at the edge of your application.

Further Reading

This information is based partly on the following articles which can be
consulted for further information.:

http://www.joelonsoftware.com/articles/Unicode.html

http://www.amk.ca/python/howto/unicode

Please feel free to report any mistakes to the Pylons mailing list or to the
author. Any corrections or clarifications would be gratefully received.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Controllers

[image:]
In the MVC paradigm the controller interprets the inputs, commanding
the model and/or the view to change as appropriate. Under Pylons, this concept
is extended slightly in that a Pylons controller is not directly interpreting
the client’s request, but is acting to determine the appropriate way to
assemble data from the model, and render it with the correct template.

The controller interprets requests from the user and calls portions of the model and view as necessary to fulfill the request. So when the user clicks a Web link or submits an HTML form, the controller itself doesn’t output anything or perform any real processing. It takes the request and determines which model components to invoke and which formatting to apply to the resulting data.

Pylons uses a class, where the superclass provides the WSGI interface
and the subclass implements the application-specific controller logic.

The Pylons WSGI Controller handles incoming web requests that are dispatched from the Pylons WSGI application PylonsApp.

These requests result in a new instance of the WSGIController being created, which is then called with the dict options from the Routes match. The standard WSGI response is then returned with start_response called as per the WSGI spec.

Since Pylons controllers are actually called with the WSGI interface, normal WSGI applications can also be Pylons ‘controllers’.

Standard Controllers

Standard Controllers intended for subclassing by web developers

Keeping methods private

The default route maps any controller and action, so you will likely want to
prevent some controller methods from being callable from a URL.

Pylons uses the default Python convention of private methods beginning with
_. To hide a method edit_generic in this class, just changing its name
to begin with _ will be sufficient:

class UserController(BaseController):
 def index(self):
 return "This is the index."

 def _edit_generic(self):
 """I can't be called from the web!"""
 return True

Special methods

Special controller methods you may define:

	__before__

	This method is called before your action is, and should be used for
setting up variables/objects, restricting access to other actions,
or other tasks which should be executed before the action is called.

	__after__

	This method is called after the action is, unless an unexpected
exception was raised. Subclasses of
HTTPException (such as those raised by
redirect_to and abort) are expected; e.g. __after__
will be called on redirects.

Adding Controllers dynamically

It is possible for an application to add controllers without restarting the application. This requires telling Routes to re-scan the controllers directory.

New controllers may be added from the command line with the paster command (recommended as that also creates the test harness file), or any other means of creating the controller file.

For Routes to become aware of new controllers present in the controller directory, an internal flag is toggled to indicate that Routes should rescan the directory:

from routes import request_config

mapper = request_config().mapper
mapper._created_regs = False

On the next request, Routes will rescan the controllers directory and those routes that use the :controller dynamic part of the path will be able to match the new controller.

Attaching WSGI apps

Note

This recipe assumes a basic level of familiarity with the WSGI Specification (PEP 333)

WSGI runs deep through Pylons, and is present in many parts of the architecture. Since Pylons controllers are actually called with the WSGI interface, normal WSGI applications can also be Pylons ‘controllers’.

Optionally, if a full WSGI app should be mounted and handle the remainder of the URL, Routes can automatically move the right part of the URL into the SCRIPT_NAME, so that the WSGI application can properly handle its PATH_INFO part.

This recipe will demonstrate adding a basic WSGI app as a Pylons controller.

Create a new controller file in your Pylons project directory:

$ paster controller wsgiapp

This sets up the basic imports that you may want available when using other WSGI applications.

Edit your controller so it looks like this:

import logging

from YOURPROJ.lib.base import *

log = logging.getLogger(__name__)

def WsgiappController(environ, start_response):
 start_response('200 OK', [('Content-type', 'text/plain')])
 return ["Hello World"]

When hooking up other WSGI applications, they will expect the part of the URL that was used to get to this controller to have been moved into SCRIPT_NAME. Routes can properly adjust the environ if a map route for this controller is added to the config/routing.py file:

CUSTOM ROUTES HERE

Map the WSGI application
map.connect('wsgiapp/{path_info:.*}', controller='wsgiapp')

By specifying the path_info dynamic path, Routes will put everything leading up to the path_info in the SCRIPT_NAME and the rest will go in the PATH_INFO.

Using the WSGI Controller to provide a WSGI service

The Pylons WSGI Controller

Pylons’ own WSGI Controller follows the WSGI spec for calling and return
values

The Pylons WSGI Controller handles incoming web requests that are
dispatched from PylonsApp. These requests result in a new
instance of the WSGIController being created, which is then called
with the dict options from the Routes match. The standard WSGI
response is then returned with start_response() called as per
the WSGI spec.

WSGIController methods

Special WSGIController methods you may define:

	__before__

	This method will be run before your action is, and should be
used for setting up variables/objects, restricting access to
other actions, or other tasks which should be executed before
the action is called.

	__after__

	Method to run after the action is run. This method will
always be run after your method, even if it raises an
Exception or redirects.

Each action to be called is inspected with _inspect_call() so
that it is only passed the arguments in the Routes match dict that
it asks for. The arguments passed into the action can be customized
by overriding the _get_method_args() function which is
expected to return a dict.

In the event that an action is not found to handle the request, the
Controller will raise an “Action Not Found” error if in debug mode,
otherwise a 404 Not Found error will be returned.

Using the REST Controller with a RESTful API

Using the paster restcontroller template

$ paster restcontroller --help

Create a REST Controller and accompanying functional test

The RestController command will create a REST-based Controller file
for use with the resource()
REST-based dispatching. This template includes the methods that
resource() dispatches to in
addition to doc strings for clarification on when the methods will
be called.

The first argument should be the singular form of the REST
resource. The second argument is the plural form of the word. If
its a nested controller, put the directory information in front as
shown in the second example below.

Example usage:

$ paster restcontroller comment comments
Creating yourproj/yourproj/controllers/comments.py
Creating yourproj/yourproj/tests/functional/test_comments.py

If you’d like to have controllers underneath a directory, just
include the path as the controller name and the necessary
directories will be created for you:

$ paster restcontroller admin/trackback admin/trackbacks
Creating yourproj/controllers/admin
Creating yourproj/yourproj/controllers/admin/trackbacks.py
Creating yourproj/yourproj/tests/functional/test_admin_trackbacks.py

An Atom-Style REST Controller for Users

From http://pylonshq.com/pasties/503
import logging

from formencode.api import Invalid
from pylons import url
from simplejson import dumps

from restmarks.lib.base import *

log = logging.getLogger(__name__)

class UsersController(BaseController):
 """REST Controller styled on the Atom Publishing Protocol"""
 # To properly map this controller, ensure your
 # config/routing.py file has a resource setup:
 # map.resource('user', 'users')

 def index(self, format='html'):
 """GET /users: All items in the collection.

 @param format the format passed from the URI.
 """
 #url('users')
 users = model.User.select()
 if format == 'json':
 data = []
 for user in users:
 d = user._state['original'].data
 del d['password']
 d['link'] = url('user', id=user.name)
 data.append(d)
 response.headers['content-type'] = 'text/javascript'
 return dumps(data)
 else:
 c.users = users
 return render('/users/index_user.mako')

 def create(self):
 """POST /users: Create a new item."""
 # url('users')
 user = model.User.get_by(name=request.params['name'])
 if user:
 # The client tried to create a user that already exists
 abort(409, '409 Conflict',
 headers=[('location', url('user', id=user.name))])
 else:
 try:
 # Validate the data that was sent to us
 params = model.forms.UserForm.to_python(request.params)
 except Invalid, e:
 # Something didn't validate correctly
 abort(400, '400 Bad Request -- %s' % e)
 user = model.User(**params)
 model.objectstore.flush()
 response.headers['location'] = url('user', id=user.name)
 response.status_code = 201
 c.user_name = user.name
 return render('/users/created_user.mako')

 def new(self, format='html'):
 """GET /users/new: Form to create a new item.
 @param format the format passed from the URI.
 """
 # url('new_user')
 return render('/users/new_user.mako')

 def update(self, id):
 """PUT /users/id: Update an existing item.
 @param id the id (name) of the user to be updated
 """
 # Forms posted to this method should contain a hidden field:
 # <input type="hidden" name="_method" value="PUT" />
 # Or using helpers:
 # h.form(url('user', id=ID),
 # method='put')
 # url('user', id=ID)
 old_name = id
 new_name = request.params['name']
 user = model.User.get_by(name=id)

 if user:
 if (old_name != new_name) and model.User.get_by(name=new_name):
 abort(409, '409 Conflict')
 else:
 params = model.forms.UserForm.to_python(request.params)
 user.name = params['name']
 user.full_name = params['full_name']
 user.email = params['email']
 user.password = params['password']
 model.objectstore.flush()
 if user.name != old_name:
 abort(301, '301 Moved Permanently',
 [('Location', url('users', id=user.name))])
 else:
 return

 def delete(self, id):
 """DELETE /users/id: Delete an existing item.
 @param id the id (name) of the user to be updated
 """
 # Forms posted to this method should contain a hidden field:
 # <input type="hidden" name="_method" value="DELETE" />
 # Or using helpers:
 # h.form(url('user', id=ID),
 # method='delete')
 # url('user', id=ID)
 user = model.User.get_by(name=id)
 user.delete()
 model.objectstore.flush()
 return

 def show(self, id, format='html'):
 """GET /users/id: Show a specific item.
 @param id the id (name) of the user to be updated.
 @param format the format of the URI requested.
 """
 # url('user', id=ID)
 user = model.User.get_by(name=id)
 if user:
 if format=='json':
 data = user._state['original'].data
 del data['password']
 data['link'] = url('user', id=user.name)
 response.headers['content-type'] = 'text/javascript'
 return dumps(data)
 else:
 c.data = user
 return render('/users/show_user.mako')
 else:
 abort(404, '404 Not Found')

 def edit(self, id, format='html'):
 """GET /users/id;edit: Form to edit an existing item.
 @param id the id (name) of the user to be updated.
 @param format the format of the URI requested.
 """
 # url('edit_user', id=ID)
 user = model.User.get_by(name=id)
 if not user:
 abort(404, '404 Not Found')
 # Get the form values from the table
 c.values = model.forms.UserForm.from_python(user.__dict__)
 return render('/users/edit_user.mako')

Using the XML-RPC Controller for XML-RPC requests

In order to deploy this controller you will need at least a passing familiarity with XML-RPC itself. We will first review the basics of XML-RPC and then describe the workings of the Pylons XMLRPCController. Finally, we will show an example of how to use the controller to implement a simple web service.

After you’ve read this document, you may be interested in reading the companion document: “A blog publishing web service in XML-RPC” which takes the subject further, covering details of the MetaWeblog API (a popular XML-RPC service) and demonstrating how to construct some basic service methods to act as the core of a MetaWeblog blog publishing service.

A brief introduction to XML-RPC

XML-RPC is a specification that describes a Remote Procedure Call (RPC) interface by which an application can use the Internet to execute a specified procedure call on a remote XML-RPC server. The name of the procedure to be called and any required parameter values are “marshalled” into XML. The XML forms the body of a POST request which is despatched via HTTP to the XML-RPC server. At the server, the procedure is executed, the returned value(s) is/are marshalled into XML and despatched back to the application. XML-RPC is designed to be as simple as possible, while allowing complex data structures to be transmitted, processed and returned.

XML-RPC Controller that speaks WSGI

Pylons uses Python’s xmlrpclib library to provide a specialised XMLRPCController class that gives you the full range of these XML-RPC Introspection facilities for use in your service methods and provides the foundation for constructing a set of specialised service methods that provide a useful web service — such as a blog publishing interface.

This controller handles XML-RPC responses and complies with the XML-RPC Specification [http://www.xmlrpc.com/spec] as well as the XML-RPC Introspection [http://scripts.incutio.com/xmlrpc/introspection.html] specification.

As part of its basic functionality an XML-RPC server provides three standard introspection procedures or “service methods” as they are called. The Pylons XMLRPCController class provides these standard service methods ready-made for you:

	system.listMethods() Returns a list of XML-RPC methods for this XML-RPC resource

	system.methodSignature() Returns an array of arrays for the valid signatures for a method. The first value of each array is the return value of the method. The result is an array to indicate multiple signatures a method may be capable of.

	system.methodHelp() Returns the documentation for a method

By default, methods with names containing a dot are translated to use an underscore. For example, the system.methodHelp is handled by the method system_methodHelp().

Methods in the XML-RPC controller will be called with the method given in the XML-RPC body. Methods may be annotated with a signature attribute to declare the valid arguments and return types.

For example:

class MyXML(XMLRPCController):
 def userstatus(self):
 return 'basic string'
 userstatus.signature = [['string']]

 def userinfo(self, username, age=None):
 user = LookUpUser(username)
 result = {'username': user.name}
 if age and age > 10:
 result['age'] = age
 return result
 userinfo.signature = [['struct', 'string'],
 ['struct', 'string', 'int']]

Since XML-RPC methods can take different sets of data, each set of valid arguments is its own list. The first value in the list is the type of the return argument. The rest of the arguments are the types of the data that must be passed in.

In the last method in the example above, since the method can optionally take an integer value, both sets of valid parameter lists should be provided.

Valid types that can be checked in the signature and their corresponding Python types:

	XMLRPC
	Python

	string
	str

	array
	list

	boolean
	bool

	int
	int

	double
	float

	struct
	dict

	dateTime.iso8601
	xmlrpclib.DateTime

	base64
	xmlrpclib.Binary

Note, requiring a signature is optional.

Also note that a convenient fault handler function is provided.

def xmlrpc_fault(code, message):
 """Convenience method to return a Pylons response XMLRPC Fault"""

(The XML-RPC Home page [http://www.xmlrpc.com/] and the XML-RPC HOW-TO [http://www.faqs.org/docs/Linux-HOWTO/XML-RPC-HOWTO.html] both provide further detail on the XML-RPC specification.)

A simple XML-RPC service

This simple service test.battingOrder accepts a positive integer < 51 as the parameter posn and returns a string containing the name of the US state occupying that ranking in the order of ratifying the constitution / joining the union.

import xmlrpclib

from pylons import request
from pylons.controllers import XMLRPCController

states = ['Delaware', 'Pennsylvania', 'New Jersey', 'Georgia',
 'Connecticut', 'Massachusetts', 'Maryland', 'South Carolina',
 'New Hampshire', 'Virginia', 'New York', 'North Carolina',
 'Rhode Island', 'Vermont', 'Kentucky', 'Tennessee', 'Ohio',
 'Louisiana', 'Indiana', 'Mississippi', 'Illinois', 'Alabama',
 'Maine', 'Missouri', 'Arkansas', 'Michigan', 'Florida', 'Texas',
 'Iowa', 'Wisconsin', 'California', 'Minnesota', 'Oregon',
 'Kansas', 'West Virginia', 'Nevada', 'Nebraska', 'Colorado',
 'North Dakota', 'South Dakota', 'Montana', 'Washington', 'Idaho',
 'Wyoming', 'Utah', 'Oklahoma', 'New Mexico', 'Arizona', 'Alaska',
 'Hawaii']

class RpctestController(XMLRPCController):

 def test_battingOrder(self, posn):
 """This docstring becomes the content of the
 returned value for system.methodHelp called with
 the parameter "test.battingOrder"). The method
 signature will be appended below ...
 """
 # XML-RPC checks agreement for arity and parameter datatype, so
 # by the time we get called, we know we have an int.
 if posn > 0 and posn < 51:
 return states[posn-1]
 else:
 # Technically, the param value is correct: it is an int.
 # Raising an error is inappropriate, so instead we
 # return a facetious message as a string.
 return 'Out of cheese error.'
 test_battingOrder.signature = [['string', 'int']]

Testing the service

For developers using OS X, there’s an XML/RPC client [http://www.ditchnet.org/xmlrpc/] that is an extremely useful diagnostic tool when developing XML-RPC (it’s free ... but not entirely bug-free). Or, you can just use the Python interpreter:

>>> from pprint import pprint
>>> import xmlrpclib
>>> srvr = xmlrpclib.Server("http://example.com/rpctest/")
>>> pprint(srvr.system.listMethods())
['system.listMethods',
 'system.methodHelp',
 'system.methodSignature',
 'test.battingOrder']
>>> print srvr.system.methodHelp('test.battingOrder')
This docstring becomes the content of the
returned value for system.methodHelp called with
the parameter "test.battingOrder"). The method
signature will be appended below ...

Method signature: [['string', 'int']]
>>> pprint(srvr.system.methodSignature('test.battingOrder'))
[['string', 'int']]
>>> pprint(srvr.test.battingOrder(12))
'North Carolina'

To debug XML-RPC servers from Python, create the client object using the optional verbose=1 parameter. You can then use the client as normal and watch as the XML-RPC request and response is displayed in the console.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Views

[image:]
In the MVC paradigm the view manages the presentation of the model.

The view is the interface the user sees and interacts with. For Web applications, this has historically been an HTML interface. HTML remains the dominant interface for Web apps but new view options are rapidly appearing.

These include Macromedia Flash, JSON and views expressed in alternate markup languages like XHTML, XML/XSL, WML, and Web services. It is becoming increasingly common for web apps to provide specialised views in the form of a REST API that allows programmatic read/write access to the data model.

More complex APIs are quite readily implemented via SOAP services, yet another type of view on to the data model.

The growing adoption of RDF, the graph-based representation scheme that underpins the Semantic Web, brings a perspective that is strongly weighted towards machine-readability.

Handling all of these interfaces in an application is becoming increasingly challenging. One big advantage of MVC is that it makes it easier to create these interfaces and develop a web app that supports many different views and thereby provides a broad range of services.

Typically, no significant processing occurs in the view; it serves only as a means of outputting data and allowing the user (or the application) to act on that data, irrespective of whether it is an online store or an employee list.

Templates

Template rendering engines are a popular choice for handling the task of view presentation.

To return a processed template, it must be rendered and returned by the controller:

from helloworld.lib.base import BaseController, render

class HelloController(BaseController):
 def sample(self):
 return render('/sample.mako')

Using the default Mako template engine, this will cause Mako to look in the helloworld/templates directory (assuming the project is called ‘helloworld’) for a template filed called sample.mako.

The render() function used here is actually an alias defined in your projects’ base.py for Pylons’ render_mako() function.

Directly-supported template engines

Pylons provides pre-configured options for using the Mako [http://www.makotemplates.org/], Genshi [http://genshi.edgewall.org/] and Jinja2 [http://jinja.pocoo.org/] template rendering engines. They are setup automatically during the creation of a new Pylons project, or can be added later manually.

Passing Variables to Templates

To pass objects to templates, the standard Pylons method is to attach them to the tmpl_context (aliased as c in controllers and templates, by default) object in the Controllers:

import logging

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

from helloworld.lib.base import BaseController, render

log = logging.getLogger(__name__)

class HelloController(BaseController):

 def index(self):
 c.name = "Fred Smith"
 return render('/sample.mako')

Using the variable in the template:

Hi there ${c.name}!

Strict vs Attribute-Safe tmpl_context objects

The tmpl_context object is created at the beginning of every request, and by default is an instance of the AttribSafeContextObj class, which is an Attribute-Safe object. This means that accessing attributes on it that do not exist will return an empty string instead of raising an AttributeError error.

This can be convenient for use in templates since it can act as a default:

Hi there ${c.name}

That will work when c.name has not been set, and is a bit shorter than what would be needed with the strict ContextObj context object.

Switching to the strict version of the tmpl_context object can be done in the config/environment.py by adding (after the config.init_app):

config['pylons.strict_c'] = True

Default Template Variables

By default, all templates have a set of variables present in them to make it easier to get to common objects. The full list of available names present in the templates global scope:

	c – Template context object (Alias for tmpl_context)

	tmpl_context – Template context object

	config – Pylons PylonsConfig
object (acts as a dict)

	g – Project application globals object (Alias for app_globals)

	app_globals – Project application globals object

	h – Project helpers module reference

	request – Pylons Request
object for this request

	response – Pylons Response
object for this request

	session – Pylons session object (unless Sessions are
removed)

	translator – Gettext translator object configured for
current locale

	ungettext() – Unicode capable version of gettext’s ngettext
function (handles plural translations)

	_() – Unicode capable gettext translate function

	N_() – gettext no-op function to mark a string for
translation, but doesn’t actually translate

Configuring Template Engines

A new Pylons project comes with the template engine setup inside the projects’ config/environment.py file. This section creates the Mako template lookup object and attaches it to the app_globals object, for use by the template rendering function.

these imports are at the top
from mako.lookup import TemplateLookup
from pylons.error import handle_mako_error

this section is inside the load_environment function
Create the Mako TemplateLookup, with the default auto-escaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(
 directories=paths['templates'],
 error_handler=handle_mako_error,
 module_directory=os.path.join(app_conf['cache_dir'], 'templates'),
 input_encoding='utf-8', default_filters=['escape'],
 imports=['from webhelpers.html import escape'])

Using Multiple Template Engines

Since template engines are configured in the config/environment.py section, then used by render functions, it’s trivial to setup additional template engines, or even differently configured versions of a single template engine. However, custom render functions will frequently be needed to utilize the additional template engine objects.

Example of additional Mako template loader for a different templates directory for admins, which falls back to the normal templates directory:

Add the additional path for the admin template
paths = dict(root=root,
 controllers=os.path.join(root, 'controllers'),
 static_files=os.path.join(root, 'public'),
 templates=[os.path.join(root, 'templates')],
 admintemplates=[os.path.join(root, 'admintemplates'),
 os.path.join(root, 'templates')])

config['pylons.app_globals'].mako_admin_lookup = TemplateLookup(
 directories=paths['admin_templates'],
 error_handler=handle_mako_error,
 module_directory=os.path.join(app_conf['cache_dir'], 'admintemplates'),
 input_encoding='utf-8', default_filters=['escape'],
 imports=['from webhelpers.html import escape'])

That adds the additional template lookup instance, next a custom render function is needed that utilizes it:

from pylons.templating import cached_template, pylons_globals

def render_mako_admin(template_name, extra_vars=None, cache_key=None,
 cache_type=None, cache_expire=None):
 # Create a render callable for the cache function
 def render_template():
 # Pull in extra vars if needed
 globs = extra_vars or {}

 # Second, get the globals
 globs.update(pylons_globals())

 # Grab a template reference
 template = globs['app_globals'].mako_admin_lookup.get_template(template_name)

 return template.render(**globs)

 return cached_template(template_name, render_template, cache_key=cache_key,
 cache_type=cache_type, cache_expire=cache_expire)

The only change from the render_mako() function that comes with Pylons is to use the mako_admin_lookup rather than the mako_lookup that is used by default.

Custom render() functions

Writing custom render functions can be used to access specific features in a template engine, such as Genshi, that go beyond the default render_genshi() functionality or to add support for additional template engines.

Two helper functions for use with the render function are provided to make it easier to include the common Pylons globals that are useful in a template in addition to enabling easy use of cache capabilities. The pylons_globals() and cached_template() functions can be used if desired.

Generally, the custom render function should reside in the project’s
lib/ directory, probably in base.py.

Here’s a sample Genshi render function as it would look in a project’s
lib/base.py that doesn’t fully render the result to a string, and
rather than use c assumes that a dict is passed in to be used
in the templates global namespace. It also returns a Genshi stream
instead the rendered string.

from pylons.templating import pylons_globals

def render(template_name, tmpl_vars):
 # First, get the globals
 globs = pylons_globals()

 # Update the passed in vars with the globals
 tmpl_vars.update(globs)

 # Grab a template reference
 template = globs['app_globals'].genshi_loader.load(template_name)

 # Render the template
 return template.generate(**tmpl_vars)

Using the pylons_globals() function also makes it easy to get to the app_globals object which is where the template engine was attached in config/environment.py.

Changed in version 0.9.7: Prior to 0.9.7, all templating was handled through a layer called ‘Buffet’. This layer frequently made customization of the template engine difficult as any customization required additional plugin modules being installed. Pylons 0.9.7 now deprecates use of the Buffet plug-in layer.

See also

pylons.templating - Pylons templating API

Templating with Mako

Introduction

The template library deals with the view, presenting the model. It generates (X)HTML code, CSS and Javascript that is sent to the browser. (In the examples for this section, the project root is ``myapp``.)

Static vs. dynamic

Templates to generate dynamic web content are stored in myapp/templates, static files are stored in myapp/public.

Both are served from the server root, if there is a name conflict the static files will be served in preference

Making a template hierarchy

Create a base template

In myapp/templates create a file named base.mako and edit it to appear as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 ${self.head_tags()}
 </head>
 <body>
 ${self.body()}
 </body>
</html>

A base template such as the very basic one above can be used for all pages rendered by Mako. This is useful for giving a consistent look to the application.

	Expressions wrapped in ${...} are evaluated by Mako and returned as text

	${ and } may span several lines but the closing brace should not be on a line by itself (or Mako throws an error)

	Functions that are part of the self namespace are defined in the Mako templates

Create child templates

Create another file in myapp/templates called my_action.mako and edit it to appear as follows:

<%inherit file="/base.mako" />

<%def name="head_tags()">
 <!-- add some head tags here -->
</%def>

<h1>My Controller</h1>

<p>Lorem ipsum dolor ...</p>

This file define the functions called by base.mako.

	The inherit tag specifies a parent file to pass program flow to

	Mako defines functions with <%def name=”function_name()”>...</%def>, the contents of the tag are returned

	Anything left after the Mako tags are parsed out is automatically put into the body() function

A consistent feel to an application can be more readily achieved if all application pages refer back to single file (in this case base.mako)..

Check that it works

In the controller action, use the following as a return() value,

return render('/my_action.mako')

Now run the action, usually by visiting something like http://localhost:5000/my_controller/my_action in a browser. Selecting ‘View Source’ in the browser should reveal the following output:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <!-- add some head tags here -->
 </head>
 <body>

<h1>My Controller</h1>

<p>Lorem ipsum dolor ...</p>

 </body>
</html>

See also

	The Mako documentation [http://www.makotemplates.org/docs/]

	Reasonably straightforward to follow

	See the Internationalization and Localization

	Provides more help on making your application more worldly.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Models

About the model

[image:]
In the MVC paradigm the model manages the behavior and data of the application domain, responds to requests for information about its state and responds to instructions to change state.

The model represents enterprise data and business rules. It is where most of the processing takes place when using the MVC design pattern. Databases are in the remit of the model, as are component objects such as EJBs and ColdFusion Components.

The data returned by the model is display-neutral, i.e. the model applies no formatting. A single model can provide data for any number of display interfaces. This reduces code duplication as model code is written only once and is then reused by all of the views.

Because the model returns data without applying any formatting, the same components can be used with any interface. For example, most data is typically formatted with HTML but it could also be formatted with Macromedia Flash or WAP.

The model also isolates and handles state management and data persistence. For example, a Flash site or a wireless application can both rely on the same session-based shopping cart and e-commerce processes.

Because the model is self-contained and separate from the controller and the view, changing the data layer or business rules is less painful. If it proves necessary to switch databases, e.g. from MySQL to Oracle, or change a data source from an RDBMS to LDAP, the only required task is that of altering the model. If the view is written correctly, it won’t care at all whether a list of users came from a database or an LDAP server.

This freedom arises from the way that the three parts of an MVC-based application act as black boxes, the inner workings of each one are hidden from, and are independent of, the other two. The approach promotes well-defined interfaces and self-contained components.

Note

adapted from an Oct 2002 TechRepublic article by by Brian Kotek: “MVC design pattern brings about better organization and code reuse” - http://articles.techrepublic.com.com/5100-10878_11-1049862.html

Model basics

Pylons provides a model package to put your database code in but does not offer a database engine or API. Instead there are several third-party APIs to choose from.

SQL databases

SQLAlchemy

SQLAlchemy [http://www.sqlalchemy.org/] is by far the most common approach for Pylons databases. It provides a connection pool, a SQL statement builder, an object-relational mapper (ORM), and transaction support. SQLAlchemy works with several database engines (MySQL, PostgreSQL, SQLite, Oracle, Firebird, MS-SQL, Access via ODBC, etc) and understands the peculiar SQL dialect of each, making it possible to port a program from one engine to another by simply changing the connection string. Although its API is still changing gradually, SQLAlchemy is well tested, widely deployed, has excellent documentation, and its mailing list is quick with answers. Using SQLAlchemy describes the recommended way to configure a Pylons application for SQLAlchemy.

SQLAlchemy lets you work at three different levels, and you can even use
multiple levels in the same program:

	The object-relational mapper (ORM) lets you interact with the database using your own object classes rather than writing SQL code.

	The SQL expression language has many methods to create customized SQL statements, and the result cursor is more friendly than DBAPI’s.

	The low-level execute methods accept literal SQL strings if you find something the SQL builder can’t do, such as adding a column to an existing table or modifying the column’s type. If they return results, you still get the benefit of SQLAlchemy’s result cursor.

The first two levels are database neutral, meaning they hide the differences between the databases’ SQL dialects. Changing to a different database is merely a matter of supplying a new connection URL. Of course there are limits to this, but SQLAlchemy is 90% easier than rewriting all your SQL queries.

The SQLAlchemy manual [http://www.sqlalchemy.org/docs/] should be your next stop for questions not covered here. It’s very well written and thorough.

SQLAlchemy add-ons

Most of these provide a higher-level ORM, either by combining the table definition and ORM class definition into one step, or supporting an “active record” style of access.
Please take the time to learn how to do things “the regular way” before using these shortcuts in a production application. Understanding what these add-ons do behind the scenes will help if you have to troubleshoot a database error or work around a limitation in the add-on later.

SQLSoup [http://www.sqlalchemy.org/docs/05/plugins.html#plugins_sqlsoup], an extension to SQLAlchemy, provides a quick way to generate ORM classes based on existing database tables.

If you’re familiar with ActiveRecord, used in Ruby on Rails, then you may want to use the Elixir [http://elixir.ematia.de/] layer on top of SQLAlchemy.

Tesla [http://code.google.com/p/tesla-pylons-elixir/] is a framework built on top of Pylons and Elixir/SQLAlchemy.

Non-SQLAlchemy libraries

Most of these expose only the object-relational mapper; their SQL builder and connection pool are not meant to be used directly.

Storm [http://storm.canonical.com]

Geniusql [http://www.aminus.net/geniusql]

DB-API

All the SQL libraries above are built on top of Python’s DB-API, which provides a common low-level interface for interacting with several database engines: MySQL, PostgreSQL, SQLite, Oracle, Firebird, MS-SQL, Access via ODBC, etc. Most programmers do not use DB-API directly because its API is low-level and repetitive and does not provide a connection pool. There’s no “DB-API package” to install because it’s an abstract interface rather than software. Instead, install the Python package for the particular engine you’re interested in. Python’s Database Topic Guide [http://www.python.org/topics/database/] describes the DB-API and lists the package required for each engine. The sqlite3 [http://docs.python.org/lib/module-sqlite3.html] package for SQLite is included in Python 2.5.

Object databases

Object databases store Python dicts, lists, and classes in pickles, allowing you to access hierarchical data using normal Python statements rather than having to map them to tables, relations, and a foreign language (SQL).

ZODB [http://wiki.zope.org/ZODB/FrontPage]

Durus [http://www.mems-exchange.org/software/durus/] [1]

	[1]	Durus is not thread safe, so you should use its server mode if your
application writes to the database. Do not share connections between
threads. ZODB is thread safe, so it may be a more convenient alternative.

Other databases

Pylons can also work with other database systems, such as the following:

Schevo [http://schevo.org/] uses Durus to combine some features of relational and object databases. It is written in Python.

CouchDb [http://couchdb.org/] is a document-based database. It features a Python API [http://code.google.com/p/couchdb-python/].

The Datastore database in Google App Engine.

Working with SQLAlchemy

Install SQLAlchemy

We’ll assume you’ve already installed Pylons and have the easy_install command. At the command line, run:

easy_install SQLAlchemy

Next you’ll have to install a database engine and its Python bindings. If you don’t know which one to choose, SQLite is a good one to start with. It’s small and easy to install, and Python 2.5 includes bindings for it. Installing the database engine is beyond the scope of this article, but here are the Python bindings you’ll need for the most popular engines:

easy_install pysqlite # If you use SQLite and Python 2.4 (not needed for Python 2.5)
easy_install MySQL-python # If you use MySQL
easy_install psycopg2 # If you use PostgreSQL

See the Python Package Index [http://pypi.python.org/] (formerly the Cheeseshop) for other database drivers.

Check Your Version

To see which version of SQLAlchemy you have, go to a Python shell and look at sqlalchemy.__version__ :

>>> import sqlalchemy
>>> sqlalchemy.__version__
0.5.0

Defining tables and ORM classes

When you answer “yes” to the SQLAlchemy question when creating a Pylons
project, it configures a simple default model. The model consists of two
files: __init__.py and meta.py. __init__.py contains your table
definitions and ORM classes, and an init_model() function which must be
called at application startup. meta.py is merely a container for
SQLAlchemy’s housekeeping objects (Session, metadata, and engine),
which not all applications will use. If your application is small, you can put
your table definitions in __init__.py for simplicity. If your
application has many tables or multiple databases, you may prefer to split them
up into multiple modules within the model.

Here’s a sample model/__init__.py with a “persons” table, which is based on
the default model with the comments removed:

"""The application's model objects"""
import sqlalchemy as sa
from sqlalchemy import orm

from myapp.model import meta

def init_model(engine):
 """Call me before using any of the tables or classes in the model"""
 ## Reflected tables must be defined and mapped here
 #global reflected_table
 #reflected_table = sa.Table("Reflected", meta.metadata, autoload=True,
 # autoload_with=engine)
 #orm.mapper(Reflected, reflected_table)
 #
 meta.Session.configure(bind=engine)
 meta.engine = engine

t_persons = sa.Table("persons", meta.metadata,
 sa.Column("id", sa.types.Integer, primary_key=True),
 sa.Column("name", sa.types.String(100), primary_key=True),
 sa.Column("email", sa.types.String(100)),
)

class Person(object):
 pass

orm.mapper(Person, t_persons)

This model has one table, “persons”, assigned to the variable t_persons.
Person is an ORM class which is tied to the table via the mapper.

If the table already exists, you can read its column definitions from the
database rather than specifying them manually; this is called reflecting the
table. The advantage is you don’t have to specify the column types in Python
code. Reflecting must be done inside init_model() because it depends on a
live database engine, which is not available when the module is imported. (An
engine is a SQLAlchemy object that knows how to connect to a particular
database.) Here’s the second example with reflection:

"""The application's model objects"""
import sqlalchemy as sa
from sqlalchemy import orm

from myapp.model import meta

def init_model(engine):
 """Call me before using any of the tables or classes in the model"""
 # Reflected tables must be defined and mapped here
 global t_persons
 t_persons = sa.Table("persons", meta.metadata, autoload=True,
 autoload_with=engine)
 orm.mapper(Person, t_persons)

 meta.Session.configure(bind=engine)
 meta.engine = engine

t_persons = None

class Person(object):
 pass

Note how t_persons and the orm.mapper() call moved into init_model,
while the Person class didn’t have to. Also note the global t_persons
statement. This tells Python that t_persons is a global variable outside
the function. global is required when assigning to a global variable
inside a function. It’s not required if you’re merely modifying a mutable
object in place, which is why meta doesn’t have to be declared global.

SQLAlchemy 0.5 has an optional Declarative syntax which defines the table and
the ORM class in one step:

"""The application's model objects"""
import sqlalchemy as sa
from sqlalchemy import orm
from sqlalchemy.ext.declarative import declarative_base

from myapp.model import meta

_Base = declarative_base()

def init_model(engine):
 """Call me before using any of the tables or classes in the model"""
 meta.Session.configure(bind=engine)
 meta.engine = engine

class Person(_Base):
 __tablename__ = "persons"

 id = sa.Column(sa.types.Integer, primary_key=True)
 name = sa.Column(sa.types.String(100))
 email = sa.Column(sa.types.String(100))

Relation example

Here’s an example of a Person and an Address class with a many:many relationship on people.my_addresses. See Relational Databases for People in a Hurry [http://wiki.pylonshq.com/display/pylonscookbook/Relational+databases+for+people+in+a+hurry] and the SQLAlchemy manual [http://www.sqlalchemy.org/docs/] for details.

t_people = sa.Table('people', meta.metadata,
 sa.Column('id', sa.types.Integer, primary_key=True),
 sa.Column('name', sa.types.String(100)),
 sa.Column('email', sa.types.String(100)),
)

t_addresses_people = sa.Table('addresses_people', meta.metadata,
 sa.Column('id', sa.types.Integer, primary_key=True),
 sa.Column('person_id', sa.types.Integer, sa.ForeignKey('people.id')),
 sa.Column('address_id', sa.types.Integer, sa.ForeignKey('addresses.id')),
)

t_addresses = sa.Table('addresses', meta.metadata,
 sa.Column('id', sa.types.Integer, primary_key=True),
 sa.Column('address', sa.types.String(100)),
)

class Person(object):
 pass

class Address(object):
 pass

orm.mapper(Address, t_addresses)
orm.mapper(Person, t_people, properties = {
 'my_addresses' : orm.relation(Address, secondary = t_addresses_people),
 })

Using SQLAlchemy’s SQL Layer

SQLAlchemy’s lower level SQL expressions can be used along with your ORM
models, and organizing them as class methods can be an effective way to keep
the domain logic separate, and write efficient queries that return subsets
of data that don’t map cleanly to the ORM.

Consider the case that you want to get all the unique addresses from the
relation example above. The following method in the Address class can make
it easy:

Additional imports
from sqlalchemy import select, func

from myapp.model.meta import Session

class Address(object):
 @classmethod
 def unique_addresses(cls):
 """Query the db for distinct addresses, return them as a list"""
 query = select([func.distinct(t_addresses.c.address).label('address')],
 from_obj=[t_addresses])
 return [row['address'] for row in Session.execute(query).fetchall()]

See also

SQLAlchemy’s SQL Expression Language Tutorial [http://www.sqlalchemy.org/docs/05/sqlexpression.html]

Using the model standalone

You now have everything necessary to use the model in a standalone script such as a cron job, or to test it interactively. You just need to create a SQLAlchemy engine and connect it to the model. This example uses a database “test.sqlite” in the current directory:

% python
Python 2.5.1 (r251:54863, Oct 5 2007, 13:36:32)
[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sqlalchemy as sa
>>> engine = sa.create_engine("sqlite:///test.sqlite")
>>> from myapp import model
>>> model.init_model(engine)

Now you can use the tables, classes, and Session as described in the
SQLAlchemy manual [http://www.sqlalchemy.org/docs/]. For example:

#!/usr/bin/env python
import sqlalchemy as sa
import tmpapp.model as model
import tmpapp.model.meta as meta

DB_URL = "sqlite:///test.sqlite"

engine = sa.create_engine(DB_URL)
model.init_model(engine)

Create all tables, overwriting them if they exist.
if hasattr(model, "_Base"):
 # SQLAlchemy 0.5 Declarative syntax
 model._Base.metadata.drop_all(bind=engine, checkfirst=True)
 model._Base.metadata.create_all(bind=engine)
else:
 # SQLAlchemy 0.4 and 0.5 syntax without Declarative
 meta.metadata.drop_all(bind=engine, checkfirst=True)
 meta.metadataa.create_all(bind=engine)

Create two records and insert them into the database using the ORM.
a = model.Person()
a.name = "Aaa"
a.email = "aaa@example.com"
meta.Session.add(a)

b = model.Person()
b.name = "Bbb"
b.email = "bbb@example.com"
meta.Session.add(b)

meta.Session.commit()

Display all records in the persons table.
print "Database data:"
for p in meta.Session.query(model.Person):
 print "id:", p.id
 print "name:", p.name
 print "email:", p.email
 print

The config file

When your Pylons application runs, it needs to know which database to connect to. Normally you put this information in development.ini and activate the model in environment.py. Put the following in development.ini in the [app:main] section, depending on your database,

For SQLite

sqlalchemy.url = sqlite:///%(here)s/mydatabasefilename.sqlite

Where mydatabasefilename.db is the path to your SQLite database file. “%(here)s” represents the directory containing the development.ini file. If you’re using an absolute path, use four slashes after the colon: “sqlite:////var/lib/myapp/database.sqlite”. Don’t use a relative path (three slashes) because the current directory could be anything. The example has three slashes because the value of “%(here)s” always starts with a slash (or the platform equivalent; e.g., “C:\foo” on Windows).

For MySQL

sqlalchemy.url = mysql://username:password@host:port/database
sqlalchemy.pool_recycle = 3600

Enter your username, password, host (localhost if it is on your machine), port number (usually 3306) and the name of your database. The second line is an example of setting engine options [http://www.sqlalchemy.org/docs/04/dbengine.html#dbengine_options].

It’s important to set “pool_recycle” for MySQL to prevent “MySQL server has gone away” errors. This is because MySQL automatically closes idle database connections without informing the application. Setting the connection lifetime to 3600 seconds (1 hour) ensures that the connections will be expired and recreated before MySQL notices they’re idle.

Don’t be tempted to use the ”.echo” option to enable SQL logging because it may cause duplicate log output. Instead see the Logging section below to integrate MySQL logging into Paste’s logging system.

For PostgreSQL

sqlalchemy.url = postgres://username:password@host:port/database

Enter your username, password, host (localhost if it is on your machine), port number (usually 5432) and the name of your database.

The engine

Put this at the top of myapp/config/environment.py:

from sqlalchemy import engine_from_config
from myapp.model import init_model

And this in the load_environment function:

engine = engine_from_config(config, 'sqlalchemy.')
init_model(engine)

The second argument is the prefix to look for. If you named your keys “sqlalchemy.default.url”, you would put “sqlalchemy.default.” here. The prefix may be anything, as long as it’s consistent between the config file and this function call.

Controller

The paster create SQLAlchemy option adds the following to the top of
myapp/lib/base.py (the base controller):

from myapp.model import meta

and also changes the .__call__ method to:

def __call__(self, environ, start_response):
 try:
 return WSGIController.__call__(self, environ, start_response)
 finally:
 meta.Session.remove()

The .remove() method is so that any leftover ORM data in the current web request is discarded. This usually happens automatically as a product of garbage collection but calling .remove() ensures this is the case.

Building the database

To actually create the tables in the database, you call the metadata’s .create_all() method. You can do this interactively or use paster‘s application initialization feature. To do this, put the code in myapp/websetup.py. After the load_environment() call, put:

from myapp.model import meta
log.info("Creating tables")
meta.metadata.drop_all(bind=meta.engine, checkfirst=True)
meta.metadata.create_all(bind=meta.engine)
log.info("Successfully setup")

Or for the new SQLAlchemy 0.5 Declarative syntax:

from myapp import model
log.info("Creating tables")
model._Base.metadata.drop_all(bind=meta.engine, checkfirst=True)
model._Base.metadata.create_all(bind=meta.engine)
log.info("Successfully setup")

Then run the following on the command line:

$ paster setup-app development.ini

Data queries and modifications

Important

this section assumes you’re putting the code in a high-level model function. If you’re putting it directly into a controller method, you’ll have to put a model. prefix in front of every object defined in the model, or import the objects individually. Also note that the Session object here (capital s) is not the same as the Beaker session object (lowercase s) in controllers.

Here’s how to enter new data into the database:

mr_jones = Person()
mr_jones.name = 'Mr Jones'
meta.Session.add(mr_jones)
meta.Session.commit()

mr_jones here is an instance of Person. Its properties correspond to the column titles of t_people and contain the data from the selected row. A more sophisticated application would have a Person.__init__ method that automatically sets attributes based on its arguments.

An example of loading a database entry in a controller method, performing a sex change, and saving it:

person_q = meta.Session.query(Person) # An ORM Query object for accessing the Person table
mr_jones = person_q.filter(Person.name=='Mr Jones').one()
print mr_jones.name # prints 'Mr Jones'
mr_jones.name = 'Mrs Jones' # only the object instance is changed here ...
meta.Session.commit() # ... only now is the database updated

To return a list of entries use:

all_mr_joneses = person_q.filter(Person.name=='Mr Jones').all()

To get all list of all the people in the table use:

everyone = person_q.all()

To retrieve by id:

someuser = person_q.get(5)

You can iterate over every person even more simply:

print "All people"
for p in person_q:
 print p.name
print
print "All Mr Joneses:"
for p in person_q.filter(Person.name=='Mr Jones'):
 print p.name

To delete an entry use the following:

mr_jones = person_q.filter(Person.name=='Mr Jones').one()
meta.Session.delete(mr_jones)
meta.Session.commit()

Working with joined objects

Recall that the my_addresses property is a list of Address objects

print mr_jones.my_addresses[0].address # prints first address

To add an existing address to ‘Mr Jones’ we do the following:

address_q = meta.Session.query(Address)

Retrieve an existing address
address = address_q.filter(Address.address=='33 Pine Marten Lane, Pleasantville').one()

Add to the list
mr_jones.my_addresses.append(new_address)

issue updates to the join table
meta.Session.commit()

To add an entirely new address to ‘Mr Jones’ we do the following:

new_address = Address() # Construct an empty address object
new_address.address = '33 Pine Marten Lane, Pleasantville'
mr_jones.my_addresses.append(new_address) # Add to the list
meta.Session.commit() # Commit changes to the database

After making changes you must call meta.Session.commit() to store them permanently in the database; otherwise they’ll be discarded at the end of the web request. You can also call meta.Session.rollback() at any time to undo any changes that haven’t been committed.

To search on a joined object we can pass an entire object as a query:

search_address = Address()
search_address.address = '33 Pine Marten Lane, Pleasantville'
residents_at_33_pine_marten_lane = \
 person_q.filter(Person.my_addresses.contains(search_address)).all()

All attributes must match in the query object.

Or we can search on a joined objects’ property,

residents_at_33_pine_marten_lane = \
 person_q.join('my_addresses').filter(
 Address.address=='33 Pine Marten Lane, Pleasantville').all()

A shortcut for the above is to use any():

residents_at_33_pine_marten_lane = \
 person_q.filter(Person.my_addresses.any(
 Address.address=='33 Pine Marten Lane, Pleasantville')).all()

To disassociate an address from Mr Jones we do the following:

del mr_jones.my_addresses[0] # Delete the reference to the address
meta.Session.commit()

To delete the address itself in the address table, normally we’d have to issue a separate delete() for the Address object itself:

meta.Session.delete(mr_jones.my_addresses[0]) # Delete the Address object
del mr_jones.my_addresses[0]
meta.Session.commit() # Commit both operations to the database

However, SQLAlchemy supports a shortcut for the above operation. Configure the mapper relation using cascade = “all, delete-orphan” instead:

orm.mapper(Address, t_addresses)
orm.mapper(Person, t_people, properties = {
'my_addresses': orm.relation(
 Address, secondary=t_addresses_people, cascade="all,delete-orphan"),
})

Then, any items removed from mr_jones.my_addresses is automatically deleted from the database:

del mr_jones.my_addresses[0] # Delete the reference to the address,
 # also deletes the Address
meta.Session.commit()

For any relationship, you can add cascade = “all, delete-orphan” as an extra argument to relation() in your mappers to ensure that when a join is deleted the joined object is deleted as well, so that the above delete() operation is not needed - only the removal from the my_addresses list. Beware though that despite its name, delete-orphan removes joined objects even if another object is joined to it.

Non-ORM SQL queries

Use meta.Session.execute() to execute a non-ORM SQL query within the session’s transaction. Bulk updates and deletes can modify records significantly faster than looping through a query and modifying the ORM instances.

q = sa.select([table1.c.id, table1.c.name], order_by=[table1.c.name])
records = meta.Session.execute(q).fetchall()

Example of a bulk SQL UPDATE.
update = table1.update(table1.c.name=="Jack")
meta.Session.execute(update, name="Ed")
meta.Session.commit()

Example of updating all matching records using an expression.
update = table1.update(values={table1.c.entry_id: table1.c.entry_id + 1000})
meta.Session.exececute(update)
meta.Session.commit()

Example of a bulk SQL DELETE.
delete = table1.delete(table1.c.name.like("M%"))
meta.Session.execute(delete)
meta.Session.commit()

Database specific, use only if SQLAlchemy doesn't have methods to construct the desired query.
meta.Session.execute("ALTER TABLE Foo ADD new_column (VARCHAR(255)) NOT NULL")

Warning

The last example changes the database structure and may adversely interact with ORM operations.

Further reading

The Query object has many other features, including filtering on conditions, ordering the results, grouping, etc. These are excellently described in the SQLAlchemy manual [http://www.sqlalchemy.org/docs/]. See especially the Data Mapping [http://www.sqlalchemy.org/docs/datamapping.html] and Session / Unit of Work [http://www.sqlalchemy.org/docs/unitofwork.html] chapters.

Testing Your Models

Normal model usage works fine in model tests, however to use the metadata you must specify an engine connection for it. To have your tables created for every unit test in your project, use a test_models.py such as:

from myapp.tests import *
from myapp import model
from myapp.model import meta

class TestModels(TestController):

 def setUp(self):
 meta.Session.remove()
 meta.metadata.create_all(meta.engine)

 def test_index(self):
 # test your models
 pass

Note

Notice that the tests inherit from TestController. This is to ensure that the application is setup so that the models will work.

“nosetests –with-pylons=/path/to/test.ini ...” is another way to ensure that your model is properly initialized before the tests are run. This can be used when running non-controller tests.

Multiple engines

Some applications need to connect to multiple databases (engines). Some always bind certain tables to the same engines (e.g., a general database and a logging database); this is called “horizontal partitioning”. Other applications have several databases with the same structure, and choose one or another depending on the current request. A blogging app with a separate database for each blog, for instance. A few large applications store different records from the same logical table in different databases to prevent the database size from getting too large; this is called “vertical partitioning” or “sharding”. The pattern above can accommodate any of these schemes with a few minor changes.

First, you can define multiple engines in your config file like this:

sqlalchemy.default.url = "mysql://..."
sqlalchemy.default.pool_recycle = 3600
sqlalchemy.log.url = "sqlite://..."

This defines two engines, “default” and “log”, each with its own set of options. Now you have to instantiate every engine you want to use.

default_engine = engine_from_config(config, 'sqlalchemy.default.')
log_engine = engine_from_config(config, 'sqlalchemy.log.')
init_model(default_engine, log_engine)

Of course you’ll have to modify init_model() to accept both arguments and create two engines.

To bind different tables to different databases, but always with a particular table going to the same engine, use the binds argument to sessionmaker rather than bind:

binds={"table1": engine1, "table2": engine2}
Session = scoped_session(sessionmaker(binds=binds))

To choose the bindings on a per-request basis, skip the sessionmaker bind(s) argument, and instead put this in your base controller’s __call__ method before the superclass call, or directly in a specific action method:

meta.Session.configure(bind=meta.engine)

binds= works the same way here too.

Discussion on coding style, the Session object, and bound metadata

All ORM operations require a Session and an engine. All non-ORM SQL operations require an engine. (Strictly speaking, they can use a connection instead, but that’s beyond the scope of this tutorial.) You can either pass the engine as the bind= argument to every SQLAlchemy method that does an actual database query, or bind the engine to a session or metadata. This tutorial recommends binding the session because that is the most flexible, as shown in the “Multiple Engines” section above.

It’s also possible to bind a metadata to an engine using the MetaData(engine) syntax, or to change its binding with metadata.bind = engine. This would allow you to do autoloading without the autoload_with argument, and certain SQL operations without specifying an engine or session. Bound metadata was common in earlier versions of SQLAlchemy but is no longer recommended for beginners because it can cause unexpected behavior when ORM and non-ORM operations are mixed.

Don’t confuse SQLAlchemy sessions and Pylons sessions; they’re two different things! The session object used in controllers (pylons.session) is an industry standard used in web applications to maintain state between web requests by the same user. SQLAlchemy’s session is an object that synchronizes ORM objects in memory with their corresponding records in the database.

The Session variable in this chapter is _not_ a SQLAlchemy session object; it’s a “contextual session” class. Calling it returns the (new or existing) session object appropriate for this web request, taking into account threading and middleware issues. Calling its class methods (Session.commit(), Session.query(...), etc) implicitly calls the corresponding method on the appropriate session. You can normally just call the Session class methods and ignore the internal session objects entirely. See “Contextual/Thread-local Sessions” in the SQLAlchemy manual [http://www.sqlalchemy.org/docs/] for more information. This is equivalent to SQLAlchemy 0.3’s SessionContext but with a different API.

“Transactional” sessions are a new feature in SQLAlchemy 0.4; this is why we’re using Session.commit() instead of Session.flush(). The autocommit=False (transactional=True in SQLALchemy 0.4) and autoflush=True args (which are the defaults) to sessionmaker enable this, and should normally be used together.

Fancy classes

Here’s an ORM class with some extra features:

class Person(object):

 def __init__(self, firstname, lastname, sex):
 if not firstname:
 raise ValueError("arg 'firstname' cannot be blank")
 if not lastname:
 raise ValueError("arg 'lastname' cannot be blank")
 if sex not in ["M", "F"]:
 raise ValueError("sex must be 'M' or 'F'")
 self.firstname = firstname
 self.lastname = lastname
 self.sex = sex

 def __repr__(self):
 myclass = self.__class__.__name__
 return "<%s %s %s>" % (myclass, self.firstname, self.lastname)
 #return "%s(%r, %r)" % (myclass, self.firstname, self.lastname, self.sex)
 #return "<%s %s>" % (self.firstname, self.lastname)

 @property
 def name(self):
 return "%s %s" % (self.firstname, self.lastname)

 @classmethod
 def all(cls, order=None, sex=None):
 """Return a Query of all Persons. The caller can iterate this,
 do q.count(), add additional conditions, etc.
 """
 q = meta.Session.query(Person)
 if order and order.lower().startswith("d"):
 q = q.order_by([Person.birthdate.desc()])
 else:
 q = q.order_by([Person.lastname, Person.firstname])
 return q

 @classmethod
 def recent(self, cutoff_days=30):
 cutoff = datetime.date.today() - datetime.timedelta(days=cutoff_days)
 q = meta.Session.query(Person).order_by(
 [Person.last_transaction_date.desc()])
 q = q.filter(Person.last_transaction_date >= cutoff)
 return q

With this class you can create new records with constructor args. This is not only convenient but ensures the record starts off with valid data (no required field empty). .__init__ is not called when loading an existing record from the database, so it doesn’t interfere with that. Instances can print themselves in a friendly way, and a read-only property is calculated from multiple fields.

Class methods return high-level queries for the controllers. If you don’t like the class methods you can have a separate PersonSearch class for them. The methods get the session from the myapp.model.meta module where we’ve stored it. Note that this module imported the meta module, not the Session object directly. That’s because init_model() replaces the Session object, so if we’d imported the Session object directly we’d get its original value rather than its current value.

You can do many more things in SQLAlchemy, such as a read-write property on a hidden column, or specify relations or default ordering in the orm.mapper call. You can make a composite property like person.location.latitude and person.location.longitude where latitude and longitude come from different table columns. You can have a class that mimics a list or dict but is associated with a certain table. Some of these properties you’ll make with Pylons normal property mechanism; others you’ll do with the property argument to orm.mapper. And you can have relations up the gazoo, which can be lazily loaded if you don’t use one side of the relation much of the time, or eagerly loaded to minimize the number of queries. (Only the latter use SQL joins.) You can have certain columns in your class lazily loaded too, although SQLAlchemy calls this “deferred” rather than “lazy”. SQLAlchemy will automatically load the columns or related table when they’re accessed.

If you have any more clever ideas for fancy classes, please add a comment to this article.

Logging

SQLAlchemy has several loggers that chat about the various aspects of its operation. To log all SQL statements executed along with their parameter values, put the following in development.ini:

[logger_sqlalchemy]
level = INFO
handlers =
qualname = sqlalchemy.engine

Then modify the “[loggers]” section to enable your new logger:

[loggers]
keys = root, myapp, sqlalchemy

To log the results along with the SQL statements, set the level to DEBUG. This can cause a lot of output! To stop logging the SQL, set the level to WARN or ERROR.

SQLAlchemy has several other loggers you can configure in the same way. “sqlalchemy.pool” level INFO tells when connections are checked out from the engine’s connection pool and when they’re returned. “sqlalchemy.orm” and buddies log various ORM operations. See “Configuring Logging” in the SQLAlchemy manual [http://www.sqlalchemy.org/docs/].

Multiple application instances

If you’re running multiple instances of the _same_ Pylons application in the same WSGI process (e.g., with Paste HTTPServer’s “composite” application), you may run into concurrency issues. The problem is that Session is thread local but not application-instance local. We’re not sure how much this is really an issue if Session.remove() is properly called in the base controller, but just in case it becomes an issue, here are possible remedies:

	Attach the engine(s) to pylons.g (aka. config["pylons.g"]) rather than to the meta module. The globals object is not shared between application instances.

	Add a scoping function. This prevents the application instances from sharing the same session objects. Add the following function to your model, and pass it as the second argument to scoped_session:

def pylons_scope():
 import thread
 from pylons import config
 return "Pylons|%s|%s" % (thread.get_ident(), config._current_obj())

Session = scoped_session(sessionmaker(), pylons_scope)

If you’re affected by this, or think you might be, please bring it up on the pylons-discuss mailing list. We need feedback from actual users in this situation to verify that our advice is correct.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Configuration

Pylons comes with two main ways to configure an application:

	The configuration file (Runtime Configuration)

	The application’s config directory

The files in the config directory change certain aspects of how the application behaves. Any options that the webmaster should be able to change during deployment should be specified in a configuration file.

Tip

A good indicator of whether an option should be set in the config directory code vs. the configuration file is whether or not the option is necessary for the functioning of the application. If the application won’t function without the setting, it belongs in the appropriate config/ directory file. If the option should be changed depending on deployment, it belongs in the Runtime Configuration.

The applications config/ directory includes:

	config/environment.py described in Environment

	config/middleware.py described in Middleware

	config/deployment.ini_tmpl described in Production Configuration Files

	config/routing.py described in URL Configuration

Each of these files allows developers to change key aspects of how the application behaves.

Runtime Configuration

When a new project is created a sample configuration file called development.ini is automatically produced as one of the project files. This default configuration file contains sensible options for development use, for example when developing a Pylons application it is very useful to be able to see a debug report every time an error occurs. The development.ini file includes options to enable debug mode so these errors are shown.

Since the configuration file is used to determine which application is run, multiple configuration files can be used to easily toggle sets of options. Typically a developer might have a development.ini configuration file for testing and a production.ini file produced by the paster make-config command for testing the command produces sensible production output. A test.ini configuration is also included in the project for test-specific options.

To specify a configuration file to use when running the application, change the last part of the paster serve to include the desired config file:

$ paster serve production.ini

See also

Configuration file format and options are described in great detail in the Paste Deploy documentation [http://pythonpaste.org/deploy/].

Getting Information From Configuration Files

All information from the configuration file is available in the pylons.config object. pylons.config also contains application configuration as defined in the project’s config.environment module.

from pylons import config

pylons.config behaves like a dictionary. For example, if the configuration file has an entry under the [app:main] block:

cache_dir = %(here)s/data

That can then be read in the projects code:

from pylons import config
cache_dir = config['cache_dir']

Or the current debug status like this:

debug = config['debug']

Evaluating Non-string Data in Configuration Files

By default, all the values in the configuration file are considered strings.
To make it easier to handle boolean values, the Paste library comes with a
function that will convert true and false to proper Python boolean
values:

from paste.deploy.converters import asbool

debug = asbool(config['debug'])

This is used already in the default projects’ Middleware to
toggle middleware that should only be used in development mode (with
debug) set to true.

Production Configuration Files

To change the defaults of the configuration INI file that should be used when deploying the application, edit the config/deployment.ini_tmpl file. This is the file that will be used as a template during deployment, so that the person handling deployment has a starting point of the minimum options the application needs set.

One of the most important options set in the deployment ini is the debug = true setting. The email options should be setup so that errors can be e-mailed to the appropriate developers or webmaster in the event of an application error.

Generating the Production Configuration

To generate the production.ini file from the projects’ config/deployment.ini_tmpl it must first be installed either as an egg or under development mode. Assuming the name of the Pylons application is helloworld, run:

$ paster make-config helloworld production.ini

Note

This command will also work from inside the project when its being developed.

It is the responsibility of the developer to ensure that a sensible set of default configuration values exist when the webmaster uses the paster make-config command.

Warning

Always make sure that the debug is set to false when deploying a Pylons application.

Environment

The config/environment.py module sets up the basic Pylons environment
variables needed to run the application. Objects that should be setup once
for the entire application should either be setup here, or in the
lib/app_globals __init__() method.

It also calls the URL Configuration function to setup how the URL’s will
be matched up to Controllers, creates the app_globals
object, configures which module will be referred to as h, and is
where the template engine is setup.

When using SQLAlchemy it’s recommended that the SQLAlchemy engine be setup
in this module. The default SQLAlchemy configuration that Pylons comes
with creates the engine here which is then used in model/__init__.py.

URL Configuration

A Python library called Routes handles mapping URLs to controllers and their methods, or their action as Routes refers to them. By default, Pylons sets up the following routes (found in config/routing.py):

map.connect('/{controller}/{action}')
map.connect('/{controller}/{action}/{id}')

Changed in version 0.9.7: Prior to Routes 1.9, all map.connect statements required variable parts
to begin with a : like map.connect(':controller/:action'). This
syntax is now optional, and the new {} syntax is recommended.

Any part of the path inside the curly braces is a variable (a variable part
) that will match
any text in the URL for that ‘part’. A ‘part’ of the URL is the text between
two forward slashes. Every part of the URL must be present for the
route to match, otherwise a 404 will be returned.

The routes above are translated by the Routes library into regular expressions
for high performance URL matching. By default, all the variable parts (except
for the special case of {controller}) become a matching regular expression
of [^/]+ to match anything except for a forward slash. This can be
changed easily, for example to have the {id} only match digits:

map.connect('/{controller}/{action}/{id:\d+}')

If the desired regular expression includes the {}, then it should be
specified separately for the variable part. To limit the {id} to only
match at least 2-4 digits:

map.connect('/{controller}/{action}/{id}', requirements=dict(id='\d{2,4}'))

The controller and action can also be specified as keyword arguments so that
they don’t need to be included in the URL:

Archives by 2 digit year -> /archives/08
map.connect('/archives/{year:\d\d}', controller='articles', action='archives')

Any variable part, or keyword argument in the map.connect statement will
be available for use in the
action used. For the route above, which resolves to the articles
controller:

class ArticlesController(BaseController):

 def archives(self, year):
 ...

The part of the URL that matched as the year is available by name in the
function argument.

Note

Routes also includes the ability to attempt to ‘minimize’ the URL. This
behavior is generally not intuitive, and starting in Pylons 0.9.7 is
turned off by default with the map.minimization=False setting.

The default mapping can match to any controller and any of their
actions which means the following URLs will match:

/hello/index >> controller: hello, action: index
/entry/view/4 >> controller: entry, action: view, id:4
/comment/edit/2 >> controller: comment, action: edit, id:2

This simple scheme can be suitable for even large applications when complex URL’s aren’t needed.

Controllers can be organized into directories as well. For example, if the admins should have a separate comments controller:

$ paster controller admin/comments

Will create the admin directory along with the appropriate comments
controller under it. To get to the comments controller:

/admin/comments/index >> controller: admin/comments, action: index

Note

The {controller} match is special, in that it doesn’t always stop
at the next forward slash (/). As the example above demonstrates,
it is able to match controllers nested under a directory should they
exist.

Adding a route to match /

The controller and action can be specified directly in the map.connect()
statement, as well as the raw URL should be matched.

map.connect('/', controller='main', action='index')

will result in / being handled by the index method of the main
controller.

Generating URLs

URLs are generated via the callable routes.util.URLGenerator
object. Pylons provides an instance of this special object at
pylons.url. It accepts keyword arguments indicating the desired
controller, action and additional variables defined in a route.

generates /content/view/2
url(controller='content', action='view', id=2)

To generate the URL of the matched route of the current request, call
routes.util.URLGenerator.current():

Generates /content/view/3 during a request for /content/view/3
url.current()

routes.util.URLGenerator.current() also accepts the same arguments as
url(). This uses Routes memory [http://routes.groovie.org/manual.html#route-memory] to generate a small
change to the current URL without the need to specify all the relevant
arguments:

Generates /content/view/2 during a request for /content/view/3
url.current(id=2)

See also

Routes manual [http://routes.groovie.org/manual.html]
Full details and source code.

Middleware

A projects WSGI stack should be setup in the config/middleware.py
module. Ideally this file should import middleware it needs, and set it up
in the make_app function.

The default stack that is setup for a Pylons application is described in
detail in WSGI Middleware.

Default middleware stack:

The Pylons WSGI app
app = PylonsApp()

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)

if asbool(full_stack):
 # Handle Python exceptions
 app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

 # Display error documents for 401, 403, 404 status codes (and
 # 500 when debug is disabled)
 if asbool(config['debug']):
 app = StatusCodeRedirect(app)
 else:
 app = StatusCodeRedirect(app, [400, 401, 403, 404, 500])

Establish the Registry for this application
app = RegistryManager(app)

if asbool(static_files):
 # Serve static files
 static_app = StaticURLParser(config['pylons.paths']['static_files'])
 app = Cascade([static_app, app])

return app

Since each piece of middleware wraps the one before it, the stack needs to be
assembled in reverse order from the order in which its called. That is, the
very last middleware that wraps the WSGI Application, is the very first that
will be called by the server.

The last piece of middleware in the stack, called Cascade, is used to
serve static content files during development. For top performance,
consider disabling the Cascade middleware via setting the
static_files = false in the configuration file. Then have the
webserver or a CDN serve static files.

Warning

When unsure about whether or not to change the middleware, don’t. The
order of the middleware is important to the proper functioning of a
Pylons application, and shouldn’t be altered unless needed.

Adding custom middleware

Custom middleware should be included in the config/middleware.py at
comment marker:

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)

For example, to add a middleware component named MyMiddleware,
include it in config/middleware.py:

The Pylons WSGI app
app = PylonsApp()

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)
app = MyMiddleware(app)

The app object is simply passed as a parameter to the MyMiddleware middleware which in turn should return a wrapped WSGI application.

Care should be taken when deciding in which layer to place custom
middleware. In most cases middleware should be placed before the Pylons WSGI
application and its supporting Routes/Session/Cache middlewares, however if the
middleware should run after the CacheMiddleware:

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)

MyMiddleware can only see the cache object, nothing *above* here
app = MyMiddleware(app)

app = CacheMiddleware(app, config)

What is full_stack?

In the Pylons ini file {development.ini or production.ini} this block determines if the flag full_stack is set to true or false:

[app:main]
use = egg:app_name
full_stack = true

The full_stack flag determines if the ErrorHandler and StatusCodeRedirect is included as a layer in the middleware wrapping process. The only condition in which this option would be set to false is if multiple Pylons applications are running and will be wrapped in the appropriate middleware elsewhere.

Application Setup

There are two kinds of ‘Application Setup’ that are occasionally referenced
with regards to a project using Pylons.

	Setting up a new application

	Configuring project information and package dependencies

Setting Up a New Application

To make it easier to setup a new instance of a project, such as setting up
the basic database schema, populating necessary defaults, etc. a setup
script can be created.

In a Pylons project, the setup script to be run is located in the projects’
websetup.py file. The default script loads the projects configuration
to make it easier to write application setup steps:

import logging

from helloworld.config.environment import load_environment

log = logging.getLogger(__name__)

def setup_app(command, conf, vars):
 """Place any commands to setup helloworld here"""
 load_environment(conf.global_conf, conf.local_conf)

Note

If the project was configured during creation to use SQLAlchemy this file
will include some commands to setup the database connection to make it
easier to setup database tables.

To run the setup script using the development configuration:

$ paster setup-app development.ini

Configuring the Package

A newly created project with Pylons is a standard Python package. As a Python
package, it has a setup.py file that records meta-information about
the package. Most of the options in it are fairly self-explanatory, the most
important being the ‘install_requires’ option:

install_requires=[
 "Pylons>=0.9.7",
],

These lines indicate what packages are required for the proper functioning
of the application, and should be updated as needed. To re-parse the
setup.py line for new dependencies:

$ python setup.py develop

In addition to updating the packages as needed so that the dependency
requirements are made, this command will ensure that this package is active
in the system (without requiring the traditional
python setup.py install).

See also

Declaring Dependencies [http://peak.telecommunity.com/DevCenter/setuptools#declaring-dependencies]

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Logging

Logging messages

As of Pylons 0.9.6, Pylons controllers (created via paster
controller/restcontroller) and websetup.py create their own Logger objects
via Python’s logging module [http://docs.python.org/lib/module-logging.html].

For example, in the helloworld project’s hello controller
(helloworld/controllers/hello.py):

import logging

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

log = logging.getLogger(__name__)

class HelloController(BaseController):

 def index(self):
 ...

Python’s special __name__ variable refers to the current module’s fully
qualified name; in this case, helloworld.controllers.hello.

To log messages, simply use methods available on that Logger object:

import logging

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

log = logging.getLogger(__name__)

class HelloController(BaseController):

 def index(self):
 content_type = 'text/plain'
 content = 'Hello World!'

 log.debug('Returning: %s (content-type: %s)', content, content_type)
 response.content_type = content_type
 return content

Which will result in the following printed to the console, on stderr:

16:20:20,440 DEBUG [helloworld.controllers.hello] Returning: Hello World!
 (content-type: text/plain)

Basic Logging configuration

As of Pylons 0.9.6, the default ini files include a basic configuration for the
logging module. Paste ini files use the Python standard ConfigParser format [http://docs.python.org/lib/module-ConfigParser.html]; the same format used
for the Python logging module’s Configuration file format [http://docs.python.org/lib/logging-config-fileformat.html].

paster, when loading an application via the paster serve, shell
or setup-app commands, calls the logging.fileConfig function [http://docs.python.org/lib/logging-config-api.html] on that specified ini
file if it contains a ‘loggers’ entry. logging.fileConfig reads the logging
configuration from a ConfigParser file.

Logging configuration is provided in both the default development.ini and
the production ini file (created via paster make-config <package_name>
<ini_file>). The production ini’s logging setup is a little simpler than the
development.ini‘s, and is as follows:

Logging configuration
[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s

One root Logger is created that logs only messages at a level above or equal to
the INFO level to stderr, with the following format:

2007-08-17 15:04:08,704 INFO [helloworld.controllers.hello] Loading resource, id: 86

For those familiar with the logging.basicConfig function, this configuration
is equivalent to the code:

logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)-5.5s [%(name)s] %(message)s')

The default development.ini‘s logging section has a couple of differences:
it uses a less verbose timestamp, and defaults your application’s log messages
to the DEBUG level (described in the next section).

Pylons and many other libraries (such as Beaker, SQLAlchemy, Paste) log a number
of messages for debugging purposes. Switching the root Logger level to DEBUG
reveals them:

[logger_root]
#level = INFO
level = DEBUG
handlers = console

Filtering log messages

Often there’s too much log output to sift through, such as when switching
the root Logger’s level to DEBUG.

An example: you’re diagnosing database connection issues in your application and
only want to see SQLAlchemy’s DEBUG messages in relation to database
connection pooling. You can leave the root Logger’s level at the less verbose
INFO level and set that particular SQLAlchemy Logger to DEBUG on its
own, apart from the root Logger:

[logger_sqlalchemy.pool]
level = DEBUG
handlers =
qualname = sqlalchemy.pool

then add it to the list of Loggers:

[loggers]
keys = root, sqlalchemy.pool

No Handlers need to be configured for this Logger as by default non root Loggers
will propagate their log records up to their parent Logger’s Handlers. The root
Logger is the top level parent of all Loggers.

This technique is used in the default development.ini. The root Logger’s
level is set to INFO, whereas the application’s log level is set to
DEBUG:

Logging configuration
[loggers]
keys = root, helloworld

[logger_helloworld]
level = DEBUG
handlers =
qualname = helloworld

All of the child Loggers of the helloworld Logger will inherit the DEBUG
level unless they’re explicitly set differently. Meaning the
helloworld.controllers.hello, helloworld.websetup (and all your app’s
modules’) Loggers by default have an effective level of DEBUG too.

For more advanced filtering, the logging module provides a Filter [http://docs.python.org/lib/node423.html] object; however it cannot be used
directly from the configuration file.

Advanced Configuration

To capture log output to a separate file, use a FileHandler [http://docs.python.org/lib/node412.html] (or a RotatingFileHandler [http://docs.python.org/lib/node413.html]):

[handler_accesslog]
class = FileHandler
args = ('access.log','a')
level = INFO
formatter = generic

Before it’s recognized, it needs to be added to the list of Handlers:

[handlers]
keys = console, accesslog

and finally utilized by a Logger.

[logger_root]
level = INFO
handlers = console, accesslog

These final 3 lines of configuration directs all of the root Logger’s output to
the access.log as well as the console; we’ll want to disable this for the next
section.

Request logging with Paste’s TransLogger

Paste provides the TransLogger [http://pythonpaste.org/module-paste.translogger.html] middleware for logging
requests using the Apache Combined Log Format [http://httpd.apache.org/docs/2.2/logs.html#combined]. TransLogger combined
with a FileHandler can be used to create an access.log file similar to
Apache’s.

Like any standard middleware with a Paste entry point, TransLogger can be
configured to wrap your application in the [app:main] section of the ini
file:

filter-with = translogger

[filter:translogger]
use = egg:Paste#translogger
setup_console_handler = False

This is equivalent to wrapping your app in a TransLogger instance via the bottom
of your project’s config/middleware.py file:

from paste.translogger import TransLogger
app = TransLogger(app, setup_console_handler=False)
return app

TransLogger will automatically setup a logging Handler to the console when
called with no arguments, so it ‘just works’ in environments that don’t
configure logging. Since we’ve configured our own logging Handlers, we need to
disable that option via setup_console_handler = False.

With the filter in place, TransLogger’s Logger (named the ‘wsgi’ Logger) will
propagate its log messages to the parent Logger (the root Logger), sending its
output to the console when we request a page:

00:50:53,694 INFO [helloworld.controllers.hello] Returning: Hello World!
 (content-type: text/plain)
00:50:53,695 INFO [wsgi] 192.168.1.111 - - [11/Aug/2007:20:09:33 -0700] "GET /hello
HTTP/1.1" 404 - "-"
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6) Gecko/20070725
Firefox/2.0.0.6"

To direct TransLogger to the access.log FileHandler defined above, we need
to add that FileHandler to the wsgi Logger’s list of Handlers:

Logging configuration
[loggers]
keys = root, wsgi

[logger_wsgi]
level = INFO
handlers = handler_accesslog
qualname = wsgi
propagate = 0

As mentioned above, non-root Loggers by default propagate their log Records to
the root Logger’s Handlers (currently the console Handler). Setting
propagate to 0 (false) here disables this; so the wsgi Logger directs
its records only to the accesslog Handler.

Finally, there’s no need to use the generic Formatter with TransLogger as
TransLogger itself provides all the information we need. We’ll use a Formatter
that passes-through the log messages as is:

[formatters]
keys = generic, accesslog

[formatter_accesslog]
format = %(message)s

Then wire this new accesslog Formatter into the FileHandler:

[handler_accesslog]
class = FileHandler
args = ('access.log','a')
level = INFO
formatter = accesslog

Logging to wsgi.errors

Pylons provides a custom logging Handler class, pylons.log.WSGIErrorsHandler [http://pylonshq.com/docs/class-pylons.log.WSGIErrorsHandler.html], for
logging output to environ['wsgi.errors']: the WSGI server’s error stream
(see the WSGI Spefification, PEP 333 [http://www.python.org/dev/peps/pep-0333/] for more
information). wsgi.errors can be useful to log to in certain situations,
such as when deployed under Apache mod_wsgi/mod_python, where the
wsgi.errors stream is the Apache error log.

To configure logging of only ERROR (and CRITICAL) messages to
wsgi.errors, add the following to the ini file:

[handlers]
keys = console, wsgierrors

[handler_wsgierrors]
class = pylons.log.WSGIErrorsHandler
args = ()
level = ERROR
format = generic

then add the new Handler name to the list of Handlers used by the root Logger:

[logger_root]
level = INFO
handlers = console, wsgierrors

Warning

WSGIErrorsHandler does not receive log messages created during
application startup. This is due to the wsgi.errors stream only being
available through the environ dictionary; which isn’t available until a
request is made.

Lumberjacking with log4j’s Chainsaw

Java’s log4j project provides the Java GUI application Chainsaw [http://logging.apache.org/log4j/docs/chainsaw.html] for viewing and managing
log messages. Among its features are the ability to filter log messages on the
fly, and customizable color highlighting of log messages.

We can configure Python’s logging module to output to a format parsable by
Chainsaw, log4j‘s XMLLayout [http://logging.apache.org/log4j/docs/api/org/apache/log4j/xml/XMLLayout.html]
format.

To do so, we first need to install the Python XMLLayout package [http://pypi.python.org/pypi/XMLLayout]:

$ easy_install XMLLayout

It provides a log Formatter that generates XMLLayout XML. It also provides
RawSocketHandler; like the logging module’s SocketHandler, it sends log
messages across the network, but does not pickle them.

The following is an example configuration for sending XMLLayout log messages
across the network to Chainsaw, if it were listening on localhost port 4448:

[handlers]
keys = console, chainsaw

[formatters]
keys = generic, xmllayout

[logger_root]
level = INFO
handlers = console, chainsaw

[handler_chainsaw]
class = xmllayout.RawSocketHandler
args = ('localhost', 4448)
level = NOTSET
formatter = xmllayout

[formatter_xmllayout]
class = xmllayout.XMLLayout

This configures any log messages handled by the root Logger to also be sent to
Chainsaw. The default development.ini configures the root Logger to the
INFO level, however in the case of using Chainsaw, it is preferable to
configure the root Logger to NOTSET so all log messages are sent to
Chainsaw. Instead, we can restrict the console handler to the INFO level:

[logger_root]
level = NOTSET
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = INFO
formatter = generic

Chainsaw can be downloaded from its home page [http://logging.apache.org/log4j/docs/chainsaw.html], but can also be launched
directly from a Java-enabled browser via the link: Chainsaw web start [http://logging.apache.org/log4j/docs/webstart/chainsaw/chainsawWebStart.jnlp].

It can be configured from the GUI, but it also supports reading its
configuration from a log4j.xml file.

The following log4j.xml file configures Chainsaw to listen on port 4448
for XMLLayout style log messages. It also hides Chainsaw’s own logging
messages under the WARN level, so only your app’s log messages are
displayed:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration>
<configuration xmlns="http://logging.apache.org/">

<plugin name="XMLSocketReceiver" class="org.apache.log4j.net.XMLSocketReceiver">
 <param name="decoder" value="org.apache.log4j.xml.XMLDecoder"/>
 <param name="port" value="4448"/>
</plugin>

<logger name="org.apache.log4j">
 <level value="warn"/>
</logger>

<root>
 <level value="debug"/>
</root>

</configuration>

Chainsaw will prompt for a configuration file upon startup. The configuration
can also be loaded later by clicking File/Load Log4J File.... You should see
an XMLSocketReceiver instance loaded in Chainsaw’s Receiver list, configured at
port 4448, ready to receive log messages.

Here’s how the Pylons stack’s log messages can look with colors defined (using
Chainsaw on OS X):

[image: _images/Pylons_Stack-Chainsaw-OSX.png]

Alternate Logging Configuration style

Pylons’ default ini files include a basic configuration for Python’s logging
module. Its format matches the standard Python logging module’s config file format [http://docs.python.org/lib/logging-config-fileformat.html] . If a
more concise format is preferred, here is Max Ischenko’s demonstration of
an alternative style to setup logging.

The following function is called at the application start up (e.g. Global ctor):

def setup_logging():
 logfile = config['logfile']
 if logfile == 'STDOUT': # special value, used for unit testing
 logging.basicConfig(stream=sys.stdout, level=logging.DEBUG,
 #format='%(name)s %(levelname)s %(message)s',
 #format='%(asctime)s,%(msecs)d %(levelname)s %(message)s',
 format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
 datefmt='%H:%M:%S')
 else:
 logdir = os.path.dirname(os.path.abspath(logfile))
 if not os.path.exists(logdir):
 os.makedirs(logdir)
 logging.basicConfig(filename=logfile, mode='at+',
 level=logging.DEBUG,
 format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
 datefmt='%Y-%b-%d %H:%M:%S')
 setup_thirdparty_logging()

The setup_thirdparty_logging function searches through the certain keys of the
application .ini file which specify logging level for a particular logger
(module).

def setup_thirdparty_logging():
 for key in config:
 if not key.endswith('logging'):
 continue
 value = config.get(key)
 key = key.rstrip('.logging')
 loglevel = logging.getLevelName(value)
 log.info('Set %s logging for %s', logging.getLevelName(loglevel), key)
 logging.getLogger(key).setLevel(loglevel)

Relevant section of the .ini file (example):

sqlalchemy.logging = WARNING
sqlalchemy.orm.unitofwork.logging = INFO
sqlalchemy.engine.logging = DEBUG
sqlalchemy.orm.logging = INFO
routes.logging = WARNING

This means that routes logger (and all sub-loggers such as routes.mapper) only
passes through messages of at least WARNING level; sqlalachemy defaults to
WARNING level but some loggers are configured with more verbose level to aid
debugging.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Helpers

Helpers are functions intended for usage in templates, to assist with common
HTML and text manipulation, higher level constructs like a HTML
tag builder (that safely escapes variables), and advanced functionality
like Pagination of data sets.

The majority of the helpers available in Pylons are provided by the
webhelpers package. Some of these helpers are also used in controllers
to prepare data for use in the template by other helpers, such as the
secure_form_tag() function which has a corresponding
authenticate_form().

To make individual helpers available for use in templates under h, the
appropriate functions need to be imported in lib/helpers.py. All the
functions available in this file are then available under h just like
any other module reference.

By customizing the lib/helpers.py module you can quickly add custom
functions and classes for use in your templates.

Helper functions are organized into modules by theme. All HTML generators are under the webhelpers_html package, except for a few third-party modules which are directly under webhelpers. The webhelpers modules are separately documented, see webhelpers.

Pagination

Note

The paginate module is not compatible to the deprecated pagination
module that was provided with former versions of the Webhelpers package.

Purpose of a paginator

When you display large amounts of data like a result from an SQL query then
usually you cannot display all the results on a single page. It would simply be
too much. So you divide the data into smaller chunks. This is what a paginator
does. It shows one page of chunk of data at a time. Imagine you are providing a
company phonebook through the web and let the user search the entries. Assume
the search result contains 23 entries. You may decide to display no more than 10
entries per page. The first page contains entries 1-10, the second 11-20 and the
third 21-23. And you also show a navigational element like
Page 1 of 3: [1] 2 3 that allows the user to switch between the available
pages.

The Page class

The webhelpers package provides a paginate module that can be used
for this purpose. It can create pages from simple Python lists as well as
SQLAlchemy queries and SQLAlchemy select objects. The module provides a Page
object that represents a single page of items from a larger result set. Such a
Page mainly behaves like a list of items on that page. Let’s take the above
example of 23 items spread across 3 pages:

Create a list of items from 1 to 23
>>> items = range(1,24)

Import the paginate module
>>> import webhelpers.paginate

Create a Page object from the 'items' for the second page
>>> page2 = webhelpers.paginate.Page(items, page=2, items_per_page=10)

The Page object can be printed (__repr__) to show details on the page
>>> page2

 Page:
 Collection type: <type 'list'>
 (Current) page: 2
 First item: 11
 Last item: 20
 First page: 1
 Last page: 3
 Previous page: 1
 Next page: 3
 Items per page: 10
 Number of items: 23
 Number of pages: 3

Show the items on this page
>>> list(page2)

 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Print the items in a for loop
>>> for i in page2: print "This is entry", i

 This is entry 11
 This is entry 12
 This is entry 13
 This is entry 14
 This is entry 15
 This is entry 16
 This is entry 17
 This is entry 18
 This is entry 19
 This is entry 20

There are further parameters to invoking a Page object. Please see
webhelpers.paginate.Page

Note

Page numbers and item numbers start from 1. If you are accessing the
items on the page by their index please note that the first item is
item[1] instead of item[0].

Switching between pages using a pager

The user needs a way to get to another page. This is usually done with a list
of links like Page 3 of 41 - 1 2 [3] 4 5 .. 41. Such a list can be
created by the Page’s pager() method.
Take the above example again:

>>> page2.pager()

 1
 2
 3

Without the HTML tags it looks like 1 [2] 3. The links point to a URL
where the respective page is found. And the current page (2) is highlighted.

The appearance of a pager can be customized. By default the format string
is ~2~ which means it shows adjacent pages from the current page with
a maximal radius of 2. In a larger set this would look like
1 .. 34 35 [36] 37 38 .. 176. The radius of 2 means that two pages before
and after the current page 36 are shown.

Several special variables can be used in the format string. See
pager() for a complete list. Some examples
for a pager of 20 pages while being on page 10 currently:

>>> page.pager()

 1 .. 8 9 [10] 11 12 .. 20

>>> page.pager('~4~')

 1 .. 6 7 8 9 [10] 11 12 13 14 .. 20

>>> page.pager('Page $page of $page_count - ~3~')

 Page 10 of 20 - 1 .. 7 8 9 [10] 11 12 13 .. 20

>>> page.pager('$link_previous $link_next ~2~')

 < > 1 .. 8 9 [10] 11 12 .. 20

>>> page.pager('Items $first_item - $last_item / ~2~')

 Items 91 - 100 / 1 .. 8 9 [10] 11 12 .. 20

Paging over an SQLAlchemy query

If the data to page over comes from a database via SQLAlchemy then the
paginate module can access a query object directly. This is useful
when using ORM-mapped models. Example:

>>> employee_query = Session.query(Employee)
>>> page2 = webhelpers.paginate.Page(
 employee_query,
 page=2,
 items_per_page=10)
>>> for employee in page2: print employee.first_name

 John
 Jack
 Joseph
 Kay
 Lars
 Lynn
 Pamela
 Sandra
 Thomas
 Tim

The paginate module is smart enough to only query the database for the
objects that are needed on this page. E.g. if a page consists of the items
11-20 then SQLAlchemy will be asked to fetch exactly that 10 rows
through LIMIT and OFFSET in the actual SQL query. So you must not load
the complete result set into memory and pass that. Instead always pass
a query when creating a Page.

Paging over an SQLAlchemy select

SQLAlchemy also allows to run arbitrary SELECTs on database tables.
This is useful for non-ORM queries. paginate can use such select
objects, too. Example:

>>> selection = sqlalchemy.select([Employee.c.first_name])
>>> page2 = webhelpers.paginate.Page(
 selection,
 page=2,
 items_per_page=10,
 sqlalchemy_session=model.Session)
>>> for first_name in page2: print first_name

 John
 Jack
 Joseph
 Kay
 Lars
 Lynn
 Pamela
 Sandra
 Thomas
 Tim

The only difference to using SQLAlchemy query objects is that you need to
pass an SQLAlchemy session via the sqlalchemy_session parameter.
A bare select does not have a database connection assigned. But the session
has.

Usage in a Pylons controller and template

A simple example to begin with.

Controller:

def list(self):
 c.employees = webhelpers.paginate.Page(
 model.Session.query(model.Employee),
 page = int(request.params['page']),
 items_per_page = 5)
 return render('/employees/list.mako')

Template:

${c.employees.pager('Page $page: $link_previous $link_next ~4~')}

% for employee in c.employees:
 ${employee.first_name} ${employee.last_name}
% endfor

The pager() creates links to the previous URL and just sets the
page parameter appropriately. That’s why you need to pass the requested page
number (request.params['page']) when you create a Page.

Partial updates with AJAX

Updating a page partially is easy. All it takes is a little Javascript
that - instead of loading the complete page - updates just the part
of the page containing the paginated items. The pager() method accepts an
onclick parameter for that purpose. This value is added as an onclick
parameter to the A-HREF tags. So the href parameter points to a URL
that loads the complete page while the onclick parameter provides Javascript
that loads a partial page. An example (using the jQuery Javascript library for
simplification) may help explain that.

Controller:

def list(self):
 c.employees = webhelpers.paginate.Page(
 model.Session.query(model.Employee),
 page = int(request.params['page']),
 items_per_page = 5)
 if 'partial' in request.params:
 # Render the partial page
 return render('/employees/list-partial.mako')
 else:
 # Render the full page
 return render('/employees/list-full.mako')

Template list-full.mako:

<html>
 <head>
 ${webhelpers.html.tags.javascript_link('/public/jQuery.js')}
 </head>
 <body>
 <div id="page-area">
 <%include file="list-partial.mako"/>
 </div>
 </body>
</html>

Template list-partial.mako:

${c.employees.pager(
 'Page $page: $link_previous $link_next ~4~',
 onclick="$('#my-page-area').load('%s'); return false;")}

% for employee in c.employees:
 ${employee.first_name} ${employee.last_name}
% endfor

To avoid code duplication in the template the full template includes the partial
template. If a partial page load is requested then just the
list-partial.mako gets rendered. And if a full page load is requested then
the list-full.mako is rendered which in turn includes the
list-partial.mako.

The %s variable in the onclick string gets replaced with a URL pointing
to the respective page with a partial=1 added (the name of the parameter can be customized through the partial_param parameter). Example:

	href parameter points to /employees/list?page=3

	onclick parameter contains Javascript loading
/employees/list?page=3&partial=1

jQuery’s syntax to load a URL into a certain DOM object (e.g. a DIV) is simply:

$('#some-id').load('/the/url')

The advantage of this technique is that it degrades gracefully. If the user does
not have Javascript enabled then a full page is loaded. And if Javascript works
then a partial load is done through the onclick action.

Secure Form Tag Helpers

For prevention of Cross-site request forgery (CSRF) attacks.

Generates form tags that include client-specific authorization tokens to be
verified by the destined web app.

Authorization tokens are stored in the client’s session. The web app can then
verify the request’s submitted authorization token with the value in the
client’s session.

This ensures the request came from the originating page. See the wikipedia entry
for Cross-site request forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery] for more information.

Pylons provides an authenticate_form decorator that does this verification
on the behalf of controllers.

These helpers depend on Pylons’ session object. Most of them can be easily
ported to another framework by changing the API calls.

The helpers are implemented in such a way that it should be easy for developers
to create their own helpers if using helpers for AJAX calls.

authentication_token() returns the current authentication token, creating one
and storing it in the session if it doesn’t already exist.

auth_token_hidden_field() creates a hidden field containing the authentication token.

secure_form() is form() plus auth_token_hidden_field().

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Forms

The basics

When a user submits a form on a website the data is submitted to the URL specified in the action attribute of the <form> tag. The data can be submitted either via HTTP GET or POST as specified by the method attribute of the <form> tag. If your form doesn’t specify an action, then it’s submitted to the current URL, generally you’ll want to specify an action. When a file upload field such as <input type=”file” name=”file” /> is present, then the HTML <form> tag must also specify enctype=”multipart/form-data” and method must be POST.

Getting Started

Add two actions that looks like this:

in the controller

def form(self):
 return render('/form.mako')

def email(self):
 return 'Your email is: %s' % request.params['email']

Add a new template called form.mako in the templates directory that contains the following:

<form name="test" method="GET" action="/hello/email">
Email Address: <input type="text" name="email" />
<input type="submit" name="submit" value="Submit" />
</form>

If the server is still running (see the Getting Started Guide) you can visit http://localhost:5000/hello/form and you will see the form. Try entering the email address test@example.com and clicking Submit. The URL should change to http://localhost:5000/hello/email?email=test%40example.com and you should see the text Your email is test@example.com.

In Pylons all form variables can be accessed from the request.params object which behaves like a dictionary. The keys are the names of the fields in the form and the value is a string with all the characters entity decoded. For example note how the @ character was converted by the browser to %40 in the URL and was converted back ready for use in request.params.

Note

request and response are objects from the WebOb library. Full documentation on their attributes and methods is here [http://pythonpaste.org/webob/].

If you have two fields with the same name in the form then using the dictionary interface will return the first string. You can get all the strings returned as a list by using the .getall() method. If you only expect one value and want to enforce this you should use .getone() which raises an error if more than one value with the same name is submitted.

By default if a field is submitted without a value, the dictionary interface returns an empty string. This means that using .get(key, default) on request.params will only return a default if the value was not present in the form.

POST vs GET and the Re-Submitted Data Problem

If you change the form.mako template so that the method is POST and you re-run the example you will see the same message is displayed as before. However, the URL displayed in the browser is simply http://localhost:5000/hello/email without the query string. The data is sent in the body of the request instead of the URL, but Pylons makes it available in the same way as for GET requests through the use of request.params.

Note

If you are writing forms that contain password fields you should usually use POST to prevent the password being visible to anyone who might be looking at the user’s screen.

When writing form-based applications you will occasionally find users will press refresh immediately after submitting a form. This has the effect of repeating whatever actions were performed the first time the form was submitted but often the user will expect that the current page be shown again. If your form was submitted with a POST, most browsers will display a message to the user asking them if they wish to re-submit the data, this will not happen with a GET so POST is preferable to GET in those circumstances.

Of course, the best way to solve this issue is to structure your code differently so:

in the controller

def form(self):
 return render('/form.mako')

def email(self):
 # Code to perform some action based on the form data
 # ...
 redirect_to(action='result')

def result(self):
 return 'Your data was successfully submitted'

In this case once the form is submitted the data is saved and an HTTP redirect occurs so that the browser redirects to http://localhost:5000/hello/result. If the user then refreshes the page, it simply redisplays the message rather than re-performing the action.

Using the Helpers

Creating forms can also be done using WebHelpers, which comes with Pylons. Here is the same form created in the previous section but this time using the helpers:

${h.form(h.url(action='email'), method='get')}
Email Address: ${h.text('email')}
${h.submit('Submit')}
${h.end_form()}

Before doing this you’ll have to import the helpers you want to use into your
project’s lib/helpers.py file; then they’ll be available under Pylons’ h
global. Most projects will want to import at least these:

from webhelpers.html import escape, HTML, literal, url_escape
from webhelpers.html.tags import *

There are many other helpers for text formatting, container objects,
statistics, and for dividing large query results into pages. See the
WebHelpers documentation to choose the helpers you’ll need.

File Uploads

File upload fields are created by using the file input field type. The file_field helper provides a shortcut for creating these form fields:

${h.file_field('myfile')}

The HTML form must have its enctype attribute set to multipart/form-data to enable the browser to upload the file. The form helper’s multipart keyword argument provides a shortcut for setting the appropriate enctype value:

${h.form(h.url(action='upload'), multipart=True)}
Upload file: ${h.file_field('myfile')}

File description: ${h.text_field('description')}

${h.submit('Submit')}
${h.end_form()}

When a file upload has succeeded, the request.POST (or request.params) MultiDict will contain a cgi.FieldStorage object as the value of the field.

FieldStorage objects have three important attributes for file uploads:

	filename

	The name of file uploaded as it appeared on the uploader’s filesystem.

	file

	A file(-like) object from which the file’s data can be read: A python tempfile or a StringIO object.

	value

	The content of the uploaded file, eagerly read directly from the file object.

The easiest way to gain access to the file’s data is via the value attribute: it returns the entire contents of the file as a string:

def upload(self):
 myfile = request.POST['myfile']
 return 'Successfully uploaded: %s, size: %i, description: %s' % \
 (myfile.filename, len(myfile.value), request.POST['description'])

However reading the entire contents of the file into memory is undesirable, especially for large file uploads. A common means of handling file uploads is to store the file somewhere on the filesystem. The FieldStorage typically reads the file onto filesystem, however to a non permanent location, via a python tempfile object (though for very small uploads it stores the file in a StringIO object instead).

Python tempfiles are secure file objects that are automatically destroyed when they are closed (including an implicit close when the object is garbage collected). One of their security features is that their path cannot be determined: a simple os.rename from the tempfile’s path isn’t possible. Alternatively, shutil.copyfileobj can perform an efficient copy of the file’s data to a permanent location:

permanent_store = '/uploads/'

class Uploader(BaseController):
 def upload(self):
 myfile = request.POST['myfile']
 permanent_file = open(os.path.join(permanent_store,
 myfile.filename.lstrip(os.sep)),
 'w')

 shutil.copyfileobj(myfile.file, permanent_file)
 myfile.file.close()
 permanent_file.close()

 return 'Successfully uploaded: %s, description: %s' % \
 (myfile.filename, request.POST['description'])

Warning

The previous basic example allows any file uploader to overwrite any file in
the permanent_store directory that your web application has permissions
to.

Also note the use of myfile.filename.lstrip(os.sep) here: without it, os.path.join is unsafe. os.path.join won’t join absolute paths (beginning with os.sep), i.e. os.path.join(‘/uploads/’, ‘/uploaded_file.txt’) == ‘/uploaded_file.txt’. Always check user submitted data to be used with os.path.join.

Validating user input with FormEncode

Validation the Quick Way

At the moment you could enter any value into the form and it would be displayed in the message, even if it wasn’t a valid email address. In most cases this isn’t acceptable since the user’s input needs validating. The recommended tool for validating forms in Pylons is FormEncode [http://www.formencode.org].

For each form you create you also create a validation schema. In our case this is fairly easy:

import formencode

class EmailForm(formencode.Schema):
 allow_extra_fields = True
 filter_extra_fields = True
 email = formencode.validators.Email(not_empty=True)

Note

We usually recommend keeping form schemas together so that you have a single
place you can go to update them. It’s also convenient for inheritance since
you can make new form schemas that build on existing ones. If you put your
forms in a models/form.py file, you can easily use them throughout your
controllers as model.form.EmailForm in the case shown.

Our form actually has two fields, an email text field and a submit button. If extra fields are submitted FormEncode’s default behavior is to consider the form invalid so we specify allow_extra_fields = True. Since we don’t want to use the values of the extra fields we also specify filter_extra_fields = True. The final line specifies that the email field should be validated with an Email() validator. In creating the validator we also specify not_empty=True so that the email field will require input.

Pylons comes with an easy to use validate decorator, if you wish to use it import it in your lib/base.py like this:

other imports

from pylons.decorators import validate

Using it in your controller is pretty straight-forward:

in the controller

def form(self):
 return render('/form.mako')

@validate(schema=EmailForm(), form='form')
def email(self):
 return 'Your email is: %s' % self.form_result.get('email')

Validation only occurs on POST requests so we need to alter our form definition so that the method is a POST:

${h.form(h.url(action='email'), method='post')}

If validation is successful, the valid result dict will be saved as
self.form_result so it can be used in the action. Otherwise, the action will
be re-run as if it was a GET request to the controller action specified in
form, and the output will be filled by FormEncode’s htmlfill to fill in the
form field errors. For simple cases this is really handy because it also avoids
having to write code in your templates to display error messages if they are
present.

This does exactly the same thing as the example above but works with the
original form definition and in fact will work with any HTML form regardless of
how it is generated because the validate decorator uses formencode.htmlfill
to find HTML fields and replace them with the values were originally submitted.

Note

Python 2.3 doesn’t support decorators so rather than using the
@validate() syntax you need to put email =
validate(schema=EmailForm(), form=’form’)(email) after the email
function’s declaration.

Validation the Long Way

The validate decorator covers up a bit of work, and depending on your needs it’s possible you could need direct access to FormEncode abilities it smoothes over.

Here’s the longer way to use the EmailForm schema:

in the controller

def email(self):
 schema = EmailForm()
 try:
 form_result = schema.to_python(request.params)
 except formencode.validators.Invalid, error:
 return 'Invalid: %s' % error
 else:
 return 'Your email is: %s' % form_result.get('email')

If the values entered are valid, the schema’s to_python() method returns a
dictionary of the validated and coerced form_result. This means that you can
guarantee that the form_result dictionary contains values that are valid and
correct Python objects for the data types desired.

In this case the email address is a string so request.params[‘email’]
happens to be the same as form_result[‘email’]. If our form contained a
field for age in years and we had used a formencode.validators.Int()
validator, the value in form_result for the age would also be the correct
type; in this case a Python integer.

FormEncode comes with a useful set of validators but you can also easily
create your own. If you do create your own validators you will find it very
useful that all FormEncode schemas’ .to_python() methods take a second
argument named state. This means you can pass the Pylons c object
into your validators so that you can set any variables that your validators
need in order to validate a particular field as an attribute of the c
object. It can then be passed as the c object to the schema as follows:

c.domain = 'example.com'
form_result = schema.to_python(request.params, c)

The schema passes c to each validator in turn so that you can do things like this:

class SimpleEmail(formencode.validators.Email):
 def _to_python(self, value, c):
 if not value.endswith(c.domain):
 raise formencode.validators.Invalid(
 'Email addresses must end in: %s' % \
 c.domain, value, c)
 return formencode.validators.Email._to_python(self, value, c)

For this to work, make sure to change the EmailForm schema you’ve defined to use the new SimpleEmail validator. In other words,

email = formencode.validators.Email(not_empty=True)
becomes:
email = SimpleEmail(not_empty=True)

In reality the invalid error message we get if we don’t enter a valid email address isn’t very useful. We really want to be able to redisplay the form with the value entered and the error message produced. Replace the line:

return 'Invalid: %s' % error

with the lines:

c.form_result = error.value
c.form_errors = error.error_dict or {}
return render('/form.mako')

Now we will need to make some tweaks to form.mako. Make it look like this:

${h.form(h.url(action='email'), method='get')}

% if c.form_errors:
<h2>Please correct the errors</h2>
% else:
<h2>Enter Email Address</h2>
% endif

% if c.form_errors:
Email Address: ${h.text_field('email', value=c.form_result['email'] or '')}
<p>${c.form_errors['email']}</p>
% else:
Email Address: ${h.text_field('email')}
% endif

${h.submit('Submit')}
${h.end_form()}

Now when the form is invalid the form.mako template is re-rendered with the error messages.

Other Form Tools

If you are going to be creating a lot of forms you may wish to consider using FormBuild [http://formbuild.org] to help create your forms. To use it you create a custom Form object and use that object to build all your forms. You can then use the API to modify all aspects of the generation and use of all forms built with your custom Form by modifying its definition without any need to change the form templates.

Here is an one example of how you might use it in a controller to handle a form submission:

in the controller

def form(self):
 results, errors, response = formbuild.handle(
 schema=Schema(), # Your FormEncode schema for the form
 # to be validated
 template='form.mako', # The template containg the code
 # that builds your form
 form=Form # The FormBuild Form definition you wish to use
)
 if response:
 # The form validation failed so re-display
 # the form with the auto-generted response
 # containing submitted values and errors or
 # do something with the errors
 return response
 else:
 # The form validated, do something useful with results.
 ...

Full documentation of all features is available in the FormBuild manual [http://formbuild.org/manual.html] which you should read before looking at Using FormBuild in Pylons [http://formbuild.org/pylons.html]

Looking forward it is likely Pylons will soon be able to use the TurboGears widgets system which will probably become the recommended way to build forms in Pylons.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Internationalization and Localization

Introduction

Internationalization and localization are means of adapting software for
non-native environments, especially for other nations and cultures.

Parts of an application which might need to be localized might include:

	Language

	Date/time format

	Formatting of numbers e.g. decimal points, positioning of separators, character used as separator

	Time zones (UTC in internationalized environments)

	Currency

	Weights and measures

The distinction between internationalization and localization is subtle but
important. Internationalization is the adaptation of products for potential use
virtually everywhere, while localization is the addition of special features
for use in a specific locale.

For example, in terms of language used in software, internationalization is the
process of marking up all strings that might need to be translated whilst
localization is the process of producing translations for a particular locale.

Pylons provides built-in support to enable you to internationalize language but
leaves you to handle any other aspects of internationalization which might be
appropriate to your application.

Note

Internationalization is often abbreviated as I18N (or i18n or I18n) where the
number 18 refers to the number of letters omitted.
Localization is often abbreviated L10n or l10n in the same manner. These
abbreviations also avoid picking one spelling (internationalisation vs.
internationalization, etc.) over the other.

In order to represent characters from multiple languages, you will
need to utilize Unicode. This document assumes you have read the
Understanding Unicode.

By now you should have a good idea of what Unicode is, how to use it in Python
and which areas of you application need to pay specific attention to decoding and
encoding Unicode data.

This final section will look at the issue of making your application work with
multiple languages.

Pylons uses the Python gettext module [http://docs.python.org/lib/module-gettext.html] for internationalization.
It is based off the GNU gettext API [http://www.gnu.org/software/gettext/].

Getting Started

Everywhere in your code where you want strings to be available in different
languages you wrap them in the _() function. There are also a number of
other translation functions which are documented in the API reference at
http://pylonshq.com/docs/module-pylons.i18n.translation.html

Note

The _() function is a reference to the ugettext() function. _() is a convention for marking text to be translated and saves on keystrokes. ugettext() is the Unicode version of gettext(); it returns unicode strings.

In our example we want the string 'Hello' to appear in three different
languages: English, French and Spanish. We also want to display the word
'Hello' in the default language. We’ll then go on to use some plural words
too.

Lets call our project translate_demo:

$ paster create -t pylons translate_demo

Now lets add a friendly controller that says hello:

$ cd translate_demo
$ paster controller hello

Edit controllers/hello.py to make use of the _() function everywhere
where the string Hello appears:

import logging

from pylons.i18n import get_lang, set_lang

from translate_demo.lib.base import *

log = logging.getLogger(__name__)

class HelloController(BaseController):

 def index(self):
 response.write('Default: %s
' % _('Hello'))
 for lang in ['fr','en','es']:
 set_lang(lang)
 response.write("%s: %s
" % (get_lang(), _('Hello')))

When writing wrapping strings in the gettext functions, it is important not to
piece sentences together manually; certain languages might need to invert the
grammars. Don’t do this:

BAD!
msg = _("He told her ")
msg += _("not to go outside.")

but this is perfectly acceptable:

GOOD
msg = _("He told her not to go outside")

The controller has now been internationalized, but it will raise a
LanguageError until we have setup the alternative language catalogs.

GNU gettext use three types of files in the translation framework.

POT (Portable Object Template) files

The first step in the localization process. A program is used to search
through your project’s source code and pick out every string passed to one
of the translation functions, such as _(). This list is put together in
a specially-formatted template file that will form the basis of all
translations. This is the .pot file.

PO (Portable Object) files

The second step in the localization process. Using the POT file as a
template, the list of messages are translated and saved as a .po file.

MO (Machine Object) files

The final step in the localization process. The PO file is run through a
program that turns it into an optimized machine-readable binary file, which
is the .mo file. Compiling the translations to machine code makes the
localized program much faster in retrieving the translations while it is
running.

GNU gettext provides a suite of command line programs for extracting messages
from source code and working with the associated gettext catalogs. The Babel [http://babel.edgewall.org/] project provides pure Python alternative
versions of these tools. Unlike the GNU gettext tool xgettext, Babel
supports extracting translatable strings from Python templating languages
(currently Mako and Genshi).

Using Babel

[image: _images/babel_logo.png]
To use Babel, you must first install it via easy_install. Run the command:

$ easy_install Babel

Pylons (as of 0.9.6) includes some sane defaults for Babel’s distutils commands
in the setup.cfg file.

It also includes an extraction method mapping in the setup.py file. It is
commented out by default, to avoid distutils warning about it being an
unrecognized option when Babel is not installed. These lines should be
uncommented before proceeding with the rest of this walk through:

message_extractors = {'translate_demo': [
 ('**.py', 'python', None),
 ('templates/**.mako', 'mako', None),
 ('public/**', 'ignore', None)]},

We’ll use Babel to extract messages to a .pot file in your project’s
i18n directory. First, the directory needs to be created. Don’t forget to
add it to your revision control system if one is in use:

$ cd translate_demo
$ mkdir translate_demo/i18n
$ svn add translate_demo/i18n

Next we can extract all messages from the project with the following command:

$ python setup.py extract_messages
running extract_messages
extracting messages from translate_demo/__init__.py
extracting messages from translate_demo/websetup.py
...
extracting messages from translate_demo/tests/functional/test_hello.py
writing PO template file to translate_demo/i18n/translate_demo.pot

This will create a .pot file in the i18n directory that looks something
like this:

Translations template for translate_demo.
Copyright (C) 2007 ORGANIZATION
This file is distributed under the same license as the translate_demo project.
FIRST AUTHOR <EMAIL@ADDRESS>, 2007.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: translate_demo 0.0.0\n"
"Report-Msgid-Bugs-To: EMAIL@ADDRESS\n"
"POT-Creation-Date: 2007-08-02 18:01-0700\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 0.9dev-r215\n"

#: translate_demo/controllers/hello.py:10 translate_demo/controllers/hello.py:13
msgid "Hello"
msgstr ""

The .pot details that appear here can be customized via the
extract_messages configuration in your project’s setup.cfg (See the
Babel Command-Line Interface Documentation [http://babel.edgewall.org/wiki/Documentation/cmdline.html#extract] for all
configuration options).

Next, we’ll initialize a catalog (.po file) for the Spanish language:

$ python setup.py init_catalog -l es
running init_catalog
creating catalog 'translate_demo/i18n/es/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'

Then we can edit the last line of the new Spanish .po file to add a
translation of "Hello":

msgid "Hello"
msgstr "¡Hola!"

Finally, to utilize these translations in our application, we need to compile
the .po file to a .mo file:

$ python setup.py compile_catalog
running compile_catalog
1 of 1 messages (100%) translated in 'translate_demo/i18n/es/LC_MESSAGES/translate_demo.po'
compiling catalog 'translate_demo/i18n/es/LC_MESSAGES/translate_demo.po' to
'translate_demo/i18n/es/LC_MESSAGES/translate_demo.mo'

We can also use the update_catalog command to merge new messages from the
.pot to the .po files. For example, if we later added the following
line of code to the end of HelloController’s index method:

response.write('Goodbye: %s' % _('Goodbye'))

We’d then need to re-extract the messages from the project, then run the
update_catalog command:

$ python setup.py extract_messages
running extract_messages
extracting messages from translate_demo/__init__.py
extracting messages from translate_demo/websetup.py
...
extracting messages from translate_demo/tests/functional/test_hello.py
writing PO template file to translate_demo/i18n/translate_demo.pot
$ python setup.py update_catalog
running update_catalog
updating catalog 'translate_demo/i18n/es/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'

We’d then edit our catalog to add a translation for “Goodbye”, and recompile
the .po file as we did above.

For more information, see the Babel documentation [http://babel.edgewall.org/wiki/Documentation/index.html] and the GNU
Gettext Manual [http://www.gnu.org/software/gettext/manual/gettext.html].

Back To Work

Next we’ll need to repeat the process of creating a .mo file for the en
and fr locales:

$ python setup.py init_catalog -l en
running init_catalog
creating catalog 'translate_demo/i18n/en/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'
$ python setup.py init_catalog -l fr
running init_catalog
creating catalog 'translate_demo/i18n/fr/LC_MESSAGES/translate_demo.po' based on
'translate_demo/i18n/translate_demo.pot'

Modify the last line of the fr catalog to look like this:

#: translate_demo/controllers/hello.py:10 translate_demo/controllers/hello.py:13
msgid "Hello"
msgstr "Bonjour"

Since our original messages are already in English, the en catalog can stay
blank; gettext will fallback to the original.

Once you’ve edited these new .po files and compiled them to .mo files,
you’ll end up with an i18n directory containing:

i18n/translate_demo.pot
i18n/en/LC_MESSAGES/translate_demo.po
i18n/en/LC_MESSAGES/translate_demo.mo
i18n/es/LC_MESSAGES/translate_demo.po
i18n/es/LC_MESSAGES/translate_demo.mo
i18n/fr/LC_MESSAGES/translate_demo.po
i18n/fr/LC_MESSAGES/translate_demo.mo

Testing the Application

Start the server with the following command:

$ paster serve --reload development.ini

Test your controller by visiting http://localhost:5000/hello. You should see
the following output:

Default: Hello
fr: Bonjour
en: Hello
es: ¡Hola!

You can now set the language used in a controller on the fly.

For example this could be used to allow a user to set which language they
wanted your application to work in. You could save the value to the session
object:

session['lang'] = 'en'
session.save()

then on each controller call the language to be used could be read from the
session and set in your controller’s __before__() method so that the pages
remained in the same language that was previously set:

def __before__(self):
 if 'lang' in session:
 set_lang(session['lang'])

Pylons also supports defining the default language to be used in the
configuration file. Set a lang variable to the desired default language in
your development.ini file, and Pylons will automatically call set_lang
with that language at the beginning of every request.

E.g. to set the default language to Spanish, you would add lang = es to
your development.ini:

[app:main]
use = egg:translate_demo
lang = es

If you are running the server with the --reload option the server will
automatically restart if you change the development.ini file. Otherwise
restart the server manually and the output would this time be as follows:

Default: ¡Hola!
fr: Bonjour
en: Hello
es: ¡Hola!

Fallback Languages

If your code calls _() with a string that doesn’t exist at all in your
language catalog, the string passed to _() is returned instead.

Modify the last line of the hello controller to look like this:

response.write("%s %s, %s" % (_('Hello'), _('World'), _('Hi!')))

Warning

Of course, in real life breaking up sentences in this way is very dangerous
because some grammars might require the order of the words to be different.

If you run the example again the output will be:

Default: ¡Hola!
fr: Bonjour World!
en: Hello World!
es: ¡Hola! World!

This is because we never provided a translation for the string 'World!' so
the string itself is used.

Pylons also provides a mechanism for fallback languages, so that you can
specify other languages to be used if the word is omitted from the main
language’s catalog.

In this example we choose fr as the main language but es as a fallback:

import logging

from pylons.i18n import set_lang

from translate_demo.lib.base import *

log = logging.getLogger(__name__)

class HelloController(BaseController):

 def index(self):
 set_lang(['fr', 'es'])
 return "%s %s, %s" % (_('Hello'), _('World'), _('Hi!'))

If Hello is in the fr .mo file as Bonjour, World is only in
es as Mundo and none of the catalogs contain Hi!, you’ll get the
multilingual message: Bonjour Mundo, Hi!. This is a combination of the
French, Spanish and original (English in this case, as defined in our source
code) words.

You can also add fallback languages after calling set_lang via the
pylons.i18n.add_fallback function. Translations will be tested in the order
you add them.

Note

Fallbacks are reset after calling set_lang(lang) – that is, fallbacks
are associated with the currently selected language.

One case where using fallbacks in this way is particularly useful is when you
wish to display content based on the languages requested by the browser in the
HTTP_ACCEPT_LANGUAGE header. Typically the browser may submit a number of
languages so it is useful to be add fallbacks in the order specified by the
browser so that you always try to display words in the language of preference
and search the other languages in order if a translation cannot be found. The
languages defined in the HTTP_ACCEPT_LANGUAGE header are available in
Pylons as request.languages and can be used like this:

for lang in request.languages:
 add_fallback(lang)

Translations Within Templates

You can also use the _() function within templates in exactly the same way
you do in code. For example, in a Mako template:

${_('Hello')}

would produce the string 'Hello' in the language you had set.

Babel currently supports extracting gettext messages from Mako and Genshi
templates. The Mako extractor also provides support for translator comments.
Babel can be extended to extract messages from other sources via a custom
extraction method plugin [http://babel.edgewall.org/wiki/Documentation/messages.html#writing-extraction-methods].

Pylons (as of 0.9.6) automatically configures a Babel extraction mapping for
your Python source code and Mako templates. This is defined in your project’s
setup.py file:

message_extractors = {'translate_demo': [
 ('**.py', 'python', None),
 ('templates/**.mako', 'mako', None),
 ('public/**', 'ignore', None)]},

For a project using Genshi instead of Mako, the Mako line might be replaced with:

('templates/**.html, 'genshi', None),

See Babel’s documentation on Message Extraction [http://babel.edgewall.org/wiki/Documentation/messages.html#message-extraction]
for more information.

Lazy Translations

Occasionally you might come across a situation when you need to translate a
string when it is accessed, not when the _() or other functions are called.

Consider this example:

import logging

from pylons.i18n import get_lang, set_lang

from translate_demo.lib.base import *

log = logging.getLogger(__name__)

text = _('Hello')

class HelloController(BaseController):

 def index(self):
 response.write('Default: %s
' % _('Hello'))
 for lang in ['fr','en','es']:
 set_lang(lang)
 response.write("%s: %s
" % (get_lang(), _('Hello')))
 response.write('Text: %s
' % text)

If we run this we get the following output:

Default: Hello
['fr']: Bonjour
['en']: Good morning
['es']: Hola
Text: Hello

This is because the function _('Hello') just after the imports is called
when the default language is en so the variable text gets the value of
the English translation even though when the string was used the default
language was Spanish.

The rule of thumb in these situations is to try to avoid using the translation
functions in situations where they are not executed on each request. For
situations where this isn’t possible, perhaps because you are working with
legacy code or with a library which doesn’t support internationalization, you
need to use lazy translations.

If we modify the above example so that the import statements and assignment to
text look like this:

from pylons.i18n import get_lang, lazy_gettext, set_lang

from helloworld.lib.base import *

log = logging.getLogger(__name__)

text = lazy_gettext('Hello')

then we get the output we expected:

Default: Hello
['fr']: Bonjour
['en']: Good morning
['es']: Hola
Text: Hola

There are lazy versions of all the standard Pylons translation functions [http://pylonshq.com/docs/module-pylons.i18n.translation.html].

There is one drawback to be aware of when using the lazy translation functions:
they are not actually strings. This means that if our example had used the
following code it would have failed with an error cannot concatenate 'str'
and 'LazyString' objects:

response.write('Text: ' + text + '
')

For this reason you should only use the lazy translations where absolutely
necessary and should always ensure they are converted to strings by calling
str() or repr() before they are used in operations with real strings.

Producing a Python Egg

Finally you can produce an egg of your project which includes the translation
files like this:

$ python setup.py bdist_egg

The setup.py automatically includes the .mo language catalogs your
application needs so that your application can be distributed as an egg. This
is done with the following line in your setup.py file:

package_data={'translate_demo': ['i18n/*/LC_MESSAGES/*.mo']},

Plural Forms

Pylons also provides the ungettext() function. It’s designed for
internationalizing plural words, and can be used as follows:

ungettext('There is %(num)d file here', 'There are %(num)d files here',
 n) % {'num': n}

Plural forms have a different type of entry in .pot/.po files, as
described in The Format of PO Files [http://www.gnu.org/software/gettext/manual/html_chapter/gettext_10.html#PO-Files]
in GNU Gettext’s Manual [http://www.gnu.org/software/gettext/manual/gettext.html]:

#: translate_demo/controllers/hello.py:12
#, python-format
msgid "There is %(num)d file here"
msgid_plural "There are %(num)d files here"
msgstr[0] ""
msgstr[1] ""

One thing to keep in mind is that other languages don’t have the same plural
forms as English. While English only has 2 plural forms, singular and plural,
Slovenian has 4! That means that you must use ugettext for proper
pluralization. Specifically, the following will not work:

BAD!
if n == 1:
 msg = _("There was no dog.")
else:
 msg = _("There were no dogs.")

Summary

This document only covers the basics of internationalizing and localizing a web
application.

GNU Gettext is an extensive library, and the GNU Gettext Manual is highly
recommended for more information.

Babel also provides support for interfacing to the CLDR (Common Locale Data
Repository), providing access to various locale display names, localized number
and date formatting, etc.

You should also be able to internationalize and then localize your application
using Pylons’ support for GNU gettext.

Further Reading

http://en.wikipedia.org/wiki/Internationalization

Please feel free to report any mistakes to the Pylons mailing list or to the
author. Any corrections or clarifications would be gratefully received.

Note

This is a work in progress. We hope the internationalization, localization
and Unicode support in Pylons is now robust and flexible but we would
appreciate hearing about any issues we have. Just drop a line to the
pylons-discuss mailing list on Google Groups.

babel.core – Babel core classes

Module Contents

babel.localedata — Babel locale data

babel.dates – Babel date classes

Module Contents

babel.numbers – Babel number classes

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Sessions

Sessions

Note

The session code is due an extensive rewrite. It uses the Caching container API in Beaker which is optimized for use patterns that are more common in caching (infrequent updates / frequent reads). Unlike caching, a session is a single load, then a single save and multiple simultaneous writes to the same session occur only rarely. In consequence, the excessive but necessary locking that the cache interface currently performs is just a waste of performance where sessions are concerned.

Session Objects

SessionObject

This session proxy / lazy creator object handles access to the real session object. If the session hasn’t been used before a session object will automatically be created and set up. Using a proxy in this fashion to handle access to the real session object avoids creating and loading the session from persistent store unless it is actually used during the request.

CookieSession

Pure cookie-based session. The options recognized when using cookie-based sessions are slightly more restricted than general sessions.

	
	key

	The name the cookie should be set to.

	
	timeout

	How long session data is considered valid. This is used regardless of the cookie being present or not to determine whether session data is still valid.

	
	encrypt_key

	The key to use for the session encryption, if not provided the session will not be encrypted.

	
	validate_key

	The key used to sign the encrypted session

	
	cookie_domain

	Domain to use for the cookie.

	
	secure

	Whether or not the cookie should only be sent over SSL.

Beaker

beaker.session.key = wiki
beaker.session.secret = ${app_instance_secret}

Pylons comes with caching middleware enabled that is part of the same package that provides the session handling, Beaker [http://beaker.groovie.org]. Beaker supports several different types of cache back-end: memory, filesystem, memcached and database. The supported database packages are: SQLite, SQLAlchemy and Google BigTable.

Beaker’s cache and session options are configured via a dictionary.

Note

When used with the Paste package, all Beaker options should be prefixed with beaker. so that Beaker can discriminate its options from other application configuration options.

General Config Options

Config options should be prefixed with either session. or cache.

data_dir

Accepts: string
Default: None

The data directory where cache data will be stored. If this argument is not present, the regular data_dir parameter is used, with the path ”./sessions” appended to it.

type

Accepts: string
Default: dbm

Type of storage used for the session, current types are “dbm”, “file”, “memcached”, “database”, and “memory”. The storage uses the Container API that is also used by the cache system.

When using dbm files, each user’s session is stored in its own dbm file, via the class :class”beaker.container.DBMNamespaceManager class.

When using ‘database’ or ‘memcached’, additional configuration options are required as documented in the appropriate section below.

For sessions only, there is an additional choice of a “cookie” type, which requires the Sessions “secret” option to be set as well.

Database Configuration

When the type is set to ‘database’, the following additional options can be used.

url (required)

Accepts: string (formatted as required for an SQLAlchemy db uri [http://www.sqlalchemy.org/docs/04/dbengine.html#dbengine_establishing])
Default: None

The database URI as formatted for SQLAlchemy to use for the database. The appropriate database packages for the database must also be installed.

table_name

Accepts: string
Default: beaker_cache

Table name to use for beaker’s storage.

optimistic

Accepts: boolean
Default: False

Use optimistic session locking, note that this will result in an select when updating a cache value to compare version numbers.

sa_opts (Only for SQLAlchemy 0.3)

Accepts: dict
Default: None

A dictionary of values to use that are passed directly to SQLAlchemy’s engine. Note that this is only applicable for SQLAlchemy 0.3.

sa.*

Accepts: Valid SQLAlchemy 0.4 database options [http://www.sqlalchemy.org/docs/04/dbengine.html#dbengine_options]
Default: None

When using SQLAlchemy 0.4 and above, all options prefixed with sa. are passed to the SQLAlchemy database engine. Common parameters are pool_size, pool_recycle, etc.

Memcached Options

url (required)

Accepts: string
Default: None

The url should be a single IP address, or list of semi-colon separated IP addresses that should be used for memcached.

Beaker can use either py-memcached or cmemcache to communicate with memcached, but it should be noted that cmemcache can cause Python to segfault should memcached become unreachable.

Session Options

cookie_expires

Accepts: boolean, datetime, timedelta
Default: True

The expiration time to use on the session cookie. Defaults to “True” which means, don’t specify any expiration time (the cookie will expire when the browser is closed). A value of “False” means, never expire (specifies the maximum date that can be stored in a datetime object and uses that). The value can also be a {{datetime.timedelta()}} object which will be added to the current date and time, or a {{datetime.datetime()}} object.

cookie_domain

Accepts: string
Default: The entire domain name being used, including sub-domain, etc.

By default, Beaker’s sessions are set to the cookie domain of the entire hostname. For sub-domains, this should be set to the top domain the cookie should be valid for.

id

Accepts: string
Default: None

Session id for this session. When using sessions with cookies, this parameter is not needed as the session automatically creates, writes and retrieves the value from the request. When using a URL-based method for the session, the id should be retreived from the id data member when the session is first created, and then used in writing new URLs.

key

Accepts: string
Default: beaker_session_id

The key that will be used as a cookie key to identify sessions. Changing this could allow several different applications to have different sessions underneath the same hostname.

secret

Accepts: string
Default: None

Secret key to enable encrypted session ids. When non-None, the session ids are generated with an MD5-signature created against this value.

When used with the “cookie” Session type, the secret is used for encrypting the contents of the cookie, and should be a reasonably secure randomly generated string of characters no more than 54 characters.

timeout

Accepts: integer
Default: None

Time in seconds before the session times out. A timeout occurs when the session has not been loaded for more than timeout seconds.

Session Options (For use with cookie-based Sessions)

encrypt_key

Accepts: string
Default: None

The key to use for the session encryption, if not provided the session will not be encrypted. This will only work if a strong hash scheme is available, such as pycryptopp’s or Python 2.5’s hashlib.sha256.

validate_key

Accepts: string
Default: None

The key used to sign the encrypted session, this is used instead of a secret option.

Custom and caching middleware

Care should be taken when deciding in which layer to place custom
middleware. In most cases middleware should be placed between the
Pylons WSGI application instantiation and the Routes middleware; however,
if the middleware should run before the session object or routing is handled:

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)

MyMiddleware can only see the cache object, nothing *above* here
app = MyMiddleware(app)

app = CacheMiddleware(app, config)

Some of the Pylons middleware layers such as the Session, Routes, and Cache middleware, only add
objects to the environ dict, or add HTTP headers to the response (the Session middleware for
example adds the session cookie header). Others, such as the Status Code Redirect, and the Error
Handler may fully intercept the request entirely, and change how its responded to.

Bulk deletion of expired db-held sessions

The db schema for Session stores a “last accessed time” for each session. This enables bulk deletion of expired sessions through the use of a simple SQL command, run every day, that clears those sessions which have a “last accessed” timestamp > 2 days, or whatever is required.

Using Session in Internationalization

How to set the language used in a controller on the fly.

For example this could be used to allow a user to set which language they
wanted your application to work in. Save the value to the session object:

session['lang'] = 'en'
session.save()

then on each controller call the language to be used could be read from the
session and set in the controller’s __before__() method so that the pages
remained in the same language that was previously set:

def __before__(self):
 if 'lang' in session:
 set_lang(session['lang'])

Using Session in Secure Forms

Authorization tokens are stored in the client’s session. The web app can then
verify the request’s submitted authorization token with the value in the
client’s session.

This ensures the request came from the originating page. See the wikipedia entry
for Cross-site request forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery] for more information.

Pylons provides an authenticate_form decorator that does this verfication
on the behalf of controllers.

These helpers depend on Pylons’ session object. Most of them can be easily
ported to another framework by changing the API calls.

Hacking the session for no cookies

(From a paste #441 [http://pylonshq.com/pasties/441] baked by Ben Bangert)

Set the session to not use cookies in the dev.ini file

beaker.session.use_cookies = False

with this as the mode d’emploi in the controller action

from beaker.session import Session as BeakerSession

Get the actual session object through the global proxy
real_session = session._get_current_obj()

Duplicate the session init options to avoid screwing up other sessions in
other threads
params = real_session.__dict__['_params']

Now set the id param used to make a session to our session maker,
if id is None, a new id will be made automatically
params['id'] = find_id_func()
real_session.__dict__['_sess'] = BeakerSession({}, **params)

Now we can use the session as usual
session['fred'] = 42
session.save()

At the end, we need to see if the session was used and handle its id
if session.is_new:
 # do something with session.id to make sure its around next time
 pass

Using middleware (Beaker) with a composite app

How to allow called WSGI apps to share a common session management utility.

(From a paste #616 [http://pylonshq.com/pasties/616] baked by Mark Luffel)

Here's an example of configuring multiple apps to use a common
middleware filter
The [app:home] section is a standard pylons app
The ``/servicebroker`` and ``/proxy`` apps both want to be able
to use the same session management

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 5000

[filter-app:main]
use = egg:Beaker#beaker_session
next = sessioned
beaker.session.key = my_project_key
beaker.session.secret = i_wear_two_layers_of_socks

[composite:sessioned]
use = egg:Paste#urlmap
/ = home
/servicebroker = servicebroker
/proxy = cross_domain_proxy

[app:servicebroker]
use = egg:Appcelerator#service_broker

[app:cross_domain_proxy]
use = egg:Appcelerator#cross_domain_proxy

[app:home]
use = egg:my_project
full_stack = true
cache_dir = %(here)s/data

storing SA mapped objects in Beaker sessions

Taken from pylons-discuss Google group discussion:

> I wouldn't expect a SA object to be serializable. It just doesn't
> make sense to me. I don't even want to think about complications with
> the database and ACID, nor do I want to consider the scalability
> concerns (the SA object should be tied to a particular SA session,
> right?).

SA objects are serializable (as long as you aren’t using assign_mapper(), which can complicate things unless you define a custom __getstate__() method).

The error above is because the entity is not being detached from its original session. If you are going to
serialize, you have to manually shuttle the object to and from the appropriate sessions.

Three ways to get an object out of serialization and back into an SA
Session are:

	A mapped class that has a __getstate__() which only copies desired properties and won’t copy SA session pointers:

beaker.put(key, obj)
...
obj = beaker.get(key)
Session.add(obj)

	A regular old mapped class. Add an expunge() step.

Session.expunge(obj)
beaker.put(key, obj)
...
obj = beaker.get(key)
Session.add(obj)

	Don’t worry about __getstate__() or expunge() on the original object, use merge(). This is “cleaner” than the expunge() method shown above but will usually force a load of the object from the database and therefore is not necessarily as “efficient”, also it copies the state of the given object to the target object which may be error-prone.

beaker.put(key, obj)
...
obj = beaker.get(key)
obj = Session.merge(obj)

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Caching

Inevitably, there will be occasions during applications development or deployment when some task is revealed to be taking a significant amount of time to complete. When this occurs, the best way to speed things up is with caching.

Pylons comes with caching middleware enabled that is part of the same package that provides the session handling, Beaker [http://beaker.groovie.org]. Beaker supports a variety of caching backends: memory-based, filesystem-based and the specialised memcached library.

There are several ways to cache data under Pylons, depending on where the slowdown is occurring:

	Browser-side Caching - HTTP/1.1 supports the ETag caching system that allows the browser to use its own cache instead of requiring regeneration of the entire page. ETag-based caching avoids repeated generation of content but if the browser has never seen the page before, the page will still be generated. Therefore using ETag caching in conjunction with one of the other types of caching listed here will achieve optimal throughput and avoid unnecessary calls on resource-intensive operations.

Note

the latter only helps if the entire page can be cached.

	Controllers - The cache object can be imported in controllers used for caching anything in Python that can be pickled.

	Templates - The results of an entire rendered template can be cached using the 3 cache keyword arguments to the render calls. These render commands can also be used inside templates.

	Mako/Myghty Templates - Built-in caching options are available for both Mako [http://www.makotemplates.org/docs/caching.html] and Myghty [http://www.myghty.org/docs/cache.myt] template engines. They allow fine-grained caching of only certain sections of the template as well as caching of the entire template.

The two primary concepts to bear in mind when caching are i) caches have a namespace and ii) caches can have keys under that namespace. The reason for this is that, for a single template, there might be multiple versions of the template each requiring its own cached version. The keys in the namespace are the version and the name of the template is the namespace. Both of these values must be Python strings.

In templates, the cache namespace will automatically be set to the name of the template being rendered. Nothing else is required for basic caching, unless the developer wishes to control for how long the template is cached and/or maintain caches of multiple versions of the template.

See also

Stephen Pierzchala’s Caching for Performance [http://web.archive.org/web/20060424171425/http://www.webperformance.org/caching/caching_for_performance.pdf] (stephen@pierzchala.com)

Using the Cache object

Inside the controller, the cache object needs to be imported before being
used. If an action or block of code makes heavy use of resources or take a
long time to complete, it can be convenient to cache the result. The cache
object can cache any Python structure that can be pickled [http://docs.python.org/lib/module-pickle.html].

Consider an action where it is desirable to cache some code that does a
time-consuming or resource-intensive lookup and returns an object that can be
pickled (list, dict, tuple, etc.):

Add to existing imports
from pylons import cache

Under the controller class
def some_action(self, day):
 # hypothetical action that uses a 'day' variable as its key

 def expensive_function():
 # do something that takes a lot of cpu/resources
 return expensive_call()

 # Get a cache for a specific namespace, you can name it whatever
 # you want, in this case its 'my_function'
 mycache = cache.get_cache('my_function', type="memory")

 # Get the value, this will create the cache copy the first time
 # and any time it expires (in seconds, so 3600 = one hour)
 c.myvalue = mycache.get_value(key=day, createfunc=expensive_function,
 expiretime=3600)

 return render('/some/template.myt')

The createfunc option requires a callable object or a function which is then called by the cache whenever a value for the provided key is not in the cache, or has expired in the cache.

Because the createfunc is called with no arguments, the resource- or time-expensive function must correspondingly also not require any arguments.

Other Cache Options

The cache also supports the removal values from the cache, using the key(s) to identify the value(s) to be removed and it also supports clearing the cache completely, should it need to be reset.

Clear the cache
mycache.clear()

Remove a specific key
mycache.remove_value('some_key')

Using Cache keywords to render

Warning

Needs to be extended to cover the specific render_* calls introduced in Pylons 0.9.7

All render <pylons.templating.render_mako() commmands have caching
functionality built in. To use it, merely add the appropriate cache keyword
to the render call.

class SampleController(BaseController):

 def index(self):
 # Cache the template for 10 mins
 return render('/index.myt', cache_expire=600)

 def show(self, id):
 # Cache this version of the template for 3 mins
 return render('/show.myt', cache_key=id, cache_expire=180)

 def feed(self):
 # Cache for 20 mins to memory
 return render('/feed.myt', cache_type='memory', cache_expire=1200)

 def home(self, user):
 # Cache this version of a page forever (until the cache dir
 # is cleaned)
 return render('/home.myt', cache_key=user, cache_expire='never')

Using the Cache Decorator

Pylons also provides the beaker_cache()
decorator for caching in pylons.cache the results of a completed function call (memoizing).

The cache decorator takes the same cache arguments (minus their cache_ prefix), as the render function does.

from pylons.decorators.cache import beaker_cache

class SampleController(BaseController):

 # Cache this controller action forever (until the cache dir is
 # cleaned)
 @beaker_cache()
 def home(self):
 c.data = expensive_call()
 return render('/home.myt')

 # Cache this controller action by its GET args for 10 mins to memory
 @beaker_cache(expire=600, type='memory', query_args=True)
 def show(self, id):
 c.data = expensive_call(id)
 return render('/show.myt')

By default the decorator uses a composite of all of the decorated function’s arguments as the cache key. It can alternatively use a composite of the request.GET query args as the cache key when the query_args option is enabled.

The cache key can be further customized via the key argument.

Caching Arbitrary Functions

Arbitrary functions can use the beaker_cache()
decorator, but should include an additional option. Since the decorator caches
the response object, its unlikely the status code and headers for
non-controller methods should be cached. To avoid caching that data, the
cache_response keyword argument should be set to false.

from pylons.decorators.cache import beaker_cache

@beaker_cache(expire=600, cache_response=False)
def generate_data():
 # do expensive data generation
 return data

Warning

When caching arbitrary functions, the query_args argument should not
be used since the result of arbitrary functions shouldn’t depend on
the request parameters.

ETag Caching

Caching via ETag involves sending the browser an ETag header so that it knows
to save and possibly use a cached copy of the page from its own cache, instead
of requesting the application to send a fresh copy.

Because the ETag cache relies on sending headers to the browser, it works in a
slightly different manner to the other caching mechanisms described above.

The etag_cache() function will set the proper HTTP headers if
the browser doesn’t yet have a copy of the page. Otherwise, a 304 HTTP
Exception will be thrown that is then caught by Paste middleware and
turned into a proper 304 response to the browser. This will cause the
browser to use its own locally-cached copy.

etag_cache() returns
Response for legacy purposes
(Response should be used directly instead).

ETag-based caching requires a single key which is sent in the ETag HTTP header
back to the browser. The RFC specification for HTTP headers [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html] indicates that an
ETag header merely needs to be a string. This value of this string does not need
to be unique for every URL as the browser itself determines whether to use its own
copy, this decision is based on the URL and the ETag key.

def my_action(self):
 etag_cache('somekey')
 return render('/show.myt', cache_expire=3600)

Or to change other aspects of the response:

def my_action(self):
 etag_cache('somekey')
 response.headers['content-type'] = 'text/plain'
 return render('/show.myt', cache_expire=3600)

Note

In this example that we are using template caching in addition to ETag
caching. If a new visitor comes to the site, we avoid re-rendering the
template if a cached copy exists and repeat hits to the page by that user
will then trigger the ETag cache. This example also will never change the
ETag key, so the browsers cache will always be used if it has one.

The frequency with which an ETag cache key is changed will depend on the web
application and the developer’s assessment of how often the browser should be
prompted to fetch a fresh copy of the page.

Warning

Stolen from Philip Cooper’s OpenVest wiki [http://www.openvest.com/trac/wiki/BeakerCache] after which it was updated and edited ...

Inside the Beaker Cache

Caching

First lets start out with some slow function that we would like to cache. This function is not slow but it will show us when it was cached so we can see things are working as we expect:

import time
def slooow(myarg):
 # some slow database or template stuff here
 return "%s at %s" % (myarg,time.asctime())

When we have the cached function, multiple calls will tell us whether are seeing a cached or a new version.

DBMCache

The DBMCache stores (actually pickles) the response in a dbm style database.

What may not be obvious is that the are two levels of keys. They are essentially created as one for the function or template name (called the namespace) and one for the ‘’keys’’ within that (called the key). So for Some_Function_name, there is a cache created as one dbm file/database. As that function is called with different arguments, those arguments are keys within the dbm file. First lets create and populate a cache. This cache might be a cache for the function Some_Function_name called three times with three different arguments: x, yy, and zzz:

from beaker.cache import CacheManager
cm = CacheManager(type='dbm', data_dir='beaker.cache')
cache = cm.get_cache('Some_Function_name')
the cache is setup but the dbm file is not created until needed
so let's populate it with three values:
cache.get_value('x', createfunc=lambda: slooow('x'), expiretime=15)
cache.get_value('yy', createfunc=lambda: slooow('yy'), expiretime=15)
cache.get_value('zzz', createfunc=lambda: slooow('zzz'), expiretime=15)

Nothing much new yet. After getting the cache we can use the cache as per the Beaker Documentation.

import beaker.container as container
cc = container.ContainerContext()
nsm = cc.get_namespace_manager('Some_Function_name',
 container.DBMContainer,data_dir='beaker.cache')
filename = nsm.file

Now we have the file name. The file name is a sha hash of a string which is a join of the container class name and the function name (used in the get_cache function call). It would return something like:

'beaker.cache/container_dbm/a/a7/a768f120e39d0248d3d2f23d15ee0a20be5226de.dbm'

With that file name you could look directly inside the cache database (but only for your education and debugging experience, not your cache interactions!)

this file name can be used directly (for debug ONLY)
import anydbm
import pickle
db = anydbm.open(filename)
old_t, old_v = pickle.loads(db['zzz'])

The database only contains the old time and old value. Where did the expire time and the function to create/update the value go?. They never make it to the database. They reside in the cache object returned from get_cache call above.

Note that the createfunc, and expiretime values are stored during the first call to get_value. Subsequent calls with (say) a different expiry time will not update that value. This is a tricky part of the caching but perhaps is a good thing since different processes may have different policies in effect.

If there are difficulties with these values, remember that one call to cache.clear() resets everything.

Database Cache

Using the ext:database cache type.

from beaker.cache import CacheManager
#cm = CacheManager(type='dbm', data_dir='beaker.cache')
cm = CacheManager(type='ext:database',
 url="sqlite:///beaker.cache/beaker.sqlite",
 data_dir='beaker.cache')
cache = cm.get_cache('Some_Function_name')
the cache is setup but the dbm file is not created until needed
so let's populate it with three values:
cache.get_value('x', createfunc=lambda: slooow('x'), expiretime=15)
cache.get_value('yy', createfunc=lambda: slooow('yy'), expiretime=15)
cache.get_value('zzz', createfunc=lambda: slooow('zzz'), expiretime=15)

This is identical to the cache usage above with the only difference being the creation of the CacheManager. It is much easier to view the caches outside the beaker code (again for edification and debugging, not for api usage).

SQLite was used in this instance and the SQLite data file can be directly accessed uaing the SQLite command-line utility or the Firefox plug-in:

sqlite3 beaker.cache/beaker.sqlite
from inside sqlite:
sqlite> .schema
CREATE TABLE beaker_cache (
 id INTEGER NOT NULL,
 namespace VARCHAR(255) NOT NULL,
 key VARCHAR(255) NOT NULL,
 value BLOB NOT NULL,
 PRIMARY KEY (id),
 UNIQUE (namespace, key)
);
select * from beaker_cache;

Warning

The data structure is different in Beaker 0.8 ...

cache = sa.Table(table_name, meta,
 sa.Column('id', types.Integer, primary_key=True),
 sa.Column('namespace', types.String(255), nullable=False),
 sa.Column('accessed', types.DateTime, nullable=False),
 sa.Column('created', types.DateTime, nullable=False),
 sa.Column('data', types.BLOB(), nullable=False),
 sa.UniqueConstraint('namespace')
)

It includes the access time but stores rows on a one-row-per-namespace basis, (storing a pickled dict) rather than one-row-per-namespace/key-combination. This is a more efficient approach when the problem is handling a large number of namespaces with limited keys — like sessions.

Memcached Cache

For large numbers of keys with expensive pre-key lookups memcached it the way to go.

If memcached is running on the the default port of 11211:

from beaker.cache import CacheManager
cm = CacheManager(type='ext:memcached', url='127.0.0.1:11211',
 lock_dir='beaker.cache')
cache = cm.get_cache('Some_Function_name')
the cache is setup but the dbm file is not created until needed
so let's populate it with three values:
cache.get_value('x', createfunc=lambda: slooow('x'), expiretime=15)
cache.get_value('yy', createfunc=lambda: slooow('yy'), expiretime=15)
cache.get_value('zzz', createfunc=lambda: slooow('zzz'), expiretime=15)

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Unit and functional testing

Unit Testing with webtest

Pylons provides powerful unit testing capabilities for your web application
utilizing webtest [http://pythonpaste.org/webtest/]
to emulate requests to your web application. You can then ensure that the
response was handled appropriately and that the controller set things up
properly.

To run the test suite for your web application, Pylons utilizes the nose [http://somethingaboutorange.com/mrl/projects/nose/] test runner/discovery
package. Running nosetests in your project directory will run all the
tests you create in the tests directory. If you don’t have nose installed on
your system, it can be installed via setuptools with:

$ easy_install -U nose

To avoid conflicts with your development setup, the tests use the test.ini configuration file when run. This means you must configure any databases, etc. in your test.ini file or your tests will not be able to find the database configuration.

Warning

Nose can trigger errors during its attempt to search for doc tests since it will try and import all your modules one at a time before your app was loaded. This will cause files under models/ that rely on your app to be running, to fail.

Pylons 0.9.6.1 and later includes a plugin for nose that loads the app before
the doctests scan your modules, allowing models to be doctested. You can use
this option from the command line with nose:

nosetests --with-pylons=test.ini

Or by setting up a [nosetests] block in your setup.cfg:

[nosetests]
verbose=True
verbosity=2
with-pylons=test.ini
detailed-errors=1
with-doctest=True

Then just run:

python setup.py nosetests

to run the tests.

Example: Testing a Controller

First let’s create a new project and controller for this example:

$ paster create -t pylons TestExample
$ cd TestExample
$ paster controller comments

You’ll see that it creates two files when you create a controller. The stub controller, and a test for it under testexample/tests/functional/.

Modify the testexample/controllers/comments.py file so it looks like this:

from testexample.lib.base import *

class CommentsController(BaseController):

 def index(self):
 return 'Basic output'

 def sess(self):
 session['name'] = 'Joe Smith'
 session.save()
 return 'Saved a session'

Then write a basic set of tests to ensure that the controller actions are functioning properly, modify testexample/tests/functional/test_comments.py to match the following:

from testexample.tests import *

class TestCommentsController(TestController):
 def test_index(self):
 response = self.app.get(url(controller='/comments'))
 assert 'Basic output' in response

 def test_sess(self):
 response = self.app.get(url(controller='/comments', action='sess'))
 assert response.session['name'] == 'Joe Smith'
 assert 'Saved a session' in response

Run nosetests in your main project directory and you should see them all pass:

..
--
Ran 2 tests in 2.999s

OK

Unfortunately, a plain assert does not provide detailed information about the results of an assertion should it fail, unless you specify it a second argument. For example, add the following test to the test_sess function:

assert response.session.has_key('address') == True

When you run nosetests you will get the following, not-very-helpful result:

.F
==
FAIL: test_sess (testexample.tests.functional.test_comments.TestCommentsController)
--
Traceback (most recent call last):
File "~/TestExample/testexample/tests/functional/test_comments.py", line 12, in test_sess
assert response.session.has_key('address') == True
AssertionError:

--
Ran 2 tests in 1.417s

FAILED (failures=1)

You can augment this result by doing the following:

assert response.session.has_key('address') == True, "address not found in session"

Which results in:

.F
==
FAIL: test_sess (testexample.tests.functional.test_comments.TestCommentsController)
--
Traceback (most recent call last):
File "~/TestExample/testexample/tests/functional/test_comments.py", line 12, in test_sess
assert response.session.has_key('address') == True
AssertionError: address not found in session

--
Ran 2 tests in 1.417s

FAILED (failures=1)

But detailing every assert statement could be time consuming. Our TestController subclasses the standard Python unittest.TestCase class, so we can use utilize its helper methods, such as assertEqual, that can automatically provide a more detailed AssertionError. The new test line looks like this:

self.assertEqual(response.session.has_key('address'), True)

Which provides the more useful failure message:

.F
==
FAIL: test_sess (testexample.tests.functional.test_comments.TestCommentsController)
--
Traceback (most recent call last):
File "~/TestExample/testexample/tests/functional/test_comments.py", line 12, in test_sess
self.assertEqual(response.session.has_key('address'), True)
AssertionError: False != True

Testing Pylons Objects

Pylons will provide several additional attributes for the webtest webtest.TestResponse object that let you access various objects that were created during the web request:

	session

	Session object

	req

	Request object

	c

	Object containing variables passed to templates

	g

	Globals object

To use them, merely access the attributes of the response after you’ve used
a get/post command:

response = app.get('/some/url')
assert response.session['var'] == 4
assert 'REQUEST_METHOD' in response.req.environ

Note

The response object already has a
TestRequest object assigned to it, therefore Pylons assigns its
request object to the response as req.

Testing Your Own Objects

WebTest’s fixture testing allows you to designate your own objects that you’d
like to access in your tests. This powerful functionality makes it easy to
test the value of objects that are normally only retained for the duration of
a single request.

Before making objects available for testing, its useful to know when your
application is being tested. WebTest will provide an environ variable called
paste.testing that you can test for the presence and truth of so that your
application only populates the testing objects when it has to.

Populating the webtest response object with your objects is done by
adding them to the environ dict under the key paste.testing_variables.
Pylons creates this dict before calling your application, so testing for its
existence and adding new values to it is recommended. All variables assigned
to the paste.testing_variables dict will be available on the response
object with the key being the attribute name.

Note

WebTest is an extracted stand-alone version of a Paste component called
paste.fixture. For backwards compatibility, WebTest continues to honor
the paste.testing_variables key in the environ.

Example:

testexample/lib/base.py

from pylons import request
from pylons.controllers import WSGIController
from pylons.templating import render_mako as render

class BaseController(WSGIController):
 def __call__(self, environ, start_response):
 # Create a custom email object
 email = MyCustomEmailObj()
 email.name = 'Fred Smith'
 if 'paste.testing_variables' in request.environ:
 request.environ['paste.testing_variables']['email'] = email
 return WSGIController.__call__(self, environ, start_response)

testexample/tests/functional/test_controller.py
from testexample.tests import *

class TestCommentsController(TestController):
 def test_index(self):
 response = self.app.get(url(controller='/'))
 assert response.email.name == 'Fred Smith'

See also

	WebTest Documentation [http://pythonpaste.org/webtest/]

	Documentation covering webtest and its usage

	WebTest Module docs

	Module API reference for methods available for use when testing
the application

Unit Testing

XXX: Describe unit testing an applications models, libraries

Functional Testing

XXX: Describe functional/integrated testing, WebTest

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Troubleshooting & Debugging

Interactive debugging

Things break, and when they do, quickly pinpointing what went wrong and why makes a huge difference. By default, Pylons uses a customized version of Ian Bicking’s [http://blog.ianbicking.org/] EvalException middleware that also includes full Mako/Myghty Traceback information.

The Debugging Screen

The debugging screen has three tabs at the top:

Traceback
Provides the raw exception trace with the interactive debugger

Extra Data
Displays CGI, WSGI variables at the time of the exception, in addition to configuration information

Template
Human friendly traceback for Mako or Myghty templates

Since Mako and Myghty compile their templates to Python modules, it can be difficult to accurately figure out what line of the template resulted in the error. The Template tab provides the full Mako or Myghty traceback which contains accurate line numbers for your templates, and where the error originated from. If your exception was triggered before a template was rendered, no Template information will be available in this section.

Example: Exploring the Traceback

Using the interactive debugger can also be useful to gain a deeper insight into objects present only during the web request like the session and request objects.

To trigger an error so that we can explore what’s happening just raise an exception inside an action you’re curious about. In this example, we’ll raise an error in the action that’s used to display the page you’re reading this on. Here’s what the docs controller looks like:

class DocsController(BaseController):
 def view(self, url):
 if request.path_info.endswith('docs'):
 redirect_to('/docs/')
 return render('/docs/' + url)

Since we want to explore the session and request, we’ll need to bind them first. Here’s what our action now looks like with the binding and raising an exception:

def view(self, url):
 raise "hi"
 if request.path_info.endswith('docs'):
 redirect_to('/docs/')
 return render('/docs/' + url)

Here’s what exploring the Traceback from the above example looks like (Excerpt of the relevant portion):

[image: _images/doctraceback.png]

Email Options

You can make all sorts of changes to how the debugging works. For example if you disable the debug variable in the config file Pylons will email you an error report instead of displaying it as long as you provide your email address at the top of the config file:

error_email_from = you@example.com

This is very useful for a production site. Emails are sent via SMTP so you need to specify a valid SMTP server too.

Error Handling Options

A number of error handling options can be specified in the config file. These are described in the Interactive debugging documentation but the important point to remember is that debug should always be set to false in production environments otherwise if an error occurs the visitor will be presented with the developer’s interactive traceback which they could use to execute malicious code.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Upgrading

Upgrading your project is slightly different depending on which versions you’re upgrading from and to. It’s recommended that upgrades be done in minor revision steps, as deprecation warnings are added between revisions to help in the upgrade process.

For example, if you’re running 0.9.4, first upgrade to 0.9.5, then 0.9.6, then finally 0.9.7 when desired. The change to 0.9.7 can be done in two steps unlike the older upgrades which should follow the process documented here after the 0.9.7 upgrade.

Upgrading from 0.9.6 -> 0.9.7

Pylons 0.9.7 changes several implicit behaviors of 0.9.6, as well as toggling some new options of Routes, and using automatic HTML escaping in Mako. These changes can be done in waves, and do not need to be completed all at once for a 0.9.6 project to run under 0.9.7.

Minimal Steps to run a 0.9.6 project under 0.9.7

Add the following lines to config/middleware.py:

Add these imports to the top
from beaker.middleware import CacheMiddleware, SessionMiddleware
from routes.middleware import RoutesMiddleware

Add these below the 'CUSTOM MIDDLEWARE HERE' line, or if you removed
that, add them immediately after the PylonsApp initialization
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

The Rails helpers from WebHelpers are no longer automatically imported in the webhelpers package. To use them ‘lib/helpers.py’ should be changed to import them:

from webhelpers.rails import *

Your Pylons 0.9.6 project should now run without issue in Pylons 0.9.7. Note that some deprecation warnings will likely be thrown reminding you to upgrade other parts.

Moving to use the new features of 0.9.7

To use the complete set of new features in 0.9.7, such as the automatic HTML escaping, new webhelpers, and new error middleware, follow the
What’s new in Pylons 0.9.7 overview [http://wiki.pylonshq.com/pages/viewpage.action?pageId=11174779] to determine how to change the other files in your project to use the new features.

Moving from a pre-0.9.6 to 0.9.6

Pylons projects should be updated using the paster command create. In addition
to creating new projects, paster create when run over an existing project will
provide several ways to update the project template to the latest version.

Using this tool properly can make upgrading a fairly minor task. For the
purpose of this document, the project being upgraded will be called ‘demoapp’
and all commands will use that name.

Running paster create to upgrade

First, navigate to the directory above the project’s main directory.
The main directory is the one that contains the setup.py, setup.cfg, and
development.ini files.

/home/joe/demoapp $ cd ..
/home/joe $

Then run paster create on the project directory:

/home/joe $ paster create demoapp -t pylons

paster will issue prompts to allow the handling conflicts and updates to the existing
project files. The options available are (hit the key in the parens to perform the
operation):

(d)iff them, and show the changes between the project files and the ones
that have changed in Pylons

(b)ackup the file and copy the new version into its place. The backup file that
is created will have a ``.bak`` extension.

(y)es to overwrite the existing file with the new one. This approach is generally
not recommended as it does not allow the developer to view the content of the file
that will be replaced and it offers no opportunity for later recovery of the content.
The option can be made less intrepid by first viewing the diff to ascertain if any
changes will be lost in the overwriting.

(n)o to overwrite, retain the existing file. Safe if nothing has changed.

It’s recommended when upgrading your project that you always look at the diff
first to see what has changed. Then either overwrite your existing one if you are
not going to lose changes you want, or backup yours and write the new one in.
You can then manually compare and add your changes back in.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Packaging and Deployment Overview

TODO: some of this is redundant to the (more current) Configuration doc – should be consolidated and cross-referenced

This document describes how a developer can take advantage of Pylons’ application setup functionality to allow webmasters to easily set up their application.

Installation refers to the process of downloading and installing the application with easy_install whereas setup refers to the process of setting up an instance of an installed application so it is ready to be deployed.

For example, a wiki application might need to create database tables to use. The webmaster would only install the wiki .egg file once using easy_install but might want to run 5 wikis on the site so would setup the wiki 5 times, each time specifying a different database to use so that 5 wikis can run from the same code, but store their data in different databases.

Egg Files

Before you can understand how a user configures an application you have to understand how Pylons applications are distributed. All Pylons applications are distributed in .egg format. An egg is simply a Python executable package that has been put together into a single file.

You create an egg from your project by going into the project root directory and running the command:

$ python setup.py bdist_egg

If everything goes smoothly a .egg file with the correct name and version number appears in a newly created dist directory.

When a webmaster wants to install a Pylons application he will do so by downloading the egg and then installing it.

Installing as a Non-root User

It’s quite possible when using shared hosting accounts that you do not have root access to install packages. In this case you can install setuptools based packages like Pylons and Pylons web applications in your home directory using a virtualenv setup. This way you can install all the packages you want to use without super-user access.

Understanding the Setup Process

Say you have written a Pylons wiki application called wiki. When a webmaster wants to install your wiki application he will run the following command to generate a config file:

$ paster make-config wiki wiki_production.ini

He will then edit the config file for his production environment with the settings he wants and then run this command to setup the application:

$ paster setup-app wiki_production.ini

Finally he might choose to deploy the wiki application through the paste server like this (although he could have chosen CGI/FastCGI/SCGI etc):

$ paster serve wiki_production.ini

The idea is that an application only needs to be installed once but if necessary can be set up multiple times, each with a different configuration.

All Pylons applications are installed in the same way, so you as the developer need to know how the above commands work.

Make Config

The paster make-config command looks for the file deployment.ini_tmpl and uses it as a basis for generating a new .ini file.

Using our new wiki example again, the wiki/config/deployment.ini_tmpl file contains the text:

[DEFAULT]
debug = true
email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 5000

[app:main]
use = egg:wiki
full_stack = true
static_files = true
cache_dir = %(here)s/data
beaker.session.key = wiki
beaker.session.secret = ${app_instance_secret}
app_instance_uuid = ${app_instance_uuid}

If you'd like to fine-tune the individual locations of the cache data dirs
for the Cache data, or the Session saves, un-comment the desired settings
here:
#beaker.cache.data_dir = %(here)s/data/cache
#beaker.session.data_dir = %(here)s/data/sessions

WARNING: *THE LINE BELOW MUST BE UNCOMMENTED ON A PRODUCTION ENVIRONMENT*
Debug mode will enable the interactive debugging tool, allowing ANYONE to
execute malicious code after an exception is raised.
set debug = false

Logging configuration
[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s

When the command paster make-config wiki wiki_production.ini is run, the contents of this file are produced so you should tweak this file to provide sensible default configuration for production deployment of your app.

Setup App

The paster setup-app command references the newly created .ini file and calls the function wiki.websetup.setup_app() to set up the application. If your application needs to be set up before it can be used, you should edit the websetup.py file.

Here’s an example which just prints the location of the cache directory via Python’s logging facilities:

"""Setup the helloworld application"""
import logging

from pylons import config
from helloworld.config.environment import load_environment

log = logging.getLogger(__name__)

def setup_app(command, conf, vars):
 """Place any commands to setup helloworld here"""
 load_environment(conf.global_conf, conf.local_conf)
 log.info("Using cache dirctory %s" % config['cache.dir'])

For a more useful example, say your application needs a database set up and loaded with initial data. The user will specify the location of the database to use by editing the config file before running the paster setup-app command. The setup_app() function will then be able to load the configuration and act on it in the function body. This way, the setup_app() function can be used to initialize the database when paster setup-app is run. Using the optional SQLAlchemy project template support when creating a Pylons project will set all of this up for you in a basic way. The quickwiki_tutorial illustrates an example of this configuration.

Deploying the Application

Once the application is setup it is ready to be deployed. There are lots of ways of deploying an application, one of which is to use the paster serve command which takes the configuration file that has already been used to setup the application and serves it on a local HTTP server for production use:

$ paster serve wiki_production.ini

More information on Paste deployment options is available on the Paste website at http://pythonpaste.org. See Running Pylons Apps with Other Web Servers for alternative Pylons deployment scenarios.

Advanced Usage

So far everything we have done has happened through the paste.script.appinstall.Installer class which looks for the deployment.ini_tmpl and websetup.py file and behaves accordingly.

If you need more control over how your application is installed you can use your own installer class. Create a file, for example wiki/installer.py and code your new installer class in the file by deriving it from the existing one:

from paste.script.appinstall import Installer
class MyInstaller(Installer):
 pass

You then override the functionality as necessary (have a look at the source code for Installer as a basis. You then change your application’s setup.py file so that the paste.app_install entry point main points to your new installer:

entry_points="""
...
[paste.app_install]
main=wiki.installer:MyInstaller
...
""",

Depending on how you code your MyInstaller class you may not even need your websetup.py or deployment.ini_tmpl as you might have decided to create the .ini file and setup the application in an entirely different way.

Running Pylons Apps with Other Web Servers

This document assumes that you have already installed a Pylons web application, and Runtime Configuration for it. Pylons applications use PasteDeploy [http://pythonpaste.org/deploy/] to start up your Pylons WSGI application, and can use the flup package to provide a Fast-CGI, SCGI, or AJP connection to it.

Using Fast-CGI

Fast-CGI [http://fastcgi.com/] is a gateway to connect web severs like Apache [http://httpd.apache.org/] and lighttpd [http://lighttpd.net/] to a CGI-style application. Out of the box, Pylons applications can run with Fast-CGI in either a threaded or forking mode. (Threaded is the recommended choice)

Setting a Pylons application to use Fast-CGI is very easy, and merely requires you to change the config line like so:

default
[server:main]
use = egg:Paste#http

Use Fastcgi threaded
[server:main]
use = egg:PasteScript#flup_fcgi_thread
host = 0.0.0.0
port = 6500

Note that you will need to install the flup [http://www.saddi.com/software/flup/dist/] package, which can be
installed via easy_install:

$ easy_install -U flup

The options in the config file are passed onto flup. The two common ways to run Fast CGI is either using a socket to listen for requests, or listening on a port/host which allows a webserver to send your requests to web applications on a different machine.

To configure for a socket, your server:main section should look like this:

[server:main]
use = egg:PasteScript#flup_fcgi_thread
socket = /location/to/app.socket

If you want to listen on a host/port, the configuration cited in the first example will do the trick.

Apache Configuration

For this example, we will assume you’re using Apache 2, though Apache 1 configuration will be very similar. First, make sure that you have the Apache mod_fastcgi [http://fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html] module installed in
your Apache.

There will most likely be a section where you declare your FastCGI servers, and whether they’re external:

<IfModule mod_fastcgi.c>
FastCgiIpcDir /tmp
FastCgiExternalServer /some/path/to/app/myapp.fcgi -host some.host.com:6200
</IfModule>

In our example we’ll assume you’re going to run a Pylons web application listening on a host/port. Changing -host to -socket will let you use a Pylons web application listening on a socket.

The filename you give in the second option does not need to physically exist on the webserver, URIs that Apache resolve to this filename will be handled by the FastCGI application.

The other important line to ensure that your Apache webserver has is to indicate that fcgi scripts should be handled with Fast-CGI:

AddHandler fastcgi-script .fcgi

Finally, to configure your website to use the Fast CGI application you will need to indicate the script to be used:

<VirtualHost *:80>
 ServerAdmin george@monkey.com
 ServerName monkey.com
 ServerAlias www.monkey.com
 DocumentRoot /some/path/to/app

 ScriptAliasMatch ^(/.*)$ /some/path/to/app/myapp.fcgi$1
</VirtualHost>

Other useful directives should be added as needed, for example, the ErrorLog directive, etc. This configuration will result in all requests being sent to your FastCGI application.

PrefixMiddleware

PrefixMiddleware provides a way to manually override the root prefix (SCRIPT_NAME) of your application for certain situations.

When running an application under a prefix (such as ‘/james‘) in FastCGI/apache, the SCRIPT_NAME environment variable is automatically set to to the appropriate value: ‘/james‘. Pylons’ URL generators such as url always take the SCRIPT_NAME value into account.

One situation where PrefixMiddleware is required is when an application is accessed via a reverse proxy with a prefix. The application is accessed through the reverse proxy via the the URL prefix ‘/james‘, whereas the reverse proxy forwards those requests to the application at the prefix ‘/‘.

The reverse proxy, being an entirely separate web server, has no way of specifying the SCRIPT_NAME variable; it must be manually set by a PrefixMiddleware instance. Without setting SCRIPT_NAME, url will generate URLs such as: ‘/purchase_orders/1‘, when it should be generating: ‘/james/purchase_orders/1‘.

To filter your application through a PrefixMiddleware instance, add the following to the ‘[app:main]‘ section of your .ini file:

filter-with = proxy-prefix

[filter:proxy-prefix]
use = egg:PasteDeploy#prefix
prefix = /james

The name proxy-prefix simply acts as an identifier of the filter section; feel free to rename it.

These .ini settings are equivalent to adding the following to the end of your application’s config/middleware.py, right before the return app line:

This app is served behind a proxy via the following prefix (SCRIPT_NAME)
app = PrefixMiddleware(app, global_conf, prefix='/james')

This requires the additional import line:

from paste.deploy.config import PrefixMiddleware

Whereas the modification to config/middleware.py will setup an instance of PrefixMiddleware under every environment (.ini).

Documenting Your Application

TODO: this needs to be rewritten – Pudge is effectively dead

While the information in this document should be correct, it may not be entirely complete... Pudge is somewhat unruly to work with at this time, and you may need to experiment to find a working combination of package versions. In particular, it has been noted that an older version of Kid, like 0.9.1, may be required. You might also need to install {{RuleDispatch}} if you get errors related to {{FormEncode}} when attempting to build documentation.

Apologies for this suboptimal situation. Considerations are being taken to fix Pudge or supplant it for future versions of Pylons.

Introduction

Pylons comes with support for automatic documentation generation tools like Pudge [http://pudge.lesscode.org].

Automatic documentation generation allows you to write your main documentation in the docs directory of your project as well as throughout the code itself using docstrings.

When you run a simple command all the documentation is built into sophisticated HTML.

Tutorial

First create a project as described in Getting Started.

You will notice a docs directory within your main project directory. This is where you should write your main documentation.

There is already an index.txt file in docs so you can already generate documentation. First we’ll install Pudge and buildutils. By default, Pylons sets an option to use Pygments [http://pygments.org] for syntax-highlighting of code in your documentation, so you’ll need to install it too (unless you wish to remove the option from setup.cfg):

$ easy_install pudge buildutils
$ easy_install Pygments

then run the following command from your project’s main directory where the setup.py file is:

$ python setup.py pudge

Note

The pudge command is currently disabled by default. Run the following command first to enable it:

..code-block:: bash

$ python setup.py addcommand -p buildutils.pudge_command

Thanks to Yannick Gingras for the tip.

Pudge will produce output similar to the following to tell you what it is doing and show you any problems:

running pudge
generating documentation
copying: pudge\template\pythonpaste.org\rst.css -> do/docs/html\rst.css
copying: pudge\template\base\pudge.css -> do/docs/html\pudge.css
copying: pudge\template\pythonpaste.org\layout.css -> do/docs/html\layout.css
rendering: pudge\template\pythonpaste.org\site.css.kid -> site.css
colorizing: do/docs/html\do/__init__.py.html
colorizing: do/docs/html\do/tests/__init__.py.html
colorizing: do/docs/html\do/i18n/__init__.py.html
colorizing: do/docs/html\do/lib/__init__.py.html
colorizing: do/docs/html\do/controllers/__init__.py.html
colorizing: do/docs/html\do/model.py.html

Once finished you will notice a docs/html directory. The index.html is the main file which was generated from docs/index.txt.

Learning ReStructuredText

Python programs typically use a rather odd format for documentation called reStructuredText [http://docutils.sourceforge.net/rst.html]. It is designed so that the text file used to generate the HTML is as readable as possible but as a result can be a bit confusing for beginners.

Read the reStructuredText tutorial which is part of the docutils [http://docutils.sf.net] project.

Once you have mastered reStructuredText you can write documentation until your heart’s content.

Using Docstrings

Docstrings are one of Python’s most useful features if used properly. They are described in detail in the Python documentation but basically allow you to document any module, class, method or function, in fact just about anything. Users can then access this documentation interactively.

Try this:

>>> import pylons
>>> help(pylons)
...

As you can see if you tried it you get detailed information about the pylons module including the information in the docstring.

Docstrings are also extracted by Pudge so you can describe how to use all the controllers, actions and modules that make up your application. Pudge will extract that information and turn it into useful API documentation automatically.

Try clicking the Modules link in the HTML documentation you generated earlier or look at the Pylons source code for some examples of how to use docstrings.

Using doctest

The final useful thing about docstrings is that you can use the doctest module with them. doctest again is described in the Python documentation but it looks through your docstrings for things that look like Python code written at a Python prompt. Consider this example:

>>> a = 2
>>> b = 3
>>> a + b
5

If doctest was run on this file it would have found the example above and executed it. If when the expression a + b is executed the result was not 5, doctest would raise an Exception.

This is a very handy way of checking that the examples in your documentation are actually correct.

To run doctest on a module use:

if __name__ == "__main__":
 import doctest
 doctest.testmod()

The if __name__ == "__main__": part ensures that your module won’t be tested if it is just imported, only if it is run from the command line

To run doctest on a file use:

import doctest
doctest.testfile("docs/index.txt")

You might consider incorporating this functionality in your tests/test.py file to improve the testing of your application.

Summary

So if you write your documentation in reStructuredText, in the docs directory and in your code’s docstrings, liberally scattered with example code, Pylons provides a very useful and powerful system for you.

If you want to find out more information have a look at the Pudge documentation or try tinkering with your project’s setup.cfg file which contains the Pudge settings.

Distributing Your Application

TODO: this assumes helloworld tutorial context that is no longer present, and could be consolidated with packaging info in Packaging and Deployment Overview

As mentioned earlier eggs are a convenient format for packaging applications. You can create an egg for your project like this:

$ cd helloworld
$ python setup.py bdist_egg

Your egg will be in the dist directory and will be called helloworld-0.0.0dev-py2.4.egg.

You can change options in setup.py to change information about your project. For example change version to version="0.1.0", and run python setup.py bdist_egg again to produce a new egg with an updated version number.

You can then register your application with the Python Package Index [http://pypi.python.org/pypi] (PyPI) with the following command:

$ python setup.py register

Note

You should not do this unless you actually want to register a package!

If users want to install your software and have installed easy_install they can install your new egg as follows:

$ easy_install helloworld==0.1.0

This will retrieve the package from PyPI and install it. Alternatively you can install the egg locally:

$ easy_install -f C:\path\with\the\egg\files\in helloworld==0.1.0

In order to use the egg in a website you need to use Paste. You have already used Paste to create your Pylons template and to run a test server to test the tutorial application.

Paste is a set of tools available at http://pythonpaste.org for providing a uniform way in which all compatible Python web frameworks can work together. To run a paste application such as any Pylons application you need to create a Paste configuration file. The idea is that the your paste configuration file will contain all the configuration for all the different Paste applications you run. A configuration file suitable for development is in the helloworld/development.ini file of the tutorial but the idea is that the person using your egg will add relevant configuration options to their own Paste configuration file so that your egg behaves they way they want. See the section below for more on this configuration.

Paste configuration files can be run in many different ways, from CGI scripts, as standalone servers, with FastCGI, SCGI, mod_python and more. This flexibility means that your Pylons application can be run in virtually any environment and also take advantage of the speed benefits that the deployment option offers.

See also

Running Pylons Apps with Other Web Servers

Running Your Application

In order to run your application your users will need to install it as described above but then generate a config file and setup your application before deploying it. This is described in Runtime Configuration and Packaging and Deployment Overview.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Python 2.3 Installation Instructions

Advice of end of support for Python 2.3

Warning

END OF SUPPORT FOR PYTHON 2.3 This is the LAST version to support Python 2.3 BEGIN UPGRADING OR DIE

Preparation

First, please note that Python 2.3 users on Windows will need to install subprocess.exe [http://www.pylonshq.com/download/subprocess-0.1-20041012.win32-py2.3.exe] before beginning the installation (whereas Python 2.4 users on Windows do not). All windows users also should read the section Windows Notes after installation. Users of Ubuntu/debian will also likely need to install the python-dev package.

System-wide Install

To install Pylons so it can be used by everyone (you’ll need root access).

If you already have easy install:

$ easy_install Pylons==0.9.7

Note

On rare occasions, the python.org Cheeseshop goes down. It is still
possible to install Pylons and its dependencies however by specifying our
local package directory for installation with:

$ easy_install -f http://pylonshq.com/download/ Pylons==0.9.7

Which will use the packages necessary for the latest release. If you’re
using an older version of Pylons, you can get the packages that went with
it by specifying the version desired:

$ easy_install -f http://pylonshq.com/download/0.9.7/ Pylons==0.9.7

Otherwise:

	Download the easy install setup file from http://peak.telecommunity.com/dist/ez_setup.py

	Run:

$ python ez_setup.py Pylons==0.9.7

Warning

END OF SUPPORT FOR PYTHON 2.3 This is the LAST version to support Python 2.3 BEGIN UPGRADING OR DIE

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Windows Notes

Python scripts installed as part of the Pylons install process will be put in the Scripts directory of your Python installation, typically in C:\Python24\Scripts. By default on Windows, this directory is not in your PATH; this can cause the following error message when running a command such as paster from the command prompt:

C:\Documents and Settings\James>paster
'paster' is not recognized as an internal or external command,
operable program or batch file.

To run the scripts installed with Pylons either the full path must be specified:

C:\Documents and Settings\James>C:\Python24\Scripts\paster
Usage: C:\Python24\Scripts\paster-script.py COMMAND
usage: paster-script.py [paster_options] COMMAND [command_options]

options:
 --version show program's version number and exit
 --plugin=PLUGINS Add a plugin to the list of commands (plugins are Egg
 specs; will also require() the Egg)
 -h, --help Show this help message

... etc ...

or (the preferable solution) the Scripts directory must be added to the PATH as described below.

For Win2K or WinXP

	From the desktop or Start Menu, right click My Computer and click Properties.

	In the System Properties window, click on the Advanced tab.

	In the Advanced section, click the Environment Variables button.

	Finally, in the Environment Variables window, highlight the path variable in the Systems Variable section and click edit. Add or modify the path lines with the paths you wish the computer to access. Each different directory is separated with a semicolon as shown below:

C:\Program Files;C:\WINDOWS;C:\WINDOWS\System32

	Add the path to your scripts directory:

C:\Program Files;C:\WINDOWS;C:\WINDOWS\System32;C:\Python24\Scripts

See Finally below.

For Windows 95, 98 and ME

Edit autoexec.bat, and add the following line to the end of the file:

set PATH=%PATH%;C:\Python24\Scripts

See Finally below.

Finally

Restarting your computer may be required to enable the change to the PATH. Then commands may be entered from any location:

C:\Documents and Settings\James>paster
Usage: C:\Python24\Scripts\paster-script.py COMMAND
usage: paster-script.py [paster_options] COMMAND [command_options]

options:
 --version show program's version number and exit
 --plugin=PLUGINS Add a plugin to the list of commands (plugins are Egg
 specs; will also require() the Egg)
 -h, --help Show this help message

... etc ...

All documentation assumes the PATH is setup correctly as described above.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Security policy for bugs

Receiving Security Updates

The Pylons team have set up a mailing list at wsgi-security-announce@googlegroups.com to which any security vulnerabilities that affect Pylons will be announced. Anyone wishing to be notified of vulnerabilities in Pylons should subscribe to this list. Security announcements will only be made once a solution to the problem has been discovered.

Reporting Security Issues

Please report security issues by email to both the lead developers of Pylons at the following addresses:

ben[image: at]groovie.org

security[image: at]3aims.com

Please DO NOT announce the vulnerability to any mailing lists or on the ticket system because we would not want any malicious person to be aware of the problem before a solution is available.

In the event of a confirmed vulnerability in Pylons itself, we will take the following actions:

	Acknowledge to the reporter that we’ve received the report and that a fix is forthcoming. We’ll give a rough timeline and ask the reporter to keep the issue confidential until we announce it.

	Halt all other development as long as is needed to develop a fix, including patches against the current release.

	Publicly announce the vulnerability and the fix as soon as it is available to the WSGI security list at wsgi-security-announce@googlegroups.com.

This will probably mean a new release of Pylons, but in some cases it may simply be the release of documentation explaining how to avoid the vulnerability.

In the event of a confirmed vulnerability in one of the components that Pylons uses, we will take the following actions:

	Acknowledge to the reporter that we’ve received the report and ask the reporter to keep the issue confidential until we announce it.

	Contact the developer or maintainer of the package containing the vulnerability.

	If the developer or maintainer fails to release a new version in a reasonable time-scale and the vulnerability is serious we will either create documentation explaining how to avoid the problem or as a last resort, create a patched version.

	Publicly announce the vulnerability and the fix as soon as it is available to the WSGI security list at wsgi-security-announce@googlegroups.com.

Minimising Risk

	Only use official production versions of Pylons released publicly on the Python Package Index [http://python.org/pypi].

	Only use stable releases of third party software not development, alpha, beta or release candidate code.

	Do not assume that related software is of the same quality as Pylons itself, even if Pylons users frequently make use of it.

	Subscribe to the wsgi-security-announce@googlegroups.com mailing list to be informed of security issues and their solutions.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

WSGI support

The Web Server Gateway Interface defined in PEP 333 [http://www.python.org/dev/peps/pep-0333/] is a standard interface between web servers and Python web applications or frameworks, to promote web application portability across a variety of web servers.

Pylons supports the Web Server Gateway Interface (or WSGI for short, pronounced “wizgy”) throughout its stack. This is important for developers because it means that as well coming with all the features you would expect of a modern web framework, Pylons is also extremely flexible. With the WSGI it is possible to change any part of the Pylons stack to add new functionality or modify a request or a response without having to take apart the whole framework.

Paste and WSGI

Most of Pylons’ WSGI capability comes from its close integration with Paste. Paste provides all the tools and middleware necessary to deploy WSGI applications. It can be thought of as a low-level WSGI framework designed for other web frameworks to build upon. Pylons is an example of a framework which makes full use of the possibilities of Paste.

If you want to, you can get the WSGI application object from your Pylons configuration file like this:

from paste.deploy import loadapp
wsgi_app = loadapp('config:/path/to/config.ini')

You can then serve the file using a WSGI server. Here is an example using the WSGI Reference Implementation to be included with Python 2.5:

from paste.deploy import loadapp
wsgi_app = loadapp('config:/path/to/config.ini')

from wsgiref import simple_server
httpd = simple_server.WSGIServer(('',8000), simple_server.WSGIRequestHandler)
httpd.set_app(wsgi_app)
httpd.serve_forever()

The paster serve command you will be used to using during the development of Pylons projects combines these two steps of creating a WSGI app from the config file and serving the resulting file to give the illusion that it is serving the config file directly.

Because the resulting Pylons application is a WSGI application it means you can do the same things with it that you can do with any WSGI application. For example add a middleware chain to it or serve it via FastCGI/SCGI/CGI/mod_python/AJP or standalone.

You can also configure extra WSGI middleware, applications and more directly using the configuration file. The various options are described in the Paste Deploy Documentation [http://pythonpaste.org/deploy/] so we won’t repeat them here.

Using a WSGI Application as a Pylons 0.9 Controller

In Pylons 0.9 controllers are derived from pylons.controllers.WSGIController and are also valid WSGI applications. Unless your controller is derived from the legacy pylons.controllers.Controller class it is also assumed to be a WSGI application. This means that you don’t actually need to use a Pylons controller class in your controller, any WSGI application will work as long as you give it the same name.

For example, if you added a hello controller by executing paster controller hello, you could modify it to look like this:

def HelloController(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 return ['Hello World!']

or use yield statements like this:

def HelloController(environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 yield 'Hello '
 yield 'World!'

or use the standard Pylons Response object which is a valid WSGI response which takes care of calling start_response() for you:

def HelloController(environ, start_response):
 return Response('Hello World!')

and you could use the render() and render_response() objects exactly like you would in a normal controller action.

As well as writing your WSGI application as a function you could write it as a class:

class HelloController:

 def __call__(self, environ, start_response):
 start_response('200 OK', [('Content-Type','text/html')])
 return ['Hello World!']

All the standard Pylons middleware defined in config/middleware.py is still available.

Running a WSGI Application From Within a Controller

There may be occasions where you don’t want to replace your entire controller with a WSGI application but simply want to run a WSGI application from with a controller action. If your project was called test and you had a WSGI application called wsgi_app you could even do this:

from test.lib.base import *

def wsgi_app(environ, start_response):
 start_response('200 OK',[('Content-type','text/html')])
 return ['<html>\n<body>\nHello World!\n</body>\n</html>']

class HelloController(BaseController):
 def index(self):
 return wsgi_app(request.environ, self.start_response)

Configuring Middleware Within a Pylons Application

A Pylons application middleware stack is directly exposed in the project’s config/middleware.py file. This means that you can add and remove pieces from the stack as you choose.

Warning

If you remove any of the default middleware you are likely to find that various parts of Pylons stop working!

As an example, if you wanted to add middleware that added a new key to the environ dictionary you might do this:

YOUR MIDDLEWARE
Put your own middleware here, so that any problems are caught by the error
handling middleware underneath

class KeyAdder:
def __init__(self, app, key, value):
 self.app = app
 if '.' not in key:
 raise Exception("WSGI environ keys must contain a '.' character")
 self.key = key
 self.value = value

def __call__(self, environ, start_response):
 environ[self.key] = self.value
 return self.app(environ, start_response)

app = KeyAdder(app, 'test.hello', 'Hello World')

Then in your controller you could write:

return Response(request.environ['test.hello'])

and you would see your Hello World! message.

Of course, this isn’t a particularly useful thing to do. Middleware classes can do one of four things or a combination of them:

	Change the environ dictionary

	Change the status

	Change the HTTP headers

	Change the response body of the application

With the ability to do these things as a middleware you can create authentication code, error handling middleware and more but the great thing about WSGI is that someone probably already has so you can consult the wsgi.org middleware list [http://wsgi.org/wsgi/Middleware_and_Utilities] or have a look at the Paste project [http://pythonpaste.org] and reuse an exisiting piece of middleware.

The Cascade

Towards the end of the middleware stack in your project’s config/middleware.py file you will find a special piece of middleware called the cascade:

app = Cascade([static_app, javascripts_app, app])

Passed a list of applications, Cascade will try each of them in turn. If one returns a 404 status code then the next application is tried until one of the applications returns a code other than 200 in which case its response is returned. If all applications fail, then the last application’s failure response is used.

The three WSGI applications in the cascade serve files from your project’s public directory first then if nothing matches, the WebHelpers module JavaScripts are searched and finally if no JavaScripts are found your Pylons app is tried. This is why the public/index.html file is served before your controller is executed and why you can put /javascripts/ into your HTML and the files will be found.

You are free to change the order of the cascade or add extra WSGI applications to it before app so that other locations are checked before your Pylons application is executed.

Useful Resources

Whilst other frameworks have put WSGI adapters at the end of their stacks so that their applications can be served by WSGI servers, we hope you can see how fully Pylons embraces WSGI throughout its design to be the most flexible and extensible of the main Python web frameworks.

To find out more about the Web Server Gateway Interface you might find the following resources useful:

	PEP 333 [http://www.python.org/dev/peps/pep-0333/]

	The WSGI website at wsgi.org [http://wsgi.org]

	XML.com articles: Introducing WSGI - Pythons Secret Web Weapon.html Part 1 [http://www.xml.com/pub/a/2006/09/27/introducing-wsgi-pythons-secret-web-weapon.html] Part 2 [http://www.xml.com/pub/a/2006/10/04/introducing-wsgi-pythons-secret-web-weapon-part-two.html]

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Advanced Pylons

	WSGI, CLI scripts

	Adding commands to Paster

	Creating Paste templates

	Using Entry Points to Write Plugins

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Advanced Pylons

WSGI, CLI scripts

Working with wsgiwrappers.WSGIRequest

Pylons uses a specialised WSGIRequest class that is accessible via the
paste.wsgiwrappers module.

The wsgiwrappers.WSGIRequest object represents a WSGI request that has
a more programmer-friendly interface. This interface does not expose every
detail of the WSGI environment (why?) and does not attempt to express
anything beyond what is available in the environment dictionary.

The only state maintained in this object is the desired charset, an
associated errors handler and a decode_param_names option.

Unicode notes

When charset is set, the incoming parameter values will be
automatically coerced to unicode objects of the charset encoding.

When unicode is expected, charset will be overridden by the the value
of the charset parameter set in the Content-Type header, if one was
specified by the client.

The incoming parameter names are not decoded to unicode unless the
decode_param_names option is enabled.

The class variable defaults specifies default values for charset, errors,
and language. These default values can be overridden for the current request
via the registry (what’s a registry?).

The language default value is considered the fallback during i18n
translations to ensure in odd cases that mixed languages don’t occur should
the language file contain the string but not another language in the accepted
languages list. The language value only applies when getting a list of
accepted languages from the HTTP Accept header.

This behavior is duplicated from Aquarium, and may seem strange but is very
useful. Normally, everything in the code is in “en-us”. However, the “en-us”
translation catalog is usually empty. If the user requests [“en-us”, “zh-cn”]
and a translation isn’t found for a string in “en-us”, you don’t want gettext
to fallback to “zh-cn”. You want it to just use the string itself. Hence, if
a string isn’t found in the language catalog, the string in the source code
will be used.

All other state is kept in the environment dictionary; this is essential for
interoperability.

You are free to subclass this object.

Attributes

GET

A dictionary-like object representing the QUERY_STRING parameters. Always present, possibly empty.

If the same key is present in the query string multiple times, a list of its
values can be retrieved from the MultiDict via the :meth:getall
method.

Returns a MultiDict container or, when charset is set, a UnicodeMultiDict.

POST

A dictionary-like object representing the POST body.

Most values are encoded strings, or unicode strings when charset is set.
There may also be FieldStorage objects representing file uploads. If this is
not a POST request, or the body is not encoded fields (e.g., an XMLRPC
request) then this will be empty.

This will consume wsgi.input when first accessed if applicable, but the raw
version will be put in environ[‘paste.parsed_formvars’].

Returns a MultiDict container or a UnicodeMultiDict when charset is set.

cookies

A dictionary of cookies, keyed by cookie name.

Just a plain dictionary, may be empty but not None.

defaults

{'errors': 'replace',
 'decode_param_names': False,
 'charset': None,
 'language': 'en-us'}

host

The host name, as provided in HTTP_HOST with a fall-back to SERVER_NAME

is_xhr

Returns a boolean if X-Requested-With is present and is a XMLHttpRequest

languages

Returns a (possibly empty) list of preferred languages, most preferred first.

params

A dictionary-like object of keys from POST, GET, URL dicts

Return a key value from the parameters, they are checked in the following order: POST, GET, URL

Additional methods supported:

getlist(key)

Returns a list of all the values by that key, collected from POST, GET, URL dicts

Returns a MultiDict container or a UnicodeMultiDict when charset is set.

urlvars

Return any variables matched in the URL (e.g. wsgiorg.routing_args).

Methods

__init__(self, environ)

determine_browser_charset(self)

Determine the encoding as specified by the browser via the Content-Type’s charset parameter, if one is set

match_accept(self, mimetypes)

Return a list of specified mime-types that the browser’s HTTP Accept header allows in the order provided.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Advanced Pylons

Adding commands to Paster

Paster command

The command line will be paster my-command arg1 arg2 if the current directory is the application egg, or paster --plugin=MyPylonsApp my-command arg1 arg2 otherwise. In the latter case, MyPylonsApp must have been installed via easy_install or python setup.py develop.

Make a package directory for your commands:

$ mkdir myapp/commands
$ touch myapp/commands/__init__.py

Create a module myapp/commands/my_command.py like this:

from paste.script.command import Command

class MyCommand(Command):
 # Parser configuration
 summary = "--NO SUMMARY--"
 usage = "--NO USAGE--"
 group_name = "myapp"
 parser = Command.standard_parser(verbose=False)

 def command(self):
 import pprint
 print "Hello, app script world!"
 print
 print "My options are:"
 print " ", pprint.pformat(vars(self.options))
 print "My args are:"
 print " ", pprint.pformat(self.args)
 print
 print "My parser help is:"
 print
 print self.parser.format_help()

Note

The class _must_ define .command, .parser, and .summary

Modify the entry_points argument in setup.py to contain:

[paste.paster_command]
my-command = myapp.commands.my_command:MyCommand

Run python setup.py develop or easy_install . to update the entry points in the egg in sys.path.

Now you should be able to run:

$ paster --plugin=MyApp my-command arg1 arg2
Hello, MyApp script world!

My options are:
 {'interactive': False, 'overwrite': False, 'quiet': 0, 'verbose': 0}
My args are:
 ['arg1', 'arg2']

My parser help is:

Usage: /usr/local/bin/paster my-command [options] --NO USAGE--
--NO SUMMARY--

Options:
 -h, --help show this help message and exit

$ paster --plugin=MyApp --help
Usage: paster [paster_options] COMMAND [command_options]

...
myapp:
 my-command --NO SUMMARY--

pylons:
 controller Create a Controller and accompanying functional test
 restcontroller Create a REST Controller and accompanying functional test
 shell Open an interactive shell with the Pylons app loaded

Required class attributes

In addition to the .command method, the class should define .parser and .summary.

Command-line options

Command.standard_parser() returns a Python OptionParser. Calling parser.add_option enables the developer to add as many options as desired. Inside the .command method, the user’s options are available under self.options, and any additional arguments are in self.args.

There are several other class attributes that affect the parser; see them defined in paste.script.command:Command. The most useful attributes are .usage, .description, .min_args, and .max_args. .usage is the part of the usage string _after_ the command name. The .standard_parser() method has several optional arguments to add standardized options; some of these got added to my parser although I don’t see how.

See the paster shell command, pylons.commands:ShellCommand, for an example of using command-line options and loading the .ini file and model.

Also see “paster setup-app” where it is defined in paste.script.appinstall.SetupCommand. This is evident from the entry point in PasteScript (PasteScript-VERSION.egg/EGG_INFO/entry_points.txt). It is a complex example of reading a config file and delegating to another entry point.

The code for calling myapp.websetup:setup_config is in paste.script.appinstall.

The Command class also has several convenience methods to handle console prompts, enable logging, verify directories exist and that files have expected content, insert text into a file, run a shell command, add files to Subversion, parse “var=value” arguments, add variables to an .ini file.

Using paster to access a Pylons app

Paster provides request and post commands for running requests on an application. These commands will be run in the full configuration context of a normal application. Useful for cron jobs, the error handler will also be in place and you can get email reports of failed requests.

Because arguments all just go in QUERY_STRING, request.GET and request.PARAMS won’t look like you expect. But you can parse them with
something like:

parser = optparse.OptionParser()
parser.add_option(etc)

args = [item[0] for item in
 cgi.parse_qsl(request.environ['QUERY_STRING'])]

options, args = parser.parse_args(args)

paster request / post

Usage: paster request / post [options] CONFIG_FILE URL [OPTIONS/ARGUMENTS]

Run a request for the described application

This command makes an artifical request to a web application that uses a
paste.deploy configuration file for the server and application. Use ‘paster
request config.ini /url’ to request /url.

Use ‘paster post config.ini /url < data’ to do a POST with the given request body.

If the URL is relative (i.e. doesn’t begin with /) it is interpreted as relative to /.command/.

The variable environ['paste.command_request'] will be set to True in the request, so your application can distinguish these calls from normal requests.

Note that you can pass options besides the options listed here; any unknown options will be passed to the application in environ['QUERY_STRING'].

Options:
 -h, --help show this help message and exit
 -v, --verbose
 -q, --quiet
 -n NAME, --app-name=NAME
 Load the named application (default main)
 --config-var=NAME:VALUE
 Variable to make available in the config for %()s
 substitution (you can use this option multiple times)
 --header=NAME:VALUE Header to add to request (you can use this option
 multiple times)
 --display-headers Display headers before the response body

Future development

A Pylons controller that handled some of this would probably be quite
useful. Probably even nicer with additions to the current template, so
that /.command/ all gets routed to a single controller that uses actions
for the various sub-commands, and can provide a useful response to
/.command/?-h, etc.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Advanced Pylons

Creating Paste templates

Introduction

Python Paste [http://pythonpaste.org/] is an extremely powerful package that isn’t just about WSGI middleware. The related document Using Entry Points to Write Plugins demonstrates how to use entry_points to create simple plugins. This document describes how to write just such a plugin for use Paste’s project template creation facility and how to add a command to Paste’s paster script.

The example task is to create a template for an imaginary content management system. The template is going to produce a project directory structure for a Python package, so we need to be able to specify a package name.

Creating The Directory Structure and Templates

The directory structure for the new project needs to look like this:

- default_project
 - +package+
 - __init__.py
 - static
 - layout
 - region
 - renderer
 - service
 - layout
 - __init__.py
 - region
 - __init__.py
 - renderer
 - __init__.py
 - setup.py_tmpl
 - setup.cfg_tmpl
 - development.ini_tmpl
 - README.txt_tmpl
 - ez_setup.py

Of course, the actual project’s directory structure might look very different. In fact the paster create command can even be used to generate directory structures which aren’t project templates — although this wasn’t what it was designed for.

When the paster create command is run, any directories with +package+ in their name will have that portion of the name replaced by a simplified package name and likewise any directories with +egg+ in their name will have that portion replaced by the name of the egg directory, although we don’t make use of that feature in this example.

All of the files with _tmpl at the end of their filenames are treated as templates and will have the variables they contain replaced automatically. All other files will remain unchanged.

Note

The small templating language used with paster create in files ending in _tmpl is described in detail in the Paste util module documentation [http://pythonpaste.org/module-paste.util.template.html]

When specifying a package name it can include capitalisation and _ characters but it should be borne in mind that the actual name of the package will be the lowercase package name with the _ characters removed. If the package name contains an _, the egg name will contain a _ character so occasionally the +egg+ name is different to the +package+ name.

To avoid difficulty always recommend to users that they stick with package names that contain no _ characters so that the names remain unique when made lowercase.

Implementing the Code

Now that the directory structure has been defined, the next step is to implement the commands that will convert this to a ready-to-run project. The template creation commands are implemented by a class derived from paste.script.templates.Template. This is how our example appears:

from paste.script.templates import Template, var

vars = [
 var('version', 'Version (like 0.1)'),
 var('description', 'One-line description of the package'),
 var('long_description', 'Multi-line description (in reST)'),
 var('keywords', 'Space-separated keywords/tags'),
 var('author', 'Author name'),
 var('author_email', 'Author email'),
 var('url', 'URL of homepage'),
 var('license_name', 'License name'),
 var('zip_safe', 'True/False: if the package can be distributed as a .zip file',
 default=False),
]

class ArtProjectTemplate(Template):
 _template_dir = 'templates/default_project'
 summary = 'Art project template'
 vars = vars

The vars arguments can all be set at run time and will be available to be used as (in this instance) Cheetah template variables in the files which end _tmpl. For example the setup.py_tmpl file for the default_project might look like this:

from setuptools import setup, find_packages

version = ${repr(version)|"0.0"}

setup(name=${repr(project)},
 version=version,
 description="${description|nothing}",
 long_description="""\
 ${long_description|nothing}""",
 classifiers=[],
 keywords=${repr(keywords)|empty},
 author=${repr(author)|empty},
 author_email=${repr(author_email)|empty},
 url=${repr(url)|empty},
 license=${repr(license_name)|empty},
 packages=find_packages(exclude=['ez_setup']),
 include_package_data=True,
 zip_safe=${repr(bool(zip_safe))|False},
 install_requires=[
 # Extra requirements go here #
],
 entry_points="""
 [paste.app_factory]
 main=${package}:make_app
 """,
)

Note how the variables specified in vars earlier are used to generate the actual setup.py file.

In order to use the new templates they must be hooked up to the paster create command by means of an entry point. In the setup.py file of the project (in which created the project template is going to be stored) we need to add the following:

entry_points="""
 [paste.paster_create_template]
 art_project=art.entry.template:ArtProjectTemplate
""",

We also need to add PasteScript>=1.3 to the install_requires line.

install_requires=["PasteScript>=1.3"],

We just need to install the entry points now by running:

python setup.py develop

We should now be able to see a list of available templates with this command:

$ paster create --list-templates

Note

Windows users will need to add their Python scripts directory to their path or enter the full version of the command, similar to this:

C:\Python24\Scripts\paster.exe create --list-templates

You should see the following:

Available templates:
art_project: Art project template
basic_package: A basic setuptools-enabled package

There may be other projects too.

Troubleshooting

If the Art entries don’t show up, check whether it is possible to import the template.py file because any errors are simply ignored by the paster create command rather than output as a warning.

If the code is correct, the issue might be that the entry points data hasn’t been updated. Examine the Python site-packages directory and delete the Art.egg-link files, any Art*.egg files or directories and remove any entries for art from easy_install.pth (replacing Art with the name chosen for the project of course). Then re-run python setup.py develop to install the correct information.

If problems are still evident, then running the following code will print out a list of all entry points. It might help track the problem down:

import pkg_resources
 for x in pkg_resources.iter_group_name(None, None):
 print x

Using the Template

Now that the entry point is working, a new project can be created:

$ paster create --template=art TestProject

Paster will ask lots of questions based on the variables set up in vars earlier. Pressing return will cause the default to be used. The final result is a nice project template ready for people to start coding with.

Implementing Pylons Templates

If the development context is subject to a frequent need to create lots of Pylons projects, each with a slightly different setup from the standard Pylons defaults then it is probably desirable to create a customised Pylons template to use when generating projects. This can be done in exactly the way described in this document.

First, set up a new Python package, perhaps called something like CustomPylons (obviously, don’t use the Pylons name because Pylons itself is already using it). Then check out the Pylons source code and copy the pylons/templates/default_project [http://pylonshq.com/project/pylonshq/browser/Pylons/trunk/pylons/templates/default_project] directory into the new project as a starting point. The next stage is to add the custom vars and Template class and set up the entry points in the CustomPylons setup.py file.

After those tasks have been completed, it is then possible to create customised templates (ultimately based on the Pylons one) by using the CustomPylons package.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Advanced Pylons

Using Entry Points to Write Plugins

Introduction

An entry point is a Python object in a project’s code that is identified by a string in the project’s setup.py file. The entry point is referenced by a group and a name so that the object may be discoverabe. This means that another application can search for all the installed software that has an entry point with a particular group name, and then access the Python object associated with that name.

This is extremely useful because it means it is possible to write plugins for an appropriately-designed application that can be loaded at run time. This document describes just such an application.

It is important to understand that entry points are a feature of the new Python eggs package format and are not a standard feature of Python. To learn about eggs, their benefits, how to install them and how to set them up, see:

	Python Eggs [http://peak.telecommunity.com/DevCenter/PythonEggs]

	Easy Install [http://peak.telecommunity.com/DevCenter/EasyInstall]

	Setuptools [http://peak.telecommunity.com/DevCenter/setuptools]

If reading the above documentation is inconvenient, suffice it to say that eggs are created via a similar setup.py file to the one used by Python’s own distutils [http://docs.python.org/lib/module-distutils.html] module — except that eggs have some powerful extra features such as entry points and the ability to specify module dependencies and have them automatically installed by easy_install when the application itself is installed.

For those developers unfamiliar with distutils: it is the standard mechanism by which Python packages should be distributed. To use it, add a setup.py file to the desired project, insert the required metadata and specify the important files. The setup.py file can be used to issue various commands which create distributions of the pacakge in various formats for users to install.

Creating Plugins

This document describes how to use entry points to create a plugin mechansim which allows new types of content to be added to a content management system but we are going to start by looking at the plugin.

Say the standard way the CMS creates a plugin is with the make_plugin() function. In order for a plugin to be a plugin it must therefore have the function which takes the same arguments as the make_plugin() function and returns a plugin. We are going to add some image plugins to the CMS so we setup a project with the following directory structure:

+ image_plugins
 + __init__.py
+ setup.py

The image_plugins/__init__.py file looks like this:

def make_jpeg_image_plugin():
 return "This would return the JPEG image plugin"

def make_png_image_plugin():
 return "This would return the PNG image plugin"

We have now defined our plugins so we need to define our entry points. First lets write a basic setup.py for the project:

from setuptools import setup, find_packages

setup(
 name='ImagePlugins',
 version="1.0",
 description="Image plugins for the imaginary CMS 1.0 project",
 author="James Gardner",
 packages=find_packages(),
 include_package_data=True,
)

When using setuptools we can specify the find_packages() function and include_package_data=True rather than having to manually list all the modules and package data like we had to do in the old distutils setup.py.

Because the plugin is designed to work with the (imaginary) CMS 1.0 package, we need to specify that the plugin requires the CMS to be installed too and so we add this line to the setup() function:

install_requires=["CMS>=1.0"],

Now when the plugins are installed, CMS 1.0 or above will be installed automatically if it is not already present.

There are lots of other arguments such as author_email or url which you can add to the setup.py function too.

We are interested in adding the entry points. We need to decide on a group name for the entry points. It is traditional to use the name of the package using the entry point, separated by a . character and then use a name that describes what the entry point does. For our example cms.plugin might be an appropriate name for the entry point. Since the image_plugin module contains two plugins we will need two entries. Add the following to the setup.py function:

entry_points="""
 [cms.plugin]
 jpg_image=image_plugin:make_jpeg_image_plugin
 png_image=image_plugin:make_jpeg_image_plugin
""",

Group names are specified in square brackets, plugin names are specified in the format name=module.import.path:object_within_the_module. The object doesn’t have to be a function and can have any valid Python name. The module import path doesn’t have to be a top level component as it is in this example and the name of the entry point doesn’t have to be the same as the name of the object it is pointing to.

The developer can add as many entries as desired in each group as long as the names are different and the same holds for adding groups. It is also possible to specify the entry points as a Python dictionary rather than a string if that approach is preferred.

There are two more things we need to do to complete the plugin. The first is to include an ez_setup module so that if the user installing the plugin doesn’t have setuptools installed, it will be installed for them. We do this by adding the follwoing to the very top of the setup.py file before the import:

from ez_setup import use_setuptools
use_setuptools()

We also need to download the ez_setup.py file into our project directory at the same level as setup.py.

Note

If you keep your project in SVN there is a trick you can use with the `SVN:externals [http://peak.telecommunity.com/DevCenter/setuptools#managing-multiple-projects] to keep the ez_setup.py file up to date.

Finally in order for the CMS to find the plugins we need to install them. We can do this with:

$ python setup.py install

as usual or, since we might go on to develop the plugins further we can install them using a special development mode which sets up the paths to run the plugins from the source rather than installing them to Python’s site-packages directory:

$ python setup.py develop

Both commands will download and install setuptools if you don’t already have it installed.

Using Plugins

Now that the plugin is written we need to write the code in the CMS package to load it. Luckily this is even easier.

There are actually lots of ways of discovering plugins. For example: by distribution name and version requirement (such as ImagePlugins>=1.0) or by the entry point group and name (eg jpg_image). For this example we are choosing the latter, here is a simple script for loading the plugins:

from pkg_resources import iter_entry_points
for object in iter_entry_points(group='cms.plugin', name=None):
 print object()

from pkg_resources import iter_entry_points
available_methods = []
for method_handler in iter_entry_points(group='authkit.method', name=None):
 available_methods.append(method_handler.load())

Executing this short script, will result in the following output:

This would return the JPEG image plugin
This would return the PNG image plugin

The iter_entry_points() function has looped though all the objects in the cms.plugin group and returned the function they were associated with. The application then called the function that the enrty point was pointing to.

We hope that we have demonstrated the power of entry points for building extensible code and developers are encouraged to read the pkg_resources [http://peak.telecommunity.com/DevCenter/PkgResources] module documentation to learn about some more features of the eggs format.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Pylons Modules

	pylons.commands – Command line functions
	Module Contents

	pylons.configuration – Configuration object and defaults setup
	Module Contents

	pylons.controllers – Controllers

	pylons.controllers.core – WSGIController Class
	Module Contents

	pylons.controllers.util – Controller Utility functions
	Module Contents

	pylons.controllers.xmlrpc – XMLRPCController Class
	Module Contents

	pylons.decorators – Decorators
	Module Contents

	pylons.decorators.cache – Cache Decorators
	Module Contents

	pylons.decorators.rest – REST-ful Decorators
	Module Contents

	pylons.decorators.secure – Secure Decorators
	Module Contents

	pylons.error – Error handling support

	pylons.i18n.translation – Translation/Localization functions
	Module Contents

	pylons.log – Logging for WSGI errors
	Module Contents

	pylons.middleware – WSGI Middleware
	Module Contents

	Referenced classes

	Legacy

	pylons.templating – Render functions and helpers
	Module Contents

	pylons.test – Test related functionality
	Module Contents

	pylons.util – Paste Template and Pylons utility functions
	Module Contents

	pylons.wsgiapp – PylonsWSGI App Creator
	Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.commands – Command line functions

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.configuration – Configuration object and defaults setup

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.controllers – Controllers

This module makes available the
WSGIController and
XMLRPCController for easier importing.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.controllers.core – WSGIController Class

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.controllers.util – Controller Utility functions

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.controllers.xmlrpc – XMLRPCController Class

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.decorators – Decorators

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.decorators.cache – Cache Decorators

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.decorators.rest – REST-ful Decorators

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.decorators.secure – Secure Decorators

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.error – Error handling support

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.i18n.translation – Translation/Localization functions

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.log – Logging for WSGI errors

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.middleware – WSGI Middleware

Module Contents

Note

	The errorware dictionary is constructed from the settings in the DEFAULT section of development.ini. the recognised keys and settings at initialization are:

	
	error_email = conf.get(‘email_to’)

	error_log = conf.get(‘error_log’, None)

	smtp_server = conf.get(‘smtp_server’,’localhost’)

	error_subject_prefix = conf.get(‘error_subject_prefix’, ‘WebApp Error: ‘)

	from_address = conf.get(‘from_address’, conf.get(‘error_email_from’, 'pylons@yourapp.com‘))

	error_message = conf.get(‘error_message’, ‘An internal server error occurred’)

Referenced classes

Pylons middleware uses WebError to effect the error-handling. The two classes implicated are:

ErrorMiddleware

weberror.errormiddleware
weberror.errormiddleware.ErrorMiddleware

EvalException

weberror.evalexception
weberror.evalexception.EvalException

Legacy

Changed in version 0.9.7: These functions were deprecated in Pylons 0.9.7, and have been superceded
by the StatusCodeRedirect middleware.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.templating – Render functions and helpers

Module Contents

Legacy Render Functions

Legacy Buffet Functions

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.test – Test related functionality

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.util – Paste Template and Pylons utility functions

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Pylons Modules

pylons.wsgiapp – PylonsWSGI App Creator

Module Contents

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

Third-party components

	beaker – Beaker Caching

	FormEncode

	routes – Route and Mapper core classes

	weberror – Weberror

	webhelpers – Web Helpers package

	webtest – WebTest

	webob – WebOb

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

beaker – Beaker Caching

Cache

This package contains the “front end” classes and functions
for Beaker caching.

Included are the Cache and CacheManager classes,
as well as the function decorators region_decorate(),
region_invalidate().

	
class beaker.cache.Cache(namespace, type='memory', expiretime=None, starttime=None, expire=None, **nsargs)

	Front-end to the containment API implementing a data cache.

	Parameters:	
	namespace – the namespace of this Cache

	type – type of cache to use

	expire – seconds to keep cached data

	expiretime – seconds to keep cached data (legacy support)

	starttime – time when cache was cache was

	
clear()

	Clear all the values from the namespace

	
get(key, **kw)

	Retrieve a cached value from the container

	
get_value(key, **kw)

	Retrieve a cached value from the container

	
class beaker.cache.CacheManager(**kwargs)

	
	
cache(*args, **kwargs)

	Decorate a function to cache itself with supplied parameters

	Parameters:	
	args – Used to make the key unique for this function, as in region()
above.

	kwargs – Parameters to be passed to get_cache(), will override defaults

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things():

 @cache.cache('mycache', expire=15)
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 return load('rabbits', 20, 0)

Note

The function being decorated must only be called with
positional arguments.

	
invalidate(func, *args, **kwargs)

	Invalidate a cache decorated function

This function only invalidates cache spaces created with the
cache decorator.

	Parameters:	
	func – Decorated function to invalidate

	args – Used to make the key unique for this function, as in region()
above.

	kwargs – Parameters that were passed for use by get_cache(), note that
this is only required if a type was specified for the
function

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things(invalidate=False):

 @cache.cache('mycache', type="file", expire=15)
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 # If the results should be invalidated first
 if invalidate:
 cache.invalidate(load, 'mycache', 'rabbits', 20, 0, type="file")
 return load('rabbits', 20, 0)

	
region(region, *args)

	Decorate a function to cache itself using a cache region

The region decorator requires arguments if there are more than
two of the same named function, in the same module. This is
because the namespace used for the functions cache is based on
the functions name and the module.

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things():

 @cache.region('short_term', 'some_data')
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 return load('rabbits', 20, 0)

Note

The function being decorated must only be called with
positional arguments.

	
region_invalidate(namespace, region, *args)

	Invalidate a cache region namespace or decorated function

This function only invalidates cache spaces created with the
cache_region decorator.

	Parameters:	
	namespace – Either the namespace of the result to invalidate, or the
cached function

	region – The region the function was cached to. If the function was
cached to a single region then this argument can be None

	args – Arguments that were used to differentiate the cached
function as well as the arguments passed to the decorated
function

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things(invalidate=False):

 @cache.region('short_term', 'some_data')
 def load(search_term, limit, offset):
 return load_the_data(search_term, limit, offset)

 # If the results should be invalidated first
 if invalidate:
 cache.region_invalidate(load, None, 'some_data',
 'rabbits', 20, 0)
 return load('rabbits', 20, 0)

Container

Container and Namespace classes

	
beaker.container.ContainerContext

	alias of dict

	
class beaker.container.Container

	Implements synchronization and value-creation logic
for a ‘value’ stored in a NamespaceManager.

Container and its subclasses are deprecated. The
Value class is now used for this purpose.

	
class beaker.container.MemoryContainer

	

	
class beaker.container.DBMContainer

	

	
class beaker.container.NamespaceManager(namespace)

	Handles dictionary operations and locking for a namespace of
values.

NamespaceManager provides a dictionary-like interface,
implementing __getitem__(), __setitem__(), and
__contains__(), as well as functions related to lock
acquisition.

The implementation for setting and retrieving the namespace data is
handled by subclasses.

NamespaceManager may be used alone, or may be accessed by
one or more Value objects. Value objects provide per-key
services like expiration times and automatic recreation of values.

Multiple NamespaceManagers created with a particular name will all
share access to the same underlying datasource and will attempt to
synchronize against a common mutex object. The scope of this
sharing may be within a single process or across multiple
processes, depending on the type of NamespaceManager used.

The NamespaceManager itself is generally threadsafe, except in the
case of the DBMNamespaceManager in conjunction with the gdbm dbm
implementation.

	
class beaker.container.MemoryNamespaceManager(namespace, **kwargs)

	NamespaceManager that uses a Python dictionary for storage.

	
class beaker.container.DBMNamespaceManager(namespace, dbmmodule=None, data_dir=None, dbm_dir=None, lock_dir=None, digest_filenames=True, **kwargs)

	NamespaceManager that uses dbm files for storage.

	
class beaker.container.FileContainer

	

	
class beaker.container.FileNamespaceManager(namespace, data_dir=None, file_dir=None, lock_dir=None, digest_filenames=True, **kwargs)

	NamespaceManager that uses binary files for storage.

Each namespace is implemented as a single file storing a
dictionary of key/value pairs, serialized using the Python
pickle module.

	
exception beaker.container.CreationAbortedError

	Deprecated.

Database

	
class beaker.ext.database.DatabaseNamespaceManager(namespace, url=None, sa_opts=None, optimistic=False, table_name='beaker_cache', data_dir=None, lock_dir=None, schema_name=None, **params)

	

	
class beaker.ext.database.DatabaseContainer

	

Google

	
class beaker.ext.google.GoogleNamespaceManager(namespace, table_name='beaker_cache', **params)

	

	
class beaker.ext.google.GoogleContainer

	

Memcached

	
class beaker.ext.memcached.MemcachedNamespaceManager(namespace, url, memcache_module='auto', data_dir=None, lock_dir=None, **kw)

	Provides the NamespaceManager API over a memcache client library.

	
class beaker.ext.memcached.MemcachedContainer

	Container class which invokes MemcacheNamespaceManager.

Middleware

	
class beaker.middleware.CacheMiddleware(app, config=None, environ_key='beaker.cache', **kwargs)

	

	
class beaker.middleware.SessionMiddleware(wrap_app, config=None, environ_key='beaker.session', **kwargs)

	

Session

	
class beaker.session.SignedCookie(secret, input=None)

	Extends python cookie to give digital signature support

	
class beaker.session.Session(request, id=None, invalidate_corrupt=False, use_cookies=True, type=None, data_dir=None, key='beaker.session.id', timeout=None, cookie_expires=True, cookie_domain=None, cookie_path='/', secret=None, secure=False, namespace_class=None, httponly=False, encrypt_key=None, validate_key=None, **namespace_args)

	Session object that uses container package for storage.

	Parameters:	
	invalidate_corrupt (bool) – How to handle corrupt data when loading. When
set to True, then corrupt data will be silently
invalidated and a new session created,
otherwise invalid data will cause an exception.

	use_cookies (bool) – Whether or not cookies should be created. When set to
False, it is assumed the user will handle storing the
session on their own.

	type – What data backend type should be used to store the underlying
session data

	key – The name the cookie should be set to.

	timeout (int) – How long session data is considered valid. This is used
regardless of the cookie being present or not to determine
whether session data is still valid.

	cookie_expires – Expiration date for cookie

	cookie_domain – Domain to use for the cookie.

	cookie_path – Path to use for the cookie.

	secure – Whether or not the cookie should only be sent over SSL.

	httponly – Whether or not the cookie should only be accessible by
the browser not by JavaScript.

	encrypt_key – The key to use for the local session encryption, if not
provided the session will not be encrypted.

	validate_key – The key used to sign the local encrypted session

	
class beaker.session.SessionObject(environ, **params)

	Session proxy/lazy creator

This object proxies access to the actual session object, so that in
the case that the session hasn’t been used before, it will be
setup. This avoid creating and loading the session from persistent
storage unless its actually used during the request.

Synchronization

Synchronization functions.

File- and mutex-based mutual exclusion synchronizers are provided,
as well as a name-based mutex which locks within an application
based on a string name.

	
class beaker.synchronization.NameLock(identifier=None, reentrant=False)

	a proxy for an RLock object that is stored in a name based
registry.

Multiple threads can get a reference to the same RLock based on the
name alone, and synchronize operations related to that name.

	
class beaker.synchronization.SynchronizerImpl

	Base class for a synchronization object that allows
multiple readers, single writers.

	
class beaker.synchronization.FileSynchronizer(identifier, lock_dir)

	A synchronizer which locks using flock().

	
class beaker.synchronization.ConditionSynchronizer(identifier)

	a synchronizer using a Condition.

Util

Beaker utilities

	
class beaker.util.SyncDict

	An efficient/threadsafe singleton map algorithm, a.k.a.
“get a value based on this key, and create if not found or not
valid” paradigm:

exists && isvalid ? get : create

Designed to work with weakref dictionaries to expect items
to asynchronously disappear from the dictionary.

Use python 2.3.3 or greater ! a major bug was just fixed in Nov.
2003 that was driving me nuts with garbage collection/weakrefs in
this section.

	
class beaker.util.WeakValuedRegistry

	

	
class beaker.util.ThreadLocal

	stores a value on a per-thread basis

	
beaker.util.verify_directory(dir)

	verifies and creates a directory. tries to
ignore collisions with other threads and processes.

	
beaker.util.encoded_path(root, identifiers, extension='.enc', depth=3, digest_filenames=True)

	Generate a unique file-accessible path from the given list of
identifiers starting at the given root directory.

	
beaker.util.verify_options(opt, types, error)

	

	
beaker.util.verify_rules(params, ruleset)

	

	
beaker.util.coerce_session_params(params)

	

	
beaker.util.coerce_cache_params(params)

	

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

FormEncode

FormEncode is a validation and form generation package. The validation can be used separately from the form generation. The validation works on compound data structures, with all parts being nestable. It is separate from HTTP or any other input mechanism.

These module API docs are divided into section by category.

Core API

formencode.api

These functions are used mostly internally by FormEncode.

Core classes for validation.

	
formencode.api.is_validator(obj)

	Returns whether obj is a validator object or not.

	
class formencode.api.Invalid(msg, value, state, error_list=None, error_dict=None)

	This is raised in response to invalid input. It has several
public attributes:

	msg:

	The message, without values substituted. For instance, if
you want HTML quoting of values, you can apply that.

	substituteArgs:

	The arguments (a dictionary) to go with msg.

	str(self):

	The message describing the error, with values substituted.

	value:

	The offending (invalid) value.

	state:

	The state that went with this validator. This is an
application-specific object.

	error_list:

	If this was a compound validator that takes a repeating value,
and sub-validator(s) had errors, then this is a list of those
exceptions. The list will be the same length as the number of
values – valid values will have None instead of an exception.

	error_dict:

	Like error_list, but for dictionary compound validators.

	
__init__(msg, value, state, error_list=None, error_dict=None)

	

	
unpack_errors(encode_variables=False, dict_char='.', list_char='-')

	Returns the error as a simple data structure – lists,
dictionaries, and strings.

If encode_variables is true, then this will return a flat
dictionary, encoded with variable_encode

	
class formencode.api.Validator(*args, **kw)

	The base class of most validators. See IValidator for more, and
FancyValidator for the more common (and more featureful) class.

Messages

	
classmethod all_messages()

	Return a dictionary of all the messages of this validator, and
any subvalidators if present. Keys are message names, values
may be a message or list of messages. This is really just
intended for documentation purposes, to show someone all the
messages that a validator or compound validator (like Schemas)
can produce.

@@: Should this produce a more structured set of messages, so
that messages could be unpacked into a rendered form to see
the placement of all the messages? Well, probably so.

	
if_missing

	alias of NoDefault

	
classmethod subvalidators()

	Return any validators that this validator contains. This is
not useful for functional, except to inspect what values are
available. Specifically the .all_messages() method uses
this to accumulate all possible messages.

	
class formencode.api.FancyValidator(*args, **kw)

	FancyValidator is the (abstract) superclass for various validators
and converters. A subclass can validate, convert, or do both.
There is no formal distinction made here.

Validators have two important external methods:

	.to_python(value, state):
Attempts to convert the value. If there is a problem, or the
value is not valid, an Invalid exception is raised. The
argument for this exception is the (potentially HTML-formatted)
error message to give the user.

	.from_python(value, state):
Reverses to_python.

There are five important methods for subclasses to override,
however none of these have to be overridden, only the ones that
are appropriate for the validator:

	__init__():
if the declarative.Declarative model doesn’t work for this.

	.validate_python(value, state):
This should raise an error if necessary. The value is a Python
object, either the result of to_python, or the input to
from_python.

	.validate_other(value, state):
Validates the source, before to_python, or after from_python.
It’s more common to use .validate_python() however.

	._to_python(value, state):
This returns the converted value, or raises an Invalid
exception if there is an error. The argument to this exception
should be the error message.

	._from_python(value, state):
Should undo .to_python() in some reasonable way, returning
a string.

Validators should have no internal state besides the
values given at instantiation. They should be reusable and
reentrant.

All subclasses can take the arguments/instance variables:

	if_empty:
If set, then this value will be returned if the input evaluates
to false (empty list, empty string, None, etc), but not the 0 or
False objects. This only applies to .to_python().

	not_empty:
If true, then if an empty value is given raise an error.
(Both with .to_python() and also .from_python()
if .validate_python is true).

	strip:
If true and the input is a string, strip it (occurs before empty
tests).

	if_invalid:
If set, then when this validator would raise Invalid during
.to_python(), instead return this value.

	if_invalid_python:
If set, when the Python value (converted with
.from_python()) is invalid, this value will be returned.

	accept_python:
If True (the default), then .validate_python() and
.validate_other() will not be called when
.from_python() is used.

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
base64encode(value)

	Encode a string in base64, stripping whitespace and removing
newlines.

	
if_empty

	alias of NoDefault

	
if_invalid

	alias of NoDefault

	
if_invalid_python

	alias of NoDefault

	
validate_other(value, state)

	A validation method that doesn’t do anything.

	
validate_python(value, state)

	A validation method that doesn’t do anything.

formencode.schema

The FormEncode schema is one of the most important parts of using FormEncode,
as it lets you organize validators into parts that can be re-used between
schemas. Generally, a single schema will represent an entire form, but may
inherit other schemas for re-usable validation parts (ie, maybe multiple
forms all requires first and last name).

	
class formencode.schema.Schema(*args, **kw)

	A schema validates a dictionary of values, applying different
validators (be key) to the different values. If
allow_extra_fields=True, keys without validators will be allowed;
otherwise they will raise Invalid. If filter_extra_fields is
set to true, then extra fields are not passed back in the results.

Validators are associated with keys either with a class syntax, or
as keyword arguments (class syntax is usually easier). Something
like:

class MySchema(Schema):
 name = Validators.PlainText()
 phone = Validators.PhoneNumber()

These will not be available as actual instance variables, but will
be collected in a dictionary. To remove a validator in a subclass
that is present in a superclass, set it to None, like:

class MySubSchema(MySchema):
 name = None

Note that missing fields are handled at the Schema level. Missing
fields can have the ‘missing’ message set to specify the error
message, or if that does not exist the schema message
‘missingValue’ is used.

Messages

	badDictType:

	The input must be dict-like (not a %(type)s: %(value)r)

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	missingValue:

	Missing value

	noneType:

	The input must be a string (not None)

	notExpected:

	The input field %(name)s was not expected.

	
class formencode.schema.SimpleFormValidator(*args, **kw)

	This validator wraps a simple function that validates the form.

The function looks something like this:

>>> def validate(form_values, state, validator):
... if form_values.get('country', 'US') == 'US':
... if not form_values.get('state'):
... return dict(state='You must enter a state')
... if not form_values.get('country'):
... form_values['country'] = 'US'

This tests that the field ‘state’ must be filled in if the country
is US, and defaults that country value to ‘US’. The validator
argument is the SimpleFormValidator instance, which you can use to
format messages or keep configuration state in if you like (for
simple ad hoc validation you are unlikely to need it).

To create a validator from that function, you would do:

>>> from formencode.schema import SimpleFormValidator
>>> validator = SimpleFormValidator(validate)
>>> validator.to_python({'country': 'US', 'state': ''}, None)
Traceback (most recent call last):
 ...
Invalid: state: You must enter a state
>>> validator.to_python({'state': 'IL'}, None)
{'country': 'US', 'state': 'IL'}

The validate function can either return a single error message
(that applies to the whole form), a dictionary that applies to the
fields, None which means the form is valid, or it can raise
Invalid.

Note that you may update the value_dict in place, but you cannot
return a new value.

Another way to instantiate a validator is like this:

>>> @SimpleFormValidator.decorate()
... def MyValidator(value_dict, state):
... return None # or some more useful validation

After this MyValidator will be a SimpleFormValidator
instance (it won’t be your function).

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

Validators

Validator/Converters for use with FormEncode.

	
class formencode.validators.Bool(*args, **kw)

	Always Valid, returns True or False based on the value and the
existance of the value.

If you want to convert strings like 'true' to booleans, then
use StringBool.

Examples:

>>> Bool.to_python(0)
False
>>> Bool.to_python(1)
True
>>> Bool.to_python('')
False
>>> Bool.to_python(None)
False

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.CIDR(*args, **kw)

	Formencode validator to check whether a string is in correct CIDR
notation (IP address, or IP address plus /mask).

Examples:

>>> cidr = CIDR()
>>> cidr.to_python('127.0.0.1')
'127.0.0.1'
>>> cidr.to_python('299.0.0.1')
Traceback (most recent call last):
 ...
Invalid: The octets must be within the range of 0-255 (not '299')
>>> cidr.to_python('192.168.0.1/1')
Traceback (most recent call last):
 ...
Invalid: The network size (bits) must be within the range of 8-32 (not '1')
>>> cidr.to_python('asdf')
Traceback (most recent call last):
 ...
Invalid: Please enter a valid IP address (a.b.c.d) or IP network (a.b.c.d/e)

Messages

	badFormat:

	Please enter a valid IP address (a.b.c.d) or IP network (a.b.c.d/e)

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	illegalBits:

	The network size (bits) must be within the range of 8-32 (not %(bits)r)

	illegalOctets:

	The octets must be within the range of 0-255 (not %(octet)r)

	noneType:

	The input must be a string (not None)

	
class formencode.validators.CreditCardValidator(*args, **kw)

	Checks that credit card numbers are valid (if not real).

You pass in the name of the field that has the credit card
type and the field with the credit card number. The credit
card type should be one of “visa”, “mastercard”, “amex”,
“dinersclub”, “discover”, “jcb”.

You must check the expiration date yourself (there is no
relation between CC number/types and expiration dates).

>>> cc = CreditCardValidator()
>>> cc.to_python({'ccType': 'visa', 'ccNumber': '4111111111111111'})
{'ccNumber': '4111111111111111', 'ccType': 'visa'}
>>> cc.to_python({'ccType': 'visa', 'ccNumber': '411111111111111'})
Traceback (most recent call last):
 ...
Invalid: ccNumber: You did not enter a valid number of digits
>>> cc.to_python({'ccType': 'visa', 'ccNumber': '411111111111112'})
Traceback (most recent call last):
 ...
Invalid: ccNumber: You did not enter a valid number of digits
>>> cc().to_python({})
Traceback (most recent call last):
 ...
Invalid: The field ccType is missing

Messages

	badLength:

	You did not enter a valid number of digits

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalidNumber:

	That number is not valid

	missing_key:

	The field %(key)s is missing

	noneType:

	The input must be a string (not None)

	notANumber:

	Please enter only the number, no other characters

	
class formencode.validators.CreditCardExpires(*args, **kw)

	Checks that credit card expiration date is valid relative to
the current date.

You pass in the name of the field that has the credit card
expiration month and the field with the credit card expiration
year.

>>> ed = CreditCardExpires()
>>> ed.to_python({'ccExpiresMonth': '11', 'ccExpiresYear': '2250'})
{'ccExpiresYear': '2250', 'ccExpiresMonth': '11'}
>>> ed.to_python({'ccExpiresMonth': '10', 'ccExpiresYear': '2005'})
Traceback (most recent call last):
 ...
Invalid: ccExpiresMonth: Invalid Expiration Date

ccExpiresYear: Invalid Expiration Date

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalidNumber:

	Invalid Expiration Date

	noneType:

	The input must be a string (not None)

	notANumber:

	Please enter numbers only for month and year

	
class formencode.validators.CreditCardSecurityCode(*args, **kw)

	Checks that credit card security code has the correct number
of digits for the given credit card type.

You pass in the name of the field that has the credit card
type and the field with the credit card security code.

>>> code = CreditCardSecurityCode()
>>> code.to_python({'ccType': 'visa', 'ccCode': '111'})
{'ccType': 'visa', 'ccCode': '111'}
>>> code.to_python({'ccType': 'visa', 'ccCode': '1111'})
Traceback (most recent call last):
 ...
Invalid: ccCode: Invalid credit card security code length

Messages

	badLength:

	Invalid credit card security code length

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	notANumber:

	Please enter numbers only for credit card security code

	
class formencode.validators.DateConverter(*args, **kw)

	Validates and converts a string date, like mm/yy, dd/mm/yy,
dd-mm-yy, etc. Using month_style you can support
'mm/dd/yyyy' or 'dd/mm/yyyy'. Only these two general
styles are supported.

Accepts English month names, also abbreviated. Returns value as a
datetime object (you can get mx.DateTime objects if you use
datetime_module='mxDateTime'). Two year dates are assumed to
be within 1950-2020, with dates from 21-49 being ambiguous and
signaling an error.

Use accept_day=False if you just want a month/year (like for a
credit card expiration date).

>>> d = DateConverter()
>>> d.to_python('12/3/09')
datetime.date(2009, 12, 3)
>>> d.to_python('12/3/2009')
datetime.date(2009, 12, 3)
>>> d.to_python('2/30/04')
Traceback (most recent call last):
 ...
Invalid: That month only has 29 days
>>> d.to_python('13/2/05')
Traceback (most recent call last):
 ...
Invalid: Please enter a month from 1 to 12
>>> d.to_python('1/1/200')
Traceback (most recent call last):
 ...
Invalid: Please enter a four-digit year after 1899

If you change month_style you can get European-style dates:

>>> d = DateConverter(month_style='dd/mm/yyyy')
>>> date = d.to_python('12/3/09')
>>> date
datetime.date(2009, 3, 12)
>>> d.from_python(date)
'12/03/2009'

Messages

	badFormat:

	Please enter the date in the form %(format)s

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	dayRange:

	That month only has %(days)i days

	empty:

	Please enter a value

	fourDigitYear:

	Please enter a four-digit year after 1899

	invalidDate:

	That is not a valid day (%(exception)s)

	invalidDay:

	Please enter a valid day

	invalidYear:

	Please enter a number for the year

	monthRange:

	Please enter a month from 1 to 12

	noneType:

	The input must be a string (not None)

	unknownMonthName:

	Unknown month name: %(month)s

	wrongFormat:

	Please enter the date in the form %(format)s

	
class formencode.validators.DateValidator(*args, **kw)

	Validates that a date is within the given range. Be sure to call
DateConverter first if you aren’t expecting mxDateTime input.

earliest_date and latest_date may be functions; if so,
they will be called each time before validating.

after_now means a time after the current timestamp; note that
just a few milliseconds before now is invalid! today_or_after
is more permissive, and ignores hours and minutes.

Examples:

>>> from datetime import datetime, timedelta
>>> d = DateValidator(earliest_date=datetime(2003, 1, 1))
>>> d.to_python(datetime(2004, 1, 1))
datetime.datetime(2004, 1, 1, 0, 0)
>>> d.to_python(datetime(2002, 1, 1))
Traceback (most recent call last):
 ...
Invalid: Date must be after Wednesday, 01 January 2003
>>> d.to_python(datetime(2003, 1, 1))
datetime.datetime(2003, 1, 1, 0, 0)
>>> d = DateValidator(after_now=True)
>>> now = datetime.now()
>>> d.to_python(now+timedelta(seconds=5)) == now+timedelta(seconds=5)
True
>>> d.to_python(now-timedelta(days=1))
Traceback (most recent call last):
 ...
Invalid: The date must be sometime in the future
>>> d.to_python(now+timedelta(days=1)) > now
True
>>> d = DateValidator(today_or_after=True)
>>> d.to_python(now) == now
True

Messages

	after:

	Date must be after %(date)s

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	before:

	Date must be before %(date)s

	date_format:

	%%A, %%d %%B %%Y

	empty:

	Please enter a value

	future:

	The date must be sometime in the future

	noneType:

	The input must be a string (not None)

	
class formencode.validators.DictConverter(*args, **kw)

	Converts values based on a dictionary which has values as keys for
the resultant values.

If allowNull is passed, it will not balk if a false value
(e.g., ‘’ or None) is given (it will return None in these cases).

to_python takes keys and gives values, from_python takes values and
gives keys.

If you give hideDict=True, then the contents of the dictionary
will not show up in error messages.

Examples:

>>> dc = DictConverter({1: 'one', 2: 'two'})
>>> dc.to_python(1)
'one'
>>> dc.from_python('one')
1
>>> dc.to_python(3)
Traceback (most recent call last):

Invalid: Enter a value from: 1; 2
>>> dc2 = dc(hideDict=True)
>>> dc2.hideDict
True
>>> dc2.dict
{1: 'one', 2: 'two'}
>>> dc2.to_python(3)
Traceback (most recent call last):

Invalid: Choose something
>>> dc.from_python('three')
Traceback (most recent call last):

Invalid: Nothing in my dictionary goes by the value 'three'. Choose one of: 'one'; 'two'

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	chooseKey:

	Enter a value from: %(items)s

	chooseValue:

	Nothing in my dictionary goes by the value %(value)s. Choose one of: %(items)s

	empty:

	Please enter a value

	keyNotFound:

	Choose something

	noneType:

	The input must be a string (not None)

	valueNotFound:

	That value is not known

	
class formencode.validators.Email(*args, **kw)

	Validate an email address.

If you pass resolve_domain=True, then it will try to resolve
the domain name to make sure it’s valid. This takes longer, of
course. You must have the pyDNS [http://pydns.sf.net] modules
installed to look up DNS (MX and A) records.

>>> e = Email()
>>> e.to_python(' test@foo.com ')
'test@foo.com'
>>> e.to_python('test')
Traceback (most recent call last):
 ...
Invalid: An email address must contain a single @
>>> e.to_python('test@foobar')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: foobar)
>>> e.to_python('test@foobar.com.5')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: foobar.com.5)
>>> e.to_python('test@foo..bar.com')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: foo..bar.com)
>>> e.to_python('test@.foo.bar.com')
Traceback (most recent call last):
 ...
Invalid: The domain portion of the email address is invalid (the portion after the @: .foo.bar.com)
>>> e.to_python('nobody@xn--m7r7ml7t24h.com')
'nobody@xn--m7r7ml7t24h.com'
>>> e.to_python('o*reilly@test.com')
'o*reilly@test.com'
>>> e = Email(resolve_domain=True)
>>> e.resolve_domain
True
>>> e.to_python('doesnotexist@colorstudy.com')
'doesnotexist@colorstudy.com'
>>> e.to_python('test@nyu.edu')
'test@nyu.edu'
>>> # NOTE: If you do not have PyDNS installed this example won't work:
>>> e.to_python('test@thisdomaindoesnotexistithinkforsure.com')
Traceback (most recent call last):
 ...
Invalid: The domain of the email address does not exist (the portion after the @: thisdomaindoesnotexistithinkforsure.com)
>>> e.to_python(u'test@google.com')
u'test@google.com'
>>> e = Email(not_empty=False)
>>> e.to_python('')

Messages

	badDomain:

	The domain portion of the email address is invalid (the portion after the @: %(domain)s)

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	badUsername:

	The username portion of the email address is invalid (the portion before the @: %(username)s)

	domainDoesNotExist:

	The domain of the email address does not exist (the portion after the @: %(domain)s)

	empty:

	Please enter an email address

	noAt:

	An email address must contain a single @

	noneType:

	The input must be a string (not None)

	socketError:

	An error occured when trying to connect to the server: %(error)s

	
class formencode.validators.Empty(*args, **kw)

	Invalid unless the value is empty. Use cleverly, if at all.

Examples:

>>> Empty.to_python(0)
Traceback (most recent call last):
 ...
Invalid: You cannot enter a value here

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	notEmpty:

	You cannot enter a value here

	
class formencode.validators.FieldsMatch(*args, **kw)

	Tests that the given fields match, i.e., are identical. Useful
for password+confirmation fields. Pass the list of field names in
as field_names.

>>> f = FieldsMatch('pass', 'conf')
>>> f.to_python({'pass': 'xx', 'conf': 'xx'})
{'conf': 'xx', 'pass': 'xx'}
>>> f.to_python({'pass': 'xx', 'conf': 'yy'})
Traceback (most recent call last):
 ...
Invalid: conf: Fields do not match

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalid:

	Fields do not match (should be %(match)s)

	invalidNoMatch:

	Fields do not match

	noneType:

	The input must be a string (not None)

	notDict:

	Fields should be a dictionary

	
class formencode.validators.FieldStorageUploadConverter(*args, **kw)

	Handles cgi.FieldStorage instances that are file uploads.

This doesn’t do any conversion, but it can detect empty upload
fields (which appear like normal fields, but have no filename when
no upload was given).

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.FileUploadKeeper(*args, **kw)

	Takes two inputs (a dictionary with keys static and
upload) and converts them into one value on the Python side (a
dictionary with filename and content keys). The upload
takes priority over the static value. The filename may be None if
it can’t be discovered.

Handles uploads of both text and cgi.FieldStorage upload
values.

This is basically for use when you have an upload field, and you
want to keep the upload around even if the rest of the form
submission fails. When converting back to the form submission,
there may be extra values 'original_filename' and
'original_content', which may want to use in your form to show
the user you still have their content around.

To use this, make sure you are using variabledecode, then use
something like:

<input type="file" name="myfield.upload">
<input type="hidden" name="myfield.static">

Then in your scheme:

class MyScheme(Scheme):
 myfield = FileUploadKeeper()

Note that big file uploads mean big hidden fields, and lots of
bytes passed back and forth in the case of an error.

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.FormValidator(*args, **kw)

	A FormValidator is something that can be chained with a Schema.

Unlike normal chaining the FormValidator can validate forms that
aren’t entirely valid.

The important method is .validate(), of course. It gets passed a
dictionary of the (processed) values from the form. If you have
.validate_partial_form set to True, then it will get the incomplete
values as well – check with the “in” operator if the form was able
to process any particular field.

Anyway, .validate() should return a string or a dictionary. If a
string, it’s an error message that applies to the whole form. If
not, then it should be a dictionary of fieldName: errorMessage.
The special key “form” is the error message for the form as a whole
(i.e., a string is equivalent to {“form”: string}).

Returns None on no errors.

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.IndexListConverter(*args, **kw)

	Converts a index (which may be a string like ‘2’) to the value in
the given list.

Examples:

>>> index = IndexListConverter(['zero', 'one', 'two'])
>>> index.to_python(0)
'zero'
>>> index.from_python('zero')
0
>>> index.to_python('1')
'one'
>>> index.to_python(5)
Traceback (most recent call last):
Invalid: Index out of range
>>> index(not_empty=True).to_python(None)
Traceback (most recent call last):
Invalid: Please enter a value
>>> index.from_python('five')
Traceback (most recent call last):
Invalid: Item 'five' was not found in the list

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	integer:

	Must be an integer index

	noneType:

	The input must be a string (not None)

	notFound:

	Item %(value)s was not found in the list

	outOfRange:

	Index out of range

	
class formencode.validators.Int(*args, **kw)

	Convert a value to an integer.

Example:

>>> Int.to_python('10')
10
>>> Int.to_python('ten')
Traceback (most recent call last):
 ...
Invalid: Please enter an integer value
>>> Int(min=5).to_python('6')
6
>>> Int(max=10).to_python('11')
Traceback (most recent call last):
 ...
Invalid: Please enter a number that is 10 or smaller

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	integer:

	Please enter an integer value

	noneType:

	The input must be a string (not None)

	tooHigh:

	Please enter a number that is %(max)s or smaller

	tooLow:

	Please enter a number that is %(min)s or greater

	
class formencode.validators.IPhoneNumberValidator

	

	
class formencode.validators.MACAddress(*args, **kw)

	Formencode validator to check whether a string is a correct hardware
(MAC) address.

Examples:

>>> mac = MACAddress()
>>> mac.to_python('aa:bb:cc:dd:ee:ff')
'aabbccddeeff'
>>> mac.to_python('aa:bb:cc:dd:ee:ff:e')
Traceback (most recent call last):
 ...
Invalid: A MAC address must contain 12 digits and A-F; the value you gave has 13 characters
>>> mac.to_python('aa:bb:cc:dd:ee:fx')
Traceback (most recent call last):
 ...
Invalid: MAC addresses may only contain 0-9 and A-F (and optionally :), not 'x'
>>> MACAddress(add_colons=True).to_python('aabbccddeeff')
'aa:bb:cc:dd:ee:ff'

Messages

	badCharacter:

	MAC addresses may only contain 0-9 and A-F (and optionally :), not %(char)r

	badLength:

	A MAC address must contain 12 digits and A-F; the value you gave has %(length)s characters

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.MaxLength(*args, **kw)

	Invalid if the value is longer than maxLength. Uses len(),
so it can work for strings, lists, or anything with length.

Examples:

>>> max5 = MaxLength(5)
>>> max5.to_python('12345')
'12345'
>>> max5.from_python('12345')
'12345'
>>> max5.to_python('123456')
Traceback (most recent call last):
 ...
Invalid: Enter a value less than 5 characters long
>>> max5(accept_python=False).from_python('123456')
Traceback (most recent call last):
 ...
Invalid: Enter a value less than 5 characters long
>>> max5.to_python([1, 2, 3])
[1, 2, 3]
>>> max5.to_python([1, 2, 3, 4, 5, 6])
Traceback (most recent call last):
 ...
Invalid: Enter a value less than 5 characters long
>>> max5.to_python(5)
Traceback (most recent call last):
 ...
Invalid: Invalid value (value with length expected)

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalid:

	Invalid value (value with length expected)

	noneType:

	The input must be a string (not None)

	tooLong:

	Enter a value less than %(maxLength)i characters long

	
class formencode.validators.MinLength(*args, **kw)

	Invalid if the value is shorter than minlength. Uses len(), so
it can work for strings, lists, or anything with length. Note
that you must use not_empty=True if you don’t want to
accept empty values – empty values are not tested for length.

Examples:

>>> min5 = MinLength(5)
>>> min5.to_python('12345')
'12345'
>>> min5.from_python('12345')
'12345'
>>> min5.to_python('1234')
Traceback (most recent call last):
 ...
Invalid: Enter a value at least 5 characters long
>>> min5(accept_python=False).from_python('1234')
Traceback (most recent call last):
 ...
Invalid: Enter a value at least 5 characters long
>>> min5.to_python([1, 2, 3, 4, 5])
[1, 2, 3, 4, 5]
>>> min5.to_python([1, 2, 3])
Traceback (most recent call last):
 ...
Invalid: Enter a value at least 5 characters long
>>> min5.to_python(5)
Traceback (most recent call last):
 ...
Invalid: Invalid value (value with length expected)

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalid:

	Invalid value (value with length expected)

	noneType:

	The input must be a string (not None)

	tooShort:

	Enter a value at least %(minLength)i characters long

	
class formencode.validators.Number(*args, **kw)

	Convert a value to a float or integer.

Tries to convert it to an integer if no information is lost.

Example:

>>> Number.to_python('10')
10
>>> Number.to_python('10.5')
10.5
>>> Number.to_python('ten')
Traceback (most recent call last):
 ...
Invalid: Please enter a number
>>> Number(min=5).to_python('6.5')
6.5
>>> Number(max=10.5).to_python('11.5')
Traceback (most recent call last):
 ...
Invalid: Please enter a number that is 10.5 or smaller
>>> Number().to_python('infinity')
inf

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	number:

	Please enter a number

	tooHigh:

	Please enter a number that is %(max)s or smaller

	tooLow:

	Please enter a number that is %(min)s or greater

	
class formencode.validators.NotEmpty(*args, **kw)

	Invalid if value is empty (empty string, empty list, etc).

Generally for objects that Python considers false, except zero
which is not considered invalid.

Examples:

>>> ne = NotEmpty(messages=dict(empty='enter something'))
>>> ne.to_python('')
Traceback (most recent call last):
 ...
Invalid: enter something
>>> ne.to_python(0)
0

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.OneOf(*args, **kw)

	Tests that the value is one of the members of a given list.

If testValueList=True, then if the input value is a list or
tuple, all the members of the sequence will be checked (i.e., the
input must be a subset of the allowed values).

Use hideList=True to keep the list of valid values out of the
error message in exceptions.

Examples:

>>> oneof = OneOf([1, 2, 3])
>>> oneof.to_python(1)
1
>>> oneof.to_python(4)
Traceback (most recent call last):
 ...
Invalid: Value must be one of: 1; 2; 3 (not 4)
>>> oneof(testValueList=True).to_python([2, 3, [1, 2, 3]])
[2, 3, [1, 2, 3]]
>>> oneof.to_python([2, 3, [1, 2, 3]])
Traceback (most recent call last):
 ...
Invalid: Value must be one of: 1; 2; 3 (not [2, 3, [1, 2, 3]])

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalid:

	Invalid value

	noneType:

	The input must be a string (not None)

	notIn:

	Value must be one of: %(items)s (not %(value)r)

	
class formencode.validators.PhoneNumber

	

	
class formencode.validators.PlainText(*args, **kw)

	Test that the field contains only letters, numbers, underscore,
and the hyphen. Subclasses Regex.

Examples:

>>> PlainText.to_python('_this9_')
'_this9_'
>>> PlainText.from_python(' this ')
' this '
>>> PlainText(accept_python=False).from_python(' this ')
Traceback (most recent call last):
 ...
Invalid: Enter only letters, numbers, or _ (underscore)
>>> PlainText(strip=True).to_python(' this ')
'this'
>>> PlainText(strip=True).from_python(' this ')
'this'

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalid:

	Enter only letters, numbers, or _ (underscore)

	noneType:

	The input must be a string (not None)

	
class formencode.validators.PostalCode

	

	
class formencode.validators.Regex(*args, **kw)

	Invalid if the value doesn’t match the regular expression regex.

The regular expression can be a compiled re object, or a string
which will be compiled for you.

Use strip=True if you want to strip the value before validation,
and as a form of conversion (often useful).

Examples:

>>> cap = Regex(r'^[A-Z]+$')
>>> cap.to_python('ABC')
'ABC'

Note that .from_python() calls (in general) do not validate
the input:

>>> cap.from_python('abc')
'abc'
>>> cap(accept_python=False).from_python('abc')
Traceback (most recent call last):
 ...
Invalid: The input is not valid
>>> cap.to_python(1)
Traceback (most recent call last):
 ...
Invalid: The input must be a string (not a <type 'int'>: 1)
>>> Regex(r'^[A-Z]+$', strip=True).to_python(' ABC ')
'ABC'
>>> Regex(r'this', regexOps=('I',)).to_python('THIS')
'THIS'

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	invalid:

	The input is not valid

	noneType:

	The input must be a string (not None)

	
class formencode.validators.RequireIfMissing(*args, **kw)

	Require one field based on another field being present or missing.

This validator is applied to a form, not an individual field (usually
using a Schema’s pre_validators or chained_validators) and is
available under both names RequireIfMissing and RequireIfPresent.

If you provide a missing value (a string key name) then
if that field is missing the field must be entered.
This gives you an either/or situation.

If you provide a present value (another string key name) then
if that field is present, the required field must also be present.

>>> from formencode import validators
>>> v = validators.RequireIfPresent('phone_type', present='phone')
>>> v.to_python(dict(phone_type='', phone='510 420 4577'))
Traceback (most recent call last):
 ...
Invalid: You must give a value for phone_type
>>> v.to_python(dict(phone=''))
{'phone': ''}

Note that if you have a validator on the optionally-required
field, you should probably use if_missing=None. This way you
won’t get an error from the Schema about a missing value. For example:

class PhoneInput(Schema):
 phone = PhoneNumber()
 phone_type = String(if_missing=None)
 chained_validators = [RequireifPresent('phone_type', present='phone')]

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.Set(*args, **kw)

	This is for when you think you may return multiple values for a
certain field.

This way the result will always be a list, even if there’s only
one result. It’s equivalent to ForEach(convert_to_list=True).

If you give use_set=True, then it will return an actual
set object.

>>> Set.to_python(None)
[]
>>> Set.to_python('this')
['this']
>>> Set.to_python(('this', 'that'))
['this', 'that']
>>> s = Set(use_set=True)
>>> s.to_python(None)
set([])
>>> s.to_python('this')
set(['this'])
>>> s.to_python(('this',))
set(['this'])

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.SignedString(*args, **kw)

	Encodes a string into a signed string, and base64 encodes both the
signature string and a random nonce.

It is up to you to provide a secret, and to keep the secret handy
and consistent.

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	badsig:

	Signature is not correct

	empty:

	Please enter a value

	malformed:

	Value does not contain a signature

	noneType:

	The input must be a string (not None)

	
class formencode.validators.StateProvince

	

	
class formencode.validators.String(*args, **kw)

	Converts things to string, but treats empty things as the empty string.

Also takes a max and min argument, and the string length must fall
in that range.

Also you may give an encoding argument, which will encode any unicode
that is found. Lists and tuples are joined with list_joiner
(default ', ') in from_python.

>>> String(min=2).to_python('a')
Traceback (most recent call last):
 ...
Invalid: Enter a value 2 characters long or more
>>> String(max=10).to_python('xxxxxxxxxxx')
Traceback (most recent call last):
 ...
Invalid: Enter a value not more than 10 characters long
>>> String().from_python(None)
''
>>> String().from_python([])
''
>>> String().to_python(None)
''
>>> String(min=3).to_python(None)
Traceback (most recent call last):
 ...
Invalid: Please enter a value
>>> String(min=1).to_python('')
Traceback (most recent call last):
 ...
Invalid: Please enter a value

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	tooLong:

	Enter a value not more than %(max)i characters long

	tooShort:

	Enter a value %(min)i characters long or more

	
class formencode.validators.StringBool(*args, **kw)

	Converts a string to a boolean.

Values like ‘true’ and ‘false’ are considered True and False,
respectively; anything in true_values is true, anything in
false_values is false, case-insensitive). The first item of
those lists is considered the preferred form.

>>> s = StringBool()
>>> s.to_python('yes'), s.to_python('no')
(True, False)
>>> s.to_python(1), s.to_python('N')
(True, False)
>>> s.to_python('ye')
Traceback (most recent call last):
 ...
Invalid: Value should be 'true' or 'false'

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	string:

	Value should be %(true)r or %(false)r

	
class formencode.validators.StripField(*args, **kw)

	Take a field from a dictionary, removing the key from the dictionary.

name is the key. The field value and a new copy of the dictionary
with that field removed are returned.

>>> StripField('test').to_python({'a': 1, 'test': 2})
(2, {'a': 1})
>>> StripField('test').to_python({})
Traceback (most recent call last):
 ...
Invalid: The name 'test' is missing

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	missing:

	The name %(name)s is missing

	noneType:

	The input must be a string (not None)

	
class formencode.validators.TimeConverter(*args, **kw)

	Converts times in the format HH:MM:SSampm to (h, m, s).
Seconds are optional.

For ampm, set use_ampm = True. For seconds, use_seconds = True.
Use ‘optional’ for either of these to make them optional.

Examples:

>>> tim = TimeConverter()
>>> tim.to_python('8:30')
(8, 30)
>>> tim.to_python('20:30')
(20, 30)
>>> tim.to_python('30:00')
Traceback (most recent call last):
 ...
Invalid: You must enter an hour in the range 0-23
>>> tim.to_python('13:00pm')
Traceback (most recent call last):
 ...
Invalid: You must enter an hour in the range 1-12
>>> tim.to_python('12:-1')
Traceback (most recent call last):
 ...
Invalid: You must enter a minute in the range 0-59
>>> tim.to_python('12:02pm')
(12, 2)
>>> tim.to_python('12:02am')
(0, 2)
>>> tim.to_python('1:00PM')
(13, 0)
>>> tim.from_python((13, 0))
'13:00:00'
>>> tim2 = tim(use_ampm=True, use_seconds=False)
>>> tim2.from_python((13, 0))
'1:00pm'
>>> tim2.from_python((0, 0))
'12:00am'
>>> tim2.from_python((12, 0))
'12:00pm'

Examples with datetime.time:

>>> v = TimeConverter(use_datetime=True)
>>> a = v.to_python('18:00')
>>> a
datetime.time(18, 0)
>>> b = v.to_python('30:00')
Traceback (most recent call last):
 ...
Invalid: You must enter an hour in the range 0-23
>>> v2 = TimeConverter(prefer_ampm=True, use_datetime=True)
>>> v2.from_python(a)
'6:00:00pm'
>>> v3 = TimeConverter(prefer_ampm=True,
... use_seconds=False, use_datetime=True)
>>> a = v3.to_python('18:00')
>>> a
datetime.time(18, 0)
>>> v3.from_python(a)
'6:00pm'
>>> a = v3.to_python('18:00:00')
Traceback (most recent call last):
 ...
Invalid: You may not enter seconds

Messages

	badHour:

	You must enter an hour in the range %(range)s

	badMinute:

	You must enter a minute in the range 0-59

	badNumber:

	The %(part)s value you gave is not a number: %(number)r

	badSecond:

	You must enter a second in the range 0-59

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	minutesRequired:

	You must enter minutes (after a :)

	noAMPM:

	You must indicate AM or PM

	noSeconds:

	You may not enter seconds

	noneType:

	The input must be a string (not None)

	secondsRequired:

	You must enter seconds

	tooManyColon:

	There are too many :’s

	
class formencode.validators.UnicodeString(**kw)

	Converts things to unicode string, this is a specialization of
the String class.

In addition to the String arguments, an encoding argument is also
accepted. By default the encoding will be utf-8. You can overwrite
this using the encoding parameter. You can also set inputEncoding
and outputEncoding differently. An inputEncoding of None means
“do not decode”, an outputEncoding of None means “do not encode”.

All converted strings are returned as Unicode strings.

>>> UnicodeString().to_python(None)
u''
>>> UnicodeString().to_python([])
u''
>>> UnicodeString(encoding='utf-7').to_python('Ni Ni Ni')
u'Ni Ni Ni'

Messages

	badEncoding:

	Invalid data or incorrect encoding

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	tooLong:

	Enter a value not more than %(max)i characters long

	tooShort:

	Enter a value %(min)i characters long or more

	
class formencode.validators.URL(*args, **kw)

	Validate a URL, either http://... or https://. If check_exists
is true, then we’ll actually make a request for the page.

If add_http is true, then if no scheme is present we’ll add
http://

>>> u = URL(add_http=True)
>>> u.to_python('foo.com')
'http://foo.com'
>>> u.to_python('http://hahaha.ha/bar.html')
'http://hahaha.ha/bar.html'
>>> u.to_python('http://xn--m7r7ml7t24h.com')
'http://xn--m7r7ml7t24h.com'
>>> u.to_python('http://foo.com/test?bar=baz&fleem=morx')
'http://foo.com/test?bar=baz&fleem=morx'
>>> u.to_python('http://foo.com/login?came_from=http%3A%2F%2Ffoo.com%2Ftest')
'http://foo.com/login?came_from=http%3A%2F%2Ffoo.com%2Ftest'
>>> u.to_python('http://foo.com:8000/test.html')
'http://foo.com:8000/test.html'
>>> u.to_python('http://foo.com/something\nelse')
Traceback (most recent call last):
 ...
Invalid: That is not a valid URL
>>> u.to_python('https://test.com')
'https://test.com'
>>> u.to_python('http://test')
Traceback (most recent call last):
 ...
Invalid: You must provide a full domain name (like test.com)
>>> u.to_python('http://test..com')
Traceback (most recent call last):
 ...
Invalid: That is not a valid URL
>>> u = URL(add_http=False, check_exists=True)
>>> u.to_python('http://google.com')
'http://google.com'
>>> u.to_python('google.com')
Traceback (most recent call last):
 ...
Invalid: You must start your URL with http://, https://, etc
>>> u.to_python('http://formencode.org/doesnotexist.html')
Traceback (most recent call last):
 ...
Invalid: The server responded that the page could not be found
>>> u.to_python('http://this.domain.does.not.exist.example.org/test.html')
...
Traceback (most recent call last):
 ...
Invalid: An error occured when trying to connect to the server: ...

If you want to allow addresses without a TLD (e.g., localhost) you can do:

>>> URL(require_tld=False).to_python('http://localhost')
'http://localhost'

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	badURL:

	That is not a valid URL

	empty:

	Please enter a value

	httpError:

	An error occurred when trying to access the URL: %(error)s

	noScheme:

	You must start your URL with http://, https://, etc

	noTLD:

	You must provide a full domain name (like %(domain)s.com)

	noneType:

	The input must be a string (not None)

	notFound:

	The server responded that the page could not be found

	socketError:

	An error occured when trying to connect to the server: %(error)s

	status:

	The server responded with a bad status code (%(status)s)

Wrapper Validators

	
class formencode.validators.ConfirmType(*args, **kw)

	Confirms that the input/output is of the proper type.

Uses the parameters:

	subclass:

	The class or a tuple of classes; the item must be an instance
of the class or a subclass.

	type:

	A type or tuple of types (or classes); the item must be of
the exact class or type. Subclasses are not allowed.

Examples:

>>> cint = ConfirmType(subclass=int)
>>> cint.to_python(True)
True
>>> cint.to_python('1')
Traceback (most recent call last):
 ...
Invalid: '1' is not a subclass of <type 'int'>
>>> cintfloat = ConfirmType(subclass=(float, int))
>>> cintfloat.to_python(1.0), cintfloat.from_python(1.0)
(1.0, 1.0)
>>> cintfloat.to_python(1), cintfloat.from_python(1)
(1, 1)
>>> cintfloat.to_python(None)
Traceback (most recent call last):
 ...
Invalid: None is not a subclass of one of the types <type 'float'>, <type 'int'>
>>> cint2 = ConfirmType(type=int)
>>> cint2(accept_python=False).from_python(True)
Traceback (most recent call last):
 ...
Invalid: True must be of the type <type 'int'>

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	inSubclass:

	%(object)r is not a subclass of one of the types %(subclassList)s

	inType:

	%(object)r must be one of the types %(typeList)s

	noneType:

	The input must be a string (not None)

	subclass:

	%(object)r is not a subclass of %(subclass)s

	type:

	%(object)r must be of the type %(type)s

	
class formencode.validators.Wrapper(*args, **kw)

	Used to convert functions to validator/converters.

You can give a simple function for to_python, from_python,
validate_python or validate_other. If that function raises an
exception, the value is considered invalid. Whatever value the
function returns is considered the converted value.

Unlike validators, the state argument is not used. Functions
like int can be used here, that take a single argument.

Examples:

>>> def downcase(v):
... return v.lower()
>>> wrap = Wrapper(to_python=downcase)
>>> wrap.to_python('This')
'this'
>>> wrap.from_python('This')
'This'
>>> wrap2 = Wrapper(from_python=downcase)
>>> wrap2.from_python('This')
'this'
>>> wrap2.from_python(1)
Traceback (most recent call last):
 ...
Invalid: 'int' object has no attribute 'lower'
>>> wrap3 = Wrapper(validate_python=int)
>>> wrap3.to_python('1')
'1'
>>> wrap3.to_python('a')
Traceback (most recent call last):
 ...
Invalid: invalid literal for int()...

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

	
class formencode.validators.Constant(*args, **kw)

	This converter converts everything to the same thing.

I.e., you pass in the constant value when initializing, then all
values get converted to that constant value.

This is only really useful for funny situations, like:

fromEmailValidator = ValidateAny(
 ValidEmailAddress(),
 Constant('unknown@localhost'))

In this case, the if the email is not valid
'unknown@localhost' will be used instead. Of course, you
could use if_invalid instead.

Examples:

>>> Constant('X').to_python('y')
'X'

Messages

	badType:

	The input must be a string (not a %(type)s: %(value)r)

	empty:

	Please enter a value

	noneType:

	The input must be a string (not None)

Validator Modifiers

formencode.compound

Validators for applying validations in sequence.

	
class formencode.compound.Any(*args, **kw)

	This class is like an ‘or’ operator for validators. The first
validator/converter that validates the value will be used. (You
can pass in lists of validators, which will be ANDed)

	
class formencode.compound.All(*args, **kw)

	This class is like an ‘and’ operator for validators. All
validators must work, and the results are passed in turn through
all validators for conversion.

formencode.foreach

Validator for repeating items.

	
class formencode.foreach.ForEach(*args, **kw)

	Use this to apply a validator/converter to each item in a list.

For instance:

ForEach(AsInt(), InList([1, 2, 3]))

Will take a list of values and try to convert each of them to
an integer, and then check if each integer is 1, 2, or 3. Using
multiple arguments is equivalent to:

ForEach(All(AsInt(), InList([1, 2, 3])))

Use convert_to_list=True if you want to force the input to be a
list. This will turn non-lists into one-element lists, and None
into the empty list. This tries to detect sequences by iterating
over them (except strings, which aren’t considered sequences).

ForEach will try to convert the entire list, even if errors are
encountered. If errors are encountered, they will be collected
and a single Invalid exception will be raised at the end (with
error_list set).

If the incoming value is a set, then we return a set.

HTML Parsing and Form Filling

formencode.htmlfill

Parser for HTML forms, that fills in defaults and errors. See render.

	
formencode.htmlfill.render(form, defaults=None, errors=None, use_all_keys=False, error_formatters=None, add_attributes=None, auto_insert_errors=True, auto_error_formatter=None, text_as_default=False, listener=None, encoding=None, error_class='error', prefix_error=True, force_defaults=True)

	Render the form (which should be a string) given the defaults
and errors. Defaults are the values that go in the input fields
(overwriting any values that are there) and errors are displayed
inline in the form (and also effect input classes). Returns the
rendered string.

If auto_insert_errors is true (the default) then any errors
for which <form:error> tags can’t be found will be put just
above the associated input field, or at the top of the form if no
field can be found.

If use_all_keys is true, if there are any extra fields from
defaults or errors that couldn’t be used in the form it will be an
error.

error_formatters is a dictionary of formatter names to
one-argument functions that format an error into HTML. Some
default formatters are provided if you don’t provide this.

error_class is the class added to input fields when there is
an error for that field.

add_attributes is a dictionary of field names to a dictionary
of attribute name/values. If the name starts with + then the
value will be appended to any existing attribute (e.g.,
{'+class': ' important'}).

auto_error_formatter is used to create the HTML that goes
above the fields. By default it wraps the error message in a span
and adds a
.

If text_as_default is true (default false) then <input
type=unknown> will be treated as text inputs.

listener can be an object that watches fields pass; the only
one currently is in htmlfill_schemabuilder.SchemaBuilder

encoding specifies an encoding to assume when mixing str and
unicode text in the template.

prefix_error specifies if the HTML created by auto_error_formatter is
put before the input control (default) or after the control.

force_defaults specifies if a field default is not given in
the defaults dictionary then the control associated with the
field should be set as an unsuccessful control. So checkboxes will
be cleared, radio and select controls will have no value selected,
and textareas will be emptied. This defaults to True, which is
appropriate the defaults are the result of a form submission.

	
formencode.htmlfill.default_formatter(error)

	Formatter that escapes the error, wraps the error in a span with
class error-message, and adds a

	
formencode.htmlfill.none_formatter(error)

	Formatter that does nothing, no escaping HTML, nothin’

	
formencode.htmlfill.escape_formatter(error)

	Formatter that escapes HTML, no more.

	
formencode.htmlfill.escapenl_formatter(error)

	Formatter that escapes HTML, and translates newlines to

	
class formencode.htmlfill.FillingParser(defaults, errors=None, use_all_keys=False, error_formatters=None, error_class='error', add_attributes=None, listener=None, auto_error_formatter=None, text_as_default=False, encoding=None, prefix_error=True, force_defaults=True)

	Fills HTML with default values, as in a form.

Examples:

>>> defaults = dict(name='Bob Jones',
... occupation='Crazy Cultist',
... address='14 W. Canal\nNew Guinea',
... living='no',
... nice_guy=0)
>>> parser = FillingParser(defaults)
>>> parser.feed('''<input type="text" name="name" value="fill">
... <select name="occupation"> <option value="">Default</option>
... <option value="Crazy Cultist">Crazy cultist</option> </select>
... <textarea cols="20" style="width: 100%" name="address">
... An address</textarea>
... <input type="radio" name="living" value="yes">
... <input type="radio" name="living" value="no">
... <input type="checkbox" name="nice_guy" checked="checked">''')
>>> parser.close()
>>> print parser.text()
<input type="text" name="name" value="Bob Jones">
<select name="occupation">
<option value="">Default</option>
<option value="Crazy Cultist" selected="selected">Crazy cultist</option>
</select>
<textarea cols="20" style="width: 100%" name="address">14 W. Canal
New Guinea</textarea>
<input type="radio" name="living" value="yes">
<input type="radio" name="living" value="no" checked="checked">
<input type="checkbox" name="nice_guy">

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

routes – Route and Mapper core classes

routes.base

Route and Mapper core classes

	
class routes.base.Route(name, routepath, **kargs)

	The Route object holds a route recognition and generation
routine.

See Route.__init__ docs for usage.

	
buildfullreg(clist, include_names=True)

	Build the regexp by iterating through the routelist and
replacing dicts with the appropriate regexp match

	
buildnextreg(path, clist, include_names=True)

	Recursively build our regexp given a path, and a controller
list.

Returns the regular expression string, and two booleans that
can be ignored as they’re only used internally by buildnextreg.

	
generate(_ignore_req_list=False, _append_slash=False, **kargs)

	Generate a URL from ourself given a set of keyword arguments

Toss an exception if this
set of keywords would cause a gap in the url.

	
generate_minimized(kargs)

	Generate a minimized version of the URL

	
generate_non_minimized(kargs)

	Generate a non-minimal version of the URL

	
make_full_route()

	Make a full routelist string for use with non-minimized
generation

	
make_unicode(s)

	Transform the given argument into a unicode string.

	
makeregexp(clist, include_names=True)

	Create a regular expression for matching purposes

Note: This MUST be called before match can function properly.

clist should be a list of valid controller strings that can be
matched, for this reason makeregexp should be called by the web
framework after it knows all available controllers that can be
utilized.

include_names indicates whether this should be a match regexp
assigned to itself using regexp grouping names, or if names
should be excluded for use in a single larger regexp to
determine if any routes match

	
match(url, environ=None, sub_domains=False, sub_domains_ignore=None, domain_match='')

	Match a url to our regexp.

While the regexp might match, this operation isn’t
guaranteed as there’s other factors that can cause a match to
fail even though the regexp succeeds (Default that was relied
on wasn’t given, requirement regexp doesn’t pass, etc.).

Therefore the calling function shouldn’t assume this will
return a valid dict, the other possible return is False if a
match doesn’t work out.

	
class routes.base.Mapper(controller_scan=<function controller_scan at 0x3b28488>, directory=None, always_scan=False, register=True, explicit=True)

	Mapper handles URL generation and URL recognition in a web
application.

Mapper is built handling dictionary’s. It is assumed that the web
application will handle the dictionary returned by URL recognition
to dispatch appropriately.

URL generation is done by passing keyword parameters into the
generate function, a URL is then returned.

	
connect(*args, **kargs)

	Create and connect a new Route to the Mapper.

Usage:

m = Mapper()
m.connect(':controller/:action/:id')
m.connect('date/:year/:month/:day', controller="blog", action="view")
m.connect('archives/:page', controller="blog", action="by_page",
requirements = { 'page':'\d{1,2}' })
m.connect('category_list', 'archives/category/:section', controller='blog', action='category',
section='home', type='list')
m.connect('home', '', controller='blog', action='view', section='home')

	
create_regs(*args, **kwargs)

	Atomically creates regular expressions for all connected
routes

	
extend(routes, path_prefix='')

	Extends the mapper routes with a list of Route objects

If a path_prefix is provided, all the routes will have their
path prepended with the path_prefix.

Example:

>>> map = Mapper(controller_scan=None)
>>> map.connect('home', '/', controller='home', action='splash')
>>> map.matchlist[0].name == 'home'
True
>>> routes = [Route('index', '/index.htm', controller='home',
... action='index')]
>>> map.extend(routes)
>>> len(map.matchlist) == 2
True
>>> map.extend(routes, path_prefix='/subapp')
>>> len(map.matchlist) == 3
True
>>> map.matchlist[2].routepath == '/subapp/index.htm'
True

Note

This function does not merely extend the mapper with the
given list of routes, it actually creates new routes with
identical calling arguments.

	
generate(*args, **kargs)

	Generate a route from a set of keywords

Returns the url text, or None if no URL could be generated.

m.generate(controller='content',action='view',id=10)

	
match(url=None, environ=None)

	Match a URL against against one of the routes contained.

Will return None if no valid match is found.

resultdict = m.match('/joe/sixpack')

	
redirect(match_path, destination_path, *args, **kwargs)

	Add a redirect route to the mapper

Redirect routes bypass the wrapped WSGI application and instead
result in a redirect being issued by the RoutesMiddleware. As
such, this method is only meaningful when using
RoutesMiddleware.

By default, a 302 Found status code is used, this can be
changed by providing a _redirect_code keyword argument
which will then be used instead. Note that the entire status
code string needs to be present.

When using keyword arguments, all arguments that apply to
matching will be used for the match, while generation specific
options will be used during generation. Thus all options
normally available to connected Routes may be used with
redirect routes as well.

Example:

map = Mapper()
map.redirect('/legacyapp/archives/{url:.*}, '/archives/{url})
map.redirect('/home/index', '/', _redirect_code='301 Moved Permanently')

	
resource(member_name, collection_name, **kwargs)

	Generate routes for a controller resource

The member_name name should be the appropriate singular version
of the resource given your locale and used with members of the
collection. The collection_name name will be used to refer to
the resource collection methods and should be a plural version
of the member_name argument. By default, the member_name name
will also be assumed to map to a controller you create.

The concept of a web resource maps somewhat directly to ‘CRUD’
operations. The overlying things to keep in mind is that
mapping a resource is about handling creating, viewing, and
editing that resource.

All keyword arguments are optional.

	controller

	If specified in the keyword args, the controller will be
the actual controller used, but the rest of the naming
conventions used for the route names and URL paths are
unchanged.

	collection

	Additional action mappings used to manipulate/view the
entire set of resources provided by the controller.

Example:

map.resource('message', 'messages', collection={'rss':'GET'})
GET /message/rss (maps to the rss action)
also adds named route "rss_message"

	member

	Additional action mappings used to access an individual
‘member’ of this controllers resources.

Example:

map.resource('message', 'messages', member={'mark':'POST'})
POST /message/1/mark (maps to the mark action)
also adds named route "mark_message"

	new

	Action mappings that involve dealing with a new member in
the controller resources.

Example:

map.resource('message', 'messages', new={'preview':'POST'})
POST /message/new/preview (maps to the preview action)
also adds a url named "preview_new_message"

	path_prefix

	Prepends the URL path for the Route with the path_prefix
given. This is most useful for cases where you want to mix
resources or relations between resources.

	name_prefix

	Perpends the route names that are generated with the
name_prefix given. Combined with the path_prefix option,
it’s easy to generate route names and paths that represent
resources that are in relations.

Example:

map.resource('message', 'messages', controller='categories',
 path_prefix='/category/:category_id',
 name_prefix="category_")
GET /category/7/message/1
has named route "category_message"

	parent_resource

	A dict containing information about the parent
resource, for creating a nested resource. It should contain
the member_name and collection_name of the parent
resource. This dict will
be available via the associated Route object which can
be accessed during a request via
request.environ['routes.route']

If parent_resource is supplied and path_prefix
isn’t, path_prefix will be generated from
parent_resource as
“<parent collection name>/:<parent member name>_id”.

If parent_resource is supplied and name_prefix
isn’t, name_prefix will be generated from
parent_resource as “<parent member name>_”.

Example:

>>> from routes.util import url_for
>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'))
>>> # path_prefix is "regions/:region_id"
>>> # name prefix is "region_"
>>> url_for('region_locations', region_id=13)
'/regions/13/locations'
>>> url_for('region_new_location', region_id=13)
'/regions/13/locations/new'
>>> url_for('region_location', region_id=13, id=60)
'/regions/13/locations/60'
>>> url_for('region_edit_location', region_id=13, id=60)
'/regions/13/locations/60/edit'

Overriding generated path_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... path_prefix='areas/:area_id')
>>> # name prefix is "region_"
>>> url_for('region_locations', area_id=51)
'/areas/51/locations'

Overriding generated name_prefix:

>>> m = Mapper()
>>> m.resource('location', 'locations',
... parent_resource=dict(member_name='region',
... collection_name='regions'),
... name_prefix='')
>>> # path_prefix is "regions/:region_id"
>>> url_for('locations', region_id=51)
'/regions/51/locations'

	
routematch(url=None, environ=None)

	Match a URL against against one of the routes contained.

Will return None if no valid match is found, otherwise a
result dict and a route object is returned.

resultdict, route_obj = m.match('/joe/sixpack')

routes.util

Utility functions for use in templates / controllers

PLEASE NOTE: Many of these functions expect an initialized RequestConfig
object. This is expected to have been initialized for EACH REQUEST by the web
framework.

	
routes.util.url_for(*args, **kargs)

	Generates a URL

All keys given to url_for are sent to the Routes Mapper instance for
generation except for:

anchor specified the anchor name to be appened to the path
host overrides the default (current) host if provided
protocol overrides the default (current) protocol if provided
qualified creates the URL with the host/port information as
 needed

The URL is generated based on the rest of the keys. When generating a new
URL, values will be used from the current request’s parameters (if
present). The following rules are used to determine when and how to keep
the current requests parameters:

	If the controller is present and begins with ‘/’, no defaults are used

	If the controller is changed, action is set to ‘index’ unless otherwise
specified

For example, if the current request yielded a dict of
{‘controller’: ‘blog’, ‘action’: ‘view’, ‘id’: 2}, with the standard
‘:controller/:action/:id’ route, you’d get the following results:

url_for(id=4) => '/blog/view/4',
url_for(controller='/admin') => '/admin',
url_for(controller='admin') => '/admin/view/2'
url_for(action='edit') => '/blog/edit/2',
url_for(action='list', id=None) => '/blog/list'

Static and Named Routes

If there is a string present as the first argument, a lookup is done
against the named routes table to see if there’s any matching routes. The
keyword defaults used with static routes will be sent in as GET query
arg’s if a route matches.

If no route by that name is found, the string is assumed to be a raw URL.
Should the raw URL begin with / then appropriate SCRIPT_NAME data will
be added if present, otherwise the string will be used as the url with
keyword args becoming GET query args.

	
class routes.util.URLGenerator(mapper, environ)

	The URL Generator generates URL’s

It is automatically instantiated by the RoutesMiddleware and put
into the wsgiorg.routing_args tuple accessible as:

url = environ['wsgiorg.routing_args'][0][0]

Or via the routes.url key:

url = environ['routes.url']

The url object may be instantiated outside of a web context for use
in testing, however sub_domain support and fully qualified URL’s
cannot be generated without supplying a dict that must contain the
key HTTP_HOST.

	
__call__(*args, **kargs)

	Generates a URL

All keys given to url_for are sent to the Routes Mapper instance for
generation except for:

anchor specified the anchor name to be appened to the path
host overrides the default (current) host if provided
protocol overrides the default (current) protocol if provided
qualified creates the URL with the host/port information as
 needed

	
current(*args, **kwargs)

	Generate a route that includes params used on the current
request

The arguments for this method are identical to __call__
except that arguments set to None will remove existing route
matches of the same name from the set of arguments used to
construct a URL.

	
routes.util.redirect_to(*args, **kargs)

	Issues a redirect based on the arguments.

Redirect’s should occur as a “302 Moved” header, however the web
framework may utilize a different method.

All arguments are passed to url_for to retrieve the appropriate URL, then
the resulting URL it sent to the redirect function as the URL.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

weberror – Weberror

weberror.errormiddleware

Error handler middleware

	
class weberror.errormiddleware.ErrorMiddleware(application, global_conf=None, debug=<NoDefault>, error_email=None, error_log=None, show_exceptions_in_wsgi_errors=<NoDefault>, from_address=None, smtp_server=None, smtp_username=None, smtp_password=None, smtp_use_tls=False, error_subject_prefix=None, error_message=None, xmlhttp_key=None, reporters=None)

	Error handling middleware

Usage:

error_catching_wsgi_app = ErrorMiddleware(wsgi_app)

Settings:

	debug:

	If true, then tracebacks will be shown in the browser.

	error_email:

	an email address (or list of addresses) to send exception
reports to

	error_log:

	a filename to append tracebacks to

	show_exceptions_in_wsgi_errors:

	If true, then errors will be printed to wsgi.errors
(frequently a server error log, or stderr).

	from_address, smtp_server, error_subject_prefix, smtp_username, smtp_password, smtp_use_tls:

	variables to control the emailed exception reports

	error_message:

	When debug mode is off, the error message to show to users.

	xmlhttp_key:

	When this key (default _) is in the request GET variables
(not POST!), expect that this is an XMLHttpRequest, and the
response should be more minimal; it should not be a complete
HTML page.

Environment Configuration:

	paste.throw_errors:

	If this setting in the request environment is true, then this
middleware is disabled. This can be useful in a testing situation
where you don’t want errors to be caught and transformed.

	paste.expected_exceptions:

	When this middleware encounters an exception listed in this
environment variable and when the start_response has not
yet occurred, the exception will be re-raised instead of being
caught. This should generally be set by middleware that may
(but probably shouldn’t be) installed above this middleware,
and wants to get certain exceptions. Exceptions raised after
start_response have been called are always caught since
by definition they are no longer expected.

weberror.evalcontext

	
class weberror.evalcontext.EvalContext(namespace, globs)

	Class that represents a interactive interface. It has its own
namespace. Use eval_context.exec_expr(expr) to run commands; the
output of those commands is returned, as are print statements.

This is essentially what doctest does, and is taken directly from
doctest.

weberror.evalexception

Exception-catching middleware that allows interactive debugging.

This middleware catches all unexpected exceptions. A normal
traceback, like produced by
weberror.exceptions.errormiddleware.ErrorMiddleware is given, plus
controls to see local variables and evaluate expressions in a local
context.

This can only be used in single-process environments, because
subsequent requests must go back to the same process that the
exception originally occurred in. Threaded or non-concurrent
environments both work.

This shouldn’t be used in production in any way. That would just be
silly.

If calling from an XMLHttpRequest call, if the GET variable _ is
given then it will make the response more compact (and less
Javascripty), since if you use innerHTML it’ll kill your browser. You
can look for the header X-Debug-URL in your 500 responses if you want
to see the full debuggable traceback. Also, this URL is printed to
wsgi.errors, so you can open it up in another browser window.

	
class weberror.evalexception.EvalException(application, global_conf=None, error_template_filename=None, xmlhttp_key=None, media_paths=None, templating_formatters=None, head_html='', footer_html='', reporters=None, libraries=None, **params)

	Handles capturing an exception and turning it into an interactive
exception explorer

	
media(req)

	Static path where images and other files live

	
relay(req)

	Relay a request to a remote machine for JS proxying

	
summary(req)

	Returns a JSON-format summary of all the cached
exception reports

	
view(req)

	View old exception reports

weberror.formatter

Formatters for the exception data that comes from ExceptionCollector.

	
class weberror.formatter.AbstractFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

	
	
filter_frames(frames)

	Removes any frames that should be hidden, according to the
values of traceback_hide, self.show_hidden_frames, and the
hidden status of the final frame.

	
format_frame_end(frame)

	Called after each frame ends; may return None to output no text.

	
format_frame_start(frame)

	Called before each frame starts; may return None to output no text.

	
long_item_list(lst)

	Returns true if the list contains items that are long, and should
be more nicely formatted.

	
pretty_string_repr(s)

	Formats the string as a triple-quoted string when it contains
newlines.

	
class weberror.formatter.TextFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

	

	
class weberror.formatter.HTMLFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

	

	
class weberror.formatter.XMLFormatter(show_hidden_frames=False, include_reusable=True, show_extra_data=True, trim_source_paths=(), **kwargs)

	

	
weberror.formatter.create_text_node(doc, elem, text)

	

	
weberror.formatter.html_quote(s)

	

	
weberror.formatter.format_html(exc_data, include_hidden_frames=False, **ops)

	

	
weberror.formatter.format_text(exc_data, **ops)

	

	
weberror.formatter.format_xml(exc_data, **ops)

	

	
weberror.formatter.str2html(src, strip=False, indent_subsequent=0, highlight_inner=False, frame=None, filename=None)

	Convert a string to HTML. Try to be really safe about it,
returning a quoted version of the string if nothing else works.

	
weberror.formatter._str2html(src, strip=False, indent_subsequent=0, highlight_inner=False, frame=None, filename=None)

	

	
weberror.formatter.truncate(string, limit=1000)

	Truncate the string to the limit number of
characters

	
weberror.formatter.make_wrappable(html, wrap_limit=60, split_on=';?&@!$#-/\\"\'')

	

	
weberror.formatter.make_pre_wrappable(html, wrap_limit=60, split_on=';?&@!$#-/\\"\'')

	Like make_wrappable() but intended for text that will
go in a <pre> block, so wrap on a line-by-line basis.

weberror.reporter

	
class weberror.reporter.Reporter(**conf)

	

	
class weberror.reporter.EmailReporter(**conf)

	

	
class weberror.reporter.LogReporter(**conf)

	

	
class weberror.reporter.FileReporter(**conf)

	

	
class weberror.reporter.WSGIAppReporter(exc_data)

	

weberror.collector

An exception collector that finds traceback information plus
supplements

	
class weberror.collector.ExceptionCollector(limit=None)

	Produces a data structure that can be used by formatters to
display exception reports.

Magic variables:

If you define one of these variables in your local scope, you can
add information to tracebacks that happen in that context. This
allows applications to add all sorts of extra information about
the context of the error, including URLs, environmental variables,
users, hostnames, etc. These are the variables we look for:

	__traceback_supplement__:

	You can define this locally or globally (unlike all the other
variables, which must be defined locally).

__traceback_supplement__ is a tuple of (factory, arg1,
arg2...). When there is an exception, factory(arg1, arg2,
...) is called, and the resulting object is inspected for
supplemental information.

	__traceback_info__:

	This information is added to the traceback, usually fairly
literally.

	__traceback_hide__:

	If set and true, this indicates that the frame should be
hidden from abbreviated tracebacks. This way you can hide
some of the complexity of the larger framework and let the
user focus on their own errors.

By setting it to 'before', all frames before this one will
be thrown away. By setting it to 'after' then all frames
after this will be thrown away until 'reset' is found. In
each case the frame where it is set is included, unless you
append '_and_this' to the value (e.g.,
'before_and_this').

Note that formatters will ignore this entirely if the frame
that contains the error wouldn’t normally be shown according
to these rules.

	__traceback_reporter__:

	This should be a reporter object (see the reporter module),
or a list/tuple of reporter objects. All reporters found this
way will be given the exception, innermost first.

	__traceback_decorator__:

	This object (defined in a local or global scope) will get the
result of this function (the CollectedException defined
below). It may modify this object in place, or return an
entirely new object. This gives the object the ability to
manipulate the traceback arbitrarily.

The actually interpretation of these values is largely up to the
reporters and formatters.

collect_exception(*sys.exc_info()) will return an object with
several attributes:

	frames:

	A list of frames

	exception_formatted:

	The formatted exception, generally a full traceback

	exception_type:

	The type of the exception, like ValueError

	exception_value:

	The string value of the exception, like 'x not in list'

	identification_code:

	A hash of the exception data meant to identify the general
exception, so that it shares this code with other exceptions
that derive from the same problem. The code is a hash of
all the module names and function names in the traceback,
plus exception_type. This should be shown to users so they
can refer to the exception later. (@@: should it include a
portion that allows identification of the specific instance
of the exception as well?)

The list of frames goes innermost first. Each frame has these
attributes; some values may be None if they could not be
determined.

	modname:

	the name of the module

	filename:

	the filename of the module

	lineno:

	the line of the error

	revision:

	the contents of __version__ or __revision__

	name:

	the function name

	supplement:

	an object created from __traceback_supplement__

	supplement_exception:

	a simple traceback of any exception __traceback_supplement__
created

	traceback_info:

	the str() of any __traceback_info__ variable found in the local
scope (@@: should it str()-ify it or not?)

	traceback_hide:

	the value of any __traceback_hide__ variable

	traceback_log:

	the value of any __traceback_log__ variable

__traceback_supplement__ is thrown away, but a fixed
set of attributes are captured; each of these attributes is
optional.

	object:

	the name of the object being visited

	source_url:

	the original URL requested

	line:

	the line of source being executed (for interpreters, like ZPT)

	column:

	the column of source being executed

	expression:

	the expression being evaluated (also for interpreters)

	warnings:

	a list of (string) warnings to be displayed

	getInfo:

	a function/method that takes no arguments, and returns a string
describing any extra information

	extraData:

	a function/method that takes no arguments, and returns a
dictionary. The contents of this dictionary will not be
displayed in the context of the traceback, but globally for
the exception. Results will be grouped by the keys in the
dictionaries (which also serve as titles). The keys can also
be tuples of (importance, title); in this case the importance
should be important (shows up at top), normal (shows
up somewhere; unspecified), supplemental (shows up at
bottom), or extra (shows up hidden or not at all).

These are used to create an object with attributes of the same
names (getInfo becomes a string attribute, not a method).
__traceback_supplement__ implementations should be careful to
produce values that are relatively static and unlikely to cause
further errors in the reporting system – any complex
introspection should go in getInfo() and should ultimately
return a string.

Note that all attributes are optional, and under certain
circumstances may be None or may not exist at all – the collector
can only do a best effort, but must avoid creating any exceptions
itself.

Formatters may want to use __traceback_hide__ as a hint to
hide frames that are part of the ‘framework’ or underlying system.
There are a variety of rules about special values for this
variables that formatters should be aware of.

TODO:

More attributes in __traceback_supplement__? Maybe an attribute
that gives a list of local variables that should also be
collected? Also, attributes that would be explicitly meant for
the entire request, not just a single frame. Right now some of
the fixed set of attributes (e.g., source_url) are meant for this
use, but there’s no explicit way for the supplement to indicate
new values, e.g., logged-in user, HTTP referrer, environment, etc.
Also, the attributes that do exist are Zope/Web oriented.

More information on frames? cgitb, for instance, produces
extensive information on local variables. There exists the
possibility that getting this information may cause side effects,
which can make debugging more difficult; but it also provides
fodder for post-mortem debugging. However, the collector is not
meant to be configurable, but to capture everything it can and let
the formatters be configurable. Maybe this would have to be a
configuration value, or maybe it could be indicated by another
magical variable (which would probably mean ‘show all local
variables below this frame’)

	
class weberror.collector.ExceptionFrame(**attrs)

	This represents one frame of the exception. Each frame is a
context in the call stack, typically represented by a line
number and module name in the traceback.

	
get_source_line(context=0)

	Return the source of the current line of this frame. You
probably want to .strip() it as well, as it is likely to have
leading whitespace.

If context is given, then that many lines on either side will
also be returned. E.g., context=1 will give 3 lines.

	
weberror.collector.collect_exception(t, v, tb, limit=None)

	Collection an exception from sys.exc_info().

Use like:

try:
 blah blah
except:
 exc_data = collect_exception(*sys.exc_info())

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

webhelpers – Web Helpers package

Warning

Pertinent to WebHelpers 0.6. NB: Significant changes from WebHelpers 0.3

WebHelpers is wide variety of functions for web applications and other
applications.

Current

	constants – Useful constants (Geo-lists)

	containers Handy Containers

	date – Date helpers

	feedgenerator – Feed generator

	webhelpers.html – HTML handling

	webhelpers.markdown – Markdown

	mimehelper – MIMEtypes helper

	misc – Miscellaneous helpers

	number – Numbers and statistics helpers

	paginate – Paging and pagination

	webhelpers.pylonslib – flash alert div helpers

	text – Text helpers

	textile – Textile

	util – Utilities

Deprecated

	webhelpers.commands.compress_resources – (deprecated)

	hinclude (deprecated)

	htmlgen (deprecated)

	pagination – WebHelpers Pagination (part deprecated)

	rails WebHelpers Rails (deprecated)

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

constants – Useful constants (Geo-lists)

webhelpers.constants

Place names and other constants often used in web forms.

	
webhelpers.constants.uk_counties()

	Return a list of UK county names.

	
webhelpers.constants.country_codes()

	Return a list of all country names as tuples. The tuple value is the
country’s 2-letter ISO code and its name; e.g.,
("GB", "United Kingdom"). The countries are in name order.

Can be used like this:

import webhelpers.constants as constants
from webhelpers.html.tags import select
select("country", country_codes(),
 prompt="Please choose a country ...")

See here for more information:
http://www.iso.org/iso/english_country_names_and_code_elements

	
webhelpers.constants.us_states()

	List of USA states.

Return a list of (abbreviation, name) for all US states, sorted by name.
Includes the District of Columbia.

	
webhelpers.constants.us_territories()

	USA postal abbreviations for territories, protectorates, and military.

The return value is a list of (abbreviation, name) tuples. The
locations are sorted by name.

	
webhelpers.constants.canada_provinces()

	List of Canadian provinces.

Return a list of (abbreviation, name) tuples for all Canadian
provinces and territories, sorted by name.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

containers Handy Containers

webhelpers.containers

	
class webhelpers.containers.NotGiven

	A default value for function args.

Use this when you need to distinguish between None and no value.

Example:

>>> def foo(arg=NotGiven):
... print arg is NotGiven
...
>>> foo()
True
>>> foo(None)
False

	
class webhelpers.containers.DumbObject(**kw)

	A container for arbitrary attributes.

Usage:

>>> do = DumbObject(a=1, b=2)
>>> do.b
2

Alternatives to this class include collections.namedtuple in Python
2.6, and formencode.declarative.Declarative in Ian Bicking’s FormEncode
package. Both alternatives offer more features, but DumbObject
shines in its simplicity and lack of dependencies.

	
class webhelpers.containers.Counter

	I count the number of occurrences of each value registered with me.

Call the instance to register a value. The result is available as the
.result attribute. Example:

>>> counter = Counter()
>>> counter("foo")
>>> counter("bar")
>>> counter("foo")
>>> sorted(counter.result.items())
[('bar', 1), ('foo', 2)]

>> counter.result
{'foo': 2, 'bar': 1}

To see the most frequently-occurring items in order:

>>> counter.get_popular(1)
[(2, 'foo')]
>>> counter.get_popular()
[(2, 'foo'), (1, 'bar')]

Or if you prefer the list in item order:

>>> counter.get_sorted_items()
[('bar', 1), ('foo', 2)]

	
classmethod correlate(class_, iterable)

	Build a Counter from an iterable in one step.

This is the same as adding each item individually.

>>> counter = Counter.correlate(["A", "B", "A"])
>>> counter.result["A"]
2
>>> counter.result["B"]
1

	
get_popular(max_items=None)

	Return the results as as a list of (count, item) pairs, with the
most frequently occurring items first.

If max_items is provided, return no more than that many items.

	
get_sorted_items()

	Return the result as a list of (item, count) pairs sorted by item.

	
class webhelpers.containers.Accumulator

	Accumulate a dict of all values for each key.

Call the instance to register a value. The result is available as the
.result attribute. Example:

>>> bowling_scores = Accumulator()
>>> bowling_scores("Fred", 0)
>>> bowling_scores("Barney", 10)
>>> bowling_scores("Fred", 1)
>>> bowling_scores("Barney", 9)
>>> sorted(bowling_scores.result.items())
[('Barney', [10, 9]), ('Fred', [0, 1])]

>> bowling_scores.result
{'Fred': [0, 1], 'Barney': [10, 9]}

The values are stored in the order they’re registered.

Alternatives to this class include paste.util. multidict.MultiDict
in Ian Bicking’s Paste package.

	
classmethod correlate(class_, iterable, key)

	Create an Accumulator based on several related values.

key is a function to calculate the key for each item, akin to
list.sort(key=).

This is the same as adding each item individually.

	
class webhelpers.containers.UniqueAccumulator

	Accumulate a dict of unique values for each key.

The values are stored in an unordered set.

Call the instance to register a value. The result is available as the
.result attribute.

	
webhelpers.containers.unique(it)

	Return a list of unique elements in the iterable, preserving the order.

Usage:

>>> unique([None, "spam", 2, "spam", "A", "spam", "spam", "eggs", "spam"])
[None, 'spam', 2, 'A', 'eggs']

	
webhelpers.containers.only_some_keys(dic, keys)

	Return a copy of the dict with only the specified keys present.

dic may be any mapping. The return value is always a Python dict.

>> only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
>>> sorted(only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"]).items())
[('A', 1), ('C', 3)]

	
webhelpers.containers.except_keys(dic, keys)

	Return a copy of the dict without the specified keys.

>>> except_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
{'B': 2}

	
webhelpers.containers.extract_keys(dic, keys)

	Return two copies of the dict. The first has only the keys specified.
The second has all the other keys from the original dict.

>> extract_keys({"From": "F", "To": "T", "Received", R"}, ["To", "From"])
({"From": "F", "To": "T"}, {"Received": "R"})
>>> regular, extra = extract_keys({"From": "F", "To": "T", "Received": "R"}, ["To", "From"])
>>> sorted(regular.keys())
['From', 'To']
>>> sorted(extra.keys())
['Received']

	
webhelpers.containers.ordered_items(dic, key_order, other_keys=True, default=<class 'webhelpers.misc.NotGiven'>)

	Like dict.iteritems() but with a specified key order.

Arguments:

	dic is any mapping.

	key_order is a list of keys. Items will be yielded in this order.

	other_keys is a boolean.

	default is a value returned if the key is not in the dict.

This yields the items listed in key_order. If a key does not exist
in the dict, yield the default value if specified, otherwise skip the
missing key. Afterwards, if other_keys is true, yield the remaining
items in an arbitrary order.

Usage:

>>> dic = {"To": "you", "From": "me", "Date": "2008/1/4", "Subject": "X"}
>>> dic["received"] = "..."
>>> order = ["From", "To", "Subject"]
>>> list(ordered_items(dic, order, False))
[('From', 'me'), ('To', 'you'), ('Subject', 'X')]

	
webhelpers.containers.del_quiet(dic, keys)

	Delete several keys from a dict, ignoring those that don’t exist.

This modifies the dict in place.

>>> d ={"A": 1, "B": 2, "C": 3}
>>> del_quiet(d, ["A", "C"])
>>> d
{'B': 2}

	
webhelpers.containers.correlate_dicts(dicts, key)

	Correlate several dicts under one superdict.

If you have several dicts each with a ‘name’ key, this
puts them in a container dict keyed by name.

>>> d1 = {"name": "Fred", "age": 41}
>>> d2 = {"name": "Barney", "age": 31}
>>> flintstones = correlate_dicts([d1, d2], "name")
>>> sorted(flintstones.keys())
['Barney', 'Fred']
>>> flintstones["Fred"]["age"]
41

If you’re having trouble spelling this method correctly, remember:
“relate” has one ‘l’. The ‘r’ is doubled because it occurs after a prefix.
Thus “correlate”.

	
webhelpers.containers.correlate_objects(objects, attr)

	Correlate several objects under one dict.

If you have several objects each with a ‘name’ attribute, this
puts them in a dict keyed by name.

>>> class Flintstone(DumbObject):
... pass
...
>>> fred = Flintstone(name="Fred", age=41)
>>> barney = Flintstone(name="Barney", age=31)
>>> flintstones = correlate_objects([fred, barney], "name")
>>> sorted(flintstones.keys())
['Barney', 'Fred']
>>> flintstones["Barney"].age
31

If you’re having trouble spelling this method correctly, remember:
“relate” has one ‘l’. The ‘r’ is doubled because it occurs after a prefix.
Thus “correlate”.

	
webhelpers.containers.distribute(lis, columns, direction, fill=None)

	Distribute a list into a N-column table (list of lists).

lis is a list of values to distribute.

columns is an int greater than 1, specifying the number of columns in
the table.

direction is a string beginning with “H” (horizontal) or “V”
(vertical), case insensitive. This affects how values are distributed in
the table, as described below.

fill is a value that will be placed in any remaining cells if the data
runs out before the last row or column is completed. This must be an
immutable value such as None , "", 0, “ ”, etc. If you
use a mutable value like [] and later change any cell containing the
fill value, all other cells containing the fill value will also be changed.

The return value is a list of lists, where each sublist represents a row in
the table.
table[0] is the first row.
table[0][0] is the first column in the first row.
table[0][1] is the second column in the first row.

This can be displayed in an HTML table via the following Mako template:

<table>
% for row in table:
 <tr>
% for cell in row:
 <td>${cell}</td>
% endfor cell
 </tr>
% endfor row
</table>

In a horizontal table, each row is filled before going on to the next row.
This is the same as dividing the list into chunks:

>>> distribute([1, 2, 3, 4, 5, 6, 7, 8], 3, "H")
[[1, 2, 3], [4, 5, 6], [7, 8, None]]

In a vertical table, the first element of each sublist is filled before
going on to the second element. This is useful for displaying an
alphabetical list in columns, or when the entire column will be placed in
a single <td> with a
 between each element:

>>> food = ["apple", "banana", "carrot", "daikon", "egg", "fish", "gelato", "honey"]
>>> table = distribute(food, 3, "V", "")
>>> table
[['apple', 'daikon', 'gelato'], ['banana', 'egg', 'honey'], ['carrot', 'fish', '']]
>>> for row in table:
... for item in row:
... print "%-9s" % item,
... print "." # To show where the line ends.
...
apple daikon gelato .
banana egg honey .
carrot fish .

Alternatives to this function include a NumPy matrix of objects.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

date – Date helpers

webhelpers.date

	
webhelpers.date.distance_of_time_in_words(from_time, to_time=0, granularity='second', round=False)

	Return the absolute time-distance string for two datetime objects,
ints or any combination you can dream of.

If times are integers, they are interpreted as seconds from now.

granularity dictates where the string calculation is stopped.
If set to seconds (default) you will receive the full string. If
another accuracy is supplied you will receive an approximation.
Available granularities are:
‘century’, ‘decade’, ‘year’, ‘month’, ‘day’, ‘hour’, ‘minute’,
‘second’

Setting round to true will increase the result by 1 if the fractional
value is greater than 50% of the granularity unit.

Examples:

>>> distance_of_time_in_words(86399, round=True, granularity='day')
'1 day'
>>> distance_of_time_in_words(86399, granularity='day')
'less than 1 day'
>>> distance_of_time_in_words(86399)
'23 hours, 59 minutes and 59 seconds'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45))
'1 month, 15 days, 6 hours and 49 minutes'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45), granularity='decade')
'less than 1 decade'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45), granularity='second')
'1 month, 15 days, 6 hours and 49 minutes'

	
webhelpers.date.time_ago_in_words(from_time, granularity='second', round=False)

	Return approximate-time-distance string for from_time till now.

Same as distance_of_time_in_words but the endpoint is now.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

feedgenerator – Feed generator

The feed generator is intended for use in controllers, and generates an
output stream. Currently the following feeds can be created by imported the
appropriate class:

	RssFeed

	RssUserland091Feed

	Rss201rev2Feed

	Atom1Feed

All of these format specific Feed generators inherit from the
SyndicationFeed() class.

Example controller method:

import logging

from pylons import request, response, session
from pylons import tmpl_context as c
from pylons.controllers.util import abort, redirect_to, url_for
from webhelpers.feedgenerator import Atom1Feed

from helloworld.lib.base import BaseController, render

log = logging.getLogger(__name__)

class CommentsController(BaseController):

 def index(self):
 feed = Atom1Feed(
 title=u"An excellent Sample Feed",
 link=url_for(),
 description=u"A sample feed, showing how to make and add entries",
 language=u"en",
)
 feed.add_item(title="Sample post",
 link=u"http://hellosite.com/posts/sample",
 description="Testing.")
 response.content_type = 'application/atom+xml'
 return feed.writeString('utf-8')

Module Contents

	
class webhelpers.feedgenerator.SyndicationFeed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	Base class for all syndication feeds. Subclasses should provide write()

	
__init__(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	

	
add_item(title, link, description, author_email=None, author_name=None, author_link=None, pubdate=None, comments=None, unique_id=None, enclosure=None, categories=(), item_copyright=None, ttl=None, **kwargs)

	Adds an item to the feed. All args are expected to be Python Unicode
objects except pubdate, which is a datetime.datetime object, and
enclosure, which is an instance of the Enclosure class.

	
add_item_elements(handler, item)

	Add elements on each item (i.e. item/entry) element.

	
add_root_elements(handler)

	Add elements in the root (i.e. feed/channel) element. Called
from write().

	
item_attributes(item)

	Return extra attributes to place on each item (i.e. item/entry) element.

	
latest_post_date()

	Returns the latest item’s pubdate. If none of them have a pubdate,
this returns the current date/time.

	
root_attributes()

	Return extra attributes to place on the root (i.e. feed/channel) element.
Called from write().

	
write(outfile, encoding)

	Outputs the feed in the given encoding to outfile, which is a file-like
object. Subclasses should override this.

	
writeString(encoding)

	Returns the feed in the given encoding as a string.

	
class webhelpers.feedgenerator.Enclosure(url, length, mime_type)

	Represents an RSS enclosure

	
class webhelpers.feedgenerator.RssFeed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	

	
class webhelpers.feedgenerator.RssUserland091Feed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	

	
class webhelpers.feedgenerator.Rss201rev2Feed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	

	
class webhelpers.feedgenerator.Atom1Feed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	

	
webhelpers.feedgenerator.rfc2822_date(date)

	

	
webhelpers.feedgenerator.rfc3339_date(date)

	

	
webhelpers.feedgenerator.get_tag_uri(url, date)

	Creates a TagURI. See http://diveintomark.org/archives/2004/05/28/howto-atom-id

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

webhelpers.html – HTML handling

webhelpers.html.builder

HTML/XHTML tag builder

HTML Builder provides an HTML object that creates (X)HTML tags in a
Pythonic way, a literal class used to mark strings containing intentional
HTML markup, and a smart escape() function that preserves literals but
escapes other strings that may accidentally contain markup characters (“<”,
“>”, “&”) or malicious Javascript tags. Escaped strings are returned as
literals to prevent them from being double-escaped later.

literal is a subclass of unicode, so it works with all string methods
and expressions. The only thing special about it is the .__html__ method,
which returns the string itself. escape() follows a simple protocol: if
the object has an .__html__ method, it calls that rather than .__str__
to get the HTML representation. Third-party libraries that do not want to
import literal (and this create a dependency on WebHelpers) can put an
.__html__ method in their own classes returning the desired HTML
representation.

When used in a mixed expression containing both literals and ordinary strings,
literal tries hard to escape the strings and return a literal. However,
this depends on which value has “control” of the expression. literal seems
to be able to take control with all combinations of the + operator, but
with % and join it must be on the left side of the expression. So
these all work:

"A" + literal("B")
literal(", ").join(["A", literal("B")])
literal("%s %s") % (16, literal("kg"))

But these return an ordinary string which is prone to double-escaping later:

"\\n".join([literal('Foo!'), literal('Bar!')])
"%s %s" % (literal("16"), literal("kg"))

Third-party libraries that don’t want to import literal and thus avoid a
dependency on WebHelpers can add an .__html__ method to any class, which
can return the same as .__str__ or something else. escape() trusts the
HTML method and does not escape the return value. So only strings that lack
an .__html__ method will be escaped.

The HTML object has the following methods for tag building:

	HTML(*strings)

	Escape the string args, concatenate them, and return a literal. This is
the same as escape(s) but accepts multiple strings. Multiple args are
useful when mixing child tags with text, such as:

html = HTML("The king is a >>", HTML.strong("fink"), "<<!")

	HTML.literal(*strings)

	Same as literal but concatenates multiple arguments.

	HTML.comment(*strings)

	Escape and concatenate the strings, and wrap the result in an HTML
comment.

	HTML.tag(tag, *content, **attrs)

	Create an HTML tag tag with the keyword args converted to attributes.
The other positional args become the content for the tag, and are escaped
and concatenated. If an attribute name conflicts with a Python keyword
(notably “class”), append an underscore. If an attribute value is
None, the attribute is not inserted. Two special keyword args are
recognized:

	c

	Specifies the content. This cannot be combined with content in
positional args. The purpose of this argument is to position the
content at the end of the argument list to match the native HTML
syntax more closely. Its use is entirely optional. The value can
be a string, a tuple, or a tag.

	_close

	If present and false, do not close the tag. Otherwise the tag will be
closed with a closing tag or an XHTML-style trailing slash as described
below.

Example:

>>> HTML.tag("a", href="http://www.yahoo.com", name=None,
... c="Click Here")
literal(u'Click Here')

	HTML.__getattr__

	Same as HTML.tag but using attribute access. Example:

>>> HTML.a("Foo", href="http://example.com/", class_="important")
literal(u'Foo')

The protocol is simple: if an object has an .__html__ method, escape()
calls it rather than .__str__() to obtain a string representation.

About XHTML and HTML

This builder always produces tags that are valid as both HTML and
XHTML. “Empty” tags (like
, <input> etc) are written like
,
with a space and a trailing /.

Only empty tags get this treatment. The library will never, for example,
product <script src="..." />, which is invalid HTML.

The W3C HTML validator [http://validator.w3.org/] validates these
constructs as valid HTML Strict. It does produce warnings, but those
warnings warn about the ambiguity if this same XML-style self-closing
tags are used for HTML elements that can take content (<script>,
<textarea>, etc). This library never produces markup like that.

Rather than add options to generate different kinds of behavior, we
felt it was better to create markup that could be used in different
contexts without any real problems and without the overhead of passing
options around or maintaining different contexts, where you’d have to
keep track of whether markup is being rendered in an HTML or XHTML
context.

If you _really_ want tags without training slashes (e.g.,
`)`, you can
"abuse" ``_close=False to produce them.

	
class webhelpers.html.builder.UnfinishedTag(tag)

	Represents an unfinished or empty tag.

	
class webhelpers.html.builder.UnfinishedComment

	Represents an unfinished or empty comment.

	
class webhelpers.html.builder.UnfinishedLiteral

	Represent an unfinished literal value.

	
class webhelpers.html.builder.HTMLBuilder

	Base HTML object.

	
webhelpers.html.builder.make_tag(tag, *args, **kw)

	

	
webhelpers.html.builder.literal()

	Represents an HTML literal.

This subclass of unicode has a .__html__() method that is
detected by the escape() function.

Also, if you add another string to this string, the other string
will be quoted and you will get back another literal object. Also
literal(...) % obj will quote any value(s) from obj. If
you do something like literal(...) + literal(...), neither
string will be changed because escape(literal(...)) doesn’t
change the original literal.

	
webhelpers.html.builder.lit_sub(*args, **kw)

	Literal-safe version of re.sub. If the string to be operated on is
a literal, return a literal result. All arguments are passed directly to
re.sub.

	
webhelpers.html.builder.escape()

	escape_silent(s) -> markup

Like escape but converts None to an empty string.

webhelpers.html.converters

	
webhelpers.html.converters.markdown(text, markdown=None, **kwargs)

	Format the text to HTML with Markdown formatting.

Markdown is a wiki-like text markup language, originally written by
John Gruber for Perl. The helper converts Markdown text to HTML.

There are at least two Python implementations of Markdown.
Markdown <http://www.freewisdom.org/projects/python-markdown/>`_is the
original port, and version 2.x contains extensions for footnotes, RSS, etc.
Markdown2 [http://code.google.com/p/python-markdown2/] is another port
which claims to be faster and to handle edge cases better.

You can pass the desired Markdown module as the markdown
argument, or the helper will try to import markdown. If neither is
available, it will fall back to webhelpers.markdown, which is
Freewisdom’s Markdown 1.7 without extensions.

IMPORTANT:
If your source text is untrusted and may contain malicious HTML markup,
pass safe_mode="escape" to escape it, safe_mode="replace" to
replace it with a scolding message, or safe_mode="remove" to strip it.

	
webhelpers.html.converters.textilize(text, sanitize=False)

	Format the text to HTML with Textile formatting.

This function uses the PyTextile library [http://dealmeida.net/]
which is included with WebHelpers.

Additionally, the output can be sanitized which will fix tags like
,
 and <hr /> for proper XHTML output.

webhelpers.html.secure_form

webhelpers.html.tags

	
webhelpers.html.tags.form(url, method='post', multipart=False, hidden_fields=None, **attrs)

	An open tag for a form that will submit to url.

You must close the form yourself by calling end_form() or outputting
</form>.

Options:

	method

	The method to use when submitting the form, usually either
“GET” or “POST”. If “PUT”, “DELETE”, or another verb is used, a
hidden input with name _method is added to simulate the verb
over POST.

	multipart

	If set to True, the enctype is set to “multipart/form-data”.
You must set it to true when uploading files, or the browser will
submit the filename rather than the file.

	hidden_fields

	Additional hidden fields to add to the beginning of the form. It may
be a dict or an iterable of key-value tuples. This is implemented by
calling the object’s .items() method if it has one, or just
iterating the object. (This will successfuly get multiple values for
the same key in WebOb MultiDict objects.)

Because input tags must be placed in a block tag rather than directly
inside the form, all hidden fields will be put in a
‘<div style=”display:none”>’. The style prevents the <div> from being
displayed or affecting the layout.

Examples:

>>> form("/submit")
literal(u'<form action="/submit" method="post">')
>>> form("/submit", method="get")
literal(u'<form action="/submit" method="get">')
>>> form("/submit", method="put")
literal(u'<form action="/submit" method="post"><div style="display:none">\n<input name="_method" type="hidden" value="put" />\n</div>\n')
>>> form("/submit", "post", multipart=True)
literal(u'<form action="/submit" enctype="multipart/form-data" method="post">')

Changed in WebHelpers 1.0b2: add <div> and hidden_fields arg.

Changed in WebHelpers 1.2: don’t add an “id” attribute to hidden tags
generated by this helper; they clash if there are multiple forms on the
page.

	
webhelpers.html.tags.end_form()

	Output “</form>”.

Example:

>>> end_form()
literal(u'</form>')

	
webhelpers.html.tags.text(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, type='text', **attrs)

	Create a standard text field.

value is a string, the content of the text field.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

type is the input field type, normally “text”. You can override it
for HTML 5 input fields that don’t have their own helper; e.g.,
“search”, “email”, “date”.

Options:

	
	disabled - If set to True, the user will not be able to use

	this input.

	
	size - The number of visible characters that will fit in the

	input.

	
	maxlength - The maximum number of characters that the browser

	will allow the user to enter.

The remaining keyword args will be standard HTML attributes for the tag.

Example, a text input field:

>>> text("address")
literal(u'<input id="address" name="address" type="text" />')

HTML 5 example, a color picker:

>>> text("color", type="color")
literal(u'<input id="color" name="color" type="color" />')

	
webhelpers.html.tags.hidden(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a hidden field.

	
webhelpers.html.tags.file(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a file upload field.

If you are using file uploads then you will also need to set the
multipart option for the form.

Example:

>>> file('myfile')
literal(u'<input id="myfile" name="myfile" type="file" />')

	
webhelpers.html.tags.password(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a password field.

Takes the same options as text().

	
webhelpers.html.tags.textarea(name, content='', id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a text input area.

Example:

>>> textarea("body", "", cols=25, rows=10)
literal(u'<textarea cols="25" id="body" name="body" rows="10"></textarea>')

	
webhelpers.html.tags.checkbox(name, value='1', checked=False, label=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a check box.

Arguments:
name – the widget’s name.

value – the value to return to the application if the box is checked.

checked – true if the box should be initially checked.

label – a text label to display to the right of the box.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

The following HTML attributes may be set by keyword argument:

	disabled - If true, checkbox will be grayed out.

	readonly - If true, the user will not be able to modify the checkbox.

To arrange multiple checkboxes in a group, see
webhelpers.containers.distribute().

Example:

>>> checkbox("hi")
literal(u'<input id="hi" name="hi" type="checkbox" value="1" />')

	
webhelpers.html.tags._make_safe_id_component(idstring)

	Make a string safe for including in an id attribute.

The HTML spec says that id attributes ‘must begin with
a letter ([A-Za-z]) and may be followed by any number
of letters, digits ([0-9]), hyphens (“-”), underscores
(“_”), colons (”:”), and periods (”.”)’. These regexps
are slightly over-zealous, in that they remove colons
and periods unnecessarily.

Whitespace is transformed into underscores, and then
anything which is not a hyphen or a character that
matches w (alphanumerics and underscore) is removed.

	
webhelpers.html.tags.radio(name, value, checked=False, label=None, **attrs)

	Create a radio button.

Arguments:
name – the field’s name.

value – the value returned to the application if the button is
pressed.

checked – true if the button should be initially pressed.

label – a text label to display to the right of the button.

The id of the radio button will be set to the name + ‘_’ + value to
ensure its uniqueness. An id keyword arg overrides this. (Note
that this behavior is unique to the radio() helper.)

To arrange multiple radio buttons in a group, see
webhelpers.containers.distribute().

	
webhelpers.html.tags.submit(name, value, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a submit button with the text value as the caption.

	
webhelpers.html.tags.select(name, selected_values, options, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a dropdown selection box.

	name – the name of this control.

	selected_values – a string or list of strings or integers giving
the value(s) that should be preselected.

	options – an Options object or iterable of (value, label)
pairs. The label will be shown on the form; the option will be returned
to the application if that option is chosen. If you pass a string or int
instead of a 2-tuple, it will be used for both the value and the label.
If the value is a tuple or a list, it will be added as an optgroup,
with label as label.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name. filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

CAUTION: the old rails helper options_for_select had the label first.
The order was reversed because most real-life collections have the value
first, including dicts of the form {value: label}. For those dicts
you can simply pass D.items() as this argument.

HINT: You can sort options alphabetically by label via:
sorted(my_options, key=lambda x: x[1])

The following options may only be keyword arguments:

	
	multiple – if true, this control will allow multiple

	selections.

	prompt – if specified, an extra option will be prepended to the
list: (“”, prompt). This is intended for those “Please choose ...”
pseudo-options. Its value is “”, equivalent to not making a selection.

Any other keyword args will become HTML attributes for the <select>.

Examples (call, result):

>>> select("currency", "$", [["$", "Dollar"], ["DKK", "Kroner"]])
literal(u'<select id="currency" name="currency">\n<option selected="selected" value="$">Dollar</option>\n<option value="DKK">Kroner</option>\n</select>')
>>> select("cc", "MasterCard", ["VISA", "MasterCard"], id="cc", class_="blue")
literal(u'<select class="blue" id="cc" name="cc">\n<option value="VISA">VISA</option>\n<option selected="selected" value="MasterCard">MasterCard</option>\n</select>')
>>> select("cc", ["VISA", "Discover"], ["VISA", "MasterCard", "Discover"])
literal(u'<select id="cc" name="cc">\n<option selected="selected" value="VISA">VISA</option>\n<option value="MasterCard">MasterCard</option>\n<option selected="selected" value="Discover">Discover</option>\n</select>')
>>> select("currency", None, [["$", "Dollar"], ["DKK", "Kroner"]], prompt="Please choose ...")
literal(u'<select id="currency" name="currency">\n<option selected="selected" value="">Please choose ...</option>\n<option value="$">Dollar</option>\n<option value="DKK">Kroner</option>\n</select>')
>>> select("privacy", 3L, [(1, "Private"), (2, "Semi-public"), (3, "Public")])
literal(u'<select id="privacy" name="privacy">\n<option value="1">Private</option>\n<option value="2">Semi-public</option>\n<option selected="selected" value="3">Public</option>\n</select>')
>>> select("recipients", None, [([("u1", "User1"), ("u2", "User2")], "Users"), ([("g1", "Group1"), ("g2", "Group2")], "Groups")])
literal(u'<select id="recipients" name="recipients">\n<optgroup label="Users">\n<option value="u1">User1</option>\n<option value="u2">User2</option>\n</optgroup>\n<optgroup label="Groups">\n<option value="g1">Group1</option>\n<option value="g2">Group2</option>\n</optgroup>\n</select>')

	
class webhelpers.html.tags.ModelTags(record, use_keys=False, date_format='%m/%d/%Y', id_format=None)

	A nice way to build a form for a database record.

ModelTags allows you to build a create/update form easily. (This is the
C and U in CRUD.) The constructor takes a database record, which can be
a SQLAlchemy mapped class, or any object with attributes or keys for the
field values. Its methods shadow the the form field helpers, but it
automatically fills in the value attribute based on the current value in
the record. (It also knows about the ‘checked’ and ‘selected’ attributes
for certain tags.)

You can also use the same form to input a new record. Pass None or
"" instead of a record, and it will set all the current values to a
default value, which is either the default keyword arg to the method, or
“” if not specified.

(Hint: in Pylons you can put mt = ModelTags(c.record) in your template,
and then if the record doesn’t exist you can either set c.record = None
or not set it at all. That’s because nonexistent c attributes resolve
to “” unless you’ve set config["pylons.strict_c"] = True. However,
having a c attribute that’s sometimes set and sometimes not is
arguably bad programming style.)

	
checkbox(name, value='1', label=None, **kw)

	Build a checkbox field.

The box will be initially checked if the value of the corresponding
database field is true.

The submitted form value will be “1” if the box was checked. If the
box is unchecked, no value will be submitted. (This is a downside of
the standard checkbox tag.)

To display multiple checkboxes in a group, see
webhelper.containers.distribute().

	
date(name, **kw)

	Same as text but format a date value into a date string.

The value can be a datetime.date, datetime.datetime, None,
or “”. The former two are converted to a string using the
date format passed to the constructor. The latter two are converted
to “”.

If there’s no database record, consult keyword arg default. It it’s
the string “today”, use todays’s date. Otherwise it can be any of the
values allowed above. If no default is specified, the text field is
initialized to “”.

Hint: you may wish to attach a Javascript calendar to the field.

	
file(name, **kw)

	Build a file upload field.

User agents may or may not respect the contents of the ‘value’ attribute.

	
hidden(name, **kw)

	Build a hidden HTML field.

	
password(name, **kw)

	Build a password field.

This is the same as a text box but the value will not be shown on the
screen as the user types.

	
radio(name, checked_value, label=None, **kw)

	Build a radio button.

The radio button will initially be selected if the database value
equals checked_value. On form submission the value will be
checked_value if the button was selected, or "" otherwise.

In case of a ModelTags object that is created from scratch
(e.g. new_employee=ModelTags(None)) the option that should
be checked can be set by the ‘default’ parameter. As in:
new_employee.radio('status', checked_value=7, default=7)

The control’s ‘id’ attribute will be modified as follows:

	If not specified but an ‘id_format’ was given to the constructor,
generate an ID based on the format.

	If an ID was passed in or was generated by step (1), append an
underscore and the checked value. Before appending the checked
value, lowercase it, change any spaces to "_", and remove any
non-alphanumeric characters except underscores and hyphens.

	If no ID was passed or generated by step (1), the radio button
will not have an ‘id’ attribute.

To display multiple radio buttons in a group, see
webhelper.containers.distribute().

	
select(name, options, **kw)

	Build a dropdown select box or list box.

See the select() function for the meaning of the arguments.

If the corresponding database value is not a list or tuple, it’s
wrapped in a one-element list. But if it’s “” or None, an empty
list is substituted. This is to accommodate multiselect lists, which
may have multiple values selected.

	
text(name, **kw)

	Build a text box.

	
textarea(name, **kw)

	Build a rectangular text area.

	
webhelpers.html.tags.link_to(label, url='', **attrs)

	Create a hyperlink with the given text pointing to the URL.

If the label is None or empty, the URL will be used as the label.

This function does not modify the URL in any way. The label will be
escaped if it contains HTML markup. To prevent escaping, wrap the label
in a webhelpers.html.literal().

	
webhelpers.html.tags.link_to_if(condition, label, url='', **attrs)

	Same as link_to but return just the label if the condition is false.

This is useful in a menu when you don’t want the current option to be a
link. The condition will be something like:
actual_value != value_of_this_menu_item.

	
webhelpers.html.tags.link_to_unless(condition, label, url='', **attrs)

	The opposite of link_to. Return just the label if the condition is
true.

	
webhelpers.html.tags.th_sortable(current_order, column_order, label, url, class_if_sort_column='sort', class_if_not_sort_column=None, link_attrs=None, name='th', **attrs)

	<th> for a “click-to-sort-by” column.

Convenience function for a sortable column. If this is the current sort
column, just display the label and set the cell’s class to
class_if_sort_column.

current_order is the table’s current sort order. column_order is
the value pertaining to this column. In other words, if the two are equal,
the table is currently sorted by this column.

If this is the sort column, display the label and set the <th>’s class to
class_if_sort_column.

If this is not the sort column, display an <a> hyperlink based on
label, url, and link_attrs (a dict), and set the <th>’s class
to class_if_not_sort_column.

url is the literal href= value for the link. Pylons users would
typically pass something like url=h.url_for("mypage", sort="date").

**attrs are additional attributes for the <th> tag.

If you prefer a <td> tag instead of <th>, pass name="td".

To change the sort order via client-side Javascript, pass url=None and
the appropriate Javascript attributes in link_attrs.

Examples:

>>> sort = "name"
>>> th_sortable(sort, "name", "Name", "?sort=name")
literal(u'<th class="sort">Name</th>')
>>> th_sortable(sort, "date", "Date", "?sort=date")
literal(u'<th>Date</th>')
>>> th_sortable(sort, "date", "Date", None, link_attrs={"onclick": "myfunc()"})
literal(u'<th>Date</th>')

	
webhelpers.html.tags.image(url, alt, width=None, height=None, path=None, use_pil=False, **attrs)

	Return an image tag for the specified source.

	url

	The URL of the image. (This must be the exact URL desired. A
previous version of this helper added magic prefixes; this is
no longer the case.)

	alt

	The img’s alt tag. Non-graphical browsers and screen readers will
output this instead of the image. If the image is pure decoration
and uninteresting to non-graphical users, pass “”. To omit the
alt tag completely, pass None.

	width

	The width of the image, default is not included.

	height

	The height of the image, default is not included.

	path

	Calculate the width and height based on the image file at path if
possible. May not be specified if width or height is
specified. The results are also written to the debug log for
troubleshooting.

	use_pil

	If true, calcuate the image dimensions using the Python Imaging
Library, which must be installed. Otherwise use a pure Python
algorithm which understands fewer image formats and may be less
accurate. This flag controls whether
webhelpers.media.get_dimensions_pil or
webhelpers.media.get_dimensions is called. It has no effect if
path is not specified.

Examples:

>>> image('/images/rss.png', 'rss syndication')
literal(u'')

>>> image('/images/xml.png', "")
literal(u'')

>>> image("/images/icon.png", height=16, width=10, alt="Edit Entry")
literal(u'')

>>> image("/icons/icon.gif", alt="Icon", width=16, height=16)
literal(u'')

>>> image("/icons/icon.gif", None, width=16)
literal(u'')

	
webhelpers.html.tags.javascript_link(*urls, **attrs)

	Return script include tags for the specified javascript URLs.

urls should be the exact URLs desired. A previous version of this
helper added magic prefixes; this is no longer the case.

Specify the keyword argument defer=True to enable the script
defer attribute.

Examples:

>>> print javascript_link('/javascripts/prototype.js', '/other-javascripts/util.js')
<script src="/javascripts/prototype.js" type="text/javascript"></script>
<script src="/other-javascripts/util.js" type="text/javascript"></script>

>>> print javascript_link('/app.js', '/test/test.1.js')
<script src="/app.js" type="text/javascript"></script>
<script src="/test/test.1.js" type="text/javascript"></script>

	
webhelpers.html.tags.stylesheet_link(*urls, **attrs)

	Return CSS link tags for the specified stylesheet URLs.

urls should be the exact URLs desired. A previous version of this
helper added magic prefixes; this is no longer the case.

Examples:

>>> stylesheet_link('/stylesheets/style.css')
literal(u'<link href="/stylesheets/style.css" media="screen" rel="stylesheet" type="text/css" />')

>>> stylesheet_link('/stylesheets/dir/file.css', media='all')
literal(u'<link href="/stylesheets/dir/file.css" media="all" rel="stylesheet" type="text/css" />')

	
webhelpers.html.tags.auto_discovery_link(url, feed_type='rss', **attrs)

	Return a link tag allowing auto-detecting of RSS or ATOM feed.

The auto-detection of feed for the current page is only for
browsers and news readers that support it.

	url

	The URL of the feed. (This should be the exact URLs desired. A
previous version of this helper added magic prefixes; this is no longer
the case.)

	feed_type

	The type of feed. Specifying ‘rss’ or ‘atom’ automatically
translates to a type of ‘application/rss+xml’ or
‘application/atom+xml’, respectively. Otherwise the type is
used as specified. Defaults to ‘rss’.

Examples:

>>> auto_discovery_link('http://feed.com/feed.xml')
literal(u'<link href="http://feed.com/feed.xml" rel="alternate" title="RSS" type="application/rss+xml" />')

>>> auto_discovery_link('http://feed.com/feed.xml', feed_type='atom')
literal(u'<link href="http://feed.com/feed.xml" rel="alternate" title="ATOM" type="application/atom+xml" />')

>>> auto_discovery_link('app.rss', feed_type='atom', title='atom feed')
literal(u'<link href="app.rss" rel="alternate" title="atom feed" type="application/atom+xml" />')

>>> auto_discovery_link('/app.html', feed_type='text/html')
literal(u'<link href="/app.html" rel="alternate" title="" type="text/html" />')

webhelpers.html.tools

	
webhelpers.html.tools.button_to(name, url='', **html_attrs)

	Generate a form containing a sole button that submits to
url.

Use this method instead of link_to for actions that do not have
the safe HTTP GET semantics implied by using a hypertext link.

The parameters are the same as for link_to. Any
html_attrs that you pass will be applied to the inner
input element. In particular, pass

disabled = True/False

as part of html_attrs to control whether the button is
disabled. The generated form element is given the class
‘button-to’, to which you can attach CSS styles for display
purposes.

The submit button itself will be displayed as an image if you
provide both type and src as followed:

type=’image’, src=’icon_delete.gif’

The src path should be the exact URL desired. A previous version of
this helper added magical prefixes but this is no longer the case.

Example 1:

inside of controller for "feeds"
>> button_to("Edit", url(action='edit', id=3))
<form method="post" action="/feeds/edit/3" class="button-to">
<div><input value="Edit" type="submit" /></div>
</form>

Example 2:

>> button_to("Destroy", url(action='destroy', id=3),
.. method='DELETE')
<form method="POST" action="/feeds/destroy/3"
 class="button-to">
<div>
 <input type="hidden" name="_method" value="DELETE" />
 <input value="Destroy" type="submit" />
</div>
</form>

Example 3:

Button as an image.
>> button_to("Edit", url(action='edit', id=3), type='image',
.. src='icon_delete.gif')
<form method="POST" action="/feeds/edit/3" class="button-to">
<div><input alt="Edit" src="/images/icon_delete.gif"
 type="image" value="Edit" /></div>
</form>

Note

This method generates HTML code that represents a form. Forms
are “block” content, which means that you should not try to
insert them into your HTML where only inline content is
expected. For example, you can legally insert a form inside of
a div or td element or in between p elements, but
not in the middle of a run of text, nor can you place a form
within another form.
(Bottom line: Always validate your HTML before going public.)

Changed in WebHelpers 1.2: Preserve case of “method” arg for XHTML
compatibility. E.g., “POST” or “PUT” causes method=”POST”; “post” or
“put” causes method=”post”.

	
webhelpers.html.tools.mail_to(email_address, name=None, cc=None, bcc=None, subject=None, body=None, replace_at=None, replace_dot=None, encode=None, **html_attrs)

	Create a link tag for starting an email to the specified
email_address.

This email_address is also used as the name of the link unless
name is specified. Additional HTML options, such as class or
id, can be passed in the html_attrs hash.

You can also make it difficult for spiders to harvest email address
by obfuscating them.

Examples:

>>> mail_to("me@domain.com", "My email", encode = "javascript")
literal(u'<script type="text/javascript">\n//<![CDATA[\neval(unescape(\'%64%6f%63%75%6d%65%6e%74%2e%77%72%69%74%65%28%27%3c%61%20%68%72%65%66%3d%22%6d%61%69%6c%74%6f%3a%6d%65%40%64%6f%6d%61%69%6e%2e%63%6f%6d%22%3e%4d%79%20%65%6d%61%69%6c%3c%2f%61%3e%27%29%3b\'))\n//]]>\n</script>')

>>> mail_to("me@domain.com", "My email", encode = "hex")
literal(u'My email')

You can also specify the cc address, bcc address, subject, and body
parts of the message header to create a complex e-mail using the
corresponding cc, bcc, subject, and body keyword
arguments. Each of these options are URI escaped and then appended
to the email_address before being output. Be aware that
javascript keywords will not be escaped and may break this feature
when encoding with javascript.

Examples:

>>> mail_to("me@domain.com", "My email", cc="ccaddress@domain.com", bcc="bccaddress@domain.com", subject="This is an example email", body= "This is the body of the message.")
literal(u'My email')

	
webhelpers.html.tools.highlight(text, phrase, highlighter=None, case_sensitive=False, class_='highlight', **attrs)

	Highlight all occurrences of phrase in text.

This inserts “<strong class=”highlight”>...” around every
occurrence.

Arguments:

	text:

	The full text.

	phrase:

	A phrase to find in the text. This may be a string, a list of strings,
or a compiled regular expression. If a string, it’s regex-escaped and
compiled. If a list, all of the strings will be highlighted. This is
done by regex-escaping all elements and then joining them using the
regex “|” token.

	highlighter:

	Deprecated. A replacement expression for the regex substitution.
This was deprecated because it bypasses the HTML builder and creates
tags via string mangling. The previous default was ‘<strong
class=”highlight”>1’, which mimics the normal behavior of
this function. phrase must be a string if highlighter is
specified. Overrides class_ and attrs_ arguments.

	case_sensitive:

	If false (default), the phrases are searched in a case-insensitive
manner. No effect if phrase is a regex object.

	class_:

	CSS class for the tag.

	**attrs:

	Additional HTML attributes for the tag.

Changed in WebHelpers 1.0b2: new implementation using HTML builder.
Allow phrase to be list or regex. Deprecate highlighter and
change its default value to None. Add case_sensitive, class_,
and **attrs arguments.

	
webhelpers.html.tools.auto_link(text, link='all', **href_attrs)

	Turn all urls and email addresses into clickable links.

	link

	Used to determine what to link. Options are “all”,
“email_addresses”, or “urls”

	href_attrs

	Additional attributes for generated <a> tags.

Example:

>>> auto_link("Go to http://www.planetpython.com and say hello to guido@python.org")
literal(u'Go to http://www.planetpython.com and say hello to guido@python.org')

	
webhelpers.html.tools.strip_links(text)

	Strip link tags from text leaving just the link label.

Example:

>>> strip_links('else')
'else'

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

webhelpers.markdown – Markdown

webhelpers.markdown

	
webhelpers.markdown.markdown(text, extensions=[], safe_mode=False)

	

	
webhelpers.markdown.markdownFromFile(input=None, output=None, extensions=[], encoding=None, message_threshold=50, safe=False)

	

	
class webhelpers.markdown.Markdown(source=None, extensions=[], extension_configs=None, safe_mode=False)

	Markdown formatter class for creating an html document from
Markdown text

	
convert(source=None)

	Return the document in XHTML format.

@returns: A serialized XHTML body.

	
registerExtension(extension)

	This gets called by the extension

	
reset()

	Resets all state variables so that we can start
with a new text.

	
class webhelpers.markdown.Document

	

	
class webhelpers.markdown.Element(tag)

	
	
find(test, depth=0)

	Returns a list of descendants that pass the test function

	
class webhelpers.markdown.TextNode(text)

	

	
class webhelpers.markdown.EntityReference(entity)

	

	
class webhelpers.markdown.HeaderPreprocessor

	Replaces underlined headers with hashed headers to avoid
the need for lookahead later.

	
class webhelpers.markdown.LinePreprocessor

	Deals with HR lines (needs to be done before processing lists)

	
class webhelpers.markdown.HtmlBlockPreprocessor

	Removes html blocks from the source text and stores it.

	
class webhelpers.markdown.ReferencePreprocessor

	Removes reference definitions from the text and stores them for later use.

	
class webhelpers.markdown.Pattern(pattern)

	

	
class webhelpers.markdown.SimpleTextPattern(pattern)

	

	
class webhelpers.markdown.SimpleTagPattern(pattern, tag)

	

	
class webhelpers.markdown.BacktickPattern(pattern)

	

	
class webhelpers.markdown.DoubleTagPattern(pattern, tag)

	

	
class webhelpers.markdown.HtmlPattern(pattern)

	

	
class webhelpers.markdown.LinkPattern(pattern)

	

	
class webhelpers.markdown.ImagePattern(pattern)

	

	
class webhelpers.markdown.ReferencePattern(pattern)

	

	
class webhelpers.markdown.ImageReferencePattern(pattern)

	

	
class webhelpers.markdown.AutolinkPattern(pattern)

	

	
class webhelpers.markdown.AutomailPattern(pattern)

	

	
class webhelpers.markdown.Postprocessor

	Postprocessors are run before the dom it converted back into text.

Each Postprocessor implements a “run” method that takes a pointer to a
NanoDom document, modifies it as necessary and returns a NanoDom
document.

Postprocessors must extend markdown.Postprocessor.

There are currently no standard post-processors, but the footnote
extension uses one.

	
class webhelpers.markdown.HtmlStash

	This class is used for stashing HTML objects that we extract
in the beginning and replace with place-holders.

	
store(html, safe=False)

	Saves an HTML segment for later reinsertion. Returns a
placeholder string that needs to be inserted into the
document.

@param html: an html segment
@param safe: label an html segment as safe for safemode
@param inline: label a segmant as inline html
@returns : a placeholder string

	
class webhelpers.markdown.BlockGuru

	
	
detabbed_fn(line)

	An auxiliary method to be passed to _findHead

	
webhelpers.markdown.print_error(string)

	Print an error string to stderr

	
webhelpers.markdown.dequote(string)

	Removes quotes from around a string

	
class webhelpers.markdown.CorePatterns

	This class is scheduled for removal as part of a refactoring
effort.

	
class webhelpers.markdown.Extension(configs={})

	

	
webhelpers.markdown.parse_options()

	

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

mimehelper – MIMEtypes helper

webhelpers.mimehelper

	
class webhelpers.mimehelper.MIMETypes(environ)

	MIMETypes registration mapping

The MIMETypes object class provides a single point to hold onto all
the registered mimetypes, and their association extensions. It’s
used by the mimetypes method to determine the appropriate content
type to return to a client.

	
classmethod add_alias(alias, mimetype)

	Create a MIMEType alias to a full mimetype.

Examples:

	add_alias('html', 'text/html')

	add_alias('xml', 'application/xml')

An alias may not contain the / character.

	
classmethod init()

	Loads a default mapping of extensions and mimetypes

These are suitable for most web applications by default.
Additional types can be added by using the mimetypes module.

	
mimetype(content_type)

	Check the PATH_INFO of the current request and client’s HTTP Accept
to attempt to use the appropriate mime-type.

If a content-type is matched, return the appropriate response
content type, and if running under Pylons, set the response content
type directly. If a content-type is not matched, return False.

This works best with URLs that end in extensions that differentiate
content-type. Examples: http://example.com/example,
http://example.com/example.xml, http://example.com/example.csv

Since browsers generally allow for any content-type, but should be
sent HTML when possible, the html mimetype check should always come
first, as shown in the example below.

Example:

some code likely in environment.py
MIMETypes.init()
MIMETypes.add_alias('html', 'text/html')
MIMETypes.add_alias('xml', 'application/xml')
MIMETypes.add_alias('csv', 'text/csv')

code in a Pylons controller
def someaction(self):
 # prepare a bunch of data
 #

 # prepare MIMETypes object
 m = MIMETypes(request.environ)

 if m.mimetype('html'):
 return render('/some/template.html')
 elif m.mimetype('atom'):
 return render('/some/xml_template.xml')
 elif m.mimetype('csv'):
 # write the data to a csv file
 return csvfile
 else:
 abort(404)

Code in a non-Pylons controller.
m = MIMETypes(environ)
response_type = m.mimetype('html')
``response_type`` is a MIME type or ``False``.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

misc – Miscellaneous helpers

webhelpers.misc

	
webhelpers.misc.all(seq, pred=None)

	Is pred(elm) true for all elements?

With the default predicate, this is the same as Python 2.5’s all()
function; i.e., it returns true if all elements are true.

>>> all(["A", "B"])
True
>>> all(["A", ""])
False
>>> all(["", ""])
False
>>> all(["A", "B", "C"], lambda x: x <= "C")
True
>>> all(["A", "B", "C"], lambda x: x < "C")
False

From recipe in itertools docs.

	
webhelpers.misc.any(seq, pred=None)

	Is pred(elm) is true for any element?

With the default predicate, this is the same as Python 2.5’s any()
function; i.e., it returns true if any element is true.

>>> any(["A", "B"])
True
>>> any(["A", ""])
True
>>> any(["", ""])
False
>>> any(["A", "B", "C"], lambda x: x <= "C")
True
>>> any(["A", "B", "C"], lambda x: x < "C")
True

From recipe in itertools docs.

	
webhelpers.misc.no(seq, pred=None)

	Is pred(elm) false for all elements?

With the default predicate, this returns true if all elements are false.

>>> no(["A", "B"])
False
>>> no(["A", ""])
False
>>> no(["", ""])
True
>>> no(["A", "B", "C"], lambda x: x <= "C")
False
>>> no(["X", "Y", "Z"], lambda x: x <="C")
True

From recipe in itertools docs.

	
webhelpers.misc.count_true(seq, pred=<function <lambda> at 0x443a488>)

	How many elements is pred(elm) true for?

With the default predicate, this counts the number of true elements.

>>> count_true([1, 2, 0, "A", ""])
3
>>> count_true([1, "A", 2], lambda x: isinstance(x, int))
2

This is equivalent to the itertools.quantify recipe, which I couldn’t
get to work.

	
webhelpers.misc.convert_or_none(value, type_)

	Return the value converted to the type, or None if error.

type_ may be a Python type or any function taking one argument.

>>> print convert_or_none("5", int)
5
>>> print convert_or_none("A", int)
None

	
class webhelpers.misc.DeclarativeException(message=None)

	A simpler way to define an exception with a fixed message.

Subclasses have a class attribute .message, which is used if no
message is passed to the constructor. The default message is the empty
string.

Example:

>>> class MyException(DeclarativeException):
... message="can't frob the bar when foo is enabled"
...
>>> try:
... raise MyException()
... except Exception, e:
... print e
...
can't frob the bar when foo is enabled

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

number – Numbers and statistics helpers

webhelpers.number

	
webhelpers.number.percent_of(part, whole)

	What percent of whole is part?

>>> percent_of(5, 100)
5.0
>>> percent_of(13, 26)
50.0

	
webhelpers.number.mean(r)

	Return the mean (i.e., average) of a sequence of numbers.

>>> mean([5, 10])
7.5

	
webhelpers.number.median(r)

	Return the median of an iterable of numbers.

The median is the point at which half the numbers are lower than it and
half the numbers are higher. This gives a better sense of the majority
level than the mean (average) does, because the mean can be skewed by a few
extreme numbers at either end. For instance, say you want to calculate
the typical household income in a community and you’ve sampled four
households:

>>> incomes = [18000] # Fast food crew
>>> incomes.append(24000) # Janitor
>>> incomes.append(32000) # Journeyman
>>> incomes.append(44000) # Experienced journeyman
>>> incomes.append(67000) # Manager
>>> incomes.append(9999999) # Bill Gates
>>> median(incomes)
49500.0
>>> mean(incomes)
1697499.8333333333

The median here is somewhat close to the majority of incomes, while the
mean is far from anybody’s income.

This implementation makes a temporary list of all numbers in memory.

	
webhelpers.number.standard_deviation(r, sample=True)

	Standard deviation.

From the Python Cookbook [http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/442412].
Population mode contributed by Lorenzo Catucci.

Standard deviation shows the variability within a sequence of numbers.
A small standard deviation means the numbers are close to each other. A
large standard deviation shows they are widely different. In fact it
shows how far the numbers tend to deviate from the average. This can be
used to detect whether the average has been skewed by a few extremely high
or extremely low values.

Most natural and random phenomena follow the normal distribution (aka the
bell curve), which says that most values are close to average but a few are
extreme. E.g., most people are close to 5‘9” tall but a few are very tall
or very short. If the data does follow the bell curve, 68% of the values
will be within 1 standard deviation (stdev) of the average, and 95% will be
within 2 standard deviations. So a university professor grading exams on a
curve might give a “C” (mediocre) grade to students within 1 stdev of the
average score, “B” (better than average) to those within 2 stdevs above,
and “A” (perfect) to the 0.25% higher than 2 stdevs. Those between 1 and 2
stdevs below get a “D” (poor), and those below 2 stdevs... we won’t talk
about them.

By default the helper computes the unbiased estimate
for the population standard deviation, by applying an unbiasing
factor of sqrt(N/(N-1)).

If you’d rather have the function compute the population standard
deviation, pass sample=False.

The following examples are taken from Wikipedia.
http://en.wikipedia.org/wiki/Standard_deviation

>>> standard_deviation([0, 0, 14, 14])
8.082903768654761...
>>> standard_deviation([0, 6, 8, 14])
5.773502691896258...
>>> standard_deviation([6, 6, 8, 8])
1.1547005383792515
>>> standard_deviation([0, 0, 14, 14], sample=False)
7.0
>>> standard_deviation([0, 6, 8, 14], sample=False)
5.0
>>> standard_deviation([6, 6, 8, 8], sample=False)
1.0

(The results reported in Wikipedia are those expected for whole
population statistics and therefore are equal to the ones we get
by setting sample=False in the later tests.)

Fictitious average monthly temperatures in Southern California.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
>>> standard_deviation([70, 70, 70, 75, 80, 85, 90, 95, 90, 80, 75, 70])
9.003366373785...
>>> standard_deviation([70, 70, 70, 75, 80, 85, 90, 95, 90, 80, 75, 70], sample=False)
8.620067027323...

Fictitious average monthly temperatures in Montana.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
>>> standard_deviation([-32, -10, 20, 30, 60, 90, 100, 80, 60, 30, 10, -32])
45.1378360405574...
>>> standard_deviation([-32, -10, 20, 30, 60, 90, 100, 80, 60, 30, 10, -32], sample=False)
43.2161878106906...

	
class webhelpers.number.SimpleStats(numeric=False)

	Calculate a few simple statistics on data.

This class calculates the minimum, maximum, and count of all the values
given to it. The values are not saved in the object. Usage:

>>> stats = SimpleStats()
>>> stats(2) # Add one data value.
>>> stats.extend([6, 4]) # Add several data values at once.

The statistics are available as instance attributes:

>>> stats.count
3
>>> stats.min
2
>>> stats.max
6

Non-numeric data is also allowed:

>>> stats2 = SimpleStats()
>>> stats2("foo")
>>> stats2("bar")
>>> stats2.count
2
>>> stats2.min
'bar'
>>> stats2.max
'foo'

.min and .max are None until the first data value is
registered.

Subclasses can override ._init_stats and ._update_stats to add
additional statistics.

The constructor accepts one optional argument, numeric. If true, the
instance accepts only values that are int, long, or float.
The default is false, which accepts any value. This is meant for instances
or subclasses that don’t want non-numeric values.

	
extend(values)

	Add several data values at once, akin to list.extend.

	
class webhelpers.number.Stats

	A container for data and statistics.

This class extends SimpleStats by calculating additional statistics,
and by storing all data seen. All values must be numeric (int,
long, and/or float), and you must call .finish() to generate
the additional statistics. That’s because the statistics here cannot be
calculated incrementally, but only after all data is known.

>>> stats = Stats()
>>> stats.extend([5, 10, 10])
>>> stats.count
3
>>> stats.finish()
>>> stats.mean
8.33333333333333...
>>> stats.median
10
>>> stats.standard_deviation
2.8867513459481287

All data is stored in a list and a set for later use:

>>> stats.list
[5, 10, 10]

>> stats.set
set([5, 10])

(The double prompt “>>” is used to hide the example from doctest.)

The stat attributes are None until you call .finish(). It’s
permissible – though not recommended – to add data after calling
.finish() and then call .finish() again. This recalculates the
stats over the entire data set.

In addition to the hook methods provided by SimpleStats, subclasses
can override ._finish-stats to provide additional statistics.

	
finish()

	Finish calculations. (Call after adding all data values.)

Call this after adding all data values, or the results will be
incomplete.

	
webhelpers.number.format_number(n, thousands=', ', decimal='.')

	Format a number with a thousands separator and decimal delimiter.

n may be an int, long, float, or numeric string.
thousands is a separator to put after each thousand.
decimal is the delimiter to put before the fractional portion if any.

The default style has a thousands comma and decimal point per American
usage:

>>> format_number(1234567.89)
'1,234,567.89'
>>> format_number(123456)
'123,456'
>>> format_number(-123)
'-123'

Various European and international styles are also possible:

>>> format_number(1234567.89, " ")
'1 234 567.89'
>>> format_number(1234567.89, " ", ",")
'1 234 567,89'
>>> format_number(1234567.89, ".", ",")
'1.234.567,89'

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

paginate – Paging and pagination

webhelpers.paginate

	
webhelpers.paginate.get_wrapper(obj, sqlalchemy_session=None)

	Auto-detect the kind of object and return a list/tuple
to access items from the collection.

	
class webhelpers.paginate.Page(collection, page=1, items_per_page=20, item_count=None, sqlalchemy_session=None, presliced_list=False, url=None, **kwargs)

	A list/iterator of items representing one page in a larger
collection.

An instance of the “Page” class is created from a collection of things.
The instance works as an iterator running from the first item to the
last item on the given page. The collection can be:

	a sequence

	an SQLAlchemy query - e.g.: Session.query(MyModel)

	an SQLAlchemy select - e.g.: sqlalchemy.select([my_table])

A “Page” instance maintains pagination logic associated with each
page, where it begins, what the first/last item on the page is, etc.
The pager() method creates a link list allowing the user to go to
other pages.

WARNING: Unless you pass in an item_count, a count will be
performed on the collection every time a Page instance is created.
If using an ORM, it’s advised to pass in the number of items in the
collection if that number is known.

Instance attributes:

	original_collection

	Points to the collection object being paged through

	item_count

	Number of items in the collection

	page

	Number of the current page

	items_per_page

	Maximal number of items displayed on a page

	first_page

	Number of the first page - starts with 1

	last_page

	Number of the last page

	page_count

	Number of pages

	items

	Sequence/iterator of items on the current page

	first_item

	Index of first item on the current page - starts with 1

	last_item

	Index of last item on the current page

	
pager(format='~2~', page_param='page', partial_param='partial', show_if_single_page=False, separator=' ', onclick=None, symbol_first='<<', symbol_last='>>', symbol_previous='<', symbol_next='>', link_attr={'class': 'pager_link'}, curpage_attr={'class': 'pager_curpage'}, dotdot_attr={'class': 'pager_dotdot'}, **kwargs)

	Return string with links to other pages (e.g. “1 2 [3] 4 5 6 7”).

	format:

	Format string that defines how the pager is rendered. The string
can contain the following $-tokens that are substituted by the
string.Template module:

	$first_page: number of first reachable page

	$last_page: number of last reachable page

	$page: number of currently selected page

	$page_count: number of reachable pages

	$items_per_page: maximal number of items per page

	$first_item: index of first item on the current page

	$last_item: index of last item on the current page

	$item_count: total number of items

	$link_first: link to first page (unless this is first page)

	$link_last: link to last page (unless this is last page)

	$link_previous: link to previous page (unless this is first page)

	$link_next: link to next page (unless this is last page)

To render a range of pages the token ‘~3~’ can be used. The
number sets the radius of pages around the current page.
Example for a range with radius 3:

‘1 .. 5 6 7 [8] 9 10 11 .. 500’

Default: ‘~2~’

	symbol_first

	String to be displayed as the text for the %(link_first)s
link above.

Default: ‘<<’

	symbol_last

	String to be displayed as the text for the %(link_last)s
link above.

Default: ‘>>’

	symbol_previous

	String to be displayed as the text for the %(link_previous)s
link above.

Default: ‘<’

	symbol_next

	String to be displayed as the text for the %(link_next)s
link above.

Default: ‘>’

	separator:

	String that is used to separate page links/numbers in the
above range of pages.

Default: ‘ ‘

	page_param:

	The name of the parameter that will carry the number of the
page the user just clicked on. The parameter will be passed
to a url_for() call so if you stay with the default
‘:controller/:action/:id’ routing and set page_param=’id’ then
the :id part of the URL will be changed. If you set
page_param=’page’ then url_for() will make it an extra
parameters like ‘:controller/:action/:id?page=1’.
You need the page_param in your action to determine the page
number the user wants to see. If you do not specify anything
else the default will be a parameter called ‘page’.

Note: If you set this argument and are using a URL generator
callback, the callback must accept this name as an argument instead
of ‘page’.
callback, becaust the callback requires its argument to be ‘page’.
Instead the callback itself can return any URL necessary.

	partial_param:

	When using AJAX/AJAH to do partial updates of the page area the
application has to know whether a partial update (only the
area to be replaced) or a full update (reloading the whole
page) is required. So this parameter is the name of the URL
parameter that gets set to 1 if the ‘onclick’ parameter is
used. So if the user requests a new page through a Javascript
action (onclick) then this parameter gets set and the application
is supposed to return a partial content. And without
Javascript this parameter is not set. The application thus has
to check for the existence of this parameter to determine
whether only a partial or a full page needs to be returned.
See also the examples in this modules docstring.

Default: ‘partial’

Note: If you set this argument and are using a URL generator
callback, the callback must accept this name as an argument instead
of ‘partial’.

	show_if_single_page:

	if True the navigator will be shown even if there is only
one page

Default: False

	link_attr (optional)

	A dictionary of attributes that get added to A-HREF links
pointing to other pages. Can be used to define a CSS style
or class to customize the look of links.

Example: { ‘style’:’border: 1px solid green’ }

Default: { ‘class’:’pager_link’ }

	curpage_attr (optional)

	A dictionary of attributes that get added to the current
page number in the pager (which is obviously not a link).
If this dictionary is not empty then the elements
will be wrapped in a SPAN tag with the given attributes.

Example: { ‘style’:’border: 3px solid blue’ }

Default: { ‘class’:’pager_curpage’ }

	dotdot_attr (optional)

	A dictionary of attributes that get added to the ‘..’ string
in the pager (which is obviously not a link). If this
dictionary is not empty then the elements will be wrapped in
a SPAN tag with the given attributes.

Example: { ‘style’:’color: #808080’ }

Default: { ‘class’:’pager_dotdot’ }

	onclick (optional)

	This paramter is a string containing optional Javascript code
that will be used as the ‘onclick’ action of each pager link.
It can be used to enhance your pager with AJAX actions loading another
page into a DOM object.

In this string the variable ‘$partial_url’ will be replaced by
the URL linking to the desired page with an added ‘partial=1’
parameter (or whatever you set ‘partial_param’ to).
In addition the ‘$page’ variable gets replaced by the
respective page number.

Note that the URL to the destination page contains a ‘partial_param’
parameter so that you can distinguish between AJAX requests (just
refreshing the paginated area of your page) and full requests (loading
the whole new page).

[Backward compatibility: you can use ‘%s’ instead of ‘$partial_url’]

	jQuery example:

	“$(‘#my-page-area’).load(‘$partial_url’); return false;”

	Yahoo UI example:

	
	“YAHOO.util.Connect.asyncRequest(‘GET’,’$partial_url’,{

	success:function(o){YAHOO.util.Dom.get(‘#my-page-area’).innerHTML=o.responseText;}
},null); return false;”

	scriptaculous example:

	
	“new Ajax.Updater(‘#my-page-area’, ‘$partial_url’,

	{asynchronous:true, evalScripts:true}); return false;”

	ExtJS example:

	“Ext.get(‘#my-page-area’).load({url:’$partial_url’}); return false;”

	Custom example:

	“my_load_page($page)”

Additional keyword arguments are used as arguments in the links.
Otherwise the link will be created with url_for() which points
to the page you are currently displaying.

Temporary understudy for examples:

The unit tests are often educational ...

""""Test webhelpers.paginate package."""

from routes import Mapper

from webhelpers.paginate import Page

def test_empty_list():
 """Test whether an empty list is handled correctly."""
 items = []
 page = Page(items, page=0)
 assert page.page == 0
 assert page.first_item is None
 assert page.last_item is None
 assert page.first_page is None
 assert page.last_page is None
 assert page.previous_page is None
 assert page.next_page is None
 assert page.items_per_page == 20
 assert page.item_count == 0
 assert page.page_count == 0
 assert page.pager() == ''
 assert page.pager(show_if_single_page=True) == ''

def test_one_page():
 """Test that we fit 10 items on a single 10-item page."""
 items = range(10)
 page = Page(items, page=0, items_per_page=10)
 assert page.page == 1
 assert page.first_item == 1
 assert page.last_item == 10
 assert page.first_page == 1
 assert page.last_page == 1
 assert page.previous_page is None
 assert page.next_page is None
 assert page.items_per_page == 10
 assert page.item_count == 10
 assert page.page_count == 1
 assert page.pager() == ''
 assert page.pager(show_if_single_page=True) == \
 '1'

def test_many_pages():
 """Test that 100 items fit on seven 15-item pages."""
 # Create routes mapper so that webhelper can create URLs
 # using webhelpers.url_for()
 mapper = Mapper()
 mapper.connect(':controller')

 items = range(100)
 page = Page(items, page=0, items_per_page=15)
 assert page.page == 1
 assert page.first_item == 1
 assert page.last_item == 15
 assert page.first_page == 1
 assert page.last_page == 7
 assert page.previous_page is None
 assert page.next_page == 2
 assert page.items_per_page == 15
 assert page.item_count == 100
 assert page.page_count == 7
 print page.pager()
 assert page.pager() == \
 '1 ' + \
 '2 ' + \
 '3 ' + \
 '.. ' + \
 '7'
 assert page.pager(separator='_') == \
 '1_' + \
 '2_' + \
 '3_' + \
 '.._' + \
 '7'
 assert page.pager(page_param='xy') == \
 '1 ' + \
 '2 ' + \
 '3 ' + \
 '.. ' + \
 '7'
 assert page.pager(
 link_attr={'style':'s1'},
 curpage_attr={'style':'s2'},
 dotdot_attr={'style':'s3'}) == \
 '1 ' + \
 '2 ' + \
 '3 ' + \
 '.. ' + \
 '7'

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

webhelpers.pylonslib – flash alert div helpers

webhelpers.pylonslib

	
class webhelpers.pylonslib.Flash(session_key='flash', categories=None, default_category=None)

	Accumulate a list of messages to show at the next page request.

	
pop_messages()

	Return all accumulated messages and delete them from the session.

The return value is a list of Message objects.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

text – Text helpers

webhelpers.text

	
webhelpers.text.truncate(text, length=30, indicator='...', whole_word=False)

	Truncate text with replacement characters.

	length

	The maximum length of text before replacement

	indicator

	If text exceeds the length, this string will replace
the end of the string

	whole_word

	If true, shorten the string further to avoid breaking a word in the
middle. A word is defined as any string not containing whitespace.
If the entire text before the break is a single word, it will have to
be broken.

Example:

>>> truncate('Once upon a time in a world far far away', 14)
'Once upon a...'

	
webhelpers.text.excerpt(text, phrase, radius=100, excerpt_string='...')

	Extract an excerpt from the text, or ‘’ if the phrase isn’t
found.

	phrase

	Phrase to excerpt from text

	radius

	How many surrounding characters to include

	excerpt_string

	Characters surrounding entire excerpt

Example:

>>> excerpt("hello my world", "my", 3)
'...lo my wo...'

	
webhelpers.text.plural(n, singular, plural, with_number=True)

	Return the singular or plural form of a word, according to the number.

If with_number is true (default), the return value will be the number
followed by the word. Otherwise the word alone will be returned.

Usage:

>>> plural(2, "ox", "oxen")
'2 oxen'
>>> plural(2, "ox", "oxen", False)
'oxen'

	
webhelpers.text.chop_at(s, sub, inclusive=False)

	Truncate string s at the first occurrence of sub.

If inclusive is true, truncate just after sub rather than at it.

>>> chop_at("plutocratic brats", "rat")
'plutoc'
>>> chop_at("plutocratic brats", "rat", True)
'plutocrat'

	
webhelpers.text.lchop(s, sub)

	Chop sub off the front of s if present.

>>> lchop("##This is a comment.##", "##")
'This is a comment.##'

The difference between lchop and s.lstrip is that lchop strips
only the exact prefix, while s.lstrip treats the argument as a set of
leading characters to delete regardless of order.

	
webhelpers.text.rchop(s, sub)

	Chop sub off the end of s if present.

>>> rchop("##This is a comment.##", "##")
'##This is a comment.'

The difference between rchop and s.rstrip is that rchop strips
only the exact suffix, while s.rstrip treats the argument as a set of
trailing characters to delete regardless of order.

	
webhelpers.text.strip_leading_whitespace(s)

	Strip the leading whitespace in all lines in s.

This deletes all leading whitespace. textwrap.dedent deletes only
the whitespace common to all lines.

	
webhelpers.text.wrap_paragraphs(text, width=72)

	Wrap all paragraphs in a text string to the specified width.

width may be an int or a textwrap.TextWrapper instance.
The latter allows you to set other options besides the width, and is more
efficient when wrapping many texts.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

textile – Textile

webhelpers.textile

	
webhelpers.textile.textile(text, **args)

	This is Textile.

Generates XHTML from a simple markup developed by Dean Allen.

This function should be called like this:

	textile(text, head_offset=0, validate=0, sanitize=0,

	encoding=’latin-1’, output=’ASCII’)

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

util – Utilities

webhelpers.util

	
webhelpers.util.html_escape(s)

	HTML-escape a string or object.

This converts any non-string objects passed into it to strings
(actually, using unicode()). All values returned are
non-unicode strings (using &#num; entities for all non-ASCII
characters).

None is treated specially, and returns the empty string.

This function returns a plain string. Programs using the HTML builder
should wrap the result in literal() to prevent double-escaping.

	
webhelpers.util.iri_to_uri(iri)

	Convert an IRI portion to a URI portion suitable for inclusion in a URL.

(An IRI is an Internationalized Resource Identifier.)

This is the algorithm from section 3.1 of RFC 3987. However, since
we are assuming input is either UTF-8 or unicode already, we can
simplify things a little from the full method.

Returns an ASCII string containing the encoded result.

	
class webhelpers.util.Partial(*args, **kw)

	A partial function object.

Equivalent to functools.partial, which was introduced in Python 2.5.

	
class webhelpers.util.SimplerXMLGenerator(out=None, encoding='iso-8859-1')

	A subclass of Python’s SAX XMLGenerator.

	
addQuickElement(name, contents=None, attrs=None)

	Add an element with no children.

	
class webhelpers.util.UnicodeMultiDict(multi=None, encoding=None, errors='strict', decode_keys=False)

	A MultiDict wrapper that decodes returned values to unicode on the fly.

Decoding is not applied to assigned values.

The key/value contents are assumed to be str/strs or
str/FieldStorages (as is returned by the paste.request.parse()
functions).

Can optionally also decode keys when the decode_keys argument is
True.

FieldStorage instances are cloned, and the clone’s filename
variable is decoded. Its name variable is decoded when decode_keys
is enabled.

	
add(key, value)

	Add the key and value, not overwriting any previous value.

	
dict_of_lists()

	Return dict where each key is associated with a list of values.

	
getall(key)

	Return list of all values matching the key (may be an empty list).

	
getone(key)

	Return one value matching key. Raise KeyError if multiple matches.

	
mixed()

	Return dict where values are single values or a list of values.

The value is a single value if key appears just once. It is
a list of values when a key/value appears more than once in this
dictionary. This is similar to the kind of dictionary often
used to represent the variables in a web request.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

webhelpers.commands.compress_resources – (deprecated)

Warning

DEPRECATED!! BUGGY!! Do not use in new projects.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

hinclude (deprecated)

webhelpers.hinclude

Warning

webhelpers/hinclude.py is deprecated and is too trivial to port, DIY.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

htmlgen (deprecated)

webhelpers.htmlgen

Warning

webhelpers/htmlgen.py is deprecated, use webhelpers.html instead.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

pagination – WebHelpers Pagination (part deprecated)

links

orm

Warning

Deprecated: Use webhelpers.paginate

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

 	webhelpers – Web Helpers package

rails WebHelpers Rails (deprecated)

Warning

Deprecated in 0.6

asset_tag

date

form_options

form_tag

javascript

number

prototype

Warning

Deprecated, will be removed. No replacement is planned.

scriptaculous

Warning

Deprecated, will be removed. No replacement is planned.

secure_form_tag

tags

text

urls

wrapped

javascripts

Warning

Deprecated, will be removed. No replacement is planned.

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

webtest – WebTest

Routines for testing WSGI applications.

Most interesting is app

	
class webtest.TestApp(app, extra_environ=None, relative_to=None, use_unicode=True)

	Wraps a WSGI application in a more convenient interface for
testing.

app may be an application, or a Paste Deploy app
URI, like 'config:filename.ini#test'.

extra_environ is a dictionary of values that should go
into the environment for each request. These can provide a
communication channel with the application.

relative_to is a directory, and filenames used for file
uploads are calculated relative to this. Also config:
URIs that aren’t absolute.

	
delete(url, params='', headers=None, extra_environ=None, status=None, expect_errors=False, content_type=None)

	Do a DELETE request. Very like the .get() method.

Returns a webob.Response object.

	
delete_json(url, params=<class 'webtest.app.NoDefault'>, headers=None, extra_environ=None, status=None, expect_errors=False)

	Do a DELETE request. Very like the .get() method.
Content-Type is set to application/json.

Returns a webob.Response object.

	
do_request(req, status, expect_errors)

	Executes the given request (req), with the expected
status. Generally .get() and .post() are used
instead.

To use this:

resp = app.do_request(webtest.TestRequest.blank(
 'url', ...args...))

Note you can pass any keyword arguments to
TestRequest.blank(), which will be set on the request.
These can be arguments like content_type, accept, etc.

	
encode_multipart(params, files)

	Encodes a set of parameters (typically a name/value list) and
a set of files (a list of (name, filename, file_body)) into a
typical POST body, returning the (content_type, body).

	
get(url, params=None, headers=None, extra_environ=None, status=None, expect_errors=False)

	Get the given url (well, actually a path like
'/page.html').

	params:

	A query string, or a dictionary that will be encoded
into a query string. You may also include a query
string on the url.

	headers:

	A dictionary of extra headers to send.

	extra_environ:

	A dictionary of environmental variables that should
be added to the request.

	status:

	The integer status code you expect (if not 200 or 3xx).
If you expect a 404 response, for instance, you must give
status=404 or it will be an error. You can also give
a wildcard, like '3*' or '*'.

	expect_errors:

	If this is not true, then if anything is written to
wsgi.errors it will be an error. If it is true, then
non-200/3xx responses are also okay.

Returns a webtest.TestResponse object.

	
head(url, headers=None, extra_environ=None, status=None, expect_errors=False)

	Do a HEAD request. Very like the .get() method.

Returns a webob.Response object.

	
options(url, headers=None, extra_environ=None, status=None, expect_errors=False)

	Do a OPTIONS request. Very like the .get() method.

Returns a webob.Response object.

	
post(url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None)

	Do a POST request. Very like the .get() method.
params are put in the body of the request.

upload_files is for file uploads. It should be a list of
[(fieldname, filename, file_content)]. You can also use
just [(fieldname, filename)] and the file content will be
read from disk.

For post requests params could be a collections.OrderedDict with
Upload fields included in order:

	app.post(‘/myurl’, collections.OrderedDict([

	(‘textfield1’, ‘value1’),
(‘uploadfield’, webapp.Upload(‘filename.txt’, ‘contents’),
(‘textfield2’, ‘value2’)])))

Returns a webob.Response object.

	
post_json(url, params=<class 'webtest.app.NoDefault'>, headers=None, extra_environ=None, status=None, expect_errors=False)

	Do a POST request. Very like the .get() method.
params are dumps to json and put in the body of the request.
Content-Type is set to application/json.

Returns a webob.Response object.

	
put(url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None)

	Do a PUT request. Very like the .post() method.
params are put in the body of the request, if params is a
tuple, dictionary, list, or iterator it will be urlencoded and
placed in the body as with a POST, if it is string it will not
be encoded, but placed in the body directly.

Returns a webob.Response object.

	
put_json(url, params=<class 'webtest.app.NoDefault'>, headers=None, extra_environ=None, status=None, expect_errors=False)

	Do a PUT request. Very like the .post() method.
params are dumps to json and put in the body of the request.
Content-Type is set to application/json.

Returns a webob.Response object.

	
request(url_or_req, status=None, expect_errors=False, **req_params)

	Creates and executes a request. You may either pass in an
instantiated TestRequest object, or you may pass in a
URL and keyword arguments to be passed to
TestRequest.blank().

You can use this to run a request without the intermediary
functioning of TestApp.get() etc. For instance, to
test a WebDAV method:

resp = app.request('/new-col', method='MKCOL')

Note that the request won’t have a body unless you specify it,
like:

resp = app.request('/test.txt', method='PUT', body='test')

You can use POST={args} to set the request body to the
serialized arguments, and simultaneously set the request
method to POST

	
reset()

	Resets the state of the application; currently just clears
saved cookies.

	
class webtest.TestResponse(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, **kw)

	Instances of this class are return by TestApp

	
click(description=None, linkid=None, href=None, anchor=None, index=None, verbose=False, extra_environ=None)

	Click the link as described. Each of description,
linkid, and url are patterns, meaning that they are
either strings (regular expressions), compiled regular
expressions (objects with a search method), or callables
returning true or false.

All the given patterns are ANDed together:

	description is a pattern that matches the contents of the
anchor (HTML and all – everything between <a...> and
)

	linkid is a pattern that matches the id attribute of
the anchor. It will receive the empty string if no id is
given.

	href is a pattern that matches the href of the anchor;
the literal content of that attribute, not the fully qualified
attribute.

	anchor is a pattern that matches the entire anchor, with
its contents.

If more than one link matches, then the index link is
followed. If index is not given and more than one link
matches, or if no link matches, then IndexError will be
raised.

If you give verbose then messages will be printed about
each link, and why it does or doesn’t match. If you use
app.click(verbose=True) you’ll see a list of all the
links.

You can use multiple criteria to essentially assert multiple
aspects about the link, e.g., where the link’s destination is.

	
clickbutton(description=None, buttonid=None, href=None, button=None, index=None, verbose=False)

	Like .click(), except looks for link-like buttons.
This kind of button should look like
<button onclick="...location.href='url'...">.

	
follow(**kw)

	If this request is a redirect, follow that redirect. It
is an error if this is not a redirect response. Returns
another response object.

	
form

	Returns a single Form instance; it is an
error if there are multiple forms on the page.

	
forms

	A list of :class:`~webtest.Form`s found on the page

	
forms__get()

	Returns a dictionary of Form objects. Indexes are
both in order (from zero) and by form id (if the form is given an id).

	
goto(href, method='get', **args)

	Go to the (potentially relative) link href, using the
given method ('get' or 'post') and any extra arguments
you want to pass to the app.get() or app.post()
methods.

All hostnames and schemes will be ignored.

	
html

	Returns the response as a BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/documentation.html]
object.

Only works with HTML responses; other content-types raise
AttributeError.

	
json

	Return the response as a JSON response. You must have simplejson [http://goo.gl/B9g6s] installed to use this, or be using a Python
version with the json module.

The content type must be application/json to use this.

	
lxml

	Returns the response as an lxml object [http://codespeak.net/lxml/]. You must have lxml installed
to use this.

If this is an HTML response and you have lxml 2.x installed,
then an lxml.html.HTML object will be returned; if you
have an earlier version of lxml then a lxml.HTML object
will be returned.

	
mustcontain(*strings, **kw)

	Assert that the response contains all of the strings passed
in as arguments.

Equivalent to:

assert string in res

	
normal_body

	Return the whitespace-normalized body

	
pyquery

	Returns the response as a PyQuery [http://pyquery.org/] object.

Only works with HTML and XML responses; other content-types raise
AttributeError.

	
showbrowser()

	Show this response in a browser window (for debugging purposes,
when it’s hard to read the HTML).

	
unicode_normal_body

	Return the whitespace-normalized body, as unicode

	
xml

	Returns the response as an ElementTree [http://python.org/doc/current/lib/module-xml.etree.ElementTree.html]
object.

Only works with XML responses; other content-types raise
AttributeError

	
class webtest.Form(response, text)

	This object represents a form that has been found in a page.
This has a couple useful attributes:

	text:

	the full HTML of the form.

	action:

	the relative URI of the action.

	method:

	the method (e.g., 'GET').

	id:

	the id, or None if not given.

	fields:

	a dictionary of fields, each value is a list of fields by
that name. <input type="radio"> and <select> are
both represented as single fields with multiple options.

	
FieldClass

	alias of Field

	
get(name, index=None, default=<class 'webtest.app.NoDefault'>)

	Get the named/indexed field object, or default if no field
is found.

	
lint()

	Check that the html is valid:

	each field must have an id

	each field must have a label

	
select(name, value, index=None)

	Like .set(), except also confirms the target is a
<select>.

	
set(name, value, index=None)

	Set the given name, using index to disambiguate.

	
submit(name=None, index=None, **args)

	Submits the form. If name is given, then also select that
button (using index to disambiguate)``.

Any extra keyword arguments are passed to the .get() or
.post() method.

Returns a webtest.TestResponse object.

	
submit_fields(name=None, index=None)

	Return a list of [(name, value), ...] for the current
state of the form.

	
upload_fields()

	
	Return a list of file field tuples of the form:

	(field name, file name)

	or

	(field name, file name, file contents).

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pylons 0.9.7 documentation

 	Third-party components

webob – WebOb

	
class webob.Request(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)

	The default request implementation

	
class webob.Response(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, **kw)

	Represents a WSGI response

	
accept_ranges

	Gets and sets the Accept-Ranges header (HTTP spec section 14.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5]).

	
age

	Gets and sets the Age header (HTTP spec section 14.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.6]). Converts it using int.

	
allow

	Gets and sets the Allow header (HTTP spec section 14.7 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.7]). Converts it using list.

	
app_iter

	Returns the app_iter of the response.

If body was set, this will create an app_iter from that body
(a single-item list)

	
app_iter_range(start, stop)

	Return a new app_iter built from the response app_iter, that
serves up only the given start:stop range.

	
body

	The body of the response, as a str. This will read in the
entire app_iter if necessary.

	
body_file

	A file-like object that can be used to write to the
body. If you passed in a list app_iter, that app_iter will be
modified by writes.

	
cache_control

	Get/set/modify the Cache-Control header (HTTP spec section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

	
charset

	Get/set the charset (in the Content-Type)

	
conditional_response_app(environ, start_response)

	Like the normal __call__ interface, but checks conditional headers:

	If-Modified-Since (304 Not Modified; only on GET, HEAD)

	If-None-Match (304 Not Modified; only on GET, HEAD)

	Range (406 Partial Content; only on GET, HEAD)

	
content_disposition

	Gets and sets the Content-Disposition header (HTTP spec section 19.5.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1]).

	
content_encoding

	Gets and sets the Content-Encoding header (HTTP spec section 14.11 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11]).

	
content_language

	Gets and sets the Content-Language header (HTTP spec section 14.12 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.12]). Converts it using list.

	
content_length

	Gets and sets the Content-Length header (HTTP spec section 14.17 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]). Converts it using int.

	
content_location

	Gets and sets the Content-Location header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

	
content_md5

	Gets and sets the Content-MD5 header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

	
content_range

	Gets and sets the Content-Range header (HTTP spec section 14.16 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.16]). Converts it using ContentRange object.

	
content_type

	Get/set the Content-Type header (or None), without the
charset or any parameters.

If you include parameters (or ; at all) when setting the
content_type, any existing parameters will be deleted;
otherwise they will be preserved.

	
content_type_params

	A dictionary of all the parameters in the content type.

(This is not a view, set to change, modifications of the dict would not
be applied otherwise)

	
copy()

	Makes a copy of the response

	
date

	Gets and sets the Date header (HTTP spec section 14.18 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18]). Converts it using HTTP date.

	
delete_cookie(key, path='/', domain=None)

	Delete a cookie from the client. Note that path and domain must match
how the cookie was originally set.

This sets the cookie to the empty string, and max_age=0 so
that it should expire immediately.

	
encode_content(encoding='gzip', lazy=False)

	Encode the content with the given encoding (only gzip and
identity are supported).

	
etag

	Gets and sets the ETag header (HTTP spec section 14.19 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19]). Converts it using Entity tag.

	
expires

	Gets and sets the Expires header (HTTP spec section 14.21 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21]). Converts it using HTTP date.

	
classmethod from_file(fp)

	Reads a response from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the response, not the end of the
file.

This reads the response as represented by str(resp); it
may not read every valid HTTP response properly. Responses
must have a Content-Length

	
headerlist

	The list of response headers

	
headers

	The headers in a dictionary-like object

	
json

	Access the body of the response as JSON

	
json_body

	Access the body of the response as JSON

	
last_modified

	Gets and sets the Last-Modified header (HTTP spec section 14.29 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29]). Converts it using HTTP date.

	
location

	Gets and sets the Location header (HTTP spec section 14.30 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30]).

	
md5_etag(body=None, set_content_md5=False)

	Generate an etag for the response object using an MD5 hash of
the body (the body parameter, or self.body if not given)

Sets self.etag
If set_content_md5 is True sets self.content_md5 as well

	
merge_cookies(resp)

	Merge the cookies that were set on this response with the
given resp object (which can be any WSGI application).

If the resp is a webob.Response object, then the
other object will be modified in-place.

	
pragma

	Gets and sets the Pragma header (HTTP spec section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32]).

	
retry_after

	Gets and sets the Retry-After header (HTTP spec section 14.37 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37]). Converts it using HTTP date or delta seconds.

	
server

	Gets and sets the Server header (HTTP spec section 14.38 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.38]).

	
set_cookie(key, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, comment=None, expires=None, overwrite=False)

	Set (add) a cookie for the response.

Arguments are:

key

The cookie name.

value

The cookie value, which should be a string or None. If
value is None, it’s equivalent to calling the
webob.response.Response.unset_cookie() method for this
cookie key (it effectively deletes the cookie on the client).

max_age

An integer representing a number of seconds or None. If this
value is an integer, it is used as the Max-Age of the
generated cookie. If expires is not passed and this value is
an integer, the max_age value will also influence the
Expires value of the cookie (Expires will be set to now +
max_age). If this value is None, the cookie will not have a
Max-Age value (unless expires is also sent).

path

A string representing the cookie Path value. It defaults to
/.

domain

A string representing the cookie Domain, or None. If
domain is None, no Domain value will be sent in the
cookie.

secure

A boolean. If it’s True, the secure flag will be sent in
the cookie, if it’s False, the secure flag will not be
sent in the cookie.

httponly

A boolean. If it’s True, the HttpOnly flag will be sent
in the cookie, if it’s False, the HttpOnly flag will not
be sent in the cookie.

comment

A string representing the cookie Comment value, or None.
If comment is None, no Comment value will be sent in
the cookie.

expires

A datetime.timedelta object representing an amount of time or
the value None. A non-None value is used to generate the
Expires value of the generated cookie. If max_age is not
passed, but this value is not None, it will influence the
Max-Age header (Max-Age will be ‘expires_value -
datetime.utcnow()’). If this value is None, the Expires
cookie value will be unset (unless max_age is also passed).

overwrite

If this key is True, before setting the cookie, unset any
existing cookie.

	
status

	The status string

	
status_code

	The status as an integer

	
status_int

	The status as an integer

	
text

	Get/set the text value of the body (using the charset of the
Content-Type)

	
ubody

	Deprecated alias for .text

	
unicode_body

	Deprecated alias for .text

	
unset_cookie(key, strict=True)

	Unset a cookie with the given name (remove it from the
response).

	
vary

	Gets and sets the Vary header (HTTP spec section 14.44 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44]). Converts it using list.

	
www_authenticate

	Gets and sets the WWW-Authenticate header (HTTP spec section 14.47 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.47]). Converts it using parse_auth and serialize_auth.

	
webob.html_escape(s)

	HTML-escape a string or object

This converts any non-string objects passed into it to strings
(actually, using unicode()). All values returned are
non-unicode strings (using &#num; entities for all non-ASCII
characters).

None is treated specially, and returns the empty string.

	
webob.timedelta_to_seconds(td)

	Converts a timedelta instance to seconds.

webob.acceptparse

	
class webob.acceptparse.Accept(header_value)

	Represents a generic Accept-* style header.

This object should not be modified. To add items you can use
accept_obj + 'accept_thing' to get a new object

	
best_match(offers, default_match=None)

	Returns the best match in the sequence of offered types.

The sequence can be a simple sequence, or you can have
(match, server_quality) items in the sequence. If you
have these tuples then the client quality is multiplied by the
server_quality to get a total. If two matches have equal
weight, then the one that shows up first in the offers list
will be returned.

But among matches with the same quality the match to a more specific
requested type will be chosen. For example a match to text/* trumps /.

default_match (default None) is returned if there is no intersection.

	
first_match(offers)

	DEPRECATED
Returns the first allowed offered type. Ignores quality.
Returns the first offered type if nothing else matches; or if you include None
at the end of the match list then that will be returned.

	
static parse(value)

	Parse Accept-* style header.

Return iterator of (value, quality) pairs.
quality defaults to 1.

	
quality(offer, modifier=1)

	Return the quality of the given offer. Returns None if there
is no match (not 0).

	
class webob.acceptparse.NilAccept

	
	
MasterClass

	alias of Accept

	
class webob.acceptparse.NoAccept

	

	
class webob.acceptparse.MIMEAccept(header_value)

	Represents the Accept header, which is a list of mimetypes.

This class knows about mime wildcards, like image/*

	
accept_html()

	Returns true if any HTML-like type is accepted

	
accepts_html

	Returns true if any HTML-like type is accepted

	
class webob.acceptparse.MIMENilAccept

	
	
MasterClass

	alias of MIMEAccept

webob.byterange

	
class webob.byterange.Range(start, end)

	Represents the Range header.

	
content_range(length)

	Works like range_for_length; returns None or a ContentRange object

You can use it like:

response.content_range = req.range.content_range(response.content_length)

Though it’s still up to you to actually serve that content range!

	
classmethod parse(header)

	Parse the header; may return None if header is invalid

	
range_for_length(length)

	If there is only one range, and if it is satisfiable by
the given length, then return a (start, end) non-inclusive range
of bytes to serve. Otherwise return None

	
class webob.byterange.ContentRange(start, stop, length)

	Represents the Content-Range header

This header is start-stop/length, where start-stop and length
can be * (represented as None in the attributes).

	
classmethod parse(value)

	Parse the header. May return None if it cannot parse.

webob.cachecontrol

Represents the Cache-Control header

	
class webob.cachecontrol.exists_property(prop, type=None)

	Represents a property that either is listed in the Cache-Control
header, or is not listed (has no value)

	
class webob.cachecontrol.value_property(prop, default=None, none=None, type=None)

	Represents a property that has a value in the Cache-Control header.

When no value is actually given, the value of self.none is returned.

	
class webob.cachecontrol.CacheControl(properties, type)

	Represents the Cache-Control header.

By giving a type of 'request' or 'response' you can
control what attributes are allowed (some Cache-Control values
only apply to requests or responses).

	
copy()

	Returns a copy of this object.

	
classmethod parse(header, updates_to=None, type=None)

	Parse the header, returning a CacheControl object.

The object is bound to the request or response object
updates_to, if that is given.

	
update_dict

	alias of UpdateDict

	
webob.cachecontrol.serialize_cache_control(properties)

	

webob.datastruct

webob.etag

Does parsing of ETag-related headers: If-None-Matches, If-Matches

Also If-Range parsing

	
webob.etag.AnyETag

	

	
webob.etag.NoETag

	

	
class webob.etag.ETagMatcher(etags)

	
	
classmethod parse(value, strong=True)

	Parse this from a header value

	
class webob.etag.IfRange(etag)

	
	
classmethod parse(value)

	Parse this from a header value.

mod:webob.exc

HTTP Exception

This module processes Python exceptions that relate to HTTP exceptions
by defining a set of exceptions, all subclasses of HTTPException.
Each exception, in addition to being a Python exception that can be
raised and caught, is also a WSGI application and webob.Response
object.

This module defines exceptions according to RFC 2068 [1] : codes with
100-300 are not really errors; 400’s are client errors, and 500’s are
server errors. According to the WSGI specification [2] , the application
can call start_response more then once only under two conditions:
(a) the response has not yet been sent, or (b) if the second and
subsequent invocations of start_response have a valid exc_info
argument obtained from sys.exc_info(). The WSGI specification then
requires the server or gateway to handle the case where content has been
sent and then an exception was encountered.

	Exception

	
	HTTPException

	
	HTTPOk

	
	200 - HTTPOk

	201 - HTTPCreated

	202 - HTTPAccepted

	203 - HTTPNonAuthoritativeInformation

	204 - HTTPNoContent

	205 - HTTPResetContent

	206 - HTTPPartialContent

	HTTPRedirection

	
	300 - HTTPMultipleChoices

	301 - HTTPMovedPermanently

	302 - HTTPFound

	303 - HTTPSeeOther

	304 - HTTPNotModified

	305 - HTTPUseProxy

	306 - Unused (not implemented, obviously)

	307 - HTTPTemporaryRedirect

	HTTPError

	
	HTTPClientError

	
	400 - HTTPBadRequest

	401 - HTTPUnauthorized

	402 - HTTPPaymentRequired

	403 - HTTPForbidden

	404 - HTTPNotFound

	405 - HTTPMethodNotAllowed

	406 - HTTPNotAcceptable

	407 - HTTPProxyAuthenticationRequired

	408 - HTTPRequestTimeout

	409 - HTTPConflict

	410 - HTTPGone

	411 - HTTPLengthRequired

	412 - HTTPPreconditionFailed

	413 - HTTPRequestEntityTooLarge

	414 - HTTPRequestURITooLong

	415 - HTTPUnsupportedMediaType

	416 - HTTPRequestRangeNotSatisfiable

	417 - HTTPExpectationFailed

	428 - HTTPPreconditionRequired

	429 - HTTPTooManyRequests

	431 - HTTPRequestHeaderFieldsTooLarge

	HTTPServerError

	
	500 - HTTPInternalServerError

	501 - HTTPNotImplemented

	502 - HTTPBadGateway

	503 - HTTPServiceUnavailable

	504 - HTTPGatewayTimeout

	505 - HTTPVersionNotSupported

	511 - HTTPNetworkAuthenticationRequired

Subclass usage notes:

The HTTPException class is complicated by 4 factors:

	The content given to the exception may either be plain-text or
as html-text.

	The template may want to have string-substitutions taken from
the current environ or values from incoming headers. This
is especially troublesome due to case sensitivity.

	The final output may either be text/plain or text/html
mime-type as requested by the client application.

	Each exception has a default explanation, but those who
raise exceptions may want to provide additional detail.

Subclass attributes and call parameters are designed to provide an easier path
through the complications.

Attributes:

	code

	the HTTP status code for the exception

	title

	remainder of the status line (stuff after the code)

	explanation

	a plain-text explanation of the error message that is
not subject to environment or header substitutions;
it is accessible in the template via %(explanation)s

	detail

	a plain-text message customization that is not subject
to environment or header substitutions; accessible in
the template via %(detail)s

	body_template

	a content fragment (in HTML) used for environment and
header substitution; the default template includes both
the explanation and further detail provided in the
message

Parameters:

	detail

	a plain-text override of the default detail

	headers

	a list of (k,v) header pairs

	comment

	a plain-text additional information which is
usually stripped/hidden for end-users

	body_template

	a string.Template object containing a content fragment in HTML
that frames the explanation and further detail

To override the template (which is HTML content) or the plain-text
explanation, one must subclass the given exception; or customize it
after it has been created. This particular breakdown of a message
into explanation, detail and template allows both the creation of
plain-text and html messages for various clients as well as
error-free substitution of environment variables and headers.

The subclasses of _HTTPMove
(HTTPMultipleChoices, HTTPMovedPermanently,
HTTPFound, HTTPSeeOther, HTTPUseProxy and
HTTPTemporaryRedirect) are redirections that require a Location
field. Reflecting this, these subclasses have two additional keyword arguments:
location and add_slash.

Parameters:

	location

	to set the location immediately

	add_slash

	set to True to redirect to the same URL as the request, except with a
/ appended

Relative URLs in the location will be resolved to absolute.

References:

	[1]	http://www.python.org/peps/pep-0333.html#error-handling

	[2]	http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5

	
webob.exc.no_escape(value)

	

	
webob.exc.strip_tags(value)

	

	
class webob.exc.HTTPException(message, wsgi_response)

	

	
class webob.exc.WSGIHTTPException(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class webob.exc.HTTPError(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for status codes in the 400’s and 500’s

This is an exception which indicates that an error has occurred,
and that any work in progress should not be committed. These are
typically results in the 400’s and 500’s.

	
class webob.exc.HTTPRedirection(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for 300’s status code (redirections)

This is an abstract base class for 3xx redirection. It indicates
that further action needs to be taken by the user agent in order
to fulfill the request. It does not necessarly signal an error
condition.

	
class webob.exc.HTTPOk(detail=None, headers=None, comment=None, body_template=None, **kw)

	Base class for the 200’s status code (successful responses)

code: 200, title: OK

	
class webob.exc.HTTPCreated(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPOk

This indicates that request has been fulfilled and resulted in a new
resource being created.

code: 201, title: Created

	
class webob.exc.HTTPAccepted(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPOk

This indicates that the request has been accepted for processing, but the
processing has not been completed.

code: 202, title: Accepted

	
class webob.exc.HTTPNonAuthoritativeInformation(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPOk

This indicates that the returned metainformation in the entity-header is
not the definitive set as available from the origin server, but is
gathered from a local or a third-party copy.

code: 203, title: Non-Authoritative Information

	
class webob.exc.HTTPNoContent(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPOk

This indicates that the server has fulfilled the request but does
not need to return an entity-body, and might want to return updated
metainformation.

code: 204, title: No Content

	
class webob.exc.HTTPResetContent(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPOk

This indicates that the the server has fulfilled the request and
the user agent SHOULD reset the document view which caused the
request to be sent.

code: 205, title: Reset Content

	
class webob.exc.HTTPPartialContent(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPOk

This indicates that the server has fulfilled the partial GET
request for the resource.

code: 206, title: Partial Content

	
class webob.exc.HTTPMultipleChoices(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	subclass of _HTTPMove

This indicates that the requested resource corresponds to any one
of a set of representations, each with its own specific location,
and agent-driven negotiation information is being provided so that
the user can select a preferred representation and redirect its
request to that location.

code: 300, title: Multiple Choices

	
class webob.exc.HTTPMovedPermanently(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	subclass of _HTTPMove

This indicates that the requested resource has been assigned a new
permanent URI and any future references to this resource SHOULD use
one of the returned URIs.

code: 301, title: Moved Permanently

	
class webob.exc.HTTPFound(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	subclass of _HTTPMove

This indicates that the requested resource resides temporarily under
a different URI.

code: 302, title: Found

	
class webob.exc.HTTPSeeOther(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	subclass of _HTTPMove

This indicates that the response to the request can be found under
a different URI and SHOULD be retrieved using a GET method on that
resource.

code: 303, title: See Other

	
class webob.exc.HTTPNotModified(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPRedirection

This indicates that if the client has performed a conditional GET
request and access is allowed, but the document has not been
modified, the server SHOULD respond with this status code.

code: 304, title: Not Modified

	
class webob.exc.HTTPUseProxy(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	subclass of _HTTPMove

This indicates that the requested resource MUST be accessed through
the proxy given by the Location field.

code: 305, title: Use Proxy

	
class webob.exc.HTTPTemporaryRedirect(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	subclass of _HTTPMove

This indicates that the requested resource resides temporarily
under a different URI.

code: 307, title: Temporary Redirect

	
class webob.exc.HTTPClientError(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for the 400’s, where the client is in error

This is an error condition in which the client is presumed to be
in-error. This is an expected problem, and thus is not considered
a bug. A server-side traceback is not warranted. Unless specialized,
this is a ‘400 Bad Request’

	
class webob.exc.HTTPBadRequest(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class webob.exc.HTTPUnauthorized(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the request requires user authentication.

code: 401, title: Unauthorized

	
class webob.exc.HTTPPaymentRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

code: 402, title: Payment Required

	
class webob.exc.HTTPForbidden(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the server understood the request, but is
refusing to fulfill it.

code: 403, title: Forbidden

	
class webob.exc.HTTPNotFound(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the server did not find anything matching the
Request-URI.

code: 404, title: Not Found

	
class webob.exc.HTTPMethodNotAllowed(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the method specified in the Request-Line is
not allowed for the resource identified by the Request-URI.

code: 405, title: Method Not Allowed

	
class webob.exc.HTTPNotAcceptable(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates the resource identified by the request is only
capable of generating response entities which have content
characteristics not acceptable according to the accept headers
sent in the request.

code: 406, title: Not Acceptable

	
class webob.exc.HTTPProxyAuthenticationRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This is similar to 401, but indicates that the client must first
authenticate itself with the proxy.

code: 407, title: Proxy Authentication Required

	
class webob.exc.HTTPRequestTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the client did not produce a request within
the time that the server was prepared to wait.

code: 408, title: Request Timeout

	
class webob.exc.HTTPConflict(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the request could not be completed due to a
conflict with the current state of the resource.

code: 409, title: Conflict

	
class webob.exc.HTTPGone(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the requested resource is no longer available
at the server and no forwarding address is known.

code: 410, title: Gone

	
class webob.exc.HTTPLengthRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the the server refuses to accept the request
without a defined Content-Length.

code: 411, title: Length Required

	
class webob.exc.HTTPPreconditionFailed(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the precondition given in one or more of the
request-header fields evaluated to false when it was tested on the
server.

code: 412, title: Precondition Failed

	
class webob.exc.HTTPRequestEntityTooLarge(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the server is refusing to process a request
because the request entity is larger than the server is willing or
able to process.

code: 413, title: Request Entity Too Large

	
class webob.exc.HTTPRequestURITooLong(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the Request-URI is longer than the server is willing to
interpret.

code: 414, title: Request-URI Too Long

	
class webob.exc.HTTPUnsupportedMediaType(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the entity of the request is in a format not supported by
the requested resource for the requested method.

code: 415, title: Unsupported Media Type

	
class webob.exc.HTTPRequestRangeNotSatisfiable(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

The server SHOULD return a response with this status code if a
request included a Range request-header field, and none of the
range-specifier values in this field overlap the current extent
of the selected resource, and the request did not include an
If-Range request-header field.

code: 416, title: Request Range Not Satisfiable

	
class webob.exc.HTTPExpectationFailed(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indidcates that the expectation given in an Expect
request-header field could not be met by this server.

code: 417, title: Expectation Failed

	
class webob.exc.HTTPUnprocessableEntity(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the server is unable to process the contained
instructions. Only for WebDAV.

code: 422, title: Unprocessable Entity

	
class webob.exc.HTTPLocked(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the resource is locked. Only for WebDAV

code: 423, title: Locked

	
class webob.exc.HTTPFailedDependency(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPClientError

This indicates that the method could not be performed because the
requested action depended on another action and that action failed.
Only for WebDAV.

code: 424, title: Failed Dependency

	
class webob.exc.HTTPServerError(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for the 500’s, where the server is in-error

This is an error condition in which the server is presumed to be
in-error. This is usually unexpected, and thus requires a traceback;
ideally, opening a support ticket for the customer. Unless specialized,
this is a ‘500 Internal Server Error’

	
class webob.exc.HTTPInternalServerError(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class webob.exc.HTTPNotImplemented(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPServerError

This indicates that the server does not support the functionality
required to fulfill the request.

code: 501, title: Not Implemented

	
class webob.exc.HTTPBadGateway(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
received an invalid response from the upstream server it accessed
in attempting to fulfill the request.

code: 502, title: Bad Gateway

	
class webob.exc.HTTPServiceUnavailable(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPServerError

This indicates that the server is currently unable to handle the
request due to a temporary overloading or maintenance of the server.

code: 503, title: Service Unavailable

	
class webob.exc.HTTPGatewayTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
did not receive a timely response from the upstream server specified
by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary server
(e.g. DNS) it needed to access in attempting to complete the request.

code: 504, title: Gateway Timeout

	
class webob.exc.HTTPVersionNotSupported(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPServerError

This indicates that the server does not support, or refuses to
support, the HTTP protocol version that was used in the request
message.

code: 505, title: HTTP Version Not Supported

	
class webob.exc.HTTPInsufficientStorage(detail=None, headers=None, comment=None, body_template=None, **kw)

	subclass of HTTPServerError

This indicates that the server does not have enough space to save
the resource.

code: 507, title: Insufficient Storage

	
class webob.exc.HTTPExceptionMiddleware(application)

	Middleware that catches exceptions in the sub-application. This
does not catch exceptions in the app_iter; only during the initial
calling of the application.

This should be put very close to applications that might raise
these exceptions. This should not be applied globally; letting
expected exceptions raise through the WSGI stack is dangerous.

webob.headerdict

webob.multidict

Gives a multi-value dictionary object (MultiDict) plus several wrappers

	
class webob.multidict.MultiDict(*args, **kw)

	An ordered dictionary that can have multiple values for each key.
Adds the methods getall, getone, mixed and extend and add to the normal
dictionary interface.

	
add(key, value)

	Add the key and value, not overwriting any previous value.

	
dict_of_lists()

	Returns a dictionary where each key is associated with a list of values.

	
classmethod from_fieldstorage(fs)

	Create a dict from a cgi.FieldStorage instance

	
getall(key)

	Return a list of all values matching the key (may be an empty list)

	
getone(key)

	Get one value matching the key, raising a KeyError if multiple
values were found.

	
mixed()

	Returns a dictionary where the values are either single
values, or a list of values when a key/value appears more than
once in this dictionary. This is similar to the kind of
dictionary often used to represent the variables in a web
request.

	
classmethod view_list(lst)

	Create a dict that is a view on the given list

	
class webob.multidict.NestedMultiDict(*dicts)

	Wraps several MultiDict objects, treating it as one large MultiDict

	
class webob.multidict.NoVars(reason=None)

	Represents no variables; used when no variables
are applicable.

This is read-only

webob.statusreasons

webob.updatedict

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pylons 0.9.7 documentation

Glossary

	action

	The class method in a Pylons applications’ controller that handles
a request.

	API

	Application Programming Interface. The means of communication between
a programmer and a software program or operating system.

	app_globals

	The app_globals object is created on application instantiation by
the Globals class in a projects lib/app_globals.py
module.

This object is created once when the application is loaded by the
projects config/environment.py module (See
Environment). It remains persistent
during the lifecycle of the web application, and is not thread-safe
which means that it is best used for global options that should be
read-only, or as an object to attach db connections or other objects
which ensure their own access is thread-safe.

	c

	Commonly used alias for tmpl_context to save on the typing
when using lots of controller populated variables in templates.

	caching

	The storage of the results of expensive or length computations for
later re-use at a point more quickly accessed by the end user.

	CDN

	Content Delivery Networks (CDN’s) are generally globally distributed
content delivery networks optimized for low latency for static file
distribution. They can significantly increase page-load times by
ensuring that the static resources on a page are delivered by servers
geographically close to the client in addition to lightening the load
placed on the application server.

	ColdFusion Components

	CFCs represent an attempt by Macromedia to bring ColdFusion closer
to an Object Oriented Programming (OOP) language. ColdFusion is in
no way an OOP language, but thanks in part to CFCs, it does boast
some of the attributes that make OOP languages so popular.

	controller

	The ‘C’ in MVC. The controller is given a request, does the necessary
logic to prepare data for display, then renders a template with
the data and returns it to the user. See Controllers.

	easy_install

	A tool that lets you download, build, install and manage Python packages
and their dependencies. easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall] is the end-user facing component
of setuptools.

Pylons can be installed with easy_install, and applications built
with Pylons can easily be deployed this way as well.

See also

Pylons Packaging and Deployment Overview

	egg

	Python egg’s are bundled Python packages, generally installed by
a package called setuptools. Unlike normal Python package
installs, egg’s allow a few additional features, such as package
dependencies, and dynamic discovery.

See also

The Quick Guide to Python Eggs [http://peak.telecommunity.com/DevCenter/PythonEggs]

	EJBs

	Enterprise JavaBeans (EJB) technology is the server-side component
architecture for Java Platform, Enterprise Edition (Java EE). EJB
technology enables rapid and simplified development of distributed,
transactional, secure and portable applications based on Java
technology.

	environ

	environ is a dictionary passed into all WSGI application. It
generally contains unparsed header information, CGI style variables
and other objects inserted by WSGI Middleware.

	ETag

	An ETag (entity tag) is an HTTP response header returned by an
HTTP/1.1 compliant web server used to determine change in content
at a given URL. See http://wikipedia.org/wiki/HTTP_ETag

	g

	Alias used in prior versions of Pylons for app_globals.

	Google App Engine

	A cloud computing platform for hosting web applications implemented in
Python. Building Pylons applications for App Engine is facilitated by
Ian Bicking’s appengine-monkey project [http://code.google.com/p/appengine-monkey/].

See also

What is Google App Engine? - Official Doc [http://code.google.com/appengine/docs/whatisgoogleappengine.html]

	h

	The helpers reference, h, is made available for use inside
templates to assist with common rendering tasks. h is just a
reference to the lib/helpers.py module and can be used in the
same manner as any other module import.

	Model-View-Controller

	An architectural pattern used in software engineering. In Pylons, the
MVC paradigm is extended slightly with a pipeline that may transform
and extend the data available to a controller, as well as the Pylons
WSGI app itself that determines the appropriate Controller
to call.

See also

MVC at Wikipedia [http://wikipedia.org/wiki/Model-View-Controller]

	MVC

	See Model-View-Controller

	ORM

	(Object-Relational Mapper) Maps relational databases such as
MySQL, Postgres, Oracle to objects providing a cleaner API.
Most ORM’s also make it easier to prevent SQL Injection attacks
by binding variables, and can handle generating sometimes
extensive SQL.

	Pylons

	A Python-based WSGI oriented web framework.

	Rails

	Abbreviated as RoR, Ruby on Rails (also referred to as just
Rails) is an open source Web application framework, written in Ruby

	request

	Refers to the current request being processed. Available to import
from pylons and is available for use in templates by the
same name. See Request.

	response

	Refers to the response to the current request. Available to import
from pylons and is available for use in template by the same
name. See Response.

	route

	Routes determine how the URL’s are mapped to the controllers and which
URL is generated. See URL Configuration

	setuptools

	An extension to the basic distutils, setuptools allows packages to
specify package dependencies and have dynamic discovery of other
installed Python packages.

See also

Building and Distributing Packages with setuptools [http://peak.telecommunity.com/DevCenter/setuptools]

	SQLAlchemy

	One of the most popular Python database object-relational mappers
(ORM). SQLAlchemy [http://www.sqlalchemy.org/] is the default
ORM recommended in Pylons. SQLAlchemy at the ORM level can look similar
to Rails ActiveRecord, but uses the DataMapper [http://www.martinfowler.com/eaaCatalog/dataMapper.html]
pattern for additional flexibility with the ability to map simple to
extremely complex databases.

	tmpl_context

	The tmpl_context is available in the pylons module, and
refers to the template context. Objects attached to it are available
in the template namespace as either tmpl_context or c for
convenience.

	UI

	User interface. The means of communication between a person
and a software program or operating system.

	virtualenv

	A tool to create isolated Python environments, designed to supersede the
workingenv package and virtual python [http://peak.telecommunity.com/DevCenter/EasyInstall#creating-a-virtual-python] configurations. In addition
to isolating packages from possible system conflicts, virtualenv [http://pypi.python.org/pypi/virtualenv]
makes it easy to install Python libraries using easy_install
without dumping lots of packages into the system-wide Python.

The other great benefit is that no root access is required since all
modules are kept under the desired directory. This makes it easy
to setup a working Pylons install on shared hosting providers and other
systems where system-wide access is unavailable.

virtualenv is employed automatically by the go-pylons.py script
described in Getting Started. The Pylons wiki has more
information on working with virtualenv [http://wiki.pylonshq.com/display/pylonscookbook/Using+a+Virtualenv+Sandbox].

	web server gateway interface

	A specification for web servers and application servers to
communicate with web applications. Also referred to by its
initials, as WSGI.

	WSGI

	The WSGI Specification [http://www.python.org/dev/peps/pep-0333/],
also commonly referred to as PEP 333 and described by PEP 333 [http://www.python.org/dev/peps/pep-0333].

	WSGI Middleware

	WSGI Middleware refers to the ability of WSGI applications
to modify the environ, and/or the content of other WSGI applications
by being placed in between the request and the other WSGI application.

See also

WSGI Middleware in Concepts of Pylons
WSGI Middleware Configuration

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	Pylons 0.9.7 documentation

 Python Module Index

 b |
 f |
 p |
 r |
 w

 			

 		
 b	

 	[image: -]
 	
 babel	

 	
 	
 babel.core	

 	[image: -]
 	
 beaker	

 	
 	
 beaker.cache	

 	
 	
 beaker.container	

 	
 	
 beaker.ext.database	

 	
 	
 beaker.ext.google	

 	
 	
 beaker.ext.memcached	

 	
 	
 beaker.middleware	

 	
 	
 beaker.session	

 	
 	
 beaker.synchronization	

 	
 	
 beaker.util	

 			

 		
 f	

 	[image: -]
 	
 formencode	

 	
 	
 formencode.api	

 	
 	
 formencode.compound	

 	
 	
 formencode.foreach	

 	
 	
 formencode.htmlfill	

 	
 	
 formencode.schema	

 	
 	
 formencode.validators	

 			

 		
 p	

 	[image: -]
 	
 pylons	

 	
 	
 pylons.controllers	

 			

 		
 r	

 	[image: -]
 	
 routes	

 	
 	
 routes.base	

 	
 	
 routes.util	

 			

 		
 w	

 	[image: -]
 	
 weberror	

 	
 	
 weberror.collector	

 	
 	
 weberror.errormiddleware	

 	
 	
 weberror.evalcontext	

 	
 	
 weberror.evalexception	

 	
 	
 weberror.formatter	

 	
 	
 weberror.reporter	

 	[image: -]
 	
 webhelpers	

 	
 	
 webhelpers.constants	

 	[image: -]
 	
 webob	

 	
 	
 webob.byterange	

 	
 	
 webob.cachecontrol	

 	
 	
 webob.etag	

 	
 	
 webob.exc	

 	
 	
 webob.multidict	

 	
 	
 webtest	

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 Navigation

 	
 index

 	
 modules |

 	Pylons 0.9.7 documentation

 Index

 _ | A | B | C | D | E | F | G | H | I | J | L | M | N | O | P | Q | R | S | T | U | V | W | X

_

	

	__call__() (routes.util.URLGenerator method)

	__init__() (formencode.api.Invalid method)

 	
 	(webhelpers.feedgenerator.SyndicationFeed method)

	
	_make_safe_id_component() (in module webhelpers.html.tags)

	_str2html() (in module weberror.formatter)

A

	

	AbstractFormatter (class in weberror.formatter)

	Accept (class in webob.acceptparse)

	accept_html() (webob.acceptparse.MIMEAccept method)

	accept_ranges (webob.Response attribute)

	accepts_html (webob.acceptparse.MIMEAccept attribute)

	Accumulator (class in webhelpers.containers)

	action

	add() (webhelpers.util.UnicodeMultiDict method)

 	
 	(webob.multidict.MultiDict method)

	add_alias() (webhelpers.mimehelper.MIMETypes class method)

	add_item() (webhelpers.feedgenerator.SyndicationFeed method)

	add_item_elements() (webhelpers.feedgenerator.SyndicationFeed method)

	add_root_elements() (webhelpers.feedgenerator.SyndicationFeed method)

	addQuickElement() (webhelpers.util.SimplerXMLGenerator method)

	age (webob.Response attribute)

	All (class in formencode.compound)

	
	all() (in module webhelpers.misc)

	all_messages() (formencode.api.Validator class method)

	allow (webob.Response attribute)

	Any (class in formencode.compound)

	any() (in module webhelpers.misc)

	AnyETag (in module webob.etag)

	API

	app_globals

	app_iter (webob.Response attribute)

	app_iter_range() (webob.Response method)

	Atom1Feed (class in webhelpers.feedgenerator)

	auto_discovery_link() (in module webhelpers.html.tags)

	auto_link() (in module webhelpers.html.tools)

	AutolinkPattern (class in webhelpers.markdown)

	AutomailPattern (class in webhelpers.markdown)

B

	

	babel.core (module)

	BacktickPattern (class in webhelpers.markdown)

	base64encode() (formencode.api.FancyValidator method)

	beaker.cache (module)

	beaker.container (module)

	beaker.ext.database (module)

	beaker.ext.google (module)

	beaker.ext.memcached (module)

	beaker.middleware (module)

	beaker.session (module)

	beaker.synchronization (module)

	
	beaker.util (module)

	best_match() (webob.acceptparse.Accept method)

	BlockGuru (class in webhelpers.markdown)

	body (webob.Response attribute)

	body_file (webob.Response attribute)

	Bool (class in formencode.validators)

	buildfullreg() (routes.base.Route method)

	buildnextreg() (routes.base.Route method)

	button_to() (in module webhelpers.html.tools)

C

	

	c

	Cache (class in beaker.cache)

	cache() (beaker.cache.CacheManager method)

	cache_control (webob.Response attribute)

	CacheControl (class in webob.cachecontrol)

	CacheManager (class in beaker.cache)

	CacheMiddleware (class in beaker.middleware)

	caching

	canada_provinces() (in module webhelpers.constants)

	CDN

	charset (webob.Response attribute)

	checkbox() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

	chop_at() (in module webhelpers.text)

	CIDR (class in formencode.validators)

	clear() (beaker.cache.Cache method)

	click() (webtest.TestResponse method)

	clickbutton() (webtest.TestResponse method)

	coerce_cache_params() (in module beaker.util)

	coerce_session_params() (in module beaker.util)

	ColdFusion Components

	collect_exception() (in module weberror.collector)

	conditional_response_app() (webob.Response method)

	ConditionSynchronizer (class in beaker.synchronization)

	ConfirmType (class in formencode.validators)

	connect() (routes.base.Mapper method)

	Constant (class in formencode.validators)

	Container (class in beaker.container)

	ContainerContext (in module beaker.container)

	content_disposition (webob.Response attribute)

	content_encoding (webob.Response attribute)

	
	content_language (webob.Response attribute)

	content_length (webob.Response attribute)

	content_location (webob.Response attribute)

	content_md5 (webob.Response attribute)

	content_range (webob.Response attribute)

	content_range() (webob.byterange.Range method)

	content_type (webob.Response attribute)

	content_type_params (webob.Response attribute)

	ContentRange (class in webob.byterange)

	controller

	convert() (webhelpers.markdown.Markdown method)

	convert_or_none() (in module webhelpers.misc)

	copy() (webob.cachecontrol.CacheControl method)

 	
 	(webob.Response method)

	CorePatterns (class in webhelpers.markdown)

	correlate() (webhelpers.containers.Accumulator class method)

 	
 	(webhelpers.containers.Counter class method)

	correlate_dicts() (in module webhelpers.containers)

	correlate_objects() (in module webhelpers.containers)

	count_true() (in module webhelpers.misc)

	Counter (class in webhelpers.containers)

	country_codes() (in module webhelpers.constants)

	create_regs() (routes.base.Mapper method)

	create_text_node() (in module weberror.formatter)

	CreationAbortedError

	CreditCardExpires (class in formencode.validators)

	CreditCardSecurityCode (class in formencode.validators)

	CreditCardValidator (class in formencode.validators)

	current() (routes.util.URLGenerator method)

D

	

	DatabaseContainer (class in beaker.ext.database)

	DatabaseNamespaceManager (class in beaker.ext.database)

	date (webob.Response attribute)

	date() (webhelpers.html.tags.ModelTags method)

	DateConverter (class in formencode.validators)

	DateValidator (class in formencode.validators)

	DBMContainer (class in beaker.container)

	DBMNamespaceManager (class in beaker.container)

	DeclarativeException (class in webhelpers.misc)

	default_formatter() (in module formencode.htmlfill)

	del_quiet() (in module webhelpers.containers)

	delete() (webtest.TestApp method)

	delete_cookie() (webob.Response method)

	
	delete_json() (webtest.TestApp method)

	dequote() (in module webhelpers.markdown)

	detabbed_fn() (webhelpers.markdown.BlockGuru method)

	dict_of_lists() (webhelpers.util.UnicodeMultiDict method)

 	
 	(webob.multidict.MultiDict method)

	DictConverter (class in formencode.validators)

	distance_of_time_in_words() (in module webhelpers.date)

	distribute() (in module webhelpers.containers)

	do_request() (webtest.TestApp method)

	Document (class in webhelpers.markdown)

	DoubleTagPattern (class in webhelpers.markdown)

	DumbObject (class in webhelpers.containers)

E

	

	easy_install

	egg

	EJBs

	Element (class in webhelpers.markdown)

	Email (class in formencode.validators)

	EmailReporter (class in weberror.reporter)

	Empty (class in formencode.validators)

	Enclosure (class in webhelpers.feedgenerator)

	encode_content() (webob.Response method)

	encode_multipart() (webtest.TestApp method)

	encoded_path() (in module beaker.util)

	end_form() (in module webhelpers.html.tags)

	EntityReference (class in webhelpers.markdown)

	environ

	environment variable

 	
 	HOME, [1]

 	PATH_INFO, [1]

 	SCRIPT_NAME, [1], [2]

 	SERVER_NAME

	ErrorMiddleware (class in weberror.errormiddleware)

	
	escape() (in module webhelpers.html.builder)

	escape_formatter() (in module formencode.htmlfill)

	escapenl_formatter() (in module formencode.htmlfill)

	ETag

	etag (webob.Response attribute)

	ETagMatcher (class in webob.etag)

	EvalContext (class in weberror.evalcontext)

	EvalException (class in weberror.evalexception)

	except_keys() (in module webhelpers.containers)

	ExceptionCollector (class in weberror.collector)

	ExceptionFrame (class in weberror.collector)

	excerpt() (in module webhelpers.text)

	exists_property (class in webob.cachecontrol)

	expires (webob.Response attribute)

	extend() (routes.base.Mapper method)

 	
 	(webhelpers.number.SimpleStats method)

	Extension (class in webhelpers.markdown)

	extract_keys() (in module webhelpers.containers)

F

	

	FancyValidator (class in formencode.api)

	FieldClass (webtest.Form attribute)

	FieldsMatch (class in formencode.validators)

	FieldStorageUploadConverter (class in formencode.validators)

	file() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

	FileContainer (class in beaker.container)

	FileNamespaceManager (class in beaker.container)

	FileReporter (class in weberror.reporter)

	FileSynchronizer (class in beaker.synchronization)

	FileUploadKeeper (class in formencode.validators)

	FillingParser (class in formencode.htmlfill)

	filter_frames() (weberror.formatter.AbstractFormatter method)

	find() (webhelpers.markdown.Element method)

	finish() (webhelpers.number.Stats method)

	first_match() (webob.acceptparse.Accept method)

	Flash (class in webhelpers.pylonslib)

	follow() (webtest.TestResponse method)

	ForEach (class in formencode.foreach)

	Form (class in webtest)

	
	form (webtest.TestResponse attribute)

	form() (in module webhelpers.html.tags)

	format_frame_end() (weberror.formatter.AbstractFormatter method)

	format_frame_start() (weberror.formatter.AbstractFormatter method)

	format_html() (in module weberror.formatter)

	format_number() (in module webhelpers.number)

	format_text() (in module weberror.formatter)

	format_xml() (in module weberror.formatter)

	formencode.api (module)

	formencode.compound (module)

	formencode.foreach (module)

	formencode.htmlfill (module)

	formencode.schema (module)

	formencode.validators (module)

	forms (webtest.TestResponse attribute)

	forms__get() (webtest.TestResponse method)

	FormValidator (class in formencode.validators)

	from_fieldstorage() (webob.multidict.MultiDict class method)

	from_file() (webob.Response class method)

G

	

	g

	generate() (routes.base.Mapper method)

 	
 	(routes.base.Route method)

	generate_minimized() (routes.base.Route method)

	generate_non_minimized() (routes.base.Route method)

	get() (beaker.cache.Cache method)

 	
 	(webtest.Form method)

 	(webtest.TestApp method)

	get_popular() (webhelpers.containers.Counter method)

	get_sorted_items() (webhelpers.containers.Counter method)

	get_source_line() (weberror.collector.ExceptionFrame method)

	get_tag_uri() (in module webhelpers.feedgenerator)

	
	get_value() (beaker.cache.Cache method)

	get_wrapper() (in module webhelpers.paginate)

	getall() (webhelpers.util.UnicodeMultiDict method)

 	
 	(webob.multidict.MultiDict method)

	getone() (webhelpers.util.UnicodeMultiDict method)

 	
 	(webob.multidict.MultiDict method)

	Google App Engine

	GoogleContainer (class in beaker.ext.google)

	GoogleNamespaceManager (class in beaker.ext.google)

	goto() (webtest.TestResponse method)

H

	

	h

	head() (webtest.TestApp method)

	headerlist (webob.Response attribute)

	HeaderPreprocessor (class in webhelpers.markdown)

	headers (webob.Response attribute)

	hidden() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

	highlight() (in module webhelpers.html.tools)

	HOME, [1]

	html (webtest.TestResponse attribute)

	html_escape() (in module webhelpers.util)

 	
 	(in module webob)

	html_quote() (in module weberror.formatter)

	HtmlBlockPreprocessor (class in webhelpers.markdown)

	HTMLBuilder (class in webhelpers.html.builder)

	HTMLFormatter (class in weberror.formatter)

	HtmlPattern (class in webhelpers.markdown)

	HtmlStash (class in webhelpers.markdown)

	HTTPAccepted (class in webob.exc)

	HTTPBadGateway (class in webob.exc)

	HTTPBadRequest (class in webob.exc)

	HTTPClientError (class in webob.exc)

	HTTPConflict (class in webob.exc)

	HTTPCreated (class in webob.exc)

	HTTPError (class in webob.exc)

	HTTPException (class in webob.exc)

	HTTPExceptionMiddleware (class in webob.exc)

	HTTPExpectationFailed (class in webob.exc)

	HTTPFailedDependency (class in webob.exc)

	HTTPForbidden (class in webob.exc)

	HTTPFound (class in webob.exc)

	HTTPGatewayTimeout (class in webob.exc)

	HTTPGone (class in webob.exc)

	HTTPInsufficientStorage (class in webob.exc)

	
	HTTPInternalServerError (class in webob.exc)

	HTTPLengthRequired (class in webob.exc)

	HTTPLocked (class in webob.exc)

	HTTPMethodNotAllowed (class in webob.exc)

	HTTPMovedPermanently (class in webob.exc)

	HTTPMultipleChoices (class in webob.exc)

	HTTPNoContent (class in webob.exc)

	HTTPNonAuthoritativeInformation (class in webob.exc)

	HTTPNotAcceptable (class in webob.exc)

	HTTPNotFound (class in webob.exc)

	HTTPNotImplemented (class in webob.exc)

	HTTPNotModified (class in webob.exc)

	HTTPOk (class in webob.exc)

	HTTPPartialContent (class in webob.exc)

	HTTPPaymentRequired (class in webob.exc)

	HTTPPreconditionFailed (class in webob.exc)

	HTTPProxyAuthenticationRequired (class in webob.exc)

	HTTPRedirection (class in webob.exc)

	HTTPRequestEntityTooLarge (class in webob.exc)

	HTTPRequestRangeNotSatisfiable (class in webob.exc)

	HTTPRequestTimeout (class in webob.exc)

	HTTPRequestURITooLong (class in webob.exc)

	HTTPResetContent (class in webob.exc)

	HTTPSeeOther (class in webob.exc)

	HTTPServerError (class in webob.exc)

	HTTPServiceUnavailable (class in webob.exc)

	HTTPTemporaryRedirect (class in webob.exc)

	HTTPUnauthorized (class in webob.exc)

	HTTPUnprocessableEntity (class in webob.exc)

	HTTPUnsupportedMediaType (class in webob.exc)

	HTTPUseProxy (class in webob.exc)

	HTTPVersionNotSupported (class in webob.exc)

I

	

	if_empty (formencode.api.FancyValidator attribute)

	if_invalid (formencode.api.FancyValidator attribute)

	if_invalid_python (formencode.api.FancyValidator attribute)

	if_missing (formencode.api.Validator attribute)

	IfRange (class in webob.etag)

	image() (in module webhelpers.html.tags)

	ImagePattern (class in webhelpers.markdown)

	ImageReferencePattern (class in webhelpers.markdown)

	IndexListConverter (class in formencode.validators)

	
	init() (webhelpers.mimehelper.MIMETypes class method)

	Int (class in formencode.validators)

	Invalid (class in formencode.api)

	invalidate() (beaker.cache.CacheManager method)

	IPhoneNumberValidator (class in formencode.validators)

	iri_to_uri() (in module webhelpers.util)

	is_validator() (in module formencode.api)

	item_attributes() (webhelpers.feedgenerator.SyndicationFeed method)

J

	

	javascript_link() (in module webhelpers.html.tags)

	json (webob.Response attribute)

 	
 	(webtest.TestResponse attribute)

	
	json_body (webob.Response attribute)

L

	

	last_modified (webob.Response attribute)

	latest_post_date() (webhelpers.feedgenerator.SyndicationFeed method)

	lchop() (in module webhelpers.text)

	LinePreprocessor (class in webhelpers.markdown)

	link_to() (in module webhelpers.html.tags)

	link_to_if() (in module webhelpers.html.tags)

	link_to_unless() (in module webhelpers.html.tags)

	LinkPattern (class in webhelpers.markdown)

	
	lint() (webtest.Form method)

	lit_sub() (in module webhelpers.html.builder)

	literal() (in module webhelpers.html.builder)

	location (webob.Response attribute)

	LogReporter (class in weberror.reporter)

	long_item_list() (weberror.formatter.AbstractFormatter method)

	lxml (webtest.TestResponse attribute)

M

	

	MACAddress (class in formencode.validators)

	mail_to() (in module webhelpers.html.tools)

	make_full_route() (routes.base.Route method)

	make_pre_wrappable() (in module weberror.formatter)

	make_tag() (in module webhelpers.html.builder)

	make_unicode() (routes.base.Route method)

	make_wrappable() (in module weberror.formatter)

	makeregexp() (routes.base.Route method)

	Mapper (class in routes.base)

	Markdown (class in webhelpers.markdown)

	markdown() (in module webhelpers.html.converters)

 	
 	(in module webhelpers.markdown)

	markdownFromFile() (in module webhelpers.markdown)

	MasterClass (webob.acceptparse.MIMENilAccept attribute)

 	
 	(webob.acceptparse.NilAccept attribute)

	match() (routes.base.Mapper method)

 	
 	(routes.base.Route method)

	MaxLength (class in formencode.validators)

	md5_etag() (webob.Response method)

	mean() (in module webhelpers.number)

	
	media() (weberror.evalexception.EvalException method)

	median() (in module webhelpers.number)

	MemcachedContainer (class in beaker.ext.memcached)

	MemcachedNamespaceManager (class in beaker.ext.memcached)

	MemoryContainer (class in beaker.container)

	MemoryNamespaceManager (class in beaker.container)

	merge_cookies() (webob.Response method)

	MIMEAccept (class in webob.acceptparse)

	MIMENilAccept (class in webob.acceptparse)

	mimetype() (webhelpers.mimehelper.MIMETypes method)

	MIMETypes (class in webhelpers.mimehelper)

	MinLength (class in formencode.validators)

	mixed() (webhelpers.util.UnicodeMultiDict method)

 	
 	(webob.multidict.MultiDict method)

	Model-View-Controller

	ModelTags (class in webhelpers.html.tags)

	MultiDict (class in webob.multidict)

	mustcontain() (webtest.TestResponse method)

	MVC

N

	

	NameLock (class in beaker.synchronization)

	NamespaceManager (class in beaker.container)

	NestedMultiDict (class in webob.multidict)

	NilAccept (class in webob.acceptparse)

	no() (in module webhelpers.misc)

	no_escape() (in module webob.exc)

	NoAccept (class in webob.acceptparse)

	NoETag (in module webob.etag)

	
	none_formatter() (in module formencode.htmlfill)

	normal_body (webtest.TestResponse attribute)

	NotEmpty (class in formencode.validators)

	NotGiven (class in webhelpers.containers)

	NoVars (class in webob.multidict)

	Number (class in formencode.validators)

O

	

	OneOf (class in formencode.validators)

	only_some_keys() (in module webhelpers.containers)

	options() (webtest.TestApp method)

	
	ordered_items() (in module webhelpers.containers)

	ORM

P

	

	Page (class in webhelpers.paginate)

	pager() (webhelpers.paginate.Page method)

	parse() (webob.acceptparse.Accept static method)

 	
 	(webob.byterange.ContentRange class method)

 	(webob.byterange.Range class method)

 	(webob.cachecontrol.CacheControl class method)

 	(webob.etag.ETagMatcher class method)

 	(webob.etag.IfRange class method)

	parse_options() (in module webhelpers.markdown)

	Partial (class in webhelpers.util)

	password() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

	PATH_INFO, [1]

	Pattern (class in webhelpers.markdown)

	percent_of() (in module webhelpers.number)

	PhoneNumber (class in formencode.validators)

	PlainText (class in formencode.validators)

	
	plural() (in module webhelpers.text)

	pop_messages() (webhelpers.pylonslib.Flash method)

	post() (webtest.TestApp method)

	post_json() (webtest.TestApp method)

	PostalCode (class in formencode.validators)

	Postprocessor (class in webhelpers.markdown)

	pragma (webob.Response attribute)

	pretty_string_repr() (weberror.formatter.AbstractFormatter method)

	print_error() (in module webhelpers.markdown)

	put() (webtest.TestApp method)

	put_json() (webtest.TestApp method)

	Pylons

	pylons.controllers (module)

	pyquery (webtest.TestResponse attribute)

	Python Enhancement Proposals

 	
 	PEP 333, [1]

Q

	

	quality() (webob.acceptparse.Accept method)

	

R

	

	radio() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

	Rails

	Range (class in webob.byterange)

	range_for_length() (webob.byterange.Range method)

	rchop() (in module webhelpers.text)

	redirect() (routes.base.Mapper method)

	redirect_to() (in module routes.util)

	ReferencePattern (class in webhelpers.markdown)

	ReferencePreprocessor (class in webhelpers.markdown)

	Regex (class in formencode.validators)

	region() (beaker.cache.CacheManager method)

	region_invalidate() (beaker.cache.CacheManager method)

	registerExtension() (webhelpers.markdown.Markdown method)

	relay() (weberror.evalexception.EvalException method)

	render() (in module formencode.htmlfill)

	Reporter (class in weberror.reporter)

	request

	Request (class in webob)

	request() (webtest.TestApp method)

	
	RequireIfMissing (class in formencode.validators)

	reset() (webhelpers.markdown.Markdown method)

 	
 	(webtest.TestApp method)

	resource() (routes.base.Mapper method)

	response

	Response (class in webob)

	retry_after (webob.Response attribute)

	rfc2822_date() (in module webhelpers.feedgenerator)

	rfc3339_date() (in module webhelpers.feedgenerator)

	root_attributes() (webhelpers.feedgenerator.SyndicationFeed method)

	route

	Route (class in routes.base)

	routematch() (routes.base.Mapper method)

	routes.base (module)

	routes.util (module)

	Rss201rev2Feed (class in webhelpers.feedgenerator)

	RssFeed (class in webhelpers.feedgenerator)

	RssUserland091Feed (class in webhelpers.feedgenerator)

S

	

	Schema (class in formencode.schema)

	SCRIPT_NAME, [1], [2]

	select() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

 	(webtest.Form method)

	serialize_cache_control() (in module webob.cachecontrol)

	server (webob.Response attribute)

	SERVER_NAME

	Session (class in beaker.session)

	SessionMiddleware (class in beaker.middleware)

	SessionObject (class in beaker.session)

	Set (class in formencode.validators)

	set() (webtest.Form method)

	set_cookie() (webob.Response method)

	setuptools

	showbrowser() (webtest.TestResponse method)

	SignedCookie (class in beaker.session)

	SignedString (class in formencode.validators)

	SimpleFormValidator (class in formencode.schema)

	SimplerXMLGenerator (class in webhelpers.util)

	SimpleStats (class in webhelpers.number)

	SimpleTagPattern (class in webhelpers.markdown)

	SimpleTextPattern (class in webhelpers.markdown)

	SQLAlchemy

	
	standard_deviation() (in module webhelpers.number)

	StateProvince (class in formencode.validators)

	Stats (class in webhelpers.number)

	status (webob.Response attribute)

	status_code (webob.Response attribute)

	status_int (webob.Response attribute)

	store() (webhelpers.markdown.HtmlStash method)

	str2html() (in module weberror.formatter)

	String (class in formencode.validators)

	StringBool (class in formencode.validators)

	strip_leading_whitespace() (in module webhelpers.text)

	strip_links() (in module webhelpers.html.tools)

	strip_tags() (in module webob.exc)

	StripField (class in formencode.validators)

	stylesheet_link() (in module webhelpers.html.tags)

	submit() (in module webhelpers.html.tags)

 	
 	(webtest.Form method)

	submit_fields() (webtest.Form method)

	subvalidators() (formencode.api.Validator class method)

	summary() (weberror.evalexception.EvalException method)

	SyncDict (class in beaker.util)

	SynchronizerImpl (class in beaker.synchronization)

	SyndicationFeed (class in webhelpers.feedgenerator)

T

	

	TestApp (class in webtest)

	TestResponse (class in webtest)

	text (webob.Response attribute)

	text() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

	textarea() (in module webhelpers.html.tags)

 	
 	(webhelpers.html.tags.ModelTags method)

	TextFormatter (class in weberror.formatter)

	textile() (in module webhelpers.textile)

	textilize() (in module webhelpers.html.converters)

	
	TextNode (class in webhelpers.markdown)

	th_sortable() (in module webhelpers.html.tags)

	ThreadLocal (class in beaker.util)

	time_ago_in_words() (in module webhelpers.date)

	TimeConverter (class in formencode.validators)

	timedelta_to_seconds() (in module webob)

	tmpl_context

	truncate() (in module weberror.formatter)

 	
 	(in module webhelpers.text)

U

	

	ubody (webob.Response attribute)

	UI

	uk_counties() (in module webhelpers.constants)

	UnfinishedComment (class in webhelpers.html.builder)

	UnfinishedLiteral (class in webhelpers.html.builder)

	UnfinishedTag (class in webhelpers.html.builder)

	unicode_body (webob.Response attribute)

	unicode_normal_body (webtest.TestResponse attribute)

	UnicodeMultiDict (class in webhelpers.util)

	UnicodeString (class in formencode.validators)

	unique() (in module webhelpers.containers)

	
	UniqueAccumulator (class in webhelpers.containers)

	unpack_errors() (formencode.api.Invalid method)

	unset_cookie() (webob.Response method)

	update_dict (webob.cachecontrol.CacheControl attribute)

	upload_fields() (webtest.Form method)

	URL (class in formencode.validators)

	url_for() (in module routes.util)

	URLGenerator (class in routes.util)

	us_states() (in module webhelpers.constants)

	us_territories() (in module webhelpers.constants)

V

	

	validate_other() (formencode.api.FancyValidator method)

	validate_python() (formencode.api.FancyValidator method)

	Validator (class in formencode.api)

	value_property (class in webob.cachecontrol)

	vary (webob.Response attribute)

	verify_directory() (in module beaker.util)

	
	verify_options() (in module beaker.util)

	verify_rules() (in module beaker.util)

	view() (weberror.evalexception.EvalException method)

	view_list() (webob.multidict.MultiDict class method)

	virtualenv

W

	

	WeakValuedRegistry (class in beaker.util)

	web server gateway interface

	weberror (module)

	weberror.collector (module)

	weberror.errormiddleware (module)

	weberror.evalcontext (module)

	weberror.evalexception (module)

	weberror.formatter (module)

	weberror.reporter (module)

	webhelpers (module)

	webhelpers.constants (module)

	webob (module)

	webob.byterange (module)

	webob.cachecontrol (module)

	
	webob.etag (module)

	webob.exc (module)

	webob.multidict (module)

	webtest (module)

	wrap_paragraphs() (in module webhelpers.text)

	Wrapper (class in formencode.validators)

	write() (webhelpers.feedgenerator.SyndicationFeed method)

	writeString() (webhelpers.feedgenerator.SyndicationFeed method)

	WSGI

	WSGI Middleware

	WSGIAppReporter (class in weberror.reporter)

	WSGIHTTPException (class in webob.exc)

	www_authenticate (webob.Response attribute)

X

	

	xml (webtest.TestResponse attribute)

	XMLFormatter (class in weberror.formatter)

	

 Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	v1.0.1rc1

 	v0.9.7

 _static/akhettransaqua.png

_static/minus.png

_images/pylon2.jpg
THE FIRST PYLON OF THE TEMPLE OF MEDINET-HABU

search.html

 Navigation

 		
 index

 		
 modules |

 		Pylons 0.9.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008, 2009, Ben Bangert, James Gardner, Philip Jenvey.
 Last updated on Jan 09, 2013.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		v1.0.1rc1

 		v0.9.7

_static/akhetcats.jpg

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_images/doctraceback.png
5> aix(

C_eant_

L _class_', _delacer_', _doc_", '_getateribute_",

‘_module_', '_new_', '_reduce_', '_reduce ex_', '_repr_', '_setattr_', *
*_dlspaten_call’, '_got_method args’, '_inspect call', '_perforn call', '_py_objoct’,
ndex',

“stare_response’]
o

st

ash_

weakzet",
*_pylons_log_debug’,

; ;

Self <hellovorld.controllers.hello.HelloController object at Ox18ads0>
view
<< def index(seln
~ raise Exception('Showing the debugger)

Exception: Showing the debugger

_static/ajax-loader.gif

_static/pylons_as_onion.png
-
7}
[
>
o
[}

o

Response

_static/akhet_rev.png
) PYLEWS

_static/file.png

_images/Pylons_Stack-Chainsaw-OSX.png
0 vax

DO s o ar oo) e oo e
DO v eronotar s sl i Ak

DO s e o e e s o e

_static/down-pressed.png

_static/Pylons_Stack-Chainsaw-OSX.png
0 vax

DO s o ar oo) e oo e
DO v eronotar s sl i Ak

DO s e o e e s o e

_static/pylon3.jpg

_static/up.png

_images/pylon3.jpg

_static/doctraceback.gif
Module pylons.controllers:70 in _inspect_call &
> tunc(eazge)
Module _Users_ben_Programming_ Python_pylonsha_pylonsha_controllers_docs_py:6 in view &

>>>dir(self)
(_eant_ | _delater_

+ pudge_al1_", _reduce_!

‘_dice_, *_doc_', '_gotareribute_', *_hash_", '_3

reduce_ex_", _sepr.

', "', request’, ‘session’, ‘view')

= tach_locals’, "_inspect_call’,
> self.session
{°_sccessed_tine’: 1139113269.5063885, *_creation tise's 1139113269.5063889)

I
Execute
< objoct at oxigEm
wn pressEp—

£ viou(eele, uel)
se1t._aceach locals()
o mtseme

_static/akhet.png

_images/hellotemplate.png
600 http://127.0.0.1:5000/hello/index

<[> [e |5 |+ | A hup://127.0.0.1:5000/helloindex @ BlQ- Google

Hello World, your environ variable looks like:
{'routes.route’: <routes.route.Route object at 0x131b9f0, heaker.cache': <beaker cache CacheManager object at
0x17e8ef0>, pylons.routes_dict’ {'action’; windex’, 'controller’ u'hello'}, 'beaker.get_session': <bound method
SessionMiddleware._get_session of <beaker middleware.SessionMiddleware object at Ox17eSeb0>>,
'SCRIPT_NAME': ", REQUEST_METHOD'":'GET', PATH_INFO': hello/index', SERVER_PROTOCOL':
'HTTP/L.1', QUERY_STRING'" ", ‘paste throw_errors': True, pylons action_method': <bound method
HelloController.index of <helloworld controllers hello HelloController object at 0x1829650>>,
'CONTENT_LENGTH': 0/, ‘weberror.evalexception’: <weberror.evalexception EvalException object at
0x17e8f10>,'HTTP_USER_AGENT': 'Mozilla/5 0 (Macintosh; U; Intel Mac OS X 10_5_4; en-us)
AppleWebKit/525.18 (KHTML, like Gecko) Version/3.1 .2 Safari/525.20.1', HTTP_CONNECTION': !
alive',' SERVER_NAME' 0.0.0.0', REMOTE_ADDR': '127.0.0.1', 'pylons.environ_config" {'session
“beaker session', ‘cache’ 'beaker cache'}, ‘pylons.pylons <pylons.util PylonsContext object at 0x 182950,
wsgi.url_scheme': hitp', 'wsgiorg routing_args': (0, {‘action’: w'ndex', ‘controller'; u'hello'}),'SERVER_POR
5000, pylons controller': <helloworld.controllers hello.HelloController object at 0x 1829650>,
‘paste.evalexception': <weberror.evalexception EvalException object at 0x17¢8f10>, "wsgi.input’
<socket._fileobject object at 0x18239b0 length=0>,'HTTP_HOST': '127.0.0.1:5000', 'beaker.session': {},
wsgi.multithread: True,'HTTP_CACHE_CONTROL' 'max-age=0','HTTP_ACCEPT"
‘text/xml.application/xml application/xhtmH+xml texthtml:q=0.9 textjplain:g=0 8 image/png */*:q=0.5',
"wsgi.version': (1, 0), paste.registry': <paste registry Registry object at OxI8119b0>, "wsgi.run_once': False,
copen file '<stderr>' mode 'w' at 0x60b0>, "Wsgi.multiprocess" False,

_static/pylon1.jpg

_static/background.png

_images/helloworld.png
(>][] (] [+] @ hup://127.00.1:5000 helo/incex . T

Hello World

_images/pylon1.jpg

_static/down.png

_images/babel_logo.png
uuuuuuuuuuu

_static/babel_logo.png
uuuuuuuuuuu

_static/pylon4.jpg
KARNAK.D

i A

s
g

THE FIRST PYL

_static/comment-bright.png

_static/at.png

_static/pylon2.jpg
THE FIRST PYLON OF THE TEMPLE OF MEDINET-HABU

_static/plus.png

_static/hellotemplate.png
600 http://127.0.0.1:5000/hello/index

<[> [e |5 |+ | A hup://127.0.0.1:5000/helloindex @ BlQ- Google

Hello World, your environ variable looks like:
{'routes.route’: <routes.route.Route object at 0x131b9f0, heaker.cache': <beaker cache CacheManager object at
0x17e8ef0>, pylons.routes_dict’ {'action’; windex’, 'controller’ u'hello'}, 'beaker.get_session': <bound method
SessionMiddleware._get_session of <beaker middleware.SessionMiddleware object at Ox17eSeb0>>,
'SCRIPT_NAME': ", REQUEST_METHOD'":'GET', PATH_INFO': hello/index', SERVER_PROTOCOL':
'HTTP/L.1', QUERY_STRING'" ", ‘paste throw_errors': True, pylons action_method': <bound method
HelloController.index of <helloworld controllers hello HelloController object at 0x1829650>>,
'CONTENT_LENGTH': 0/, ‘weberror.evalexception’: <weberror.evalexception EvalException object at
0x17e8f10>,'HTTP_USER_AGENT': 'Mozilla/5 0 (Macintosh; U; Intel Mac OS X 10_5_4; en-us)
AppleWebKit/525.18 (KHTML, like Gecko) Version/3.1 .2 Safari/525.20.1', HTTP_CONNECTION': !
alive',' SERVER_NAME' 0.0.0.0', REMOTE_ADDR': '127.0.0.1', 'pylons.environ_config" {'session
“beaker session', ‘cache’ 'beaker cache'}, ‘pylons.pylons <pylons.util PylonsContext object at 0x 182950,
wsgi.url_scheme': hitp', 'wsgiorg routing_args': (0, {‘action’: w'ndex', ‘controller'; u'hello'}),'SERVER_POR
5000, pylons controller': <helloworld.controllers hello.HelloController object at 0x 1829650>,
‘paste.evalexception': <weberror.evalexception EvalException object at 0x17¢8f10>, "wsgi.input’
<socket._fileobject object at 0x18239b0 length=0>,'HTTP_HOST': '127.0.0.1:5000', 'beaker.session': {},
wsgi.multithread: True,'HTTP_CACHE_CONTROL' 'max-age=0','HTTP_ACCEPT"
‘text/xml.application/xml application/xhtmH+xml texthtml:q=0.9 textjplain:g=0 8 image/png */*:q=0.5',
"wsgi.version': (1, 0), paste.registry': <paste registry Registry object at OxI8119b0>, "wsgi.run_once': False,
copen file '<stderr>' mode 'w' at 0x60b0>, "Wsgi.multiprocess" False,

_static/helloworld.png
(>][] (] [+] @ hup://127.00.1:5000 helo/incex . T

Hello World

_images/at.png

_images/pylon4.jpg
KARNAK.D

i A

s
g

THE FIRST PYL

_static/doctraceback.png
5> aix(

C_eant_

L _class_', _delacer_', _doc_", '_getateribute_",

‘_module_', '_new_', '_reduce_', '_reduce ex_', '_repr_', '_setattr_', *
*_dlspaten_call’, '_got_method args’, '_inspect call', '_perforn call', '_py_objoct’,
ndex',

“stare_response’]
o

st

ash_

weakzet",
*_pylons_log_debug’,

; ;

Self <hellovorld.controllers.hello.HelloController object at Ox18ads0>
view
<< def index(seln
~ raise Exception('Showing the debugger)

Exception: Showing the debugger

_images/pylons_as_onion.png
-
7}
[
>
o
[}

o

Response

