

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	The Pyramid Web Framework v1.5.8

The Pyramid Web Framework

Pyramid is a small, fast, down-to-earth Python web framework. It is
developed as part of the Pylons Project [http://docs.pylonsproject.org/].
It is licensed under a BSD-like license [http://repoze.org/license.html].

Here is one of the simplest Pyramid applications you can make:

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello %(name)s!' % request.matchdict)

if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello', '/hello/{name}')
 config.add_view(hello_world, route_name='hello')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

After you install Pyramid and run this application, when you visit
http://localhost:8080/hello/world in a browser, you will see the text
Hello, world! See Creating Your First Pyramid Application for a full explanation of how
this application works.

Getting Started

If you are new to Pyramid, we have a few resources that can help you get up to
speed right away.

	Quick Tour of Pyramid gives an overview of the major features in Pyramid,
covering a little about a lot.

	Quick Tutorial for Pyramid is similar to the Quick Tour, but in a tutorial
format, with somewhat deeper treatment of each topic and with working code.

	Like learning by example? Visit the official Tutorials as well as
the community-contributed Pyramid Tutorials [http://docs.pylonsproject.org/projects/pyramid-tutorials/en/latest/index.html#pyramid-tutorials] and Pyramid Community Cookbook [http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/index.html#pyramid-cookbook].

	For help getting Pyramid set up, try Installing Pyramid.

	Need help? See Support and Development.

Tutorials

Official tutorials explaining how to use Pyramid to build various types
of applications, and how to deploy Pyramid applications to various
platforms.

	SQLAlchemy + URL Dispatch Wiki Tutorial

	ZODB + Traversal Wiki Tutorial

	Running a Pyramid Application under mod_wsgi

Support and Development

The Pylons Project web site [http://pylonsproject.org/] is the main online
source of Pyramid support and development information.

To report bugs, use the issue tracker [https://github.com/Pylons/pyramid/issues].

If you've got questions that aren't answered by this documentation, contact the
Pylons-discuss maillist [http://groups.google.com/group/pylons-discuss] or
join the #pyramid IRC channel.

Browse and check out tagged and trunk versions of Pyramid via the
Pyramid GitHub repository [https://github.com/Pylons/pyramid/]. To check out
the trunk via git, use either command:

If you have SSH keys configured on GitHub:
git clone git@github.com:Pylons/pyramid.git

Otherwise, HTTPS will work, using your GitHub login:
git clone https://github.com/Pylons/pyramid.git

To find out how to become a contributor to Pyramid, please see the
contributor's section of the documentation [http://docs.pylonsproject.org/en/latest/#contributing].

Narrative Documentation

Narrative documentation in chapter form explaining how to use Pyramid.

	Pyramid Introduction
	What makes Pyramid unique

	What Is The Pylons Project?

	Pyramid and Other Web Frameworks

	Installing Pyramid
	Before You Install

	Installing Pyramid on a UNIX System

	Installing Pyramid on a Windows System

	What Gets Installed

	Creating Your First Pyramid Application
	Hello World

	References

	Application Configuration
	Imperative Configuration

	Declarative Configuration

	Summary

	Creating a Pyramid Project
	Scaffolds Included with Pyramid

	Creating the Project

	Installing your Newly Created Project for Development

	Running the Tests for Your Application

	Running the Project Application

	Viewing the Application

	The Project Structure

	The MyProject Project

	The myproject Package

	Modifying Package Structure

	Using the Interactive Shell

	What Is This pserve Thing

	Using an Alternate WSGI Server

	Startup
	The Startup Process

	Deployment Settings

	Request Processing

	URL Dispatch
	High-Level Operational Overview

	Route Configuration

	Route Matching

	Routing Examples

	Matching the Root URL

	Generating Route URLs

	Static Routes

	External Routes

	Redirecting to Slash-Appended Routes

	Debugging Route Matching

	Using a Route Prefix to Compose Applications

	Custom Route Predicates

	Route Factories

	Using Pyramid Security with URL Dispatch

	Route View Callable Registration and Lookup Details

	References

	Views
	View Callables

	Defining a View Callable as a Function

	Defining a View Callable as a Class

	View Callable Responses

	Using Special Exceptions in View Callables

	Custom Exception Views

	Using a View Callable to do an HTTP Redirect

	Handling Form Submissions in View Callables (Unicode and Character Set Issues)

	Alternate View Callable Argument/Calling Conventions

	Passing Configuration Variables to a View

	Pylons-1.0-Style "Controller" Dispatch

	Renderers
	Writing View Callables Which Use a Renderer

	Built-in Renderers

	Varying Attributes of Rendered Responses

	Adding and Changing Renderers

	Overriding a Renderer at Runtime

	Templates
	Using Templates Directly

	System Values Used During Rendering

	Templates Used as Renderers via Configuration

	Debugging Templates

	Automatically Reloading Templates

	Available Add-On Template System Bindings

	View Configuration
	Mapping a Resource or URL Pattern to a View Callable

	@view_defaults Class Decorator

	Influencing HTTP Caching

	Debugging View Configuration

	Static Assets
	Understanding Asset Specifications

	Serving Static Assets

	Advanced: Serving Static Assets Using a View Callable

	Overriding Assets

	Request and Response Objects
	Request

	Response

	Sessions
	Using the Default Session Factory

	Using a Session Object

	Using Alternate Session Factories

	Creating Your Own Session Factory

	Flash Messages

	Preventing Cross-Site Request Forgery Attacks

	Using Events
	Configuring an Event Listener Imperatively

	Configuring an Event Listener Using a Decorator

	An Example

	Creating Your Own Events

	Environment Variables and .ini File Settings
	Reloading Templates

	Reloading Assets

	Debugging Authorization

	Debugging Not Found Errors

	Debugging Route Matching

	Preventing HTTP Caching

	Debugging All

	Reloading All

	Default Locale Name

	Including Packages

	Explicit Tween Configuration

	Examples

	Understanding the Distinction Between reload_templates and reload_assets

	Adding a Custom Setting

	Logging
	Logging Configuration

	Sending Logging Messages

	Filtering log messages

	Advanced Configuration

	Logging Exceptions

	Request Logging with Paste's TransLogger

	PasteDeploy Configuration Files
	PasteDeploy

	Command-Line Pyramid
	Displaying Matching Views for a Given URL

	The Interactive Shell

	Displaying All Application Routes

	Displaying "Tweens"

	Invoking a Request

	Using Custom Arguments to Python when Running p* Scripts

	Showing All Installed Distributions and Their Versions

	Writing a Script

	Making Your Script into a Console Script

	Internationalization and Localization
	Creating a Translation String

	Working with gettext Translation Files

	Using a Localizer

	Obtaining the Locale Name for a Request

	Performing Date Formatting and Currency Formatting

	Chameleon Template Support for Translation Strings

	Mako Pyramid i18n Support

	Jinja2 Pyramid i18n Support

	Localization-Related Deployment Settings

	"Detecting" Available Languages

	Activating Translation

	Locale Negotiators

	Virtual Hosting
	Hosting an Application Under a URL Prefix

	Virtual Root Support

	Further Documentation and Examples

	Unit, Integration, and Functional Testing
	Test Set Up and Tear Down

	Using the Configurator and pyramid.testing APIs in Unit Tests

	Creating Integration Tests

	Creating Functional Tests

	Resources
	Defining a Resource Tree

	Location-Aware Resources

	Generating the URL of a Resource

	Generating the Path To a Resource

	Finding a Resource by Path

	Obtaining the Lineage of a Resource

	Determining if a Resource is in the Lineage of Another Resource

	Finding the Root Resource

	Resources Which Implement Interfaces

	Finding a Resource with a Class or Interface in Lineage

	Pyramid API Functions That Act Against Resources

	Hello Traversal World
	Example requests

	Much Ado About Traversal
	URL Dispatch

	Historical Refresher

	Traversal (a.k.a., Resource Location)

	What Is a "Resource"?

	View Lookup

	Use Cases

	Traversal
	Traversal Details

	The Resource Tree

	The Traversal Algorithm

	References

	Security
	Enabling an Authorization Policy

	Protecting Views with Permissions

	Assigning ACLs to Your Resource Objects

	Elements of an ACL

	Special Principal Names

	Special Permissions

	Special ACEs

	ACL Inheritance and Location-Awareness

	Changing the Forbidden View

	Debugging View Authorization Failures

	Debugging Imperative Authorization Failures

	Extending Default Authentication Policies

	Creating Your Own Authentication Policy

	Creating Your Own Authorization Policy

	Admonishment Against Secret-Sharing

	Combining Traversal and URL Dispatch
	A Review of Non-Hybrid Applications

	Hybrid Applications

	Generating Hybrid URLs

	Invoking a Subrequest
	Subrequests with Tweens

	Using Hooks
	Changing the Not Found View

	Changing the Forbidden View

	Changing the Request Factory

	Adding Methods or Properties to a Request Object

	Using the Before Render Event

	Using Response Callbacks

	Using Finished Callbacks

	Changing the Traverser

	Changing How pyramid.request.Request.resource_url() Generates a URL

	Changing How Pyramid Treats View Responses

	Using a View Mapper

	Registering Configuration Decorators

	Registering Tweens

	Adding a Third Party View, Route, or Subscriber Predicate

	Pyramid Configuration Introspection
	Using the Introspector

	Introspectable Objects

	Pyramid Introspection Categories

	Introspection in the Toolbar

	Disabling Introspection

	Extending an Existing Pyramid Application
	The Difference Between "Extensible" and "Pluggable" Applications

	Rules for Building an Extensible Application

	Extending an Existing Application

	Advanced Configuration
	Conflict Detection

	Including Configuration from External Sources

	Two-Phase Configuration

	More Information

	Extending Pyramid Configuration
	Adding Methods to the Configurator via add_directive

	Using config.action in a Directive

	Adding Configuration Introspection

	Creating Pyramid Scaffolds
	Basics

	Supporting Older Pyramid Versions

	Examples

	Upgrading Pyramid
	Deprecation and removal policy

	Consulting the change history

	Testing your application under a new Pyramid release

	My application doesn't have any tests or has few tests

	Upgrading to the very latest Pyramid release

	Thread Locals
	Why and How Pyramid Uses Thread Local Variables

	Why You Shouldn't Abuse Thread Locals

	Using the Zope Component Architecture in Pyramid
	Using the ZCA global API in a Pyramid application

API Documentation

Comprehensive reference material for every public API exposed by
Pyramid:

	API Documentation

	pyramid.authentication

	pyramid.authorization

	pyramid.compat

	pyramid.config

	pyramid.decorator

	pyramid.events

	pyramid.exceptions

	pyramid.httpexceptions

	pyramid.i18n

	pyramid.interfaces

	pyramid.location

	pyramid.paster

	pyramid.path

	pyramid.registry

	pyramid.renderers

	pyramid.request

	pyramid.response

	pyramid.scaffolds

	pyramid.scripting

	pyramid.security

	pyramid.session

	pyramid.settings

	pyramid.static

	pyramid.testing

	pyramid.threadlocal

	pyramid.traversal

	pyramid.tweens

	pyramid.url

	pyramid.view

	pyramid.wsgi

p* Scripts Documentation

p* scripts included with Pyramid:.

	p* Scripts Documentation

	pcreate

	pdistreport

	prequest

	proutes

	pserve

	pshell

	ptweens

	pviews

Change History

	What's New In Pyramid 1.5

	What's New In Pyramid 1.4

	What's New In Pyramid 1.3

	What's New In Pyramid 1.2

	What's New In Pyramid 1.1

	What's New In Pyramid 1.0

	Pyramid Change History

	repoze.bfg Change History (previous name for Pyramid)

Design Documents

	Defending Pyramid's Design

Copyright, Trademarks, and Attributions

	Copyright, Trademarks, and Attributions

Typographical Conventions

	Typographical Conventions

Index and Glossary

	Glossary

	Index

	Search Page

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Quick Tour of Pyramid

Pyramid lets you start small and finish big. This Quick Tour of Pyramid is
for those who want to evaluate Pyramid, whether you are new to Python web
frameworks, or a pro in a hurry. For more detailed treatment of each topic,
give the Quick Tutorial for Pyramid a try.

Installation

Once you have a standard Python environment setup, getting started with Pyramid
is a breeze. Unfortunately "standard" is not so simple in Python. For this
Quick Tour, it means Python [https://www.python.org/downloads/], a virtual
environment [http://docs.python.org/dev/library/venv.html] (or virtualenv
for Python 2.7 [https://pypi.python.org/pypi/virtualenv]), and setuptools [https://pypi.python.org/pypi/setuptools/].

As an example, for Python 3.3+ on Linux:

$ pyvenv env33
$ wget https://bootstrap.pypa.io/ez_setup.py -O - | env33/bin/python
$ env33/bin/easy_install "pyramid==1.5.8"

For Windows:

Use your browser to download:
https://bootstrap.pypa.io/ez_setup.py
c:\> c:\Python33\python -m venv env33
c:\> env33\Scripts\python ez_setup.py
c:\> env33\Scripts\easy_install "pyramid==1.5.8"

Of course Pyramid runs fine on Python 2.6+, as do the examples in this Quick
Tour. We're just showing Python 3 a little love (Pyramid had production
support for Python 3 in October 2011).

Note

Why easy_install and not pip? Some distributions upon which
Pyramid depends have optional C extensions for performance. pip cannot
install some binary Python distributions. With easy_install, Windows
users are able to obtain binary Python distributions, so they get the
benefit of the C extensions without needing a C compiler. Also there can
be issues when pip and easy_install are used side-by-side in the
same environment, so we chose to recommend easy_install for the sake of
reducing the complexity of these instructions.

See also

See also:
Quick Tutorial section on Requirements,
Installing Pyramid on a UNIX System, Before You Install, and
Installing Pyramid on a Windows System.

Hello World

Microframeworks have shown that learning starts best from a very small first
step. Here's a tiny application in Pyramid:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('<h1>Hello World!</h1>')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello', '/')
 config.add_view(hello_world, route_name='hello')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 6543, app)
 server.serve_forever()

This simple example is easy to run. Save this as app.py and run it:

$ python ./app.py

Next open http://localhost:6543/ in a browser, and you will see the Hello
World! message.

New to Python web programming? If so, some lines in the module merit
explanation:

	Line 10. if __name__ == '__main__': is Python's way of saying "Start
here when running from the command line".

	Lines 11-13. Use Pyramid's configurator to connect view
code to a particular URL route.

	Lines 6-7. Implement the view code that generates the response.

	Lines 14-16. Publish a WSGI app using an HTTP server.

As shown in this example, the configurator plays a central role in
Pyramid development. Building an application from loosely-coupled parts via
Application Configuration is a central idea in Pyramid, one that we will
revisit regurlarly in this Quick Tour.

See also

See also:
Quick Tutorial Hello World,
Creating Your First Pyramid Application, and Todo List Application in One File [http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/sample_applications/single_file_tasks.html#single-file-tutorial].

Handling web requests and responses

Developing for the web means processing web requests. As this is a critical
part of a web application, web developers need a robust, mature set of software
for web requests.

Pyramid has always fit nicely into the existing world of Python web development
(virtual environments, packaging, scaffolding, one of the first to embrace
Python 3, etc.). Pyramid turned to the well-regarded WebOb Python
library for request and response handling. In our example above, Pyramid hands
hello_world a request that is based on WebOb.

Let's see some features of requests and responses in action:

def hello_world(request):
 # Some parameters from a request such as /?name=lisa
 url = request.url
 name = request.params.get('name', 'No Name Provided')

 body = 'URL %s with name: %s' % (url, name)
 return Response(
 content_type="text/plain",
 body=body
)

In this Pyramid view, we get the URL being visited from request.url. Also
if you visited http://localhost:6543/?name=alice in a browser, the name is
included in the body of the response:

URL http://localhost:6543/?name=alice with name: alice

Finally we set the response's content type, and return the Response.

See also

See also:
Quick Tutorial Request and Response and
Request and Response Objects.

Views

For the examples above, the hello_world function is a "view". In Pyramid
views are the primary way to accept web requests and return responses.

So far our examples place everything in one file:

	the view function

	its registration with the configurator

	the route to map it to an URL

	the WSGI application launcher

Let's move the views out to their own views.py module and change the
app.py to scan that module, looking for decorators that set up the views.

First our revised app.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.add_route('redirect', '/goto')
 config.add_route('exception', '/problem')
 config.scan('views')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 6543, app)
 server.serve_forever()

We added some more routes, but we also removed the view code. Our views and
their registrations (via decorators) are now in a module views.py, which is
scanned via config.scan('views').

We now have a views.py module that is focused on handling requests and
responses:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	from pyramid.httpexceptions import HTTPFound
from pyramid.response import Response
from pyramid.view import view_config

First view, available at http://localhost:6543/
@view_config(route_name='home')
def home_view(request):
 return Response('<p>Visit hello</p>')

/howdy?name=alice which links to the next view
@view_config(route_name='hello')
def hello_view(request):
 name = request.params.get('name', 'No Name')
 body = '<p>Hi %s, this redirects</p>'
 return Response(body % name)

/goto which issues HTTP redirect to the last view
@view_config(route_name='redirect')
def redirect_view(request):
 return HTTPFound(location="/problem")

/problem which causes a site error
@view_config(route_name='exception')
def exception_view(request):
 raise Exception()

We have four views, each leading to the other. If you start at
http://localhost:6543/, you get a response with a link to the next view. The
hello_view (available at the URL /howdy) has a link to the
redirect_view, which issues a redirect to the final view.

Earlier we saw config.add_view as one way to configure a view. This section
introduces @view_config. Pyramid's configuration supports imperative
configuration, such as the config.add_view in the previous example. You
can also use declarative configuration in which a Python
decorator is placed on the line above the view. Both approaches result
in the same final configuration, thus usually it is simply a matter of taste.

See also

See also:
Quick Tutorial Views, Views,
View Configuration, and Debugging View Configuration.

Routing

Writing web applications usually means sophisticated URL design. We just saw
some Pyramid machinery for requests and views. Let's look at features that help
with routing.

Above we saw the basics of routing URLs to views in Pyramid:

	Your project's "setup" code registers a route name to be used when matching
part of the URL.

	Elsewhere a view is configured to be called for that route name.

Note

Why do this twice? Other Python web frameworks let you create a route and
associate it with a view in one step. As illustrated in
Routes need relative ordering, multiple routes might match the same URL
pattern. Rather than provide ways to help guess, Pyramid lets you be
explicit in ordering. Pyramid also gives facilities to avoid the problem.

What if we want part of the URL to be available as data in my view? We can use
this route declaration, for example:

	6

	 config.add_route('hello', '/howdy/{first}/{last}')

With this, URLs such as /howdy/amy/smith will assign amy to first
and smith to last. We can then use this data in our view:

	5
6
7
8

	@view_config(route_name='hello')
def hello_world(request):
 body = '<h1>Hi %(first)s %(last)s!</h1>' % request.matchdict
 return Response(body)

request.matchdict contains values from the URL that match the "replacement
patterns" (the curly braces) in the route declaration. This information can
then be used in your view.

See also

See also:
Quick Tutorial Routing, URL Dispatch,
Debugging Route Matching, and Request Processing.

Templating

Ouch. We have been making our own Response and filling the response body
with HTML. You usually won't embed an HTML string directly in Python, but
instead you will use a templating language.

Pyramid doesn't mandate a particular database system, form library, and so on.
It encourages replaceability. This applies equally to templating, which is
fortunate: developers have strong views about template languages. That said,
the Pylons Project officially supports bindings for Chameleon, Jinja2, and
Mako. In this step let's use Chameleon.

Let's add pyramid_chameleon, a Pyramid add-on which enables
Chameleon as a renderer in our Pyramid application:

$ easy_install pyramid_chameleon

With the package installed, we can include the template bindings into our
configuration in app.py:

	6
7
8

	 config.add_route('hello', '/howdy/{name}')
 config.include('pyramid_chameleon')
 config.scan('views')

Now lets change our views.py file:

	1
2
3
4
5
6

	from pyramid.view import view_config

@view_config(route_name='hello', renderer='hello_world.pt')
def hello_world(request):
 return dict(name=request.matchdict['name'])

Ahh, that looks better. We have a view that is focused on Python code. Our
@view_config decorator specifies a renderer that points to our
template file. Our view then simply returns data which is then supplied to our
template hello_world.pt:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Glance</title>
</head>
<body>
<h1>Hello ${name}</h1>
</body>
</html>

Since our view returned dict(name=request.matchdict['name']), we can use
name as a variable in our template via ${name}.

See also

See also:
Quick Tutorial Templating,
Templates, Debugging Templates, and
Available Add-On Template System Bindings.

Templating with Jinja2

We just said Pyramid doesn't prefer one templating language over another. Time
to prove it. Jinja2 is a popular templating system, modeled after Django's
templates. Let's add pyramid_jinja2, a Pyramid add-on which enables
Jinja2 as a renderer in our Pyramid applications:

$ easy_install pyramid_jinja2

With the package installed, we can include the template bindings into our
configuration:

	6
7
8

	 config.add_route('hello', '/howdy/{name}')
 config.include('pyramid_jinja2')
 config.scan('views')

The only change in our view is to point the renderer at the .jinja2 file:

	4
5
6

	@view_config(route_name='hello', renderer='hello_world.jinja2')
def hello_world(request):
 return dict(name=request.matchdict['name'])

Our Jinja2 template is very similar to our previous template:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Hello World</title>
</head>
<body>
<h1>Hello {{ name }}!</h1>
</body>
</html>

Pyramid's templating add-ons register a new kind of renderer into your
application. The renderer registration maps to different kinds of filename
extensions. In this case, changing the extension from .pt to .jinja2
passed the view response through the pyramid_jinja2 renderer.

See also

See also:
Quick Tutorial Jinja2, Jinja2 homepage [http://jinja.pocoo.org/], and pyramid_jinja2 Overview [http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/index.html#overview].

Static assets

Of course the Web is more than just markup. You need static assets: CSS, JS,
and images. Let's point our web app at a directory from which Pyramid will
serve some static assets. First let's make another call to the
configurator:

	6
7
8

	 config.add_route('hello', '/howdy/{name}')
 config.add_static_view(name='static', path='static')
 config.include('pyramid_jinja2')

This tells our WSGI application to map requests under
http://localhost:6543/static/ to files and directories inside a static
directory alongside our Python module.

Next make a directory named static, and place app.css inside:

body {
 margin: 2em;
 font-family: sans-serif;
}

All we need to do now is point to it in the <head> of our Jinja2 template,
hello_world.jinja2:

	4
5
6

	 <title>Hello World</title>
 <link rel="stylesheet" href="/static/app.css"/>
</head>

This link presumes that our CSS is at a URL starting with /static/. What if
the site is later moved under /somesite/static/? Or perhaps a web developer
changes the arrangement on disk? Pyramid provides a helper to allow flexibility
on URL generation:

	4
5
6

	 <title>Hello World</title>
 <link rel="stylesheet" href="{{ request.static_url('static/app.css') }}"/>
</head>

By using request.static_url to generate the full URL to the static
assets, you both ensure you stay in sync with the configuration and
gain refactoring flexibility later.

See also

See also:
Quick Tutorial Static Assets,
Static Assets, Preventing HTTP Caching, and
Influencing HTTP Caching.

Returning JSON

Modern web apps are more than rendered HTML. Dynamic pages now use JavaScript
to update the UI in the browser by requesting server data as JSON. Pyramid
supports this with a JSON renderer:

	 9
10
11

	@view_config(route_name='hello_json', renderer='json')
def hello_json(request):
 return [1, 2, 3]

This wires up a view that returns some data through the JSON renderer,
which calls Python's JSON support to serialize the data into JSON, and sets the
appropriate HTTP headers.

We also need to add a route to app.py so that our app will know how to
respond to a request for hello.json.

	6
7
8

	 config.add_route('hello', '/howdy/{name}')
 config.add_route('hello_json', 'hello.json')
 config.add_static_view(name='static', path='static')

See also

See also:
Quick Tutorial JSON, Writing View Callables Which Use a Renderer,
JSON Renderer, and Adding and Changing Renderers.

View classes

So far our views have been simple, free-standing functions. Many times your
views are related. They may have different ways to look at or work on the same
data, or they may be a REST API that handles multiple operations. Grouping
these together as a view class makes sense and achieves
the following goals.

	Group views

	Centralize some repetitive defaults

	Share some state and helpers

The following shows a "Hello World" example with three operations: view a form,
save a change, or press the delete button in our views.py:

	 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	# One route, at /howdy/amy, so don't repeat on each @view_config
@view_defaults(route_name='hello')
class HelloWorldViews:
 def __init__(self, request):
 self.request = request
 # Our templates can now say {{ view.name }}
 self.name = request.matchdict['name']

 # Retrieving /howdy/amy the first time
 @view_config(renderer='hello.jinja2')
 def hello_view(self):
 return dict()

 # Posting to /howdy/amy via the "Edit" submit button
 @view_config(request_param='form.edit', renderer='edit.jinja2')
 def edit_view(self):
 print('Edited')
 return dict()

 # Posting to /howdy/amy via the "Delete" submit button
 @view_config(request_param='form.delete', renderer='delete.jinja2')
 def delete_view(self):
 print('Deleted')
 return dict()

As you can see, the three views are logically grouped together. Specifically:

	The first view is returned when you go to /howdy/amy. This URL is mapped
to the hello route that we centrally set using the optional
@view_defaults.

	The second view is returned when the form data contains a field with
form.edit, such as clicking on <input type="submit" name="form.edit"
value="Save">. This rule is specified in the @view_config for that
view.

	The third view is returned when clicking on a button such as <input
type="submit" name="form.delete" value="Delete">.

Only one route is needed, stated in one place atop the view class. Also, the
assignment of name is done in the __init__ function. Our templates can
then use {{ view.name }}.

Pyramid view classes, combined with built-in and custom predicates, have much
more to offer:

	All the same view configuration parameters as function views

	One route leading to multiple views, based on information in the request or
data such as request_param, request_method, accept, header,
xhr, containment, and custom_predicates

See also

See also:
Quick Tutorial View Classes, Quick
Tutorial More View Classes, and
Defining a View Callable as a Class.

Quick project startup with scaffolds

So far we have done all of our Quick Tour as a single Python file. No Python
packages, no structure. Most Pyramid projects, though, aren't developed this
way.

To ease the process of getting started, Pyramid provides scaffolds that
generate sample projects from templates in Pyramid and Pyramid add-ons.
Pyramid's pcreate command can list the available scaffolds:

$ pcreate --list
Available scaffolds:
 alchemy: Pyramid SQLAlchemy project using url dispatch
 pyramid_jinja2_starter: Pyramid Jinja2 starter project
 starter: Pyramid starter project
 zodb: Pyramid ZODB project using traversal

The pyramid_jinja2 add-on gave us a scaffold that we can use. From the
parent directory of where we want our Python package to be generated, let's use
that scaffold to make our project:

$ pcreate --scaffold pyramid_jinja2_starter hello_world

We next use the normal Python command to set up our package for development:

$ cd hello_world
$ python ./setup.py develop

We are moving in the direction of a full-featured Pyramid project, with a
proper setup for Python standards (packaging) and Pyramid configuration. This
includes a new way of running your application:

$ pserve development.ini

Let's look at pserve and configuration in more depth.

See also

See also:
Quick Tutorial Scaffolds,
Creating a Pyramid Project, and
Creating Pyramid Scaffolds

Application running with pserve

Prior to scaffolds, our project mixed a number of operational details into our
code. Why should my main code care which HTTP server I want and what port
number to run on?

pserve is Pyramid's application runner, separating operational details from
your code. When you install Pyramid, a small command program called pserve
is written to your bin directory. This program is an executable Python
module. It's very small, getting most of its brains via import.

You can run pserve with --help to see some of its options. Doing so
reveals that you can ask pserve to watch your development files and reload
the server when they change:

$ pserve development.ini --reload

The pserve command has a number of other options and operations. Most of
the work, though, comes from your project's wiring, as expressed in the
configuration file you supply to pserve. Let's take a look at this
configuration file.

See also

See also:
What Is This pserve Thing

Configuration with .ini files

Earlier in Quick Tour we first met Pyramid's configuration system. At that
point we did all configuration in Python code. For example, the port number
chosen for our HTTP server was right there in Python code. Our scaffold has
moved this decision and more into the development.ini file:

###
app configuration
http://docs.pylonsproject.org/projects/pyramid/en/1.6-branch/narr/environment.html
###

[app:main]
use = egg:hello_world

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes =
 pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1' and '::1'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgi server configuration
###

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 6543

###
logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/1.6-branch/narr/logging.html
###

[loggers]
keys = root, hello_world

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_hello_world]
level = DEBUG
handlers =
qualname = hello_world

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s:%(lineno)s][%(threadName)s] %(message)s

Let's take a quick high-level look. First the .ini file is divided into
sections:

	[app:main] configures our WSGI app

	[server:main] holds our WSGI server settings

	Various sections afterwards configure our Python logging system

We have a few decisions made for us in this configuration:

	Choice of web server: use = egg:hello_world tells pserve to
use the waitress server.

	Port number: port = 6543 tells waitress to listen on port 6543.

	WSGI app: What package has our WSGI application in it?
use = egg:hello_world in the app section tells the configuration what
application to load.

	Easier development by automatic template reloading: In development mode,
you shouldn't have to restart the server when editing a Jinja2 template.
pyramid.reload_templates = true sets this policy, which might be
different in production.

Additionally the development.ini generated by this scaffold wired up
Python's standard logging. We'll now see in the console, for example, a log on
every request that comes in, as well as traceback information.

See also

See also:
Quick Tutorial Application Configuration,
Environment Variables and .ini File Settings and
PasteDeploy Configuration Files

Easier development with debugtoolbar

As we introduce the basics, we also want to show how to be productive in
development and debugging. For example, we just discussed template reloading
and earlier we showed --reload for application reloading.

pyramid_debugtoolbar is a popular Pyramid add-on which makes several tools
available in your browser. Adding it to your project illustrates several points
about configuration.

The scaffold pyramid_jinja2_starter is already configured to include the
add-on pyramid_debugtoolbar in its setup.py:

	11
12
13
14
15
16

	requires = [
 'pyramid',
 'pyramid_jinja2',
 'pyramid_debugtoolbar',
 'waitress',
]

It was installed when you previously ran:

$ python ./setup.py develop

The pyramid_debugtoolbar package is a Pyramid add-on, which means we need
to include its configuration into our web application. The pyramid_jinja2
add-on already took care of this for us in its __init__.py:

	16

	 config.include('pyramid_jinja2')

And it uses the pyramid.includes facility in our development.ini:

	15
16

	pyramid.includes =
 pyramid_debugtoolbar

You'll now see a Pyramid logo on the right side of your browser window, which
when clicked opens a new window that provides introspective access to debugging
information. Even better, if your web application generates an error, you will
see a nice traceback on the screen. When you want to disable this toolbar,
there's no need to change code: you can remove it from pyramid.includes in
the relevant .ini configuration file.

See also

See also:
Quick Tutorial pyramid_debugtoolbar and
pyramid_debugtoolbar [http://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/index.html#overview]

Unit tests and nose

Yikes! We got this far and we haven't yet discussed tests. This is particularly
egregious, as Pyramid has had a deep commitment to full test coverage since
before its release.

Our pyramid_jinja2_starter scaffold generated a tests.py module with
one unit test in it. To run it, let's install the handy nose test runner by
editing setup.py. While we're at it, we'll throw in the coverage tool
which yells at us for code that isn't tested. Edit line 36 so it becomes the
following:

	36
37
38

	 tests_require={
 'testing': ['nose', 'coverage'],
 },

We changed setup.py which means we need to rerun
python ./setup.py develop. We can now run all our tests:

$ nosetests hello_world/tests.py
.
Name Stmts Miss Cover Missing

hello_world 11 8 27% 11-23
hello_world.models 5 1 80% 8
hello_world.tests 14 0 100%
hello_world.views 4 0 100%

TOTAL 34 9 74%
--
Ran 1 test in 0.009s

OK

Our unit test passed. What did our test look like?

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	import unittest
from pyramid import testing
from pyramid.i18n import TranslationStringFactory

_ = TranslationStringFactory('hello_world')

class ViewTests(unittest.TestCase):

 def setUp(self):
 testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_my_view(self):
 from hello_world.views import my_view
 request = testing.DummyRequest()
 response = my_view(request)
 self.assertEqual(response['project'], 'hello_world')

Pyramid supplies helpers for test writing, which we use in the test setup and
teardown. Our one test imports the view, makes a dummy request, and sees if the
view returns what we expected.

See also

See also:
Quick Tutorial Unit Testing, Quick
Tutorial Functional Testing, and
Unit, Integration, and Functional Testing

Logging

It's important to know what is going on inside our web application. In
development we might need to collect some output. In production we might need
to detect situations when other people use the site. We need logging.

Fortunately Pyramid uses the normal Python approach to logging. The scaffold
generated in your development.ini has a number of lines that configure the
logging for you to some reasonable defaults. You then see messages sent by
Pyramid (for example, when a new request comes in).

Maybe you would like to log messages in your code? In your Python module,
import and set up the logging:

	3
4

	import logging
log = logging.getLogger(__name__)

You can now, in your code, log messages:

	 9
10

	def my_view(request):
 log.debug('Some Message')

This will log Some Message at a debug log level to the
application-configured logger in your development.ini. What controls that?
These emphasized sections in the configuration file:

	36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	[loggers]
keys = root, hello_world

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_hello_world]
level = DEBUG
handlers =
qualname = hello_world

Our application, a package named hello_world, is set up as a logger and
configured to log messages at a DEBUG or higher level. When you visit
http://localhost:6543, your console will now show:

2016-01-18 13:55:55,040 DEBUG [hello_world.views:10][waitress] Some Message

See also

See also:
Quick Tutorial Logging and Logging.

Sessions

When people use your web application, they frequently perform a task that
requires semi-permanent data to be saved. For example, a shopping cart. This is
called a session.

Pyramid has basic built-in support for sessions. Third party packages such as
pyramid_redis_sessions provide richer session support. Or you can create
your own custom sessioning engine. Let's take a look at the built-in
sessioning support. In our __init__.py we first import
the kind of sessioning we want:

	2
3

	from hello_world.resources import get_root
from pyramid.session import SignedCookieSessionFactory

Warning

As noted in the session docs, this example implementation is not intended
for use in settings with security implications.

Now make a "factory" and pass it to the configurator's
session_factory argument:

	13
14
15
16
17

	 settings.setdefault('jinja2.i18n.domain', 'hello_world')

 my_session_factory = SignedCookieSessionFactory('itsaseekreet')
 config = Configurator(root_factory=get_root, settings=settings,
 session_factory=my_session_factory)

Pyramid's request object now has a session attribute that we can
use in our view code in views.py:

	 9
10
11
12
13
14
15

	def my_view(request):
 log.debug('Some Message')
 session = request.session
 if 'counter' in session:
 session['counter'] += 1
 else:
 session['counter'] = 0

We need to update our Jinja2 template to show counter increment in the session:

	40
41
42

	 <p class="lead">
 {% trans %}Hello{% endtrans %} to {{project}}, an application generated by
the Pyramid Web Framework 1.6.</p>
 <p>Counter: {{ request.session.counter }}</p>

See also

See also:
Quick Tutorial Sessions, Sessions,
Flash Messages, pyramid.session, and
pyramid_redis_sessions.

Databases

Web applications mean data. Data means databases. Frequently SQL databases. SQL
databases frequently mean an "ORM" (object-relational mapper.) In Python, ORM
usually leads to the mega-quality SQLAlchemy, a Python package that greatly
eases working with databases.

Pyramid and SQLAlchemy are great friends. That friendship includes a scaffold!

$ pcreate --scaffold alchemy sqla_demo
$ cd sqla_demo
$ python setup.py develop

We now have a working sample SQLAlchemy application with all dependencies
installed. The sample project provides a console script to initialize a SQLite
database with tables. Let's run it, then start the application:

$ initialize_sqla_demo_db development.ini
$ pserve development.ini

The ORM eases the mapping of database structures into a programming language.
SQLAlchemy uses "models" for this mapping. The scaffold generated a sample
model:

	21
22
23
24
25
26
27

	class MyModel(Base):
 __tablename__ = 'models'
 id = Column(Integer, primary_key=True)
 name = Column(Text)
 value = Column(Integer)

Index('my_index', MyModel.name, unique=True, mysql_length=255)

View code, which mediates the logic between web requests and the rest of the
system, can then easily get at the data thanks to SQLAlchemy:

	12
13
14
15
16
17
18

	@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request):
 try:
 one = DBSession.query(MyModel).filter(MyModel.name == 'one').first()
 except DBAPIError:
 return Response(conn_err_msg, content_type='text/plain', status_int=500)
 return {'one': one, 'project': 'sqla_demo'}

See also

See also:
Quick Tutorial Databases, SQLAlchemy [http://www.sqlalchemy.org/], Making Your Script into a Console Script,
SQLAlchemy + URL Dispatch Wiki Tutorial, and Application Transactions with
pyramid_tm [http://docs.pylonsproject.org/projects/pyramid-tm/en/latest/index.html#overview].

Forms

Developers have lots of opinions about web forms, thus there are many form
libraries for Python. Pyramid doesn't directly bundle a form library, but
Deform is a popular choice for forms, along with its related Colander
schema system.

As an example, imagine we want a form that edits a wiki page. The form should
have two fields on it, one of them a required title and the other a rich text
editor for the body. With Deform we can express this as a Colander schema:

class WikiPage(colander.MappingSchema):
 title = colander.SchemaNode(colander.String())
 body = colander.SchemaNode(
 colander.String(),
 widget=deform.widget.RichTextWidget()
)

With this in place, we can render the HTML for a form, perhaps with form data
from an existing page:

form = self.wiki_form.render()

We'd like to handle form submission, validation, and saving:

Get the form data that was posted
controls = self.request.POST.items()
try:
 # Validate and either raise a validation error
 # or return deserialized data from widgets
 appstruct = wiki_form.validate(controls)
except deform.ValidationFailure as e:
 # Bail out and render form with errors
 return dict(title=title, page=page, form=e.render())

Change the content and redirect to the view
page['title'] = appstruct['title']
page['body'] = appstruct['body']

Deform and Colander provide a very flexible combination for forms, widgets,
schemas, and validation. Recent versions of Deform also include a retail
mode [http://docs.pylonsproject.org/projects/deform/en/latest/retail.html#retail] for gaining Deform features on custom forms.

Also the deform_bootstrap Pyramid add-on restyles the stock Deform widgets
using attractive CSS from Twitter Bootstrap and more powerful widgets from
Chosen.

See also

See also:
Quick Tutorial Forms, Deform [http://docs.pylonsproject.org/projects/deform/en/latest/index.html#overview],
Colander [http://docs.pylonsproject.org/projects/colander/en/latest/index.html#overview], and deform_bootstrap [https://pypi.python.org/pypi/deform_bootstrap].

Conclusion

This Quick Tour covered a little about a lot. We introduced a long list
of concepts in Pyramid, many of which are expanded on more fully in the
Pyramid developer docs.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Quick Tutorial for Pyramid

Pyramid is a web framework for Python 2 and 3. This tutorial gives a
Python 3/2-compatible, high-level tour of the major features.

This hands-on tutorial covers "a little about a lot": practical
introductions to the most common facilities. Fun, fast-paced, and most
certainly not aimed at experts of the Pyramid web framework.

Contents

	Requirements

	Tutorial Approach

	Prelude: Quick Project Startup with Scaffolds

	01: Single-File Web Applications

	02: Python Packages for Pyramid Applications

	03: Application Configuration with .ini Files

	04: Easier Development with debugtoolbar

	05: Unit Tests and nose

	06: Functional Testing with WebTest

	07: Basic Web Handling With Views

	08: HTML Generation With Templating

	09: Organizing Views With View Classes

	10: Handling Web Requests and Responses

	11: Dispatching URLs To Views With Routing

	12: Templating With jinja2

	13: CSS/JS/Images Files With Static Assets

	14: Ajax Development With JSON Renderers

	15: More With View Classes

	16: Collecting Application Info With Logging

	17: Transient Data Using Sessions

	18: Forms and Validation With Deform

	19: Databases Using SQLAlchemy

	20: Logins With Authentication

	21: Protecting Resources With Authorization

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

Requirements

Let's get our tutorial environment setup. Most of the setup work is in
standard Python development practices (install Python,
make an isolated environment, and setup packaging tools.)

Note

Pyramid encourages standard Python development practices with
packaging tools, virtual environments, logging, and so on. There
are many variations, implementations, and opinions across the Python
community. For consistency, ease of documentation maintenance,
and to minimize confusion, the Pyramid documentation has adopted
specific conventions.

This Quick Tutorial is based on:

	Python 3.3. Pyramid fully supports Python 3.2+ and Python 2.6+.
This tutorial uses Python 3.3 but runs fine under Python 2.7.

	pyvenv. We believe in virtual environments. For this tutorial,
we use Python 3.3's built-in solution, the pyvenv command.
For Python 2.7, you can install virtualenv.

	setuptools and easy_install. We use
setuptools [https://pypi.python.org/pypi/setuptools/]
and its easy_install for package management.

	Workspaces, projects, and packages. Our home directory
will contain a tutorial workspace with our Python virtual
environment(s) and Python projects (a directory with packaging
information and Python packages of working code.)

	Unix commands. Commands in this tutorial use UNIX syntax and
paths. Windows users should adjust commands accordingly.

Note

Pyramid was one of the first web frameworks to fully support Python 3 in
October 2011.

Steps

	Install Python 3.3 or greater

	Create a project directory structure

	Set an Environment Variable

	Create a Virtual Environment

	Install setuptools (Python packaging tools)

	Install Pyramid

Install Python 3.3 or greater

Download the latest standard Python 3.3+ release (not development release)
from python.org [https://www.python.org/downloads/].

Windows and Mac OS X users can download and run an installer.

Windows users should also install the Python for Windows extensions [http://sourceforge.net/projects/pywin32/files/pywin32/]. Carefully read the
README.txt file at the end of the list of builds, and follow its
directions. Make sure you get the proper 32- or 64-bit build and Python
version.

Linux users can either use their package manager to install Python 3.3
or may build Python 3.3 from source [http://pyramid.readthedocs.org/en/master/narr/install.html#package-manager-method].

Create a project directory structure

We will arrive at a directory structure of
workspace->project->package, with our workspace named
quick_tutorial. The following tree diagram shows how this will be
structured and where our virtual environment will reside as we proceed through
the tutorial:

└── ~
 └── projects
 └── quick_tutorial
 ├── env
 └── step_one
 ├── intro
 │ ├── __init__.py
 │ └── app.py
 └── setup.py

For Linux, the commands to do so are as follows:

Mac and Linux
$ cd ~
$ mkdir -p projects/quick_tutorial
$ cd projects/quick_tutorial

For Windows:

Windows
c:\> cd \
c:\> mkdir projects\quick_tutorial
c:\> cd projects\quick_tutorial

In the above figure, your user home directory is represented by ~. In
your home directory, all of your projects are in the projects directory.
This is a general convention not specific to Pyramid that many developers use.
Windows users will do well to use c:\ as the location for projects in
order to avoid spaces in any of the path names.

Next within projects is your workspace directory, here named
quick_tutorial. A workspace is a common term used by integrated
development environments (IDE) like PyCharm and PyDev that stores
isolated Python environments (virtualenvs) and specific project files
and repositories.

Set an Environment Variable

This tutorial will refer frequently to the location of the virtual
environment. We set an environment variable to save typing later.

Mac and Linux
$ export VENV=~/projects/quick_tutorial/env

Windows
TODO: This command does not work
c:\> set VENV=c:\projects\quick_tutorial\env

Create a Virtual Environment

Warning

The current state of isolated Python environments using
pyvenv on Windows is suboptimal in comparison to Mac and Linux. See
http://stackoverflow.com/q/15981111/95735 for a discussion of the issue
and PEP 453 [http://www.python.org/dev/peps/pep-0453/] for a proposed
resolution.

pyvenv is a tool to create isolated Python 3.3 environments, each
with its own Python binary and independent set of installed Python
packages in its site directories. Let's create one, using the location
we just specified in the environment variable.

Mac and Linux
$ pyvenv $VENV

Windows
c:\> c:\Python33\python -m venv %VENV%

See also

See also Python 3's venv module [http://docs.python.org/3/library/venv.html#module-venv],
Python 2's virtualenv [http://www.virtualenv.org/en/latest/]
package,
Installing Pyramid on a Windows System

Install setuptools (Python packaging tools)

The following command will download a script to install setuptools, then
pipe it to your environment's version of Python.

Mac and Linux
$ wget https://bootstrap.pypa.io/ez_setup.py -O - | $VENV/bin/python

Windows
#
Use your web browser to download this file:
https://bootstrap.pypa.io/ez_setup.py
#
...and save it to:
c:\projects\quick_tutorial\ez_setup.py
#
Then run the following command:

c:\> %VENV%\Scripts\python ez_setup.py

If wget complains with a certificate error, then run this command instead:

Mac and Linux
$ wget --no-check-certificate https://bootstrap.pypa.io/ez_setup.py -O - | $VENV/bin/python

Install Pyramid

We have our Python standard prerequisites out of the way. The Pyramid
part is pretty easy:

Mac and Linux
$ $VENV/bin/easy_install "pyramid==1.5.8"

Windows
c:\> %VENV%\Scripts\easy_install "pyramid==1.5.8"

Our Python virtual environment now has the Pyramid software available.

You can optionally install some of the extra Python packages used
during this tutorial:

Mac and Linux
$ $VENV/bin/easy_install nose webtest deform sqlalchemy \
 pyramid_chameleon pyramid_debugtoolbar waitress \
 pyramid_tm zope.sqlalchemy

Windows
c:\> %VENV%\Scripts\easy_install nose webtest deform sqlalchemy pyramid_chameleon pyramid_debugtoolbar waitress pyramid_tm zope.sqlalchemy

Note

Why easy_install and not pip? Pyramid encourages use of namespace
packages, for which pip's support is less-than-optimal. Also, Pyramid's
dependencies use some optional C extensions for performance: with
easy_install, Windows users can get these extensions without needing
a C compiler (pip does not support installing binary Windows
distributions, except for wheels, which are not yet available for
all dependencies).

See also

See also Installing Pyramid on a UNIX System. For instructions to set up your
Python environment for development using Windows or Python 2, see Pyramid's
Before You Install.

See also Python 3's venv module [http://docs.python.org/3/library/venv.html#module-venv], the setuptools
installation instructions [https://pypi.python.org/pypi/setuptools/0.9.8#installation-instructions],
and easy_install help [https://pypi.python.org/pypi/setuptools/0.9.8#using-setuptools-and-easyinstall].

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

Tutorial Approach

This tutorial uses conventions to keep the introduction focused and
concise. Details, references, and deeper discussions are mentioned in
"See also" notes.

See also

This is an example "See also" note.

This "Getting Started" tutorial is broken into independent steps,
starting with the smallest possible "single file WSGI app" example.
Each of these steps introduce a topic and a very small set of concepts
via working code. The steps each correspond to a directory in this
repo, where each step/topic/directory is a Python package.

To successfully run each step:

$ cd request_response
$ $VENV/bin/python setup.py develop

...and repeat for each step you would like to work on. In most cases we
will start with the results of an earlier step.

Directory Tree

As we develop our tutorial our directory tree will resemble the
structure below:

quicktutorial/
 request_response/
 development.ini
 setup.py
 tutorial/
 __init__.py
 home.pt
 tests.py
 views.py

Each of the first-level directories (e.g. request_response) is a
Python project (except, as noted, the hello_world step.) The
tutorial directory is a Python package. At the end of each step,
we copy a previous directory into a new directory to use as a starting
point.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

Prelude: Quick Project Startup with Scaffolds

To ease the process of getting started, Pyramid provides scaffolds
that generate sample projects from templates in Pyramid and Pyramid
add-ons.

Background

We're going to cover a lot in this tutorial, focusing on one topic at a
time and writing everything from scratch. As a warmup, though,
it sure would be nice to see some pixels on a screen.

Like other web development frameworks, Pyramid provides a number of
"scaffolds" that generate working Python, template, and CSS code for
sample applications. In this step we'll use a built-in scaffold to let
us preview a Pyramid application, before starting from scratch on Step 1.

Objectives

	Use Pyramid's pcreate command to list scaffolds and make a new
project

	Start up a Pyramid application and visit it in a web browser

Steps

	Pyramid's pcreate command can list the available scaffolds:

$ $VENV/bin/pcreate --list
Available scaffolds:
 alchemy: Pyramid SQLAlchemy project using url dispatch
 starter: Pyramid starter project
 zodb: Pyramid ZODB project using traversal

	Tell pcreate to use the starter scaffold to make our project:

$ $VENV/bin/pcreate --scaffold starter scaffolds

	Use normal Python development to setup our project for development:

$ cd scaffolds
$ $VENV/bin/python setup.py develop

	Startup the application by pointing Pyramid's pserve command at
the project's (generated) configuration file:

$ $VENV/bin/pserve development.ini --reload

On startup, pserve logs some output:

Starting subprocess with file monitor
Starting server in PID 72213.
Starting HTTP server on http://0.0.0.0:6543

	Open http://localhost:6543/ in your browser.

Analysis

Rather than starting from scratch, pcreate can make getting a
Python project containing a Pyramid application a quick matter.
Pyramid ships with a few scaffolds. But installing a Pyramid add-on can
give you new scaffolds from that add-on.

pserve is Pyramid's application runner, separating operational
details from your code. When you install Pyramid, a small command
program called pserve is written to your bin directory. This
program is an executable Python module. It is passed a configuration
file (in this case, development.ini.)

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

01: Single-File Web Applications

What's the simplest way to get started in Pyramid? A single-file module.
No Python packages, no setup.py, no other machinery.

Background

Microframeworks are all the rage these days. "Microframework" is a
marketing term, not a technical one. They have a low mental overhead:
they do so little, the only things you have to worry about are your
things.

Pyramid is special because it can act as a single-file module
microframework. You can have a single Python file that can be executed
directly by Python. But Pyramid also provides facilities to scale to
the largest of applications.

Python has a standard called WSGI that defines how
Python web applications plug into standard servers, getting passed
incoming requests and returning responses. Most modern Python web
frameworks obey an "MVC" (model-view-controller) application pattern,
where the data in the model has a view that mediates interaction with
outside systems.

In this step we'll see a brief glimpse of WSGI servers, WSGI
applications, requests, responses, and views.

Objectives

	Get a running Pyramid web application, as simply as possible

	Use that as a well-understood base for adding each unit of complexity

	Initial exposure to WSGI apps, requests, views, and responses

Steps

	Make sure you have followed the steps in Requirements.

	Starting from your workspace directory
(~/projects/quick_tutorial), create a directory for this step:

$ mkdir hello_world; cd hello_world

	Copy the following into hello_world/app.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 print('Incoming request')
 return Response('<body><h1>Hello World!</h1></body>')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello', '/')
 config.add_view(hello_world, route_name='hello')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 6543, app)
 server.serve_forever()

	Run the application:

$ $VENV/bin/python app.py

	Open http://localhost:6543/ in your browser.

Analysis

New to Python web programming? If so, some lines in module merit
explanation:

	Line 11. The if __name__ == '__main__': is Python's way of
saying "Start here when running from the command line", rather than
when this module is imported.

	Lines 12-14. Use Pyramid's configurator to connect
view code to a particular URL route.

	Lines 6-8. Implement the view code that generates the
response.

	Lines 15-17. Publish a WSGI app using an HTTP
server.

As shown in this example, the configurator plays a
central role in Pyramid development. Building an application from
loosely-coupled parts via Application Configuration is a
central idea in Pyramid, one that we will revisit regularly in this
Quick Tour.

Extra Credit

	Why do we do this:

print('Incoming request')

...instead of:

print 'Incoming request'

	What happens if you return a string of HTML? A sequence of integers?

	Put something invalid, such as print xyz, in the view function.
Kill your python app.py with cntrl-c and restart,
then reload your browser. See the exception in the console?

	The GI in WSGI stands for "Gateway Interface". What web
standard is this modelled after?

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

02: Python Packages for Pyramid Applications

Most modern Python development is done using Python packages, an approach
Pyramid puts to good use. In this step we redo "Hello World" as a
minimum Python package inside a minimum Python project.

Background

Python developers can organize a collection of modules and files into a
namespaced unit called a package [http://docs.python.org/tutorial/modules.html#tut-packages]. If a
directory is on sys.path and has a special file named
__init__.py, it is treated as a Python package.

Packages can be bundled up, made available for installation,
and installed through a (muddled, but improving) toolchain oriented
around a setup.py file for a
setuptools project [http://pythonhosted.org/setuptools/setuptools.html].
Explaining it all in this
tutorial will induce madness. For this tutorial, this is all you need to
know:

	We will have a directory for each tutorial step as a setuptools project

	This project will contain a setup.py which injects the features
of the setuptool's project machinery into the directory

	In this project we will make a tutorial subdirectory into a Python
package using an __init__.py Python module file

	We will run python setup.py develop to install our project in
development mode

In summary:

	You'll do your development in a Python package

	That package will be part of a setuptools project

Objectives

	Make a Python "package" directory with an __init__.py

	Get a minimum Python "project" in place by making a setup.py

	Install our tutorial project in development mode

Steps

	Make an area for this tutorial step:

$ cd ..; mkdir package; cd package

	In package/setup.py, enter the following:

from setuptools import setup

requires = [
 'pyramid',
]

setup(name='tutorial',
 install_requires=requires,
)

	Make the new project installed for development then make a directory
for the actual code:

$ $VENV/bin/python setup.py develop
$ mkdir tutorial

	Enter the following into package/tutorial/__init__.py:

package

	Enter the following into package/tutorial/app.py:

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 print ('Incoming request')
 return Response('<body><h1>Hello World!</h1></body>')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello', '/')
 config.add_view(hello_world, route_name='hello')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 6543, app)
 server.serve_forever()

	Run the WSGI application with:

$ $VENV/bin/python tutorial/app.py

	Open http://localhost:6543/ in your browser.

Analysis

Python packages give us an organized unit of project development.
Python projects, via setup.py, gives us special features when
our package is installed (in this case, in local development mode.)

In this step we have a Python package called tutorial. We use the
same name in each step of the tutorial, to avoid unnecessary retyping.

Above this tutorial directory we have the files that handle the
packaging of this project. At the moment, all we need is a
bare-bones setup.py.

Everything else is the same about our application. We simply made a
Python package with a setup.py and installed it in development mode.

Note that the way we're running the app (python tutorial/app.py) is a bit
of an odd duck. We would never do this unless we were writing a tutorial that
tries to capture how this stuff works a step at a time. It's generally a bad
idea to run a Python module inside a package directly as a script.

See also

Python Packages [http://docs.python.org/tutorial/modules.html#tut-packages],
setuptools Entry Points [http://pythonhosted.org/setuptools/pkg_resources.html#entry-points]

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

03: Application Configuration with .ini Files

Use Pyramid's pserve command with a .ini configuration file for
simpler, better application running.

Background

Pyramid has a first-class concept of
configuration distinct from code.
This approach is optional, but its presence makes it distinct from
other Python web frameworks. It taps into Python's setuptools
library, which establishes conventions for installing and providing
"entry points" for Python projects. Pyramid uses an entry point to
let a Pyramid application know where to find the WSGI app.

Objectives

	Modify our setup.py to have an entry point telling Pyramid the
location of the WSGI app

	Create an application driven by a .ini file

	Startup the application with Pyramid's pserve command

	Move code into the package's __init__.py

Steps

	First we copy the results of the previous step:

$ cd ..; cp -r package ini; cd ini

	Our ini/setup.py needs a setuptools "entry point" in the
setup() function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from setuptools import setup

requires = [
 'pyramid',
]

setup(name='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 """,
)

	We can now install our project, thus generating (or re-generating) an
"egg" at ini/tutorial.egg-info:

$ $VENV/bin/python setup.py develop

	Let's make a file ini/development.ini for our configuration:

	1
2
3
4
5
6
7

	[app:main]
use = egg:tutorial

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

	We can refactor our startup code from the previous step's app.py
into ini/tutorial/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('<body><h1>Hello World!</h1></body>')

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.add_route('hello', '/')
 config.add_view(hello_world, route_name='hello')
 return config.make_wsgi_app()

	Now that ini/tutorial/app.py isn't used, let's remove it:

$ rm tutorial/app.py

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/.

Analysis

Our development.ini file is read by pserve and serves to
bootstrap our application. Processing then proceeds as described in
the Pyramid chapter on
application startup:

	pserve looks for [app:main] and finds use = egg:tutorial

	The projects's setup.py has defined an "entry point" (lines 9-12)
for the project "main" entry point of tutorial:main

	The tutorial package's __init__ has a main function

	This function is invoked, with the values from certain .ini
sections passed in

The .ini file is also used for two other functions:

	Configuring the WSGI server. [server:main] wires up the choice of
which WSGI server for your WSGI application. In this case, we are using
wsgiref bundled in the Python library. It also wires up the port
number: port = 6543 tells wsgiref to listen on port 6543.

	Configuring Python logging. Pyramid uses Python standard logging, which
needs a number of configuration values. The .ini serves this function.
This provides the console log output that you see on startup and each
request.

We moved our startup code from app.py to the package's
tutorial/__init__.py. This isn't necessary,
but it is a common style in Pyramid to take the WSGI app bootstrapping
out of your module's code and put it in the package's __init__.py.

The pserve application runner has a number of command-line arguments
and options. We are using --reload which tells pserve to watch
the filesystem for changes to relevant code (Python files, the INI file,
etc.) and, when something changes, restart the application. Very handy
during development.

Extra Credit

	If you don't like configuration and/or .ini files,
could you do this yourself in Python code?

	Can we have multiple .ini configuration files for a project? Why
might you want to do that?

	The entry point in setup.py didn't mention __init__.py when
it declared tutorial:main function. Why not?

	What is the purpose of **settings? What does the ** signify?

See also

Creating a Pyramid Project,
Creating Pyramid Scaffolds,
What Is This pserve Thing,
Environment Variables and .ini File Settings,
PasteDeploy Configuration Files

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

04: Easier Development with debugtoolbar

Error-handling and introspection using the pyramid_debugtoolbar
add-on.

Background

As we introduce the basics we also want to show how to be productive in
development and debugging. For example, we just discussed template
reloading and earlier we showed --reload for application reloading.

pyramid_debugtoolbar is a popular Pyramid add-on which makes
several tools available in your browser. Adding it to your project
illustrates several points about configuration.

Objectives

	Install and enable the toolbar to help during development

	Explain Pyramid add-ons

	Show how an add-on gets configured into your application

Steps

	First we copy the results of the previous step, as well as install
the pyramid_debugtoolbar package:

$ cd ..; cp -r ini debugtoolbar; cd debugtoolbar
$ $VENV/bin/python setup.py develop
$ $VENV/bin/easy_install pyramid_debugtoolbar

	Our debugtoolbar/development.ini gets a configuration entry for
pyramid.includes:

	1
2
3
4
5
6
7
8
9

	[app:main]
use = egg:tutorial
pyramid.includes =
 pyramid_debugtoolbar

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

	Run the WSGI application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser. See the handy
toolbar on the right.

Analysis

pyramid_debugtoolbar is a full-fledged Python package, available on PyPI
just like thousands of other Python packages. Thus we start by installing the
pyramid_debugtoolbar package into our virtual environment using normal
Python package installation commands.

The pyramid_debugtoolbar Python package is also a Pyramid add-on, which
means we need to include its add-on configuration into our web application. We
could do this with imperative configuration in tutorial/__init__.py by
using config.include. Pyramid also supports wiring in add-on configuration
via our development.ini using pyramid.includes. We use this to load
the configuration for the debugtoolbar.

You'll now see an attractive button on the right side of your browser, which
you may click to provide introspective access to debugging information in a
new browser tab. Even better, if your web application generates an error, you
will see a nice traceback on the screen. When you want to disable this
toolbar, there's no need to change code: you can remove it from
pyramid.includes in the relevant .ini configuration file (thus showing
why configuration files are handy.)

Note that the toolbar injects a small amount of HTML/CSS into your app just
before the closing </body> tag in order to display itself. If you start
to experience otherwise inexplicable client-side weirdness, you can shut it
off by commenting out the pyramid_debugtoolbar line in
pyramid.includes temporarily.

See also

See also pyramid_debugtoolbar [http://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/index.html#overview].

Extra Credit

	Why don't we add pyramid_debugtoolbar to the list of
install_requires dependencies in debugtoolbar/setup.py?

	Introduce a bug into your application: Change:

def hello_world(request):
 return Response('<body><h1>Hello World!</h1></body>')

to:

def hello_world(request):
 return xResponse('<body><h1>Hello World!</h1></body>')

Save, and visit http://localhost:6543/ again. Notice the nice
traceback display. On the lowest line, click the "screen" icon to the
right, and try typing the variable names request and Response.
What else can you discover?

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

05: Unit Tests and nose

Provide unit testing for our project's Python code.

Background

As the mantra says, "Untested code is broken code." The Python
community has had a long culture of writing test scripts which ensure
that your code works correctly as you write it and maintain it in the
future. Pyramid has always had a deep commitment to testing,
with 100% test coverage from the earliest pre-releases.

Python includes a
unit testing framework [http://docs.python.org/library/unittest.html#unittest-minimal-example] in its
standard library. Over the years a number of Python projects, such as
nose [https://pypi.python.org/pypi/nose/], have extended this
framework with alternative test runners that provide more convenience
and functionality. The Pyramid developers use nose, which we'll thus
use in this tutorial.

Don't worry, this tutorial won't be pedantic about "test-driven
development" (TDD). We'll do just enough to ensure that, in each step,
we haven't majorly broken the code. As you're writing your code you
might find this more convenient than changing to your browser
constantly and clicking reload.

We'll also leave discussion of
coverage [https://pypi.python.org/pypi/coverage] for another section.

Objectives

	Write unit tests that ensure the quality of our code

	Install a Python package (nose) which helps in our testing

Steps

	First we copy the results of the previous step, as well as install
the nose package:

$ cd ..; cp -r debugtoolbar unit_testing; cd unit_testing
$ $VENV/bin/python setup.py develop
$ $VENV/bin/easy_install nose

	Now we write a simple unit test in unit_testing/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_hello_world(self):
 from tutorial import hello_world

 request = testing.DummyRequest()
 response = hello_world(request)
 self.assertEqual(response.status_code, 200)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
.
--
Ran 1 test in 0.141s

OK

Analysis

Our tests.py imports the Python standard unit testing framework. To
make writing Pyramid-oriented tests more convenient, Pyramid supplies
some pyramid.testing helpers which we use in the test setup and
teardown. Our one test imports the view, makes a dummy request, and sees
if the view returns what we expected.

The tests.TutorialViewTests.test_hello_world test is a small
example of a unit test. First, we import the view inside each test. Why
not import at the top, like in normal Python code? Because imports can
cause effects that break a test. We'd like our tests to be in units,
hence the name unit testing. Each test should isolate itself to the
correct degree.

Our test then makes a fake incoming web request, then calls our Pyramid
view. We test the HTTP status code on the response to make sure it
matches our expectations.

Note that our use of pyramid.testing.setUp() and
pyramid.testing.tearDown() aren't actually necessary here; they are only
necessary when your test needs to make use of the config object (it's a
Configurator) to add stuff to the configuration state before calling the view.

Extra Credit

	Change the test to assert that the response status code should be
404 (meaning, not found.) Run nosetests again. Read the
error report and see if you can decipher what it is telling you.

	As a more realistic example, put the tests.py back as you found
it and put an error in your view, such as a reference to a
non-existing variable. Run the tests and see how this is more
convenient than reloading your browser and going back to your code.

	Finally, for the most realistic test, read about Pyramid Response
objects and see how to change the response code. Run the tests and
see how testing confirms the "contract" that your code claims to
support.

	How could we add a unit test assertion to test the HTML value of the
response body?

	Why do we import the hello_world view function inside the
test_hello_world method instead of at the top of the module?

See also

See also Unit, Integration, and Functional Testing

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

06: Functional Testing with WebTest

Write end-to-end full-stack testing using webtest.

Background

Unit tests are a common and popular approach to test-driven development
(TDD). In web applications, though, the templating and entire apparatus
of a web site are important parts of the delivered quality. We'd like a
way to test these.

WebTest is a Python package that does functional testing. With WebTest
you can write tests which simulate a full HTTP request against a WSGI
application, then test the information in the response. For speed
purposes, WebTest skips the setup/teardown of an actual HTTP server,
providing tests that run fast enough to be part of TDD.

Objectives

	Write a test which checks the contents of the returned HTML

Steps

	First we copy the results of the previous step, as well as install
the webtest package:

$ cd ..; cp -r unit_testing functional_testing; cd functional_testing
$ $VENV/bin/python setup.py develop
$ $VENV/bin/easy_install webtest

	Let's extend functional_testing/tutorial/tests.py to include a
functional test:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_hello_world(self):
 from tutorial import hello_world

 request = testing.DummyRequest()
 response = hello_world(request)
 self.assertEqual(response.status_code, 200)

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_hello_world(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'<h1>Hello World!</h1>', res.body)

Be sure this file is not executable, or nosetests may not
include your tests.

	Now run the tests:

$ $VENV/bin/nosetests tutorial
.
--
Ran 2 tests in 0.141s

OK

Analysis

We now have the end-to-end testing we were looking for. WebTest lets us
simply extend our existing nose-based test approach with functional
tests that are reported in the same output. These new tests not only
cover our templating, but they didn't dramatically increase the
execution time of our tests.

Extra Credit

	Why do our functional tests use b''?

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

07: Basic Web Handling With Views

Organize a views module with decorators and multiple views.

Background

For the examples so far, the hello_world function is a "view". In
Pyramid, views are the primary way to accept web requests and return
responses.

So far our examples place everything in one file:

	The view function

	Its registration with the configurator

	The route to map it to a URL

	The WSGI application launcher

Let's move the views out to their own views.py module and change
our startup code to scan that module, looking for decorators that setup
the views. Let's also add a second view and update our tests.

Objectives

	Views in a module that is scanned by the configurator

	Decorators that do declarative configuration

Steps

	Let's begin by using the previous package as a starting point for a
new distribution, then making it active:

$ cd ..; cp -r functional_testing views; cd views
$ $VENV/bin/python setup.py develop

	Our views/tutorial/__init__.py gets a lot shorter:

	1
2
3
4
5
6
7
8
9

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.scan('.views')
 return config.make_wsgi_app()

	Let's add a module views/tutorial/views.py that is focused on
handling requests and responses:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyramid.response import Response
from pyramid.view import view_config

First view, available at http://localhost:6543/
@view_config(route_name='home')
def home(request):
 return Response('<body>Visit hello</body>')

/howdy
@view_config(route_name='hello')
def hello(request):
 return Response('<body>Go back home</body>')

	Update the tests to cover the two new views:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_home(self):
 from .views import home

 request = testing.DummyRequest()
 response = home(request)
 self.assertEqual(response.status_code, 200)
 self.assertIn(b'Visit', response.body)

 def test_hello(self):
 from .views import hello

 request = testing.DummyRequest()
 response = hello(request)
 self.assertEqual(response.status_code, 200)
 self.assertIn(b'Go back', response.body)

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_home(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'<body>Visit', res.body)

 def test_hello(self):
 res = self.testapp.get('/howdy', status=200)
 self.assertIn(b'<body>Go back', res.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
.
--
Ran 4 tests in 0.141s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ and http://localhost:6543/howdy
in your browser.

Analysis

We added some more URLs, but we also removed the view code from the
application startup code in tutorial/__init__.py.
Our views, and their view registrations (via decorators) are now in a
module views.py which is scanned via config.scan('.views').

We have 2 views, each leading to the other. If you start at
http://localhost:6543/, you get a response with a link to the next
view. The hello view (available at the URL /howdy) has a link
back to the first view.

This step also shows that the name appearing in the URL,
the name of the "route" that maps a URL to a view,
and the name of the view, can all be different. More on routes later.

Earlier we saw config.add_view as one way to configure a view. This
section introduces @view_config. Pyramid's configuration supports
imperative configuration, such as the
config.add_view in the previous example. You can also use
declarative configuration, in which a Python
decorator [http://docs.python.org/glossary.html#term-decorator]
is placed on the line above the view. Both approaches result in the
same final configuration, thus usually, it is simply a matter of taste.

Extra Credit

	What does the dot in .views signify?

	Why might assertIn be a better choice in testing the text in
responses than assertEqual?

See also

Views,
View Configuration, and
Debugging View Configuration

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

08: HTML Generation With Templating

Most web frameworks don't embed HTML in programming code. Instead,
they pass data into a templating system. In this step we look at the
basics of using HTML templates in Pyramid.

Background

Ouch. We have been making our own Response and filling the response
body with HTML. You usually won't embed an HTML string directly in
Python, but instead, will use a templating language.

Pyramid doesn't mandate a particular database system, form library,
etc. It encourages replaceability. This applies equally to templating,
which is fortunate: developers have strong views about template
languages. As of Pyramid 1.5a2, Pyramid doesn't even bundle a template
language!

It does, however, have strong ties to Jinja2, Mako, and Chameleon. In
this step we see how to add pyramid_chameleon to your project,
then change your views to use templating.

Objectives

	Enable the pyramid_chameleon Pyramid add-on

	Generate HTML from template files

	Connect the templates as "renderers" for view code

	Change the view code to simply return data

Steps

	Let's begin by using the previous package as a starting point for a
new project:

$ cd ..; cp -r views templating; cd templating

	This step depends on pyramid_chameleon, so add it as a dependency
in templating/setup.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from setuptools import setup

requires = [
 'pyramid',
 'pyramid_chameleon',
]

setup(name='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 """,
)

	Now we can activate the development-mode distribution:

$ $VENV/bin/python setup.py develop

	We need to connect pyramid_chameleon as a renderer by making a
call in the setup of templating/tutorial/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.scan('.views')
 return config.make_wsgi_app()

	Our templating/tutorial/views.py no longer has HTML in it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.view import view_config

First view, available at http://localhost:6543/
@view_config(route_name='home', renderer='home.pt')
def home(request):
 return {'name': 'Home View'}

/howdy
@view_config(route_name='hello', renderer='home.pt')
def hello(request):
 return {'name': 'Hello View'}

	Instead we have templating/tutorial/home.pt as a template:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${name}</title>
</head>
<body>
<h1>Hi ${name}</h1>
</body>
</html>

	For convenience, change templating/development.ini to reload
templates automatically with pyramid.reload_templates:

[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.includes =
 pyramid_debugtoolbar

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

	Our unit tests in templating/tutorial/tests.py can focus on
data:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_home(self):
 from .views import home

 request = testing.DummyRequest()
 response = home(request)
 # Our view now returns data
 self.assertEqual('Home View', response['name'])

 def test_hello(self):
 from .views import hello

 request = testing.DummyRequest()
 response = hello(request)
 # Our view now returns data
 self.assertEqual('Hello View', response['name'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_home(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'<h1>Hi Home View', res.body)

 def test_hello(self):
 res = self.testapp.get('/howdy', status=200)
 self.assertIn(b'<h1>Hi Hello View', res.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
.
--
Ran 4 tests in 0.141s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ and http://localhost:6543/howdy
in your browser.

Analysis

Ahh, that looks better. We have a view that is focused on Python code.
Our @view_config decorator specifies a renderer that points
to our template file. Our view then simply returns data which is then
supplied to our template. Note that we used the same template for both
views.

Note the effect on testing. We can focus on having a data-oriented
contract with our view code.

See also

Templates, Debugging Templates, and
Available Add-On Template System Bindings.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

09: Organizing Views With View Classes

Change our view functions to be methods on a view class,
then move some declarations to the class level.

Background

So far our views have been simple, free-standing functions. Many times your
views are related to one another. They may be different ways to look at or work
on the same data, or be a REST API that handles multiple operations. Grouping
these views together as a view class makes sense:

	Group views

	Centralize some repetitive defaults

	Share some state and helpers

In this step we just do the absolute minimum to convert the existing
views to a view class. In a later tutorial step we'll examine view
classes in depth.

Objectives

	Group related views into a view class

	Centralize configuration with class-level @view_defaults

Steps

	First we copy the results of the previous step:

$ cd ..; cp -r templating view_classes; cd view_classes
$ $VENV/bin/python setup.py develop

	Our view_classes/tutorial/views.py now has a view class with
our two views:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from pyramid.view import (
 view_config,
 view_defaults
)

@view_defaults(renderer='home.pt')
class TutorialViews:
 def __init__(self, request):
 self.request = request

 @view_config(route_name='home')
 def home(self):
 return {'name': 'Home View'}

 @view_config(route_name='hello')
 def hello(self):
 return {'name': 'Hello View'}

	Our unit tests in view_classes/tutorial/tests.py don't run,
so let's modify them to import the view class and make an instance
before getting a response:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_home(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 inst = TutorialViews(request)
 response = inst.home()
 self.assertEqual('Home View', response['name'])

 def test_hello(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 inst = TutorialViews(request)
 response = inst.hello()
 self.assertEqual('Hello View', response['name'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_home(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'<h1>Hi Home View', res.body)

 def test_hello(self):
 res = self.testapp.get('/howdy', status=200)
 self.assertIn(b'<h1>Hi Hello View', res.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
.
--
Ran 4 tests in 0.141s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ and http://localhost:6543/howdy
in your browser.

Analysis

To ease the transition to view classes, we didn't introduce any new
functionality. We simply changed the view functions to methods on a
view class, then updated the tests.

In our TutorialViews view class you can see that our two view
classes are logically grouped together as methods on a common class.
Since the two views shared the same template, we could move that to a
@view_defaults decorator at the class level.

The tests needed to change. Obviously we needed to import the view
class. But you can also see the pattern in the tests of instantiating
the view class with the dummy request first, then calling the view
method being tested.

See also

Defining a View Callable as a Class

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

10: Handling Web Requests and Responses

Web applications handle incoming requests and return outgoing responses.
Pyramid makes working with requests and responses convenient and
reliable.

Objectives

	Learn the background on Pyramid's choices for requests and responses

	Grab data out of the request

	Change information in the response headers

Background

Developing for the web means processing web requests. As this is a
critical part of a web application, web developers need a robust,
mature set of software for web requests and returning web
responses.

Pyramid has always fit nicely into the existing world of Python web
development (virtual environments, packaging, scaffolding,
first to embrace Python 3, etc.) For request handling, Pyramid turned
to the well-regarded WebOb Python library for request and
response handling. In our example
above, Pyramid hands hello_world a request that is
based on WebOb.

Steps

	First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes request_response; cd request_response
$ $VENV/bin/python setup.py develop

	Simplify the routes in request_response/tutorial/__init__.py:

	1
2
3
4
5
6
7
8
9

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.add_route('home', '/')
 config.add_route('plain', '/plain')
 config.scan('.views')
 return config.make_wsgi_app()

	We only need one view in request_response/tutorial/views.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from pyramid.httpexceptions import HTTPFound
from pyramid.response import Response
from pyramid.view import view_config

class TutorialViews:
 def __init__(self, request):
 self.request = request

 @view_config(route_name='home')
 def home(self):
 return HTTPFound(location='/plain')

 @view_config(route_name='plain')
 def plain(self):
 name = self.request.params.get('name', 'No Name Provided')

 body = 'URL %s with name: %s' % (self.request.url, name)
 return Response(
 content_type='text/plain',
 body=body
)

	Update the tests in request_response/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_home(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 inst = TutorialViews(request)
 response = inst.home()
 self.assertEqual(response.status, '302 Found')

 def test_plain_without_name(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 inst = TutorialViews(request)
 response = inst.plain()
 self.assertIn(b'No Name Provided', response.body)

 def test_plain_with_name(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 request.GET['name'] = 'Jane Doe'
 inst = TutorialViews(request)
 response = inst.plain()
 self.assertIn(b'Jane Doe', response.body)

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main

 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_plain_without_name(self):
 res = self.testapp.get('/plain', status=200)
 self.assertIn(b'No Name Provided', res.body)

 def test_plain_with_name(self):
 res = self.testapp.get('/plain?name=Jane%20Doe', status=200)
 self.assertIn(b'Jane Doe', res.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser. You will be
redirected to http://localhost:6543/plain

	Open http://localhost:6543/plain?name=alice in your browser.

Analysis

In this view class we have two routes and two views, with the first
leading to the second by an HTTP redirect. Pyramid can
generate redirects by returning a
special object from a view or raising a special exception.

In this Pyramid view, we get the URL being visited from request.url.
Also, if you visited http://localhost:6543/plain?name=alice,
the name is included in the body of the response:

URL http://localhost:6543/plain?name=alice with name: alice

Finally, we set the response's content type and body, then return the
Response.

We updated the unit and functional tests to prove that our code
does the redirection, but also handles sending and not sending
/plain?name.

Extra Credit

	Could we also raise HTTPFound(location='/plain') instead of
returning it? If so, what's the difference?

See also

Request and Response Objects,
generate redirects

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

11: Dispatching URLs To Views With Routing

Routing matches incoming URL patterns to view code. Pyramid's routing
has a number of useful features.

Background

Writing web applications usually means sophisticated URL design. We
just saw some Pyramid machinery for requests and views. Let's look at
features that help in routing.

Previously we saw the basics of routing URLs to views in Pyramid.

	Your project's "setup" code registers a route name to be used when
matching part of the URL

	Elsewhere, a view is configured to be called for that route name

Note

Why do this twice? Other Python web frameworks let you create a route and
associate it with a view in one step. As illustrated in
Routes need relative ordering, multiple routes might match the same URL
pattern. Rather than provide ways to help guess, Pyramid lets you be
explicit in ordering. Pyramid also gives facilities to avoid the problem.
It's relatively easy to build a system that uses implicit route ordering
with Pyramid too. See The Groundhog series of screencasts [http://static.repoze.org/casts/videotags.html] if you're interested in
doing so.

Objectives

	Define a route that extracts part of the URL into a Python dictionary

	Use that dictionary data in a view

Steps

	First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes routing; cd routing
$ $VENV/bin/python setup.py develop

	Our routing/tutorial/__init__.py needs a route with a replacement
pattern:

	1
2
3
4
5
6
7
8
9

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_route('home', '/howdy/{first}/{last}')
 config.scan('.views')
 return config.make_wsgi_app()

	We just need one view in routing/tutorial/views.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from pyramid.view import (
 view_config,
 view_defaults
)

@view_defaults(renderer='home.pt')
class TutorialViews:
 def __init__(self, request):
 self.request = request

 @view_config(route_name='home')
 def home(self):
 first = self.request.matchdict['first']
 last = self.request.matchdict['last']
 return {
 'name': 'Home View',
 'first': first,
 'last': last
 }

	We just need one view in routing/tutorial/home.pt:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${name}</title>
</head>
<body>
<h1>${name}</h1>
<p>First: ${first}, Last: ${last}</p>
</body>
</html>

	Update routing/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_home(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 request.matchdict['first'] = 'First'
 request.matchdict['last'] = 'Last'
 inst = TutorialViews(request)
 response = inst.home()
 self.assertEqual(response['first'], 'First')
 self.assertEqual(response['last'], 'Last')

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_home(self):
 res = self.testapp.get('/howdy/Jane/Doe', status=200)
 self.assertIn(b'Jane', res.body)
 self.assertIn(b'Doe', res.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/howdy/amy/smith in your browser.

Analysis

In __init__.py we see an important change in our route declaration:

config.add_route('hello', '/howdy/{first}/{last}')

With this we tell the configurator that our URL has
a "replacement pattern". With this, URLs such as /howdy/amy/smith
will assign amy to first and smith to last. We can then
use this data in our view:

self.request.matchdict['first']
self.request.matchdict['last']

request.matchdict contains values from the URL that match the
"replacement patterns" (the curly braces) in the route declaration.
This information can then be used anywhere in Pyramid that has access
to the request.

Extra Credit

	What happens if you to go the URL
http://localhost:6543/howdy? Is this the result that you
expected?

See also

Weird Stuff You Can Do With URL
Dispatch [http://www.plope.com/weird_pyramid_urldispatch]

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

12: Templating With jinja2

We just said Pyramid doesn't prefer one templating language over
another. Time to prove it. Jinja2 is a popular templating system,
used in Flask and modeled after Django's templates. Let's add
pyramid_jinja2, a Pyramid add-on which enables Jinja2 as a
renderer in our Pyramid applications.

Objectives

	Show Pyramid's support for different templating systems

	Learn about installing Pyramid add-ons

Steps

	In this step let's start by copying the view_class step's
directory, and then installing the pyramid_jinja2 add-on.

$ cd ..; cp -r view_classes jinja2; cd jinja2
$ $VENV/bin/python setup.py develop
$ $VENV/bin/easy_install pyramid_jinja2

	We need to include pyramid_jinja2 in
jinja2/tutorial/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_jinja2')
 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.scan('.views')
 return config.make_wsgi_app()

	Our jinja2/tutorial/views.py simply changes its renderer:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from pyramid.view import (
 view_config,
 view_defaults
)

@view_defaults(renderer='home.jinja2')
class TutorialViews:
 def __init__(self, request):
 self.request = request

 @view_config(route_name='home')
 def home(self):
 return {'name': 'Home View'}

 @view_config(route_name='hello')
 def hello(self):
 return {'name': 'Hello View'}

	Add jinja2/tutorial/home.jinja2 as a template:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: {{ name }}</title>
</head>
<body>
<h1>Hi {{ name }}</h1>
</body>
</html>

	Now run the tests:

$ $VENV/bin/nosetests tutorial

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser.

Analysis

Getting a Pyramid add-on into Pyramid is simple. First you use normal
Python package installation tools to install the add-on package into
your Python. You then tell Pyramid's configurator to run the setup code
in the add-on. In this case the setup code told Pyramid to make a new
"renderer" available that looked for .jinja2 file extensions.

Our view code stayed largely the same. We simply changed the file
extension on the renderer. For the template, the syntax for Chameleon
and Jinja2's basic variable insertion is very similar.

Extra Credit

	Our project now depends on pyramid_jinja2. We installed that
dependency manually. What is another way we could have made the
association?

	We used config.include which is an imperative configuration to get the
Configurator to load pyramid_jinja2's configuration.
What is another way could include it into the config?

See also

Jinja2 homepage [http://jinja.pocoo.org/],
and
pyramid_jinja2 Overview [http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/index.html#overview]

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

13: CSS/JS/Images Files With Static Assets

Of course the Web is more than just markup. You need static assets:
CSS, JS, and images. Let's point our web app at a directory where
Pyramid will serve some static assets.

Objectives

	Publish a directory of static assets at a URL

	Use Pyramid to help generate URLs to files in that directory

Steps

	First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes static_assets; cd static_assets
$ $VENV/bin/python setup.py develop

	We add a call config.add_static_view in
static_assets/tutorial/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.add_static_view(name='static', path='tutorial:static')
 config.scan('.views')
 return config.make_wsgi_app()

	We can add a CSS link in the <head> of our template at
static_assets/tutorial/home.pt:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${name}</title>
 <link rel="stylesheet"
 href="${request.static_url('tutorial:static/app.css') }"/>
</head>
<body>
<h1>Hi ${name}</h1>
</body>
</html>

	Add a CSS file at
static_assets/tutorial/static/app.css:

body {
 margin: 2em;
 font-family: sans-serif;
}

	Make sure we haven't broken any existing code by running the tests:

$ $VENV/bin/nosetests tutorial

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser and note the new font.

Analysis

We changed our WSGI application to map requests under
http://localhost:6543/static/ to files and directories inside a
static directory inside our tutorial package. This directory
contained app.css.

We linked to the CSS in our template. We could have hard-coded this
link to /static/app.css. But what if the site is later moved under
/somesite/static/? Or perhaps the web developer changes the
arrangement on disk? Pyramid gives a helper that provides flexibility
on URL generation:

${request.static_url('tutorial:static/app.css')}

This matches the path='tutorial:static' in our
config.add_static_view registration. By using request.static_url
to generate the full URL to the static assets, you both ensure you stay
in sync with the configuration and gain refactoring flexibility later.

Extra Credit

	There is also a request.static_path API. How does this differ from
request.static_url?

See also

Static Assets,
Preventing HTTP Caching, and
Influencing HTTP Caching

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

14: Ajax Development With JSON Renderers

Modern web apps are more than rendered HTML. Dynamic pages now use
JavaScript to update the UI in the browser by requesting server data as
JSON. Pyramid supports this with a JSON renderer.

Background

As we saw in 08: HTML Generation With Templating, view declarations can specify a
renderer. Output from the view is then run through the renderer,
which generates and returns the Response. We first used a Chameleon
renderer, then a Jinja2 renderer.

Renderers aren't limited, however, to templates that generate HTML.
Pyramid supplies a JSON renderer which takes Python data,
serializes it to JSON, and performs some other functions such as
setting the content type. In fact, you can write your own renderer (or
extend a built-in renderer) containing custom logic for your unique
application.

Steps

	First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes json; cd json
$ $VENV/bin/python setup.py develop

	We add a new route for hello_json in
json/tutorial/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.add_route('hello_json', 'howdy.json')
 config.scan('.views')
 return config.make_wsgi_app()

	Rather than implement a new view, we will "stack" another decorator
on the hello view in views.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from pyramid.view import (
 view_config,
 view_defaults
)

@view_defaults(renderer='home.pt')
class TutorialViews:
 def __init__(self, request):
 self.request = request

 @view_config(route_name='home')
 def home(self):
 return {'name': 'Home View'}

 @view_config(route_name='hello')
 @view_config(route_name='hello_json', renderer='json')
 def hello(self):
 return {'name': 'Hello View'}

	We need a new functional test at the end of
json/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_home(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 inst = TutorialViews(request)
 response = inst.home()
 self.assertEqual('Home View', response['name'])

 def test_hello(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 inst = TutorialViews(request)
 response = inst.hello()
 self.assertEqual('Hello View', response['name'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_home(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'<h1>Hi Home View', res.body)

 def test_hello(self):
 res = self.testapp.get('/howdy', status=200)
 self.assertIn(b'<h1>Hi Hello View', res.body)

 def test_hello_json(self):
 res = self.testapp.get('/howdy.json', status=200)
 self.assertIn(b'{"name": "Hello View"}', res.body)
 self.assertEqual(res.content_type, 'application/json')

	Run the tests:

$ $VENV/bin/nosetests tutorial

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/howdy.json in your browser and you
will see the resulting JSON response.

Analysis

Earlier we changed our view functions and methods to return Python
data. This change to a data-oriented view layer made test writing
easier, decoupling the templating from the view logic.

Since Pyramid has a JSON renderer as well as the templating renderers,
it is an easy step to return JSON. In this case we kept the exact same
view and arranged to return a JSON encoding of the view data. We did
this by:

	Adding a route to map /howdy.json to a route name

	Providing a @view_config that associated that route name with an
existing view

	overriding the view defaults in the view config that mentions the
hello_json route, so that when the route is matched, we use the JSON
renderer rather than the home.pt template renderer that would otherwise
be used.

In fact, for pure Ajax-style web applications, we could re-use the existing
route by using Pyramid's view predicates to match on the
Accepts: header sent by modern Ajax implementation.

Pyramid's JSON renderer uses the base Python JSON encoder,
thus inheriting its strengths and weaknesses. For example,
Python can't natively JSON encode DateTime objects. There are a number
of solutions for this in Pyramid, including extending the JSON renderer
with a custom renderer.

See also

Writing View Callables Which Use a Renderer,
JSON Renderer, and
Adding and Changing Renderers

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

15: More With View Classes

Group views into a class, sharing configuration, state, and logic.

Background

As part of its mission to help build more ambitious web applications,
Pyramid provides many more features for views and view classes.

The Pyramid documentation discusses views as a Python "callable". This
callable can be a function, an object with an __call__,
or a Python class. In this last case, methods on the class can be
decorated with @view_config to register the class methods with the
configurator as a view.

At first, our views were simple, free-standing functions. Many times
your views are related: different ways to look at or work on the same
data or a REST API that handles multiple operations. Grouping these
together as a view class makes sense:

	Group views

	Centralize some repetitive defaults

	Share some state and helpers

Pyramid views have view predicates
that determine which view is matched to a request, based on factors
such as the request method, the form parameters, etc. These predicates
provide many axes of flexibility.

The following shows a simple example with four operations:
view a home page which leads to a form, save a change,
and press the delete button.

Objectives

	Group related views into a view class

	Centralize configuration with class-level @view_defaults

	Dispatch one route/URL to multiple views based on request data

	Share states and logic between views and templates via the view class

Steps

	First we copy the results of the previous step:

$ cd ..; cp -r templating more_view_classes; cd more_view_classes
$ $VENV/bin/python setup.py develop

	Our route in more_view_classes/tutorial/__init__.py needs some
replacement patterns:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_route('home', '/')
 config.add_route('hello', '/howdy/{first}/{last}')
 config.scan('.views')
 return config.make_wsgi_app()

	Our more_view_classes/tutorial/views.py now has a view class with
several views:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	from pyramid.view import (
 view_config,
 view_defaults
)

@view_defaults(route_name='hello')
class TutorialViews(object):
 def __init__(self, request):
 self.request = request
 self.view_name = 'TutorialViews'

 @property
 def full_name(self):
 first = self.request.matchdict['first']
 last = self.request.matchdict['last']
 return first + ' ' + last

 @view_config(route_name='home', renderer='home.pt')
 def home(self):
 return {'page_title': 'Home View'}

 # Retrieving /howdy/first/last the first time
 @view_config(renderer='hello.pt')
 def hello(self):
 return {'page_title': 'Hello View'}

 # Posting to /howdy/first/last via the "Edit" submit button
 @view_config(request_method='POST', renderer='edit.pt')
 def edit(self):
 new_name = self.request.params['new_name']
 return {'page_title': 'Edit View', 'new_name': new_name}

 # Posting to /howdy/first/last via the "Delete" submit button
 @view_config(request_method='POST', request_param='form.delete',
 renderer='delete.pt')
 def delete(self):
 print ('Deleted')
 return {'page_title': 'Delete View'}

	Our primary view needs a template at
more_view_classes/tutorial/home.pt:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${view.view_name} - ${page_title}</title>
</head>
<body>
<h1>${view.view_name} - ${page_title}</h1>

<p>Go to the <a href="${request.route_url('hello', first='jane',
 last='doe')}">form.</p>
</body>
</html>

	Ditto for our other view from the previous section at
more_view_classes/tutorial/hello.pt:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${view.view_name} - ${page_title}</title>
</head>
<body>
<h1>${view.view_name} - ${page_title}</h1>
<p>Welcome, ${view.full_name}</p>
<form method="POST"
 action="${request.current_route_url()}">
 <input name="new_name"/>
 <input type="submit" name="form.edit" value="Save"/>
 <input type="submit" name="form.delete" value="Delete"/>
</form>
</body>
</html>

	We have an edit view that also needs a template at
more_view_classes/tutorial/edit.pt:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${view.view_name} - ${page_title}</title>
</head>
<body>
<h1>${view.view_name} - ${page_title}</h1>
<p>You submitted <code>${new_name}</code></p>
</body>
</html>

	And finally the delete view's template at
more_view_classes/tutorial/delete.pt:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${page_title}</title>
</head>
<body>
<h1>${view.view_name} - ${page_title}</h1>
</body>
</html>

	Our tests in more_view_classes/tutorial/tests.py fail, so let's modify
them:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	import unittest

from pyramid import testing

class TutorialViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_home(self):
 from .views import TutorialViews

 request = testing.DummyRequest()
 inst = TutorialViews(request)
 response = inst.home()
 self.assertEqual('Home View', response['page_title'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp

 self.testapp = TestApp(app)

 def test_home(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'TutorialViews - Home View', res.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
.
--
Ran 2 tests in 0.248s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/howdy/jane/doe in your browser. Click
the Save and Delete buttons and watch the output in the
console window.

Analysis

As you can see, the four views are logically grouped together.
Specifically:

	We have a home view available at http://localhost:6543/ with
a clickable link to the hello view.

	The second view is returned when you go to /howdy/jane/doe. This
URL is
mapped to the hello route that we centrally set using the optional
@view_defaults.

	The third view is returned when the form is submitted with a POST
method. This rule is specified in the @view_config for that view.

	The fourth view is returned when clicking on a button such
as <input type="submit" name="form.delete" value="Delete"/>.

In this step we show, using the following information as criteria, how to
decide which view to use:

	Method of the HTTP request (GET, POST, etc.)

	Parameter information in the request (submitted form field names)

We also centralize part of the view configuration to the class level
with @view_defaults, then in one view, override that default just
for that one view. Finally, we put this commonality between views to
work in the view class by sharing:

	State assigned in TutorialViews.__init__

	A computed value

These are then available both in the view methods but also in the
templates (e.g. ${view.view_name} and ${view.full_name}.

As a note, we made a switch in our templates on how we generate URLs.
We previously hardcode the URLs, such as:

Howdy

In home.pt we switched to:

<a href="${request.route_url('hello', first='jane',
 last='doe')}">form

Pyramid has rich facilities to help generate URLs in a flexible,
non-error-prone fashion.

Extra Credit

	Why could our template do ${view.full_name} and not have to do
${view.full_name()}?

	The edit and delete views are both submitted to with
POST. Why does the edit view configuration not catch the
POST used by delete?

	We used Python @property on full_name. If we reference this
many times in a template or view code, it would re-compute this
every time. Does Pyramid provide something that will cache the initial
computation on a property?

	Can you associate more than one route with the same view?

	There is also a request.route_path API. How does this differ from
request.route_url?

See also

Defining a View Callable as a Class, Weird Stuff You Can Do With
URL Dispatch [http://www.plope.com/weird_pyramid_urldispatch]

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

16: Collecting Application Info With Logging

Capture debugging and error output from your web applications using
standard Python logging.

Background

It's important to know what is going on inside our web application.
In development we might need to collect some output. In production,
we might need to detect problems when other people use the site. We
need logging.

Fortunately Pyramid uses the normal Python approach to logging. The
scaffold generated in your development.ini has a number of lines that
configure the logging for you to some reasonable defaults. You then see
messages sent by Pyramid, for example, when a new request comes in.

Objectives

	Inspect the configuration setup used for logging

	Add logging statements to your view code

Steps

	First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes logging; cd logging
$ $VENV/bin/python setup.py develop

	Extend logging/tutorial/views.py to log a message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	import logging
log = logging.getLogger(__name__)

from pyramid.view import (
 view_config,
 view_defaults
)

@view_defaults(renderer='home.pt')
class TutorialViews:
 def __init__(self, request):
 self.request = request

 @view_config(route_name='home')
 def home(self):
 log.debug('In home view')
 return {'name': 'Home View'}

 @view_config(route_name='hello')
 def hello(self):
 log.debug('In hello view')
 return {'name': 'Hello View'}

	Finally let's edit development.ini configuration file
to enable logging for our Pyramid application:

[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.includes =
 pyramid_debugtoolbar

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root, tutorial

[logger_tutorial]
level = DEBUG
handlers =
qualname = tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

	Make sure the tests still pass:

$ $VENV/bin/nosetests tutorial

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ and http://localhost:6543/howdy
in your browser. Note, both in the console and in the debug
toolbar, the message that you logged.

Analysis

In our configuration file development.ini, our tutorial Python
package is setup as a logger and configured to log messages at a
DEBUG or higher level. When you visit http://localhost:6543 your
console will now show:

2013-08-09 10:42:42,968 DEBUG [tutorial.views][MainThread] In home view

Also, if you have configured your Pyramid application to use the
pyramid_debugtoolbar, logging statements appear in one of its menus.

See also

See also Logging.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

17: Transient Data Using Sessions

Store and retrieve non-permanent data in Pyramid sessions.

Background

When people use your web application, they frequently perform a task
that requires semi-permanent data to be saved. For example, a shopping
cart. This is called a session.

Pyramid has basic built-in support for sessions. Third party packages such as
pyramid_redis_sessions provide richer session support. Or you can create
your own custom sessioning engine. Let's take a look at the
built-in sessioning support.

Objectives

	Make a session factory using a built-in, simple Pyramid sessioning
system

	Change our code to use a session

Steps

	First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes sessions; cd sessions
$ $VENV/bin/python setup.py develop

	Our sessions/tutorial/__init__.py needs a choice of session
factory to get registered with the configurator:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyramid.config import Configurator
from pyramid.session import SignedCookieSessionFactory

def main(global_config, **settings):
 my_session_factory = SignedCookieSessionFactory(
 'itsaseekreet')
 config = Configurator(settings=settings,
 session_factory=my_session_factory)
 config.include('pyramid_chameleon')
 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.scan('.views')
 return config.make_wsgi_app()

	Our views in sessions/tutorial/views.py can now use
request.session:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	from pyramid.view import (
 view_config,
 view_defaults
)

@view_defaults(renderer='home.pt')
class TutorialViews:
 def __init__(self, request):
 self.request = request

 @property
 def counter(self):
 session = self.request.session
 if 'counter' in session:
 session['counter'] += 1
 else:
 session['counter'] = 1

 return session['counter']

 @view_config(route_name='home')
 def home(self):
 return {'name': 'Home View'}

 @view_config(route_name='hello')
 def hello(self):
 return {'name': 'Hello View'}

	The template at sessions/tutorial/home.pt can display the value:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${name}</title>
</head>
<body>
<h1>Hi ${name}</h1>
<p>Count: ${view.counter}</p>
</body>
</html>

	Make sure the tests still pass:

$ $VENV/bin/nosetests tutorial

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ and http://localhost:6543/howdy
in your browser. As you reload and switch between those URLs, note
that the counter increases and is not specific to the URL.

	Restart the application and revisit the page. Note that counter
still increases from where it left off.

Analysis

Pyramid's request object now has a session attribute
that we can use in our view code. It acts like a dictionary.

Since all the views are using the same counter, we made the counter a
Python property at the view class level. With this, each reload will
increase the counter displayed in our template.

In web development, "flash messages" are notes for the user that need
to appear on a screen after a future web request. For example,
when you add an item using a form POST, the site usually issues a
second HTTP Redirect web request to view the new item. You might want a
message to appear after that second web request saying "Your item was
added." You can't just return it in the web response for the POST,
as it will be tossed out during the second web request.

Flash messages are a technique where messages can be stored between
requests, using sessions, then removed when they finally get displayed.

See also

Sessions,
Flash Messages, and
pyramid.session.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

18: Forms and Validation With Deform

Schema-driven, autogenerated forms with validation.

Background

Modern web applications deal extensively with forms. Developers,
though, have a wide range of philosophies about how frameworks should
help them with their forms. As such, Pyramid doesn't directly bundle
one particular form library. Instead there are a variety of form
libraries that are easy to use in Pyramid.

Deform [http://docs.pylonsproject.org/projects/deform/en/latest/index.html#overview]
is one such library. In this step, we introduce Deform for our
forms and validation. This also gives us Colander [http://docs.pylonsproject.org/projects/colander/en/latest/index.html#overview]
for schemas and validation.

Deform is getting a facelift, with styling from Twitter Bootstrap and
advanced widgets from popular JavaScript projects. The work began in
deform_bootstrap and is being merged into an update to Deform.

Objectives

	Make a schema using Colander, the companion to Deform

	Create a form with Deform and change our views to handle validation

Steps

	First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes forms; cd forms

	Let's edit forms/setup.py to declare a dependency on Deform
(which then pulls in Colander as a dependency:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from setuptools import setup

requires = [
 'pyramid',
 'pyramid_chameleon',
 'deform'
]

setup(name='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 """,
)

	We can now install our project in development mode:

$ $VENV/bin/python setup.py develop

	Register a static view in forms/tutorial/__init__.py for
Deform's CSS/JS etc. as well as our demo wikipage scenario's
views:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_route('wiki_view', '/')
 config.add_route('wikipage_add', '/add')
 config.add_route('wikipage_view', '/{uid}')
 config.add_route('wikipage_edit', '/{uid}/edit')
 config.add_static_view('deform_static', 'deform:static/')
 config.scan('.views')
 return config.make_wsgi_app()

	Implement the new views, as well as the form schemas and some
dummy data, in forms/tutorial/views.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

	import colander
import deform.widget

from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

pages = {
 '100': dict(uid='100', title='Page 100', body='100'),
 '101': dict(uid='101', title='Page 101', body='101'),
 '102': dict(uid='102', title='Page 102', body='102')
}

class WikiPage(colander.MappingSchema):
 title = colander.SchemaNode(colander.String())
 body = colander.SchemaNode(
 colander.String(),
 widget=deform.widget.RichTextWidget()
)

class WikiViews(object):
 def __init__(self, request):
 self.request = request

 @property
 def wiki_form(self):
 schema = WikiPage()
 return deform.Form(schema, buttons=('submit',))

 @property
 def reqts(self):
 return self.wiki_form.get_widget_resources()

 @view_config(route_name='wiki_view', renderer='wiki_view.pt')
 def wiki_view(self):
 return dict(pages=pages.values())

 @view_config(route_name='wikipage_add',
 renderer='wikipage_addedit.pt')
 def wikipage_add(self):
 form = self.wiki_form.render()

 if 'submit' in self.request.params:
 controls = self.request.POST.items()
 try:
 appstruct = self.wiki_form.validate(controls)
 except deform.ValidationFailure as e:
 # Form is NOT valid
 return dict(form=e.render())

 # Form is valid, make a new identifier and add to list
 last_uid = int(sorted(pages.keys())[-1])
 new_uid = str(last_uid + 1)
 pages[new_uid] = dict(
 uid=new_uid, title=appstruct['title'],
 body=appstruct['body']
)

 # Now visit new page
 url = self.request.route_url('wikipage_view', uid=new_uid)
 return HTTPFound(url)

 return dict(form=form)

 @view_config(route_name='wikipage_view', renderer='wikipage_view.pt')
 def wikipage_view(self):
 uid = self.request.matchdict['uid']
 page = pages[uid]
 return dict(page=page)

 @view_config(route_name='wikipage_edit',
 renderer='wikipage_addedit.pt')
 def wikipage_edit(self):
 uid = self.request.matchdict['uid']
 page = pages[uid]

 wiki_form = self.wiki_form

 if 'submit' in self.request.params:
 controls = self.request.POST.items()
 try:
 appstruct = wiki_form.validate(controls)
 except deform.ValidationFailure as e:
 return dict(page=page, form=e.render())

 # Change the content and redirect to the view
 page['title'] = appstruct['title']
 page['body'] = appstruct['body']

 url = self.request.route_url('wikipage_view',
 uid=page['uid'])
 return HTTPFound(url)

 form = wiki_form.render(page)

 return dict(page=page, form=form)

	A template for the top of the "wiki" in
forms/tutorial/wiki_view.pt:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>Wiki: View</title>
</head>
<body>
<h1>Wiki</h1>

Add
 WikiPage

 <li tal:repeat="page pages">

 ${page.title}

</body>
</html>

	Another template for adding/editing in
forms/tutorial/wikipage_addedit.pt:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>WikiPage: Add/Edit</title>
 <tal:block tal:repeat="reqt view.reqts['css']">
 <link rel="stylesheet" type="text/css"
 href="${request.static_url(reqt)}"/>
 </tal:block>
 <script src="${request.static_url('deform:static/scripts/jquery-2.0.3.min.js')}"
 type="text/javascript"></script>
 <tal:block tal:repeat="reqt view.reqts['js']">
 <script src="${request.static_url(reqt)}"
 type="text/javascript"></script>
 </tal:block>
</head>
<body>
<h1>Wiki</h1>

<p>${structure: form}</p>
<script type="text/javascript">
 deform.load()
</script>
</body>
</html>

	Finally, a template at forms/tutorial/wikipage_view.pt
for viewing a wiki page:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>WikiPage: View</title>
</head>
<body>

 Up
 |

 Edit

<h1>${page.title}</h1>
<p>${structure: page.body}</p>
</body>
</html>

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in a browser.

Analysis

This step helps illustrate the utility of asset specifications for
static assets. We have an outside package called Deform with static
assets which need to be published. We don't have to know where on disk
it is located. We point at the package, then the path inside the package.

We just need to include a call to add_static_view to make that
directory available at a URL. For Pyramid-specific packages,
Pyramid provides a facility (config.include()) which even makes
that unnecessary for consumers of a package. (Deform is not specific to
Pyramid.)

Our forms have rich widgets which need the static CSS and JS just
mentioned. Deform has a resource registry [http://docs.pylonsproject.org/projects/deform/en/latest/glossary.html#term-resource-registry] which allows widgets
to specify which JS and CSS are needed. Our wikipage_addedit.pt
template shows how we iterated over that data to generate markup that
includes the needed resources.

Our add and edit views use a pattern called self-posting forms.
Meaning, the same URL is used to GET the form as is used to
POST the form. The route, the view, and the template are the same
whether you are walking up to it the first time or you clicked a button.

Inside the view we do if 'submit' in self.request.params: to see if
this form was a POST where the user clicked on a particular button
<input name="submit">.

The form controller then follows a typical pattern:

	If you are doing a GET, skip over and just return the form

	If you are doing a POST, validate the form contents

	If the form is invalid, bail out by re-rendering the form with the
supplied POST data

	If the validation succeeded, perform some action and issue a
redirect via HTTPFound.

We are, in essence, writing our own form controller. Other
Pyramid-based systems, including pyramid_deform, provide a
form-centric view class which automates much of this branching and
routing.

Extra Credit

	Give a try at a button that goes to a delete view for a
particular wiki page.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

19: Databases Using SQLAlchemy

Store/retrieve data using the SQLAlchemy ORM atop the SQLite database.

Background

Our Pyramid-based wiki application now needs database-backed storage of
pages. This frequently means a SQL database. The Pyramid community
strongly supports the
SQLAlchemy [http://docs.sqlalchemy.org/en/latest/index.html#index-toplevel] project and its
object-relational mapper (ORM) [http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#ormtutorial-toplevel]
as a convenient, Pythonic way to interface to databases.

In this step we hook up SQLAlchemy to a SQLite database table,
providing storage and retrieval for the wikipages in the previous step.

Note

The alchemy scaffold is really helpful for getting a
SQLAlchemy project going, including generation of the console
script. Since we want to see all the decisions, we will forgo
convenience in this tutorial and wire it up ourselves.

Objectives

	Store pages in SQLite by using SQLAlchemy models

	Use SQLAlchemy queries to list/add/view/edit pages

	Provide a database-initialize command by writing a Pyramid console
script which can be run from the command line

Steps

	We are going to use the forms step as our starting point:

$ cd ..; cp -r forms databases; cd databases

	We need to add some dependencies in databases/setup.py as well
as an "entry point" for the command-line script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from setuptools import setup

requires = [
 'pyramid',
 'pyramid_chameleon',
 'deform',
 'sqlalchemy',
 'pyramid_tm',
 'zope.sqlalchemy'
]

setup(name='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 [console_scripts]
 initialize_tutorial_db = tutorial.initialize_db:main
 """,
)

Note

We aren't yet doing $VENV/bin/python setup.py develop as we
will change it later.

	Our configuration file at databases/development.ini wires
together some new pieces:

[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.includes =
 pyramid_debugtoolbar
 pyramid_tm

sqlalchemy.url = sqlite:///%(here)s/sqltutorial.sqlite

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root, tutorial, sqlalchemy.engine.base.Engine

[logger_tutorial]
level = DEBUG
handlers =
qualname = tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_sqlalchemy.engine.base.Engine]
level = INFO
handlers =
qualname = sqlalchemy.engine.base.Engine

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

	This engine configuration now needs to be read into the application
through changes in databases/tutorial/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from pyramid.config import Configurator

from sqlalchemy import engine_from_config

from .models import DBSession, Base

def main(global_config, **settings):
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine

 config = Configurator(settings=settings,
 root_factory='tutorial.models.Root')
 config.include('pyramid_chameleon')
 config.add_route('wiki_view', '/')
 config.add_route('wikipage_add', '/add')
 config.add_route('wikipage_view', '/{uid}')
 config.add_route('wikipage_edit', '/{uid}/edit')
 config.add_static_view('deform_static', 'deform:static/')
 config.scan('.views')
 return config.make_wsgi_app()

	Make a command-line script at databases/tutorial/initialize_db.py
to initialize the database:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	import os
import sys
import transaction

from sqlalchemy import engine_from_config

from pyramid.paster import (
 get_appsettings,
 setup_logging,
)

from .models import (
 DBSession,
 Page,
 Base,
)

def usage(argv):
 cmd = os.path.basename(argv[0])
 print('usage: %s <config_uri>\n'
 '(example: "%s development.ini")' % (cmd, cmd))
 sys.exit(1)

def main(argv=sys.argv):
 if len(argv) != 2:
 usage(argv)
 config_uri = argv[1]
 setup_logging(config_uri)
 settings = get_appsettings(config_uri)
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.create_all(engine)
 with transaction.manager:
 model = Page(title='Root', body='<p>Root</p>')
 DBSession.add(model)

	Since setup.py changed, we now run it:

$ $VENV/bin/python setup.py develop

	The script references some models in databases/tutorial/models.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	from pyramid.security import Allow, Everyone

from sqlalchemy import (
 Column,
 Integer,
 Text,
)

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
)

from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(
 sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

class Page(Base):
 __tablename__ = 'wikipages'
 uid = Column(Integer, primary_key=True)
 title = Column(Text, unique=True)
 body = Column(Text)

class Root(object):
 __acl__ = [(Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'edit')]

 def __init__(self, request):
 pass

	Let's run this console script, thus producing our database and table:

$ $VENV/bin/initialize_tutorial_db development.ini
2015-06-01 11:22:52,650 INFO [sqlalchemy.engine.base.Engine][MainThread] SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2015-06-01 11:22:52,650 INFO [sqlalchemy.engine.base.Engine][MainThread] ()
2015-06-01 11:22:52,651 INFO [sqlalchemy.engine.base.Engine][MainThread] SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2015-06-01 11:22:52,651 INFO [sqlalchemy.engine.base.Engine][MainThread] ()
2015-06-01 11:22:52,652 INFO [sqlalchemy.engine.base.Engine][MainThread] PRAGMA table_info("wikipages")
2015-06-01 11:22:52,652 INFO [sqlalchemy.engine.base.Engine][MainThread] ()
2015-06-01 11:22:52,653 INFO [sqlalchemy.engine.base.Engine][MainThread]
CREATE TABLE wikipages (
 uid INTEGER NOT NULL,
 title TEXT,
 body TEXT,
 PRIMARY KEY (uid),
 UNIQUE (title)
)

2015-06-01 11:22:52,653 INFO [sqlalchemy.engine.base.Engine][MainThread] ()
2015-06-01 11:22:52,655 INFO [sqlalchemy.engine.base.Engine][MainThread] COMMIT
2015-06-01 11:22:52,658 INFO [sqlalchemy.engine.base.Engine][MainThread] BEGIN (implicit)
2015-06-01 11:22:52,659 INFO [sqlalchemy.engine.base.Engine][MainThread] INSERT INTO wikipages (title, body) VALUES (?, ?)
2015-06-01 11:22:52,659 INFO [sqlalchemy.engine.base.Engine][MainThread] ('Root', '<p>Root</p>')
2015-06-01 11:22:52,659 INFO [sqlalchemy.engine.base.Engine][MainThread] COMMIT

	With our data now driven by SQLAlchemy queries, we need to update
our databases/tutorial/views.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

	import colander
import deform.widget

from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

from .models import DBSession, Page

class WikiPage(colander.MappingSchema):
 title = colander.SchemaNode(colander.String())
 body = colander.SchemaNode(
 colander.String(),
 widget=deform.widget.RichTextWidget()
)

class WikiViews(object):
 def __init__(self, request):
 self.request = request

 @property
 def wiki_form(self):
 schema = WikiPage()
 return deform.Form(schema, buttons=('submit',))

 @property
 def reqts(self):
 return self.wiki_form.get_widget_resources()

 @view_config(route_name='wiki_view', renderer='wiki_view.pt')
 def wiki_view(self):
 pages = DBSession.query(Page).order_by(Page.title)
 return dict(title='Wiki View', pages=pages)

 @view_config(route_name='wikipage_add',
 renderer='wikipage_addedit.pt')
 def wikipage_add(self):
 form = self.wiki_form.render()

 if 'submit' in self.request.params:
 controls = self.request.POST.items()
 try:
 appstruct = self.wiki_form.validate(controls)
 except deform.ValidationFailure as e:
 # Form is NOT valid
 return dict(form=e.render())

 # Add a new page to the database
 new_title = appstruct['title']
 new_body = appstruct['body']
 DBSession.add(Page(title=new_title, body=new_body))

 # Get the new ID and redirect
 page = DBSession.query(Page).filter_by(title=new_title).one()
 new_uid = page.uid

 url = self.request.route_url('wikipage_view', uid=new_uid)
 return HTTPFound(url)

 return dict(form=form)

 @view_config(route_name='wikipage_view', renderer='wikipage_view.pt')
 def wikipage_view(self):
 uid = int(self.request.matchdict['uid'])
 page = DBSession.query(Page).filter_by(uid=uid).one()
 return dict(page=page)

 @view_config(route_name='wikipage_edit',
 renderer='wikipage_addedit.pt')
 def wikipage_edit(self):
 uid = int(self.request.matchdict['uid'])
 page = DBSession.query(Page).filter_by(uid=uid).one()

 wiki_form = self.wiki_form

 if 'submit' in self.request.params:
 controls = self.request.POST.items()
 try:
 appstruct = wiki_form.validate(controls)
 except deform.ValidationFailure as e:
 return dict(page=page, form=e.render())

 # Change the content and redirect to the view
 page.title = appstruct['title']
 page.body = appstruct['body']
 url = self.request.route_url('wikipage_view', uid=uid)
 return HTTPFound(url)

 form = self.wiki_form.render(dict(
 uid=page.uid, title=page.title, body=page.body)
)

 return dict(page=page, form=form)

	Our tests in databases/tutorial/tests.py changed to include
SQLAlchemy bootstrapping:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	import unittest
import transaction

from pyramid import testing

def _initTestingDB():
 from sqlalchemy import create_engine
 from .models import (
 DBSession,
 Page,
 Base
)
 engine = create_engine('sqlite://')
 Base.metadata.create_all(engine)
 DBSession.configure(bind=engine)
 with transaction.manager:
 model = Page(title='FrontPage', body='This is the front page')
 DBSession.add(model)
 return DBSession

class WikiViewTests(unittest.TestCase):
 def setUp(self):
 self.session = _initTestingDB()
 self.config = testing.setUp()

 def tearDown(self):
 self.session.remove()
 testing.tearDown()

 def test_wiki_view(self):
 from tutorial.views import WikiViews

 request = testing.DummyRequest()
 inst = WikiViews(request)
 response = inst.wiki_view()
 self.assertEqual(response['title'], 'Wiki View')

class WikiFunctionalTests(unittest.TestCase):
 def setUp(self):
 from pyramid.paster import get_app
 app = get_app('development.ini')
 from webtest import TestApp
 self.testapp = TestApp(app)

 def tearDown(self):
 from .models import DBSession
 DBSession.remove()

 def test_it(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'Wiki: View', res.body)
 res = self.testapp.get('/add', status=200)
 self.assertIn(b'Add/Edit', res.body)

	Run the tests in your package using nose:

$ $VENV/bin/nosetests tutorial
..

Ran 2 tests in 1.141s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in a browser.

Analysis

Let's start with the dependencies. We made the decision to use
SQLAlchemy to talk to our database. We also, though, installed
pyramid_tm and zope.sqlalchemy. Why?

Pyramid has a strong orientation towards support for transactions.
Specifically, you can install a transaction manager into your
application either as middleware or a Pyramid "tween". Then,
just before you return the response, all transaction-aware parts of
your application are executed.

This means Pyramid view code usually doesn't manage transactions. If
your view code or a template generates an error, the transaction manager
aborts the transaction. This is a very liberating way to write code.

The pyramid_tm package provides a "tween" that is configured in the
development.ini configuration file. That installs it. We then need
a package that makes SQLAlchemy, and thus the RDBMS transaction manager,
integrate with the Pyramid transaction manager. That's what
zope.sqlalchemy does.

Where do we point at the location on disk for the SQLite file? In the
configuration file. This lets consumers of our package change the
location in a safe (non-code) way. That is, in configuration. This
configuration-oriented approach isn't required in Pyramid; you can
still make such statements in your __init__.py or some companion
module.

The initialize_tutorial_db is a nice example of framework support.
You point your setup at the location of some [console_scripts] and
these get generated into your virtualenv's bin directory. Our
console script follows the pattern of being fed a configuration file
with all the bootstrapping. It then opens SQLAlchemy and creates the
root of the wiki, which also makes the SQLite file. Note the
with transaction.manager part that puts the work in the scope of a
transaction, as we aren't inside a web request where this is done
automatically.

The models.py does a little bit extra work to hook up SQLAlchemy
into the Pyramid transaction manager. It then declares the model for a
Page.

Our views have changes primarily around replacing our dummy
dictionary-of-dictionaries data with proper database support: list the
rows, add a row, edit a row, and delete a row.

Extra Credit

	Why all this code? Why can't I just type 2 lines and have magic ensue?

	Give a try at a button that deletes a wiki page.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

20: Logins With Authentication

Login views that authenticate a username/password against a list of
users.

Background

Most web applications have URLs that allow people to add/edit/delete
content via a web browser. Time to add
security
to the application. In this first step we introduce authentication.
That is, logging in and logging out using Pyramid's rich facilities for
pluggable user storages.

In the next step we will introduce protection resources with
authorization security statements.

Objectives

	Introduce the Pyramid concepts of authentication

	Create login/logout views

Steps

	We are going to use the view classes step as our starting point:

$ cd ..; cp -r view_classes authentication; cd authentication
$ $VENV/bin/python setup.py develop

	Put the security hash in the authentication/development.ini
configuration file as tutorial.secret instead of putting it in
the code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.includes =
 pyramid_debugtoolbar
tutorial.secret = 98zd

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

	Get authentication (and for now, authorization policies) and login
route into the configurator in
authentication/tutorial/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy
from pyramid.config import Configurator

from .security import groupfinder

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')

 # Security policies
 authn_policy = AuthTktAuthenticationPolicy(
 settings['tutorial.secret'], callback=groupfinder,
 hashalg='sha512')
 authz_policy = ACLAuthorizationPolicy()
 config.set_authentication_policy(authn_policy)
 config.set_authorization_policy(authz_policy)

 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.add_route('login', '/login')
 config.add_route('logout', '/logout')
 config.scan('.views')
 return config.make_wsgi_app()

	Create a authentication/tutorial/security.py module that can find
our user information by providing an authentication policy callback:

	1
2
3
4
5
6
7
8

	USERS = {'editor': 'editor',
 'viewer': 'viewer'}
GROUPS = {'editor': ['group:editors']}

def groupfinder(userid, request):
 if userid in USERS:
 return GROUPS.get(userid, [])

	Update the views in authentication/tutorial/views.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

	from pyramid.httpexceptions import HTTPFound
from pyramid.security import (
 remember,
 forget,
)

from pyramid.view import (
 view_config,
 view_defaults
)

from .security import USERS

@view_defaults(renderer='home.pt')
class TutorialViews:
 def __init__(self, request):
 self.request = request
 self.logged_in = request.authenticated_userid

 @view_config(route_name='home')
 def home(self):
 return {'name': 'Home View'}

 @view_config(route_name='hello')
 def hello(self):
 return {'name': 'Hello View'}

 @view_config(route_name='login', renderer='login.pt')
 def login(self):
 request = self.request
 login_url = request.route_url('login')
 referrer = request.url
 if referrer == login_url:
 referrer = '/' # never use login form itself as came_from
 came_from = request.params.get('came_from', referrer)
 message = ''
 login = ''
 password = ''
 if 'form.submitted' in request.params:
 login = request.params['login']
 password = request.params['password']
 if USERS.get(login) == password:
 headers = remember(request, login)
 return HTTPFound(location=came_from,
 headers=headers)
 message = 'Failed login'

 return dict(
 name='Login',
 message=message,
 url=request.application_url + '/login',
 came_from=came_from,
 login=login,
 password=password,
)

 @view_config(route_name='logout')
 def logout(self):
 request = self.request
 headers = forget(request)
 url = request.route_url('home')
 return HTTPFound(location=url,
 headers=headers)

	Add a login template at authentication/tutorial/login.pt:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${name}</title>
</head>
<body>
<h1>Login</h1>

<form action="${url}" method="post">
 <input type="hidden" name="came_from"
 value="${came_from}"/>
 <label for="login">Username</label>
 <input type="text" id="login"
 name="login"
 value="${login}"/>

 <label for="password">Password</label>
 <input type="password" id="password"
 name="password"
 value="${password}"/>

 <input type="submit" name="form.submitted"
 value="Log In"/>
</form>
</body>
</html>

	Provide a login/logout box in authentication/tutorial/home.pt

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>Quick Tutorial: ${name}</title>
</head>
<body>

<div>
 <a tal:condition="view.logged_in is None"
 href="${request.application_url}/login">Log In
 <a tal:condition="view.logged_in is not None"
 href="${request.application_url}/logout">Logout
</div>

<h1>Hi ${name}</h1>
<p>Visit hello</p>
</body>
</html>

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in a browser.

	Click the "Log In" link.

	Submit the login form with the username editor and the password
editor.

	Note that the "Log In" link has changed to "Logout".

	Click the "Logout" link.

Analysis

Unlike many web frameworks, Pyramid includes a built-in but optional
security model for authentication and authorization. This security
system is intended to be flexible and support many needs. In this
security model, authentication (who are you) and authorization (what
are you allowed to do) are not just pluggable, but de-coupled. To learn
one step at a time, we provide a system that identifies users and lets
them log out.

In this example we chose to use the bundled
AuthTktAuthenticationPolicy
policy. We enabled it in our configuration and provided a
ticket-signing secret in our INI file.

Our view class grew a login view. When you reached it via a GET,
it returned a login form. When reached via POST, it processed the
username and password against the "groupfinder" callable that we
registered in the configuration.

In our template, we fetched the logged_in value from the view
class. We use this to calculate the logged-in user,
if any. In the template we can then choose to show a login link to
anonymous visitors or a logout link to logged-in users.

Extra Credit

	What is the difference between a user and a principal?

	Can I use a database behind my groupfinder to look up principals?

	Once I am logged in, does any user-centric information get jammed
onto each request? Use import pdb; pdb.set_trace() to answer
this.

See also

See also Security,
AuthTktAuthenticationPolicy.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	Quick Tutorial for Pyramid

21: Protecting Resources With Authorization

Assign security statements to resources describing the permissions
required to perform an operation.

Background

Our application has URLs that allow people to add/edit/delete content
via a web browser. Time to add security to the application. Let's
protect our add/edit views to require a login (username of
editor and password of editor). We will allow the other views
to continue working without a password.

Objectives

	Introduce the Pyramid concepts of authentication, authorization,
permissions, and access control lists (ACLs)

	Make a root factory that returns an instance of our
class for the top of the application

	Assign security statements to our root resource

	Add a permissions predicate on a view

	Provide a Forbidden view to handle visiting a URL without
adequate permissions

Steps

	We are going to use the authentication step as our starting point:

$ cd ..; cp -r authentication authorization; cd authorization
$ $VENV/bin/python setup.py develop

	Start by changing authorization/tutorial/__init__.py to
specify a root factory to the configurator:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy
from pyramid.config import Configurator

from .security import groupfinder

def main(global_config, **settings):
 config = Configurator(settings=settings,
 root_factory='.resources.Root')
 config.include('pyramid_chameleon')

 # Security policies
 authn_policy = AuthTktAuthenticationPolicy(
 settings['tutorial.secret'], callback=groupfinder,
 hashalg='sha512')
 authz_policy = ACLAuthorizationPolicy()
 config.set_authentication_policy(authn_policy)
 config.set_authorization_policy(authz_policy)

 config.add_route('home', '/')
 config.add_route('hello', '/howdy')
 config.add_route('login', '/login')
 config.add_route('logout', '/logout')
 config.scan('.views')
 return config.make_wsgi_app()

	That means we need to implement
authorization/tutorial/resources.py

	1
2
3
4
5
6
7
8
9

	from pyramid.security import Allow, Everyone

class Root(object):
 __acl__ = [(Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'edit')]

 def __init__(self, request):
 pass

	Change authorization/tutorial/views.py to require the edit
permission on the hello view and implement the forbidden view:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	from pyramid.httpexceptions import HTTPFound
from pyramid.security import (
 remember,
 forget,
)

from pyramid.view import (
 view_config,
 view_defaults,
 forbidden_view_config
)

from .security import USERS

@view_defaults(renderer='home.pt')
class TutorialViews:
 def __init__(self, request):
 self.request = request
 self.logged_in = request.authenticated_userid

 @view_config(route_name='home')
 def home(self):
 return {'name': 'Home View'}

 @view_config(route_name='hello', permission='edit')
 def hello(self):
 return {'name': 'Hello View'}

 @view_config(route_name='login', renderer='login.pt')
 @forbidden_view_config(renderer='login.pt')
 def login(self):
 request = self.request
 login_url = request.route_url('login')
 referrer = request.url
 if referrer == login_url:
 referrer = '/' # never use login form itself as came_from
 came_from = request.params.get('came_from', referrer)
 message = ''
 login = ''
 password = ''
 if 'form.submitted' in request.params:
 login = request.params['login']
 password = request.params['password']
 if USERS.get(login) == password:
 headers = remember(request, login)
 return HTTPFound(location=came_from,
 headers=headers)
 message = 'Failed login'

 return dict(
 name='Login',
 message=message,
 url=request.application_url + '/login',
 came_from=came_from,
 login=login,
 password=password,
)

 @view_config(route_name='logout')
 def logout(self):
 request = self.request
 headers = forget(request)
 url = request.route_url('home')
 return HTTPFound(location=url,
 headers=headers)

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in a browser.

	If you are still logged in, click the "Log Out" link.

	Visit http://localhost:6543/howdy in a browser. You should be
asked to login.

Analysis

This simple tutorial step can be boiled down to the following:

	A view can require a permission (edit)

	The context for our view (the Root) has an access control list
(ACL)

	This ACL says that the edit permission is available on Root
to the group:editors principal

	The registered groupfinder answers whether a particular user
(editor) has a particular group (group:editors)

In summary: hello wants edit permission, Root says
group:editors has edit permission.

Of course, this only applies on Root. Some other part of the site
(a.k.a. context) might have a different ACL.

If you are not logged in and visit /howdy, you need to get
shown the login screen. How does Pyramid know what is the login page to
use? We explicitly told Pyramid that the login view should be used
by decorating the view with @forbidden_view_config.

Extra Credit

	Do I have to put a renderer in my @forbidden_view_config
decorator?

	Perhaps you would like the experience of not having enough permissions
(forbidden) to be richer. How could you change this?

	Perhaps we want to store security statements in a database and
allow editing via a browser. How might this be done?

	What if we want different security statements on different kinds of
objects? Or on the same kinds of objects, but in different parts of a
URL hierarchy?

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

SQLAlchemy + URL Dispatch Wiki Tutorial

This tutorial introduces a SQLAlchemy and url dispatch-based
Pyramid application to a developer familiar with Python. When the
tutorial is finished, the developer will have created a basic Wiki
application with authentication.

For cut and paste purposes, the source code for all stages of this
tutorial can be browsed on GitHub at docs/tutorials/wiki2/src [https://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src],
which corresponds to the same location if you have Pyramid sources.

	Background

	Design
	Overall

	Models

	Views

	Security

	Summary

	Installation
	Before you begin

	Making a project

	Installing the project in development mode

	Run the tests

	Expose test coverage information

	Initializing the database

	Start the application

	Visit the application in a browser

	Decisions the alchemy scaffold has made for you

	Basic Layout
	Application configuration with __init__.py

	View declarations via views.py

	Content Models with models.py

	Defining the Domain Model
	Edit models.py

	Changing scripts/initializedb.py

	Installing the project and re-initializing the database

	View the application in a browser

	Defining Views
	Declaring Dependencies in Our setup.py File

	Running setup.py develop

	Adding view functions in views.py

	Adding templates

	Adding Routes to __init__.py

	Viewing the application in a browser

	Adding authorization
	Access control

	Login, logout

	Reviewing our changes

	Viewing the application in a browser

	Adding Tests
	Test the models

	Test the views

	Functional tests

	View the results of all our edits to tests.py

	Running the tests

	Distributing Your Application

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Background

This version of the Pyramid wiki tutorial presents a
Pyramid application that uses technologies which will be
familiar to someone with SQL database experience. It uses
SQLAlchemy as a persistence mechanism and url dispatch to map
URLs to code. It can also be followed by people without any prior
Python web framework experience.

To code along with this tutorial, the developer will need a UNIX
machine with development tools (Mac OS X with XCode, any Linux or BSD
variant, etc) or a Windows system of any kind.

Note

This tutorial runs on both Python 2 and 3 without modification.

Have fun!

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Design

Following is a quick overview of the design of our wiki application, to help
us understand the changes that we will be making as we work through the
tutorial.

Overall

We choose to use reStructuredText markup in the wiki text. Translation
from reStructuredText to HTML is provided by the widely used docutils
Python module. We will add this module in the dependency list on the project
setup.py file.

Models

We'll be using a SQLite database to hold our wiki data, and we'll be using
SQLAlchemy to access the data in this database.

Within the database, we define a single table named pages, whose elements
will store the wiki pages. There are two columns: name and data.

URLs like /PageName will try to find an element in
the table that has a corresponding name.

To add a page to the wiki, a new row is created and the text
is stored in data.

A page named FrontPage containing the text This is the front page, will
be created when the storage is initialized, and will be used as the wiki home
page.

Views

There will be three views to handle the normal operations of adding,
editing, and viewing wiki pages, plus one view for the wiki front page.
Two templates will be used, one for viewing, and one for both adding
and editing wiki pages.

The default templating systems in Pyramid are
Chameleon and Mako. Chameleon is a variant of
ZPT, which is an XML-based templating language. Mako is a
non-XML-based templating language. Because we had to pick one,
we chose Chameleon for this tutorial.

Security

We'll eventually be adding security to our application. The components we'll
use to do this are below.

	USERS, a dictionary mapping userids to their
corresponding passwords.

	GROUPS, a dictionary mapping userids to a
list of groups to which they belong.

	groupfinder, an authorization callback that looks up USERS and
GROUPS. It will be provided in a new security.py file.

	An ACL is attached to the root resource. Each row below
details an ACE:

	Action
	Principal
	Permission

	Allow
	Everyone
	View

	Allow
	group:editors
	Edit

	Permission declarations are added to the views to assert the security
policies as each request is handled.

Two additional views and one template will handle the login and
logout tasks.

Summary

The URL, actions, template and permission associated to each view are
listed in the following table:

	URL
	Action
	View
	Template
	Permission

	/
	Redirect to
/FrontPage
	view_wiki
	
	

	/PageName
	Display existing
page [2]
	view_page
[1]
	view.pt
	view

	/PageName/edit_page
	Display edit form
with existing
content.

If the form was
submitted, redirect
to /PageName

	edit_page
	edit.pt
	edit

	/add_page/PageName
	Create the page
PageName in
storage, display
the edit form
without content.

If the form was
submitted,
redirect to
/PageName

	add_page
	edit.pt
	edit

	/login
	Display login form,
Forbidden [3]

If the form was
submitted,
authenticate.

	If authentication
succeeds,
redirect to the
page that we
came from.

	If authentication
fails, display
login form with
"login failed"
message.

	login
	login.pt
	

	/logout
	Redirect to
/FrontPage
	logout
	
	

	[1]	This is the default view for a Page context
when there is no view name.

	[2]	Pyramid will return a default 404 Not Found page
if the page PageName does not exist yet.

	[3]	pyramid.exceptions.Forbidden is reached when a
user tries to invoke a view that is
not authorized by the authorization policy.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Installation

Before you begin

This tutorial assumes that you have already followed the steps in
Installing Pyramid, except do not create a virtualenv or install
Pyramid. Thereby you will satisfy the following requirements.

	Python interpreter is installed on your operating system

	setuptools or distribute is installed

	virtualenv is installed

Create directory to contain the project

We need a workspace for our project files.

On UNIX

$ mkdir ~/pyramidtut

On Windows

c:\> mkdir pyramidtut

Create and use a virtual Python environment

Next let's create a virtualenv workspace for our project. We will
use the VENV environment variable instead of the absolute path of the
virtual environment.

On UNIX

$ export VENV=~/pyramidtut
$ virtualenv $VENV
New python executable in /home/foo/env/bin/python
Installing setuptools.............done.

On Windows

c:\> set VENV=c:\pyramidtut

Versions of Python use different paths, so you will need to adjust the
path to the command for your Python version.

Python 2.7:

c:\> c:\Python27\Scripts\virtualenv %VENV%

Python 3.2:

c:\> c:\Python32\Scripts\virtualenv %VENV%

Install Pyramid into the virtual Python environment

On UNIX

$ $VENV/bin/easy_install pyramid

On Windows

c:\> %VENV%\Scripts\easy_install pyramid

Install SQLite3 and its development packages

If you used a package manager to install your Python or if you compiled
your Python from source, then you must install SQLite3 and its
development packages. If you downloaded your Python as an installer
from python.org, then you already have it installed and can proceed to
the next section Making a project..

If you need to install the SQLite3 packages, then, for example, using
the Debian system and apt-get, the command would be the following:

$ sudo apt-get install libsqlite3-dev

Change directory to your virtual Python environment

Change directory to the pyramidtut directory.

On UNIX

$ cd pyramidtut

On Windows

c:\> cd pyramidtut

Making a project

Your next step is to create a project. For this tutorial we will use
the scaffold named alchemy which generates an application
that uses SQLAlchemy and URL dispatch.

Pyramid supplies a variety of scaffolds to generate sample
projects. We will use pcreate—a script that comes with Pyramid to
quickly and easily generate scaffolds, usually with a single command—to
create the scaffold for our project.

By passing alchemy into the pcreate command, the script creates
the files needed to use SQLAlchemy. By passing in our application name
tutorial, the script inserts that application name into all the
required files. For example, pcreate creates the
initialize_tutorial_db in the pyramidtut/bin directory.

The below instructions assume your current working directory is "pyramidtut".

On UNIX

$ $VENV/bin/pcreate -s alchemy tutorial

On Windows

c:\pyramidtut> %VENV%\Scripts\pcreate -s alchemy tutorial

Note

If you are using Windows, the alchemy
scaffold may not deal gracefully with installation into a
location that contains spaces in the path. If you experience
startup problems, try putting both the virtualenv and the project
into directories that do not contain spaces in their paths.

Installing the project in development mode

In order to do development on the project easily, you must "register"
the project as a development egg in your workspace using the
setup.py develop command. In order to do so, cd to the tutorial
directory you created in Making a project, and run the
setup.py develop command using the virtualenv Python interpreter.

On UNIX

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

The console will show setup.py checking for packages and installing
missing packages. Success executing this command will show a line like
the following:

Finished processing dependencies for tutorial==0.0

Run the tests

After you've installed the project in development mode, you may run
the tests for the project.

On UNIX

$ $VENV/bin/python setup.py test -q

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

For a successful test run, you should see output that ends like this:

.
--
Ran 1 test in 0.094s

OK

Expose test coverage information

You can run the nosetests command to see test coverage
information. This runs the tests in the same way that setup.py
test does but provides additional "coverage" information, exposing
which lines of your project are "covered" (or not covered) by the
tests.

To get this functionality working, we'll need to install the nose and
coverage packages into our virtualenv:

On UNIX

$ $VENV/bin/easy_install nose coverage

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\easy_install nose coverage

Once nose and coverage are installed, we can actually run the
coverage tests.

On UNIX

$ $VENV/bin/nosetests --cover-package=tutorial --cover-erase --with-coverage

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\nosetests --cover-package=tutorial \
 --cover-erase --with-coverage

If successful, you will see output something like this:

.
Name Stmts Miss Cover Missing

tutorial.py 13 9 31% 13-21
tutorial/models.py 12 0 100%
tutorial/scripts.py 0 0 100%
tutorial/views.py 11 0 100%

TOTAL 36 9 75%
--
Ran 2 tests in 0.643s

OK

Looks like our package doesn't quite have 100% test coverage.

Initializing the database

We need to use the initialize_tutorial_db console
script to initialize our database.

Type the following command, making sure you are still in the tutorial
directory (the directory with a development.ini in it):

On UNIX

$ $VENV/bin/initialize_tutorial_db development.ini

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\initialize_tutorial_db development.ini

The output to your console should be something like this:

2015-05-23 16:49:49,609 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2015-05-23 16:49:49,609 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] PRAGMA table_info("models")
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-23 16:49:49,612 INFO [sqlalchemy.engine.base.Engine:1097][MainThread]
CREATE TABLE models (
 id INTEGER NOT NULL,
 name TEXT,
 value INTEGER,
 PRIMARY KEY (id)
)

2015-05-23 16:49:49,612 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-23 16:49:49,613 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT
2015-05-23 16:49:49,613 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] CREATE UNIQUE INDEX my_index ON models (name)
2015-05-23 16:49:49,613 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-23 16:49:49,614 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT
2015-05-23 16:49:49,616 INFO [sqlalchemy.engine.base.Engine:646][MainThread] BEGIN (implicit)
2015-05-23 16:49:49,617 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] INSERT INTO models (name, value) VALUES (?, ?)
2015-05-23 16:49:49,617 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ('one', 1)
2015-05-23 16:49:49,618 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT

Success! You should now have a tutorial.sqlite file in your current working
directory. This will be a SQLite database with a single table defined in it
(models).

Start the application

Start the application.

On UNIX

$ $VENV/bin/pserve development.ini --reload

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\pserve development.ini --reload

Note

Your OS firewall, if any, may pop up a dialog asking for authorization
to allow python to accept incoming network connections.

If successful, you will see something like this on your console:

Starting subprocess with file monitor
Starting server in PID 8966.
Starting HTTP server on http://0.0.0.0:6543

This means the server is ready to accept requests.

Visit the application in a browser

In a browser, visit http://localhost:6543/. You
will see the generated application's default page.

One thing you'll notice is the "debug toolbar" icon on right hand side of the
page. You can read more about the purpose of the icon at
The Debug Toolbar. It allows you to get information about your
application while you develop.

Decisions the alchemy scaffold has made for you

Creating a project using the alchemy scaffold makes the following
assumptions:

	you are willing to use SQLAlchemy as a database access tool

	you are willing to use URL dispatch to map URLs to code

	you want to use ZopeTransactionExtension and pyramid_tm to scope
sessions to requests

Note

Pyramid supports any persistent storage mechanism (e.g., object
database or filesystem files). It also supports an additional
mechanism to map URLs to code (traversal). However, for the
purposes of this tutorial, we'll only be using URL dispatch and
SQLAlchemy.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Basic Layout

The starter files generated by the alchemy scaffold are very basic, but
they provide a good orientation for the high-level patterns common to most
URL dispatch-based Pyramid projects.

Application configuration with __init__.py

A directory on disk can be turned into a Python package by containing
an __init__.py file. Even if empty, this marks a directory as a Python
package. We use __init__.py both as a marker, indicating the directory
in which it's contained is a package, and to contain application configuration
code.

Open tutorial/tutorial/__init__.py. It should already contain
the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from pyramid.config import Configurator
from sqlalchemy import engine_from_config

from .models import (
 DBSession,
 Base,
)

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('home', '/')
 config.scan()
 return config.make_wsgi_app()

Let's go over this piece-by-piece. First, we need some imports to support
later code:

	1
2
3
4
5
6
7
8
9

	from pyramid.config import Configurator
from sqlalchemy import engine_from_config

from .models import (
 DBSession,
 Base,
)

__init__.py defines a function named main. Here is the entirety of
the main function we've defined in our __init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('home', '/')
 config.scan()
 return config.make_wsgi_app()

When you invoke the pserve development.ini command, the main function
above is executed. It accepts some settings and returns a WSGI
application. (See Startup for more about pserve.)

The main function first creates a SQLAlchemy database engine using
sqlalchemy.engine_from_config() [http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.engine_from_config] from the sqlalchemy. prefixed
settings in the development.ini file's [app:main] section.
This will be a URI (something like sqlite://):

 engine = engine_from_config(settings, 'sqlalchemy.')

main then initializes our SQLAlchemy session object, passing it the
engine:

 DBSession.configure(bind=engine)

main subsequently initializes our SQLAlchemy declarative Base object,
assigning the engine we created to the bind attribute of it's
metadata object. This allows table definitions done imperatively
(instead of declaratively, via a class statement) to work. We won't use any
such tables in our application, but if you add one later, long after you've
forgotten about this tutorial, you won't be left scratching your head when it
doesn't work.

 Base.metadata.bind = engine

The next step of main is to construct a Configurator object:

 config = Configurator(settings=settings)

settings is passed to the Configurator as a keyword argument with the
dictionary values passed as the **settings argument. This will be a
dictionary of settings parsed from the .ini file, which contains
deployment-related values such as pyramid.reload_templates,
db_string, etc.

Next, include Chameleon templating bindings so that we can use
renderers with the .pt extension within our project.

 config.include('pyramid_chameleon')

main now calls pyramid.config.Configurator.add_static_view() with
two arguments: static (the name), and static (the path):

 config.add_static_view('static', 'static', cache_max_age=3600)

This registers a static resource view which will match any URL that starts
with the prefix /static (by virtue of the first argument to
add_static_view). This will serve up static resources for us from within
the static directory of our tutorial package, in this case, via
http://localhost:6543/static/ and below (by virtue of the second argument
to add_static_view). With this declaration, we're saying that any URL that
starts with /static should go to the static view; any remainder of its
path (e.g. the /foo in /static/foo) will be used to compose a path to
a static file resource, such as a CSS file.

Using the configurator main also registers a route configuration
via the pyramid.config.Configurator.add_route() method that will be
used when the URL is /:

 config.add_route('home', '/')

Since this route has a pattern equaling / it is the route that will
be matched when the URL / is visited, e.g. http://localhost:6543/.

main next calls the scan method of the configurator
(pyramid.config.Configurator.scan()), which will recursively scan our
tutorial package, looking for @view_config (and
other special) decorators. When it finds a @view_config decorator, a
view configuration will be registered, which will allow one of our
application URLs to be mapped to some code.

 config.scan()

Finally, main is finished configuring things, so it uses the
pyramid.config.Configurator.make_wsgi_app() method to return a
WSGI application:

 return config.make_wsgi_app()

View declarations via views.py

The main function of a web framework is mapping each URL pattern to code (a
view callable) that is executed when the requested URL matches the
corresponding route. Our application uses the
pyramid.view.view_config() decorator to perform this mapping.

Open tutorial/tutorial/views.py. It should already contain the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	from pyramid.response import Response
from pyramid.view import view_config

from sqlalchemy.exc import DBAPIError

from .models import (
 DBSession,
 MyModel,
)

@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request):
 try:
 one = DBSession.query(MyModel).filter(MyModel.name == 'one').first()
 except DBAPIError:
 return Response(conn_err_msg, content_type='text/plain', status_int=500)
 return {'one': one, 'project': 'tutorial'}

conn_err_msg = """\
Pyramid is having a problem using your SQL database. The problem
might be caused by one of the following things:

1. You may need to run the "initialize_tutorial_db" script
 to initialize your database tables. Check your virtual
 environment's "bin" directory for this script and try to run it.

2. Your database server may not be running. Check that the
 database server referred to by the "sqlalchemy.url" setting in
 your "development.ini" file is running.

After you fix the problem, please restart the Pyramid application to
try it again.
"""

The important part here is that the @view_config decorator associates the
function it decorates (my_view) with a view configuration,
consisting of:

	a route_name (home)

	a renderer, which is a template from the templates subdirectory
of the package.

When the pattern associated with the home view is matched during a request,
my_view() will be executed. my_view() returns a dictionary; the
renderer will use the templates/mytemplate.pt template to create a response
based on the values in the dictionary.

Note that my_view() accepts a single argument named request. This is
the standard call signature for a Pyramid view callable.

Remember in our __init__.py when we executed the
pyramid.config.Configurator.scan() method config.scan()? The
purpose of calling the scan method was to find and process this
@view_config decorator in order to create a view configuration within our
application. Without being processed by scan, the decorator effectively
does nothing. @view_config is inert without being detected via a
scan.

The sample my_view() created by the scaffold uses a try: and except:
clause to detect if there is a problem accessing the project database and
provide an alternate error response. That response will include the text
shown at the end of the file, which will be displayed in the browser to
inform the user about possible actions to take to solve the problem.

Content Models with models.py

In a SQLAlchemy-based application, a model object is an object composed by
querying the SQL database. The models.py file is where the alchemy
scaffold put the classes that implement our models.

Open tutorial/tutorial/models.py. It should already contain the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	from sqlalchemy import (
 Column,
 Integer,
 Text,
 Index,
)

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
)

from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

class MyModel(Base):
 __tablename__ = 'models'
 id = Column(Integer, primary_key=True)
 name = Column(Text, unique=True)
 value = Column(Integer)

Index('my_index', MyModel.name, unique=True, mysql_length=255)

Let's examine this in detail. First, we need some imports to support later code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from sqlalchemy import (
 Column,
 Integer,
 Text,
 Index,
)

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
)

from zope.sqlalchemy import ZopeTransactionExtension

Next we set up a SQLAlchemy DBSession object:

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))

scoped_session and sessionmaker are standard SQLAlchemy helpers.
scoped_session allows us to access our database connection globally.
sessionmaker creates a database session object. We pass to
sessionmaker the extension=ZopeTransactionExtension() extension
option in order to allow the system to automatically manage database
transactions. With ZopeTransactionExtension activated, our application
will automatically issue a transaction commit after every request unless an
exception is raised, in which case the transaction will be aborted.

We also need to create a declarative Base object to use as a
base class for our model:

Base = declarative_base()

Our model classes will inherit from this Base class so they can be
associated with our particular database connection.

To give a simple example of a model class, we define one named MyModel:

	1
2
3
4
5

	class MyModel(Base):
 __tablename__ = 'models'
 id = Column(Integer, primary_key=True)
 name = Column(Text, unique=True)
 value = Column(Integer)

Our example model does not require an __init__ method because SQLAlchemy
supplies for us a default constructor if one is not already present,
which accepts keyword arguments of the same name as that of the mapped attributes.

Note

Example usage of MyModel:

johnny = MyModel(name="John Doe", value=10)

The MyModel class has a __tablename__ attribute. This informs
SQLAlchemy which table to use to store the data representing instances of this
class.

The Index import and the Index object creation is not required for this
tutorial, and will be removed in the next step.

That's about all there is to it regarding models, views, and initialization
code in our stock application.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Defining the Domain Model

The first change we'll make to our stock pcreate-generated application will
be to define a domain model constructor representing a wiki page.
We'll do this inside our models.py file.

Edit models.py

Note

There is nothing special about the filename models.py. A
project may have many models throughout its codebase in arbitrarily named
files. Files implementing models often have model in their filenames
or they may live in a Python subpackage of your application package named
models, but this is only by convention.

Open tutorial/tutorial/models.py file and edit it to look like the
following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from sqlalchemy import (
 Column,
 Integer,
 Text,
)

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
)

from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

class Page(Base):
 """ The SQLAlchemy declarative model class for a Page object. """
 __tablename__ = 'pages'
 id = Column(Integer, primary_key=True)
 name = Column(Text, unique=True)
 data = Column(Text)

The highlighted lines are the ones that need to be changed, as well as
removing lines that reference Index.

The first thing we've done is remove the stock MyModel class
from the generated models.py file. The MyModel class is only a
sample and we're not going to use it.

Then, we added a Page class. Because this is a SQLAlchemy application,
this class inherits from an instance of
sqlalchemy.ext.declarative.declarative_base() [http://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base].

	1
2
3
4
5
6

	class Page(Base):
 """ The SQLAlchemy declarative model class for a Page object. """
 __tablename__ = 'pages'
 id = Column(Integer, primary_key=True)
 name = Column(Text, unique=True)
 data = Column(Text)

As you can see, our Page class has a class level attribute
__tablename__ which equals the string 'pages'. This means that
SQLAlchemy will store our wiki data in a SQL table named pages. Our
Page class will also have class-level attributes named id, name
and data (all instances of sqlalchemy.schema.Column [http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Column]). These will
map to columns in the pages table. The id attribute will be the
primary key in the table. The name attribute will be a text attribute,
each value of which needs to be unique within the column. The data
attribute is a text attribute that will hold the body of each page.

Changing scripts/initializedb.py

We haven't looked at the details of this file yet, but within the scripts
directory of your tutorial package is a file named initializedb.py.
Code in this file is executed whenever we run the initialize_tutorial_db
command, as we did in the installation step of this tutorial.

Since we've changed our model, we need to make changes to our
initializedb.py script. In particular, we'll replace our import of
MyModel with one of Page and we'll change the very end of the script
to create a Page rather than a MyModel and add it to our
DBSession.

Open tutorial/tutorial/scripts/initializedb.py and edit it to look like
the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	import os
import sys
import transaction

from sqlalchemy import engine_from_config

from pyramid.paster import (
 get_appsettings,
 setup_logging,
)

from ..models import (
 DBSession,
 Page,
 Base,
)

def usage(argv):
 cmd = os.path.basename(argv[0])
 print('usage: %s <config_uri>\n'
 '(example: "%s development.ini")' % (cmd, cmd))
 sys.exit(1)

def main(argv=sys.argv):
 if len(argv) != 2:
 usage(argv)
 config_uri = argv[1]
 setup_logging(config_uri)
 settings = get_appsettings(config_uri)
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.create_all(engine)
 with transaction.manager:
 model = Page(name='FrontPage', data='This is the front page')
 DBSession.add(model)

Only the highlighted lines need to be changed, as well as removing the lines
referencing pyramid.scripts.common and options under the main
function.

Installing the project and re-initializing the database

Because our model has changed, in order to reinitialize the database, we need
to rerun the initialize_tutorial_db command to pick up the changes you've
made to both the models.py file and to the initializedb.py file. See
Initializing the database for instructions.

Success will look something like this:

2015-05-24 15:34:14,542 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2015-05-24 15:34:14,542 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-24 15:34:14,543 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2015-05-24 15:34:14,543 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-24 15:34:14,543 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] PRAGMA table_info("pages")
2015-05-24 15:34:14,544 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-24 15:34:14,544 INFO [sqlalchemy.engine.base.Engine:1097][MainThread]
CREATE TABLE pages (
 id INTEGER NOT NULL,
 name TEXT,
 data TEXT,
 PRIMARY KEY (id),
 UNIQUE (name)
)

2015-05-24 15:34:14,545 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-24 15:34:14,546 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT
2015-05-24 15:34:14,548 INFO [sqlalchemy.engine.base.Engine:646][MainThread] BEGIN (implicit)
2015-05-24 15:34:14,549 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] INSERT INTO pages (name, data) VALUES (?, ?)
2015-05-24 15:34:14,549 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ('FrontPage', 'This is the front page')
2015-05-24 15:34:14,550 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT

View the application in a browser

We can't. At this point, our system is in a "non-runnable" state; we'll need
to change view-related files in the next chapter to be able to start the
application successfully. If you try to start the application (See
Start the application), you'll wind
up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Defining Views

A view callable in a Pyramid application is typically a simple
Python function that accepts a single parameter named request. A
view callable is assumed to return a response object.

The request object has a dictionary as an attribute named matchdict. A
matchdict maps the placeholders in the matching URL pattern to the
substrings of the path in the request URL. For instance, if a call to
pyramid.config.Configurator.add_route() has the pattern /{one}/{two},
and a user visits http://example.com/foo/bar, our pattern would be matched
against /foo/bar and the matchdict would look like {'one':'foo',
'two':'bar'}.

Declaring Dependencies in Our setup.py File

The view code in our application will depend on a package which is not a
dependency of the original "tutorial" application. The original "tutorial"
application was generated by the pcreate command; it doesn't know
about our custom application requirements.

We need to add a dependency on the docutils package to our tutorial
package's setup.py file by assigning this dependency to the requires
parameter in the setup() function.

Open tutorial/setup.py and edit it to look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	import os

from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.txt')) as f:
 README = f.read()
with open(os.path.join(here, 'CHANGES.txt')) as f:
 CHANGES = f.read()

requires = [
 'pyramid',
 'pyramid_chameleon',
 'pyramid_debugtoolbar',
 'pyramid_tm',
 'SQLAlchemy',
 'transaction',
 'zope.sqlalchemy',
 'waitress',
 'docutils',
]

setup(name='tutorial',
 version='0.0',
 description='tutorial',
 long_description=README + '\n\n' + CHANGES,
 classifiers=[
 "Programming Language :: Python",
 "Framework :: Pyramid",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
],
 author='',
 author_email='',
 url='',
 keywords='web wsgi bfg pylons pyramid',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 test_suite='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 [console_scripts]
 initialize_tutorial_db = tutorial.scripts.initializedb:main
 """,
)

Only the highlighted line needs to be added.

Running setup.py develop

Since a new software dependency was added, you will need to run python
setup.py develop again inside the root of the tutorial package to obtain
and register the newly added dependency distribution.

Make sure your current working directory is the root of the project (the
directory in which setup.py lives) and execute the following command.

On UNIX:

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Success executing this command will end with a line to the console something
like:

Finished processing dependencies for tutorial==0.0

Adding view functions in views.py

It's time for a major change. Open tutorial/tutorial/views.py and edit it
to look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	import cgi
import re
from docutils.core import publish_parts

from pyramid.httpexceptions import (
 HTTPFound,
 HTTPNotFound,
)

from pyramid.view import view_config

from .models import (
 DBSession,
 Page,
)

regular expression used to find WikiWords
wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

@view_config(route_name='view_wiki')
def view_wiki(request):
 return HTTPFound(location = request.route_url('view_page',
 pagename='FrontPage'))

@view_config(route_name='view_page', renderer='templates/view.pt')
def view_page(request):
 pagename = request.matchdict['pagename']
 page = DBSession.query(Page).filter_by(name=pagename).first()
 if page is None:
 return HTTPNotFound('No such page')

 def check(match):
 word = match.group(1)
 exists = DBSession.query(Page).filter_by(name=word).all()
 if exists:
 view_url = request.route_url('view_page', pagename=word)
 return '%s' % (view_url, cgi.escape(word))
 else:
 add_url = request.route_url('add_page', pagename=word)
 return '%s' % (add_url, cgi.escape(word))

 content = publish_parts(page.data, writer_name='html')['html_body']
 content = wikiwords.sub(check, content)
 edit_url = request.route_url('edit_page', pagename=pagename)
 return dict(page=page, content=content, edit_url=edit_url)

@view_config(route_name='add_page', renderer='templates/edit.pt')
def add_page(request):
 pagename = request.matchdict['pagename']
 if 'form.submitted' in request.params:
 body = request.params['body']
 page = Page(name=pagename, data=body)
 DBSession.add(page)
 return HTTPFound(location = request.route_url('view_page',
 pagename=pagename))
 save_url = request.route_url('add_page', pagename=pagename)
 page = Page(name='', data='')
 return dict(page=page, save_url=save_url)

@view_config(route_name='edit_page', renderer='templates/edit.pt')
def edit_page(request):
 pagename = request.matchdict['pagename']
 page = DBSession.query(Page).filter_by(name=pagename).one()
 if 'form.submitted' in request.params:
 page.data = request.params['body']
 DBSession.add(page)
 return HTTPFound(location = request.route_url('view_page',
 pagename=pagename))
 return dict(
 page=page,
 save_url = request.route_url('edit_page', pagename=pagename),
)

The highlighted lines need to be added or edited.

We added some imports and created a regular expression to find "WikiWords".

We got rid of the my_view view function and its decorator that was added
when we originally rendered the alchemy scaffold. It was only an example
and isn't relevant to our application.

Then we added four view callable functions to our views.py
module:

	view_wiki() - Displays the wiki itself. It will answer on the root URL.

	view_page() - Displays an individual page.

	add_page() - Allows the user to add a page.

	edit_page() - Allows the user to edit a page.

We'll describe each one briefly in the following sections.

Note

There is nothing special about the filename views.py. A project may
have many view callables throughout its codebase in arbitrarily named
files. Files implementing view callables often have view in their
filenames (or may live in a Python subpackage of your application package
named views), but this is only by convention.

The view_wiki view function

Following is the code for the view_wiki view function and its decorator:

	20
21
22
23
24

	@view_config(route_name='view_wiki')
def view_wiki(request):
 return HTTPFound(location = request.route_url('view_page',
 pagename='FrontPage'))

view_wiki() is the default view that gets called when a request is
made to the root URL of our wiki. It always redirects to an URL which
represents the path to our "FrontPage".

The view_wiki view callable always redirects to the URL of a Page resource
named "FrontPage". To do so, it returns an instance of the
pyramid.httpexceptions.HTTPFound class (instances of which implement
the pyramid.interfaces.IResponse interface, like
pyramid.response.Response does). It uses the
pyramid.request.Request.route_url() API to construct an URL to the
FrontPage page (i.e., http://localhost:6543/FrontPage), and uses it as
the "location" of the HTTPFound response, forming an HTTP redirect.

The view_page view function

Here is the code for the view_page view function and its decorator:

	25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	@view_config(route_name='view_page', renderer='templates/view.pt')
def view_page(request):
 pagename = request.matchdict['pagename']
 page = DBSession.query(Page).filter_by(name=pagename).first()
 if page is None:
 return HTTPNotFound('No such page')

 def check(match):
 word = match.group(1)
 exists = DBSession.query(Page).filter_by(name=word).all()
 if exists:
 view_url = request.route_url('view_page', pagename=word)
 return '%s' % (view_url, cgi.escape(word))
 else:
 add_url = request.route_url('add_page', pagename=word)
 return '%s' % (add_url, cgi.escape(word))

 content = publish_parts(page.data, writer_name='html')['html_body']
 content = wikiwords.sub(check, content)
 edit_url = request.route_url('edit_page', pagename=pagename)
 return dict(page=page, content=content, edit_url=edit_url)

view_page() is used to display a single page of our wiki. It renders the
reStructuredText body of a page (stored as the data attribute of a
Page model object) as HTML. Then it substitutes an HTML anchor for each
WikiWord reference in the rendered HTML using a compiled regular expression.

The curried function named check is used as the first argument to
wikiwords.sub, indicating that it should be called to provide a value for
each WikiWord match found in the content. If the wiki already contains a
page with the matched WikiWord name, check() generates a view
link to be used as the substitution value and returns it. If the wiki does
not already contain a page with the matched WikiWord name, check()
generates an "add" link as the substitution value and returns it.

As a result, the content variable is now a fully formed bit of HTML
containing various view and add links for WikiWords based on the content of
our current page object.

We then generate an edit URL because it's easier to do here than in the
template, and we return a dictionary with a number of arguments. The fact that
view_page() returns a dictionary (as opposed to a response object)
is a cue to Pyramid that it should try to use a renderer
associated with the view configuration to render a response. In our case, the
renderer used will be the templates/view.pt template, as indicated in the
@view_config decorator that is applied to view_page().

The add_page view function

Here is the code for the add_page view function and its decorator:

	47
48
49
50
51
52
53
54
55
56
57
58

	@view_config(route_name='add_page', renderer='templates/edit.pt')
def add_page(request):
 pagename = request.matchdict['pagename']
 if 'form.submitted' in request.params:
 body = request.params['body']
 page = Page(name=pagename, data=body)
 DBSession.add(page)
 return HTTPFound(location = request.route_url('view_page',
 pagename=pagename))
 save_url = request.route_url('add_page', pagename=pagename)
 page = Page(name='', data='')
 return dict(page=page, save_url=save_url)

add_page() is invoked when a user clicks on a WikiWord which
isn't yet represented as a page in the system. The check function
within the view_page view generates URLs to this view.
add_page() also acts as a handler for the form that is generated
when we want to add a page object. The matchdict attribute of the
request passed to the add_page() view will have the values we need
to construct URLs and find model objects.

The matchdict will have a 'pagename' key that matches the name of
the page we'd like to add. If our add view is invoked via,
e.g., http://localhost:6543/add_page/SomeName, the value for
'pagename' in the matchdict will be 'SomeName'.

If the view execution is a result of a form submission (i.e., the expression
'form.submitted' in request.params is True), we grab the page body
from the form data, create a Page object with this page body and the name
taken from matchdict['pagename'], and save it into the database using
DBSession.add. We then redirect back to the view_page view for the
newly created page.

If the view execution is not a result of a form submission (i.e., the
expression 'form.submitted' in request.params is False), the view
callable renders a template. To do so, it generates a save_url which the
template uses as the form post URL during rendering. We're lazy here, so
we're going to use the same template (templates/edit.pt) for the add
view as well as the page edit view. To do so we create a dummy Page object
in order to satisfy the edit form's desire to have some page object
exposed as page. Pyramid will render the template associated
with this view to a response.

The edit_page view function

Here is the code for the edit_page view function and its decorator:

	60
61
62
63
64
65
66
67
68
69
70
71
72

	@view_config(route_name='edit_page', renderer='templates/edit.pt')
def edit_page(request):
 pagename = request.matchdict['pagename']
 page = DBSession.query(Page).filter_by(name=pagename).one()
 if 'form.submitted' in request.params:
 page.data = request.params['body']
 DBSession.add(page)
 return HTTPFound(location = request.route_url('view_page',
 pagename=pagename))
 return dict(
 page=page,
 save_url = request.route_url('edit_page', pagename=pagename),
)

edit_page() is invoked when a user clicks the "Edit this
Page" button on the view form. It renders an edit form but it also acts as
the handler for the form it renders. The matchdict attribute of the
request passed to the edit_page view will have a 'pagename' key
matching the name of the page the user wants to edit.

If the view execution is a result of a form submission (i.e., the expression
'form.submitted' in request.params is True), the view grabs the
body element of the request parameters and sets it as the data
attribute of the page object. It then redirects to the view_page view
of the wiki page.

If the view execution is not a result of a form submission (i.e., the
expression 'form.submitted' in request.params is False), the view
simply renders the edit form, passing the page object and a save_url
which will be used as the action of the generated form.

Adding templates

The view_page, add_page and edit_page views that we've added
reference a template. Each template is a Chameleon
ZPT template. These templates will live in the templates
directory of our tutorial package. Chameleon templates must have a .pt
extension to be recognized as such.

The view.pt template

Create tutorial/tutorial/templates/view.pt and add the following
content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.name} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <div tal:replace="structure content">
 Page text goes here.
 </div>
 <p>
 <a tal:attributes="href edit_url" href="">
 Edit this page

 </p>
 <p>
 Viewing
 Page Name Goes Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

This template is used by view_page() for displaying a single
wiki page. It includes:

	A div element that is replaced with the content value provided by
the view (lines 36-38). content contains HTML, so the structure
keyword is used to prevent escaping it (i.e., changing ">" to ">", etc.)

	A link that points at the "edit" URL which invokes the edit_page view
for the page being viewed (lines 40-42).

The edit.pt template

Create tutorial/tutorial/templates/edit.pt and add the following
content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.name} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p>
 Editing Page Name Goes
 Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 <form action="${save_url}" method="post">
 <div class="form-group">
 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
 </div>
 <div class="form-group">
 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
 </div>
 </form>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

This template is used by add_page() and edit_page() for adding and
editing a wiki page. It displays a page containing a form that includes:

	A 10 row by 60 column textarea field named body that is filled
with any existing page data when it is rendered (line 45).

	A submit button that has the name form.submitted (line 48).

The form POSTs back to the save_url argument supplied by the view (line
43). The view will use the body and form.submitted values.

Note

Our templates use a request object that none of our tutorial
views return in their dictionary. request is one of several names that
are available "by default" in a template when a template renderer is used.
See System Values Used During Rendering for information about other names that
are available by default when a template is used as a renderer.

Static Assets

Our templates name static assets, including CSS and images. We don't need
to create these files within our package's static directory because they
were provided at the time we created the project.

As an example, the CSS file will be accessed via
http://localhost:6543/static/theme.css by virtue of the call to the
add_static_view directive we've made in the __init__.py file. Any
number and type of static assets can be placed in this directory (or
subdirectories) and are just referred to by URL or by using the convenience
method static_url, e.g.,
request.static_url('<package>:static/foo.css') within templates.

Adding Routes to __init__.py

The __init__.py file contains
pyramid.config.Configurator.add_route() calls which serve to add routes
to our application. First, we’ll get rid of the existing route created by
the template using the name 'home'. It’s only an example and isn’t
relevant to our application.

We then need to add four calls to add_route. Note that the ordering of
these declarations is very important. route declarations are matched in
the order they're found in the __init__.py file.

	Add a declaration which maps the pattern / (signifying the root URL)
to the route named view_wiki. It maps to our view_wiki view
callable by virtue of the @view_config attached to the view_wiki
view function indicating route_name='view_wiki'.

	Add a declaration which maps the pattern /{pagename} to the route named
view_page. This is the regular view for a page. It maps
to our view_page view callable by virtue of the @view_config
attached to the view_page view function indicating
route_name='view_page'.

	Add a declaration which maps the pattern /add_page/{pagename} to the
route named add_page. This is the add view for a new page. It maps
to our add_page view callable by virtue of the @view_config
attached to the add_page view function indicating
route_name='add_page'.

	Add a declaration which maps the pattern /{pagename}/edit_page to the
route named edit_page. This is the edit view for a page. It maps
to our edit_page view callable by virtue of the @view_config
attached to the edit_page view function indicating
route_name='edit_page'.

As a result of our edits, the __init__.py file should look
something like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	from pyramid.config import Configurator
from sqlalchemy import engine_from_config

from .models import (
 DBSession,
 Base,
)

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('view_wiki', '/')
 config.add_route('view_page', '/{pagename}')
 config.add_route('add_page', '/add_page/{pagename}')
 config.add_route('edit_page', '/{pagename}/edit_page')
 config.scan()
 return config.make_wsgi_app()

The highlighted lines are the ones that need to be added or edited.

Viewing the application in a browser

We can finally examine our application in a browser (See
Start the application). Launch a browser and visit
each of the following URLs, checking that the result is as expected:

	http://localhost:6543/ invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage page object.

	http://localhost:6543/FrontPage invokes the view_page view of the front
page object.

	http://localhost:6543/FrontPage/edit_page invokes the edit view for the
front page object.

	http://localhost:6543/add_page/SomePageName invokes the add view for a page.

	To generate an error, visit http://localhost:6543/foobars/edit_page which
will generate a NoResultFound: No row was found for one() error. You'll
see an interactive traceback facility provided by
pyramid_debugtoolbar.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Adding authorization

Pyramid provides facilities for authentication and
authorization. We'll make use of both features to provide security
to our application. Our application currently allows anyone with access to
the server to view, edit, and add pages to our wiki. We'll change that to
allow only people who are members of a group named group:editors to add
and edit wiki pages but we'll continue allowing anyone with access to the
server to view pages.

We will also add a login page and a logout link on all the pages. The login
page will be shown when a user is denied access to any of the views that
require permission, instead of a default "403 Forbidden" page.

We will implement the access control with the following steps:

	Add users and groups (security.py, a new module).

	Add an ACL (models.py and __init__.py).

	Add an authentication policy and an authorization policy
(__init__.py).

	Add permission declarations to the edit_page and add_page
views (views.py).

Then we will add the login and logout feature:

	Add routes for /login and /logout (__init__.py).

	Add login and logout views (views.py).

	Add a login template (login.pt).

	Make the existing views return a logged_in flag to the renderer
(views.py).

	Add a "Logout" link to be shown when logged in and viewing or editing a page
(view.pt, edit.pt).

Access control

Add users and groups

Create a new tutorial/tutorial/security.py module with the
following content:

	1
2
3
4
5
6
7

	USERS = {'editor':'editor',
 'viewer':'viewer'}
GROUPS = {'editor':['group:editors']}

def groupfinder(userid, request):
 if userid in USERS:
 return GROUPS.get(userid, [])

The groupfinder function accepts a userid and a request and
returns one of these values:

	If the userid exists in the system, it will return a sequence of group
identifiers (or an empty sequence if the user isn't a member of any groups).

	If the userid does not exist in the system, it will return None.

For example, groupfinder('editor', request) returns ['group:editor'],
groupfinder('viewer', request) returns [], and groupfinder('admin',
request) returns None. We will use groupfinder() as an
authentication policy "callback" that will provide the
principal or principals for a user.

In a production system, user and group data will most often come from a
database, but here we use "dummy" data to represent user and groups sources.

Add an ACL

Open tutorial/tutorial/models.py and add the following import
statement at the head:

	1
2
3
4

	from pyramid.security import (
 Allow,
 Everyone,
)

Add the following class definition at the end:

	33
34
35
36
37

	class RootFactory(object):
 __acl__ = [(Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'edit')]
 def __init__(self, request):
 pass

We import Allow, an action that means that
permission is allowed, and Everyone, a special
principal that is associated to all requests. Both are used in the
ACE entries that make up the ACL.

The ACL is a list that needs to be named __acl__ and be an attribute of a
class. We define an ACL with two ACE entries: the first entry
allows any user the view permission. The second entry allows the
group:editors principal the edit permission.

The RootFactory class that contains the ACL is a root factory. We
need to associate it to our Pyramid application, so the ACL is provided
to each view in the context of the request as the context
attribute.

Open tutorial/tutorial/__init__.py and add a root_factory parameter to
our Configurator constructor, that points to the class we created
above:

	16
17

	 config = Configurator(settings=settings,
 root_factory='tutorial.models.RootFactory')

Only the highlighted line needs to be added.

We are now providing the ACL to the application. See Assigning ACLs to Your Resource Objects
for more information about what an ACL represents.

Note

Although we don't use the functionality here, the factory used
to create route contexts may differ per-route as opposed to globally. See
the factory argument to pyramid.config.Configurator.add_route()
for more info.

Add authentication and authorization policies

Open tutorial/tutorial/__init__.py and add the highlighted import
statements:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator
from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy

from sqlalchemy import engine_from_config

from tutorial.security import groupfinder

Now add those policies to the configuration:

	21
22
23
24
25
26
27

	 authn_policy = AuthTktAuthenticationPolicy(
 'sosecret', callback=groupfinder, hashalg='sha512')
 authz_policy = ACLAuthorizationPolicy()
 config = Configurator(settings=settings,
 root_factory='tutorial.models.RootFactory')
 config.set_authentication_policy(authn_policy)
 config.set_authorization_policy(authz_policy)

Only the highlighted lines need to be added.

We are enabling an AuthTktAuthenticationPolicy, which is based in an auth
ticket that may be included in the request. We are also enabling an
ACLAuthorizationPolicy, which uses an ACL to determine the allow or
deny outcome for a view.

Note that the pyramid.authentication.AuthTktAuthenticationPolicy
constructor accepts two arguments: secret and callback. secret is
a string representing an encryption key used by the "authentication ticket"
machinery represented by this policy: it is required. The callback is the
groupfinder() function that we created before.

Add permission declarations

Open tutorial/tutorial/views.py and add a permission='edit' parameter
to the @view_config decorators for add_page() and edit_page():

@view_config(route_name='add_page', renderer='templates/edit.pt',
 permission='edit')

@view_config(route_name='edit_page', renderer='templates/edit.pt',
 permission='edit')

Only the highlighted lines, along with their preceding commas, need to be
edited and added.

The result is that only users who possess the edit permission at the time
of the request may invoke those two views.

Add a permission='view' parameter to the @view_config decorator for
view_wiki() and view_page() as follows:

@view_config(route_name='view_wiki',
 permission='view')

@view_config(route_name='view_page', renderer='templates/view.pt',
 permission='view')

Only the highlighted lines, along with their preceding commas, need to be
edited and added.

This allows anyone to invoke these two views.

We are done with the changes needed to control access. The changes that
follow will add the login and logout feature.

Login, logout

Add routes for /login and /logout

Go back to tutorial/tutorial/__init__.py and add these two routes as
highlighted:

 config.add_route('view_wiki', '/')
 config.add_route('login', '/login')
 config.add_route('logout', '/logout')
 config.add_route('view_page', '/{pagename}')

Note

The preceding lines must be added before the following
view_page route definition:

 config.add_route('view_page', '/{pagename}')

This is because view_page's route definition uses a catch-all
"replacement marker" /{pagename} (see Route Pattern Syntax)
which will catch any route that was not already caught by any route listed
above it in __init__.py. Hence, for login and logout views to
have the opportunity of being matched (or "caught"), they must be above
/{pagename}.

Add login and logout views

We'll add a login view which renders a login form and processes the post
from the login form, checking credentials.

We'll also add a logout view callable to our application and provide a
link to it. This view will clear the credentials of the logged in user and
redirect back to the front page.

Add the following import statements to the head of
tutorial/tutorial/views.py:

from pyramid.view import (
 view_config,
 forbidden_view_config,
)

from pyramid.security import (
 remember,
 forget,
)

from .security import USERS

All the highlighted lines need to be added or edited.

forbidden_view_config() will be used to customize the
default 403 Forbidden page. remember() and
forget() help to create and expire an auth ticket
cookie.

Now add the login and logout views at the end of the file:

@view_config(route_name='login', renderer='templates/login.pt')
@forbidden_view_config(renderer='templates/login.pt')
def login(request):
 login_url = request.route_url('login')
 referrer = request.url
 if referrer == login_url:
 referrer = '/' # never use the login form itself as came_from
 came_from = request.params.get('came_from', referrer)
 message = ''
 login = ''
 password = ''
 if 'form.submitted' in request.params:
 login = request.params['login']
 password = request.params['password']
 if USERS.get(login) == password:
 headers = remember(request, login)
 return HTTPFound(location = came_from,
 headers = headers)
 message = 'Failed login'

 return dict(
 message = message,
 url = request.application_url + '/login',
 came_from = came_from,
 login = login,
 password = password,
)

@view_config(route_name='logout')
def logout(request):
 headers = forget(request)
 return HTTPFound(location = request.route_url('view_wiki'),
 headers = headers)

login() has two decorators:

	a @view_config decorator which associates it with the login route
and makes it visible when we visit /login,

	a @forbidden_view_config decorator which turns it into a
forbidden view. login() will be invoked when a user tries to
execute a view callable for which they lack authorization. For example, if
a user has not logged in and tries to add or edit a Wiki page, they will be
shown the login form before being allowed to continue.

The order of these two view configuration decorators is unimportant.

logout() is decorated with a @view_config decorator which associates
it with the logout route. It will be invoked when we visit /logout.

Add the login.pt Template

Create tutorial/tutorial/templates/login.pt with the following content:

<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>Login - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p>

 Login

 </p>
 <form action="${url}" method="post">
 <input type="hidden" name="came_from" value="${came_from}">
 <div class="form-group">
 <label for="login">Username</label>
 <input type="text" name="login" value="${login}">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" name="password" value="${password}">
 </div>
 <div class="form-group">
 <button type="submit" name="form.submitted" value="Log In" class="btn btn-default">Log In</button>
 </div>
 </form>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

The above template is referenced in the login view that we just added in
views.py.

Return a logged_in flag to the renderer

Open tutorial/tutorial/views.py again. Add a logged_in parameter to
the return value of view_page(), edit_page(), and add_page() as
follows:

 return dict(page=page, content=content, edit_url=edit_url,
 logged_in=request.authenticated_userid)

 return dict(page=page, save_url=save_url,
 logged_in=request.authenticated_userid)

 return dict(
 page=page,
 save_url=request.route_url('edit_page', pagename=pagename),
 logged_in=request.authenticated_userid
)

Only the highlighted lines need to be added or edited.

The pyramid.request.Request.authenticated_userid() will be None if
the user is not authenticated, or a userid if the user is authenticated.

Add a "Logout" link when logged in

Open tutorial/tutorial/templates/edit.pt and
tutorial/tutorial/templates/view.pt and add the following code as
indicated by the highlighted lines.

 <div class="col-md-10">
 <div class="content">
 <p tal:condition="logged_in" class="pull-right">
 Logout
 </p>

The attribute tal:condition="logged_in" will make the element be included
when logged_in is any user id. The link will invoke the logout view. The
above element will not be included if logged_in is None, such as when
a user is not authenticated.

Reviewing our changes

Our tutorial/tutorial/__init__.py will look like this when we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	from pyramid.config import Configurator
from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy

from sqlalchemy import engine_from_config

from tutorial.security import groupfinder

from .models import (
 DBSession,
 Base,
)

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine
 authn_policy = AuthTktAuthenticationPolicy(
 'sosecret', callback=groupfinder, hashalg='sha512')
 authz_policy = ACLAuthorizationPolicy()
 config = Configurator(settings=settings,
 root_factory='tutorial.models.RootFactory')
 config.set_authentication_policy(authn_policy)
 config.set_authorization_policy(authz_policy)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('view_wiki', '/')
 config.add_route('login', '/login')
 config.add_route('logout', '/logout')
 config.add_route('view_page', '/{pagename}')
 config.add_route('add_page', '/add_page/{pagename}')
 config.add_route('edit_page', '/{pagename}/edit_page')
 config.scan()
 return config.make_wsgi_app()

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/models.py will look like this when we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	from pyramid.security import (
 Allow,
 Everyone,
)

from sqlalchemy import (
 Column,
 Integer,
 Text,
)

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
)

from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

class Page(Base):
 """ The SQLAlchemy declarative model class for a Page object. """
 __tablename__ = 'pages'
 id = Column(Integer, primary_key=True)
 name = Column(Text, unique=True)
 data = Column(Text)

class RootFactory(object):
 __acl__ = [(Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'edit')]
 def __init__(self, request):
 pass

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/views.py will look like this when we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

	import re
from docutils.core import publish_parts

from pyramid.httpexceptions import (
 HTTPFound,
 HTTPNotFound,
)

from pyramid.view import (
 view_config,
 forbidden_view_config,
)

from pyramid.security import (
 remember,
 forget,
)

from .security import USERS

from .models import (
 DBSession,
 Page,
)

regular expression used to find WikiWords
wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

@view_config(route_name='view_wiki',
 permission='view')
def view_wiki(request):
 return HTTPFound(location = request.route_url('view_page',
 pagename='FrontPage'))

@view_config(route_name='view_page', renderer='templates/view.pt',
 permission='view')
def view_page(request):
 pagename = request.matchdict['pagename']
 page = DBSession.query(Page).filter_by(name=pagename).first()
 if page is None:
 return HTTPNotFound('No such page')

 def check(match):
 word = match.group(1)
 exists = DBSession.query(Page).filter_by(name=word).all()
 if exists:
 view_url = request.route_url('view_page', pagename=word)
 return '%s' % (view_url, word)
 else:
 add_url = request.route_url('add_page', pagename=word)
 return '%s' % (add_url, word)

 content = publish_parts(page.data, writer_name='html')['html_body']
 content = wikiwords.sub(check, content)
 edit_url = request.route_url('edit_page', pagename=pagename)
 return dict(page=page, content=content, edit_url=edit_url,
 logged_in=request.authenticated_userid)

@view_config(route_name='add_page', renderer='templates/edit.pt',
 permission='edit')
def add_page(request):
 pagename = request.matchdict['pagename']
 if 'form.submitted' in request.params:
 body = request.params['body']
 page = Page(name=pagename, data=body)
 DBSession.add(page)
 return HTTPFound(location = request.route_url('view_page',
 pagename=pagename))
 save_url = request.route_url('add_page', pagename=pagename)
 page = Page(name='', data='')
 return dict(page=page, save_url=save_url,
 logged_in=request.authenticated_userid)

@view_config(route_name='edit_page', renderer='templates/edit.pt',
 permission='edit')
def edit_page(request):
 pagename = request.matchdict['pagename']
 page = DBSession.query(Page).filter_by(name=pagename).one()
 if 'form.submitted' in request.params:
 page.data = request.params['body']
 DBSession.add(page)
 return HTTPFound(location = request.route_url('view_page',
 pagename=pagename))
 return dict(
 page=page,
 save_url=request.route_url('edit_page', pagename=pagename),
 logged_in=request.authenticated_userid
)

@view_config(route_name='login', renderer='templates/login.pt')
@forbidden_view_config(renderer='templates/login.pt')
def login(request):
 login_url = request.route_url('login')
 referrer = request.url
 if referrer == login_url:
 referrer = '/' # never use the login form itself as came_from
 came_from = request.params.get('came_from', referrer)
 message = ''
 login = ''
 password = ''
 if 'form.submitted' in request.params:
 login = request.params['login']
 password = request.params['password']
 if USERS.get(login) == password:
 headers = remember(request, login)
 return HTTPFound(location = came_from,
 headers = headers)
 message = 'Failed login'

 return dict(
 message = message,
 url = request.application_url + '/login',
 came_from = came_from,
 login = login,
 password = password,
)

@view_config(route_name='logout')
def logout(request):
 headers = forget(request)
 return HTTPFound(location = request.route_url('view_wiki'),
 headers = headers)

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/edit.pt template will look like this when
we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.name} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p tal:condition="logged_in" class="pull-right">
 Logout
 </p>
 <p>
 Editing Page Name Goes
 Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 <form action="${save_url}" method="post">
 <div class="form-group">
 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
 </div>
 <div class="form-group">
 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
 </div>
 </form>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/view.pt template will look like this when
we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.name} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p tal:condition="logged_in" class="pull-right">
 Logout
 </p>
 <div tal:replace="structure content">
 Page text goes here.
 </div>
 <p>
 <a tal:attributes="href edit_url" href="">
 Edit this page

 </p>
 <p>
 Viewing
 Page Name Goes Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

Only the highlighted lines need to be added or edited.

Viewing the application in a browser

We can finally examine our application in a browser (See
Start the application). Launch a browser and visit each of the
following URLs, checking that the result is as expected:

	http://localhost:6543/ invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage page object. It
is executable by any user.

	http://localhost:6543/FrontPage invokes the view_page view of the
FrontPage page object.

	http://localhost:6543/FrontPage/edit_page invokes the edit view for the
FrontPage object. It is executable by only the editor user. If a
different user (or the anonymous user) invokes it, a login form will be
displayed. Supplying the credentials with the username editor, password
editor will display the edit page form.

	http://localhost:6543/add_page/SomePageName invokes the add view for a page.
It is executable by only the editor user. If a different user (or the
anonymous user) invokes it, a login form will be displayed. Supplying the
credentials with the username editor, password editor will display
the edit page form.

	After logging in (as a result of hitting an edit or add page and submitting
the login form with the editor credentials), we'll see a Logout link in
the upper right hand corner. When we click it, we're logged out, and
redirected back to the front page.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Adding Tests

We will now add tests for the models and the views and a few functional tests
in tests.py. Tests ensure that an application works, and that it
continues to work when changes are made in the future.

Test the models

To test the model class Page we'll add a new PageModelTests class to
our tests.py file that was generated as part of the alchemy scaffold.

Test the views

We'll modify our tests.py file, adding tests for each view function we
added previously. As a result, we'll delete the ViewTests class that
the alchemy scaffold provided, and add four other test classes:
ViewWikiTests, ViewPageTests, AddPageTests, and EditPageTests.
These test the view_wiki, view_page, add_page, and edit_page
views.

Functional tests

We'll test the whole application, covering security aspects that are not
tested in the unit tests, like logging in, logging out, checking that
the viewer user cannot add or edit pages, but the editor user
can, and so on.

View the results of all our edits to tests.py

Open the tutorial/tests.py module, and edit it such that it appears as
follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

	import unittest
import transaction

from pyramid import testing

def _initTestingDB():
 from sqlalchemy import create_engine
 from tutorial.models import (
 DBSession,
 Page,
 Base
)
 engine = create_engine('sqlite://')
 Base.metadata.create_all(engine)
 DBSession.configure(bind=engine)
 with transaction.manager:
 model = Page(name='FrontPage', data='This is the front page')
 DBSession.add(model)
 return DBSession

def _registerRoutes(config):
 config.add_route('view_page', '{pagename}')
 config.add_route('edit_page', '{pagename}/edit_page')
 config.add_route('add_page', 'add_page/{pagename}')

class ViewWikiTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def _callFUT(self, request):
 from tutorial.views import view_wiki
 return view_wiki(request)

 def test_it(self):
 _registerRoutes(self.config)
 request = testing.DummyRequest()
 response = self._callFUT(request)
 self.assertEqual(response.location, 'http://example.com/FrontPage')

class ViewPageTests(unittest.TestCase):
 def setUp(self):
 self.session = _initTestingDB()
 self.config = testing.setUp()

 def tearDown(self):
 self.session.remove()
 testing.tearDown()

 def _callFUT(self, request):
 from tutorial.views import view_page
 return view_page(request)

 def test_it(self):
 from tutorial.models import Page
 request = testing.DummyRequest()
 request.matchdict['pagename'] = 'IDoExist'
 page = Page(name='IDoExist', data='Hello CruelWorld IDoExist')
 self.session.add(page)
 _registerRoutes(self.config)
 info = self._callFUT(request)
 self.assertEqual(info['page'], page)
 self.assertEqual(
 info['content'],
 '<div class="document">\n'
 '<p>Hello '
 'CruelWorld '
 ''
 'IDoExist'
 '</p>\n</div>\n')
 self.assertEqual(info['edit_url'],
 'http://example.com/IDoExist/edit_page')

class AddPageTests(unittest.TestCase):
 def setUp(self):
 self.session = _initTestingDB()
 self.config = testing.setUp()

 def tearDown(self):
 self.session.remove()
 testing.tearDown()

 def _callFUT(self, request):
 from tutorial.views import add_page
 return add_page(request)

 def test_it_notsubmitted(self):
 _registerRoutes(self.config)
 request = testing.DummyRequest()
 request.matchdict = {'pagename':'AnotherPage'}
 info = self._callFUT(request)
 self.assertEqual(info['page'].data,'')
 self.assertEqual(info['save_url'],
 'http://example.com/add_page/AnotherPage')

 def test_it_submitted(self):
 from tutorial.models import Page
 _registerRoutes(self.config)
 request = testing.DummyRequest({'form.submitted':True,
 'body':'Hello yo!'})
 request.matchdict = {'pagename':'AnotherPage'}
 self._callFUT(request)
 page = self.session.query(Page).filter_by(name='AnotherPage').one()
 self.assertEqual(page.data, 'Hello yo!')

class EditPageTests(unittest.TestCase):
 def setUp(self):
 self.session = _initTestingDB()
 self.config = testing.setUp()

 def tearDown(self):
 self.session.remove()
 testing.tearDown()

 def _callFUT(self, request):
 from tutorial.views import edit_page
 return edit_page(request)

 def test_it_notsubmitted(self):
 from tutorial.models import Page
 _registerRoutes(self.config)
 request = testing.DummyRequest()
 request.matchdict = {'pagename':'abc'}
 page = Page(name='abc', data='hello')
 self.session.add(page)
 info = self._callFUT(request)
 self.assertEqual(info['page'], page)
 self.assertEqual(info['save_url'],
 'http://example.com/abc/edit_page')

 def test_it_submitted(self):
 from tutorial.models import Page
 _registerRoutes(self.config)
 request = testing.DummyRequest({'form.submitted':True,
 'body':'Hello yo!'})
 request.matchdict = {'pagename':'abc'}
 page = Page(name='abc', data='hello')
 self.session.add(page)
 response = self._callFUT(request)
 self.assertEqual(response.location, 'http://example.com/abc')
 self.assertEqual(page.data, 'Hello yo!')

class FunctionalTests(unittest.TestCase):

 viewer_login = '/login?login=viewer&password=viewer' \
 '&came_from=FrontPage&form.submitted=Login'
 viewer_wrong_login = '/login?login=viewer&password=incorrect' \
 '&came_from=FrontPage&form.submitted=Login'
 editor_login = '/login?login=editor&password=editor' \
 '&came_from=FrontPage&form.submitted=Login'

 def setUp(self):
 from tutorial import main
 settings = { 'sqlalchemy.url': 'sqlite://'}
 app = main({}, **settings)
 from webtest import TestApp
 self.testapp = TestApp(app)
 _initTestingDB()

 def tearDown(self):
 del self.testapp
 from tutorial.models import DBSession
 DBSession.remove()

 def test_root(self):
 res = self.testapp.get('/', status=302)
 self.assertEqual(res.location, 'http://localhost/FrontPage')

 def test_FrontPage(self):
 res = self.testapp.get('/FrontPage', status=200)
 self.assertTrue(b'FrontPage' in res.body)

 def test_unexisting_page(self):
 self.testapp.get('/SomePage', status=404)

 def test_successful_log_in(self):
 res = self.testapp.get(self.viewer_login, status=302)
 self.assertEqual(res.location, 'http://localhost/FrontPage')

 def test_failed_log_in(self):
 res = self.testapp.get(self.viewer_wrong_login, status=200)
 self.assertTrue(b'login' in res.body)

 def test_logout_link_present_when_logged_in(self):
 self.testapp.get(self.viewer_login, status=302)
 res = self.testapp.get('/FrontPage', status=200)
 self.assertTrue(b'Logout' in res.body)

 def test_logout_link_not_present_after_logged_out(self):
 self.testapp.get(self.viewer_login, status=302)
 self.testapp.get('/FrontPage', status=200)
 res = self.testapp.get('/logout', status=302)
 self.assertTrue(b'Logout' not in res.body)

 def test_anonymous_user_cannot_edit(self):
 res = self.testapp.get('/FrontPage/edit_page', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_anonymous_user_cannot_add(self):
 res = self.testapp.get('/add_page/NewPage', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_viewer_user_cannot_edit(self):
 self.testapp.get(self.viewer_login, status=302)
 res = self.testapp.get('/FrontPage/edit_page', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_viewer_user_cannot_add(self):
 self.testapp.get(self.viewer_login, status=302)
 res = self.testapp.get('/add_page/NewPage', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_editors_member_user_can_edit(self):
 self.testapp.get(self.editor_login, status=302)
 res = self.testapp.get('/FrontPage/edit_page', status=200)
 self.assertTrue(b'Editing' in res.body)

 def test_editors_member_user_can_add(self):
 self.testapp.get(self.editor_login, status=302)
 res = self.testapp.get('/add_page/NewPage', status=200)
 self.assertTrue(b'Editing' in res.body)

 def test_editors_member_user_can_view(self):
 self.testapp.get(self.editor_login, status=302)
 res = self.testapp.get('/FrontPage', status=200)
 self.assertTrue(b'FrontPage' in res.body)

Running the tests

We can run these tests by using setup.py test in the same way we did in
Run the tests. However, first we must edit our setup.py to
include a dependency on WebTest, which we've used in our tests.py.
Change the requires list in setup.py to include WebTest.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	requires = [
 'pyramid',
 'pyramid_chameleon',
 'pyramid_debugtoolbar',
 'pyramid_tm',
 'SQLAlchemy',
 'transaction',
 'zope.sqlalchemy',
 'waitress',
 'docutils',
 'WebTest', # add this
]

After we've added a dependency on WebTest in setup.py, we need to run
setup.py develop to get WebTest installed into our virtualenv. Assuming
our shell's current working directory is the "tutorial" distribution
directory:

On UNIX:

$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Once that command has completed successfully, we can run the tests
themselves:

On UNIX:

$ $VENV/bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

The expected result should look like the following:

......................
--
Ran 21 tests in 2.700s

OK

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	SQLAlchemy + URL Dispatch Wiki Tutorial

Distributing Your Application

Once your application works properly, you can create a "tarball" from it by
using the setup.py sdist command. The following commands assume your
current working directory is the tutorial package we've created and that
the parent directory of the tutorial package is a virtualenv representing
a Pyramid environment.

On UNIX:

$ $VENV/bin/python setup.py sdist

On Windows:

c:\pyramidtut> %VENV%\Scripts\python setup.py sdist

The output of such a command will be something like:

running sdist
.. more output ..
creating dist
tar -cf dist/tutorial-0.0.tar tutorial-0.0
gzip -f9 dist/tutorial-0.0.tar
removing 'tutorial-0.0' (and everything under it)

Note that this command creates a tarball in the "dist" subdirectory named
tutorial-0.0.tar.gz. You can send this file to your friends to show them
your cool new application. They should be able to install it by pointing the
easy_install command directly at it. Or you can upload it to PyPI [http://pypi.python.org] and share it with the rest of the world, where it
can be downloaded via easy_install remotely like any other package people
download from PyPI.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

ZODB + Traversal Wiki Tutorial

This tutorial introduces a ZODB and traversal-based
Pyramid application to a developer familiar with Python. It will be
most familiar to developers with previous Zope experience. When the
is finished, the developer will have created a basic Wiki application with
authentication.

For cut and paste purposes, the source code for all stages of this
tutorial can be browsed on GitHub at docs/tutorials/wiki/src [https://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src],
which corresponds to the same location if you have Pyramid sources.

	Background

	Design
	Overall

	Models

	Views

	Security

	Summary

	Installation
	Before you begin

	Making a project

	Installing the project in development mode

	Run the tests

	Expose test coverage information

	Start the application

	Visit the application in a browser

	Decisions the zodb scaffold has made for you

	Basic Layout
	Application configuration with __init__.py

	Resources and models with models.py

	Views With views.py

	Configuration in development.ini

	Defining the Domain Model
	Delete the database

	Edit models.py

	View the application in a browser

	Defining Views
	Declaring Dependencies in Our setup.py File

	Running setup.py develop

	Adding view functions in views.py

	Adding templates

	Viewing the application in a browser

	Adding authorization
	Access control

	Login, logout

	Reviewing our changes

	Viewing the application in a browser

	Adding Tests
	Test the models

	Test the views

	Functional tests

	View the results of all our edits to tests.py

	Running the tests

	Distributing Your Application

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Background

This version of the Pyramid wiki tutorial presents a
Pyramid application that uses technologies which will be
familiar to someone with Zope experience. It uses
ZODB as a persistence mechanism and traversal to map
URLs to code. It can also be followed by people without any prior
Python web framework experience.

To code along with this tutorial, the developer will need a UNIX
machine with development tools (Mac OS X with XCode, any Linux or BSD
variant, etc.) or a Windows system of any kind.

Warning

This tutorial has been written for Python 2. It is unlikely to work
without modification under Python 3.

Have fun!

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Design

Following is a quick overview of the design of our wiki application, to help
us understand the changes that we will be making as we work through the
tutorial.

Overall

We choose to use reStructuredText markup in the wiki text. Translation
from reStructuredText to HTML is provided by the widely used docutils
Python module. We will add this module in the dependency list on the project
setup.py file.

Models

The root resource named Wiki will be a mapping of wiki page
names to page resources. The page resources will be instances
of a Page class and they store the text content.

URLs like /PageName will be traversed using Wiki[
PageName] => page, and the context that results is the page
resource of an existing page.

To add a page to the wiki, a new instance of the page resource
is created and its name and reference are added to the Wiki
mapping.

A page named FrontPage containing the text This is the front page, will
be created when the storage is initialized, and will be used as the wiki home
page.

Views

There will be three views to handle the normal operations of adding,
editing, and viewing wiki pages, plus one view for the wiki front page.
Two templates will be used, one for viewing, and one for both adding
and editing wiki pages.

The default templating systems in Pyramid are
Chameleon and Mako. Chameleon is a variant of
ZPT, which is an XML-based templating language. Mako is a
non-XML-based templating language. Because we had to pick one,
we chose Chameleon for this tutorial.

Security

We'll eventually be adding security to our application. The components we'll
use to do this are below.

	USERS, a dictionary mapping userids to their
corresponding passwords.

	GROUPS, a dictionary mapping userids to a
list of groups to which they belong.

	groupfinder, an authorization callback that looks up USERS and
GROUPS. It will be provided in a new security.py file.

	An ACL is attached to the root resource. Each row below
details an ACE:

	Action
	Principal
	Permission

	Allow
	Everyone
	View

	Allow
	group:editors
	Edit

	Permission declarations are added to the views to assert the security
policies as each request is handled.

Two additional views and one template will handle the login and
logout tasks.

Summary

The URL, context, actions, template and permission associated to each view are
listed in the following table:

	URL
	View
	Context
	Action
	Template
	Permission

	/
	view_wiki
	Wiki
	Redirect to
/FrontPage
	
	

	/PageName
	view_page
[1]
	Page
	Display existing
page [2]
	view.pt
	view

	/PageName/edit_page
	edit_page
	Page
	Display edit form
with existing
content.

If the form was
submitted, redirect
to /PageName

	edit.pt
	edit

	/add_page/PageName
	add_page
	Wiki
	Create the page
PageName in
storage, display
the edit form
without content.

If the form was
submitted,
redirect to
/PageName

	edit.pt
	edit

	/login
	login
	Wiki,
Forbidden [3]
	Display login form.

If the form was
submitted,
authenticate.

	If authentication
succeeds,
redirect to the
page that we
came from.

	If authentication
fails, display
login form with
"login failed"
message.

	login.pt
	

	/logout
	logout
	Wiki
	Redirect to
/FrontPage
	
	

	[1]	This is the default view for a Page context
when there is no view name.

	[2]	Pyramid will return a default 404 Not Found page
if the page PageName does not exist yet.

	[3]	pyramid.exceptions.Forbidden is reached when a
user tries to invoke a view that is
not authorized by the authorization policy.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Installation

Before you begin

This tutorial assumes that you have already followed the steps in
Installing Pyramid, except do not create a virtualenv or install
Pyramid. Thereby you will satisfy the following requirements.

	Python interpreter is installed on your operating system

	setuptools or distribute is installed

	virtualenv is installed

Create directory to contain the project

We need a workspace for our project files.

On UNIX

$ mkdir ~/pyramidtut

On Windows

c:\> mkdir pyramidtut

Create and use a virtual Python environment

Next let's create a virtualenv workspace for our project. We will
use the VENV environment variable instead of the absolute path of the
virtual environment.

On UNIX

$ export VENV=~/pyramidtut
$ virtualenv $VENV
New python executable in /home/foo/env/bin/python
Installing setuptools.............done.

On Windows

c:\> set VENV=c:\pyramidtut

Versions of Python use different paths, so you will need to adjust the
path to the command for your Python version.

Python 2.7:

c:\> c:\Python27\Scripts\virtualenv %VENV%

Python 3.2:

c:\> c:\Python32\Scripts\virtualenv %VENV%

Install Pyramid and tutorial dependencies into the virtual Python environment

On UNIX

$ $VENV/bin/easy_install docutils pyramid_tm pyramid_zodbconn \
 pyramid_debugtoolbar nose coverage

On Windows

c:\> %VENV%\Scripts\easy_install docutils pyramid_tm pyramid_zodbconn \
 pyramid_debugtoolbar nose coverage

Change Directory to Your Virtual Python Environment

Change directory to the pyramidtut directory.

On UNIX

$ cd pyramidtut

On Windows

c:\> cd pyramidtut

Making a project

Your next step is to create a project. For this tutorial, we will use
the scaffold named zodb, which generates an application
that uses ZODB and traversal.

Pyramid supplies a variety of scaffolds to generate sample
projects. We will use pcreate—a script that comes with Pyramid to
quickly and easily generate scaffolds, usually with a single command—to
create the scaffold for our project.

By passing zodb into the pcreate command, the script creates
the files needed to use ZODB. By passing in our application name
tutorial, the script inserts that application name into all the
required files.

The below instructions assume your current working directory is "pyramidtut".

On UNIX

$ $VENV/bin/pcreate -s zodb tutorial

On Windows

c:\pyramidtut> %VENV%\Scripts\pcreate -s zodb tutorial

Note

If you are using Windows, the zodb
scaffold may not deal gracefully with installation into a
location that contains spaces in the path. If you experience
startup problems, try putting both the virtualenv and the project
into directories that do not contain spaces in their paths.

Installing the project in development mode

In order to do development on the project easily, you must "register"
the project as a development egg in your workspace using the
setup.py develop command. In order to do so, cd to the tutorial
directory you created in Making a project, and run the
setup.py develop command using the virtualenv Python interpreter.

On UNIX

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

The console will show setup.py checking for packages and installing
missing packages. Success executing this command will show a line like
the following:

Finished processing dependencies for tutorial==0.0

Run the tests

After you've installed the project in development mode, you may run
the tests for the project.

On UNIX

$ $VENV/bin/python setup.py test -q

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

For a successful test run, you should see output that ends like this:

.
--
Ran 1 test in 0.094s

OK

Expose test coverage information

You can run the nosetests command to see test coverage
information. This runs the tests in the same way that setup.py
test does but provides additional "coverage" information, exposing
which lines of your project are "covered" (or not covered) by the
tests.

On UNIX

$ $VENV/bin/nosetests --cover-package=tutorial --cover-erase --with-coverage

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\nosetests --cover-package=tutorial \
 --cover-erase --with-coverage

If successful, you will see output something like this:

.
Name Stmts Miss Cover Missing
--
tutorial.py 12 7 42% 7-8, 14-18
tutorial/models.py 10 6 40% 9-14
tutorial/views.py 4 0 100%
--
TOTAL 26 13 50%
--
Ran 1 test in 0.392s

OK

Looks like our package doesn't quite have 100% test coverage.

Start the application

Start the application.

On UNIX

$ $VENV/bin/pserve development.ini --reload

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\pserve development.ini --reload

Note

Your OS firewall, if any, may pop up a dialog asking for authorization
to allow python to accept incoming network connections.

If successful, you will see something like this on your console:

Starting subprocess with file monitor
Starting server in PID 95736.
serving on http://0.0.0.0:6543

This means the server is ready to accept requests.

Visit the application in a browser

In a browser, visit http://localhost:6543/. You
will see the generated application's default page.

One thing you'll notice is the "debug toolbar" icon on right hand side of the
page. You can read more about the purpose of the icon at
The Debug Toolbar. It allows you to get information about your
application while you develop.

Decisions the zodb scaffold has made for you

Creating a project using the zodb scaffold makes the following
assumptions:

	you are willing to use ZODB as persistent storage

	you are willing to use traversal to map URLs to code

Note

Pyramid supports any persistent storage mechanism (e.g., a SQL
database or filesystem files). It also supports an additional
mechanism to map URLs to code (URL dispatch). However, for the
purposes of this tutorial, we'll only be using traversal and ZODB.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Basic Layout

The starter files generated by the zodb scaffold are very basic, but
they provide a good orientation for the high-level patterns common to most
traversal-based (and ZODB-based) Pyramid projects.

Application configuration with __init__.py

A directory on disk can be turned into a Python package by containing
an __init__.py file. Even if empty, this marks a directory as a Python
package. We use __init__.py both as a marker, indicating the directory
in which it's contained is a package, and to contain application configuration
code.

When you run the application using the pserve command using the
development.ini generated configuration file, the application
configuration points at a Setuptools entry point described as
egg:tutorial. In our application, because the application's setup.py
file says so, this entry point happens to be the main function within the
file named __init__.py. Let's take a look at the code and describe what
it does:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from pyramid.config import Configurator
from pyramid_zodbconn import get_connection
from .models import appmaker

def root_factory(request):
 conn = get_connection(request)
 return appmaker(conn.root())

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(root_factory=root_factory, settings=settings)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.scan()
 return config.make_wsgi_app()

	Lines 1-3. Perform some dependency imports.

	Lines 6-8. Define a root factory for our Pyramid application.

	Line 11. __init__.py defines a function named main.

	Line 14. We construct a Configurator with a root
factory and the settings keywords parsed by PasteDeploy. The root
factory is named root_factory.

	Line 15. Include support for the Chameleon template rendering
bindings, allowing us to use the .pt templates.

	Line 16. Register a "static view", which answers requests whose URL
paths start with /static, using the
pyramid.config.Configurator.add_static_view() method. This
statement registers a view that will serve up static assets, such as CSS
and image files, for us, in this case, at
http://localhost:6543/static/ and below. The first argument is the
"name" static, which indicates that the URL path prefix of the view
will be /static. The second argument of this tag is the "path",
which is a relative asset specification, so it finds the resources
it should serve within the static directory inside the tutorial
package. Alternatively the scaffold could have used an absolute asset
specification as the path (tutorial:static).

	Line 17. Perform a scan. A scan will find configuration
decoration, such as view configuration decorators (e.g., @view_config)
in the source code of the tutorial package and will take actions based
on these decorators. We don't pass any arguments to
scan(), which implies that the scan
should take place in the current package (in this case, tutorial).
The scaffold could have equivalently said config.scan('tutorial'), but
it chose to omit the package name argument.

	Line 18. Use the
pyramid.config.Configurator.make_wsgi_app() method
to return a WSGI application.

Resources and models with models.py

Pyramid uses the word resource to describe objects arranged
hierarchically in a resource tree. This tree is consulted by
traversal to map URLs to code. In this application, the resource
tree represents the site structure, but it also represents the
domain model of the application, because each resource is a node
stored persistently in a ZODB database. The models.py file is
where the zodb scaffold put the classes that implement our
resource objects, each of which also happens to be a domain model object.

Here is the source for models.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from persistent.mapping import PersistentMapping

class MyModel(PersistentMapping):
 __parent__ = __name__ = None

def appmaker(zodb_root):
 if not 'app_root' in zodb_root:
 app_root = MyModel()
 zodb_root['app_root'] = app_root
 import transaction
 transaction.commit()
 return zodb_root['app_root']

	Lines 4-5. The MyModel resource class is implemented here.
Instances of this class are capable of being persisted in ZODB
because the class inherits from the
persistent.mapping.PersistentMapping class. The __parent__
and __name__ are important parts of the traversal protocol.
By default, have these as None indicating that this is the
root object.

	Lines 8-14. appmaker is used to return the application
root object. It is called on every request to the
Pyramid application. It also performs bootstrapping by
creating an application root (inside the ZODB root object) if one
does not already exist. It is used by the root_factory we've defined
in our __init__.py.

Bootstrapping is done by first seeing if the database has the persistent
application root. If not, we make an instance, store it, and commit the
transaction. We then return the application root object.

Views With views.py

Our scaffold generated a default views.py on our behalf. It
contains a single view, which is used to render the page shown when you visit
the URL http://localhost:6543/.

Here is the source for views.py:

	1
2
3
4
5
6
7

	from pyramid.view import view_config
from .models import MyModel

@view_config(context=MyModel, renderer='templates/mytemplate.pt')
def my_view(request):
 return {'project': 'tutorial'}

Let's try to understand the components in this module:

	Lines 1-2. Perform some dependency imports.

	Line 5. Use the pyramid.view.view_config() configuration
decoration to perform a view configuration registration. This
view configuration registration will be activated when the application is
started. It will be activated by virtue of it being found as the result
of a scan (when Line 14 of __init__.py is run).

The @view_config decorator accepts a number of keyword arguments. We
use two keyword arguments here: context and renderer.

The context argument signifies that the decorated view callable should
only be run when traversal finds the tutorial.models.MyModel
resource to be the context of a request. In English, this
means that when the URL / is visited, because MyModel is the root
model, this view callable will be invoked.

The renderer argument names an asset specification of
templates/mytemplate.pt. This asset specification points at a
Chameleon template which lives in the mytemplate.pt file
within the templates directory of the tutorial package. And
indeed if you look in the templates directory of this package, you'll
see a mytemplate.pt template file, which renders the default home page
of the generated project. This asset specification is relative (to the
view.py's current package). Alternatively we could have used the
absolute asset specification tutorial:templates/mytemplate.pt, but
chose to use the relative version.

Since this call to @view_config doesn't pass a name argument, the
my_view function which it decorates represents the "default" view
callable used when the context is of the type MyModel.

	Lines 6-7. We define a view callable named my_view, which
we decorated in the step above. This view callable is a function we
write generated by the zodb scaffold that is given a
request and which returns a dictionary. The mytemplate.pt
renderer named by the asset specification in the step above will
convert this dictionary to a response on our behalf.

The function returns the dictionary {'project':'tutorial'}. This
dictionary is used by the template named by the mytemplate.pt asset
specification to fill in certain values on the page.

Configuration in development.ini

The development.ini (in the tutorial project directory, as
opposed to the tutorial package directory) looks like this:

###
app configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
###

[app:main]
use = egg:tutorial

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =
 pyramid_debugtoolbar
 pyramid_zodbconn
 pyramid_tm

tm.attempts = 3
zodbconn.uri = file://%(here)s/Data.fs?connection_cache_size=20000

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1' and '::1'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgi server configuration
###

[server:main]
use = egg:waitress#main
host = 0.0.0.0
port = 6543

###
logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
###

[loggers]
keys = root, tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_tutorial]
level = DEBUG
handlers =
qualname = tutorial

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

Note the existence of a [app:main] section which specifies our WSGI
application. Our ZODB database settings are specified as the
zodbconn.uri setting within this section. This value, and the other
values within this section, are passed as **settings to the main
function we defined in __init__.py when the server is started via
pserve.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Defining the Domain Model

The first change we'll make to our stock pcreate-generated application will be
to define two resource constructors, one representing a wiki page,
and another representing the wiki as a mapping of wiki page names to page
objects. We'll do this inside our models.py file.

Because we're using ZODB to represent our
resource tree, each of these resource constructors represents a
domain model object, so we'll call these constructors "model
constructors". Both our Page and Wiki constructors will be class objects. A
single instance of the "Wiki" class will serve as a container for "Page"
objects, which will be instances of the "Page" class.

Delete the database

In the next step, we're going to remove the MyModel Python model
class from our models.py file. Since this class is referred to within
our persistent storage (represented on disk as a file named Data.fs),
we'll have strange things happen the next time we want to visit the
application in a browser. Remove the Data.fs from the tutorial
directory before proceeding any further. It's always fine to do this as long
as you don't care about the content of the database; the database itself will
be recreated as necessary.

Edit models.py

Note

There is nothing special about the filename models.py. A
project may have many models throughout its codebase in arbitrarily named
files. Files implementing models often have model in their filenames
or they may live in a Python subpackage of your application package named
models, but this is only by convention.

Open tutorial/tutorial/models.py file and edit it to look like the
following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from persistent import Persistent
from persistent.mapping import PersistentMapping

class Wiki(PersistentMapping):
 __name__ = None
 __parent__ = None

class Page(Persistent):
 def __init__(self, data):
 self.data = data

def appmaker(zodb_root):
 if not 'app_root' in zodb_root:
 app_root = Wiki()
 frontpage = Page('This is the front page')
 app_root['FrontPage'] = frontpage
 frontpage.__name__ = 'FrontPage'
 frontpage.__parent__ = app_root
 zodb_root['app_root'] = app_root
 import transaction
 transaction.commit()
 return zodb_root['app_root']

The first thing we want to do is remove the MyModel class from the
generated models.py file. The MyModel class is only a sample and
we're not going to use it.

Then, we'll add a Wiki class. We want it to inherit from the
persistent.mapping.PersistentMapping class because it provides
mapping behavior, and it makes sure that our Wiki page is stored as a
"first-class" persistent object in our ZODB database.

Our Wiki class should have two attributes set to None at
class scope: __parent__ and __name__. If a model has a
__parent__ attribute of None in a traversal-based Pyramid
application, it means that it's the root model. The __name__
of the root model is also always None.

Then we'll add a Page class. This class should inherit from the
persistent.Persistent class. We'll also give it an __init__
method that accepts a single parameter named data. This parameter will
contain the reStructuredText body representing the wiki page content.
Note that Page objects don't have an initial __name__ or
__parent__ attribute. All objects in a traversal graph must have a
__name__ and a __parent__ attribute. We don't specify these here
because both __name__ and __parent__ will be set by a view
function when a Page is added to our Wiki mapping.

As a last step, we want to change the appmaker function in our
models.py file so that the root resource of our
application is a Wiki instance. We'll also slot a single page object (the
front page) into the Wiki within the appmaker. This will provide
traversal a resource tree to work against when it attempts to
resolve URLs to resources.

View the application in a browser

We can't. At this point, our system is in a "non-runnable" state; we'll need
to change view-related files in the next chapter to be able to start the
application successfully. If you try to start the application (See
Start the application), you'll wind
up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Defining Views

A view callable in a traversal -based Pyramid
application is typically a simple Python function that accepts two
parameters: context and request. A view callable is
assumed to return a response object.

Note

A Pyramid view can also be defined as callable
which accepts only a request argument. You'll see
this one-argument pattern used in other Pyramid tutorials
and applications. Either calling convention will work in any
Pyramid application; the calling conventions can be used
interchangeably as necessary. In traversal based applications,
URLs are mapped to a context resource, and since our
resource tree also represents our application's
"domain model", we're often interested in the context because
it represents the persistent storage of our application. For
this reason, in this tutorial we define views as callables that
accept context in the callable argument list. If you do
need the context within a view function that only takes
the request as a single argument, you can obtain it via
request.context.

We're going to define several view callable functions, then wire them
into Pyramid using some view configuration.

Declaring Dependencies in Our setup.py File

The view code in our application will depend on a package which is not a
dependency of the original "tutorial" application. The original "tutorial"
application was generated by the pcreate command; it doesn't know
about our custom application requirements.

We need to add a dependency on the docutils package to our tutorial
package's setup.py file by assigning this dependency to the requires
parameter in the setup() function.

Open tutorial/setup.py and edit it to look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	import os

from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.txt')) as f:
 README = f.read()
with open(os.path.join(here, 'CHANGES.txt')) as f:
 CHANGES = f.read()

requires = [
 'pyramid',
 'pyramid_chameleon',
 'pyramid_debugtoolbar',
 'pyramid_tm',
 'pyramid_zodbconn',
 'transaction',
 'ZODB3',
 'waitress',
 'docutils',
]

setup(name='tutorial',
 version='0.0',
 description='tutorial',
 long_description=README + '\n\n' + CHANGES,
 classifiers=[
 "Programming Language :: Python",
 "Framework :: Pyramid",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
],
 author='',
 author_email='',
 url='',
 keywords='web pylons pyramid',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=requires,
 tests_require=requires,
 test_suite="tutorial",
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 """,
)

Only the highlighted line needs to be added.

Running setup.py develop

Since a new software dependency was added, you will need to run python
setup.py develop again inside the root of the tutorial package to obtain
and register the newly added dependency distribution.

Make sure your current working directory is the root of the project (the
directory in which setup.py lives) and execute the following command.

On UNIX:

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Success executing this command will end with a line to the console something
like:

Finished processing dependencies for tutorial==0.0

Adding view functions in views.py

It's time for a major change. Open tutorial/tutorial/views.py and edit it
to look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	from docutils.core import publish_parts
import re

from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

from .models import Page

regular expression used to find WikiWords
wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

@view_config(context='.models.Wiki')
def view_wiki(context, request):
 return HTTPFound(location=request.resource_url(context, 'FrontPage'))

@view_config(context='.models.Page', renderer='templates/view.pt')
def view_page(context, request):
 wiki = context.__parent__

 def check(match):
 word = match.group(1)
 if word in wiki:
 page = wiki[word]
 view_url = request.resource_url(page)
 return '%s' % (view_url, word)
 else:
 add_url = request.application_url + '/add_page/' + word
 return '%s' % (add_url, word)

 content = publish_parts(context.data, writer_name='html')['html_body']
 content = wikiwords.sub(check, content)
 edit_url = request.resource_url(context, 'edit_page')
 return dict(page = context, content = content, edit_url = edit_url)

@view_config(name='add_page', context='.models.Wiki',
 renderer='templates/edit.pt')
def add_page(context, request):
 pagename = request.subpath[0]
 if 'form.submitted' in request.params:
 body = request.params['body']
 page = Page(body)
 page.__name__ = pagename
 page.__parent__ = context
 context[pagename] = page
 return HTTPFound(location = request.resource_url(page))
 save_url = request.resource_url(context, 'add_page', pagename)
 page = Page('')
 page.__name__ = pagename
 page.__parent__ = context
 return dict(page = page, save_url = save_url)

@view_config(name='edit_page', context='.models.Page',
 renderer='templates/edit.pt')
def edit_page(context, request):
 if 'form.submitted' in request.params:
 context.data = request.params['body']
 return HTTPFound(location = request.resource_url(context))

 return dict(page=context,
 save_url=request.resource_url(context, 'edit_page'))

We added some imports and created a regular expression to find "WikiWords".

We got rid of the my_view view function and its decorator that was added
when we originally rendered the zodb scaffold. It was only an example and
isn't relevant to our application.

Then we added four view callable functions to our views.py
module:

	view_wiki() - Displays the wiki itself. It will answer on the root URL.

	view_page() - Displays an individual page.

	add_page() - Allows the user to add a page.

	edit_page() - Allows the user to edit a page.

We'll describe each one briefly in the following sections.

Note

There is nothing special about the filename views.py. A project may
have many view callables throughout its codebase in arbitrarily named
files. Files implementing view callables often have view in their
filenames (or may live in a Python subpackage of your application package
named views), but this is only by convention.

The view_wiki view function

Following is the code for the view_wiki view function and its decorator:

	12
13
14

	@view_config(context='.models.Wiki')
def view_wiki(context, request):
 return HTTPFound(location=request.resource_url(context, 'FrontPage'))

Note

In our code, we use an import that is relative to our package
named tutorial, meaning we can omit the name of the package in the
import and context statements. In our narrative, however, we refer
to a class and thus we use the absolute form, meaning that the name of
the package is included.

view_wiki() is the default view that gets called when a request is
made to the root URL of our wiki. It always redirects to an URL which
represents the path to our "FrontPage".

We provide it with a @view_config decorator which names the class
tutorial.models.Wiki as its context. This means that when a Wiki resource
is the context and no view name exists in the request, then this view
will be used. The view configuration associated with view_wiki does not
use a renderer because the view callable always returns a response
object rather than a dictionary. No renderer is necessary when a view returns
a response object.

The view_wiki view callable always redirects to the URL of a Page resource
named "FrontPage". To do so, it returns an instance of the
pyramid.httpexceptions.HTTPFound class (instances of which implement
the pyramid.interfaces.IResponse interface, like
pyramid.response.Response does). It uses the
pyramid.request.Request.route_url() API to construct an URL to the
FrontPage page resource (i.e., http://localhost:6543/FrontPage), and
uses it as the "location" of the HTTPFound response, forming an HTTP
redirect.

The view_page view function

Here is the code for the view_page view function and its decorator:

	16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	@view_config(context='.models.Page', renderer='templates/view.pt')
def view_page(context, request):
 wiki = context.__parent__

 def check(match):
 word = match.group(1)
 if word in wiki:
 page = wiki[word]
 view_url = request.resource_url(page)
 return '%s' % (view_url, word)
 else:
 add_url = request.application_url + '/add_page/' + word
 return '%s' % (add_url, word)

 content = publish_parts(context.data, writer_name='html')['html_body']
 content = wikiwords.sub(check, content)
 edit_url = request.resource_url(context, 'edit_page')
 return dict(page = context, content = content, edit_url = edit_url)

The view_page function is configured to respond as the default view
of a Page resource. We provide it with a @view_config decorator which
names the class tutorial.models.Page as its context. This means that
when a Page resource is the context, and no view name exists in the
request, this view will be used. We inform Pyramid this view will use
the templates/view.pt template file as a renderer.

The view_page function generates the reStructuredText body of a
page (stored as the data attribute of the context passed to the view; the
context will be a Page resource) as HTML. Then it substitutes an HTML
anchor for each WikiWord reference in the rendered HTML using a compiled
regular expression.

The curried function named check is used as the first argument to
wikiwords.sub, indicating that it should be called to provide a value for
each WikiWord match found in the content. If the wiki (our page's
__parent__) already contains a page with the matched WikiWord name, the
check function generates a view link to be used as the substitution value
and returns it. If the wiki does not already contain a page with the
matched WikiWord name, the function generates an "add" link as the
substitution value and returns it.

As a result, the content variable is now a fully formed bit of HTML
containing various view and add links for WikiWords based on the content of
our current page resource.

We then generate an edit URL because it's easier to do here than in the
template, and we wrap up a number of arguments in a dictionary and return
it.

The arguments we wrap into a dictionary include page, content, and
edit_url. As a result, the template associated with this view callable
(via renderer= in its configuration) will be able to use these names to
perform various rendering tasks. The template associated with this view
callable will be a template which lives in templates/view.pt.

Note the contrast between this view callable and the view_wiki view
callable. In the view_wiki view callable, we unconditionally return a
response object. In the view_page view callable, we return a
dictionary. It is always fine to return a response object from a
Pyramid view. Returning a dictionary is allowed only when there is a
renderer associated with the view callable in the view configuration.

The add_page view function

Here is the code for the add_page view function and its decorator:

	35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	@view_config(name='add_page', context='.models.Wiki',
 renderer='templates/edit.pt')
def add_page(context, request):
 pagename = request.subpath[0]
 if 'form.submitted' in request.params:
 body = request.params['body']
 page = Page(body)
 page.__name__ = pagename
 page.__parent__ = context
 context[pagename] = page
 return HTTPFound(location = request.resource_url(page))
 save_url = request.resource_url(context, 'add_page', pagename)
 page = Page('')
 page.__name__ = pagename
 page.__parent__ = context
 return dict(page = page, save_url = save_url)

The add_page function is configured to respond when the context resource
is a Wiki and the view name is add_page. We provide it with a
@view_config decorator which names the string add_page as its
view name (via name=), the class tutorial.models.Wiki as its
context, and the renderer named templates/edit.pt. This means that when a
Wiki resource is the context, and a view name named add_page
exists as the result of traversal, this view will be used. We inform
Pyramid this view will use the templates/edit.pt template file as a
renderer. We share the same template between add and edit views, thus
edit.pt instead of add.pt.

The add_page function will be invoked when a user clicks on a WikiWord
which isn't yet represented as a page in the system. The check function
within the view_page view generates URLs to this view. It also acts as a
handler for the form that is generated when we want to add a page resource.
The context of the add_page view is always a Wiki resource (not a
Page resource).

The request subpath in Pyramid is the sequence of names that
are found after the view name in the URL segments given in the
PATH_INFO of the WSGI request as the result of traversal. If our
add view is invoked via, e.g., http://localhost:6543/add_page/SomeName,
the subpath will be a tuple: ('SomeName',).

The add view takes the zeroth element of the subpath (the wiki page name),
and aliases it to the name attribute in order to know the name of the page
we're trying to add.

If the view rendering is not a result of a form submission (if the
expression 'form.submitted' in request.params is False), the view
renders a template. To do so, it generates a "save url" which the template
uses as the form post URL during rendering. We're lazy here, so we're trying
to use the same template (templates/edit.pt) for the add view as well as
the page edit view. To do so, we create a dummy Page resource object in
order to satisfy the edit form's desire to have some page object exposed as
page, and we'll render the template to a response.

If the view rendering is a result of a form submission (if the expression
'form.submitted' in request.params is True), we grab the page body
from the form data, create a Page object using the name in the subpath and
the page body, and save it into "our context" (the Wiki) using the
__setitem__ method of the context. We then redirect back to the
view_page view (the default view for a page) for the newly created page.

The edit_page view function

Here is the code for the edit_page view function and its decorator:

	52
53
54
55
56
57
58
59
60

	@view_config(name='edit_page', context='.models.Page',
 renderer='templates/edit.pt')
def edit_page(context, request):
 if 'form.submitted' in request.params:
 context.data = request.params['body']
 return HTTPFound(location = request.resource_url(context))

 return dict(page=context,
 save_url=request.resource_url(context, 'edit_page'))

The edit_page function is configured to respond when the context is
a Page resource and the view name is edit_page. We provide it
with a @view_config decorator which names the string edit_page as its
view name (via name=), the class tutorial.models.Page as its
context, and the renderer named templates/edit.pt. This means that when
a Page resource is the context, and a view name exists as the result
of traversal named edit_page, this view will be used. We inform
Pyramid this view will use the templates/edit.pt template file as
a renderer.

The edit_page function will be invoked when a user clicks the "Edit this
Page" button on the view form. It renders an edit form but it also acts as
the form post view callable for the form it renders. The context of the
edit_page view will always be a Page resource (never a Wiki resource).

If the view execution is not a result of a form submission (if the
expression 'form.submitted' in request.params is False), the view
simply renders the edit form, passing the page resource, and a save_url
which will be used as the action of the generated form.

If the view execution is a result of a form submission (if the expression
'form.submitted' in request.params is True), the view grabs the
body element of the request parameter and sets it as the data
attribute of the page context. It then redirects to the default view of the
context (the page), which will always be the view_page view.

Adding templates

The view_page, add_page and edit_page views that we've added
reference a template. Each template is a Chameleon
ZPT template. These templates will live in the templates
directory of our tutorial package. Chameleon templates must have a .pt
extension to be recognized as such.

The view.pt template

Create tutorial/tutorial/templates/view.pt and add the following
content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.__name__} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <div tal:replace="structure content">
 Page text goes here.
 </div>
 <p>
 <a tal:attributes="href edit_url" href="">
 Edit this page

 </p>
 <p>
 Viewing
 Page Name Goes Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

This template is used by view_page() for displaying a single
wiki page. It includes:

	A div element that is replaced with the content value provided by
the view (lines 36-38). content contains HTML, so the structure
keyword is used to prevent escaping it (i.e., changing ">" to ">", etc.)

	A link that points at the "edit" URL which invokes the edit_page view
for the page being viewed (lines 40-42).

The edit.pt template

Create tutorial/tutorial/templates/edit.pt and add the following
content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.__name__} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p>
 Editing
 Page Name Goes Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 <form action="${save_url}" method="post">
 <div class="form-group">
 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
 </div>
 <div class="form-group">
 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
 </div>
 </form>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

This template is used by add_page() and edit_page() for adding and
editing a wiki page. It displays a page containing a form that includes:

	A 10 row by 60 column textarea field named body that is filled
with any existing page data when it is rendered (line 45).

	A submit button that has the name form.submitted (line 48).

The form POSTs back to the save_url argument supplied by the view (line
43). The view will use the body and form.submitted values.

Note

Our templates use a request object that none of our tutorial
views return in their dictionary. request is one of several names that
are available "by default" in a template when a template renderer is used.
See System Values Used During Rendering for information about other names that
are available by default when a template is used as a renderer.

Static assets

Our templates name static assets, including CSS and images. We don't need
to create these files within our package's static directory because they
were provided at the time we created the project.

As an example, the CSS file will be accessed via
http://localhost:6543/static/theme.css by virtue of the call to the
add_static_view directive we've made in the __init__.py file. Any
number and type of static assets can be placed in this directory (or
subdirectories) and are just referred to by URL or by using the convenience
method static_url, e.g.,
request.static_url('<package>:static/foo.css') within templates.

Viewing the application in a browser

We can finally examine our application in a browser (See
Start the application). Launch a browser and visit
each of the following URLs, checking that the result is as expected:

	http://localhost:6543/ invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage Page resource.

	http://localhost:6543/FrontPage/ invokes the view_page view of the front
page resource. This is because it's the default view (a view
without a name) for Page resources.

	http://localhost:6543/FrontPage/edit_page invokes the edit view for the
FrontPage Page resource.

	http://localhost:6543/add_page/SomePageName invokes the add view for a Page.

	To generate an error, visit http://localhost:6543/add_page which will
generate an IndexErrorr: tuple index out of range error. You'll see an
interactive traceback facility provided by pyramid_debugtoolbar.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Adding authorization

Pyramid provides facilities for authentication and
:authorization. We'll make use of both features to provide security
:to our application. Our application currently allows anyone with access to
:the server to view, edit, and add pages to our wiki. We'll change that to
:allow only people who are members of a group named group:editors to add
:and edit wiki pages but we'll continue allowing anyone with access to the
:server to view pages.

We will also add a login page and a logout link on all the pages. The login
page will be shown when a user is denied access to any of the views that
require permission, instead of a default "403 Forbidden" page.

We will implement the access control with the following steps:

	Add users and groups (security.py, a new module).

	Add an ACL (models.py).

	Add an authentication policy and an authorization policy
(__init__.py).

	Add permission declarations to the edit_page and add_page
views (views.py).

Then we will add the login and logout feature:

	Add login and logout views (views.py).

	Add a login template (login.pt).

	Make the existing views return a logged_in flag to the renderer
(views.py).

	Add a "Logout" link to be shown when logged in and viewing or editing a page
(view.pt, edit.pt).

Access control

Add users and groups

Create a new tutorial/tutorial/security.py module with the
following content:

	1
2
3
4
5
6
7

	USERS = {'editor':'editor',
 'viewer':'viewer'}
GROUPS = {'editor':['group:editors']}

def groupfinder(userid, request):
 if userid in USERS:
 return GROUPS.get(userid, [])

The groupfinder function accepts a userid and a request and
returns one of these values:

	If the userid exists in the system, it will return a sequence of group
identifiers (or an empty sequence if the user isn't a member of any groups).

	If the userid does not exist in the system, it will return None.

For example, groupfinder('editor', request) returns ['group:editor'],
groupfinder('viewer', request) returns [], and groupfinder('admin',
request) returns None. We will use groupfinder() as an
authentication policy "callback" that will provide the
principal or principals for a user.

In a production system, user and group data will most often come from a
database, but here we use "dummy" data to represent user and groups sources.

Add an ACL

Open tutorial/tutorial/models.py and add the following import
statement at the head:

	1
2
3
4

	from pyramid.security import (
 Allow,
 Everyone,
)

Add the following lines to the Wiki class:

	 9
10
11
12
13

	class Wiki(PersistentMapping):
 __name__ = None
 __parent__ = None
 __acl__ = [(Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'edit')]

We import Allow, an action that means that
permission is allowed, and Everyone, a special
principal that is associated to all requests. Both are used in the
ACE entries that make up the ACL.

The ACL is a list that needs to be named __acl__ and be an attribute of a
class. We define an ACL with two ACE entries: the first entry
allows any user the view permission. The second entry allows the
group:editors principal the edit permission.

The Wiki class that contains the ACL is the resource constructor
for the root resource, which is a Wiki instance. The ACL is
provided to each view in the context of the request as the context
attribute.

It's only happenstance that we're assigning this ACL at class scope. An ACL
can be attached to an object instance too; this is how "row level security"
can be achieved in Pyramid applications. We actually need only one
ACL for the entire system, however, because our security requirements are
simple, so this feature is not demonstrated. See Assigning ACLs to Your Resource Objects for
more information about what an ACL represents.

Add authentication and authorization policies

Open tutorial/tutorial/__init__.py and add the highlighted import
statements:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator
from pyramid_zodbconn import get_connection

from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy

from .models import appmaker
from .security import groupfinder

Now add those policies to the configuration:

	18
19
20
21
22
23

	 authn_policy = AuthTktAuthenticationPolicy(
 'sosecret', callback=groupfinder, hashalg='sha512')
 authz_policy = ACLAuthorizationPolicy()
 config = Configurator(root_factory=root_factory, settings=settings)
 config.set_authentication_policy(authn_policy)
 config.set_authorization_policy(authz_policy)

Only the highlighted lines need to be added.

We are enabling an AuthTktAuthenticationPolicy, which is based in an auth
ticket that may be included in the request. We are also enabling an
ACLAuthorizationPolicy, which uses an ACL to determine the allow or
deny outcome for a view.

Note that the pyramid.authentication.AuthTktAuthenticationPolicy
constructor accepts two arguments: secret and callback. secret is
a string representing an encryption key used by the "authentication ticket"
machinery represented by this policy: it is required. The callback is the
groupfinder() function that we created before.

Add permission declarations

Open tutorial/tutorial/views.py and add a permission='edit' parameter
to the @view_config decorators for add_page() and edit_page():

@view_config(name='add_page', context='.models.Wiki',
 renderer='templates/edit.pt',
 permission='edit')

@view_config(name='edit_page', context='.models.Page',
 renderer='templates/edit.pt',
 permission='edit')

Only the highlighted lines, along with their preceding commas, need to be
edited and added.

The result is that only users who possess the edit permission at the time
of the request may invoke those two views.

Add a permission='view' parameter to the @view_config decorator for
view_wiki() and view_page() as follows:

@view_config(context='.models.Wiki',
 permission='view')

@view_config(context='.models.Page', renderer='templates/view.pt',
 permission='view')

Only the highlighted lines, along with their preceding commas, need to be
edited and added.

This allows anyone to invoke these two views.

We are done with the changes needed to control access. The changes that
follow will add the login and logout feature.

Login, logout

Add login and logout views

We'll add a login view which renders a login form and processes the post
from the login form, checking credentials.

We'll also add a logout view callable to our application and provide a
link to it. This view will clear the credentials of the logged in user and
redirect back to the front page.

Add the following import statements to the head of
tutorial/tutorial/views.py:

from pyramid.view import (
 view_config,
 forbidden_view_config,
)

from pyramid.security import (
 remember,
 forget,
)

from .security import USERS

All the highlighted lines need to be added or edited.

forbidden_view_config() will be used to customize the
default 403 Forbidden page. remember() and
forget() help to create and expire an auth ticket
cookie.

Now add the login and logout views at the end of the file:

	 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

	@view_config(context='.models.Wiki', name='login',
 renderer='templates/login.pt')
@forbidden_view_config(renderer='templates/login.pt')
def login(request):
 login_url = request.resource_url(request.context, 'login')
 referrer = request.url
 if referrer == login_url:
 referrer = '/' # never use the login form itself as came_from
 came_from = request.params.get('came_from', referrer)
 message = ''
 login = ''
 password = ''
 if 'form.submitted' in request.params:
 login = request.params['login']
 password = request.params['password']
 if USERS.get(login) == password:
 headers = remember(request, login)
 return HTTPFound(location = came_from,
 headers = headers)
 message = 'Failed login'

 return dict(
 message = message,
 url = request.application_url + '/login',
 came_from = came_from,
 login = login,
 password = password,
)

@view_config(context='.models.Wiki', name='logout')
def logout(request):
 headers = forget(request)
 return HTTPFound(location = request.resource_url(request.context),
 headers = headers)

login() has two decorators:

	a @view_config decorator which associates it with the login route
and makes it visible when we visit /login,

	a @forbidden_view_config decorator which turns it into a
forbidden view. login() will be invoked when a user tries to
execute a view callable for which they lack authorization. For example, if
a user has not logged in and tries to add or edit a Wiki page, they will be
shown the login form before being allowed to continue.

The order of these two view configuration decorators is unimportant.

logout() is decorated with a @view_config decorator which associates
it with the logout route. It will be invoked when we visit /logout.

Add the login.pt Template

Create tutorial/tutorial/templates/login.pt with the following content:

<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>Login - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p>

 Login

 </p>
 <form action="${url}" method="post">
 <input type="hidden" name="came_from" value="${came_from}">
 <div class="form-group">
 <label for="login">Username</label>
 <input type="text" name="login" value="${login}">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" name="password" value="${password}">
 </div>
 <div class="form-group">
 <button type="submit" name="form.submitted" value="Log In" class="btn btn-default">Log In</button>
 </div>
 </form>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

The above template is referenced in the login view that we just added in
views.py.

Return a logged_in flag to the renderer

Open tutorial/tutorial/views.py again. Add a logged_in parameter to
the return value of view_page(), add_page(), and edit_page() as
follows:

 return dict(page = context, content = content, edit_url = edit_url,
 logged_in = request.authenticated_userid)

 return dict(page=page, save_url=save_url,
 logged_in=request.authenticated_userid)

 return dict(page=context,
 save_url=request.resource_url(context, 'edit_page'),
 logged_in=request.authenticated_userid)

Only the highlighted lines need to be added or edited.

The pyramid.request.Request.authenticated_userid() will be None if
the user is not authenticated, or a userid if the user is authenticated.

Add a "Logout" link when logged in

Open tutorial/tutorial/templates/edit.pt and
tutorial/tutorial/templates/view.pt and add the following code as
indicated by the highlighted lines.

 <div class="col-md-10">
 <div class="content">
 <p tal:condition="logged_in" class="pull-right">
 Logout
 </p>

The attribute tal:condition="logged_in" will make the element be included
when logged_in is any user id. The link will invoke the logout view. The
above element will not be included if logged_in is None, such as when
a user is not authenticated.

Reviewing our changes

Our tutorial/tutorial/__init__.py will look like this when we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	from pyramid.config import Configurator
from pyramid_zodbconn import get_connection

from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy

from .models import appmaker
from .security import groupfinder

def root_factory(request):
 conn = get_connection(request)
 return appmaker(conn.root())

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 authn_policy = AuthTktAuthenticationPolicy(
 'sosecret', callback=groupfinder, hashalg='sha512')
 authz_policy = ACLAuthorizationPolicy()
 config = Configurator(root_factory=root_factory, settings=settings)
 config.set_authentication_policy(authn_policy)
 config.set_authorization_policy(authz_policy)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.scan()
 return config.make_wsgi_app()

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/models.py will look like this when we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	from persistent import Persistent
from persistent.mapping import PersistentMapping

from pyramid.security import (
 Allow,
 Everyone,
)

class Wiki(PersistentMapping):
 __name__ = None
 __parent__ = None
 __acl__ = [(Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'edit')]

class Page(Persistent):
 def __init__(self, data):
 self.data = data

def appmaker(zodb_root):
 if not 'app_root' in zodb_root:
 app_root = Wiki()
 frontpage = Page('This is the front page')
 app_root['FrontPage'] = frontpage
 frontpage.__name__ = 'FrontPage'
 frontpage.__parent__ = app_root
 zodb_root['app_root'] = app_root
 import transaction
 transaction.commit()
 return zodb_root['app_root']

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/views.py will look like this when we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

	from docutils.core import publish_parts
import re

from pyramid.httpexceptions import HTTPFound

from pyramid.view import (
 view_config,
 forbidden_view_config,
)

from pyramid.security import (
 remember,
 forget,
)

from .security import USERS
from .models import Page

regular expression used to find WikiWords
wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

@view_config(context='.models.Wiki',
 permission='view')
def view_wiki(context, request):
 return HTTPFound(location=request.resource_url(context, 'FrontPage'))

@view_config(context='.models.Page', renderer='templates/view.pt',
 permission='view')
def view_page(context, request):
 wiki = context.__parent__

 def check(match):
 word = match.group(1)
 if word in wiki:
 page = wiki[word]
 view_url = request.resource_url(page)
 return '%s' % (view_url, word)
 else:
 add_url = request.application_url + '/add_page/' + word
 return '%s' % (add_url, word)

 content = publish_parts(context.data, writer_name='html')['html_body']
 content = wikiwords.sub(check, content)
 edit_url = request.resource_url(context, 'edit_page')

 return dict(page = context, content = content, edit_url = edit_url,
 logged_in = request.authenticated_userid)

@view_config(name='add_page', context='.models.Wiki',
 renderer='templates/edit.pt',
 permission='edit')
def add_page(context, request):
 pagename = request.subpath[0]
 if 'form.submitted' in request.params:
 body = request.params['body']
 page = Page(body)
 page.__name__ = pagename
 page.__parent__ = context
 context[pagename] = page
 return HTTPFound(location = request.resource_url(page))
 save_url = request.resource_url(context, 'add_page', pagename)
 page = Page('')
 page.__name__ = pagename
 page.__parent__ = context

 return dict(page=page, save_url=save_url,
 logged_in=request.authenticated_userid)

@view_config(name='edit_page', context='.models.Page',
 renderer='templates/edit.pt',
 permission='edit')
def edit_page(context, request):
 if 'form.submitted' in request.params:
 context.data = request.params['body']
 return HTTPFound(location = request.resource_url(context))

 return dict(page=context,
 save_url=request.resource_url(context, 'edit_page'),
 logged_in=request.authenticated_userid)

@view_config(context='.models.Wiki', name='login',
 renderer='templates/login.pt')
@forbidden_view_config(renderer='templates/login.pt')
def login(request):
 login_url = request.resource_url(request.context, 'login')
 referrer = request.url
 if referrer == login_url:
 referrer = '/' # never use the login form itself as came_from
 came_from = request.params.get('came_from', referrer)
 message = ''
 login = ''
 password = ''
 if 'form.submitted' in request.params:
 login = request.params['login']
 password = request.params['password']
 if USERS.get(login) == password:
 headers = remember(request, login)
 return HTTPFound(location = came_from,
 headers = headers)
 message = 'Failed login'

 return dict(
 message = message,
 url = request.application_url + '/login',
 came_from = came_from,
 login = login,
 password = password,
)

@view_config(context='.models.Wiki', name='logout')
def logout(request):
 headers = forget(request)
 return HTTPFound(location = request.resource_url(request.context),
 headers = headers)

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/edit.pt template will look like this when
we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.__name__} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p tal:condition="logged_in" class="pull-right">
 Logout
 </p>
 <p>
 Editing
 Page Name Goes Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 <form action="${save_url}" method="post">
 <div class="form-group">
 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
 </div>
 <div class="form-group">
 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
 </div>
 </form>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/view.pt template will look like this when
we're done:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	<!DOCTYPE html>
<html lang="${request.locale_name}">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="pyramid web application">
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

 <title>${page.__name__} - Pyramid tutorial wiki (based on
 TurboGears 20-Minute Wiki)</title>

 <!-- Bootstrap core CSS -->
 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this scaffold -->
 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
 <!--[if lt IE 9]>
 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <div class="starter-template">
 <div class="container">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <div class="content">
 <p tal:condition="logged_in" class="pull-right">
 Logout
 </p>
 <div tal:replace="structure content">
 Page text goes here.
 </div>
 <p>
 <a tal:attributes="href edit_url" href="">
 Edit this page

 </p>
 <p>
 Viewing
 Page Name Goes Here
 </p>
 <p>You can return to the
 FrontPage.
 </p>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="copyright">
 Copyright © Pylons Project
 </div>
 </div>
 </div>
 </div>

 <!-- Bootstrap core JavaScript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
 </body>
</html>

Only the highlighted lines need to be added or edited.

Viewing the application in a browser

We can finally examine our application in a browser (See
Start the application). Launch a browser and visit each of the
following URLs, checking that the result is as expected:

	http://localhost:6543/ invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage Page resource. It
is executable by any user.

	http://localhost:6543/FrontPage invokes the view_page view of the
FrontPage Page resource. This is because it's the default view
(a view without a name) for Page resources. It is executable by any
user.

	http://localhost:6543/FrontPage/edit_page invokes the edit view for the
FrontPage object. It is executable by only the editor user. If a
different user (or the anonymous user) invokes it, a login form will be
displayed. Supplying the credentials with the username editor, password
editor will display the edit page form.

	http://localhost:6543/add_page/SomePageName invokes the add view for a page.
It is executable by only the editor user. If a different user (or the
anonymous user) invokes it, a login form will be displayed. Supplying the
credentials with the username editor, password editor will display
the edit page form.

	After logging in (as a result of hitting an edit or add page and submitting
the login form with the editor credentials), we'll see a Logout link in
the upper right hand corner. When we click it, we're logged out, and
redirected back to the front page.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Adding Tests

We will now add tests for the models and the views and a few functional tests
in tests.py. Tests ensure that an application works, and that it
continues to work when changes are made in the future.

Test the models

We write tests for the model classes and the appmaker. Changing
tests.py, we'll write a separate test class for each model class, and
we'll write a test class for the appmaker.

To do so, we'll retain the tutorial.tests.ViewTests class that was
generated as part of the zodb scaffold. We'll add three test classes: one
for the Page model named PageModelTests, one for the Wiki model
named WikiModelTests, and one for the appmaker named AppmakerTests.

Test the views

We'll modify our tests.py file, adding tests for each view function we
added previously. As a result, we'll delete the ViewTests class that
the zodb scaffold provided, and add four other test classes:
ViewWikiTests, ViewPageTests, AddPageTests, and EditPageTests.
These test the view_wiki, view_page, add_page, and edit_page
views.

Functional tests

We'll test the whole application, covering security aspects that are not
tested in the unit tests, like logging in, logging out, checking that
the viewer user cannot add or edit pages, but the editor user
can, and so on.

View the results of all our edits to tests.py

Open the tutorial/tests.py module, and edit it such that it appears as
follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

	import unittest

from pyramid import testing

class PageModelTests(unittest.TestCase):

 def _getTargetClass(self):
 from .models import Page
 return Page

 def _makeOne(self, data=u'some data'):
 return self._getTargetClass()(data=data)

 def test_constructor(self):
 instance = self._makeOne()
 self.assertEqual(instance.data, u'some data')

class WikiModelTests(unittest.TestCase):

 def _getTargetClass(self):
 from .models import Wiki
 return Wiki

 def _makeOne(self):
 return self._getTargetClass()()

 def test_it(self):
 wiki = self._makeOne()
 self.assertEqual(wiki.__parent__, None)
 self.assertEqual(wiki.__name__, None)

class AppmakerTests(unittest.TestCase):

 def _callFUT(self, zodb_root):
 from .models import appmaker
 return appmaker(zodb_root)

 def test_it(self):
 root = {}
 self._callFUT(root)
 self.assertEqual(root['app_root']['FrontPage'].data,
 'This is the front page')

class ViewWikiTests(unittest.TestCase):
 def test_it(self):
 from .views import view_wiki
 context = testing.DummyResource()
 request = testing.DummyRequest()
 response = view_wiki(context, request)
 self.assertEqual(response.location, 'http://example.com/FrontPage')

class ViewPageTests(unittest.TestCase):
 def _callFUT(self, context, request):
 from .views import view_page
 return view_page(context, request)

 def test_it(self):
 wiki = testing.DummyResource()
 wiki['IDoExist'] = testing.DummyResource()
 context = testing.DummyResource(data='Hello CruelWorld IDoExist')
 context.__parent__ = wiki
 context.__name__ = 'thepage'
 request = testing.DummyRequest()
 info = self._callFUT(context, request)
 self.assertEqual(info['page'], context)
 self.assertEqual(
 info['content'],
 '<div class="document">\n'
 '<p>Hello '
 'CruelWorld '
 ''
 'IDoExist'
 '</p>\n</div>\n')
 self.assertEqual(info['edit_url'],
 'http://example.com/thepage/edit_page')

class AddPageTests(unittest.TestCase):
 def _callFUT(self, context, request):
 from .views import add_page
 return add_page(context, request)

 def test_it_notsubmitted(self):
 context = testing.DummyResource()
 request = testing.DummyRequest()
 request.subpath = ['AnotherPage']
 info = self._callFUT(context, request)
 self.assertEqual(info['page'].data,'')
 self.assertEqual(
 info['save_url'],
 request.resource_url(context, 'add_page', 'AnotherPage'))

 def test_it_submitted(self):
 context = testing.DummyResource()
 request = testing.DummyRequest({'form.submitted':True,
 'body':'Hello yo!'})
 request.subpath = ['AnotherPage']
 self._callFUT(context, request)
 page = context['AnotherPage']
 self.assertEqual(page.data, 'Hello yo!')
 self.assertEqual(page.__name__, 'AnotherPage')
 self.assertEqual(page.__parent__, context)

class EditPageTests(unittest.TestCase):
 def _callFUT(self, context, request):
 from .views import edit_page
 return edit_page(context, request)

 def test_it_notsubmitted(self):
 context = testing.DummyResource()
 request = testing.DummyRequest()
 info = self._callFUT(context, request)
 self.assertEqual(info['page'], context)
 self.assertEqual(info['save_url'],
 request.resource_url(context, 'edit_page'))

 def test_it_submitted(self):
 context = testing.DummyResource()
 request = testing.DummyRequest({'form.submitted':True,
 'body':'Hello yo!'})
 response = self._callFUT(context, request)
 self.assertEqual(response.location, 'http://example.com/')
 self.assertEqual(context.data, 'Hello yo!')

class FunctionalTests(unittest.TestCase):

 viewer_login = '/login?login=viewer&password=viewer' \
 '&came_from=FrontPage&form.submitted=Login'
 viewer_wrong_login = '/login?login=viewer&password=incorrect' \
 '&came_from=FrontPage&form.submitted=Login'
 editor_login = '/login?login=editor&password=editor' \
 '&came_from=FrontPage&form.submitted=Login'

 def setUp(self):
 import tempfile
 import os.path
 from . import main
 self.tmpdir = tempfile.mkdtemp()

 dbpath = os.path.join(self.tmpdir, 'test.db')
 uri = 'file://' + dbpath
 settings = { 'zodbconn.uri' : uri ,
 'pyramid.includes': ['pyramid_zodbconn', 'pyramid_tm'] }

 app = main({}, **settings)
 self.db = app.registry._zodb_databases['']
 from webtest import TestApp
 self.testapp = TestApp(app)

 def tearDown(self):
 import shutil
 self.db.close()
 shutil.rmtree(self.tmpdir)

 def test_root(self):
 res = self.testapp.get('/', status=302)
 self.assertEqual(res.location, 'http://localhost/FrontPage')

 def test_FrontPage(self):
 res = self.testapp.get('/FrontPage', status=200)
 self.assertTrue(b'FrontPage' in res.body)

 def test_unexisting_page(self):
 res = self.testapp.get('/SomePage', status=404)
 self.assertTrue(b'Not Found' in res.body)

 def test_successful_log_in(self):
 res = self.testapp.get(self.viewer_login, status=302)
 self.assertEqual(res.location, 'http://localhost/FrontPage')

 def test_failed_log_in(self):
 res = self.testapp.get(self.viewer_wrong_login, status=200)
 self.assertTrue(b'login' in res.body)

 def test_logout_link_present_when_logged_in(self):
 res = self.testapp.get(self.viewer_login, status=302)
 res = self.testapp.get('/FrontPage', status=200)
 self.assertTrue(b'Logout' in res.body)

 def test_logout_link_not_present_after_logged_out(self):
 res = self.testapp.get(self.viewer_login, status=302)
 res = self.testapp.get('/FrontPage', status=200)
 res = self.testapp.get('/logout', status=302)
 self.assertTrue(b'Logout' not in res.body)

 def test_anonymous_user_cannot_edit(self):
 res = self.testapp.get('/FrontPage/edit_page', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_anonymous_user_cannot_add(self):
 res = self.testapp.get('/add_page/NewPage', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_viewer_user_cannot_edit(self):
 res = self.testapp.get(self.viewer_login, status=302)
 res = self.testapp.get('/FrontPage/edit_page', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_viewer_user_cannot_add(self):
 res = self.testapp.get(self.viewer_login, status=302)
 res = self.testapp.get('/add_page/NewPage', status=200)
 self.assertTrue(b'Login' in res.body)

 def test_editors_member_user_can_edit(self):
 res = self.testapp.get(self.editor_login, status=302)
 res = self.testapp.get('/FrontPage/edit_page', status=200)
 self.assertTrue(b'Editing' in res.body)

 def test_editors_member_user_can_add(self):
 res = self.testapp.get(self.editor_login, status=302)
 res = self.testapp.get('/add_page/NewPage', status=200)
 self.assertTrue(b'Editing' in res.body)

 def test_editors_member_user_can_view(self):
 res = self.testapp.get(self.editor_login, status=302)
 res = self.testapp.get('/FrontPage', status=200)
 self.assertTrue(b'FrontPage' in res.body)

Running the tests

We can run these tests by using setup.py test in the same way we did in
Run the tests. However, first we must edit our setup.py to
include a dependency on WebTest, which we've used in our tests.py.
Change the requires list in setup.py to include WebTest.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	requires = [
 'pyramid',
 'pyramid_chameleon',
 'pyramid_debugtoolbar',
 'pyramid_tm',
 'pyramid_zodbconn',
 'transaction',
 'ZODB3',
 'waitress',
 'docutils',
 'WebTest', # add this
]

After we've added a dependency on WebTest in setup.py, we need to run
setup.py develop to get WebTest installed into our virtualenv. Assuming
our shell's current working directory is the "tutorial" distribution
directory:

On UNIX:

$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Once that command has completed successfully, we can run the tests
themselves:

On UNIX:

$ $VENV/bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

The expected result should look like the following:

.........
--
Ran 23 tests in 1.653s

OK

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	ZODB + Traversal Wiki Tutorial

Distributing Your Application

Once your application works properly, you can create a "tarball" from it by
using the setup.py sdist command. The following commands assume your
current working directory is the tutorial package we've created and that
the parent directory of the tutorial package is a virtualenv representing
a Pyramid environment.

On UNIX:

$ $VENV/bin/python setup.py sdist

On Windows:

c:\pyramidtut> %VENV%\Scripts\python setup.py sdist

The output of such a command will be something like:

running sdist
.. more output ..
creating dist
tar -cf dist/tutorial-0.0.tar tutorial-0.0
gzip -f9 dist/tutorial-0.0.tar
removing 'tutorial-0.0' (and everything under it)

Note that this command creates a tarball in the "dist" subdirectory named
tutorial-0.0.tar.gz. You can send this file to your friends to show them
your cool new application. They should be able to install it by pointing the
easy_install command directly at it. Or you can upload it to PyPI [http://pypi.python.org] and share it with the rest of the world, where it
can be downloaded via easy_install remotely like any other package people
download from PyPI.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Running a Pyramid Application under mod_wsgi

mod_wsgi is an Apache module developed by Graham Dumpleton.
It allows WSGI programs to be served using the Apache web
server.

This guide will outline broad steps that can be used to get a Pyramid
application running under Apache via mod_wsgi. This particular tutorial
was developed under Apple's Mac OS X platform (Snow Leopard, on a 32-bit
Mac), but the instructions should be largely the same for all systems, delta
specific path information for commands and files.

Note

Unfortunately these instructions almost certainly won't work for
deploying a Pyramid application on a Windows system using
mod_wsgi. If you have experience with Pyramid and mod_wsgi
on Windows systems, please help us document this experience by submitting
documentation to the Pylons-devel maillist [http://groups.google.com/group/pylons-devel].

	The tutorial assumes you have Apache already installed on your
system. If you do not, install Apache 2.X for your platform in
whatever manner makes sense.

	Once you have Apache installed, install mod_wsgi. Use the
(excellent) installation instructions [http://code.google.com/p/modwsgi/wiki/InstallationInstructions]
for your platform into your system's Apache installation.

	Install virtualenv into the Python which mod_wsgi will
run using the easy_install program.

$ sudo /usr/bin/easy_install-2.6 virtualenv

This command may need to be performed as the root user.

	Create a virtualenv which we'll use to install our
application.

$ cd ~
$ mkdir modwsgi
$ cd modwsgi
$ /usr/local/bin/virtualenv env

	Install Pyramid into the newly created virtualenv:

$ cd ~/modwsgi/env
$ $VENV/bin/easy_install pyramid

	Create and install your Pyramid application. For the purposes of
this tutorial, we'll just be using the pyramid_starter application as
a baseline application. Substitute your existing Pyramid
application as necessary if you already have one.

$ cd ~/modwsgi/env
$ $VENV/bin/pcreate -s starter myapp
$ cd myapp
$ $VENV/bin/python setup.py install

	Within the virtualenv directory (~/modwsgi/env), create a
script named pyramid.wsgi. Give it these contents:

from pyramid.paster import get_app, setup_logging
ini_path = '/Users/chrism/modwsgi/env/myapp/production.ini'
setup_logging(ini_path)
application = get_app(ini_path, 'main')

The first argument to get_app is the project configuration file
name. It's best to use the production.ini file provided by your
scaffold, as it contains settings appropriate for
production. The second is the name of the section within the .ini file
that should be loaded by mod_wsgi. The assignment to the name
application is important: mod_wsgi requires finding such an
assignment when it opens the file.

The call to setup_logging initializes the standard library's
logging module to allow logging within your application.
See Logging Configuration.

There is no need to make the pyramid.wsgi script executable.
However, you'll need to make sure that two users have access to change
into the ~/modwsgi/env directory: your current user (mine is
chrism and the user that Apache will run as often named apache or
httpd). Make sure both of these users can "cd" into that directory.

	Edit your Apache configuration and add some stuff. I happened to
create a file named /etc/apache2/other/modwsgi.conf on my own
system while installing Apache, so this stuff went in there.

Use only 1 Python sub-interpreter. Multiple sub-interpreters
play badly with C extensions. See
http://stackoverflow.com/a/10558360/209039
WSGIApplicationGroup %{GLOBAL}
WSGIPassAuthorization On
WSGIDaemonProcess pyramid user=chrism group=staff threads=4 \
 python-path=/Users/chrism/modwsgi/env/lib/python2.6/site-packages
WSGIScriptAlias /myapp /Users/chrism/modwsgi/env/pyramid.wsgi

<Directory /Users/chrism/modwsgi/env>
 WSGIProcessGroup pyramid
 Order allow,deny
 Allow from all
</Directory>

	Restart Apache

$ sudo /usr/sbin/apachectl restart

	Visit http://localhost/myapp in a browser. You should see the
sample application rendered in your browser.

mod_wsgi has many knobs and a great variety of deployment
modes. This is just one representation of how you might use it to
serve up a Pyramid application. See the mod_wsgi
configuration documentation [http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines] for
more in-depth configuration information.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Pyramid Introduction

Pyramid is a general, open source, Python web application development
framework. Its primary goal is to make it easier for a Python developer to
create web applications.

Frameworks vs. Libraries

A framework differs from a library in one very important way: library
code is always called by code that you write, while a framework always
calls code that you write. Using a set of libraries to create an
application is usually easier than using a framework initially, because you
can choose to cede control to library code you have not authored very
selectively. But when you use a framework, you are required to cede a
greater portion of control to code you have not authored: code that resides
in the framework itself. You needn't use a framework at all to create a web
application using Python. A rich set of libraries already exists for the
platform. In practice, however, using a framework to create an application
is often more practical than rolling your own via a set of libraries if the
framework provides a set of facilities that fits your application
requirements.

Pyramid attempts to follow these design and engineering principles:

	Simplicity

	Pyramid takes a "pay only for what you eat" approach. You can get
results even if you have only a partial understanding of Pyramid. It
doesn't force you to use any particular technology to produce an application,
and we try to keep the core set of concepts that you need to understand to a
minimum.

	Minimalism

	Pyramid tries to solve only the fundamental problems of creating a web
application: the mapping of URLs to code, templating, security, and serving
static assets. We consider these to be the core activities that are common to
nearly all web applications.

	Documentation

	Pyramid's minimalism means that it is easier for us to maintain complete and
up-to-date documentation. It is our goal that no aspect of Pyramid is
undocumented.

	Speed

	Pyramid is designed to provide noticeably fast execution for common
tasks such as templating and simple response generation.

	Reliability

	Pyramid is developed conservatively and tested exhaustively. Where
Pyramid source code is concerned, our motto is: "If it ain't tested, it's
broke".

	Openness

	As with Python, the Pyramid software is distributed under a permissive open
source license [http://repoze.org/license.html].

What makes Pyramid unique

Understandably, people don't usually want to hear about squishy engineering
principles; they want to hear about concrete stuff that solves their problems.
With that in mind, what would make someone want to use Pyramid instead of one
of the many other web frameworks available today? What makes Pyramid unique?

This is a hard question to answer because there are lots of excellent choices,
and it's actually quite hard to make a wrong choice, particularly in the Python
web framework market. But one reasonable answer is this: you can write very
small applications in Pyramid without needing to know a lot. "What?" you say.
"That can't possibly be a unique feature. Lots of other web frameworks let you
do that!" Well, you're right. But unlike many other systems, you can also
write very large applications in Pyramid if you learn a little more about it.
Pyramid will allow you to become productive quickly, and will grow with you. It
won't hold you back when your application is small, and it won't get in your
way when your application becomes large. "Well that's fine," you say. "Lots of
other frameworks let me write large apps, too." Absolutely. But other Python
web frameworks don't seamlessly let you do both. They seem to fall into two
non-overlapping categories: frameworks for "small apps" and frameworks for "big
apps". The "small app" frameworks typically sacrifice "big app" features, and
vice versa.

We don't think it's a universally reasonable suggestion to write "small apps"
in a "small framework" and "big apps" in a "big framework". You can't really
know to what size every application will eventually grow. We don't really want
to have to rewrite a previously small application in another framework when it
gets "too big". We believe the current binary distinction between frameworks
for small and large applications is just false. A well-designed framework
should be able to be good at both. Pyramid strives to be that kind of
framework.

To this end, Pyramid provides a set of features that combined are unique
amongst Python web frameworks. Lots of other frameworks contain some
combination of these features. Pyramid of course actually stole many of them
from those other frameworks. But Pyramid is the only one that has all of them
in one place, documented appropriately, and useful à la carte without
necessarily paying for the entire banquet. These are detailed below.

Single-file applications

You can write a Pyramid application that lives entirely in one Python file, not
unlike existing Python microframeworks. This is beneficial for one-off
prototyping, bug reproduction, and very small applications. These applications
are easy to understand because all the information about the application lives
in a single place, and you can deploy them without needing to understand much
about Python distributions and packaging. Pyramid isn't really marketed as a
microframework, but it allows you to do almost everything that frameworks that
are marketed as "micro" offer in very similar ways.

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello %(name)s!' % request.matchdict)

if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello', '/hello/{name}')
 config.add_view(hello_world, route_name='hello')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

See also

See also Creating Your First Pyramid Application.

Decorator-based configuration

If you like the idea of framework configuration statements living next to the
code it configures, so you don't have to constantly switch between files to
refer to framework configuration when adding new code, you can use Pyramid
decorators to localize the configuration. For example:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='fred')
def fred_view(request):
 return Response('fred')

However, unlike some other systems, using decorators for Pyramid configuration
does not make your application difficult to extend, test, or reuse. The
view_config decorator, for example, does not actually
change the input or output of the function it decorates, so testing it is a
"WYSIWYG" operation. You don't need to understand the framework to test your
own code. You just behave as if the decorator is not there. You can also
instruct Pyramid to ignore some decorators, or use completely imperative
configuration instead of decorators to add views. Pyramid decorators are inert
instead of eager. You detect and activate them with a scan.

Example: Adding View Configuration Using the @view_config Decorator.

URL generation

Pyramid is capable of generating URLs for resources, routes, and static assets.
Its URL generation APIs are easy to use and flexible. If you use Pyramid's
various APIs for generating URLs, you can change your configuration around
arbitrarily without fear of breaking a link on one of your web pages.

Example: Generating Route URLs.

Static file serving

Pyramid is perfectly willing to serve static files itself. It won't make you
use some external web server to do that. You can even serve more than one set
of static files in a single Pyramid web application (e.g., /static and
/static2). You can optionally place your files on an external web server
and ask Pyramid to help you generate URLs to those files. This let's you use
Pyramid's internal file serving while doing development, and a faster static
file server in production, without changing any code.

Example: Serving Static Assets.

Fully interactive development

When developing a Pyramid application, several interactive features are
available. Pyramid can automatically utilize changed templates when rendering
pages and automatically restart the application to incorporate changed Python
code. Plain old print() calls used for debugging can display to a console.

Pyramid's debug toolbar comes activated when you use a Pyramid scaffold to
render a project. This toolbar overlays your application in the browser, and
allows you access to framework data, such as the routes configured, the last
renderings performed, the current set of packages installed, SQLAlchemy queries
run, logging data, and various other facts. When an exception occurs, you can
use its interactive debugger to poke around right in your browser to try to
determine the cause of the exception. It's handy.

Example: The Debug Toolbar.

Debugging settings

Pyramid has debugging settings that allow you to print Pyramid runtime
information to the console when things aren't behaving as you're expecting. For
example, you can turn on debug_notfound, which prints an informative
message to the console every time a URL does not match any view. You can turn
on debug_authorization, which lets you know why a view execution was
allowed or denied by printing a message to the console. These features are
useful for those WTF moments.

There are also a number of commands that you can invoke within a Pyramid
environment that allow you to introspect the configuration of your system.
proutes shows all configured routes for an application in the order they'll
be evaluated for matching. pviews shows all configured views for any given
URL. These are also WTF-crushers in some circumstances.

Examples: Debugging View Authorization Failures and Command-Line Pyramid.

Add-ons

Pyramid has an extensive set of add-ons held to the same quality standards as
the Pyramid core itself. Add-ons are packages which provide functionality that
the Pyramid core doesn't. Add-on packages already exist which let you easily
send email, let you use the Jinja2 templating system, let you use XML-RPC or
JSON-RPC, let you integrate with jQuery Mobile, etc.

Examples:
http://docs.pylonsproject.org/en/latest/docs/pyramid.html#pyramid-add-on-documentation

Class-based and function-based views

Pyramid has a structured, unified concept of a view callable. View
callables can be functions, methods of classes, or even instances. When you
add a new view callable, you can choose to make it a function or a method of a
class. In either case Pyramid treats it largely the same way. You can change
your mind later and move code between methods of classes and functions. A
collection of similar view callables can be attached to a single class as
methods, if that floats your boat, and they can share initialization code as
necessary. All kinds of views are easy to understand and use, and operate
similarly. There is no phony distinction between them. They can be used for
the same purposes.

Here's a view callable defined as a function:

	1
2
3
4
5
6

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(route_name='aview')
def aview(request):
 return Response('one')

Here's a few views defined as methods of a class instead:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyramid.response import Response
from pyramid.view import view_config

class AView(object):
 def __init__(self, request):
 self.request = request

 @view_config(route_name='view_one')
 def view_one(self):
 return Response('one')

 @view_config(route_name='view_two')
 def view_two(self):
 return Response('two')

See also

See also @view_config Placement.

Asset specifications

Asset specifications are strings that contain both a Python package name and a
file or directory name, e.g., MyPackage:static/index.html. Use of these
specifications is omnipresent in Pyramid. An asset specification can refer to
a template, a translation directory, or any other package-bound static
resource. This makes a system built on Pyramid extensible because you don't
have to rely on globals ("the static directory") or lookup schemes ("the
ordered set of template directories") to address your files. You can move
files around as necessary, and include other packages that may not share your
system's templates or static files without encountering conflicts.

Because asset specifications are used heavily in Pyramid, we've also provided a
way to allow users to override assets. Say you love a system that someone else
has created with Pyramid but you just need to change "that one template" to
make it all better. No need to fork the application. Just override the asset
specification for that template with your own inside a wrapper, and you're good
to go.

Examples: Understanding Asset Specifications and Overriding Assets.

Extensible templating

Pyramid has a structured API that allows for pluggability of "renderers".
Templating systems such as Mako, Genshi, Chameleon, and Jinja2 can be treated
as renderers. Renderer bindings for all of these templating systems already
exist for use in Pyramid. But if you'd rather use another, it's not a big
deal. Just copy the code from an existing renderer package, and plug in your
favorite templating system. You'll then be able to use that templating system
from within Pyramid just as you'd use one of the "built-in" templating systems.

Pyramid does not make you use a single templating system exclusively. You can
use multiple templating systems, even in the same project.

Example: Using Templates Directly.

Rendered views can return dictionaries

If you use a renderer, you don't have to return a special kind of
"webby" Response object from a view. Instead you can return a dictionary,
and Pyramid will take care of converting that dictionary to a Response using a
template on your behalf. This makes the view easier to test, because you don't
have to parse HTML in your tests. Instead just make an assertion that the view
returns "the right stuff" in the dictionary. You can write "real" unit tests
instead of functionally testing all of your views.

For example, instead of returning a Response object from a
render_to_response call:

	1
2
3
4
5

	from pyramid.renderers import render_to_response

def myview(request):
 return render_to_response('myapp:templates/mytemplate.pt', {'a':1},
 request=request)

You can return a Python dictionary:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='myapp:templates/mytemplate.pt')
def myview(request):
 return {'a':1}

When this view callable is called by Pyramid, the {'a':1} dictionary will
be rendered to a response on your behalf. The string passed as renderer=
above is an asset specification. It is in the form
packagename:directoryname/filename.ext. In this case, it refers to the
mytemplate.pt file in the templates directory within the myapp
Python package. Asset specifications are omnipresent in Pyramid. See
Asset specifications for more information.

Example: Renderers.

Event system

Pyramid emits events during its request processing lifecycle. You can
subscribe any number of listeners to these events. For example, to be notified
of a new request, you can subscribe to the NewRequest event. To be
notified that a template is about to be rendered, you can subscribe to the
BeforeRender event, and so forth. Using an event publishing system as a
framework notification feature instead of hardcoded hook points tends to make
systems based on that framework less brittle.

You can also use Pyramid's event system to send your own events. For
example, if you'd like to create a system that is itself a framework, and may
want to notify subscribers that a document has just been indexed, you can
create your own event type (DocumentIndexed perhaps) and send the event via
Pyramid. Users of this framework can then subscribe to your event like they'd
subscribe to the events that are normally sent by Pyramid itself.

Example: Using Events and Event Types.

Built-in internationalization

Pyramid ships with internationalization-related features in its core:
localization, pluralization, and creating message catalogs from source files
and templates. Pyramid allows for a plurality of message catalogs via the use
of translation domains. You can create a system that has its own translations
without conflict with other translations in other domains.

Example: Internationalization and Localization.

HTTP caching

Pyramid provides an easy way to associate views with HTTP caching policies. You
can just tell Pyramid to configure your view with an http_cache statement,
and it will take care of the rest:

@view_config(http_cache=3600) # 60 minutes
def myview(request):

Pyramid will add appropriate Cache-Control and Expires headers to
responses generated when this view is invoked.

See the add_view() method's http_cache
documentation for more information.

Sessions

Pyramid has built-in HTTP sessioning. This allows you to associate data with
otherwise anonymous users between requests. Lots of systems do this. But
Pyramid also allows you to plug in your own sessioning system by creating some
code that adheres to a documented interface. Currently there is a binding
package for the third-party Redis sessioning system that does exactly this. But
if you have a specialized need (perhaps you want to store your session data in
MongoDB), you can. You can even switch between implementations without
changing your application code.

Example: Sessions.

Speed

The Pyramid core is, as far as we can tell, at least marginally faster than any
other existing Python web framework. It has been engineered from the ground up
for speed. It only does as much work as absolutely necessary when you ask it
to get a job done. Extraneous function calls and suboptimal algorithms in its
core codepaths are avoided. It is feasible to get, for example, between 3500
and 4000 requests per second from a simple Pyramid view on commodity dual-core
laptop hardware and an appropriate WSGI server (mod_wsgi or gunicorn). In any
case, performance statistics are largely useless without requirements and
goals, but if you need speed, Pyramid will almost certainly never be your
application's bottleneck; at least no more than Python will be a bottleneck.

Example: http://blog.curiasolutions.com/pages/the-great-web-framework-shootout.html

Exception views

Exceptions happen. Rather than deal with exceptions that might present
themselves to a user in production in an ad-hoc way, Pyramid allows you to
register an exception view. Exception views are like regular Pyramid
views, but they're only invoked when an exception "bubbles up" to Pyramid
itself. For example, you might register an exception view for the
Exception [http://docs.python.org/3/library/exceptions.html#Exception] exception, which will catch all exceptions, and present a
pretty "well, this is embarrassing" page. Or you might choose to register an
exception view for only specific kinds of application-specific exceptions, such
as an exception that happens when a file is not found, or an exception that
happens when an action cannot be performed because the user doesn't have
permission to do something. In the former case, you can show a pretty "Not
Found" page; in the latter case you might show a login form.

Example: Custom Exception Views.

No singletons

Pyramid is written in such a way that it requires your application to have
exactly zero "singleton" data structures. Or put another way, Pyramid doesn't
require you to construct any "mutable globals". Or put even another different
way, an import of a Pyramid application needn't have any "import-time side
effects". This is esoteric-sounding, but if you've ever tried to cope with
parameterizing a Django settings.py file for multiple installations of the
same application, or if you've ever needed to monkey-patch some framework
fixture so that it behaves properly for your use case, or if you've ever wanted
to deploy your system using an asynchronous server, you'll end up appreciating
this feature. It just won't be a problem. You can even run multiple copies of
a similar but not identically configured Pyramid application within the same
Python process. This is good for shared hosting environments, where RAM is at
a premium.

View predicates and many views per route

Unlike many other systems, Pyramid allows you to associate more than one view
per route. For example, you can create a route with the pattern /items and
when the route is matched, you can shuffle off the request to one view if the
request method is GET, another view if the request method is POST, etc. A
system known as "view predicates" allows for this. Request method matching is
the most basic thing you can do with a view predicate. You can also associate
views with other request parameters, such as the elements in the query string,
the Accept header, whether the request is an XHR request or not, and lots of
other things. This feature allows you to keep your individual views clean.
They won't need much conditional logic, so they'll be easier to test.

Example: View Configuration Parameters.

Transaction management

Pyramid's scaffold system renders projects that include a transaction
management system, stolen from Zope. When you use this transaction management
system, you cease being responsible for committing your data anymore. Instead
Pyramid takes care of committing: it commits at the end of a request or aborts
if there's an exception. Why is that a good thing? Having a centralized place
for transaction management is a great thing. If, instead of managing your
transactions in a centralized place, you sprinkle session.commit calls in
your application logic itself, you can wind up in a bad place. Wherever you
manually commit data to your database, it's likely that some of your other code
is going to run after your commit. If that code goes on to do other important
things after that commit, and an error happens in the later code, you can
easily wind up with inconsistent data if you're not extremely careful. Some
data will have been written to the database that probably should not have.
Having a centralized commit point saves you from needing to think about this;
it's great for lazy people who also care about data integrity. Either the
request completes successfully, and all changes are committed, or it does not,
and all changes are aborted.

Pyramid's transaction management system allows you to synchronize commits
between multiple databases. It also allows you to do things like conditionally
send email if a transaction commits, but otherwise keep quiet.

Example: SQLAlchemy + URL Dispatch Wiki Tutorial (note the lack of commit statements
anywhere in application code).

Configuration conflict detection

When a system is small, it's reasonably easy to keep it all in your head. But
when systems grow large, you may have hundreds or thousands of configuration
statements which add a view, add a route, and so forth.

Pyramid's configuration system keeps track of your configuration statements. If
you accidentally add two that are identical, or Pyramid can't make sense out of
what it would mean to have both statements active at the same time, it will
complain loudly at startup time. It's not dumb though. It will automatically
resolve conflicting configuration statements on its own if you use the
configuration include() system. "More local"
statements are preferred over "less local" ones. This allows you to
intelligently factor large systems into smaller ones.

Example: Conflict Detection.

Configuration extensibility

Unlike other systems, Pyramid provides a structured "include" mechanism (see
include()) that allows you to combine
applications from multiple Python packages. All the configuration statements
that can be performed in your "main" Pyramid application can also be performed
by included packages, including the addition of views, routes, subscribers, and
even authentication and authorization policies. You can even extend or override
an existing application by including another application's configuration in
your own, overriding or adding new views and routes to it. This has the
potential to allow you to create a big application out of many other smaller
ones. For example, if you want to reuse an existing application that already
has a bunch of routes, you can just use the include statement with a
route_prefix. The new application will live within your application at an
URL prefix. It's not a big deal, and requires little up-front engineering
effort.

For example:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator

if __name__ == '__main__':
 config = Configurator()
 config.include('pyramid_jinja2')
 config.include('pyramid_exclog')
 config.include('some.other.guys.package', route_prefix='/someotherguy')

See also

See also Including Configuration from External Sources and
Rules for Building an Extensible Application.

Flexible authentication and authorization

Pyramid includes a flexible, pluggable authentication and authorization system.
No matter where your user data is stored, or what scheme you'd like to use to
permit your users to access your data, you can use a predefined Pyramid
plugpoint to plug in your custom authentication and authorization code. If you
want to change these schemes later, you can just change it in one place rather
than everywhere in your code. It also ships with prebuilt well-tested
authentication and authorization schemes out of the box. But what if you don't
want to use Pyramid's built-in system? You don't have to. You can just write
your own bespoke security code as you would in any other system.

Example: Enabling an Authorization Policy.

Traversal

Traversal is a concept stolen from Zope. It allows you to
create a tree of resources, each of which can be addressed by one or more URLs.
Each of those resources can have one or more views associated with it. If
your data isn't naturally treelike, or you're unwilling to create a treelike
representation of your data, you aren't going to find traversal very useful.
However, traversal is absolutely fantastic for sites that need to be
arbitrarily extensible. It's a lot easier to add a node to a tree than it is to
shoehorn a route into an ordered list of other routes, or to create another
entire instance of an application to service a department and glue code to
allow disparate apps to share data. It's a great fit for sites that naturally
lend themselves to changing departmental hierarchies, such as content
management systems and document management systems. Traversal also lends
itself well to systems that require very granular security ("Bob can edit
this document" as opposed to "Bob can edit documents").

Examples: Hello Traversal World and
Much Ado About Traversal.

Tweens

Pyramid has a sort of internal WSGI-middleware-ish pipeline that can be hooked
by arbitrary add-ons named "tweens". The debug toolbar is a "tween", and the
pyramid_tm transaction manager is also. Tweens are more useful than WSGI
middleware in some circumstances because they run in the context of
Pyramid itself, meaning you have access to templates and other renderers, a
"real" request object, and other niceties.

Example: Registering Tweens.

View response adapters

A lot is made of the aesthetics of what kinds of objects you're allowed to
return from view callables in various frameworks. In a previous section in
this document, we showed you that, if you use a renderer, you can
usually return a dictionary from a view callable instead of a full-on
Response object. But some frameworks allow you to return strings or
tuples from view callables. When frameworks allow for this, code looks
slightly prettier, because fewer imports need to be done, and there is less
code. For example, compare this:

	1
2

	def aview(request):
 return "Hello world!"

To this:

	1
2
3
4

	from pyramid.response import Response

def aview(request):
 return Response("Hello world!")

The former is "prettier", right?

Out of the box, if you define the former view callable (the one that simply
returns a string) in Pyramid, when it is executed, Pyramid will raise an
exception. This is because "explicit is better than implicit", in most cases,
and by default Pyramid wants you to return a Response object from a
view callable. This is because there's usually a heck of a lot more to a
response object than just its body. But if you're the kind of person who
values such aesthetics, we have an easy way to allow for this sort of thing:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.config import Configurator
from pyramid.response import Response

def string_response_adapter(s):
 response = Response(s)
 response.content_type = 'text/html'
 return response

if __name__ == '__main__':
 config = Configurator()
 config.add_response_adapter(string_response_adapter, basestring)

Do that once in your Pyramid application at startup. Now you can return
strings from any of your view callables, e.g.:

	1
2
3
4
5

	def helloview(request):
 return "Hello world!"

def goodbyeview(request):
 return "Goodbye world!"

Oh noes! What if you want to indicate a custom content type? And a custom
status code? No fear:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from pyramid.config import Configurator

def tuple_response_adapter(val):
 status_int, content_type, body = val
 response = Response(body)
 response.content_type = content_type
 response.status_int = status_int
 return response

def string_response_adapter(body):
 response = Response(body)
 response.content_type = 'text/html'
 response.status_int = 200
 return response

if __name__ == '__main__':
 config = Configurator()
 config.add_response_adapter(string_response_adapter, basestring)
 config.add_response_adapter(tuple_response_adapter, tuple)

Once this is done, both of these view callables will work:

	1
2
3
4
5

	def aview(request):
 return "Hello world!"

def anotherview(request):
 return (403, 'text/plain', "Forbidden")

Pyramid defaults to explicit behavior, because it's the most generally useful,
but provides hooks that allow you to adapt the framework to localized aesthetic
desires.

See also

See also Changing How Pyramid Treats View Responses.

"Global" response object

"Constructing these response objects in my view callables is such a chore! And
I'm way too lazy to register a response adapter, as per the prior section," you
say. Fine. Be that way:

	1
2
3
4
5

	def aview(request):
 response = request.response
 response.body = 'Hello world!'
 response.content_type = 'text/plain'
 return response

See also

See also Varying Attributes of Rendered Responses.

Automating repetitive configuration

Does Pyramid's configurator allow you to do something, but you're a little
adventurous and just want it a little less verbose? Or you'd like to offer up
some handy configuration feature to other Pyramid users without requiring that
we change Pyramid? You can extend Pyramid's Configurator with your own
directives. For example, let's say you find yourself calling
pyramid.config.Configurator.add_view() repetitively. Usually you can
take the boring away by using existing shortcuts, but let's say that this is a
case where there is no such shortcut:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.config import Configurator

config = Configurator()
config.add_route('xhr_route', '/xhr/{id}')
config.add_view('my.package.GET_view', route_name='xhr_route',
 xhr=True, permission='view', request_method='GET')
config.add_view('my.package.POST_view', route_name='xhr_route',
 xhr=True, permission='view', request_method='POST')
config.add_view('my.package.HEAD_view', route_name='xhr_route',
 xhr=True, permission='view', request_method='HEAD')

Pretty tedious right? You can add a directive to the Pyramid configurator to
automate some of the tedium away:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator

def add_protected_xhr_views(config, module):
 module = config.maybe_dotted(module)
 for method in ('GET', 'POST', 'HEAD'):
 view = getattr(module, 'xhr_%s_view' % method, None)
 if view is not None:
 config.add_view(view, route_name='xhr_route', xhr=True,
 permission='view', request_method=method)

config = Configurator()
config.add_directive('add_protected_xhr_views', add_protected_xhr_views)

Once that's done, you can call the directive you've just added as a method of
the Configurator object:

	1
2

	config.add_route('xhr_route', '/xhr/{id}')
config.add_protected_xhr_views('my.package')

Your previously repetitive configuration lines have now morphed into one line.

You can share your configuration code with others this way, too, by packaging
it up and calling add_directive() from
within a function called when another user uses the
include() method against your code.

See also

See also Adding Methods to the Configurator via add_directive.

Programmatic introspection

If you're building a large system that other users may plug code into, it's
useful to be able to get an enumeration of what code they plugged in at
application runtime. For example, you might want to show them a set of tabs
at the top of the screen based on an enumeration of views they registered.

This is possible using Pyramid's introspector.

Here's an example of using Pyramid's introspector from within a view callable:

	1
2
3
4
5
6
7
8
9

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='bar')
def show_current_route_pattern(request):
 introspector = request.registry.introspector
 route_name = request.matched_route.name
 route_intr = introspector.get('routes', route_name)
 return Response(str(route_intr['pattern']))

See also

See also Pyramid Configuration Introspection.

Python 3 compatibility

Pyramid and most of its add-ons are Python 3 compatible. If you develop a
Pyramid application today, you won't need to worry that five years from now
you'll be backwatered because there are language features you'd like to use but
your framework doesn't support newer Python versions.

Testing

Every release of Pyramid has 100% statement coverage via unit and integration
tests, as measured by the coverage tool available on PyPI. It also has
greater than 95% decision/condition coverage as measured by the
instrumental tool available on PyPI. It is automatically tested by the
Jenkins tool on Python 2.6, Python 2.7, Python 3.2, Python 3.3, Python 3.4,
Python 3.5, PyPy, and PyPy3 after each commit to its GitHub repository.
Official Pyramid add-ons are held to a similar testing standard. We still find
bugs in Pyramid and its official add-ons, but we've noticed we find a lot more
of them while working on other projects that don't have a good testing regime.

Example: http://jenkins.pylonsproject.org/

Support

It's our goal that no Pyramid question go unanswered. Whether you ask a
question on IRC, on the Pylons-discuss mailing list, or on StackOverflow,
you're likely to get a reasonably prompt response. We don't tolerate "support
trolls" or other people who seem to get their rocks off by berating fellow
users in our various official support channels. We try to keep it well-lit and
new-user-friendly.

Example: Visit irc://freenode.net#pyramid (the #pyramid channel on
irc.freenode.net in an IRC client) or the pylons-discuss maillist at
http://groups.google.com/group/pylons-discuss/.

Documentation

It's a constant struggle, but we try to maintain a balance between completeness
and new-user-friendliness in the official narrative Pyramid documentation
(concrete suggestions for improvement are always appreciated, by the way). We
also maintain a "cookbook" of recipes, which are usually demonstrations of
common integration scenarios too specific to add to the official narrative
docs. In any case, the Pyramid documentation is comprehensive.

Example: The Pyramid Community Cookbook [http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/index.html#pyramid-cookbook].

What Is The Pylons Project?

Pyramid is a member of the collection of software published under the
Pylons Project. Pylons software is written by a loose-knit community of
contributors. The Pylons Project website [http://pylonsproject.org]
includes details about how Pyramid relates to the Pylons Project.

Pyramid and Other Web Frameworks

The first release of Pyramid's predecessor (named repoze.bfg) was made
in July of 2008. At the end of 2010, we changed the name of repoze.bfg
to Pyramid. It was merged into the Pylons project as Pyramid in
November of that year.

Pyramid was inspired by Zope, Pylons (version 1.0), and
Django. As a result, Pyramid borrows several concepts and
features from each, combining them into a unique web framework.

Many features of Pyramid trace their origins back to Zope. Like
Zope applications, Pyramid applications can be easily extended. If you
obey certain constraints, the application you produce can be reused, modified,
re-integrated, or extended by third-party developers without forking the
original application. The concepts of traversal and declarative
security in Pyramid were pioneered first in Zope.

The Pyramid concept of URL dispatch is inspired by the
Routes system used by Pylons version 1.0. Like Pylons version
1.0, Pyramid is mostly policy-free. It makes no assertions about which
database you should use. Pyramid no longer has built-in templating facilities
as of version 1.5a2, but instead officially supports bindings for templating
languages, including Chameleon, Jinja2, and Mako. In essence, it only supplies
a mechanism to map URLs to view code, along with a set of conventions
for calling those views. You are free to use third-party components that fit
your needs in your applications.

The concept of view is used by Pyramid mostly as it would be by
Django. Pyramid has a documentation culture more like Django's than
like Zope's.

Like Pylons version 1.0, but unlike Zope, a Pyramid
application developer may use completely imperative code to perform common
framework configuration tasks such as adding a view or a route. In Zope,
ZCML is typically required for similar purposes. In Grok, a
Zope-based web framework, decorator objects and class-level
declarations are used for this purpose. Out of the box, Pyramid supports
imperative and decorator-based configuration. ZCML may be used via an
add-on package named pyramid_zcml.

Also unlike Zope and other "full-stack" frameworks such as
Django, Pyramid makes no assumptions about which persistence
mechanisms you should use to build an application. Zope applications are
typically reliant on ZODB. Pyramid allows you to build
ZODB applications, but it has no reliance on the ZODB software.
Likewise, Django tends to assume that you want to store your
application's data in a relational database. Pyramid makes no such
assumption, allowing you to use a relational database, and neither encouraging
nor discouraging the decision.

Other Python web frameworks advertise themselves as members of a class of web
frameworks named model-view-controller [http://en.wikipedia.org/wiki/Model–view–controller] frameworks. Insofar as
this term has been claimed to represent a class of web frameworks,
Pyramid also generally fits into this class.

You Say Pyramid is MVC, but Where's the Controller?

The Pyramid authors believe that the MVC pattern just doesn't really
fit the web very well. In a Pyramid application, there is a resource
tree which represents the site structure, and views which tend to present
the data stored in the resource tree and a user-defined "domain model".
However, no facility provided by the framework actually necessarily maps
to the concept of a "controller" or "model". So if you had to give it some
acronym, I guess you'd say Pyramid is actually an "RV" framework
rather than an "MVC" framework. "MVC", however, is close enough as a
general classification moniker for purposes of comparison with other web
frameworks.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Installing Pyramid

Before You Install

You will need Python [http://python.org] version 2.6 or better to run
Pyramid.

Python Versions

As of this writing, Pyramid has been tested under Python 2.6, Python
2.7, Python 3.2, Python 3.3, Python 3.4, Python 3.5, PyPy, and PyPy3.
Pyramid does not run under any version of Python before 2.6.

Pyramid is known to run on all popular UNIX-like systems such as Linux,
Mac OS X, and FreeBSD as well as on Windows platforms. It is also known to run
on PyPy (1.9+).

Pyramid installation does not require the compilation of any C code, so
you need only a Python interpreter that meets the requirements mentioned.

Some Pyramid dependencies may attempt to build C extensions for
performance speedups. If a compiler or Python headers are unavailable the
dependency will fall back to using pure Python instead.

For Mac OS X Users

Python comes pre-installed on Mac OS X, but due to Apple's release cycle,
it is often out of date. Unless you have a need for a specific earlier
version, it is recommended to install the latest 2.x or 3.x version of Python.

You can install the latest verion of Python for Mac OS X from the binaries on
python.org [https://www.python.org/downloads/mac-osx/].

Alternatively, you can use the homebrew [http://brew.sh/] package manager.

for python 2.7
$ brew install python

for python 3.5
$ brew install python3

If you use an installer for your Python, then you can skip to the section
Installing Pyramid on a UNIX System.

If You Don't Yet Have a Python Interpreter (UNIX)

If your system doesn't have a Python interpreter, and you're on UNIX, you can
either install Python using your operating system's package manager or you
can install Python from source fairly easily on any UNIX system that has
development tools.

Package Manager Method

You can use your system's "package manager" to install Python. Each package
manager is slightly different, but the "flavor" of them is usually the same.

For example, on a Debian or Ubuntu system, use the following command:

$ sudo apt-get install python2.7-dev

This command will install both the Python interpreter and its development
header files. Note that the headers are required by some (optional) C
extensions in software depended upon by Pyramid, not by Pyramid itself.

Once these steps are performed, the Python interpreter will usually be
invokable via python2.7 from a shell prompt.

Source Compile Method

It's useful to use a Python interpreter that isn't the "system" Python
interpreter to develop your software. The authors of Pyramid tend not
to use the system Python for development purposes; always a self-compiled one.
Compiling Python is usually easy, and often the "system" Python is compiled
with options that aren't optimal for web development. For an explanation, see
https://github.com/Pylons/pyramid/issues/747.

To compile software on your UNIX system, typically you need development tools.
Often these can be installed via the package manager. For example, this works
to do so on an Ubuntu Linux system:

$ sudo apt-get install build-essential

On Mac OS X, installing XCode [http://developer.apple.com/tools/xcode/] has
much the same effect.

Once you've got development tools installed on your system, you can install a
Python 2.7 interpreter from source, on the same system, using the following
commands:

$ cd ~
$ mkdir tmp
$ mkdir opt
$ cd tmp
$ wget http://www.python.org/ftp/python/2.7.3/Python-2.7.3.tgz
$ tar xvzf Python-2.7.3.tgz
$ cd Python-2.7.3
$./configure --prefix=$HOME/opt/Python-2.7.3
$ make && make install

Once these steps are performed, the Python interpreter will be invokable via
$HOME/opt/Python-2.7.3/bin/python from a shell prompt.

If You Don't Yet Have a Python Interpreter (Windows)

If your Windows system doesn't have a Python interpreter, you'll need to
install it by downloading a Python 2.7-series interpreter executable from
python.org's download section [http://python.org/download/] (the files
labeled "Windows Installer"). Once you've downloaded it, double click on the
executable and accept the defaults during the installation process. You may
also need to download and install the Python for Windows extensions.

Warning

After you install Python on Windows, you may need to add the C:\Python27
directory to your environment's Path in order to make it possible to
invoke Python from a command prompt by typing python. To do so, right
click My Computer, select Properties --> Advanced Tab -->
Environment Variables and add that directory to the end of the Path
environment variable.

Installing Pyramid on a UNIX System

It is best practice to install Pyramid into a "virtual" Python
environment in order to obtain isolation from any "system" packages you've got
installed in your Python version. This can be done by using the
virtualenv package. Using a virtualenv will also prevent
Pyramid from globally installing versions of packages that are not
compatible with your system Python.

To set up a virtualenv in which to install Pyramid, first ensure that
setuptools is installed. To do so, invoke import setuptools within
the Python interpreter you'd like to run Pyramid under.

The following command will not display anything if setuptools is already
installed:

$ python2.7 -c 'import setuptools'

Running the same command will yield the following output if setuptools is not
yet installed:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named setuptools

If import setuptools raises an ImportError [http://docs.python.org/3/library/exceptions.html#ImportError] as it does above, you
will need to install setuptools manually.

If you are using a "system" Python (one installed by your OS distributor or a
third-party packager such as Fink or MacPorts), you can usually install the
setuptools package by using your system's package manager. If you cannot do
this, or if you're using a self-installed version of Python, you will need to
install setuptools "by hand". Installing setuptools "by hand" is always a
reasonable thing to do, even if your package manager already has a pre-chewed
version of setuptools for installation.

Installing Setuptools

To install setuptools by hand under Python 2, first download ez_setup.py [https://bootstrap.pypa.io/ez_setup.py] then invoke it using the Python
interpreter into which you want to install setuptools.

$ python ez_setup.py

Once this command is invoked, setuptools should be installed on your system.
If the command fails due to permission errors, you may need to be the
administrative user on your system to successfully invoke the script. To
remediate this, you may need to do:

$ sudo python ez_setup.py

Installing the virtualenv Package

Once you've got setuptools installed, you should install the virtualenv
package. To install the virtualenv package into your
setuptools-enabled Python interpreter, use the easy_install command.

Warning

Python 3.3 includes pyvenv out of the box, which provides similar
functionality to virtualenv. We however suggest using virtualenv
instead, which works well with Python 3.3. This isn't a recommendation made
for technical reasons; it's made because it's not feasible for the authors
of this guide to explain setup using multiple virtual environment systems.
We are aiming to not need to make the installation documentation
Turing-complete.

If you insist on using pyvenv, you'll need to understand how to install
software such as setuptools into the virtual environment manually, which
this guide does not cover.

$ easy_install virtualenv

This command should succeed, and tell you that the virtualenv package is now
installed. If it fails due to permission errors, you may need to install it as
your system's administrative user. For example:

$ sudo easy_install virtualenv

Creating the Virtual Python Environment

Once the virtualenv package is installed in your Python environment,
you can then create a virtual environment. To do so, invoke the following:

$ export VENV=~/env
$ virtualenv $VENV
New python executable in /home/foo/env/bin/python
Installing setuptools.............done.

You can either follow the use of the environment variable, $VENV, or
replace it with the root directory of the virtualenv. In that case, the
export command can be skipped. If you choose the former approach, ensure that
it's an absolute path.

Warning

Avoid using the --system-site-packages option when creating the
virtualenv unless you know what you are doing. For versions of virtualenv
prior to 1.7, make sure to use the --no-site-packages option, because
this option was formerly not the default and may produce undesirable
results.

Warning

do not use sudo to run the virtualenv script. It's perfectly
acceptable (and desirable) to create a virtualenv as a normal user.

Installing Pyramid into the Virtual Python Environment

After you've got your virtualenv installed, you may install Pyramid
itself using the following commands:

$ $VENV/bin/easy_install "pyramid==1.5.8"

The easy_install command will take longer than the previous ones to
complete, as it downloads and installs a number of dependencies.

Note

If you see any warnings and/or errors related to failing to compile the C
extensions, in most cases you may safely ignore those errors. If you wish to
use the C extensions, please verify that you have a functioning compiler and
the Python header files installed.

Installing Pyramid on a Windows System

You can use Pyramid on Windows under Python 2 or 3.

	Download and install the most recent Python 2.7.x or 3.3.x version [http://www.python.org/download/] for your system.

	Download and install the Python for Windows extensions [http://sourceforge.net/projects/pywin32/files/pywin32/]. Carefully read
the README.txt file at the end of the list of builds, and follow its
directions. Make sure you get the proper 32- or 64-bit build and Python
version.

	Install latest setuptools distribution into the Python from step 1
above: download ez_setup.py [https://bootstrap.pypa.io/ez_setup.py] and
run it using the python interpreter of your Python 2.7 or 3.3
installation using a command prompt:

modify the command according to the python version, e.g.:
for Python 2.7:
c:\> c:\Python27\python ez_setup.py
for Python 3.3:
c:\> c:\Python33\python ez_setup.py

	Install virtualenv:

modify the command according to the python version, e.g.:
for Python 2.7:
c:\> c:\Python27\Scripts\easy_install virtualenv
for Python 3.3:
c:\> c:\Python33\Scripts\easy_install virtualenv

	Make a virtualenv workspace:

c:\> set VENV=c:\env
modify the command according to the python version, e.g.:
for Python 2.7:
c:\> c:\Python27\Scripts\virtualenv %VENV%
for Python 3.3:
c:\> c:\Python33\Scripts\virtualenv %VENV%

You can either follow the use of the environment variable, %VENV%, or
replace it with the root directory of the virtualenv. In that case,
the set command can be skipped. If you choose the former approach, ensure
that it's an absolute path.

	(Optional) Consider using %VENV%\Scripts\activate.bat to make your shell
environment wired to use the virtualenv.

	Use easy_install to get Pyramid and its direct dependencies
installed:

c:\env> %VENV%\Scripts\easy_install "pyramid==1.5.8"

What Gets Installed

When you easy_install Pyramid, various other libraries such as
WebOb, PasteDeploy, and others are installed.

Additionally, as chronicled in Creating a Pyramid Project, scaffolds will be
registered, which make it easy to start a new Pyramid project.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Creating Your First Pyramid Application

In this chapter, we will walk through the creation of a tiny Pyramid
application. After we're finished creating the application, we'll explain in
more detail how it works. It assumes you already have Pyramid installed.
If you do not, head over to the Installing Pyramid section.

Hello World

Here's one of the very simplest Pyramid applications:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello %(name)s!' % request.matchdict)

if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello', '/hello/{name}')
 config.add_view(hello_world, route_name='hello')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

When this code is inserted into a Python script named helloworld.py and
executed by a Python interpreter which has the Pyramid software
installed, an HTTP server is started on TCP port 8080.

On UNIX:

$ $VENV/bin/python helloworld.py

On Windows:

C:\> %VENV%\Scripts\python.exe helloworld.py

This command will not return and nothing will be printed to the console. When
port 8080 is visited by a browser on the URL /hello/world, the server will
simply serve up the text "Hello world!". If your application is running on
your local system, using http://localhost:8080/hello/world in a browser
will show this result.

Each time you visit a URL served by the application in a browser, a logging
line will be emitted to the console displaying the hostname, the date, the
request method and path, and some additional information. This output is done
by the wsgiref server we've used to serve this application. It logs an "access
log" in Apache combined logging format to the console.

Press Ctrl-C (or Ctrl-Break on Windows) to stop the application.

Now that we have a rudimentary understanding of what the application does,
let's examine it piece by piece.

Imports

The above helloworld.py script uses the following set of import statements:

	1
2
3

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

The script imports the Configurator class from the
pyramid.config module. An instance of the
Configurator class is later used to configure your
Pyramid application.

Like many other Python web frameworks, Pyramid uses the WSGI
protocol to connect an application and a web server together. The
wsgiref [http://docs.python.org/3/library/wsgiref.html#module-wsgiref] server is used in this example as a WSGI server for convenience,
as it is shipped within the Python standard library.

The script also imports the pyramid.response.Response class for later
use. An instance of this class will be used to create a web response.

View Callable Declarations

The above script, beneath its set of imports, defines a function named
hello_world.

	1
2

	def hello_world(request):
 return Response('Hello %(name)s!' % request.matchdict)

The function accepts a single argument (request) and it returns an instance
of the pyramid.response.Response class. The single argument to the
class' constructor is a string computed from parameters matched from the URL.
This value becomes the body of the response.

This function is known as a view callable. A view callable accepts a
single argument, request. It is expected to return a response
object. A view callable doesn't need to be a function; it can be represented
via another type of object, like a class or an instance, but for our purposes
here, a function serves us well.

A view callable is always called with a request object. A request
object is a representation of an HTTP request sent to Pyramid via the
active WSGI server.

A view callable is required to return a response object because a
response object has all the information necessary to formulate an actual HTTP
response; this object is then converted to text by the WSGI server
which called Pyramid and it is sent back to the requesting browser. To return
a response, each view callable creates an instance of the
Response class. In the hello_world function, a
string is passed as the body to the response.

Application Configuration

In the above script, the following code represents the configuration of this
simple application. The application is configured using the previously defined
imports and function definitions, placed within the confines of an if
statement:

	1
2
3
4
5
6
7

	if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello', '/hello/{name}')
 config.add_view(hello_world, route_name='hello')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

Let's break this down piece by piece.

Configurator Construction

	1
2

	if __name__ == '__main__':
 config = Configurator()

The if __name__ == '__main__': line in the code sample above represents a
Python idiom: the code inside this if clause is not invoked unless the script
containing this code is run directly from the operating system command line.
For example, if the file named helloworld.py contains the entire script
body, the code within the if statement will only be invoked when python
helloworld.py is executed from the command line.

Using the if clause is necessary—or at least best practice—because code in
a Python .py file may be eventually imported via the Python import
statement by another .py file. .py files that are imported by other
.py files are referred to as modules. By using the if __name__ ==
'__main__': idiom, the script above is indicating that it does not want the
code within the if statement to execute if this module is imported from
another; the code within the if block should only be run during a direct
script execution.

The config = Configurator() line above creates an instance of the
Configurator class. The resulting config object
represents an API which the script uses to configure this particular
Pyramid application. Methods called on the Configurator will cause
registrations to be made in an application registry associated with the
application.

Adding Configuration

	1
2

	 config.add_route('hello', '/hello/{name}')
 config.add_view(hello_world, route_name='hello')

The first line above calls the pyramid.config.Configurator.add_route()
method, which registers a route to match any URL path that begins with
/hello/ followed by a string.

The second line registers the hello_world function as a view
callable and makes sure that it will be called when the hello route is
matched.

WSGI Application Creation

	1

	 app = config.make_wsgi_app()

After configuring views and ending configuration, the script creates a WSGI
application via the pyramid.config.Configurator.make_wsgi_app() method.
A call to make_wsgi_app implies that all configuration is finished
(meaning all method calls to the configurator, which sets up views and various
other configuration settings, have been performed). The make_wsgi_app
method returns a WSGI application object that can be used by any WSGI
server to present an application to a requestor. WSGI is a protocol
that allows servers to talk to Python applications. We don't discuss
WSGI in any depth within this book, but you can learn more about it by
visiting wsgi.org [http://wsgi.org].

The Pyramid application object, in particular, is an instance of a class
representing a Pyramid router. It has a reference to the
application registry which resulted from method calls to the
configurator used to configure it. The router consults the registry to
obey the policy choices made by a single application. These policy choices
were informed by method calls to the Configurator made earlier; in our
case, the only policy choices made were implied by calls to its add_view
and add_route methods.

WSGI Application Serving

	1
2

	 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

Finally, we actually serve the application to requestors by starting up a WSGI
server. We happen to use the wsgiref [http://docs.python.org/3/library/wsgiref.html#module-wsgiref] make_server server maker for
this purpose. We pass in as the first argument '0.0.0.0', which means
"listen on all TCP interfaces". By default, the HTTP server listens only on
the 127.0.0.1 interface, which is problematic if you're running the server
on a remote system and you wish to access it with a web browser from a local
system. We also specify a TCP port number to listen on, which is 8080, passing
it as the second argument. The final argument is the app object (a
router), which is the application we wish to serve. Finally, we call
the server's serve_forever method, which starts the main loop in which it
will wait for requests from the outside world.

When this line is invoked, it causes the server to start listening on TCP port
8080. The server will serve requests forever, or at least until we stop it by
killing the process which runs it (usually by pressing Ctrl-C or
Ctrl-Break in the terminal we used to start it).

Conclusion

Our hello world application is one of the simplest possible Pyramid
applications, configured "imperatively". We can see that it's configured
imperatively because the full power of Python is available to us as we perform
configuration tasks.

References

For more information about the API of a Configurator object, see
Configurator .

For more information about view configuration, see
View Configuration.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Application Configuration

Most people already understand "configuration" as settings that influence the
operation of an application. For instance, it's easy to think of the values in
a .ini file parsed at application startup time as "configuration". However,
if you're reasonably open-minded, it's easy to think of code as configuration
too. Since Pyramid, like most other web application platforms, is a
framework, it calls into code that you write (as opposed to a library,
which is code that exists purely for you to call). The act of plugging
application code that you've written into Pyramid is also referred to
within this documentation as "configuration"; you are configuring
Pyramid to call the code that makes up your application.

See also

For information on .ini files for Pyramid applications see the
Startup chapter.

There are two ways to configure a Pyramid application: imperative
configuration and declarative configuration. Both are described below.

Imperative Configuration

"Imperative configuration" just means configuration done by Python statements,
one after the next. Here's one of the simplest Pyramid applications,
configured imperatively:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

We won't talk much about what this application does yet. Just note that the
"configuration' statements take place underneath the if __name__ ==
'__main__': stanza in the form of method calls on a Configurator
object (e.g., config.add_view(...)). These statements take place one after
the other, and are executed in order, so the full power of Python, including
conditionals, can be employed in this mode of configuration.

Declarative Configuration

It's sometimes painful to have all configuration done by imperative code,
because often the code for a single application may live in many files. If the
configuration is centralized in one place, you'll need to have at least two
files open at once to see the "big picture": the file that represents the
configuration, and the file that contains the implementation objects referenced
by the configuration. To avoid this, Pyramid allows you to insert
configuration decoration statements very close to code that is referred
to by the declaration itself. For example:

	1
2
3
4
5
6

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(name='hello', request_method='GET')
def hello(request):
 return Response('Hello')

The mere existence of configuration decoration doesn't cause any configuration
registration to be performed. Before it has any effect on the configuration of
a Pyramid application, a configuration decoration within application
code must be found through a process known as a scan.

For example, the pyramid.view.view_config decorator in the code
example above adds an attribute to the hello function, making it available
for a scan to find it later.

A scan of a module or a package and its subpackages for
decorations happens when the pyramid.config.Configurator.scan() method is
invoked: scanning implies searching for configuration declarations in a package
and its subpackages. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response
from pyramid.view import view_config

@view_config()
def hello(request):
 return Response('Hello')

if __name__ == '__main__':
 config = Configurator()
 config.scan()
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

The scanning machinery imports each module and subpackage in a package or
module recursively, looking for special attributes attached to objects defined
within a module. These special attributes are typically attached to code via
the use of a decorator. For example, the
view_config decorator can be attached to a function or
instance method.

Once scanning is invoked, and configuration decoration is found by the
scanner, a set of calls are made to a Configurator on your behalf.
These calls replace the need to add imperative configuration statements that
don't live near the code being configured.

The combination of configuration decoration and the invocation of a
scan is collectively known as declarative configuration.

In the example above, the scanner translates the arguments to
view_config into a call to the
pyramid.config.Configurator.add_view() method, effectively:

config.add_view(hello)

Summary

There are two ways to configure a Pyramid application: declaratively and
imperatively. You can choose the mode with which you're most comfortable; both
are completely equivalent. Examples in this documentation will use both modes
interchangeably.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Creating a Pyramid Project

As we saw in Creating Your First Pyramid Application, it's possible to create a Pyramid
application completely manually. However, it's usually more convenient to use
a scaffold to generate a basic Pyramid project.

A project is a directory that contains at least one Python package.
You'll use a scaffold to create a project, and you'll create your application
logic within a package that lives inside the project. Even if your application
is extremely simple, it is useful to place code that drives the application
within a package, because (1) a package is more easily extended with new code,
and (2) an application that lives inside a package can also be distributed more
easily than one which does not live within a package.

Pyramid comes with a variety of scaffolds that you can use to generate a
project. Each scaffold makes different configuration assumptions about what
type of application you're trying to construct.

These scaffolds are rendered using the pcreate command that is installed as
part of Pyramid.

Scaffolds Included with Pyramid

The convenience scaffolds included with Pyramid differ from each other
on a number of axes:

	the persistence mechanism they offer (no persistence mechanism, ZODB,
or SQLAlchemy)

	the mechanism they use to map URLs to code (traversal or URL
dispatch)

The included scaffolds are these:

	starter

	URL mapping via URL dispatch and no persistence mechanism

	zodb

	URL mapping via traversal and persistence via ZODB

	alchemy

	URL mapping via URL dispatch and persistence via SQLAlchemy

Creating the Project

See also

See also the output of pcreate --help.

In Installing Pyramid, you created a virtual Python environment via the
virtualenv command. To start a Pyramid project, use the
pcreate command installed within the virtualenv. We'll choose the
starter scaffold for this purpose. When we invoke pcreate, it will
create a directory that represents our project.

In Installing Pyramid we called the virtualenv directory env. The
following commands assume that our current working directory is the env
directory.

The below example uses the pcreate command to create a project with the
starter scaffold.

On UNIX:

$ $VENV/bin/pcreate -s starter MyProject

Or on Windows:

> %VENV%\Scripts\pcreate -s starter MyProject

Here's sample output from a run of pcreate on UNIX for a project we name
MyProject:

$ $VENV/bin/pcreate -s starter MyProject
Creating template pyramid
Creating directory ./MyProject
... more output ...
Running /Users/chrism/projects/pyramid/bin/python setup.py egg_info

As a result of invoking the pcreate command, a directory named
MyProject is created. That directory is a project directory. The
setup.py file in that directory can be used to distribute your application,
or install your application for deployment or development.

A .ini file named development.ini will be created in the project
directory. You will use this .ini file to configure a server, to run your
application, and to debug your application. It contains configuration that
enables an interactive debugger and settings optimized for development.

Another .ini file named production.ini will also be created in the
project directory. It contains configuration that disables any interactive
debugger (to prevent inappropriate access and disclosure), and turns off a
number of debugging settings. You can use this file to put your application
into production.

The MyProject project directory contains an additional subdirectory named
myproject (note the case difference) representing a Python package
which holds very simple Pyramid sample code. This is where you'll edit
your application's Python code and templates.

We created this project within an env virtualenv directory. However, note
that this is not mandatory. The project directory can go more or less anywhere
on your filesystem. You don't need to put it in a special "web server"
directory, and you don't need to put it within a virtualenv directory. The
author uses Linux mainly, and tends to put project directories which he creates
within his ~/projects directory. On Windows, it's a good idea to put
project directories within a directory that contains no space characters, so
it's wise to avoid a path that contains, i.e., My Documents. As a
result, the author, when he uses Windows, just puts his projects in
C:\projects.

Warning

You'll need to avoid using pcreate to create a project with the same
name as a Python standard library component. In particular, this means you
should avoid using the names site or test, both of which conflict
with Python standard library packages. You should also avoid using the name
pyramid, which will conflict with Pyramid itself.

Installing your Newly Created Project for Development

To install a newly created project for development, you should cd to the
newly created project directory and use the Python interpreter from the
virtualenv you created during Installing Pyramid to invoke the
command python setup.py develop

The file named setup.py will be in the root of the pcreate-generated
project directory. The python you're invoking should be the one that lives
in the bin (or Scripts on Windows) directory of your virtual Python
environment. Your terminal's current working directory must be the newly
created project directory.

On UNIX:

$ cd MyProject
$ $VENV/bin/python setup.py develop

Or on Windows:

> cd MyProject
> %VENV%\Scripts\python.exe setup.py develop

Elided output from a run of this command on UNIX is shown below:

$ cd MyProject
$ $VENV/bin/python setup.py develop
...
Finished processing dependencies for MyProject==0.0

This will install a distribution representing your project into the
virtual environment interpreter's library set so it can be found by import
statements and by other console scripts such as pserve, pshell,
proutes, and pviews.

Running the Tests for Your Application

To run unit tests for your application, you should invoke them using the Python
interpreter from the virtualenv you created during
Installing Pyramid (the python command that lives in the bin
directory of your virtualenv).

On UNIX:

$ $VENV/bin/python setup.py test -q

Or on Windows:

> %VENV%\Scripts\python.exe setup.py test -q

Here's sample output from a test run on UNIX:

$ $VENV/bin/python setup.py test -q
running test
running egg_info
writing requirements to MyProject.egg-info/requires.txt
writing MyProject.egg-info/PKG-INFO
writing top-level names to MyProject.egg-info/top_level.txt
writing dependency_links to MyProject.egg-info/dependency_links.txt
writing entry points to MyProject.egg-info/entry_points.txt
reading manifest file 'MyProject.egg-info/SOURCES.txt'
writing manifest file 'MyProject.egg-info/SOURCES.txt'
running build_ext
..
--
Ran 1 test in 0.108s

OK

The tests themselves are found in the tests.py module in your pcreate
generated project. Within a project generated by the starter scaffold, a
single sample test exists.

Note

The -q option is passed to the setup.py test command to limit the
output to a stream of dots. If you don't pass -q, you'll see more
verbose test result output (which normally isn't very useful).

Running the Project Application

See also

See also the output of pserve --help.

Once a project is installed for development, you can run the application it
represents using the pserve command against the generated configuration
file. In our case, this file is named development.ini.

On UNIX:

$ $VENV/bin/pserve development.ini

On Windows:

> %VENV%\Scripts\pserve development.ini

Here's sample output from a run of pserve on UNIX:

$ $VENV/bin/pserve development.ini
Starting server in PID 16601.
serving on http://0.0.0.0:6543

When you use pserve to start the application implied by the default
rendering of a scaffold, it will respond to requests on all IP addresses
possessed by your system, not just requests to localhost. This is what the
0.0.0.0 in serving on http://0.0.0.0:6543 means. The server will
respond to requests made to 127.0.0.1 and on any external IP address. For
example, your system might be configured to have an external IP address
192.168.1.50. If that's the case, if you use a browser running on the same
system as Pyramid, it will be able to access the application via
http://127.0.0.1:6543/ as well as via http://192.168.1.50:6543/.
However, other people on other computers on the same network will also be
able to visit your Pyramid application in their browser by visiting
http://192.168.1.50:6543/.

If you want to restrict access such that only a browser running on the same
machine as Pyramid will be able to access your Pyramid application, edit the
development.ini file, and replace the host value in the
[server:main] section. Change it from 0.0.0.0 to 127.0.0.1. For
example:

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 6543

You can change the port on which the server runs on by changing the same
portion of the development.ini file. For example, you can change the
port = 6543 line in the development.ini file's [server:main]
section to port = 8080 to run the server on port 8080 instead of port 6543.

You can shut down a server started this way by pressing Ctrl-C (or
Ctrl-Break on Windows).

The default server used to run your Pyramid application when a project is
created from a scaffold is named Waitress. This server is what prints
the serving on... line when you run pserve. It's a good idea to use
this server during development because it's very simple. It can also be used
for light production. Setting your application up under a different server is
not advised until you've done some development work under the default server,
particularly if you're not yet experienced with Python web development. Python
web server setup can be complex, and you should get some confidence that your
application works in a default environment before trying to optimize it or make
it "more like production". It's awfully easy to get sidetracked trying to set
up a non-default server for hours without actually starting to do any
development. One of the nice things about Python web servers is that they're
largely interchangeable, so if your application works under the default server,
it will almost certainly work under any other server in production if you
eventually choose to use a different one. Don't worry about it right now.

For more detailed information about the startup process, see
Startup. For more information about environment variables and
configuration file settings that influence startup and runtime behavior, see
Environment Variables and .ini File Settings.

Reloading Code

During development, it's often useful to run pserve using its --reload
option. When --reload is passed to pserve, changes to any Python
module your project uses will cause the server to restart. This typically
makes development easier, as changes to Python code made within a
Pyramid application is not put into effect until the server restarts.

For example, on UNIX:

$ $VENV/bin/pserve development.ini --reload
Starting subprocess with file monitor
Starting server in PID 16601.
serving on http://0.0.0.0:6543

Now if you make a change to any of your project's .py files or .ini
files, you'll see the server restart automatically:

development.ini changed; reloading...
-------------------- Restarting --------------------
Starting server in PID 16602.
serving on http://0.0.0.0:6543

Changes to template files (such as .pt or .mak files) won't cause the
server to restart. Changes to template files don't require a server restart as
long as the pyramid.reload_templates setting in the development.ini
file is true. Changes made to template files when this setting is true
will take effect immediately without a server restart.

Viewing the Application

Once your application is running via pserve, you may visit
http://localhost:6543/ in your browser. You will see something in your
browser like what is displayed in the following image:

[image: ../_images/project.png]
This is the page shown by default when you visit an unmodified pcreate
generated starter application in a browser.

The Debug Toolbar

[image: ../_images/project-show-toolbar.png]
If you click on the Pyramid logo at the top right of the page, a new
target window will open to present a debug toolbar that provides various
niceties while you're developing. This logo will float above every HTML page
served by Pyramid while you develop an application, and allows you to
show the toolbar as necessary.

[image: ../_images/project-debug.png]
If you don't see the Pyramid logo on the top right of the page, it means you're
browsing from a system that does not have debugging access. By default, for
security reasons, only a browser originating from localhost (127.0.0.1)
can see the debug toolbar. To allow your browser on a remote system to access
the server, add a line within the [app:main] section of the
development.ini file in the form debugtoolbar.hosts = X .X.X.X. For
example, if your Pyramid application is running on a remote system, and you're
browsing from a host with the IP address 192.168.1.1, you'd add something
like this to enable the toolbar when your system contacts Pyramid:

[app:main]
.. other settings ...
debugtoolbar.hosts = 192.168.1.1

For more information about what the debug toolbar allows you to do, see the
documentation for pyramid_debugtoolbar [http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/].

The debug toolbar will not be shown (and all debugging will be turned off) when
you use the production.ini file instead of the development.ini ini file
to run the application.

You can also turn the debug toolbar off by editing development.ini and
commenting out a line. For example, instead of:

	1
2
3
4

	[app:main]
... elided configuration
pyramid.includes =
 pyramid_debugtoolbar

Put a hash mark at the beginning of the pyramid_debugtoolbar line:

	1
2
3
4

	[app:main]
... elided configuration
pyramid.includes =
pyramid_debugtoolbar

Then restart the application to see that the toolbar has been turned off.

Note that if you comment out the pyramid_debugtoolbar line, the #
must be in the first column. If you put it anywhere else, and then attempt
to restart the application, you'll receive an error that ends something like
this:

ImportError: No module named #pyramid_debugtoolbar

The Project Structure

The starter scaffold generated a project (named MyProject),
which contains a Python package. The package is also named
myproject, but it's lowercased; the scaffold generates a project which
contains a package that shares its name except for case.

All Pyramid pcreate-generated projects share a similar structure.
The MyProject project we've generated has the following directory structure:

MyProject/
|-- CHANGES.txt
|-- development.ini
|-- MANIFEST.in
|-- myproject
| |-- __init__.py
| |-- static
| | |-- pyramid-16x16.png
| | |-- pyramid.png
| | |-- theme.css
| | `-- theme.min.css
| |-- templates
| | `-- mytemplate.pt
| |-- tests.py
| `-- views.py
|-- production.ini
|-- README.txt
`-- setup.py

The MyProject Project

The MyProject project directory is the distribution and deployment
wrapper for your application. It contains both the myproject
package representing your application as well as files used to
describe, run, and test your application.

	CHANGES.txt describes the changes you've made to the application. It is
conventionally written in ReStructuredText format.

	README.txt describes the application in general. It is conventionally
written in ReStructuredText format.

	development.ini is a PasteDeploy configuration file that can be
used to execute your application during development.

	production.ini is a PasteDeploy configuration file that can be
used to execute your application in a production configuration.

	MANIFEST.in is a distutils "manifest" file, naming which files
should be included in a source distribution of the package when python
setup.py sdist is run.

	setup.py is the file you'll use to test and distribute your application.
It is a standard setuptools setup.py file.

development.ini

The development.ini file is a PasteDeploy configuration file. Its
purpose is to specify an application to run when you invoke pserve, as well
as the deployment settings provided to that application.

The generated development.ini file looks like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	###
app configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
###

[app:main]
use = egg:MyProject

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =
 pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1' and '::1'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgi server configuration
###

[server:main]
use = egg:waitress#main
host = 0.0.0.0
port = 6543

###
logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
###

[loggers]
keys = root, myproject

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_myproject]
level = DEBUG
handlers =
qualname = myproject

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

This file contains several sections including [app:main],
[server:main], and several other sections related to logging configuration.

The [app:main] section represents configuration for your Pyramid
application. The use setting is the only setting required to be present in
the [app:main] section. Its default value, egg:MyProject, indicates
that our MyProject project contains the application that should be served.
Other settings added to this section are passed as keyword arguments to the
function named main in our package's __init__.py module. You can
provide startup-time configuration parameters to your application by adding
more settings to this section.

See also

See Entry Points and PasteDeploy .ini Files for more information about the
meaning of the use = egg:MyProject value in this section.

The pyramid.reload_templates setting in the [app:main] section is a
Pyramid-specific setting which is passed into the framework. If it
exists, and its value is true, supported template changes will not require
an application restart to be detected. See Automatically Reloading Templates for
more information.

Warning

The pyramid.reload_templates option should be turned off for
production applications, as template rendering is slowed when it is turned
on.

The pyramid.includes setting in the [app:main] section tells Pyramid to
"include" configuration from another package. In this case, the line
pyramid.includes = pyramid_debugtoolbar tells Pyramid to include
configuration from the pyramid_debugtoolbar package. This turns on a
debugging panel in development mode which can be opened by clicking on the
Pyramid logo on the top right of the screen. Including the debug
toolbar will also make it possible to interactively debug exceptions when an
error occurs.

Various other settings may exist in this section having to do with debugging or
influencing runtime behavior of a Pyramid application. See
Environment Variables and .ini File Settings for more information about these settings.

The name main in [app:main] signifies that this is the default
application run by pserve when it is invoked against this configuration
file. The name main is a convention used by PasteDeploy signifying that it
is the default application.

The [server:main] section of the configuration file configures a WSGI
server which listens on TCP port 6543. It is configured to listen on all
interfaces (0.0.0.0). This means that any remote system which has TCP
access to your system can see your Pyramid application.

The sections that live between the markers # Begin logging configuration
and # End logging configuration represent Python's standard library
logging [http://docs.python.org/3/library/logging.html#module-logging] module configuration for your application. The sections between
these two markers are passed to the logging module's config file configuration
engine [http://docs.python.org/howto/logging.html#configuring-logging] when
the pserve or pshell commands are executed. The default configuration
sends application logging output to the standard error output of your terminal.
For more information about logging configuration, see Logging.

See the PasteDeploy documentation for more information about other
types of things you can put into this .ini file, such as other
applications, middleware, and alternate WSGI server
implementations.

production.ini

The production.ini file is a PasteDeploy configuration file with a
purpose much like that of development.ini. However, it disables the debug
toolbar, and filters all log messages except those above the WARN level. It
also turns off template development options such that templates are not
automatically reloaded when changed, and turns off all debugging options. This
file is appropriate to use instead of development.ini when you put your
application into production.

It's important to use production.ini (and not development.ini) to
benchmark your application and put it into production. development.ini
configures your system with a debug toolbar that helps development, but the
inclusion of this toolbar slows down page rendering times by over an order of
magnitude. The debug toolbar is also a potential security risk if you have it
configured incorrectly.

MANIFEST.in

The MANIFEST.in file is a distutils configuration file which
specifies the non-Python files that should be included when a
distribution of your Pyramid project is created when you run python
setup.py sdist. Due to the information contained in the default
MANIFEST.in, an sdist of your Pyramid project will include .txt files,
.ini files, .rst files, graphics files, and template files, as well as
.py files. See
http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template for
more information about the syntax and usage of MANIFEST.in.

Without the presence of a MANIFEST.in file or without checking your source
code into a version control repository, setup.py sdist places only Python
source files (files ending with a .py extension) into tarballs generated
by python setup.py sdist. This means, for example, if your project was not
checked into a setuptools-compatible source control system, and your project
directory didn't contain a MANIFEST.in file that told the sdist
machinery to include *.pt files, the myproject/templates/mytemplate.pt
file would not be included in the generated tarball.

Projects generated by Pyramid scaffolds include a default MANIFEST.in file.
The MANIFEST.in file contains declarations which tell it to include files
like *.pt, *.css and *.js in the generated tarball. If you include
files with extensions other than the files named in the project's
MANIFEST.in and you don't make use of a setuptools-compatible version
control system, you'll need to edit the MANIFEST.in file and include the
statements necessary to include your new files. See
http://docs.python.org/distutils/sourcedist.html#principle for more information
about how to do this.

You can also delete MANIFEST.in from your project and rely on a setuptools
feature which simply causes all files checked into a version control system to
be put into the generated tarball. To allow this to happen, check all the
files that you'd like to be distributed along with your application's Python
files into Subversion. After you do this, when you rerun setup.py sdist,
all files checked into the version control system will be included in the
tarball. If you don't use Subversion, and instead use a different version
control system, you may need to install a setuptools add-on such as
setuptools-git or setuptools-hg for this behavior to work properly.

setup.py

The setup.py file is a setuptools setup file. It is meant to be
run directly from the command line to perform a variety of functions, such as
testing, packaging, and distributing your application.

Note

setup.py is the de facto standard which Python developers use to
distribute their reusable code. You can read more about setup.py files
and their usage in the Setuptools documentation [http://peak.telecommunity.com/DevCenter/setuptools] and Python Packaging
User Guide [https://packaging.python.org/en/latest/].

Our generated setup.py looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	import os

from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.txt')) as f:
 README = f.read()
with open(os.path.join(here, 'CHANGES.txt')) as f:
 CHANGES = f.read()

requires = [
 'pyramid',
 'pyramid_chameleon',
 'pyramid_debugtoolbar',
 'waitress',
]

setup(name='MyProject',
 version='0.0',
 description='MyProject',
 long_description=README + '\n\n' + CHANGES,
 classifiers=[
 "Programming Language :: Python",
 "Framework :: Pyramid",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
],
 author='',
 author_email='',
 url='',
 keywords='web pyramid pylons',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=requires,
 tests_require=requires,
 test_suite="myproject",
 entry_points="""\
 [paste.app_factory]
 main = myproject:main
 """,
)

The setup.py file calls the setuptools setup function, which does
various things depending on the arguments passed to setup.py on the command
line.

Within the arguments to this function call, information about your application
is kept. While it's beyond the scope of this documentation to explain
everything about setuptools setup files, we'll provide a whirlwind tour of what
exists in this file in this section.

Your application's name can be any string; it is specified in the name
field. The version number is specified in the version value. A short
description is provided in the description field. The long_description
is conventionally the content of the README and CHANGES file appended together.
The classifiers field is a list of Trove [http://pypi.python.org/pypi?%3Aaction=list_classifiers] classifiers
describing your application. author and author_email are text fields
which probably don't need any description. url is a field that should
point at your application project's URL (if any). packages=find_packages()
causes all packages within the project to be found when packaging the
application. include_package_data will include non-Python files when the
application is packaged if those files are checked into version control.
zip_safe indicates that this package is not safe to use as a zipped egg;
instead it will always unpack as a directory, which is more convenient.
install_requires and tests_require indicate that this package depends
on the pyramid package. test_suite points at the package for our
application, which means all tests found in the package will be run when
setup.py test is invoked. We examined entry_points in our discussion
of the development.ini file; this file defines the main entry point
that represents our project's application.

Usually you only need to think about the contents of the setup.py file when
distributing your application to other people, when adding Python package
dependencies, or when versioning your application for your own use. For fun,
you can try this command now:

$ $VENV/bin/python setup.py sdist

This will create a tarball of your application in a dist subdirectory named
MyProject-0.1.tar.gz. You can send this tarball to other people who want
to install and use your application.

The myproject Package

The myproject package lives inside the MyProject
project. It contains:

	An __init__.py file signifies that this is a Python package. It
also contains code that helps users run the application, including a
main function which is used as a entry point for commands such as
pserve, pshell, pviews, and others.

	A templates directory, which contains Chameleon (or other types
of) templates.

	A tests.py module, which contains unit test code for the application.

	A views.py module, which contains view code for the application.

These are purely conventions established by the scaffold. Pyramid
doesn't insist that you name things in any particular way. However, it's
generally a good idea to follow Pyramid standards for naming, so that other
Pyramid developers can get up to speed quickly on your code when you need help.

__init__.py

We need a small Python module that configures our application and which
advertises an entry point for use by our PasteDeploy .ini file.
This is the file named __init__.py. The presence of an __init__.py
also informs Python that the directory which contains it is a package.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('home', '/')
 config.scan()
 return config.make_wsgi_app()

	Line 1 imports the Configurator class from pyramid.config
that we use later.

	Lines 4-12 define a function named main that returns a Pyramid
WSGI application. This function is meant to be called by the
PasteDeploy framework as a result of running pserve.

Within this function, application configuration is performed.

Line 7 creates an instance of a Configurator.

Line 8 adds support for Chameleon templating bindings, allowing us to
specify renderers with the .pt extension.

Line 9 registers a static view, which will serve up the files from the
myproject:static asset specification (the static directory
of the myproject package).

Line 10 adds a route to the configuration. This route is later used
by a view in the views module.

Line 11 calls config.scan(), which picks up view registrations declared
elsewhere in the package (in this case, in the views.py module).

Line 12 returns a WSGI application to the caller of the function
(Pyramid's pserve).

views.py

Much of the heavy lifting in a Pyramid application is done by view
callables. A view callable is the main tool of a Pyramid web
application developer; it is a bit of code which accepts a request and
which returns a response.

	1
2
3
4
5
6

	from pyramid.view import view_config

@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request):
 return {'project': 'MyProject'}

Lines 4-6 define and register a view callable named my_view. The
function named my_view is decorated with a view_config decorator (which
is processed by the config.scan() line in our __init__.py). The
view_config decorator asserts that this view be found when a route
named home is matched. In our case, because our __init__.py maps the
route named home to the URL pattern /, this route will match when a
visitor visits the root URL. The view_config decorator also names a
renderer, which in this case is a template that will be used to render the
result of the view callable. This particular view declaration points at
templates/mytemplate.pt, which is an asset specification that
specifies the mytemplate.pt file within the templates directory of the
myproject package. The asset specification could have also been specified
as myproject:templates/mytemplate.pt; the leading package name and colon is
optional. The template file pointed to is a Chameleon ZPT template
file (templates/my_template.pt).

This view callable function is handed a single piece of information: the
request. The request is an instance of the WebOb Request
class representing the browser's request to our server.

This view is configured to invoke a renderer on a template. The
dictionary the view returns (on line 6) provides the value the renderer
substitutes into the template when generating HTML. The renderer then returns
the HTML in a response.

Note

Dictionaries provide values to templates.

Note

When the application is run with the scaffold's default
development.ini configuration, logging is set up to aid debugging. If an exception is raised,
uncaught tracebacks are displayed after the startup messages on the
console running the server. Also
print() statements may be inserted into the application for debugging to
send output to this console.

Note

development.ini has a setting that controls how templates are
reloaded, pyramid.reload_templates.

	When set to True (as in the scaffold development.ini), changed
templates automatically reload without a server restart. This is
convenient while developing, but slows template rendering speed.

	When set to False (the default value), changing templates requires a
server restart to reload them. Production applications should use
pyramid.reload_templates = False.

See also

See also Writing View Callables Which Use a Renderer for more information about how
views, renderers, and templates relate and cooperate.

See also

Pyramid can also dynamically reload changed Python files. See also
Reloading Code.

See also

See also the The Debug Toolbar, which provides interactive access to
your application's internals and, should an exception occur, allows
interactive access to traceback execution stack frames from the Python
interpreter.

static

This directory contains static assets which support the mytemplate.pt
template. It includes CSS and images.

templates/mytemplate.pt

This is the single Chameleon template that exists in the project. Its
contents are too long to show here, but it displays a default page when
rendered. It is referenced by the call to @view_config as the renderer
of the my_view view callable in the views.py file. See
Writing View Callables Which Use a Renderer for more information about renderers.

Templates are accessed and used by view configurations and sometimes by view
functions themselves. See Using Templates Directly and
Templates Used as Renderers via Configuration.

tests.py

The tests.py module includes unit tests for your application.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import unittest

from pyramid import testing

class ViewTests(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_my_view(self):
 from .views import my_view
 request = testing.DummyRequest()
 info = my_view(request)
 self.assertEqual(info['project'], 'MyProject')

This sample tests.py file has a single unit test defined within it. This
test is executed when you run python setup.py test. You may add more tests
here as you build your application. You are not required to write tests to use
Pyramid. This file is simply provided for convenience and example.

See Unit, Integration, and Functional Testing for more information about writing Pyramid
unit tests.

Modifying Package Structure

It is best practice for your application's code layout to not stray too much
from accepted Pyramid scaffold defaults. If you refrain from changing things
very much, other Pyramid coders will be able to more quickly understand your
application. However, the code layout choices made for you by a scaffold are
in no way magical or required. Despite the choices made for you by any
scaffold, you can decide to lay your code out any way you see fit.

For example, the configuration method named
add_view() requires you to pass a
dotted Python name or a direct object reference as the class or
function to be used as a view. By default, the starter scaffold would have
you add view functions to the views.py module in your package. However, you
might be more comfortable creating a views directory, and adding a single
file for each view.

If your project package name was myproject and you wanted to arrange all
your views in a Python subpackage within the myproject package
named views instead of within a single views.py file, you might do the
following.

	Create a views directory inside your myproject package directory (the
same directory which holds views.py).

	Create a file within the new views directory named __init__.py. (It
can be empty. This just tells Python that the views directory is a
package.)

	Move the content from the existing views.py file to a file inside the
new views directory named, say, blog.py. Because the templates
directory remains in the myproject package, the template asset
specification values in blog.py must now be fully qualified with the
project's package name (myproject:templates/blog.pt).

You can then continue to add view callable functions to the blog.py module,
but you can also add other .py files which contain view callable functions
to the views directory. As long as you use the @view_config directive
to register views in conjunction with config.scan(), they will be picked up
automatically when the application is restarted.

Using the Interactive Shell

It is possible to use the pshell command to load a Python interpreter
prompt with a similar configuration as would be loaded if you were running your
Pyramid application via pserve. This can be a useful debugging tool. See
The Interactive Shell for more details.

What Is This pserve Thing

The code generated by a Pyramid scaffold assumes that you will be using
the pserve command to start your application while you do development.
pserve is a command that reads a PasteDeploy .ini file (e.g.,
development.ini), and configures a server to serve a Pyramid
application based on the data in the file.

pserve is by no means the only way to start up and serve a Pyramid
application. As we saw in Creating Your First Pyramid Application, pserve needn't be
invoked at all to run a Pyramid application. The use of pserve to
run a Pyramid application is purely conventional based on the output of
its scaffolding. But we strongly recommend using pserve while developing
your application because many other convenience introspection commands (such as
pviews, prequest, proutes, and others) are also implemented in
terms of configuration availability of this .ini file format. It also
configures Pyramid logging and provides the --reload switch for convenient
restarting of the server when code changes.

Using an Alternate WSGI Server

Pyramid scaffolds generate projects which use the Waitress WSGI server.
Waitress is a server that is suited for development and light production
usage. It's not the fastest nor the most featureful WSGI server. Instead, its
main feature is that it works on all platforms that Pyramid needs to run on,
making it a good choice as a default server from the perspective of Pyramid's
developers.

Any WSGI server is capable of running a Pyramid application. But we
suggest you stick with the default server for development, and that you wait to
investigate other server options until you're ready to deploy your application
to production. Unless for some reason you need to develop on a non-local
system, investigating alternate server options is usually a distraction until
you're ready to deploy. But we recommend developing using the default
configuration on a local system that you have complete control over; it will
provide the best development experience.

One popular production alternative to the default Waitress server is
mod_wsgi. You can use mod_wsgi to serve your Pyramid application
using the Apache web server rather than any "pure-Python" server like Waitress.
It is fast and featureful. See Running a Pyramid Application under mod_wsgi for details.

Another good production alternative is Green Unicorn (aka
gunicorn). It's faster than Waitress and slightly easier to configure than
mod_wsgi, although it depends, in its default configuration, on having a
buffering HTTP proxy in front of it. It does not, as of this writing, work on
Windows.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Startup

When you cause a Pyramid application to start up in a console window,
you'll see something much like this show up on the console:

$ pserve development.ini
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

This chapter explains what happens between the time you press the "Return" key
on your keyboard after typing pserve development.ini and the time the line
serving on 0.0.0.0:6543 ... is output to your console.

The Startup Process

The easiest and best-documented way to start and serve a Pyramid
application is to use the pserve command against a PasteDeploy
.ini file. This uses the .ini file to infer settings and starts a
server listening on a port. For the purposes of this discussion, we'll assume
that you are using this command to run your Pyramid application.

Here's a high-level time-ordered overview of what happens when you press
return after running pserve development.ini.

	The pserve command is invoked under your shell with the argument
development.ini. As a result, Pyramid recognizes that it is meant to
begin to run and serve an application using the information contained
within the development.ini file.

	The framework finds a section named either [app:main],
[pipeline:main], or [composite:main] in the .ini file. This
section represents the configuration of a WSGI application that will
be served. If you're using a simple application (e.g., [app:main]), the
application's paste.app_factory entry point will be named on the
use= line within the section's configuration. If instead of a simple
application, you're using a WSGI pipeline (e.g., a
[pipeline:main] section), the application named on the "last" element
will refer to your Pyramid application. If instead of a simple
application or a pipeline, you're using a "composite" (e.g.,
[composite:main]), refer to the documentation for that particular
composite to understand how to make it refer to your Pyramid
application. In most cases, a Pyramid application built from a scaffold
will have a single [app:main] section in it, and this will be the
application served.

	The framework finds all logging [http://docs.python.org/3/library/logging.html#module-logging] related configuration in the .ini
file and uses it to configure the Python standard library logging system for
this application. See Logging Configuration for more information.

	The application's constructor named by the entry point referenced on the
use= line of the section representing your Pyramid application is
passed the key/value parameters mentioned within the section in which it's
defined. The constructor is meant to return a router instance,
which is a WSGI application.

For Pyramid applications, the constructor will be a function named
main in the __init__.py file within the package in which
your application lives. If this function succeeds, it will return a
Pyramid router instance. Here's the contents of an example
__init__.py module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('home', '/')
 config.scan()
 return config.make_wsgi_app()

Note that the constructor function accepts a global_config argument,
which is a dictionary of key/value pairs mentioned in the [DEFAULT]
section of an .ini file (if [DEFAULT] is present). It also accepts a
**settings argument, which collects another set of arbitrary key/value
pairs. The arbitrary key/value pairs received by this function in
**settings will be composed of all the key/value pairs that are present
in the [app:main] section (except for the use= setting) when this
function is called when you run pserve.

Our generated development.ini file looks like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	###
app configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
###

[app:main]
use = egg:MyProject

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =
 pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1' and '::1'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgi server configuration
###

[server:main]
use = egg:waitress#main
host = 0.0.0.0
port = 6543

###
logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
###

[loggers]
keys = root, myproject

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_myproject]
level = DEBUG
handlers =
qualname = myproject

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

In this case, the myproject.__init__:main function referred to by the
entry point URI egg:MyProject (see development.ini for more
information about entry point URIs, and how they relate to callables) will
receive the key/value pairs {'pyramid.reload_templates':'true',
'pyramid.debug_authorization':'false', 'pyramid.debug_notfound':'false',
'pyramid.debug_routematch':'false', 'pyramid.debug_templates':'true',
'pyramid.default_locale_name':'en'}. See Environment Variables and .ini File Settings for
the meanings of these keys.

	The main function first constructs a
Configurator instance, passing the settings
dictionary captured via the **settings kwarg as its settings
argument.

The settings dictionary contains all the options in the [app:main]
section of our .ini file except the use option (which is internal to
PasteDeploy) such as pyramid.reload_templates,
pyramid.debug_authorization, etc.

	The main function then calls various methods on the instance of the
class Configurator created in the previous step.
The intent of calling these methods is to populate an application
registry, which represents the Pyramid configuration related to the
application.

	The make_wsgi_app() method is called. The
result is a router instance. The router is associated with the
application registry implied by the configurator previously
populated by other methods run against the Configurator. The router is a
WSGI application.

	An ApplicationCreated event is emitted (see
Using Events for more information about events).

	Assuming there were no errors, the main function in myproject
returns the router instance created by
pyramid.config.Configurator.make_wsgi_app() back to pserve. As
far as pserve is concerned, it is "just another WSGI application".

	pserve starts the WSGI server defined within the [server:main]
section. In our case, this is the Waitress server (use =
egg:waitress#main), and it will listen on all interfaces (host =
0.0.0.0), on port number 6543 (port = 6543). The server code itself
is what prints serving on 0.0.0.0:6543 view at http://127.0.0.1:6543.
The server serves the application, and the application is running, waiting
to receive requests.

See also

Logging configuration is described in the Logging chapter.
There, in Request Logging with Paste's TransLogger, you will also find
an example of how to configure middleware to add pre-packaged
functionality to your application.

Deployment Settings

Note that an augmented version of the values passed as **settings to the
Configurator constructor will be available in
Pyramid view callable code as request.registry.settings. You
can create objects you wish to access later from view code, and put them into
the dictionary you pass to the configurator as settings. They will then be
present in the request.registry.settings dictionary at application runtime.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Request Processing

[image: Request Processing]Once a Pyramid application is up and running, it is ready to accept
requests and return responses. What happens from the time a WSGI
request enters a Pyramid application through to the point that
Pyramid hands off a response back to WSGI for upstream processing?

	A user initiates a request from their browser to the hostname and port
number of the WSGI server used by the Pyramid application.

	The WSGI server used by the Pyramid application passes the WSGI
environment to the __call__ method of the Pyramid router
object.

	A request object is created based on the WSGI environment.

	The application registry and the request object created in
the last step are pushed on to the thread local stack that
Pyramid uses to allow the functions named
get_current_request() and
get_current_registry() to work.

	A NewRequest event is sent to any
subscribers.

	If any route has been defined within application configuration, the
Pyramid router calls a URL dispatch "route mapper."
The job of the mapper is to examine the request to determine whether any
user-defined route matches the current WSGI environment. The
router passes the request as an argument to the mapper.

	If any route matches, the route mapper adds attributes to the request:
matchdict and matched_route attributes are added to the request
object. The former contains a dictionary representing the matched dynamic
elements of the request's PATH_INFO value, and the latter contains the
IRoute object representing the route which
matched. The root object associated with the route found is also generated:
if the route configuration which matched has an associated
factory argument, this factory is used to generate the root object,
otherwise a default root factory is used.

	If a route match was not found, and a root_factory argument was passed
to the Configurator constructor, that callable is used to generate
the root object. If the root_factory argument passed to the
Configurator constructor was None, a default root factory is used to
generate a root object.

	The Pyramid router calls a "traverser" function with the root object
and the request. The traverser function attempts to traverse the root
object (using any existing __getitem__ on the root object and
subobjects) to find a context. If the root object has no
__getitem__ method, the root itself is assumed to be the context. The
exact traversal algorithm is described in Traversal. The
traverser function returns a dictionary, which contains a context
and a view name as well as other ancillary information.

	The request is decorated with various names returned from the traverser
(such as context, view_name, and so forth), so they can be accessed
via, for example, request.context within view code.

	A ContextFound event is sent to any
subscribers.

	Pyramid looks up a view callable using the context, the
request, and the view name. If a view callable doesn't exist for this
combination of objects (based on the type of the context, the type of the
request, and the value of the view name, and any predicate
attributes applied to the view configuration), Pyramid raises a
HTTPNotFound exception, which is meant to
be caught by a surrounding exception view.

	If a view callable was found, Pyramid attempts to call it. If an
authorization policy is in use, and the view configuration is
protected by a permission, Pyramid determines whether the
view callable being asked for can be executed by the requesting user based
on credential information in the request and security information attached
to the context. If the view execution is allowed, Pyramid calls the
view callable to obtain a response. If view execution is forbidden,
Pyramid raises a HTTPForbidden
exception.

	If any exception is raised within a root factory, by
traversal, by a view callable, or by Pyramid itself
(such as when it raises HTTPNotFound or
HTTPForbidden), the router catches the
exception, and attaches it to the request as the exception attribute.
It then attempts to find a exception view for the exception that was
caught. If it finds an exception view callable, that callable is called,
and is presumed to generate a response. If an exception view that
matches the exception cannot be found, the exception is reraised.

	The following steps occur only when a response could be successfully
generated by a normal view callable or an exception view
callable. Pyramid will attempt to execute any response
callback functions attached via
add_response_callback(). A
NewResponse event is then sent to any
subscribers. The response object's __call__ method is then used to
generate a WSGI response. The response is sent back to the upstream WSGI
server.

	Pyramid will attempt to execute any finished callback
functions attached via
add_finished_callback().

	The thread local stack is popped.

[image: Pyramid Router]This is a very high-level overview that leaves out various details. For more
detail about subsystems invoked by the Pyramid router, such as
traversal, URL dispatch, views, and event processing, see
URL Dispatch, Views, and Using Events.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

URL Dispatch

URL dispatch provides a simple way to map URLs to view code
using a simple pattern matching language. An ordered set of patterns is
checked one by one. If one of the patterns matches the path information
associated with a request, a particular view callable is invoked. A
view callable is a specific bit of code, defined in your application, that
receives the request and returns a response object.

High-Level Operational Overview

If any route configuration is present in an application, the Pyramid
Router checks every incoming request against an ordered set of URL
matching patterns present in a route map.

If any route pattern matches the information in the request,
Pyramid will invoke the view lookup process to find a matching
view.

If no route pattern in the route map matches the information in the
request provided in your application, Pyramid will fail over to
using traversal to perform resource location and view lookup.

Route Configuration

Route configuration is the act of adding a new route to an
application. A route has a name, which acts as an identifier to be used for
URL generation. The name also allows developers to associate a view
configuration with the route. A route also has a pattern, meant to match
against the PATH_INFO portion of a URL (the portion following the scheme
and port, e.g., /foo/bar in the URL http://localhost:8080/foo/bar). It
also optionally has a factory and a set of route predicate
attributes.

Configuring a Route to Match a View

The pyramid.config.Configurator.add_route() method adds a single
route configuration to the application registry. Here's an
example:

"config" below is presumed to be an instance of the
pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function
from views import myview
config.add_route('myroute', '/prefix/{one}/{two}')
config.add_view(myview, route_name='myroute')

When a view callable added to the configuration by way of
add_view() becomes associated with a route
via its route_name predicate, that view callable will always be found and
invoked when the associated route pattern matches during a request.

More commonly, you will not use any add_view statements in your project's
"setup" code. You will instead use add_route statements, and use a
scan to associate view callables with routes. For example, if this is
a portion of your project's __init__.py:

config.add_route('myroute', '/prefix/{one}/{two}')
config.scan('mypackage')

Note that we don't call add_view() in this
setup code. However, the above scan execution
config.scan('mypackage') will pick up each configuration
decoration, including any objects decorated with the
pyramid.view.view_config decorator in the mypackage Python
package. For example, if you have a views.py in your package, a scan will
pick up any of its configuration decorators, so we can add one there that
references myroute as a route_name parameter:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='myroute')
def myview(request):
 return Response('OK')

The above combination of add_route and scan is completely equivalent to
using the previous combination of add_route and add_view.

Route Pattern Syntax

The syntax of the pattern matching language used by Pyramid URL dispatch
in the pattern argument is straightforward. It is close to that of the
Routes system used by Pylons.

The pattern used in route configuration may start with a slash character. If
the pattern does not start with a slash character, an implicit slash will be
prepended to it at matching time. For example, the following patterns are
equivalent:

{foo}/bar/baz

and:

/{foo}/bar/baz

If a pattern is a valid URL it won't be matched against an incoming request.
Instead it can be useful for generating external URLs. See External
routes for details.

A pattern segment (an individual item between / characters in the pattern)
may either be a literal string (e.g., foo) or it may be a replacement
marker (e.g., {foo}), or a certain combination of both. A replacement
marker does not need to be preceded by a / character.

A replacement marker is in the format {name}, where this means "accept any
characters up to the next slash character and use this as the name
matchdict value."

A replacement marker in a pattern must begin with an uppercase or lowercase
ASCII letter or an underscore, and can be composed only of uppercase or
lowercase ASCII letters, underscores, and numbers. For example: a,
a_b, _b, and b9 are all valid replacement marker names, but 0a
is not.

Changed in version 1.2: A replacement marker could not start with an underscore until Pyramid 1.2.
Previous versions required that the replacement marker start with an
uppercase or lowercase letter.

A matchdict is the dictionary representing the dynamic parts extracted from a
URL based on the routing pattern. It is available as request.matchdict.
For example, the following pattern defines one literal segment (foo) and
two replacement markers (baz, and bar):

foo/{baz}/{bar}

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2 -> {'baz':u'1', 'bar':u'2'}
foo/abc/def -> {'baz':u'abc', 'bar':u'def'}

It will not match the following patterns however:

foo/1/2/ -> No match (trailing slash)
bar/abc/def -> First segment literal mismatch

The match for a segment replacement marker in a segment will be done only up to
the first non-alphanumeric character in the segment in the pattern. So, for
instance, if this route pattern was used:

foo/{name}.html

The literal path /foo/biz.html will match the above route pattern, and the
match result will be {'name':u'biz'}. However, the literal path
/foo/biz will not match, because it does not contain a literal .html at
the end of the segment represented by {name}.html (it only contains
biz, not biz.html).

To capture both segments, two replacement markers can be used:

foo/{name}.{ext}

The literal path /foo/biz.html will match the above route pattern, and the
match result will be {'name': 'biz', 'ext': 'html'}. This occurs because
there is a literal part of . (period) between the two replacement markers
{name} and {ext}.

Replacement markers can optionally specify a regular expression which will be
used to decide whether a path segment should match the marker. To specify that
a replacement marker should match only a specific set of characters as defined
by a regular expression, you must use a slightly extended form of replacement
marker syntax. Within braces, the replacement marker name must be followed by
a colon, then directly thereafter, the regular expression. The default
regular expression associated with a replacement marker [^/]+ matches one
or more characters which are not a slash. For example, under the hood, the
replacement marker {foo} can more verbosely be spelled as {foo:[^/]+}.
You can change this to be an arbitrary regular expression to match an arbitrary
sequence of characters, such as {foo:\d+} to match only digits.

It is possible to use two replacement markers without any literal characters
between them, for instance /{foo}{bar}. However, this would be a
nonsensical pattern without specifying a custom regular expression to restrict
what each marker captures.

Segments must contain at least one character in order to match a segment
replacement marker. For example, for the URL /abc/:

	/abc/{foo} will not match.

	/{foo}/ will match.

Note that values representing matched path segments will be URL-unquoted and
decoded from UTF-8 into Unicode within the matchdict. So for instance, the
following pattern:

foo/{bar}

When matching the following URL:

http://example.com/foo/La%20Pe%C3%B1a

The matchdict will look like so (the value is URL-decoded / UTF-8 decoded):

{'bar':u'La Pe\xf1a'}

Literal strings in the path segment should represent the decoded value of the
PATH_INFO provided to Pyramid. You don't want to use a URL-encoded value
or a bytestring representing the literal encoded as UTF-8 in the pattern. For
example, rather than this:

/Foo%20Bar/{baz}

You'll want to use something like this:

/Foo Bar/{baz}

For patterns that contain "high-order" characters in its literals, you'll want
to use a Unicode value as the pattern as opposed to any URL-encoded or
UTF-8-encoded value. For example, you might be tempted to use a bytestring
pattern like this:

/La Pe\xc3\xb1a/{x}

But this will either cause an error at startup time or it won't match properly.
You'll want to use a Unicode value as the pattern instead rather than raw
bytestring escapes. You can use a high-order Unicode value as the pattern by
using Python source file encoding [http://www.python.org/dev/peps/pep-0263/]
plus the "real" character in the Unicode pattern in the source, like so:

/La Peña/{x}

Or you can ignore source file encoding and use equivalent Unicode escape
characters in the pattern.

/La Pe\xf1a/{x}

Dynamic segment names cannot contain high-order characters, so this applies
only to literals in the pattern.

If the pattern has a * in it, the name which follows it is considered a
"remainder match". A remainder match must come at the end of the pattern.
Unlike segment replacement markers, it does not need to be preceded by a slash.
For example:

foo/{baz}/{bar}*fizzle

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ ->
 {'baz':u'1', 'bar':u'2', 'fizzle':()}

foo/abc/def/a/b/c ->
 {'baz':u'abc', 'bar':u'def', 'fizzle':(u'a', u'b', u'c')}

Note that when a *stararg remainder match is matched, the value put into
the matchdict is turned into a tuple of path segments representing the
remainder of the path. These path segments are URL-unquoted and decoded from
UTF-8 into Unicode. For example, for the following pattern:

foo/*fizzle

When matching the following path:

/foo/La%20Pe%C3%B1a/a/b/c

Will generate the following matchdict:

{'fizzle':(u'La Pe\xf1a', u'a', u'b', u'c')}

By default, the *stararg will parse the remainder sections into a tuple
split by segment. Changing the regular expression used to match a marker can
also capture the remainder of the URL, for example:

foo/{baz}/{bar}{fizzle:.*}

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ -> {'baz':u'1', 'bar':u'2', 'fizzle':u''}
foo/abc/def/a/b/c -> {'baz':u'abc', 'bar':u'def', 'fizzle': u'a/b/c'}

This occurs because the default regular expression for a marker is [^/]+
which will match everything up to the first /, while {fizzle:.*} will
result in a regular expression match of .* capturing the remainder into a
single value.

Route Declaration Ordering

Route configuration declarations are evaluated in a specific order when a
request enters the system. As a result, the order of route configuration
declarations is very important. The order in which route declarations are
evaluated is the order in which they are added to the application at startup
time. (This is unlike a different way of mapping URLs to code that
Pyramid provides, named traversal, which does not depend on
pattern ordering).

For routes added via the add_route method,
the order that routes are evaluated is the order in which they are added to the
configuration imperatively.

For example, route configuration statements with the following patterns might
be added in the following order:

members/{def}
members/abc

In such a configuration, the members/abc pattern would never be matched.
This is because the match ordering will always match members/{def} first;
the route configuration with members/abc will never be evaluated.

Route Configuration Arguments

Route configuration add_route statements may specify a large number of
arguments. They are documented as part of the API documentation at
pyramid.config.Configurator.add_route().

Many of these arguments are route predicate arguments. A route
predicate argument specifies that some aspect of the request must be true for
the associated route to be considered a match during the route matching
process. Examples of route predicate arguments are pattern, xhr, and
request_method.

Other arguments are name and factory. These arguments represent
neither predicates nor view configuration information.

Route Matching

The main purpose of route configuration is to match (or not match) the
PATH_INFO present in the WSGI environment provided during a request
against a URL path pattern. PATH_INFO represents the path portion of the
URL that was requested.

The way that Pyramid does this is very simple. When a request enters
the system, for each route configuration declaration present in the system,
Pyramid checks the request's PATH_INFO against the pattern
declared. This checking happens in the order that the routes were declared
via pyramid.config.Configurator.add_route().

When a route configuration is declared, it may contain route predicate
arguments. All route predicates associated with a route declaration must be
True for the route configuration to be used for a given request during a
check. If any predicate in the set of route predicate arguments
provided to a route configuration returns False during a check, that route
is skipped and route matching continues through the ordered set of routes.

If any route matches, the route matching process stops and the view
lookup subsystem takes over to find the most reasonable view callable for the
matched route. Most often, there's only one view that will match (a view
configured with a route_name argument matching the matched route). To gain
a better understanding of how routes and views are associated in a real
application, you can use the pviews command, as documented in
Displaying Matching Views for a Given URL.

If no route matches after all route patterns are exhausted, Pyramid
falls back to traversal to do resource location and
view lookup.

The Matchdict

When the URL pattern associated with a particular route configuration is
matched by a request, a dictionary named matchdict is added as an attribute
of the request object. Thus, request.matchdict will contain the
values that match replacement patterns in the pattern element. The keys in
a matchdict will be strings. The values will be Unicode objects.

Note

If no route URL pattern matches, the matchdict object attached to the
request will be None.

The Matched Route

When the URL pattern associated with a particular route configuration is
matched by a request, an object named matched_route is added as an
attribute of the request object. Thus, request.matched_route will
be an object implementing the IRoute interface
which matched the request. The most useful attribute of the route object is
name, which is the name of the route that matched.

Note

If no route URL pattern matches, the matched_route object attached to
the request will be None.

Routing Examples

Let's check out some examples of how route configuration statements might be
commonly declared, and what will happen if they are matched by the information
present in a request.

Example 1

The simplest route declaration which configures a route match to directly
result in a particular view callable being invoked:

	1
2

	config.add_route('idea', 'site/{id}')
config.scan()

When a route configuration with a view attribute is added to the system,
and an incoming request matches the pattern of the route configuration, the
view callable named as the view attribute of the route
configuration will be invoked.

Recall that the @view_config is equivalent to calling config.add_view,
because the config.scan() call will import mypackage.views, shown
below, and execute config.add_view under the hood. Each view then maps the
route name to the matching view callable. In the case of the above example,
when the URL of a request matches /site/{id}, the view callable at the
Python dotted path name mypackage.views.site_view will be called with the
request. In other words, we've associated a view callable directly with a
route pattern.

When the /site/{id} route pattern matches during a request, the
site_view view callable is invoked with that request as its sole argument.
When this route matches, a matchdict will be generated and attached to the
request as request.matchdict. If the specific URL matched is /site/1,
the matchdict will be a dictionary with a single key, id; the value
will be the string '1', ex.: {'id':'1'}.

The mypackage.views module referred to above might look like so:

	1
2
3
4
5
6

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='idea')
def site_view(request):
 return Response(request.matchdict['id'])

The view has access to the matchdict directly via the request, and can access
variables within it that match keys present as a result of the route pattern.

See Views, and View Configuration for more
information about views.

Example 2

Below is an example of a more complicated set of route statements you might add
to your application:

	1
2
3
4

	config.add_route('idea', 'ideas/{idea}')
config.add_route('user', 'users/{user}')
config.add_route('tag', 'tags/{tag}')
config.scan()

Here is an example of a corresponding mypackage.views module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='idea')
def idea_view(request):
 return Response(request.matchdict['id'])

@view_config(route_name='user')
def user_view(request):
 user = request.matchdict['user']
 return Response(u'The user is {}.'.format(user))

@view_config(route_name='tag')
def tag_view(request):
 tag = request.matchdict['tag']
 return Response(u'The tag is {}.'.format(tag))

The above configuration will allow Pyramid to service URLs in these
forms:

/ideas/{idea}
/users/{user}
/tags/{tag}

	When a URL matches the pattern /ideas/{idea}, the view callable
available at the dotted Python pathname mypackage.views.idea_view will
be called. For the specific URL /ideas/1, the matchdict generated
and attached to the request will consist of {'idea':'1'}.

	When a URL matches the pattern /users/{user}, the view callable
available at the dotted Python pathname mypackage.views.user_view will be
called. For the specific URL /users/1, the matchdict generated and
attached to the request will consist of {'user':'1'}.

	When a URL matches the pattern /tags/{tag}, the view callable available
at the dotted Python pathname mypackage.views.tag_view will be called.
For the specific URL /tags/1, the matchdict generated and attached to
the request will consist of {'tag':'1'}.

In this example we've again associated each of our routes with a view
callable directly. In all cases, the request, which will have a matchdict
attribute detailing the information found in the URL by the process will be
passed to the view callable.

Example 3

The context resource object passed in to a view found as the result of
URL dispatch will, by default, be an instance of the object returned by the
root factory configured at startup time (the root_factory argument
to the Configurator used to configure the application).

You can override this behavior by passing in a factory argument to the
add_route() method for a particular route.
The factory should be a callable that accepts a request and returns
an instance of a class that will be the context resource used by the view.

An example of using a route with a factory:

	1
2

	config.add_route('idea', 'ideas/{idea}', factory='myproject.resources.Idea')
config.scan()

The above route will manufacture an Idea resource as a context,
assuming that mypackage.resources.Idea resolves to a class that accepts a
request in its __init__. For example:

	1
2
3

	class Idea(object):
 def __init__(self, request):
 pass

In a more complicated application, this root factory might be a class
representing a SQLAlchemy model. The view mypackage.views.idea_view
might look like this:

	1
2
3
4

	@view_config(route_name='idea')
def idea_view(request):
 idea = request.context
 return Response(idea)

Here, request.context is an instance of Idea. If indeed the resource
object is a SQLAlchemy model, you do not even have to perform a query in the
view callable, since you have access to the resource via request.context.

See Route Factories for more details about how to use route factories.

Matching the Root URL

It's not entirely obvious how to use a route pattern to match the root URL
("/"). To do so, give the empty string as a pattern in a call to
add_route():

	1

	config.add_route('root', '')

Or provide the literal string / as the pattern:

	1

	config.add_route('root', '/')

Generating Route URLs

Use the pyramid.request.Request.route_url() method to generate URLs based
on route patterns. For example, if you've configured a route with the name
"foo" and the pattern "{a}/{b}/{c}", you might do this.

	1

	url = request.route_url('foo', a='1', b='2', c='3')

This would return something like the string http://example.com/1/2/3 (at
least if the current protocol and hostname implied http://example.com).

To generate only the path portion of a URL from a route, use the
pyramid.request.Request.route_path() API instead of
route_url().

url = request.route_path('foo', a='1', b='2', c='3')

This will return the string /1/2/3 rather than a full URL.

Replacement values passed to route_url or route_path must be Unicode or
bytestrings encoded in UTF-8. One exception to this rule exists: if you're
trying to replace a "remainder" match value (a *stararg replacement value),
the value may be a tuple containing Unicode strings or UTF-8 strings.

Note that URLs and paths generated by route_url and route_path are
always URL-quoted string types (they contain no non-ASCII characters).
Therefore, if you've added a route like so:

config.add_route('la', u'/La Peña/{city}')

And you later generate a URL using route_path or route_url like so:

url = request.route_path('la', city=u'Québec')

You will wind up with the path encoded to UTF-8 and URL-quoted like so:

/La%20Pe%C3%B1a/Qu%C3%A9bec

If you have a *stararg remainder dynamic part of your route pattern:

config.add_route('abc', 'a/b/c/*foo')

And you later generate a URL using route_path or route_url using a
string as the replacement value:

url = request.route_path('abc', foo=u'Québec/biz')

The value you pass will be URL-quoted except for embedded slashes in the
result:

/a/b/c/Qu%C3%A9bec/biz

You can get a similar result by passing a tuple composed of path elements:

url = request.route_path('abc', foo=(u'Québec', u'biz'))

Each value in the tuple will be URL-quoted and joined by slashes in this case:

/a/b/c/Qu%C3%A9bec/biz

Static Routes

Routes may be added with a static keyword argument. For example:

	1
2

	config = Configurator()
config.add_route('page', '/page/{action}', static=True)

Routes added with a True static keyword argument will never be
considered for matching at request time. Static routes are useful for URL
generation purposes only. As a result, it is usually nonsensical to provide
other non-name and non-pattern arguments to
add_route() when static is passed as
True, as none of the other arguments will ever be employed. A single
exception to this rule is use of the pregenerator argument, which is not
ignored when static is True.

External routes are implicitly static.

New in version 1.1: the static argument to add_route().

External Routes

New in version 1.5.

Route patterns that are valid URLs, are treated as external routes. Like
static routes they are useful for URL generation
purposes only and are never considered for matching at request time.

	1
2
3
4
5

	>>> config = Configurator()
>>> config.add_route('youtube', 'https://youtube.com/watch/{video_id}')
...
>>> request.route_url('youtube', video_id='oHg5SJYRHA0')
>>> "https://youtube.com/watch/oHg5SJYRHA0"

Most pattern replacements and calls to
pyramid.request.Request.route_url() will work as expected. However, calls
to pyramid.request.Request.route_path() against external patterns will
raise an exception, and passing _app_url to
route_url() to generate a URL against a route
that has an external pattern will also raise an exception.

Redirecting to Slash-Appended Routes

For behavior like Django's APPEND_SLASH=True, use the append_slash
argument to pyramid.config.Configurator.add_notfound_view() or the
equivalent append_slash argument to the
pyramid.view.notfound_view_config decorator.

Adding append_slash=True is a way to automatically redirect requests where
the URL lacks a trailing slash, but requires one to match the proper route.
When configured, along with at least one other route in your application, this
view will be invoked if the value of PATH_INFO does not already end in a
slash, and if the value of PATH_INFO plus a slash matches any route's
pattern. In this case it does an HTTP redirect to the slash-appended
PATH_INFO. In addition you may pass anything that implements
pyramid.interfaces.IResponse which will then be used in place of the
default class (pyramid.httpexceptions.HTTPFound).

Let's use an example. If the following routes are configured in your
application:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from pyramid.httpexceptions import HTTPNotFound

def notfound(request):
 return HTTPNotFound('Not found, bro.')

def no_slash(request):
 return Response('No slash')

def has_slash(request):
 return Response('Has slash')

def main(g, **settings):
 config = Configurator()
 config.add_route('noslash', 'no_slash')
 config.add_route('hasslash', 'has_slash/')
 config.add_view(no_slash, route_name='noslash')
 config.add_view(has_slash, route_name='hasslash')
 config.add_notfound_view(notfound, append_slash=True)

If a request enters the application with the PATH_INFO value of
/no_slash, the first route will match and the browser will show "No slash".
However, if a request enters the application with the PATH_INFO value of
/no_slash/, no route will match, and the slash-appending not found view
will not find a matching route with an appended slash. As a result, the
notfound view will be called and it will return a "Not found, bro." body.

If a request enters the application with the PATH_INFO value of
/has_slash/, the second route will match. If a request enters the
application with the PATH_INFO value of /has_slash, a route will be
found by the slash-appending Not Found View. An HTTP redirect to
/has_slash/ will be returned to the user's browser. As a result, the
notfound view will never actually be called.

The following application uses the pyramid.view.notfound_view_config
and pyramid.view.view_config decorators and a scan to do
exactly the same job:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from pyramid.httpexceptions import HTTPNotFound
from pyramid.view import notfound_view_config, view_config

@notfound_view_config(append_slash=True)
def notfound(request):
 return HTTPNotFound('Not found, bro.')

@view_config(route_name='noslash')
def no_slash(request):
 return Response('No slash')

@view_config(route_name='hasslash')
def has_slash(request):
 return Response('Has slash')

def main(g, **settings):
 config = Configurator()
 config.add_route('noslash', 'no_slash')
 config.add_route('hasslash', 'has_slash/')
 config.scan()

Warning

You should not rely on this mechanism to redirect POST requests.
The redirect of the slash-appending Not Found View will turn a
POST request into a GET, losing any POST data in the original
request.

See pyramid.view and Changing the Not Found View for a more
general description of how to configure a view and/or a Not Found View.

Debugging Route Matching

It's useful to be able to take a peek under the hood when requests that enter
your application aren't matching your routes as you expect them to. To debug
route matching, use the PYRAMID_DEBUG_ROUTEMATCH environment variable or
the pyramid.debug_routematch configuration file setting (set either to
true). Details of the route matching decision for a particular request to
the Pyramid application will be printed to the stderr of the console
which you started the application from. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	$ PYRAMID_DEBUG_ROUTEMATCH=true $VENV/bin/pserve development.ini
Starting server in PID 13586.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543
2010-12-16 14:45:19,956 no route matched for url \
 http://localhost:6543/wontmatch
2010-12-16 14:45:20,010 no route matched for url \
 http://localhost:6543/favicon.ico
2010-12-16 14:41:52,084 route matched for url \
 http://localhost:6543/static/logo.png; \
 route_name: 'static/',

See Environment Variables and .ini File Settings for more information about how and where to set
these values.

You can also use the proutes command to see a display of all the routes
configured in your application. For more information, see
Displaying All Application Routes.

Using a Route Prefix to Compose Applications

New in version 1.2.

The pyramid.config.Configurator.include() method allows configuration
statements to be included from separate files. See
Rules for Building an Extensible Application for information about this method. Using
pyramid.config.Configurator.include() allows you to build your
application from small and potentially reusable components.

The pyramid.config.Configurator.include() method accepts an argument
named route_prefix which can be useful to authors of URL-dispatch-based
applications. If route_prefix is supplied to the include method, it must
be a string. This string represents a route prefix that will be prepended to
all route patterns added by the included configuration. Any calls to
pyramid.config.Configurator.add_route() within the included callable will
have their pattern prefixed with the value of route_prefix. This can be
used to help mount a set of routes at a different location than the included
callable's author intended while still maintaining the same route names. For
example:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator

def users_include(config):
 config.add_route('show_users', '/show')

def main(global_config, **settings):
 config = Configurator()
 config.include(users_include, route_prefix='/users')

In the above configuration, the show_users route will have an effective
route pattern of /users/show instead of /show because the
route_prefix argument will be prepended to the pattern. The route will
then only match if the URL path is /users/show, and when the
pyramid.request.Request.route_url() function is called with the route
name show_users, it will generate a URL with that same path.

Route prefixes are recursive, so if a callable executed via an include itself
turns around and includes another callable, the second-level route prefix will
be prepended with the first:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator

def timing_include(config):
 config.add_route('show_times', '/times')

def users_include(config):
 config.add_route('show_users', '/show')
 config.include(timing_include, route_prefix='/timing')

def main(global_config, **settings):
 config = Configurator()
 config.include(users_include, route_prefix='/users')

In the above configuration, the show_users route will still have an
effective route pattern of /users/show. The show_times route, however,
will have an effective pattern of /users/timing/times.

Route prefixes have no impact on the requirement that the set of route names
in any given Pyramid configuration must be entirely unique. If you compose
your URL dispatch application out of many small subapplications using
pyramid.config.Configurator.include(), it's wise to use a dotted name for
your route names so they'll be unlikely to conflict with other packages that
may be added in the future. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator

def timing_include(config):
 config.add_route('timing.show_times', '/times')

def users_include(config):
 config.add_route('users.show_users', '/show')
 config.include(timing_include, route_prefix='/timing')

def main(global_config, **settings):
 config = Configurator()
 config.include(users_include, route_prefix='/users')

Custom Route Predicates

Each of the predicate callables fed to the custom_predicates argument of
add_route() must be a callable accepting two
arguments. The first argument passed to a custom predicate is a dictionary
conventionally named info. The second argument is the current
request object.

The info dictionary has a number of contained values, including match
and route. match is a dictionary which represents the arguments matched
in the URL by the route. route is an object representing the route which
was matched (see pyramid.interfaces.IRoute for the API of such a route
object).

info['match'] is useful when predicates need access to the route match.
For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	def any_of(segment_name, *allowed):
 def predicate(info, request):
 if info['match'][segment_name] in allowed:
 return True
 return predicate

num_one_two_or_three = any_of('num', 'one', 'two', 'three')

config.add_route('route_to_num', '/{num}',
 custom_predicates=(num_one_two_or_three,))

The above any_of function generates a predicate which ensures that the
match value named segment_name is in the set of allowable values
represented by allowed. We use this any_of function to generate a
predicate function named num_one_two_or_three, which ensures that the
num segment is one of the values one, two, or three , and use
the result as a custom predicate by feeding it inside a tuple to the
custom_predicates argument to
add_route().

A custom route predicate may also modify the match dictionary. For
instance, a predicate might do some type conversion of values:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	def integers(*segment_names):
 def predicate(info, request):
 match = info['match']
 for segment_name in segment_names:
 try:
 match[segment_name] = int(match[segment_name])
 except (TypeError, ValueError):
 pass
 return True
 return predicate

ymd_to_int = integers('year', 'month', 'day')

config.add_route('ymd', '/{year}/{month}/{day}',
 custom_predicates=(ymd_to_int,))

Note that a conversion predicate is still a predicate, so it must return
True or False. A predicate that does only conversion, such as the one
we demonstrate above, should unconditionally return True.

To avoid the try/except uncertainty, the route pattern can contain regular
expressions specifying requirements for that marker. For instance:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	def integers(*segment_names):
 def predicate(info, request):
 match = info['match']
 for segment_name in segment_names:
 match[segment_name] = int(match[segment_name])
 return True
 return predicate

ymd_to_int = integers('year', 'month', 'day')

config.add_route('ymd', '/{year:\d+}/{month:\d+}/{day:\d+}',
 custom_predicates=(ymd_to_int,))

Now the try/except is no longer needed because the route will not match at all
unless these markers match \d+ which requires them to be valid digits for
an int type conversion.

The match dictionary passed within info to each predicate attached to a
route will be the same dictionary. Therefore, when registering a custom
predicate which modifies the match dict, the code registering the predicate
should usually arrange for the predicate to be the last custom predicate in
the custom predicate list. Otherwise, custom predicates which fire subsequent
to the predicate which performs the match modification will receive the
modified match dictionary.

Warning

It is a poor idea to rely on ordering of custom predicates to build a
conversion pipeline, where one predicate depends on the side effect of
another. For instance, it's a poor idea to register two custom predicates,
one which handles conversion of a value to an int, the next which handles
conversion of that integer to some custom object. Just do all that in a
single custom predicate.

The route object in the info dict is an object that has two useful
attributes: name and pattern. The name attribute is the route name.
The pattern attribute is the route pattern. Here's an example of using the
route in a set of route predicates:

	1
2
3
4
5
6
7
8

	def twenty_ten(info, request):
 if info['route'].name in ('ymd', 'ym', 'y'):
 return info['match']['year'] == '2010'

config.add_route('y', '/{year}', custom_predicates=(twenty_ten,))
config.add_route('ym', '/{year}/{month}', custom_predicates=(twenty_ten,))
config.add_route('ymd', '/{year}/{month}/{day}',
 custom_predicates=(twenty_ten,))

The above predicate, when added to a number of route configurations ensures
that the year match argument is '2010' if and only if the route name is 'ymd',
'ym', or 'y'.

You can also caption the predicates by setting the __text__ attribute. This
will help you with the pviews command (see
Displaying All Application Routes) and the pyramid_debugtoolbar.

If a predicate is a class, just add __text__ property in a standard manner.

	1
2
3
4
5
6

	class DummyCustomPredicate1(object):
 def __init__(self):
 self.__text__ = 'my custom class predicate'

class DummyCustomPredicate2(object):
 __text__ = 'my custom class predicate'

If a predicate is a method, you'll need to assign it after method declaration
(see PEP 232 [http://www.python.org/dev/peps/pep-0232/]).

	1
2
3

	def custom_predicate():
 pass
custom_predicate.__text__ = 'my custom method predicate'

If a predicate is a classmethod, using @classmethod will not work, but you
can still easily do it by wrapping it in a classmethod call.

	1
2
3
4

	def classmethod_predicate():
 pass
classmethod_predicate.__text__ = 'my classmethod predicate'
classmethod_predicate = classmethod(classmethod_predicate)

The same will work with staticmethod, using staticmethod instead of
classmethod.

See also

See also pyramid.interfaces.IRoute for more API documentation
about route objects.

Route Factories

Although it is not a particularly common need in basic applications, a "route"
configuration declaration can mention a "factory". When a route matches a
request, and a factory is attached to the route, the root factory
passed at startup time to the Configurator is ignored. Instead the
factory associated with the route is used to generate a root object.
This object will usually be used as the context resource of the view
callable ultimately found via view lookup.

	1
2
3

	config.add_route('abc', '/abc',
 factory='myproject.resources.root_factory')
config.add_view('myproject.views.theview', route_name='abc')

The factory can either be a Python object or a dotted Python name (a
string) which points to such a Python object, as it is above.

In this way, each route can use a different factory, making it possible to
supply a different context resource object to the view related to each
particular route.

A factory must be a callable which accepts a request and returns an arbitrary
Python object. For example, the below class can be used as a factory:

	1
2
3

	class Mine(object):
 def __init__(self, request):
 pass

A route factory is actually conceptually identical to the root factory
described at The Resource Tree.

Supplying a different resource factory for each route is useful when you're
trying to use a Pyramid authorization policy to provide
declarative, "context sensitive" security checks. Each resource can maintain a
separate ACL, as documented in Using Pyramid Security with URL Dispatch.
It is also useful when you wish to combine URL dispatch with traversal
as documented within Combining Traversal and URL Dispatch.

Using Pyramid Security with URL Dispatch

Pyramid provides its own security framework which consults an
authorization policy before allowing any application code to be called.
This framework operates in terms of an access control list, which is stored as
an __acl__ attribute of a resource object. A common thing to want to do is
to attach an __acl__ to the resource object dynamically for declarative
security purposes. You can use the factory argument that points at a
factory which attaches a custom __acl__ to an object at its creation time.

Such a factory might look like so:

	1
2
3
4
5
6

	class Article(object):
 def __init__(self, request):
 matchdict = request.matchdict
 article = matchdict.get('article', None)
 if article == '1':
 self.__acl__ = [(Allow, 'editor', 'view')]

If the route archives/{article} is matched, and the article number is
1, Pyramid will generate an Article context resource
with an ACL on it that allows the editor principal the view permission.
Obviously you can do more generic things than inspect the route's match dict to
see if the article argument matches a particular string. Our sample
Article factory class is not very ambitious.

Note

See Security for more information about Pyramid
security and ACLs.

Route View Callable Registration and Lookup Details

When a request enters the system which matches the pattern of the route, the
usual result is simple: the view callable associated with the route is
invoked with the request that caused the invocation.

For most usage, you needn't understand more than this. How it works is an
implementation detail. In the interest of completeness, however, we'll explain
how it does work in this section. You can skip it if you're uninterested.

When a view is associated with a route configuration, Pyramid ensures
that a view configuration is registered that will always be found
when the route pattern is matched during a request. To do so:

	A special route-specific interface is created at startup time for
each route configuration declaration.

	When an add_view statement mentions a route name attribute, a
view configuration is registered at startup time. This view
configuration uses a route-specific interface as a request type.

	At runtime, when a request causes any route to match, the request
object is decorated with the route-specific interface.

	The fact that the request is decorated with a route-specific interface causes
the view lookup machinery to always use the view callable registered
using that interface by the route configuration to service requests that
match the route pattern.

As we can see from the above description, technically, URL dispatch doesn't
actually map a URL pattern directly to a view callable. Instead URL dispatch
is a resource location mechanism. A Pyramid resource
location subsystem (i.e., URL dispatch or traversal) finds a
resource object that is the context of a request. Once
the context is determined, a separate subsystem named view
lookup is then responsible for finding and invoking a view callable
based on information available in the context and the request. When URL
dispatch is used, the resource location and view lookup subsystems provided by
Pyramid are still being utilized, but in a way which does not require a
developer to understand either of them in detail.

If no route is matched using URL dispatch, Pyramid falls back to
traversal to handle the request.

References

A tutorial showing how URL dispatch can be used to create a
Pyramid application exists in SQLAlchemy + URL Dispatch Wiki Tutorial.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Views

One of the primary jobs of Pyramid is to find and invoke a view
callable when a request reaches your application. View callables are
bits of code which do something interesting in response to a request made to
your application. They are the "meat" of any interesting web application.

Note

A Pyramid view callable is often referred to in
conversational shorthand as a view. In this documentation, however,
we need to use less ambiguous terminology because there are significant
differences between view configuration, the code that implements a view
callable, and the process of view lookup.

This chapter describes how view callables should be defined. We'll have to wait
until a following chapter (entitled View Configuration) to find out how
we actually tell Pyramid to wire up view callables to particular URL
patterns and other request circumstances.

View Callables

View callables are, at the risk of sounding obvious, callable Python objects.
Specifically, view callables can be functions, classes, or instances that
implement a __call__ method (making the instance callable).

View callables must, at a minimum, accept a single argument named request.
This argument represents a Pyramid Request object. A request
object represents a WSGI environment provided to Pyramid by the
upstream WSGI server. As you might expect, the request object contains
everything your application needs to know about the specific HTTP request being
made.

A view callable's ultimate responsibility is to create a Pyramid
Response object. This can be done by creating a Response object
in the view callable code and returning it directly or by raising special kinds
of exceptions from within the body of a view callable.

Defining a View Callable as a Function

One of the easiest way to define a view callable is to create a function that
accepts a single argument named request, and which returns a
Response object. For example, this is a "hello world" view callable
implemented as a function:

	1
2
3
4

	from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

Defining a View Callable as a Class

A view callable may also be represented by a Python class instead of a
function. When a view callable is a class, the calling semantics are slightly
different than when it is a function or another non-class callable. When a view
callable is a class, the class's __init__ method is called with a
request parameter. As a result, an instance of the class is created.
Subsequently, that instance's __call__ method is invoked with no
parameters. Views defined as classes must have the following traits.

	an __init__ method that accepts a request argument

	a __call__ (or other) method that accepts no parameters and which returns
a response

For example:

	1
2
3
4
5
6
7
8

	from pyramid.response import Response

class MyView(object):
 def __init__(self, request):
 self.request = request

 def __call__(self):
 return Response('hello')

The request object passed to __init__ is the same type of request object
described in Defining a View Callable as a Function.

If you'd like to use a different attribute than __call__ to represent the
method expected to return a response, you can use an attr value as part of
the configuration for the view. See View Configuration Parameters. The
same view callable class can be used in different view configuration statements
with different attr values, each pointing at a different method of the
class if you'd like the class to represent a collection of related view
callables.

View Callable Responses

A view callable may return an object that implements the Pyramid
Response interface. The easiest way to return something that
implements the Response interface is to return a
pyramid.response.Response object instance directly. For example:

	1
2
3
4

	from pyramid.response import Response

def view(request):
 return Response('OK')

Pyramid provides a range of different "exception" classes which inherit
from pyramid.response.Response. For example, an instance of the class
pyramid.httpexceptions.HTTPFound is also a valid response object
because it inherits from Response. For examples,
see HTTP Exceptions and Using a View Callable to do an HTTP Redirect.

Note

You can also return objects from view callables that aren't instances of
pyramid.response.Response in various circumstances. This can be
helpful when writing tests and when attempting to share code between view
callables. See Renderers for the common way to allow for
this. A much less common way to allow for view callables to return
non-Response objects is documented in Changing How Pyramid Treats View Responses.

Using Special Exceptions in View Callables

Usually when a Python exception is raised within a view callable,
Pyramid allows the exception to propagate all the way out to the
WSGI server which invoked the application. It is usually caught and
logged there.

However, for convenience, a special set of exceptions exists. When one of
these exceptions is raised within a view callable, it will always cause
Pyramid to generate a response. These are known as HTTP
exception objects.

HTTP Exceptions

All pyramid.httpexceptions classes which are documented as inheriting
from the pyramid.httpexceptions.HTTPException are http
exception objects. Instances of an HTTP exception object may either be
returned or raised from within view code. In either case (return or raise)
the instance will be used as the view's response.

For example, the pyramid.httpexceptions.HTTPUnauthorized exception can
be raised. This will cause a response to be generated with a 401
Unauthorized status:

	1
2
3
4

	from pyramid.httpexceptions import HTTPUnauthorized

def aview(request):
 raise HTTPUnauthorized()

An HTTP exception, instead of being raised, can alternately be returned (HTTP
exceptions are also valid response objects):

	1
2
3
4

	from pyramid.httpexceptions import HTTPUnauthorized

def aview(request):
 return HTTPUnauthorized()

A shortcut for creating an HTTP exception is the
pyramid.httpexceptions.exception_response() function. This function
accepts an HTTP status code and returns the corresponding HTTP exception. For
example, instead of importing and constructing a
HTTPUnauthorized response object, you can use
the exception_response() function to construct
and return the same object.

	1
2
3
4

	from pyramid.httpexceptions import exception_response

def aview(request):
 raise exception_response(401)

This is the case because 401 is the HTTP status code for "HTTP
Unauthorized". Therefore, raise exception_response(401) is functionally
equivalent to raise HTTPUnauthorized(). Documentation which maps each HTTP
response code to its purpose and its associated HTTP exception object is
provided within pyramid.httpexceptions.

New in version 1.1: The exception_response() function.

How Pyramid Uses HTTP Exceptions

HTTP exceptions are meant to be used directly by application developers.
However, Pyramid itself will raise two HTTP exceptions at various points during
normal operations.

	HTTPNotFound gets raised when a view to
service a request is not found.

	HTTPForbidden gets raised when authorization
was forbidden by a security policy.

If HTTPNotFound is raised by Pyramid itself or
within view code, the result of the Not Found View will be returned to
the user agent which performed the request.

If HTTPForbidden is raised by Pyramid itself
within view code, the result of the Forbidden View will be returned to
the user agent which performed the request.

Custom Exception Views

The machinery which allows HTTP exceptions to be raised and caught by
specialized views as described in Using Special Exceptions in View Callables can
also be used by application developers to convert arbitrary exceptions to
responses.

To register a view that should be called whenever a particular exception is
raised from within Pyramid view code, use the exception class (or one of
its superclasses) as the context of a view configuration which points
at a view callable for which you'd like to generate a response.

For example, given the following exception class in a module named
helloworld.exceptions:

	1
2
3

	class ValidationFailure(Exception):
 def __init__(self, msg):
 self.msg = msg

You can wire a view callable to be called whenever any of your other code
raises a helloworld.exceptions.ValidationFailure exception:

	1
2
3
4
5
6
7
8

	from pyramid.view import view_config
from helloworld.exceptions import ValidationFailure

@view_config(context=ValidationFailure)
def failed_validation(exc, request):
 response = Response('Failed validation: %s' % exc.msg)
 response.status_int = 500
 return response

Assuming that a scan was run to pick up this view registration, this
view callable will be invoked whenever a
helloworld.exceptions.ValidationFailure is raised by your application's
view code. The same exception raised by a custom root factory, a custom
traverser, or a custom view or route predicate is also caught and hooked.

Other normal view predicates can also be used in combination with an exception
view registration:

	1
2
3
4
5
6
7
8

	from pyramid.view import view_config
from helloworld.exceptions import ValidationFailure

@view_config(context=ValidationFailure, route_name='home')
def failed_validation(exc, request):
 response = Response('Failed validation: %s' % exc.msg)
 response.status_int = 500
 return response

The above exception view names the route_name of home, meaning that it
will only be called when the route matched has a name of home. You can
therefore have more than one exception view for any given exception in the
system: the "most specific" one will be called when the set of request
circumstances match the view registration.

The only view predicate that cannot be used successfully when creating an
exception view configuration is name. The name used to look up an
exception view is always the empty string. Views registered as exception views
which have a name will be ignored.

Note

Normal (i.e., non-exception) views registered against a context resource type
which inherits from Exception [http://docs.python.org/3/library/exceptions.html#Exception] will work normally. When an exception
view configuration is processed, two views are registered. One as a
"normal" view, the other as an "exception" view. This means that you can use
an exception as context for a normal view.

Exception views can be configured with any view registration mechanism:
@view_config decorator or imperative add_view styles.

Note

Pyramid's exception view handling logic is implemented as a tween
factory function: pyramid.tweens.excview_tween_factory(). If Pyramid
exception view handling is desired, and tween factories are specified via
the pyramid.tweens configuration setting, the
pyramid.tweens.excview_tween_factory() function must be added to the
pyramid.tweens configuration setting list explicitly. If it is not
present, Pyramid will not perform exception view handling.

Using a View Callable to do an HTTP Redirect

You can issue an HTTP redirect by using the
pyramid.httpexceptions.HTTPFound class. Raising or returning an
instance of this class will cause the client to receive a "302 Found" response.

To do so, you can return a pyramid.httpexceptions.HTTPFound instance.

	1
2
3
4

	from pyramid.httpexceptions import HTTPFound

def myview(request):
 return HTTPFound(location='http://example.com')

Alternately, you can raise an HTTPFound exception instead of returning one.

	1
2
3
4

	from pyramid.httpexceptions import HTTPFound

def myview(request):
 raise HTTPFound(location='http://example.com')

When the instance is raised, it is caught by the default exception
response handler and turned into a response.

Handling Form Submissions in View Callables (Unicode and Character Set Issues)

Most web applications need to accept form submissions from web browsers and
various other clients. In Pyramid, form submission handling logic is
always part of a view. For a general overview of how to handle form
submission data using the WebOb API, see Request and Response Objects and
"Query and POST variables" within the WebOb documentation [http://docs.webob.org/en/latest/reference.html#query-post-variables].
Pyramid defers to WebOb for its request and response implementations,
and handling form submission data is a property of the request implementation.
Understanding WebOb's request API is the key to understanding how to process
form submission data.

There are some defaults that you need to be aware of when trying to handle form
submission data in a Pyramid view. Having high-order (i.e., non-ASCII)
characters in data contained within form submissions is exceedingly common, and
the UTF-8 encoding is the most common encoding used on the web for character
data. Since Unicode values are much saner than working with and storing
bytestrings, Pyramid configures the WebOb request machinery to
attempt to decode form submission values into Unicode from UTF-8 implicitly.
This implicit decoding happens when view code obtains form field values via the
request.params, request.GET, or request.POST APIs (see
pyramid.request for details about these APIs).

Note

Many people find the difference between Unicode and UTF-8 confusing. Unicode
is a standard for representing text that supports most of the world's
writing systems. However, there are many ways that Unicode data can be
encoded into bytes for transit and storage. UTF-8 is a specific encoding for
Unicode that is backwards-compatible with ASCII. This makes UTF-8 very
convenient for encoding data where a large subset of that data is ASCII
characters, which is largely true on the web. UTF-8 is also the standard
character encoding for URLs.

As an example, let's assume that the following form page is served up to a
browser client, and its action points at some Pyramid view code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 </head>
 <form method="POST" action="myview">
 <div>
 <input type="text" name="firstname"/>
 </div>
 <div>
 <input type="text" name="lastname"/>
 </div>
 <input type="submit" value="Submit"/>
 </form>
</html>

The myview view code in the Pyramid application must expect that
the values returned by request.params will be of type unicode, as
opposed to type str. The following will work to accept a form post from the
above form:

	1
2
3

	def myview(request):
 firstname = request.params['firstname']
 lastname = request.params['lastname']

But the following myview view code may not work, as it tries to decode
already-decoded (unicode) values obtained from request.params:

	1
2
3
4
5

	def myview(request):
 # the .decode('utf-8') will break below if there are any high-order
 # characters in the firstname or lastname
 firstname = request.params['firstname'].decode('utf-8')
 lastname = request.params['lastname'].decode('utf-8')

For implicit decoding to work reliably, you should ensure that every form you
render that posts to a Pyramid view explicitly defines a charset
encoding of UTF-8. This can be done via a response that has a
;charset=UTF-8 in its Content-Type header; or, as in the form above,
with a meta http-equiv tag that implies that the charset is UTF-8 within
the HTML head of the page containing the form. This must be done
explicitly because all known browser clients assume that they should encode
form data in the same character set implied by the Content-Type value of
the response containing the form when subsequently submitting that form. There
is no other generally accepted way to tell browser clients which charset to use
to encode form data. If you do not specify an encoding explicitly, the browser
client will choose to encode form data in its default character set before
submitting it, which may not be UTF-8 as the server expects. If a request
containing form data encoded in a non-UTF-8 charset is handled by your view
code, eventually the request code accessed within your view will throw an error
when it can't decode some high-order character encoded in another character set
within form data, e.g., when request.params['somename'] is accessed.

If you are using the Response class to generate a
response, or if you use the render_template_* templating APIs, the UTF-8
charset is set automatically as the default via the Content-Type
header. If you return a Content-Type header without an explicit
charset, a request will add a ;charset=utf-8 trailer to the
Content-Type header value for you for response content types that are
textual (e.g., text/html or application/xml) as it is rendered. If you
are using your own response object, you will need to ensure you do this
yourself.

Note

Only the values of request params obtained via request.params,
request.GET or request.POST are decoded to Unicode objects
implicitly in the Pyramid default configuration. The keys are still
(byte) strings.

Alternate View Callable Argument/Calling Conventions

Usually view callables are defined to accept only a single argument:
request. However, view callables may alternately be defined as classes,
functions, or any callable that accept two positional arguments: a
context resource as the first argument and a request as the
second argument.

The context and request arguments passed to a view function
defined in this style can be defined as follows:

	context

	The resource object found via tree traversal or URL
dispatch.

	request

	A Pyramid Request object representing the current WSGI request.

The following types work as view callables in this style:

	Functions that accept two arguments: context and request, e.g.:

	1
2
3
4

	from pyramid.response import Response

def view(context, request):
 return Response('OK')

	Classes that have an __init__ method that accepts context, request,
and a __call__ method which accepts no arguments, e.g.:

	1
2
3
4
5
6
7
8
9

	from pyramid.response import Response

class view(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 def __call__(self):
 return Response('OK')

	Arbitrary callables that have a __call__ method that accepts context,
request, e.g.:

	1
2
3
4
5
6

	from pyramid.response import Response

class View(object):
 def __call__(self, context, request):
 return Response('OK')
view = View() # this is the view callable

This style of calling convention is most useful for traversal based
applications, where the context object is frequently used within the view
callable code itself.

No matter which view calling convention is used, the view code always has
access to the context via request.context.

Passing Configuration Variables to a View

For information on passing a variable from the configuration .ini files to a
view, see Deployment Settings.

Pylons-1.0-Style "Controller" Dispatch

A package named pyramid_handlers (available from PyPI) provides an
analogue of Pylons-style "controllers", which are a special kind of
view class which provides more automation when your application uses URL
dispatch solely.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Renderers

A view callable needn't always return a Response object. If a view
happens to return something which does not implement the Pyramid Response
interface, Pyramid will attempt to use a renderer to construct a
response. For example:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='json')
def hello_world(request):
 return {'content':'Hello!'}

The above example returns a dictionary from the view callable. A dictionary
does not implement the Pyramid response interface, so you might believe that
this example would fail. However, since a renderer is associated with the
view callable through its view configuration (in this case, using a
renderer argument passed to view_config()), if the view
does not return a Response object, the renderer will attempt to convert the
result of the view to a response on the developer's behalf.

Of course, if no renderer is associated with a view's configuration, returning
anything except an object which implements the Response interface will result
in an error. And, if a renderer is used, whatever is returned by the view
must be compatible with the particular kind of renderer used, or an error may
occur during view invocation.

One exception exists: it is always OK to return a Response object, even when
a renderer is configured. In such cases, the renderer is bypassed
entirely.

Various types of renderers exist, including serialization renderers and
renderers which use templating systems.

Writing View Callables Which Use a Renderer

As we've seen, a view callable needn't always return a Response object.
Instead, it may return an arbitrary Python object, with the expectation that a
renderer will convert that object into a response instance on your
behalf. Some renderers use a templating system, while other renderers use
object serialization techniques. In practice, renderers obtain application
data values from Python dictionaries so, in practice, view callables which use
renderers return Python dictionaries.

View callables can explicitly call
renderers, but typically don't. Instead view configuration declares the
renderer used to render a view callable's results. This is done with the
renderer attribute. For example, this call to
add_view() associates the json renderer
with a view callable:

config.add_view('myproject.views.my_view', renderer='json')

When this configuration is added to an application, the
myproject.views.my_view view callable will now use a json renderer,
which renders view return values to a JSON response serialization.

Pyramid defines several Built-in Renderers, and additional renderers can
be added by developers to the system as necessary. See
Adding and Changing Renderers.

Views which use a renderer and return a non-Response value can vary non-body
response attributes (such as headers and the HTTP status code) by attaching a
property to the request.response attribute. See
Varying Attributes of Rendered Responses.

As already mentioned, if the view callable associated with a
view configuration returns a Response object (or its instance), any
renderer associated with the view configuration is ignored, and the response is
passed back to Pyramid unchanged. For example:

	1
2
3
4
5
6

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(renderer='json')
def view(request):
 return Response('OK') # json renderer avoided

Likewise for an HTTP exception response:

	1
2
3
4
5
6

	from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

@view_config(renderer='json')
def view(request):
 return HTTPFound(location='http://example.com') # json renderer avoided

You can of course also return the request.response attribute instead to
avoid rendering:

	1
2
3
4
5
6

	from pyramid.view import view_config

@view_config(renderer='json')
def view(request):
 request.response.body = 'OK'
 return request.response # json renderer avoided

Built-in Renderers

Several built-in renderers exist in Pyramid. These renderers can be
used in the renderer attribute of view configurations.

Note

Bindings for officially supported templating languages can be found at
Available Add-On Template System Bindings.

string: String Renderer

The string renderer renders a view callable result to a string. If a view
callable returns a non-Response object, and the string renderer is
associated in that view's configuration, the result will be to run the object
through the Python str function to generate a string. Note that if a
Unicode object is returned by the view callable, it is not str()-ified.

Here's an example of a view that returns a dictionary. If the string
renderer is specified in the configuration for this view, the view will render
the returned dictionary to the str() representation of the dictionary:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='string')
def hello_world(request):
 return {'content':'Hello!'}

The body of the response returned by such a view will be a string representing
the str() serialization of the return value:

{'content': 'Hello!'}

Views which use the string renderer can vary non-body response attributes by
using the API of the request.response attribute. See
Varying Attributes of Rendered Responses.

JSON Renderer

The json renderer renders view callable results to JSON. By
default, it passes the return value through the json.dumps standard library
function, and wraps the result in a response object. It also sets the response
content-type to application/json.

Here's an example of a view that returns a dictionary. Since the json
renderer is specified in the configuration for this view, the view will render
the returned dictionary to a JSON serialization:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='json')
def hello_world(request):
 return {'content':'Hello!'}

The body of the response returned by such a view will be a string representing
the JSON serialization of the return value:

{"content": "Hello!"}

The return value needn't be a dictionary, but the return value must contain
values serializable by the configured serializer (by default json.dumps).

You can configure a view to use the JSON renderer by naming json as the
renderer argument of a view configuration, e.g., by using
add_view():

	1
2
3
4

	config.add_view('myproject.views.hello_world',
 name='hello',
 context='myproject.resources.Hello',
 renderer='json')

Views which use the JSON renderer can vary non-body response attributes by
using the API of the request.response attribute. See
Varying Attributes of Rendered Responses.

Serializing Custom Objects

Some objects are not, by default, JSON-serializable (such as datetimes and
other arbitrary Python objects). You can, however, register code that makes
non-serializable objects serializable in two ways:

	Define a __json__ method on objects in your application.

	For objects you don't "own", you can register a JSON renderer that knows
about an adapter for that kind of object.

Using a Custom __json__ Method

Custom objects can be made easily JSON-serializable in Pyramid by defining a
__json__ method on the object's class. This method should return values
natively JSON-serializable (such as ints, lists, dictionaries, strings, and so
forth). It should accept a single additional argument, request, which will
be the active request object at render time.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from pyramid.view import view_config

class MyObject(object):
 def __init__(self, x):
 self.x = x

 def __json__(self, request):
 return {'x':self.x}

@view_config(renderer='json')
def objects(request):
 return [MyObject(1), MyObject(2)]

the JSON value returned by ``objects`` will be:
[{"x": 1}, {"x": 2}]

Using the add_adapter Method of a Custom JSON Renderer

If you aren't the author of the objects being serialized, it won't be possible
(or at least not reasonable) to add a custom __json__ method to their
classes in order to influence serialization. If the object passed to the
renderer is not a serializable type and has no __json__ method, usually a
TypeError [http://docs.python.org/3/library/exceptions.html#TypeError] will be raised during serialization. You can change this
behavior by creating a custom JSON renderer and adding adapters to handle
custom types. The renderer will attempt to adapt non-serializable objects using
the registered adapters. A short example follows:

	1
2
3
4
5
6
7
8
9

	from pyramid.renderers import JSON

if __name__ == '__main__':
 config = Configurator()
 json_renderer = JSON()
 def datetime_adapter(obj, request):
 return obj.isoformat()
 json_renderer.add_adapter(datetime.datetime, datetime_adapter)
 config.add_renderer('json', json_renderer)

The add_adapter method should accept two arguments: the class of the
object that you want this adapter to run for (in the example above,
datetime.datetime), and the adapter itself.

The adapter should be a callable. It should accept two arguments: the object
needing to be serialized and request, which will be the current request
object at render time. The adapter should raise a TypeError [http://docs.python.org/3/library/exceptions.html#TypeError] if it can't
determine what to do with the object.

See pyramid.renderers.JSON and Adding and Changing Renderers
for more information.

New in version 1.4: Serializing custom objects.

JSONP Renderer

New in version 1.1.

pyramid.renderers.JSONP is a JSONP [http://en.wikipedia.org/wiki/JSONP] renderer factory helper which implements
a hybrid JSON/JSONP renderer. JSONP is useful for making cross-domain AJAX
requests.

Unlike other renderers, a JSONP renderer needs to be configured at startup time
"by hand". Configure a JSONP renderer using the
pyramid.config.Configurator.add_renderer() method:

from pyramid.config import Configurator
from pyramid.renderers import JSONP

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback'))

Once this renderer is registered via
add_renderer() as above, you can use
jsonp as the renderer= parameter to @view_config or
pyramid.config.Configurator.add_view():

from pyramid.view import view_config

@view_config(renderer='jsonp')
def myview(request):
 return {'greeting':'Hello world'}

When a view is called that uses a JSONP renderer:

	If there is a parameter in the request's HTTP query string (aka
request.GET) that matches the param_name of the registered JSONP
renderer (by default, callback), the renderer will return a JSONP
response.

	If there is no callback parameter in the request's query string, the renderer
will return a "plain" JSON response.

Javscript library AJAX functionality will help you make JSONP requests.
For example, JQuery has a getJSON function [http://api.jquery.com/jQuery.getJSON/], and has equivalent (but more
complicated) functionality in its ajax function [http://api.jquery.com/jQuery.ajax/].

For example (JavaScript):

var api_url = 'http://api.geonames.org/timezoneJSON' +
 '?lat=38.301733840000004' +
 '&lng=-77.45869621' +
 '&username=fred' +
 '&callback=?';
jqhxr = $.getJSON(api_url);

The string callback=? above in the url param to the JQuery getJSON
function indicates to jQuery that the query should be made as a JSONP request;
the callback parameter will be automatically filled in for you and used.

The same custom-object serialization scheme defined used for a "normal" JSON
renderer in Serializing Custom Objects can be used when passing
values to a JSONP renderer too.

Varying Attributes of Rendered Responses

Before a response constructed by a renderer is returned to
Pyramid, several attributes of the request are examined which have the
potential to influence response behavior.

View callables that don't directly return a response should use the API of the
pyramid.response.Response attribute, available as request.response
during their execution, to influence associated response behavior.

For example, if you need to change the response status from within a view
callable that uses a renderer, assign the status attribute to the
response attribute of the request before returning a result:

	1
2
3
4
5
6

	from pyramid.view import view_config

@view_config(name='gone', renderer='templates/gone.pt')
def myview(request):
 request.response.status = '404 Not Found'
 return {'URL':request.URL}

Note that mutations of request.response in views which return a Response
object directly will have no effect unless the response object returned is
request.response. For example, the following example calls
request.response.set_cookie, but this call will have no effect because a
different Response object is returned.

	1
2
3
4
5

	from pyramid.response import Response

def view(request):
 request.response.set_cookie('abc', '123') # this has no effect
 return Response('OK') # because we're returning a different response

If you mutate request.response and you'd like the mutations to have an
effect, you must return request.response:

	1
2
3

	def view(request):
 request.response.set_cookie('abc', '123')
 return request.response

For more information on attributes of the request, see the API documentation in
pyramid.request. For more information on the API of
request.response, see pyramid.request.Request.response.

Adding and Changing Renderers

New templating systems and serializers can be associated with Pyramid
renderer names. To this end, configuration declarations can be made which
change an existing renderer factory, and which add a new renderer
factory.

Renderers can be registered imperatively using the
pyramid.config.Configurator.add_renderer() API.

For example, to add a renderer which renders views which have a
renderer attribute that is a path that ends in .jinja2:

config.add_renderer('.jinja2', 'mypackage.MyJinja2Renderer')

The first argument is the renderer name. The second argument is a reference
to an implementation of a renderer factory or a dotted Python
name referring to such an object.

Adding a New Renderer

You may add a new renderer by creating and registering a renderer
factory.

A renderer factory implementation should conform to the
pyramid.interfaces.IRendererFactory interface. It should be capable of
creating an object that conforms to the pyramid.interfaces.IRenderer
interface. A typical class that follows this setup is as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	class RendererFactory:
 def __init__(self, info):
 """ Constructor: info will be an object having the
 following attributes: name (the renderer name), package
 (the package that was 'current' at the time the
 renderer was registered), type (the renderer type
 name), registry (the current application registry) and
 settings (the deployment settings dictionary). """

 def __call__(self, value, system):
 """ Call the renderer implementation with the value
 and the system value passed in as arguments and return
 the result (a string or unicode object). The value is
 the return value of a view. The system value is a
 dictionary containing available system values
 (e.g., view, context, and request). """

The formal interface definition of the info object passed to a renderer
factory constructor is available as pyramid.interfaces.IRendererInfo.

There are essentially two different kinds of renderer factories:

	A renderer factory which expects to accept an asset specification, or
an absolute path, as the name attribute of the info object fed to its
constructor. These renderer factories are registered with a name value
that begins with a dot (.). These types of renderer factories usually
relate to a file on the filesystem, such as a template.

	A renderer factory which expects to accept a token that does not represent a
filesystem path or an asset specification in the name attribute of the
info object fed to its constructor. These renderer factories are
registered with a name value that does not begin with a dot. These
renderer factories are typically object serializers.

Asset Specifications

An asset specification is a colon-delimited identifier for an asset.
The colon separates a Python package name from a package subpath.
For example, the asset specification my.package:static/baz.css
identifies the file named baz.css in the static subdirectory of the
my.package Python package.

Here's an example of the registration of a simple renderer factory via
add_renderer(), where config is an
instance of pyramid.config.Configurator():

config.add_renderer(name='amf', factory='my.package.MyAMFRenderer')

Adding the above code to your application startup configuration will
allow you to use the my.package.MyAMFRenderer renderer factory
implementation in view configurations. Your application can use this
renderer by specifying amf in the renderer attribute of a
view configuration:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='amf')
def myview(request):
 return {'Hello':'world'}

At startup time, when a view configuration is encountered which has a
name attribute that does not contain a dot, the full name value is used
to construct a renderer from the associated renderer factory. In this case,
the view configuration will create an instance of an MyAMFRenderer for each
view configuration which includes amf as its renderer value. The name
passed to the MyAMFRenderer constructor will always be amf.

Here's an example of the registration of a more complicated renderer factory,
which expects to be passed a filesystem path:

config.add_renderer(name='.jinja2', factory='my.package.MyJinja2Renderer')

Adding the above code to your application startup will allow you to use the
my.package.MyJinja2Renderer renderer factory implementation in view
configurations by referring to any renderer which ends in .jinja2 in
the renderer attribute of a view configuration:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='templates/mytemplate.jinja2')
def myview(request):
 return {'Hello':'world'}

When a view configuration is encountered at startup time which has a
name attribute that does contain a dot, the value of the name attribute is
split on its final dot. The second element of the split is typically the
filename extension. This extension is used to look up a renderer factory for
the configured view. Then the value of renderer is passed to the factory
to create a renderer for the view. In this case, the view configuration will
create an instance of a MyJinja2Renderer for each view configuration which
includes anything ending with .jinja2 in its renderer value. The
name passed to the MyJinja2Renderer constructor will be the full value
that was set as renderer= in the view configuration.

Adding a Default Renderer

To associate a default renderer with all view configurations (even ones
which do not possess a renderer attribute), pass None as the name
attribute to the renderer tag:

config.add_renderer(None, 'mypackage.json_renderer_factory')

Changing an Existing Renderer

Pyramid supports overriding almost every aspect of its setup through its
Conflict Resolution mechanism. This
means that, in most cases, overriding a renderer is as simple as using the
pyramid.config.Configurator.add_renderer() method to redefine the
template extension. For example, if you would like to override the json
renderer to specify a new renderer, you could do the following:

json_renderer = pyramid.renderers.JSON()
config.add_renderer('json', json_renderer)

After doing this, any views registered with the json renderer will use the
new renderer.

Overriding a Renderer at Runtime

Warning

This is an advanced feature, not typically used by "civilians".

In some circumstances, it is necessary to instruct the system to ignore the
static renderer declaration provided by the developer in view configuration,
replacing the renderer with another after a request starts. For example, an
"omnipresent" XML-RPC implementation that detects that the request is from an
XML-RPC client might override a view configuration statement made by the user
instructing the view to use a template renderer with one that uses an XML-RPC
renderer. This renderer would produce an XML-RPC representation of the data
returned by an arbitrary view callable.

To use this feature, create a NewRequest
subscriber which sniffs at the request data and which conditionally
sets an override_renderer attribute on the request itself, which in turn is
the name of a registered renderer. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from pyramid.events import subscriber
from pyramid.events import NewRequest

@subscriber(NewRequest)
def set_xmlrpc_params(event):
 request = event.request
 if (request.content_type == 'text/xml'
 and request.method == 'POST'
 and not 'soapaction' in request.headers
 and not 'x-pyramid-avoid-xmlrpc' in request.headers):
 params, method = parse_xmlrpc_request(request)
 request.xmlrpc_params, request.xmlrpc_method = params, method
 request.is_xmlrpc = True
 request.override_renderer = 'xmlrpc'
 return True

The result of such a subscriber will be to replace any existing static renderer
configured by the developer with a (notional, nonexistent) XML-RPC renderer, if
the request appears to come from an XML-RPC client.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Templates

A template is a file on disk which can be used to render dynamic data
provided by a view. Pyramid offers a number of ways to perform
templating tasks out of the box, and provides add-on templating support through
a set of bindings packages.

Before discussing how built-in templates are used in detail, we'll discuss two
ways to render templates within Pyramid in general: directly and via
renderer configuration.

Using Templates Directly

The most straightforward way to use a template within Pyramid is to
cause it to be rendered directly within a view callable. You may use
whatever API is supplied by a given templating engine to do so.

Pyramid provides various APIs that allow you to render templates directly
from within a view callable. For example, if there is a Chameleon ZPT
template named foo.pt in a directory named templates in your
application, you can render the template from within the body of a view
callable like so:

	1
2
3
4
5
6

	from pyramid.renderers import render_to_response

def sample_view(request):
 return render_to_response('templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)

The sample_view view callable function above returns a
response object which contains the body of the templates/foo.pt
template. In this case, the templates directory should live in the same
directory as the module containing the sample_view function. The template
author will have the names foo and bar available as top-level names for
replacement or comparison purposes.

In the example above, the path templates/foo.pt is relative to the
directory containing the file which defines the view configuration. In this
case, this is the directory containing the file that defines the
sample_view function. Although a renderer path is usually just a simple
relative pathname, a path named as a renderer can be absolute, starting with a
slash on UNIX or a drive letter prefix on Windows. The path can alternatively
be an asset specification in the form
some.dotted.package_name:relative/path. This makes it possible to address
template assets which live in another package. For example:

	1
2
3
4
5
6

	from pyramid.renderers import render_to_response

def sample_view(request):
 return render_to_response('mypackage:templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)

An asset specification points at a file within a Python package. In this
case, it points at a file named foo.pt within the templates directory
of the mypackage package. Using an asset specification instead of a
relative template name is usually a good idea, because calls to
render_to_response() using asset specifications will
continue to work properly if you move the code containing them to another
location.

In the examples above we pass in a keyword argument named request
representing the current Pyramid request. Passing a request keyword
argument will cause the render_to_response function to supply the renderer
with more correct system values (see System Values Used During Rendering), because
most of the information required to compose proper system values is present in
the request. If your template relies on the name request or context,
or if you've configured special renderer globals, make sure to pass
request as a keyword argument in every call to a
pyramid.renderers.render_* function.

Every view must return a response object, except for views which use a
renderer named via view configuration (which we'll see shortly). The
pyramid.renderers.render_to_response() function is a shortcut function
that actually returns a response object. This allows the example view above to
simply return the result of its call to render_to_response() directly.

Obviously not all APIs you might call to get response data will return a
response object. For example, you might render one or more templates to a
string that you want to use as response data. The
pyramid.renderers.render() API renders a template to a string. We can
manufacture a response object directly, and use that string as the body
of the response:

	1
2
3
4
5
6
7
8
9

	from pyramid.renderers import render
from pyramid.response import Response

def sample_view(request):
 result = render('mypackage:templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)
 response = Response(result)
 return response

Because view callable functions are typically the only code in
Pyramid that need to know anything about templates, and because view
functions are very simple Python, you can use whatever templating system with
which you're most comfortable within Pyramid. Install the templating
system, import its API functions into your views module, use those APIs to
generate a string, then return that string as the body of a Pyramid
Response object.

For example, here's an example of using "raw" Mako [http://www.makotemplates.org/] from within a
Pyramid view:

	1
2
3
4
5
6
7
8

	from mako.template import Template
from pyramid.response import Response

def make_view(request):
 template = Template(filename='/templates/template.mak')
 result = template.render(name=request.params['name'])
 response = Response(result)
 return response

You probably wouldn't use this particular snippet in a project, because it's
easier to use the supported Mako bindings. But if your favorite templating system
is not supported as a renderer extension for Pyramid, you can create
your own simple combination as shown above.

Note

If you use third-party templating languages without cooperating
Pyramid bindings directly within view callables, the
auto-template-reload strategy explained in Automatically Reloading Templates
will not be available, nor will the template asset overriding capability
explained in Overriding Assets be available, nor will it be
possible to use any template using that language as a renderer.
However, it's reasonably easy to write custom templating system binding
packages for use under Pyramid so that templates written in the
language can be used as renderers. See
Adding and Changing Renderers for instructions on how to create
your own template renderer and Available Add-On Template System Bindings
for example packages.

If you need more control over the status code and content-type, or other
response attributes from views that use direct templating, you may set
attributes on the response that influence these values.

Here's an example of changing the content-type and status of the response
object returned by render_to_response():

	1
2
3
4
5
6
7
8
9

	from pyramid.renderers import render_to_response

def sample_view(request):
 response = render_to_response('templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)
 response.content_type = 'text/plain'
 response.status_int = 204
 return response

Here's an example of manufacturing a response object using the result of
render() (a string):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.renderers import render
from pyramid.response import Response

def sample_view(request):
 result = render('mypackage:templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)
 response = Response(result)
 response.content_type = 'text/plain'
 return response

System Values Used During Rendering

When a template is rendered using render_to_response()
or render(), or a renderer= argument to view
configuration (see Templates Used as Renderers via Configuration), the renderer
representing the template will be provided with a number of system values.
These values are provided to the template:

	request

	The value provided as the request keyword argument to
render_to_response or render or the request object passed to the
view when the renderer= argument to view configuration is being used to
render the template.

	req

	An alias for request.

	context

	The current Pyramid context if request was provided as a
keyword argument to render_to_response or render, or None if the
request keyword argument was not provided. This value will always be
provided if the template is rendered as the result of a renderer=
argument to the view configuration being used.

	renderer_name

	The renderer name used to perform the rendering, e.g.,
mypackage:templates/foo.pt.

	renderer_info

	An object implementing the pyramid.interfaces.IRendererInfo
interface. Basically, an object with the following attributes: name,
package, and type.

	view

	The view callable object that was used to render this template. If the view
callable is a method of a class-based view, this will be an instance of the
class that the method was defined on. If the view callable is a function or
instance, it will be that function or instance. Note that this value will
only be automatically present when a template is rendered as a result of a
renderer= argument; it will be None when the render_to_response
or render APIs are used.

You can define more values which will be passed to every template executed as a
result of rendering by defining renderer globals.

What any particular renderer does with these system values is up to the
renderer itself, but most template renderers make these names available as
top-level template variables.

Templates Used as Renderers via Configuration

An alternative to using render_to_response() to render
templates manually in your view callable code is to specify the template as a
renderer in your view configuration. This can be done with any of the
templating languages supported by Pyramid.

To use a renderer via view configuration, specify a template asset
specification as the renderer argument, or attribute to the view
configuration of a view callable. Then return a dictionary from
that view callable. The dictionary items returned by the view callable will be
made available to the renderer template as top-level names.

The association of a template as a renderer for a view configuration
makes it possible to replace code within a view callable that handles
the rendering of a template.

Here's an example of using a view_config decorator to
specify a view configuration that names a template renderer:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='templates/foo.pt')
def my_view(request):
 return {'foo':1, 'bar':2}

Note

You do not need to supply the request value as a key in the dictionary
result returned from a renderer-configured view callable. Pyramid
automatically supplies this value for you, so that the "most correct" system
values are provided to the renderer.

Warning

The renderer argument to the @view_config configuration decorator
shown above is the template path. In the example above, the path
templates/foo.pt is relative. Relative to what, you ask? Because
we're using a Chameleon renderer, it means "relative to the directory in
which the file that defines the view configuration lives". In this case,
this is the directory containing the file that defines the my_view
function. View-configuration-relative asset specifications work only
in Chameleon, not in Mako templates.

Similar renderer configuration can be done imperatively. See
Writing View Callables Which Use a Renderer.

See also

See also Built-in Renderers.

Although a renderer path is usually just a simple relative pathname, a path
named as a renderer can be absolute, starting with a slash on UNIX or a drive
letter prefix on Windows. The path can alternatively be an asset
specification in the form some.dotted.package_name:relative/path, making
it possible to address template assets which live in another package.

Not just any template from any arbitrary templating system may be used as a
renderer. Bindings must exist specifically for Pyramid to use a
templating language template as a renderer.

Why Use a Renderer via View Configuration

Using a renderer in view configuration is usually a better way to render
templates than using any rendering API directly from within a view
callable because it makes the view callable more unit-testable. Views
which use templating or rendering APIs directly must return a
Response object. Making testing assertions about response objects
is typically an indirect process, because it means that your test code often
needs to somehow parse information out of the response body (often HTML).
View callables configured with renderers externally via view configuration
typically return a dictionary, as above. Making assertions about results
returned in a dictionary is almost always more direct and straightforward
than needing to parse HTML.

By default, views rendered via a template renderer return a Response
object which has a status code of 200 OK, and a content-type of
text/html. To vary attributes of the response of a view that uses a
renderer, such as the content-type, headers, or status attributes, you must use
the API of the pyramid.response.Response object exposed as
request.response within the view before returning the dictionary. See
Varying Attributes of Rendered Responses for more information.

The same set of system values are provided to templates rendered via a renderer
view configuration as those provided to templates rendered imperatively. See
System Values Used During Rendering.

Debugging Templates

A NameError [http://docs.python.org/3/library/exceptions.html#NameError] exception resulting from rendering a template with an
undefined variable (e.g. ${wrong}) might end up looking like this:

RuntimeError: Caught exception rendering template.
 - Expression: ``wrong``
 - Filename: /home/fred/env/proj/proj/templates/mytemplate.pt
 - Arguments: renderer_name: proj:templates/mytemplate.pt
 template: <PageTemplateFile - at 0x1d2ecf0>
 xincludes: <XIncludes - at 0x1d3a130>
 request: <Request - at 0x1d2ecd0>
 project: proj
 macros: <Macros - at 0x1d3aed0>
 context: <MyResource None at 0x1d39130>
 view: <function my_view at 0x1d23570>

NameError: wrong

The output tells you which template the error occurred in, as well as
displaying the arguments passed to the template itself.

Automatically Reloading Templates

It's often convenient to see changes you make to a template file appear
immediately without needing to restart the application process. Pyramid
allows you to configure your application development environment so that a
change to a template will be automatically detected, and the template will be
reloaded on the next rendering.

Warning

Auto-template-reload behavior is not recommended for production sites as it
slows rendering slightly; it's usually only desirable during development.

In order to turn on automatic reloading of templates, you can use an
environment variable or a configuration file setting.

To use an environment variable, start your application under a shell using the
PYRAMID_RELOAD_TEMPLATES operating system environment variable set to
1, For example:

$ PYRAMID_RELOAD_TEMPLATES=1 $VENV/bin/pserve myproject.ini

To use a setting in the application .ini file for the same purpose, set the
pyramid.reload_templates key to true within the application's
configuration section, e.g.:

	1
2
3

	[app:main]
use = egg:MyProject
pyramid.reload_templates = true

Available Add-On Template System Bindings

The Pylons Project maintains several packages providing bindings to different
templating languages including the following:

	Template Language
	Pyramid Bindings
	Default Extensions

	Chameleon [http://chameleon.readthedocs.org/en/latest/]
	pyramid_chameleon [https://pypi.python.org/pypi/pyramid_chameleon]
	.pt, .txt

	Jinja2 [http://jinja.pocoo.org/docs/]
	pyramid_jinja2 [https://pypi.python.org/pypi/pyramid_jinja2]
	.jinja2

	Mako [http://www.makotemplates.org/]
	pyramid_mako [https://pypi.python.org/pypi/pyramid_mako]
	.mak, .mako

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

View Configuration

View lookup is the Pyramid subsystem responsible for finding and
invoking a view callable. View configuration controls how
view lookup operates in your application. During any given request,
view configuration information is compared against request data by the view
lookup subsystem in order to find the "best" view callable for that request.

In earlier chapters, you have been exposed to a few simple view configuration
declarations without much explanation. In this chapter we will explore the
subject in detail.

Mapping a Resource or URL Pattern to a View Callable

A developer makes a view callable available for use within a
Pyramid application via view configuration. A view
configuration associates a view callable with a set of statements that
determine the set of circumstances which must be true for the view callable to
be invoked.

A view configuration statement is made about information present in the
context resource and the request.

View configuration is performed in one of two ways:

	By running a scan against application source code which has a
pyramid.view.view_config decorator attached to a Python object as
per Adding View Configuration Using the @view_config Decorator.

	By using the pyramid.config.Configurator.add_view() method as per
Adding View Configuration Using add_view().

View Configuration Parameters

All forms of view configuration accept the same general types of arguments.

Many arguments supplied during view configuration are view predicate
arguments. View predicate arguments used during view configuration are used to
narrow the set of circumstances in which view lookup will find a
particular view callable.

View predicate attributes are an important part of view configuration
that enables the view lookup subsystem to find and invoke the
appropriate view. The greater the number of predicate attributes possessed by
a view's configuration, the more specific the circumstances need to be before
the registered view callable will be invoked. The fewer the number of
predicates which are supplied to a particular view configuration, the more
likely it is that the associated view callable will be invoked. A view with
five predicates will always be found and evaluated before a view with two, for
example.

This does not mean however, that Pyramid "stops looking" when it finds a
view registration with predicates that don't match. If one set of view
predicates does not match, the "next most specific" view (if any) is consulted
for predicates, and so on, until a view is found, or no view can be matched up
with the request. The first view with a set of predicates all of which match
the request environment will be invoked.

If no view can be found with predicates which allow it to be matched up with
the request, Pyramid will return an error to the user's browser,
representing a "not found" (404) page. See Changing the Not Found View
for more information about changing the default Not Found View.

Other view configuration arguments are non-predicate arguments. These tend to
modify the response of the view callable or prevent the view callable from
being invoked due to an authorization policy. The presence of non-predicate
arguments in a view configuration does not narrow the circumstances in which
the view callable will be invoked.

Non-Predicate Arguments

	permission

	The name of a permission that the user must possess in order to
invoke the view callable. See Configuring View Security for more
information about view security and permissions.

If permission is not supplied, no permission is registered for this view
(it's accessible by any caller).

	attr

	The view machinery defaults to using the __call__ method of the
view callable (or the function itself, if the view callable is a
function) to obtain a response. The attr value allows you to vary the
method attribute used to obtain the response. For example, if your view was
a class, and the class has a method named index and you wanted to use
this method instead of the class's __call__ method to return the
response, you'd say attr="index" in the view configuration for the view.
This is most useful when the view definition is a class.

If attr is not supplied, None is used (implying the function itself
if the view is a function, or the __call__ callable attribute if the view
is a class).

	renderer

	Denotes the renderer implementation which will be used to construct a
response from the associated view callable's return value.

See also

See also Renderers.

This is either a single string term (e.g., json) or a string implying a
path or asset specification (e.g., templates/views.pt) naming a
renderer implementation. If the renderer value does not contain
a dot (.), the specified string will be used to look up a renderer
implementation, and that renderer implementation will be used to construct a
response from the view return value. If the renderer value contains a
dot (.), the specified term will be treated as a path, and the filename
extension of the last element in the path will be used to look up the
renderer implementation, which will be passed the full path.

When the renderer is a path—although a path is usually just a simple relative
pathname (e.g., templates/foo.pt, implying that a template named "foo.pt"
is in the "templates" directory relative to the directory of the current
package)—the path can be absolute, starting with a slash on UNIX or a
drive letter prefix on Windows. The path can alternatively be a asset
specification in the form some.dotted.package_name:relative/path, making
it possible to address template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the "null"
renderer is assumed (no rendering is performed and the value is passed back
to the upstream Pyramid machinery unchanged). Note that if the view
callable itself returns a response (see View Callable Responses), the
specified renderer implementation is never called.

	http_cache

	When you supply an http_cache value to a view configuration, the
Expires and Cache-Control headers of a response generated by the
associated view callable are modified. The value for http_cache may be
one of the following:

	A nonzero integer. If it's a nonzero integer, it's treated as a number of
seconds. This number of seconds will be used to compute the Expires
header and the Cache-Control: max-age parameter of responses to
requests which call this view. For example: http_cache=3600 instructs
the requesting browser to 'cache this response for an hour, please'.

	A datetime.timedelta instance. If it's a datetime.timedelta
instance, it will be converted into a number of seconds, and that number of
seconds will be used to compute the Expires header and the
Cache-Control: max-age parameter of responses to requests which call
this view. For example: http_cache=datetime.timedelta(days=1)
instructs the requesting browser to 'cache this response for a day,
please'.

	Zero (0). If the value is zero, the Cache-Control and Expires
headers present in all responses from this view will be composed such that
client browser cache (and any intermediate caches) are instructed to never
cache the response.

	A two-tuple. If it's a two-tuple (e.g., http_cache=(1,
{'public':True})), the first value in the tuple may be a nonzero integer
or a datetime.timedelta instance. In either case this value will be
used as the number of seconds to cache the response. The second value in
the tuple must be a dictionary. The values present in the dictionary will
be used as input to the Cache-Control response header. For example:
http_cache=(3600, {'public':True}) means 'cache for an hour, and add
public to the Cache-Control header of the response'. All keys and
values supported by the webob.cachecontrol.CacheControl interface may
be added to the dictionary. Supplying {'public':True} is equivalent to
calling response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires(value) within your view's body.

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires(value[0], **value[1]) within your view's body.

If you wish to avoid influencing the Expires header, and instead wish to
only influence Cache-Control headers, pass a tuple as http_cache with
the first element of None, i.e., (None, {'public':True}).

	wrapper

	The view name of a different view configuration which will
receive the response body of this view as the request.wrapped_body
attribute of its own request, and the response returned by
this view as the request.wrapped_response attribute of its own request.
Using a wrapper makes it possible to "chain" views together to form a
composite response. The response of the outermost wrapper view will be
returned to the user. The wrapper view will be found as any view is found.
See View Configuration. The "best" wrapper view will be found based on the
lookup ordering. "Under the hood" this wrapper view is looked up via
pyramid.view.render_view_to_response(context, request,
'wrapper_viewname'). The context and request of a wrapper view is the same
context and request of the inner view.

If wrapper is not supplied, no wrapper view is used.

	decorator

	A dotted Python name to a function (or the function itself) which
will be used to decorate the registered view callable. The decorator
function will be called with the view callable as a single argument. The
view callable it is passed will accept (context, request). The decorator
must return a replacement view callable which also accepts (context,
request). The decorator may also be an iterable of decorators, in which
case they will be applied one after the other to the view, in reverse order.
For example:

@view_config(..., decorator=(decorator2, decorator1))
def myview(request):
 ...

Is similar to doing:

@view_config(...)
@decorator2
@decorator1
def myview(request):
 ...

All view callables in the decorator chain must return a response object
implementing pyramid.interfaces.IResponse or raise an exception:

def log_timer(wrapped):
 def wrapper(context, request):
 start = time.time()
 response = wrapped(context, request)
 duration = time.time() - start
 response.headers['X-View-Time'] = '%.3f' % (duration,)
 log.info('view took %.3f seconds', duration)
 return response
 return wrapper

	mapper

	A Python object or dotted Python name which refers to a view
mapper, or None. By default it is None, which indicates that the
view should use the default view mapper. This plug-point is useful for
Pyramid extension developers, but it's not very useful for "civilians" who
are just developing stock Pyramid applications. Pay no attention to the man
behind the curtain.

Predicate Arguments

These arguments modify view lookup behavior. In general the more predicate
arguments that are supplied, the more specific and narrower the usage of the
configured view.

	name

	The view name required to match this view callable. A name
argument is typically only used when your application uses traversal.
Read Traversal to understand the concept of a view name.

If name is not supplied, the empty string is used (implying the default
view).

	context

	An object representing a Python class of which the context resource
must be an instance or the interface that the context
resource must provide in order for this view to be found and called. This
predicate is true when the context resource is an instance of the
represented class or if the context resource provides the represented
interface; it is otherwise false.

If context is not supplied, the value None, which matches any
resource, is used.

	route_name

	If route_name is supplied, the view callable will be invoked only when
the named route has matched.

This value must match the name of a route configuration
declaration (see URL Dispatch) that must match before this view
will be called. Note that the route configuration referred to by
route_name will usually have a *traverse token in the value of its
pattern, representing a part of the path that will be used by
traversal against the result of the route's root factory.

If route_name is not supplied, the view callable will only have a chance
of being invoked if no other route was matched. This is when the
request/context pair found via resource location does not indicate it
matched any configured route.

	request_type

	This value should be an interface that the request must
provide in order for this view to be found and called.

If request_type is not supplied, the value None is used, implying any
request type.

This is an advanced feature, not often used by "civilians".

	request_method

	This value can be either a string (such as "GET", "POST",
"PUT", "DELETE", "HEAD", or "OPTIONS") representing an HTTP
REQUEST_METHOD or a tuple containing one or more of these strings. A
view declaration with this argument ensures that the view will only be called
when the method attribute of the request (i.e., the REQUEST_METHOD of
the WSGI environment) matches a supplied value.

Changed in version 1.4: The use of "GET" also implies that the view will respond to "HEAD".

If request_method is not supplied, the view will be invoked regardless of
the REQUEST_METHOD of the WSGI environment.

	request_param

	This value can be any string or a sequence of strings. A view declaration
with this argument ensures that the view will only be called when the
request has a key in the request.params dictionary (an HTTP
GET or POST variable) that has a name which matches the supplied
value.

If any value supplied has an = sign in it, e.g.,
request_param="foo=123", then the key (foo) must both exist in the
request.params dictionary, and the value must match the right hand side
of the expression (123) for the view to "match" the current request.

If request_param is not supplied, the view will be invoked without
consideration of keys and values in the request.params dictionary.

	match_param

	This param may be either a single string of the format "key=value" or a tuple
containing one or more of these strings.

This argument ensures that the view will only be called when the
request has key/value pairs in its matchdict that equal those
supplied in the predicate. For example, match_param="action=edit" would
require the action parameter in the matchdict match the right
hand side of the expression (edit) for the view to "match" the current
request.

If the match_param is a tuple, every key/value pair must match for the
predicate to pass.

If match_param is not supplied, the view will be invoked without
consideration of the keys and values in request.matchdict.

New in version 1.2.

	containment

	This value should be a reference to a Python class or interface that
a parent object in the context resource's lineage must provide in
order for this view to be found and called. The resources in your resource
tree must be "location-aware" to use this feature.

If containment is not supplied, the interfaces and classes in the lineage
are not considered when deciding whether or not to invoke the view callable.

See Location-Aware Resources for more information about location-awareness.

	xhr

	This value should be either True or False. If this value is
specified and is True, the WSGI environment must possess an
HTTP_X_REQUESTED_WITH header (i.e., X-Requested-With) that has the
value XMLHttpRequest for the associated view callable to be found and
called. This is useful for detecting AJAX requests issued from jQuery,
Prototype, and other Javascript libraries.

If xhr is not specified, the HTTP_X_REQUESTED_WITH HTTP header is not
taken into consideration when deciding whether or not to invoke the
associated view callable.

	accept

	The value of this argument represents a match query for one or more mimetypes
in the Accept HTTP request header. If this value is specified, it must
be in one of the following forms: a mimetype match token in the form
text/plain, a wildcard mimetype match token in the form text/*, or a
match-all wildcard mimetype match token in the form */*. If any of the
forms matches the Accept header of the request, this predicate will be
true.

If accept is not specified, the HTTP_ACCEPT HTTP header is not taken
into consideration when deciding whether or not to invoke the associated view
callable.

	header

	This value represents an HTTP header name or a header name/value pair.

If header is specified, it must be a header name or a
headername:headervalue pair.

If header is specified without a value (a bare header name only, e.g.,
If-Modified-Since), the view will only be invoked if the HTTP header
exists with any value in the request.

If header is specified, and possesses a name/value pair (e.g.,
User-Agent:Mozilla/.*), the view will only be invoked if the HTTP header
exists and the HTTP header matches the value requested. When the
headervalue contains a : (colon), it will be considered a name/value
pair (e.g., User-Agent:Mozilla/.* or Host:localhost). The value
portion should be a regular expression.

Whether or not the value represents a header name or a header name/value
pair, the case of the header name is not significant.

If header is not specified, the composition, presence, or absence of HTTP
headers is not taken into consideration when deciding whether or not to
invoke the associated view callable.

	path_info

	This value represents a regular expression pattern that will be tested
against the PATH_INFO WSGI environment variable to decide whether or not
to call the associated view callable. If the regex matches, this predicate
will be True.

If path_info is not specified, the WSGI PATH_INFO is not taken into
consideration when deciding whether or not to invoke the associated view
callable.

	check_csrf

	If specified, this value should be one of None, True, False, or a
string representing the "check name". If the value is True or a string,
CSRF checking will be performed. If the value is False or None, CSRF
checking will not be performed.

If the value provided is a string, that string will be used as the "check
name". If the value provided is True, csrf_token will be used as the
check name.

If CSRF checking is performed, the checked value will be the value of
request.params[check_name]. This value will be compared against the
value of request.session.get_csrf_token(), and the check will pass if
these two values are the same. If the check passes, the associated view will
be permitted to execute. If the check fails, the associated view will not be
permitted to execute.

Note that using this feature requires a session factory to have been
configured.

New in version 1.4a2.

	physical_path

	If specified, this value should be a string or a tuple representing the
physical path of the context found via traversal for this predicate
to match as true. For example, physical_path='/',
physical_path='/a/b/c', or physical_path=('', 'a', 'b', 'c'). This
is not a path prefix match or a regex, but a whole-path match. It's useful
when you want to always potentially show a view when some object is traversed
to, but you can't be sure about what kind of object it will be, so you can't
use the context predicate. The individual path elements between slash
characters or in tuple elements should be the Unicode representation of the
name of the resource and should not be encoded in any way.

New in version 1.4a3.

	effective_principals

	If specified, this value should be a principal identifier or a
sequence of principal identifiers. If the
pyramid.request.Request.effective_principals() method indicates that
every principal named in the argument list is present in the current request,
this predicate will return True; otherwise it will return False. For
example: effective_principals=pyramid.security.Authenticated or
effective_principals=('fred', 'group:admins').

New in version 1.4a4.

	custom_predicates

	If custom_predicates is specified, it must be a sequence of references to
custom predicate callables. Use custom predicates when no set of predefined
predicates do what you need. Custom predicates can be combined with
predefined predicates as necessary. Each custom predicate callable should
accept two arguments, context and request, and should return either
True or False after doing arbitrary evaluation of the context
resource and/or the request. If all callables return True, the
associated view callable will be considered viable for a given request.

If custom_predicates is not specified, no custom predicates are used.

	predicates

	Pass a key/value pair here to use a third-party predicate registered via
pyramid.config.Configurator.add_view_predicate(). More than one
key/value pair can be used at the same time. See
View and Route Predicates for more information about third-party
predicates.

New in version 1.4a1.

Inverting Predicate Values

You can invert the meaning of any predicate value by wrapping it in a call to
pyramid.config.not_.

	1
2
3
4
5
6
7

	from pyramid.config import not_

config.add_view(
 'mypackage.views.my_view',
 route_name='ok',
 request_method=not_('POST')
)

The above example will ensure that the view is called if the request method is
not POST, at least if no other view is more specific.

This technique of wrapping a predicate value in not_ can be used anywhere
predicate values are accepted:

	pyramid.config.Configurator.add_view()

	pyramid.view.view_config()

New in version 1.5.

Adding View Configuration Using the @view_config Decorator

Warning

Using this feature tends to slow down application startup slightly, as more
work is performed at application startup to scan for view configuration
declarations. For maximum startup performance, use the view configuration
method described in Adding View Configuration Using add_view()
instead.

The view_config decorator can be used to associate
view configuration information with a function, method, or class that
acts as a Pyramid view callable.

Here's an example of the view_config decorator that
lives within a Pyramid application module views.py:

	1
2
3
4
5
6
7

	from resources import MyResource
from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='ok', request_method='POST', permission='read')
def my_view(request):
 return Response('OK')

Using this decorator as above replaces the need to add this imperative
configuration stanza:

	1
2

	config.add_view('mypackage.views.my_view', route_name='ok',
 request_method='POST', permission='read')

All arguments to view_config may be omitted. For example:

	1
2
3
4
5
6
7

	from pyramid.response import Response
from pyramid.view import view_config

@view_config()
def my_view(request):
 """ My view """
 return Response()

Such a registration as the one directly above implies that the view name will
be my_view, registered with a context argument that matches any
resource type, using no permission, registered against requests with any
request method, request type, request param, route name, or containment.

The mere existence of a @view_config decorator doesn't suffice to perform
view configuration. All that the decorator does is "annotate" the function
with your configuration declarations, it doesn't process them. To make
Pyramid process your pyramid.view.view_config declarations, you
must use the scan method of a pyramid.config.Configurator:

	1
2
3

	# config is assumed to be an instance of the
pyramid.config.Configurator class
config.scan()

Please see Declarative Configuration for detailed information about
what happens when code is scanned for configuration declarations resulting from
use of decorators like view_config.

See pyramid.config for additional API arguments to the
scan() method. For example, the method
allows you to supply a package argument to better control exactly which
code will be scanned.

All arguments to the view_config decorator mean
precisely the same thing as they would if they were passed as arguments to the
pyramid.config.Configurator.add_view() method save for the view
argument. Usage of the view_config decorator is a form
of declarative configuration, while
pyramid.config.Configurator.add_view() is a form of imperative
configuration. However, they both do the same thing.

@view_config Placement

A view_config decorator can be placed in various points
in your application.

If your view callable is a function, it may be used as a function decorator:

	1
2
3
4
5
6

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='edit')
def edit(request):
 return Response('edited!')

If your view callable is a class, the decorator can also be used as a class
decorator. All the arguments to the decorator are the same when applied against
a class as when they are applied against a function. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(route_name='hello')
class MyView(object):
 def __init__(self, request):
 self.request = request

 def __call__(self):
 return Response('hello')

More than one view_config decorator can be stacked on
top of any number of others. Each decorator creates a separate view
registration. For example:

	1
2
3
4
5
6
7

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='edit')
@view_config(route_name='change')
def edit(request):
 return Response('edited!')

This registers the same view under two different names.

The decorator can also be used against a method of a class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.response import Response
from pyramid.view import view_config

class MyView(object):
 def __init__(self, request):
 self.request = request

 @view_config(route_name='hello')
 def amethod(self):
 return Response('hello')

When the decorator is used against a method of a class, a view is registered
for the class, so the class constructor must accept an argument list in one
of two forms: either a single argument, request, or two arguments,
context, request.

The method which is decorated must return a response.

Using the decorator against a particular method of a class is equivalent to
using the attr parameter in a decorator attached to the class itself. For
example, the above registration implied by the decorator being used against the
amethod method could be written equivalently as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(attr='amethod', route_name='hello')
class MyView(object):
 def __init__(self, request):
 self.request = request

 def amethod(self):
 return Response('hello')

Adding View Configuration Using add_view()

The pyramid.config.Configurator.add_view() method within
pyramid.config is used to configure a view "imperatively" (without
a view_config decorator). The arguments to this method
are very similar to the arguments that you provide to the
view_config decorator. For example:

	1
2
3
4
5
6
7
8

	from pyramid.response import Response

def hello_world(request):
 return Response('hello!')

config is assumed to be an instance of the
pyramid.config.Configurator class
config.add_view(hello_world, route_name='hello')

The first argument, a view callable, is the only required argument. It
must either be a Python object which is the view itself or a dotted
Python name to such an object. In the above example, the view callable is
the hello_world function.

When you use only add_view() to add view
configurations, you don't need to issue a scan in order for the view
configuration to take effect.

@view_defaults Class Decorator

New in version 1.3.

If you use a class as a view, you can use the
pyramid.view.view_defaults class decorator on the class to provide
defaults to the view configuration information used by every @view_config
decorator that decorates a method of that class.

For instance, if you've got a class that has methods that represent "REST
actions", all of which are mapped to the same route but different request
methods, instead of this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from pyramid.view import view_config
from pyramid.response import Response

class RESTView(object):
 def __init__(self, request):
 self.request = request

 @view_config(route_name='rest', request_method='GET')
 def get(self):
 return Response('get')

 @view_config(route_name='rest', request_method='POST')
 def post(self):
 return Response('post')

 @view_config(route_name='rest', request_method='DELETE')
 def delete(self):
 return Response('delete')

You can do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from pyramid.view import view_defaults
from pyramid.view import view_config
from pyramid.response import Response

@view_defaults(route_name='rest')
class RESTView(object):
 def __init__(self, request):
 self.request = request

 @view_config(request_method='GET')
 def get(self):
 return Response('get')

 @view_config(request_method='POST')
 def post(self):
 return Response('post')

 @view_config(request_method='DELETE')
 def delete(self):
 return Response('delete')

In the above example, we were able to take the route_name='rest' argument
out of the call to each individual @view_config statement because we used a
@view_defaults class decorator to provide the argument as a default to each
view method it possessed.

Arguments passed to @view_config will override any default passed to
@view_defaults.

The view_defaults class decorator can also provide defaults to the
pyramid.config.Configurator.add_view() directive when a decorated class
is passed to that directive as its view argument. For example, instead of
this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	from pyramid.response import Response
from pyramid.config import Configurator

class RESTView(object):
 def __init__(self, request):
 self.request = request

 def get(self):
 return Response('get')

 def post(self):
 return Response('post')

 def delete(self):
 return Response('delete')

def main(global_config, **settings):
 config = Configurator()
 config.add_route('rest', '/rest')
 config.add_view(
 RESTView, route_name='rest', attr='get', request_method='GET')
 config.add_view(
 RESTView, route_name='rest', attr='post', request_method='POST')
 config.add_view(
 RESTView, route_name='rest', attr='delete', request_method='DELETE')
 return config.make_wsgi_app()

To reduce the amount of repetition in the config.add_view statements, we
can move the route_name='rest' argument to a @view_defaults class
decorator on the RESTView class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from pyramid.view import view_defaults
from pyramid.response import Response
from pyramid.config import Configurator

@view_defaults(route_name='rest')
class RESTView(object):
 def __init__(self, request):
 self.request = request

 def get(self):
 return Response('get')

 def post(self):
 return Response('post')

 def delete(self):
 return Response('delete')

def main(global_config, **settings):
 config = Configurator()
 config.add_route('rest', '/rest')
 config.add_view(RESTView, attr='get', request_method='GET')
 config.add_view(RESTView, attr='post', request_method='POST')
 config.add_view(RESTView, attr='delete', request_method='DELETE')
 return config.make_wsgi_app()

pyramid.view.view_defaults accepts the same set of arguments that
pyramid.view.view_config does, and they have the same meaning. Each
argument passed to view_defaults provides a default for the view
configurations of methods of the class it's decorating.

Normal Python inheritance rules apply to defaults added via view_defaults.
For example:

	1
2
3
4
5
6

	@view_defaults(route_name='rest')
class Foo(object):
 pass

class Bar(Foo):
 pass

The Bar class above will inherit its view defaults from the arguments
passed to the view_defaults decorator of the Foo class. To prevent
this from happening, use a view_defaults decorator without any arguments on
the subclass:

	1
2
3
4
5
6
7

	@view_defaults(route_name='rest')
class Foo(object):
 pass

@view_defaults()
class Bar(Foo):
 pass

The view_defaults decorator only works as a class decorator; using it
against a function or a method will produce nonsensical results.

Configuring View Security

If an authorization policy is active, any permission attached
to a view configuration found during view lookup will be verified. This
will ensure that the currently authenticated user possesses that permission
against the context resource before the view function is actually
called. Here's an example of specifying a permission in a view configuration
using add_view():

	1
2
3
4
5

	# config is an instance of pyramid.config.Configurator

config.add_route('add', '/add.html', factory='mypackage.Blog')
config.add_view('myproject.views.add_entry', route_name='add',
 permission='add')

When an authorization policy is enabled, this view will be protected
with the add permission. The view will not be called if the user does
not possess the add permission relative to the current context.
Instead the forbidden view result will be returned to the client as per
Protecting Views with Permissions.

NotFound Errors

It's useful to be able to debug NotFound error
responses when they occur unexpectedly due to an application registry
misconfiguration. To debug these errors, use the PYRAMID_DEBUG_NOTFOUND
environment variable or the pyramid.debug_notfound configuration file
setting. Details of why a view was not found will be printed to stderr,
and the browser representation of the error will include the same information.
See Environment Variables and .ini File Settings for more information about how, and where to set
these values.

Influencing HTTP Caching

New in version 1.1.

When a non-None http_cache argument is passed to a view configuration,
Pyramid will set Expires and Cache-Control response headers in the
resulting response, causing browsers to cache the response data for some time.
See http_cache in Non-Predicate Arguments for the allowable values
and what they mean.

Sometimes it's undesirable to have these headers set as the result of returning
a response from a view, even though you'd like to decorate the view with a view
configuration decorator that has http_cache. Perhaps there's an
alternative branch in your view code that returns a response that should never
be cacheable, while the "normal" branch returns something that should always be
cacheable. If this is the case, set the prevent_auto attribute of the
response.cache_control object to a non-False value. For example, the
below view callable is configured with a @view_config decorator that
indicates any response from the view should be cached for 3600 seconds.
However, the view itself prevents caching from taking place unless there's a
should_cache GET or POST variable:

from pyramid.view import view_config

@view_config(http_cache=3600)
def view(request):
 response = Response()
 if 'should_cache' not in request.params:
 response.cache_control.prevent_auto = True
 return response

Note that the http_cache machinery will overwrite or add to caching headers
you set within the view itself, unless you use prevent_auto.

You can also turn off the effect of http_cache entirely for the duration of
a Pyramid application lifetime. To do so, set the
PYRAMID_PREVENT_HTTP_CACHE environment variable or the
pyramid.prevent_http_cache configuration value setting to a true value. For
more information, see Preventing HTTP Caching.

Note that setting pyramid.prevent_http_cache will have no effect on caching
headers that your application code itself sets. It will only prevent caching
headers that would have been set by the Pyramid HTTP caching machinery invoked
as the result of the http_cache argument to view configuration.

Debugging View Configuration

See Displaying Matching Views for a Given URL for information about how to display
each of the view callables that might match for a given URL. This can be an
effective way to figure out why a particular view callable is being called
instead of the one you'd like to be called.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Static Assets

An asset is any file contained within a Python package which is
not a Python source code file. For example, each of the following is an
asset:

	a GIF image file contained within a Python package or contained within any
subdirectory of a Python package.

	a CSS file contained within a Python package or contained within any
subdirectory of a Python package.

	a JavaScript source file contained within a Python package or contained
within any subdirectory of a Python package.

	A directory within a package that does not have an __init__.py in it (if
it possessed an __init__.py it would be a package).

	a Chameleon or Mako template file contained within a Python
package.

The use of assets is quite common in most web development projects. For
example, when you create a Pyramid application using one of the
available scaffolds, as described in Creating the Project, the directory
representing the application contains a Python package. Within that
Python package, there are directories full of files which are static assets.
For example, there's a static directory which contains .css, .js,
and .gif files. These asset files are delivered when a user visits an
application URL.

Understanding Asset Specifications

Let's imagine you've created a Pyramid application that uses a
Chameleon ZPT template via the
pyramid.renderers.render_to_response() API. For example, the application
might address the asset using the asset specification
myapp:templates/some_template.pt using that API within a views.py file
inside a myapp package:

	1
2

	from pyramid.renderers import render_to_response
render_to_response('myapp:templates/some_template.pt', {}, request)

"Under the hood", when this API is called, Pyramid attempts to make
sense out of the string myapp:templates/some_template.pt provided by the
developer. This string is an asset specification. It is composed of
two parts:

	The package name (myapp)

	The asset name (templates/some_template.pt), relative to the package
directory.

The two parts are separated by a colon : character.

Pyramid uses the Python pkg_resources API to resolve the package
name and asset name to an absolute (operating system-specific) file name. It
eventually passes this resolved absolute filesystem path to the Chameleon
templating engine, which then uses it to load, parse, and execute the template
file.

There is a second form of asset specification: a relative asset
specification. Instead of using an "absolute" asset specification which
includes the package name, in certain circumstances you can omit the package
name from the specification. For example, you might be able to use
templates/mytemplate.pt instead of myapp:templates/some_template.pt.
Such asset specifications are usually relative to a "current package". The
"current package" is usually the package which contains the code that uses
the asset specification. Pyramid APIs which accept relative asset
specifications typically describe to what the asset is relative in their
individual documentation.

Serving Static Assets

Pyramid makes it possible to serve up static asset files from a
directory on a filesystem to an application user's browser. Use the
pyramid.config.Configurator.add_static_view() to instruct Pyramid
to serve static assets, such as JavaScript and CSS files. This mechanism makes
a directory of static files available at a name relative to the application
root URL, e.g., /static, or as an external URL.

Note

add_static_view() cannot serve a single
file, nor can it serve a directory of static files directly relative to the
root URL of a Pyramid application. For these features, see
Advanced: Serving Static Assets Using a View Callable.

Here's an example of a use of
add_static_view() that will serve files up
from the /var/www/static directory of the computer which runs the
Pyramid application as URLs beneath the /static URL prefix.

	1
2

	# config is an instance of pyramid.config.Configurator
config.add_static_view(name='static', path='/var/www/static')

The name represents a URL prefix. In order for files that live in the
path directory to be served, a URL that requests one of them must begin
with that prefix. In the example above, name is static and path is
/var/www/static. In English this means that you wish to serve the files
that live in /var/www/static as sub-URLs of the /static URL prefix.
Therefore, the file /var/www/static/foo.css will be returned when the user
visits your application's URL /static/foo.css.

A static directory named at path may contain subdirectories recursively,
and any subdirectories may hold files; these will be resolved by the static
view as you would expect. The Content-Type header returned by the static
view for each particular type of file is dependent upon its file extension.

By default, all files made available via
add_static_view() are accessible by
completely anonymous users. Simple authorization can be required, however. To
protect a set of static files using a permission, in addition to passing the
required name and path arguments, also pass the permission keyword
argument to add_static_view(). The value of
the permission argument represents the permission that the user
must have relative to the current context when the static view is
invoked. A user will be required to possess this permission to view any of the
files represented by path of the static view. If your static assets must
be protected by a more complex authorization scheme, see
Advanced: Serving Static Assets Using a View Callable.

Here's another example that uses an asset specification instead of an
absolute path as the path argument. To convince
add_static_view() to serve files up under
the /static URL from the a/b/c/static directory of the Python package
named some_package, we can use a fully qualified asset
specification as the path:

	1
2

	# config is an instance of pyramid.config.Configurator
config.add_static_view(name='static', path='some_package:a/b/c/static')

The path provided to add_static_view()
may be a fully qualified asset specification or an absolute path.

Instead of representing a URL prefix, the name argument of a call to
add_static_view() can alternately be a
URL. Each of the examples we've seen so far have shown usage of the name
argument as a URL prefix. However, when name is a URL, static assets can
be served from an external webserver. In this mode, the name is used as
the URL prefix when generating a URL using
pyramid.request.Request.static_url().

For example, add_static_view() may be fed a
name argument which is http://example.com/images:

	1
2
3

	# config is an instance of pyramid.config.Configurator
config.add_static_view(name='http://example.com/images',
 path='mypackage:images')

Because add_static_view() is provided with a
name argument that is the URL http://example.com/images, subsequent
calls to static_url() with paths that start with
the path argument passed to
add_static_view() will generate a URL
something like http://example.com/images/logo.png. The external webserver
listening on example.com must be itself configured to respond properly to
such a request. The static_url() API is
discussed in more detail later in this chapter.

Generating Static Asset URLs

When an add_static_view() method is used to
register a static asset directory, a special helper API named
pyramid.request.Request.static_url() can be used to generate the
appropriate URL for an asset that lives in one of the directories named by the
static registration path attribute.

For example, let's assume you create a set of static declarations like so:

	1
2

	config.add_static_view(name='static1', path='mypackage:assets/1')
config.add_static_view(name='static2', path='mypackage:assets/2')

These declarations create URL-accessible directories which have URLs that begin
with /static1 and /static2, respectively. The assets in the
assets/1 directory of the mypackage package are consulted when a user
visits a URL which begins with /static1, and the assets in the assets/2
directory of the mypackage package are consulted when a user visits a URL
which begins with /static2.

You needn't generate the URLs to static assets "by hand" in such a
configuration. Instead, use the static_url()
API to generate them for you. For example:

	1
2
3
4
5
6
7
8

	from pyramid.renderers import render_to_response

def my_view(request):
 css_url = request.static_url('mypackage:assets/1/foo.css')
 js_url = request.static_url('mypackage:assets/2/foo.js')
 return render_to_response('templates/my_template.pt',
 dict(css_url=css_url, js_url=js_url),
 request=request)

If the request "application URL" of the running system is
http://example.com, the css_url generated above would be:
http://example.com/static1/foo.css. The js_url generated above would
be http://example.com/static2/foo.js.

One benefit of using the static_url() function
rather than constructing static URLs "by hand" is that if you need to change
the name of a static URL declaration, the generated URLs will continue to
resolve properly after the rename.

URLs may also be generated by static_url() to
static assets that live outside the Pyramid application. This will
happen when the add_static_view() API
associated with the path fed to static_url() is
a URL instead of a view name. For example, the name argument may be
http://example.com while the path given may be mypackage:images:

	1
2

	config.add_static_view(name='http://example.com/images',
 path='mypackage:images')

Under such a configuration, the URL generated by static_url for assets
which begin with mypackage:images will be prefixed with
http://example.com/images:

	1
2

	request.static_url('mypackage:images/logo.png')
-> http://example.com/images/logo.png

Using static_url() in conjunction with a
add_static_view() makes it possible
to put static media on a separate webserver during production (if the
name argument to add_static_view() is
a URL), while keeping static media package-internal and served by the
development webserver during development (if the name argument to
add_static_view() is a URL prefix). To
create such a circumstance, we suggest using the
pyramid.registry.Registry.settings API in conjunction with a setting
in the application .ini file named media_location. Then set the
value of media_location to either a prefix or a URL depending on whether
the application is being run in development or in production (use a different
.ini file for production than you do for development). This is just a
suggestion for a pattern; any setting name other than media_location
could be used.

Advanced: Serving Static Assets Using a View Callable

For more flexibility, static assets can be served by a view callable
which you register manually. For example, if you're using URL
dispatch, you may want static assets to only be available as a fallback if no
previous route matches. Alternatively, you might like to serve a particular
static asset manually, because its download requires authentication.

Note that you cannot use the static_url() API to
generate URLs against assets made accessible by registering a custom static
view.

Root-Relative Custom Static View (URL Dispatch Only)

The pyramid.static.static_view helper class generates a Pyramid view
callable. This view callable can serve static assets from a directory. An
instance of this class is actually used by the
add_static_view() configuration method, so
its behavior is almost exactly the same once it's configured.

Warning

The following example will not work for applications that use
traversal; it will only work if you use URL dispatch
exclusively. The root-relative route we'll be registering will always be
matched before traversal takes place, subverting any views registered via
add_view (at least those without a route_name). A
static_view static view cannot be made
root-relative when you use traversal unless it's registered as a Not
Found View.

To serve files within a directory located on your filesystem at
/path/to/static/dir as the result of a "catchall" route hanging from the
root that exists at the end of your routing table, create an instance of the
static_view class inside a static.py file in your
application root as below.

	1
2

	from pyramid.static import static_view
static_view = static_view('/path/to/static/dir', use_subpath=True)

Note

For better cross-system flexibility, use an asset specification as
the argument to static_view instead of a physical
absolute filesystem path, e.g., mypackage:static, instead of
/path/to/mypackage/static.

Subsequently, you may wire the files that are served by this view up to be
accessible as /<filename> using a configuration method in your
application's startup code.

	1
2
3
4
5

	# .. every other add_route declaration should come
before this one, as it will, by default, catch all requests

config.add_route('catchall_static', '/*subpath')
config.add_view('myapp.static.static_view', route_name='catchall_static')

The special name *subpath above is used by the
static_view view callable to signify the path of the
file relative to the directory you're serving.

Registering a View Callable to Serve a "Static" Asset

You can register a simple view callable to serve a single static asset. To do
so, do things "by hand". First define the view callable.

	1
2
3
4
5
6
7

	import os
from pyramid.response import FileResponse

def favicon_view(request):
 here = os.path.dirname(__file__)
 icon = os.path.join(here, 'static', 'favicon.ico')
 return FileResponse(icon, request=request)

The above bit of code within favicon_view computes "here", which is a path
relative to the Python file in which the function is defined. It then creates
a pyramid.response.FileResponse using the file path as the response's
path argument and the request as the response's request argument.
pyramid.response.FileResponse will serve the file as quickly as
possible when it's used this way. It makes sure to set the right content
length and content_type, too, based on the file extension of the file you pass.

You might register such a view via configuration as a view callable that should
be called as the result of a traversal:

	1

	config.add_view('myapp.views.favicon_view', name='favicon.ico')

Or you might register it to be the view callable for a particular route:

	1
2

	config.add_route('favicon', '/favicon.ico')
config.add_view('myapp.views.favicon_view', route_name='favicon')

Because this is a simple view callable, it can be protected with a
permission or can be configured to respond under different
circumstances using view predicate arguments.

Overriding Assets

It can often be useful to override specific assets from "outside" a given
Pyramid application. For example, you may wish to reuse an existing
Pyramid application more or less unchanged. However, some specific
template file owned by the application might have inappropriate HTML, or some
static asset (such as a logo file or some CSS file) might not be appropriate.
You could just fork the application entirely, but it's often more convenient
to just override the assets that are inappropriate and reuse the application
"as is". This is particularly true when you reuse some "core" application over
and over again for some set of customers (such as a CMS application, or some
bug tracking application), and you want to make arbitrary visual modifications
to a particular application deployment without forking the underlying code.

To this end, Pyramid contains a feature that makes it possible to
"override" one asset with one or more other assets. In support of this
feature, a Configurator API exists named
pyramid.config.Configurator.override_asset(). This API allows you to
override the following kinds of assets defined in any Python package:

	Individual template files.

	A directory containing multiple template files.

	Individual static files served up by an instance of the
pyramid.static.static_view helper class.

	A directory of static files served up by an instance of the
pyramid.static.static_view helper class.

	Any other asset (or set of assets) addressed by code that uses the setuptools
pkg_resources API.

The override_asset API

An individual call to override_asset() can
override a single asset. For example:

	1
2
3

	config.override_asset(
 to_override='some.package:templates/mytemplate.pt',
 override_with='another.package:othertemplates/anothertemplate.pt')

The string value passed to both to_override and override_with sent to
the override_asset API is called an asset specification. The colon
separator in a specification separates the package name from the asset
name. The colon and the following asset name are optional. If they are not
specified, the override attempts to resolve every lookup into a package from
the directory of another package. For example:

	1
2

	config.override_asset(to_override='some.package',
 override_with='another.package')

Individual subdirectories within a package can also be overridden:

	1
2

	config.override_asset(to_override='some.package:templates/',
 override_with='another.package:othertemplates/')

If you wish to override a directory with another directory, you must make
sure to attach the slash to the end of both the to_override specification
and the override_with specification. If you fail to attach a slash to the
end of a specification that points to a directory, you will get unexpected
results.

You cannot override a directory specification with a file specification, and
vice versa; a startup error will occur if you try. You cannot override an
asset with itself; a startup error will occur if you try.

Only individual package assets may be overridden. Overrides will not
traverse through subpackages within an overridden package. This means that if
you want to override assets for both some.package:templates, and
some.package.views:templates, you will need to register two overrides.

The package name in a specification may start with a dot, meaning that the
package is relative to the package in which the configuration construction file
resides (or the package argument to the
Configurator class construction). For example:

	1
2

	config.override_asset(to_override='.subpackage:templates/',
 override_with='another.package:templates/')

Multiple calls to override_asset which name a shared to_override but a
different override_with specification can be "stacked" to form a search
path. The first asset that exists in the search path will be used; if no asset
exists in the override path, the original asset is used.

Asset overrides can actually override assets other than templates and static
files. Any software which uses the
pkg_resources.get_resource_filename(),
pkg_resources.get_resource_stream(), or
pkg_resources.get_resource_string() APIs will obtain an overridden file
when an override is used.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Request and Response Objects

Note

This chapter is adapted from a portion of the WebOb
documentation, originally written by Ian Bicking.

Pyramid uses the WebOb package as a basis for its
request and response object implementations. The
request object that is passed to a Pyramid view is an
instance of the pyramid.request.Request class, which is a subclass of
webob.Request [http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Request]. The response returned from a Pyramid
view renderer is an instance of the
pyramid.response.Response class, which is a subclass of the
webob.Response [http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Response] class. Users can also return an instance of
pyramid.response.Response directly from a view as necessary.

WebOb is a project separate from Pyramid with a separate set of authors
and a fully separate set of documentation [http://docs.webob.org/en/latest/index.html]. Pyramid adds some
functionality to the standard WebOb request, which is documented in the
pyramid.request API documentation.

WebOb provides objects for HTTP requests and responses. Specifically it does
this by wrapping the WSGI [http://wsgi.org] request environment and response
status, header list, and app_iter (body) values.

WebOb request and response objects provide many conveniences for parsing WSGI
requests and forming WSGI responses. WebOb is a nice way to represent "raw"
WSGI requests and responses. However, we won't cover that use case in this
document, as users of Pyramid don't typically need to use the
WSGI-related features of WebOb directly. The reference documentation [http://docs.webob.org/en/latest/reference.html] shows many examples of
creating requests and using response objects in this manner, however.

Request

The request object is a wrapper around the WSGI environ dictionary [http://www.python.org/dev/peps/pep-0333/#environ-variables]. This
dictionary contains keys for each header, keys that describe the request
(including the path and query string), a file-like object for the request body,
and a variety of custom keys. You can always access the environ with
req.environ.

Some of the most important and interesting attributes of a request object are
below.

	req.method

	The request method, e.g., GET, POST

	req.GET

	A multidict with all the variables in the query string.

	req.POST

	A multidict with all the variables in the request body. This only
has variables if the request was a POST and it is a form submission.

	req.params

	A multidict with a combination of everything in req.GET and
req.POST.

	req.body

	The contents of the body of the request. This contains the entire request
body as a string. This is useful when the request is a POST that is
not a form submission, or a request like a PUT. You can also get
req.body_file for a file-like object.

	req.json_body

	The JSON-decoded contents of the body of the request. See
Dealing with a JSON-Encoded Request Body.

	req.cookies

	A simple dictionary of all the cookies.

	req.headers

	A dictionary of all the headers. This dictionary is case-insensitive.

	req.urlvars and req.urlargs

	req.urlvars are the keyword parameters associated with the request URL.
req.urlargs are the positional parameters. These are set by products
like Routes [http://routes.readthedocs.org/en/latest/] and Selector [https://github.com/lukearno/selector].

Also for standard HTTP request headers, there are usually attributes such as
req.accept_language, req.content_length, and req.user_agent. These
properties expose the parsed form of each header, for whatever parsing makes
sense. For instance, req.if_modified_since returns a datetime [http://docs.python.org/3/library/datetime.html#module-datetime]
object (or None if the header is was not provided).

Note

Full API documentation for the Pyramid request object is
available in pyramid.request.

Special Attributes Added to the Request by Pyramid

In addition to the standard WebOb attributes, Pyramid adds
special attributes to every request: context, registry, root,
subpath, traversed, view_name, virtual_root,
virtual_root_path, session, matchdict, and matched_route. These
attributes are documented further within the pyramid.request.Request
API documentation.

URLs

In addition to these attributes, there are several ways to get the URL of the
request and its parts. We'll show various values for an example URL
http://localhost/app/blog?id=10, where the application is mounted at
http://localhost/app.

	req.url

	The full request URL with query string, e.g.,
http://localhost/app/blog?id=10

	req.host

	The host information in the URL, e.g., localhost

	req.host_url

	The URL with the host, e.g., http://localhost

	req.application_url

	The URL of the application (just the SCRIPT_NAME portion of the path,
not PATH_INFO), e.g., http://localhost/app

	req.path_url

	The URL of the application including the PATH_INFO, e.g.,
http://localhost/app/blog

	req.path

	The URL including PATH_INFO without the host or scheme, e.g.,
/app/blog

	req.path_qs

	The URL including PATH_INFO and the query string, e.g,
/app/blog?id=10

	req.query_string

	The query string in the URL, e.g., id=10

	req.relative_url(url, to_application=False)

	Gives a URL relative to the current URL. If to_application is True,
then resolves it relative to req.application_url.

Methods

There are methods of request objects documented in
pyramid.request.Request but you'll find that you won't use very many
of them. Here are a couple that might be useful:

	Request.blank(base_url)

	Creates a new request with blank information, based at the given URL. This
can be useful for subrequests and artificial requests. You can also use
req.copy() to copy an existing request, or for subrequests
req.copy_get() which copies the request but always turns it into a GET
(which is safer to share for subrequests).

	req.get_response(wsgi_application)

	This method calls the given WSGI application with this request, and returns
a pyramid.response.Response object. You can also use this for
subrequests or testing.

Text (Unicode)

Many of the properties of the request object will be text values (unicode
under Python 2 or str under Python 3) if the request encoding/charset is
provided. If it is provided, the values in req.POST, req.GET,
req.params, and req.cookies will contain text. The client can
indicate the charset with something like Content-Type:
application/x-www-form-urlencoded; charset=utf8, but browsers seldom set
this. You can reset the charset of an existing request with newreq =
req.decode('utf-8'), or during instantiation with Request(environ,
charset='utf8').

Multidict

Several attributes of a WebOb request are multidict structures (such as
request.GET, request.POST, and request.params). A multidict is a
dictionary where a key can have multiple values. The quintessential example is
a query string like ?pref=red&pref=blue; the pref variable has two
values: red and blue.

In a multidict, when you do request.GET['pref'], you'll get back only
"blue" (the last value of pref). This returned result might not be
expected—sometimes returning a string, and sometimes returning a list—and may
be cause of frequent exceptions. If you want all the values back, use
request.GET.getall('pref'). If you want to be sure there is one and only
one value, use request.GET.getone('pref'), which will raise an exception
if there is zero or more than one value for pref.

When you use operations like request.GET.items(), you'll get back something
like [('pref', 'red'), ('pref', 'blue')]. All the key/value pairs will
show up. Similarly request.GET.keys() returns ['pref', 'pref'].
Multidict is a view on a list of tuples; all the keys are ordered, and all the
values are ordered.

API documentation for a multidict exists as
pyramid.interfaces.IMultiDict.

Dealing with a JSON-Encoded Request Body

New in version 1.1.

pyramid.request.Request.json_body is a property that returns a
JSON-decoded representation of the request body. If the request does
not have a body, or the body is not a properly JSON-encoded value, an exception
will be raised when this attribute is accessed.

This attribute is useful when you invoke a Pyramid view callable via,
for example, jQuery's $.ajax function, which has the potential to send a
request with a JSON-encoded body.

Using request.json_body is equivalent to:

from json import loads
loads(request.body, encoding=request.charset)

Here's how to construct an AJAX request in JavaScript using jQuery that
allows you to use the request.json_body attribute when the request is sent
to a Pyramid application:

jQuery.ajax({type:'POST',
 url: 'http://localhost:6543/', // the pyramid server
 data: JSON.stringify({'a':1}),
 contentType: 'application/json; charset=utf-8'});

When such a request reaches a view in your application, the
request.json_body attribute will be available in the view callable body.

@view_config(renderer='string')
def aview(request):
 print(request.json_body)
 return 'OK'

For the above view, printed to the console will be:

{u'a': 1}

For bonus points, here's a bit of client-side code that will produce a request
that has a body suitable for reading via request.json_body using Python's
urllib2 instead of a JavaScript AJAX request:

import urllib2
import json

json_payload = json.dumps({'a':1})
headers = {'Content-Type':'application/json; charset=utf-8'}
req = urllib2.Request('http://localhost:6543/', json_payload, headers)
resp = urllib2.urlopen(req)

If you are doing Cross-origin resource sharing (CORS), then the standard
requires the browser to do a pre-flight HTTP OPTIONS request. The easiest way
to handle this is to add an extra view_config for the same route, with
request_method set to OPTIONS, and set the desired response header
before returning. You can find examples of response headers Access control
CORS, Preflighted requests [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests].

Cleaning up after a Request

Sometimes it's required to perform some cleanup at the end of a request when a
database connection is involved.

For example, let's say you have a mypackage Pyramid application
package that uses SQLAlchemy, and you'd like the current SQLAlchemy database
session to be removed after each request. Put the following in the
mypackage.__init__ module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from mypackage.models import DBSession

from pyramid.events import subscriber
from pyramid.events import NewRequest

def cleanup_callback(request):
 DBSession.remove()

@subscriber(NewRequest)
def add_cleanup_callback(event):
 event.request.add_finished_callback(cleanup_callback)

Registering the cleanup_callback finished callback at the start of a
request (by causing the add_cleanup_callback to receive a
pyramid.events.NewRequest event at the start of each request) will
cause the DBSession to be removed whenever request processing has ended. Note
that in the example above, for the pyramid.events.subscriber decorator
to work, the pyramid.config.Configurator.scan() method must be called
against your mypackage package during application initialization.

Note

This is only an example. In particular, it is not necessary to cause
DBSession.remove to be called in an application generated from any
Pyramid scaffold, because these all use the pyramid_tm package.
The cleanup done by DBSession.remove is unnecessary when pyramid_tm
middleware is configured into the application.

More Details

More detail about the request object API is available as follows.

	pyramid.request.Request API documentation

	WebOb documentation [http://docs.webob.org/en/latest/index.html]. All
methods and attributes of a webob.Request documented within the WebOb
documentation will work with request objects created by Pyramid.

Response

The Pyramid response object can be imported as
pyramid.response.Response. This class is a subclass of the
webob.Response class. The subclass does not add or change any
functionality, so the WebOb Response documentation will be completely relevant
for this class as well.

A response object has three fundamental parts:

	response.status

	The response code plus reason message, like 200 OK. To set the code
without a message, use status_int, i.e., response.status_int = 200.

	response.headerlist

	A list of all the headers, like [('Content-Type', 'text/html')].
There's a case-insensitive multidict in response.headers that
also allows you to access these same headers.

	response.app_iter

	An iterable (such as a list or generator) that will produce the content of
the response. This is also accessible as response.body (a string),
response.text (a unicode object, informed by response.charset), and
response.body_file (a file-like object; writing to it appends to
app_iter).

Everything else in the object typically derives from this underlying state.
Here are some highlights:

	response.content_type

	The content type not including the charset parameter.

Typical use: response.content_type = 'text/html'.

Default value: response.content_type = 'text/html'.

	response.charset

	The charset parameter of the content-type, it also informs encoding in
response.text. response.content_type_params is a dictionary of all
the parameters.

	response.charset:

	The charset parameter of the content-type, it also informs
encoding in response.text.
response.content_type_params is a dictionary of all the
parameters.

	response.set_cookie(key, value, max_age=None, path='/', ...)

	Set a cookie. The keyword arguments control the various cookie parameters.
The max_age argument is the length for the cookie to live in seconds
(you may also use a timedelta object). The Expires key will also be
set based on the value of max_age.

	response.delete_cookie(key, path='/', domain=None)

	Delete a cookie from the client. This sets max_age to 0 and the cookie
value to ''.

	response.cache_expires(seconds=0)

	This makes the response cacheable for the given number of seconds, or if
seconds is 0 then the response is uncacheable (this also sets the
Expires header).

	response(environ, start_response)

	The response object is a WSGI application. As an application, it acts
according to how you create it. It can do conditional responses if you
pass conditional_response=True when instantiating (or set that
attribute later). It can also do HEAD and Range requests.

Headers

Like the request, most HTTP response headers are available as properties. These
are parsed, so you can do things like response.last_modified =
os.path.getmtime(filename).

The details are available in the webob.response [http://docs.webob.org/en/latest/api/response.html#module-webob.response] API documentation.

Instantiating the Response

Of course most of the time you just want to make a response. Generally any
attribute of the response can be passed in as a keyword argument to the class,
e.g.:

	1
2

	from pyramid.response import Response
response = Response(body='hello world!', content_type='text/plain')

The status defaults to '200 OK'.

The value of content_type defaults to
webob.response.Response.default_content_type, which is text/html. You
can subclass pyramid.response.Response and set
default_content_type to override this behavior.
The status defaults to '200 OK'. The content_type does not default to
anything, though if you subclass pyramid.response.Response and set
default_content_type you can override this behavior.

Exception Responses

To facilitate error responses like 404 Not Found, the module
pyramid.httpexceptions contains classes for each kind of error response.
These include boring but appropriate error bodies. The exceptions exposed by
this module, when used under Pyramid, should be imported from the
pyramid.httpexceptions module. This import location contains subclasses
and replacements that mirror those in the webob.exc module.

Each class is named pyramid.httpexceptions.HTTP*, where * is the reason
for the error. For instance, pyramid.httpexceptions.HTTPNotFound
subclasses pyramid.response.Response, so you can manipulate the
instances in the same way. A typical example is:

	1
2
3
4
5
6

	from pyramid.httpexceptions import HTTPNotFound
from pyramid.httpexceptions import HTTPMovedPermanently

response = HTTPNotFound('There is no such resource')
or:
response = HTTPMovedPermanently(location=new_url)

More Details

More details about the response object API are available in the
pyramid.response documentation. More details about exception responses
are in the pyramid.httpexceptions API documentation. The WebOb
documentation [http://docs.webob.org/en/latest/index.html] is also useful.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Sessions

A session is a namespace which is valid for some period of continual
activity that can be used to represent a user's interaction with a web
application.

This chapter describes how to configure sessions, what session implementations
Pyramid provides out of the box, how to store and retrieve data from
sessions, and two session-specific features: flash messages, and cross-site
request forgery attack prevention.

Using the Default Session Factory

In order to use sessions, you must set up a session factory during your
Pyramid configuration.

A very basic, insecure sample session factory implementation is provided in the
Pyramid core. It uses a cookie to store session information. This
implementation has the following limitations:

	The session information in the cookies used by this implementation is not
encrypted, so it can be viewed by anyone with access to the cookie storage of
the user's browser or anyone with access to the network along which the
cookie travels.

	The maximum number of bytes that are storable in a serialized representation
of the session is fewer than 4000. This is suitable only for very small data
sets.

It is digitally signed, however, and thus its data cannot easily be tampered
with.

You can configure this session factory in your Pyramid application by
using the pyramid.config.Configurator.set_session_factory() method.

	1
2
3
4
5
6

	from pyramid.session import SignedCookieSessionFactory
my_session_factory = SignedCookieSessionFactory('itsaseekreet')

from pyramid.config import Configurator
config = Configurator()
config.set_session_factory(my_session_factory)

Warning

By default the SignedCookieSessionFactory()
implementation is unencrypted. You should not use it when you keep
sensitive information in the session object, as the information can be
easily read by both users of your application and third parties who have
access to your users' network traffic. And, if you use this sessioning
implementation, and you inadvertently create a cross-site scripting
vulnerability in your application, because the session data is stored
unencrypted in a cookie, it will also be easier for evildoers to obtain the
current user's cross-site scripting token. In short, use a different
session factory implementation (preferably one which keeps session data on
the server) for anything but the most basic of applications where "session
security doesn't matter", and you are sure your application has no
cross-site scripting vulnerabilities.

Using a Session Object

Once a session factory has been configured for your application, you can access
session objects provided by the session factory via the session attribute
of any request object. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.response import Response

def myview(request):
 session = request.session
 if 'abc' in session:
 session['fred'] = 'yes'
 session['abc'] = '123'
 if 'fred' in session:
 return Response('Fred was in the session')
 else:
 return Response('Fred was not in the session')

The first time this view is invoked produces Fred was not in the session.
Subsequent invocations produce Fred was in the session, assuming of course
that the client side maintains the session's identity across multiple requests.

You can use a session much like a Python dictionary. It supports all
dictionary methods, along with some extra attributes and methods.

Extra attributes:

	created

	An integer timestamp indicating the time that this session was created.

	new

	A boolean. If new is True, this session is new. Otherwise, it has been
constituted from data that was already serialized.

Extra methods:

	changed()

	Call this when you mutate a mutable value in the session namespace. See the
gotchas below for details on when and why you should call this.

	invalidate()

	Call this when you want to invalidate the session (dump all data, and perhaps
set a clearing cookie).

The formal definition of the methods and attributes supported by the session
object are in the pyramid.interfaces.ISession documentation.

Some gotchas:

	Keys and values of session data must be pickleable. This means, typically,
that they are instances of basic types of objects, such as strings, lists,
dictionaries, tuples, integers, etc. If you place an object in a session
data key or value that is not pickleable, an error will be raised when the
session is serialized.

	If you place a mutable value (for example, a list or a dictionary) in a
session object, and you subsequently mutate that value, you must call the
changed() method of the session object. In this case, the session has no
way to know that it was modified. However, when you modify a session object
directly, such as setting a value (i.e., __setitem__), or removing a key
(e.g., del or pop), the session will automatically know that it needs
to re-serialize its data, thus calling changed() is unnecessary. There is
no harm in calling changed() in either case, so when in doubt, call it
after you've changed sessioning data.

Using Alternate Session Factories

The following session factories exist at the time of this writing.

	Session Factory
	Backend
	Description

	pyramid_redis_sessions [https://pypi.python.org/pypi/pyramid_redis_sessions]
	Redis [http://redis.io/]
	Server-side session library
for Pyramid, using Redis for
storage.

	pyramid_beaker [https://pypi.python.org/pypi/pyramid_beaker]
	Beaker [http://beaker.readthedocs.org/en/latest/]
	Session factory for Pyramid
backed by the Beaker
sessioning system.

Creating Your Own Session Factory

If none of the default or otherwise available sessioning implementations for
Pyramid suit you, you may create your own session object by implementing
a session factory. Your session factory should return a
session. The interfaces for both types are available in
pyramid.interfaces.ISessionFactory and
pyramid.interfaces.ISession. You might use the cookie implementation
in the pyramid.session module as inspiration.

Flash Messages

"Flash messages" are simply a queue of message strings stored in the
session. To use flash messaging, you must enable a session
factory as described in Using the Default Session Factory or
Using Alternate Session Factories.

Flash messaging has two main uses: to display a status message only once to the
user after performing an internal redirect, and to allow generic code to log
messages for single-time display without having direct access to an HTML
template. The user interface consists of a number of methods of the
session object.

Using the session.flash Method

To add a message to a flash message queue, use a session object's flash()
method:

request.session.flash('mymessage')

The flash() method appends a message to a flash queue, creating the queue
if necessary.

flash() accepts three arguments:

	
flash(message, queue='', allow_duplicate=True)

	

The message argument is required. It represents a message you wish to
later display to a user. It is usually a string but the message you
provide is not modified in any way.

The queue argument allows you to choose a queue to which to append the
message you provide. This can be used to push different kinds of messages into
flash storage for later display in different places on a page. You can pass
any name for your queue, but it must be a string. Each queue is independent,
and can be popped by pop_flash() or examined via peek_flash()
separately. queue defaults to the empty string. The empty string
represents the default flash message queue.

request.session.flash(msg, 'myappsqueue')

The allow_duplicate argument defaults to True. If this is False,
and you attempt to add a message value which is already present in the queue,
it will not be added.

Using the session.pop_flash Method

Once one or more messages have been added to a flash queue by the
session.flash() API, the session.pop_flash() API can be used to pop an
entire queue and return it for use.

To pop a particular queue of messages from the flash object, use the session
object's pop_flash() method. This returns a list of the messages that were
added to the flash queue, and empties the queue.

	
pop_flash(queue='')

	

>>> request.session.flash('info message')
>>> request.session.pop_flash()
['info message']

Calling session.pop_flash() again like above without a corresponding call
to session.flash() will return an empty list, because the queue has already
been popped.

>>> request.session.flash('info message')
>>> request.session.pop_flash()
['info message']
>>> request.session.pop_flash()
[]

Using the session.peek_flash Method

Once one or more messages have been added to a flash queue by the
session.flash() API, the session.peek_flash() API can be used to "peek"
at that queue. Unlike session.pop_flash(), the queue is not popped from
flash storage.

	
peek_flash(queue='')

	

>>> request.session.flash('info message')
>>> request.session.peek_flash()
['info message']
>>> request.session.peek_flash()
['info message']
>>> request.session.pop_flash()
['info message']
>>> request.session.peek_flash()
[]

Preventing Cross-Site Request Forgery Attacks

Cross-site request forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery] attacks are a
phenomenon whereby a user who is logged in to your website might inadvertantly
load a URL because it is linked from, or embedded in, an attacker's website.
If the URL is one that may modify or delete data, the consequences can be dire.

You can avoid most of these attacks by issuing a unique token to the browser
and then requiring that it be present in all potentially unsafe requests.
Pyramid sessions provide facilities to create and check CSRF tokens.

To use CSRF tokens, you must first enable a session factory as
described in Using the Default Session Factory or
Using Alternate Session Factories.

Using the session.get_csrf_token Method

To get the current CSRF token from the session, use the
session.get_csrf_token() method.

token = request.session.get_csrf_token()

The session.get_csrf_token() method accepts no arguments. It returns a
CSRF token string. If session.get_csrf_token() or
session.new_csrf_token() was invoked previously for this session, then the
existing token will be returned. If no CSRF token previously existed for this
session, then a new token will be set into the session and returned. The newly
created token will be opaque and randomized.

You can use the returned token as the value of a hidden field in a form that
posts to a method that requires elevated privileges, or supply it as a request
header in AJAX requests.

For example, include the CSRF token as a hidden field:

<form method="post" action="/myview">
 <input type="hidden" name="csrf_token" value="${request.session.get_csrf_token()}">
 <input type="submit" value="Delete Everything">
</form>

Or include it as a header in a jQuery AJAX request:

var csrfToken = ${request.session.get_csrf_token()};
$.ajax({
 type: "POST",
 url: "/myview",
 headers: { 'X-CSRF-Token': csrfToken }
}).done(function() {
 alert("Deleted");
});

The handler for the URL that receives the request should then require that the
correct CSRF token is supplied.

Checking CSRF Tokens Manually

In request handling code, you can check the presence and validity of a CSRF
token with pyramid.session.check_csrf_token(). If the token is valid, it
will return True, otherwise it will raise HTTPBadRequest. Optionally,
you can specify raises=False to have the check return False instead of
raising an exception.

By default, it checks for a GET or POST parameter named csrf_token or a
header named X-CSRF-Token.

from pyramid.session import check_csrf_token

def myview(request):
 # Require CSRF Token
 check_csrf_token(request)

 # ...

Checking CSRF Tokens with a View Predicate

A convenient way to require a valid CSRF token for a particular view is to
include check_csrf=True as a view predicate. See
pyramid.config.Configurator.add_view().

@view_config(request_method='POST', check_csrf=True, ...)
def myview(request):
 ...

Note

A mismatch of a CSRF token is treated like any other predicate miss, and the
predicate system, when it doesn't find a view, raises HTTPNotFound
instead of HTTPBadRequest, so check_csrf=True behavior is different
from calling pyramid.session.check_csrf_token().

Using the session.new_csrf_token Method

To explicitly create a new CSRF token, use the session.new_csrf_token()
method. This differs only from session.get_csrf_token() inasmuch as it
clears any existing CSRF token, creates a new CSRF token, sets the token into
the session, and returns the token.

token = request.session.new_csrf_token()

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Using Events

An event is an object broadcast by the Pyramid framework at
interesting points during the lifetime of an application. You don't need to
use events in order to create most Pyramid applications, but they can be
useful when you want to perform slightly advanced operations. For example,
subscribing to an event can allow you to run some code as the result of every
new request.

Events in Pyramid are always broadcast by the framework. However, they
only become useful when you register a subscriber. A subscriber is a
function that accepts a single argument named event:

	1
2

	def mysubscriber(event):
 print(event)

The above is a subscriber that simply prints the event to the console when it's
called.

The mere existence of a subscriber function, however, is not sufficient to
arrange for it to be called. To arrange for the subscriber to be called,
you'll need to use the pyramid.config.Configurator.add_subscriber()
method or you'll need to use the pyramid.events.subscriber() decorator to
decorate a function found via a scan.

Configuring an Event Listener Imperatively

You can imperatively configure a subscriber function to be called for some
event type via the add_subscriber() method:

	1
2
3
4
5
6
7
8

	from pyramid.events import NewRequest

from subscribers import mysubscriber

"config" below is assumed to be an instance of a
pyramid.config.Configurator object

config.add_subscriber(mysubscriber, NewRequest)

The first argument to add_subscriber() is
the subscriber function (or a dotted Python name which refers to a
subscriber callable); the second argument is the event type.

See also

See also Configurator.

Configuring an Event Listener Using a Decorator

You can configure a subscriber function to be called for some event type via
the pyramid.events.subscriber() function.

	1
2
3
4
5
6

	from pyramid.events import NewRequest
from pyramid.events import subscriber

@subscriber(NewRequest)
def mysubscriber(event):
 event.request.foo = 1

When the subscriber() decorator is used, a scan
must be performed against the package containing the decorated function for the
decorator to have any effect.

Either of the above registration examples implies that every time the
Pyramid framework emits an event object that supplies an
pyramid.events.NewRequest interface, the mysubscriber function
will be called with an event object.

As you can see, a subscription is made in terms of a class (such as
pyramid.events.NewResponse). The event object sent to a subscriber
will always be an object that possesses an interface. For
pyramid.events.NewResponse, that interface is
pyramid.interfaces.INewResponse. The interface documentation provides
information about available attributes and methods of the event objects.

The return value of a subscriber function is ignored. Subscribers to the same
event type are not guaranteed to be called in any particular order relative to
each other.

All the concrete Pyramid event types are documented in the
pyramid.events API documentation.

An Example

If you create event listener functions in a subscribers.py file in your
application like so:

	1
2
3
4
5

	def handle_new_request(event):
 print('request', event.request)

def handle_new_response(event):
 print('response', event.response)

You may configure these functions to be called at the appropriate times by
adding the following code to your application's configuration startup:

	1
2
3
4
5
6

	# config is an instance of pyramid.config.Configurator

config.add_subscriber('myproject.subscribers.handle_new_request',
 'pyramid.events.NewRequest')
config.add_subscriber('myproject.subscribers.handle_new_response',
 'pyramid.events.NewResponse')

Either mechanism causes the functions in subscribers.py to be registered as
event subscribers. Under this configuration, when the application is run, each
time a new request or response is detected, a message will be printed to the
console.

Each of our subscriber functions accepts an event object and prints an
attribute of the event object. This begs the question: how can we know which
attributes a particular event has?

We know that pyramid.events.NewRequest event objects have a
request attribute, which is a request object, because the interface
defined at pyramid.interfaces.INewRequest says it must. Likewise, we
know that pyramid.interfaces.NewResponse events have a response
attribute, which is a response object constructed by your application, because
the interface defined at pyramid.interfaces.INewResponse says it must
(pyramid.events.NewResponse objects also have a request).

Creating Your Own Events

In addition to using the events that the Pyramid framework creates, you can
create your own events for use in your application. This can be useful to
decouple parts of your application.

For example, suppose your application has to do many things when a new document
is created. Rather than putting all this logic in the view that creates the
document, you can create the document in your view and then fire a custom
event. Subscribers to the custom event can take other actions, such as indexing
the document, sending email, or sending a message to a remote system.

An event is simply an object. There are no required attributes or method for
your custom events. In general, your events should keep track of the
information that subscribers will need. Here are some example custom event
classes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class DocCreated(object):
 def __init__(self, doc, request):
 self.doc = doc
 self.request = request

class UserEvent(object):
 def __init__(self, user):
 self.user = user

class UserLoggedIn(UserEvent):
 pass

Some Pyramid applications choose to define custom events classes in an
events module.

You can subscribe to custom events in the same way that you subscribe to
Pyramid events—either imperatively or with a decorator. You can also use custom
events with subscriber predicates. Here's an
example of subscribing to a custom event with a decorator:

	1
2
3
4
5
6
7
8

	from pyramid.events import subscriber
from .events import DocCreated
from .index import index_doc

@subscriber(DocCreated)
def index_doc(event):
 # index the document using our application's index_doc function
 index_doc(event.doc, event.request)

The above example assumes that the application defines a DocCreated event
class and an index_doc function.

To fire your custom events use the pyramid.registry.Registry.notify()
method, which is most often accessed as request.registry.notify. For
example:

	1
2
3
4
5
6
7

	from .events import DocCreated

def new_doc_view(request):
 doc = MyDoc()
 event = DocCreated(doc, request)
 request.registry.notify(event)
 return {'document': doc}

This example view will notify all subscribers to the custom DocCreated
event.

Note that when you fire an event, all subscribers are run synchronously so it's
generally not a good idea to create event handlers that may take a long time to
run. Although event handlers could be used as a central place to spawn tasks on
your own message queues.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Environment Variables and .ini File Settings

Pyramid behavior can be configured through a combination of operating
system environment variables and .ini configuration file application
section settings. The meaning of the environment variables and the
configuration file settings overlap.

Note

Where a configuration file setting exists with the same meaning as an
environment variable, and both are present at application startup time, the
environment variable setting takes precedence.

The term "configuration file setting name" refers to a key in the .ini
configuration for your application. The configuration file setting names
documented in this chapter are reserved for Pyramid use. You should not
use them to indicate application-specific configuration settings.

Reloading Templates

When this value is true, templates are automatically reloaded whenever they are
modified without restarting the application, so you can see changes to
templates take effect immediately during development. This flag is meaningful
to Chameleon and Mako templates, as well as most third-party template rendering
extensions.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_RELOAD_TEMPLATES
	
	pyramid.reload_templates

	or reload_templates

Reloading Assets

Don't cache any asset file data when this value is true.

See also

See also Overriding Assets.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_RELOAD_ASSETS
	pyramid.reload_assets
or reload_assets

Note

For backwards compatibility purposes, aliases can be used for
configuring asset reloading: PYRAMID_RELOAD_RESOURCES (envvar) and
pyramid.reload_resources (config file).

Debugging Authorization

Print view authorization failure and success information to stderr when this
value is true.

See also

See also Debugging View Authorization Failures.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_AUTHORIZATION
	pyramid.debug_authorization
or debug_authorization

Debugging Not Found Errors

Print view-related NotFound debug messages to stderr when this value is
true.

See also

See also NotFound Errors.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_NOTFOUND
	pyramid.debug_notfound
or debug_notfound

Debugging Route Matching

Print debugging messages related to url dispatch route matching when
this value is true.

See also

See also Debugging Route Matching.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_ROUTEMATCH
	pyramid.debug_routematch
or debug_routematch

Preventing HTTP Caching

Prevent the http_cache view configuration argument from having any effect
globally in this process when this value is true. No HTTP caching-related
response headers will be set by the Pyramid http_cache view
configuration feature when this is true.

See also

See also Influencing HTTP Caching.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_PREVENT_HTTP_CACHE
	pyramid.prevent_http_cache
or prevent_http_cache

Debugging All

Turns on all debug* settings.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_ALL
	pyramid.debug_all
or debug_all

Reloading All

Turns on all reload* settings.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_RELOAD_ALL
	pyramid.reload_all or
reload_all

Default Locale Name

The value supplied here is used as the default locale name when a locale
negotiator is not registered.

See also

See also Localization-Related Deployment Settings.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEFAULT_LOCALE_NAME
	pyramid.default_locale_name
or default_locale_name

Including Packages

pyramid.includes instructs your application to include other packages.
Using the setting is equivalent to using the
pyramid.config.Configurator.include() method.

	Config File Setting Name

	pyramid.includes

The value assigned to pyramid.includes should be a sequence. The sequence
can take several different forms.

	It can be a string.

If it is a string, the package names can be separated by spaces:

package1 package2 package3

The package names can also be separated by carriage returns:

package1
package2
package3

	It can be a Python list, where the values are strings:

['package1', 'package2', 'package3']

Each value in the sequence should be a dotted Python name.

pyramid.includes vs. pyramid.config.Configurator.include()

Two methods exist for including packages: pyramid.includes and
pyramid.config.Configurator.include(). This section explains their
equivalence.

Using PasteDeploy

Using the following pyramid.includes setting in the PasteDeploy .ini
file in your application:

[app:main]
pyramid.includes = pyramid_debugtoolbar
 pyramid_tm

Is equivalent to using the following statements in your configuration code:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 # ...
 config.include('pyramid_debugtoolbar')
 config.include('pyramid_tm')
 # ...

It is fine to use both or either form.

Plain Python

Using the following pyramid.includes setting in your plain-Python Pyramid
application:

	1
2
3
4
5

	from pyramid.config import Configurator

if __name__ == '__main__':
 settings = {'pyramid.includes':'pyramid_debugtoolbar pyramid_tm'}
 config = Configurator(settings=settings)

Is equivalent to using the following statements in your configuration code:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator

if __name__ == '__main__':
 settings = {}
 config = Configurator(settings=settings)
 config.include('pyramid_debugtoolbar')
 config.include('pyramid_tm')

It is fine to use both or either form.

Explicit Tween Configuration

This value allows you to perform explicit tween ordering in your
configuration. Tweens are bits of code used by add-on authors to extend
Pyramid. They form a chain, and require ordering.

Ideally you won't need to use the pyramid.tweens setting at all. Tweens
are generally ordered and included "implicitly" when an add-on package which
registers a tween is "included". Packages are included when you name a
pyramid.includes setting in your configuration or when you call
pyramid.config.Configurator.include().

Authors of included add-ons provide "implicit" tween configuration ordering
hints to Pyramid when their packages are included. However, the implicit tween
ordering is only best-effort. Pyramid will attempt to provide an implicit
order of tweens as best it can using hints provided by add-on authors, but
because it's only best-effort, if very precise tween ordering is required, the
only surefire way to get it is to use an explicit tween order. You may be
required to inspect your tween ordering (see Displaying "Tweens") and add
a pyramid.tweens configuration value at the behest of an add-on author.

	Config File Setting Name

	pyramid.tweens

The value assigned to pyramid.tweens should be a sequence. The sequence
can take several different forms.

	It can be a string.

If it is a string, the tween names can be separated by spaces:

pkg.tween_factory1 pkg.tween_factory2 pkg.tween_factory3

The tween names can also be separated by carriage returns:

pkg.tween_factory1
pkg.tween_factory2
pkg.tween_factory3

	It can be a Python list, where the values are strings:

['pkg.tween_factory1', 'pkg.tween_factory2', 'pkg.tween_factory3']

Each value in the sequence should be a dotted Python name.

PasteDeploy Configuration vs. Plain-Python Configuration

Using the following pyramid.tweens setting in the PasteDeploy .ini file
in your application:

[app:main]
pyramid.tweens = pyramid_debugtoolbar.toolbar.tween_factory
 pyramid.tweens.excview_tween_factory
 pyramid_tm.tm_tween_factory

Is equivalent to using the following statements in your configuration code:

	1
2
3
4
5
6
7
8
9

	from pyramid.config import Configurator

def main(global_config, **settings):
 settings['pyramid.tweens'] = [
 'pyramid_debugtoolbar.toolbar.tween_factory',
 'pyramid.tweebs.excview_tween_factory',
 'pyramid_tm.tm_tween_factory',
]
 config = Configurator(settings=settings)

It is fine to use both or either form.

Examples

Let's presume your configuration file is named MyProject.ini, and there is
a section representing your application named [app:main] within the file
that represents your Pyramid application. The configuration file
settings documented in the above "Config File Setting Name" column would go in
the [app:main] section. Here's an example of such a section:

	1
2
3
4

	[app:main]
use = egg:MyProject
pyramid.reload_templates = true
pyramid.debug_authorization = true

You can also use environment variables to accomplish the same purpose for
settings documented as such. For example, you might start your Pyramid
application using the following command line:

$ PYRAMID_DEBUG_AUTHORIZATION=1 PYRAMID_RELOAD_TEMPLATES=1 \
 $VENV/bin/pserve MyProject.ini

If you started your application this way, your Pyramid application would
behave in the same manner as if you had placed the respective settings in the
[app:main] section of your application's .ini file.

If you want to turn all debug settings (every setting that starts with
pyramid.debug_) on in one fell swoop, you can use PYRAMID_DEBUG_ALL=1
as an environment variable setting or you may use pyramid.debug_all=true in
the config file. Note that this does not affect settings that do not start
with pyramid.debug_* such as pyramid.reload_templates.

If you want to turn all pyramid.reload settings (every setting that starts
with pyramid.reload_) on in one fell swoop, you can use
PYRAMID_RELOAD_ALL=1 as an environment variable setting or you may use
pyramid.reload_all=true in the config file. Note that this does not affect
settings that do not start with pyramid.reload_* such as
pyramid.debug_notfound.

Note

Specifying configuration settings via environment variables is generally
most useful during development, where you may wish to augment or override
the more permanent settings in the configuration file. This is useful
because many of the reload and debug settings may have performance or
security (i.e., disclosure) implications that make them undesirable in a
production environment.

Understanding the Distinction Between reload_templates and reload_assets

The difference between pyramid.reload_assets and
pyramid.reload_templates is a bit subtle. Templates are themselves also
treated by Pyramid as asset files (along with other static files), so
the distinction can be confusing. It's helpful to read
Overriding Assets for some context about assets in general.

When pyramid.reload_templates is true, Pyramid takes advantage of
the underlying templating system's ability to check for file modifications to
an individual template file. When pyramid.reload_templates is true, but
pyramid.reload_assets is not true, the template filename returned by the
pkg_resources package (used under the hood by asset resolution) is cached
by Pyramid on the first request. Subsequent requests for the same
template file will return a cached template filename. The underlying
templating system checks for modifications to this particular file for every
request. Setting pyramid.reload_templates to True doesn't affect
performance dramatically (although it should still not be used in production
because it has some effect).

However, when pyramid.reload_assets is true, Pyramid will not cache
the template filename, meaning you can see the effect of changing the content
of an overridden asset directory for templates without restarting the server
after every change. Subsequent requests for the same template file may return
different filenames based on the current state of overridden asset directories.
Setting pyramid.reload_assets to True affects performance
dramatically, slowing things down by an order of magnitude for each template
rendering. However, it's convenient to enable when moving files around in
overridden asset directories. pyramid.reload_assets makes the system very
slow when templates are in use. Never set pyramid.reload_assets to
True on a production system.

Adding a Custom Setting

From time to time, you may need to add a custom setting to your application.
Here's how:

	If you're using an .ini file, change the .ini file, adding the
setting to the [app:foo] section representing your Pyramid application.
For example:

[app:main]
.. other settings
debug_frobnosticator = True

	In the main() function that represents the place that your Pyramid WSGI
application is created, anticipate that you'll be getting this key/value pair
as a setting and do any type conversion necessary.

If you've done any type conversion of your custom value, reset the converted
values into the settings dictionary before you pass the dictionary as
settings to the Configurator. For example:

def main(global_config, **settings):
 # ...
 from pyramid.settings import asbool
 debug_frobnosticator = asbool(settings.get(
 'debug_frobnosticator', 'false'))
 settings['debug_frobnosticator'] = debug_frobnosticator
 config = Configurator(settings=settings)

Note

It's especially important that you mutate the settings dictionary with
the converted version of the variable before passing it to the
Configurator: the configurator makes a copy of settings, it doesn't
use the one you pass directly.

	When creating an includeme function that will be later added to your
application's configuration you may access the settings dictionary
through the instance of the Configurator that is passed into the
function as its only argument. For Example:

def includeme(config):
 settings = config.registry.settings
 debug_frobnosticator = settings['debug_frobnosticator']

	In the runtime code from where you need to access the new settings value,
find the value in the registry.settings dictionary and use it. In
view code (or any other code that has access to the request), the
easiest way to do this is via request.registry.settings. For example:

settings = request.registry.settings
debug_frobnosticator = settings['debug_frobnosticator']

If you wish to use the value in code that does not have access to the request
and you wish to use the value, you'll need to use the
pyramid.threadlocal.get_current_registry() API to obtain the current
registry, then ask for its settings attribute. For example:

registry = pyramid.threadlocal.get_current_registry()
settings = registry.settings
debug_frobnosticator = settings['debug_frobnosticator']

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Logging

Pyramid allows you to make use of the Python standard library
logging [http://docs.python.org/3/library/logging.html#module-logging] module. This chapter describes how to configure logging and how
to send log messages to loggers that you've configured.

Warning

This chapter assumes you've used a scaffold to create a project
which contains development.ini and production.ini files which help
configure logging. All of the scaffolds which ship with Pyramid do
this. If you're not using a scaffold, or if you've used a third-party
scaffold which does not create these files, the configuration information in
this chapter may not be applicable.

Logging Configuration

A Pyramid project created from a scaffold is configured to allow
you to send messages to Python standard library logging package [http://docs.python.org/3/library/logging.html#module-logging] loggers from within your application. In particular, the
PasteDeploy development.ini and production.ini files created
when you use a scaffold include a basic configuration for the Python
logging [http://docs.python.org/3/library/logging.html#module-logging] package.

PasteDeploy .ini files use the Python standard library ConfigParser
format [http://docs.python.org/library/configparser.html#module-ConfigParser]. This is the same format used as the Python
logging module's Configuration file format [http://docs.python.org/3/library/logging.config.html#logging-config-fileformat].
The application-related and logging-related sections in the configuration file
can coexist peacefully, and the logging-related sections in the file are used
from when you run pserve.

The pserve command calls the pyramid.paster.setup_logging() function,
a thin wrapper around the logging.config.fileConfig() [http://docs.python.org/3/library/logging.config.html#logging.config.fileConfig] using the specified
.ini file, if it contains a [loggers] section (all of the
scaffold-generated .ini files do). setup_logging reads the logging
configuration from the ini file upon which pserve was invoked.

Default logging configuration is provided in both the default
development.ini and the production.ini file. The logging configuration
in the development.ini file is as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	# Begin logging configuration

[loggers]
keys = root, {{package_logger}}

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_{{package_logger}}]
level = DEBUG
handlers =
qualname = {{package}}

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

The production.ini file uses the WARN level in its logger
configuration, but it is otherwise identical.

The name {{package_logger}} above will be replaced with the name of your
project's package, which is derived from the name you provide to your
project. For instance, if you do:

	1

	pcreate -s starter MyApp

The logging configuration will literally be:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	# Begin logging configuration

[loggers]
keys = root, myapp

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_myapp]
level = DEBUG
handlers =
qualname = myapp

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

In this logging configuration:

	a logger named root is created that logs messages at a level above or
equal to the INFO level to stderr, with the following format:

2007-08-17 15:04:08,704 INFO [packagename] Loading resource, id: 86

	a logger named myapp is configured that logs messages sent at a level
above or equal to DEBUG to stderr in the same format as the root logger.

The root logger will be used by all applications in the Pyramid process
that ask for a logger (via logging.getLogger) that has a name which begins
with anything except your project's package name (e.g., myapp). The logger
with the same name as your package name is reserved for your own usage in your
Pyramid application. Its existence means that you can log to a known
logging location from any Pyramid application generated via a scaffold.

Pyramid and many other libraries (such as Beaker, SQLAlchemy, Paste) log
a number of messages to the root logger for debugging purposes. Switching the
root logger level to DEBUG reveals them:

[logger_root]
#level = INFO
level = DEBUG
handlers = console

Some scaffolds configure additional loggers for additional subsystems they use
(such as SQLALchemy). Take a look at the production.ini and
development.ini files rendered when you create a project from a scaffold.

Sending Logging Messages

Python's special __name__ variable refers to the current module's fully
qualified name. From any module in a package named myapp, the __name__
builtin variable will always be something like myapp, or
myapp.subpackage or myapp.package.subpackage if your project is named
myapp. Sending a message to this logger will send it to the myapp
logger.

To log messages to the package-specific logger configured in your .ini
file, simply create a logger object using the __name__ builtin and call
methods on it.

	1
2
3
4
5
6
7
8
9

	import logging
log = logging.getLogger(__name__)

def myview(request):
 content_type = 'text/plain'
 content = 'Hello World!'
 log.debug('Returning: %s (content-type: %s)', content, content_type)
 request.response.content_type = content_type
 return request.response

This will result in the following printed to the console, on stderr:

16:20:20,440 DEBUG [myapp.views] Returning: Hello World!
 (content-type: text/plain)

Filtering log messages

Often there's too much log output to sift through, such as when switching the
root logger's level to DEBUG.

For example, you're diagnosing database connection issues in your application
and only want to see SQLAlchemy's DEBUG messages in relation to database
connection pooling. You can leave the root logger's level at the less verbose
INFO level and set that particular SQLAlchemy logger to DEBUG on its
own, apart from the root logger:

[logger_sqlalchemy.pool]
level = DEBUG
handlers =
qualname = sqlalchemy.pool

then add it to the list of loggers:

[loggers]
keys = root, myapp, sqlalchemy.pool

No handlers need to be configured for this logger as by default non-root
loggers will propagate their log records up to their parent logger's handlers.
The root logger is the top level parent of all loggers.

This technique is used in the default development.ini. The root logger's
level is set to INFO, whereas the application's log level is set to
DEBUG:

Begin logging configuration

[loggers]
keys = root, myapp

[logger_myapp]
level = DEBUG
handlers =
qualname = myapp

All of the child loggers of the myapp logger will inherit the DEBUG
level unless they're explicitly set differently. Meaning the myapp.views,
myapp.models, and all your app's modules' loggers by default have an
effective level of DEBUG too.

For more advanced filtering, the logging module provides a
logging.Filter [http://docs.python.org/3/library/logging.html#logging.Filter] object; however it cannot be used directly from the
configuration file.

Advanced Configuration

To capture log output to a separate file, use logging.FileHandler [http://docs.python.org/3/library/logging.handlers.html#logging.FileHandler] (or
logging.handlers.RotatingFileHandler [http://docs.python.org/3/library/logging.handlers.html#logging.handlers.RotatingFileHandler]):

[handler_filelog]
class = FileHandler
args = ('%(here)s/myapp.log','a')
level = INFO
formatter = generic

Before it's recognized, it needs to be added to the list of handlers:

[handlers]
keys = console, myapp, filelog

and finally utilized by a logger.

[logger_root]
level = INFO
handlers = console, filelog

These final three lines of configuration direct all of the root logger's output
to the myapp.log as well as the console.

Logging Exceptions

To log or email exceptions generated by your Pyramid application, use
the pyramid_exclog package. Details about its configuration are in its
documentation [http://docs.pylonsproject.org/projects/pyramid_exclog/dev/].

Request Logging with Paste's TransLogger

The WSGI design is modular. Waitress logs error conditions, debugging
output, etc., but not web traffic. For web traffic logging, Paste provides the
TransLogger [http://pythonpaste.org/modules/translogger.html]
middleware. TransLogger produces logs in the Apache Combined Log
Format [http://httpd.apache.org/docs/2.2/logs.html#combined]. But
TransLogger does not write to files; the Python logging system must be
configured to do this. The Python logging.FileHandler [http://docs.python.org/3/library/logging.handlers.html#logging.FileHandler] logging handler
can be used alongside TransLogger to create an access.log file similar to
Apache's.

Like any standard middleware with a Paste entry point, TransLogger can
be configured to wrap your application using .ini file syntax. First
rename your Pyramid .ini file's [app:main] section to
[app:mypyramidapp], then add a [filter:translogger] section, then use a
[pipeline:main] section file to form a WSGI pipeline with both the
translogger and your application in it. For instance, change from this:

[app:main]
use = egg:MyProject

To this:

[app:mypyramidapp]
use = egg:MyProject

[filter:translogger]
use = egg:Paste#translogger
setup_console_handler = False

[pipeline:main]
pipeline = translogger
 mypyramidapp

Using PasteDeploy this way to form and serve a pipeline is equivalent to
wrapping your app in a TransLogger instance via the bottom of the main
function of your project's __init__ file:

...
app = config.make_wsgi_app()
from paste.translogger import TransLogger
app = TransLogger(app, setup_console_handler=False)
return app

Note

TransLogger will automatically setup a logging handler to the console when
called with no arguments, so it "just works" in environments that don't
configure logging. Since our logging handlers are configured, we disable
the automation via setup_console_handler = False.

With the filter in place, TransLogger's logger (named the wsgi logger) will
propagate its log messages to the parent logger (the root logger), sending its
output to the console when we request a page:

00:50:53,694 INFO [myapp.views] Returning: Hello World!
 (content-type: text/plain)
00:50:53,695 INFO [wsgi] 192.168.1.111 - - [11/Aug/2011:20:09:33 -0700] "GET /hello
HTTP/1.1" 404 - "-"
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6) Gecko/20070725
Firefox/2.0.0.6"

To direct TransLogger to an access.log FileHandler, we need the following
to add a FileHandler (named accesslog) to the list of handlers, and ensure
that the wsgi logger is configured and uses this handler accordingly:

Begin logging configuration

[loggers]
keys = root, myapp, wsgi

[handlers]
keys = console, accesslog

[logger_wsgi]
level = INFO
handlers = accesslog
qualname = wsgi
propagate = 0

[handler_accesslog]
class = FileHandler
args = ('%(here)s/access.log','a')
level = INFO
formatter = generic

As mentioned above, non-root loggers by default propagate their log records to
the root logger's handlers (currently the console handler). Setting
propagate to 0 (False) here disables this; so the wsgi logger
directs its records only to the accesslog handler.

Finally, there's no need to use the generic formatter with TransLogger as
TransLogger itself provides all the information we need. We'll use a formatter
that passes through the log messages as is. Add a new formatter called
accesslog by including the following in your configuration file:

[formatters]
keys = generic, accesslog

[formatter_accesslog]
format = %(message)s

Finally alter the existing configuration to wire this new accesslog
formatter into the FileHandler:

[handler_accesslog]
class = FileHandler
args = ('%(here)s/access.log','a')
level = INFO
formatter = accesslog

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

PasteDeploy Configuration Files

Packages generated via a scaffold make use of a system created by Ian
Bicking named PasteDeploy. PasteDeploy defines a way to declare
WSGI application configuration in an .ini file.

Pyramid uses this configuration file format as input to its WSGI server
runner pserve, as well as other commands such as pviews, pshell,
proutes, and ptweens.

PasteDeploy is not a particularly integral part of Pyramid. It's possible to
create a Pyramid application which does not use PasteDeploy at all. We show a
Pyramid application that doesn't use PasteDeploy in Creating Your First Pyramid Application.
However, all Pyramid scaffolds render PasteDeploy configuration files, to
provide new developers with a standardized way of setting deployment values,
and to provide new users with a standardized way of starting, stopping, and
debugging an application.

This chapter is not a replacement for documentation about PasteDeploy; it only
contextualizes the use of PasteDeploy within Pyramid. For detailed
documentation, see http://pythonpaste.org/deploy/.

PasteDeploy

PasteDeploy is the system that Pyramid uses to allow deployment
settings to be specified using an .ini configuration file format. It also
allows the pserve command to work. Its configuration format provides a
convenient place to define application deployment settings and WSGI
server settings, and its server runner allows you to stop and start a Pyramid
application easily.

Entry Points and PasteDeploy .ini Files

In the Creating a Pyramid Project chapter, we breezed over the meaning of a
configuration line in the deployment.ini file. This was the use =
egg:MyProject line in the [app:main] section. We breezed over it because
it's pretty confusing and "too much information" for an introduction to the
system. We'll try to give it a bit of attention here. Let's see the config
file again:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	###
app configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
###

[app:main]
use = egg:MyProject

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =
 pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1' and '::1'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgi server configuration
###

[server:main]
use = egg:waitress#main
host = 0.0.0.0
port = 6543

###
logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
###

[loggers]
keys = root, myproject

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_myproject]
level = DEBUG
handlers =
qualname = myproject

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

The line in [app:main] above that says use = egg:MyProject is actually
shorthand for a longer spelling: use = egg:MyProject#main. The #main
part is omitted for brevity, as #main is a default defined by PasteDeploy.
egg:MyProject#main is a string which has meaning to PasteDeploy. It points
at a setuptools entry point named main defined in the
MyProject project.

Take a look at the generated setup.py file for this project.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	import os

from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.txt')) as f:
 README = f.read()
with open(os.path.join(here, 'CHANGES.txt')) as f:
 CHANGES = f.read()

requires = [
 'pyramid',
 'pyramid_chameleon',
 'pyramid_debugtoolbar',
 'waitress',
]

setup(name='MyProject',
 version='0.0',
 description='MyProject',
 long_description=README + '\n\n' + CHANGES,
 classifiers=[
 "Programming Language :: Python",
 "Framework :: Pyramid",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
],
 author='',
 author_email='',
 url='',
 keywords='web pyramid pylons',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=requires,
 tests_require=requires,
 test_suite="myproject",
 entry_points="""\
 [paste.app_factory]
 main = myproject:main
 """,
)

Note that entry_points is assigned a string which looks a lot like an
.ini file. This string representation of an .ini file has a section
named [paste.app_factory]. Within this section, there is a key named
main (the entry point name) which has a value myproject:main. The
key main is what our egg:MyProject#main value of the use section
in our config file is pointing at, although it is actually shortened to
egg:MyProject there. The value represents a dotted Python name
path, which refers to a callable in our myproject package's __init__.py
module.

The egg: prefix in egg:MyProject indicates that this is an entry point
URI specifier, where the "scheme" is "egg". An "egg" is created when you run
setup.py install or setup.py develop within your project.

In English, this entry point can thus be referred to as a "PasteDeploy
application factory in the MyProject project which has the entry point
named main where the entry point refers to a main function in the
mypackage module". Indeed, if you open up the __init__.py module
generated within any scaffold-generated package, you'll see a main
function. This is the function called by PasteDeploy when the
pserve command is invoked against our application. It accepts a global
configuration object and returns an instance of our application.

[DEFAULT] Section of a PasteDeploy .ini File

You can add a [DEFAULT] section to your PasteDeploy .ini file. Such a
section should consist of global parameters that are shared by all the
applications, servers, and middleware defined within the configuration
file. The values in a [DEFAULT] section will be passed to your
application's main function as global_config (see the reference to the
main function in __init__.py).

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Command-Line Pyramid

Your Pyramid application can be controlled and inspected using a variety
of command-line utilities. These utilities are documented in this chapter.

Displaying Matching Views for a Given URL

See also

See also the output of pviews --help.

For a big application with several views, it can be hard to keep the view
configuration details in your head, even if you defined all the views yourself.
You can use the pviews command in a terminal window to print a summary of
matching routes and views for a given URL in your application. The pviews
command accepts two arguments. The first argument to pviews is the path to
your application's .ini file and section name inside the .ini file
which points to your application. This should be of the format
config_file#section_name. The second argument is the URL to test for
matching views. The section_name may be omitted; if it is, it's considered
to be main.

Here is an example for a simple view configuration using traversal:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	$ $VENV/bin/pviews development.ini#tutorial /FrontPage

URL = /FrontPage

 context: <tutorial.models.Page object at 0xa12536c>
 view name:

 View:

 tutorial.views.view_page
 required permission = view

The output always has the requested URL at the top and below that all the views
that matched with their view configuration details. In this example only one
view matches, so there is just a single View section. For each matching view,
the full code path to the associated view callable is shown, along with any
permissions and predicates that are part of that view configuration.

A more complex configuration might generate something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	$ $VENV/bin/pviews development.ini#shootout /about

URL = /about

 context: <shootout.models.RootFactory object at 0xa56668c>
 view name: about

 Route:

 route name: about
 route pattern: /about
 route path: /about
 subpath:
 route predicates (request method = GET)

 View:

 shootout.views.about_view
 required permission = view
 view predicates (request_param testing, header X/header)

 Route:

 route name: about_post
 route pattern: /about
 route path: /about
 subpath:
 route predicates (request method = POST)

 View:

 shootout.views.about_view_post
 required permission = view
 view predicates (request_param test)

 View:

 shootout.views.about_view_post2
 required permission = view
 view predicates (request_param test2)

In this case, we are dealing with a URL dispatch application. This
specific URL has two matching routes. The matching route information is
displayed first, followed by any views that are associated with that route. As
you can see from the second matching route output, a route can be associated
with more than one view.

For a URL that doesn't match any views, pviews will simply print out a Not
found message.

The Interactive Shell

See also

See also the output of pshell --help.

Once you've installed your program for development using setup.py develop,
you can use an interactive Python shell to execute expressions in a Python
environment exactly like the one that will be used when your application runs
"for real". To do so, use the pshell command line utility.

The argument to pshell follows the format config_file#section_name
where config_file is the path to your application's .ini file and
section_name is the app section name inside the .ini file which
points to your application. For example, your application .ini file might
have an [app:main] section that looks like so:

	1
2
3
4
5
6
7

	[app:main]
use = egg:MyProject
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_templates = true
pyramid.default_locale_name = en

If so, you can use the following command to invoke a debug shell using the name
main as a section name:

$ $VENV/bin/pshell starter/development.ini#main
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help" for more information.

Environment:
 app The WSGI application.
 registry Active Pyramid registry.
 request Active request object.
 root Root of the default resource tree.
 root_factory Default root factory used to create `root`.

>>> root
<myproject.resources.MyResource object at 0x445270>
>>> registry
<Registry myproject>
>>> registry.settings['pyramid.debug_notfound']
False
>>> from myproject.views import my_view
>>> from pyramid.request import Request
>>> r = Request.blank('/')
>>> my_view(r)
{'project': 'myproject'}

The WSGI application that is loaded will be available in the shell as the
app global. Also, if the application that is loaded is the Pyramid
app with no surrounding middleware, the root object returned by the
default root factory, registry, and request will be available.

You can also simply rely on the main default section name by omitting any
hash after the filename:

$ $VENV/bin/pshell starter/development.ini

Press Ctrl-D to exit the interactive shell (or Ctrl-Z on Windows).

Extending the Shell

It is convenient when using the interactive shell often to have some variables
significant to your application already loaded as globals when you start the
pshell. To facilitate this, pshell will look for a special [pshell]
section in your INI file and expose the subsequent key/value pairs to the
shell. Each key is a variable name that will be global within the pshell
session; each value is a dotted Python name. If specified, the special
key setup should be a dotted Python name pointing to a callable
that accepts the dictionary of globals that will be loaded into the shell. This
allows for some custom initializing code to be executed each time the
pshell is run. The setup callable can also be specified from the
commandline using the --setup option which will override the key in the INI
file.

For example, you want to expose your model to the shell along with the database
session so that you can mutate the model on an actual database. Here, we'll
assume your model is stored in the myapp.models package.

	1
2
3
4
5

	[pshell]
setup = myapp.lib.pshell.setup
m = myapp.models
session = myapp.models.DBSession
t = transaction

By defining the setup callable, we will create the module
myapp.lib.pshell containing a callable named setup that will receive
the global environment before it is exposed to the shell. Here we mutate the
environment's request as well as add a new value containing a WebTest version
of the application to which we can easily submit requests.

	1
2
3
4
5
6
7

	# myapp/lib/pshell.py
from webtest import TestApp

def setup(env):
 env['request'].host = 'www.example.com'
 env['request'].scheme = 'https'
 env['testapp'] = TestApp(env['app'])

When this INI file is loaded, the extra variables m, session and t
will be available for use immediately. Since a setup callable was also
specified, it is executed and a new variable testapp is exposed, and the
request is configured to generate urls from the host
http://www.example.com. For example:

$ $VENV/bin/pshell starter/development.ini
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help" for more information.

Environment:
 app The WSGI application.
 registry Active Pyramid registry.
 request Active request object.
 root Root of the default resource tree.
 root_factory Default root factory used to create `root`.
 testapp <webtest.TestApp object at ...>

Custom Variables:
 m myapp.models
 session myapp.models.DBSession
 t transaction

>>> testapp.get('/')
<200 OK text/html body='<!DOCTYPE...l>\n'/3337>
>>> request.route_url('home')
'https://www.example.com/'

IPython or bpython

If you have IPython [http://en.wikipedia.org/wiki/IPython] and/or bpython [http://bpython-interpreter.org/] in the interpreter you use to invoke the
pshell command, pshell will autodiscover and use the first one found,
in this order: IPython, bpython, standard Python interpreter. However you could
specifically invoke your choice with the -p choice or --python-shell
choice option.

$ $VENV/bin/pshell -p ipython | bpython | python development.ini#MyProject

Displaying All Application Routes

See also

See also the output of proutes --help.

You can use the proutes command in a terminal window to print a summary of
routes related to your application. Much like the pshell command (see
The Interactive Shell), the proutes command accepts one argument with
the format config_file#section_name. The config_file is the path to
your application's .ini file, and section_name is the app section
name inside the .ini file which points to your application. By default,
the section_name is main and can be omitted.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	$ $VENV/bin/proutes development.ini
Name Pattern View Method
---- ------- ---- ------
debugtoolbar /_debug_toolbar/*subpath <wsgiapp> *
__static/ /static/*subpath dummy_starter:static/ *
__static2/ /static2/*subpath /var/www/static/ *
__pdt_images/ /pdt_images/*subpath pyramid_debugtoolbar:static/img/ *
a / <unknown> *
no_view_attached / <unknown> *
route_and_view_attached / app1.standard_views.route_and_view_attached *
method_conflicts /conflicts app1.standard_conflicts <route mismatch>
multiview /multiview app1.standard_views.multiview GET,PATCH
not_post /not_post app1.standard_views.multview !POST,*

proutes generates a table with four columns: Name, Pattern, View, and
Method. The items listed in the Name column are route names, the items
listed in the Pattern column are route patterns, the items listed in the View
column are representations of the view callable that will be invoked when a
request matches the associated route pattern, and the items listed in the
Method column are the request methods that are associated with the route name.
The View column may show <unknown> if no associated view callable could be
found. The Method column, for the route name, may show either <route
mismatch> if the view callable does not accept any of the route's request
methods, or * if the view callable will accept any of the route's request
methods. If no routes are configured within your application, nothing will be
printed to the console when proutes is executed.

It is convenient when using the proutes command often to configure which
columns and the order you would like to view them. To facilitate this,
proutes will look for a special [proutes] section in your .ini file
and use those as defaults.

For example you may remove the request method and place the view first:

	1
2
3
4

	 [proutes]
 format = view
 name
 pattern

You can also separate the formats with commas or spaces:

	1
2
3
4
5

	 [proutes]
 format = view name pattern

 [proutes]
 format = view, name, pattern

If you want to temporarily configure the columns and order, there is the
argument --format, which is a comma separated list of columns you want to
include. The current available formats are name, pattern, view, and
method.

Displaying "Tweens"

See also

See also the output of ptweens --help.

A tween is a bit of code that sits between the main Pyramid application
request handler and the WSGI application which calls it. A user can get a
representation of both the implicit tween ordering (the ordering specified by
calls to pyramid.config.Configurator.add_tween()) and the explicit tween
ordering (specified by the pyramid.tweens configuration setting) using the
ptweens command. Tween factories will show up represented by their
standard Python dotted name in the ptweens output.

For example, here's the ptweens command run against a system configured
without any explicit tweens:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	$ $VENV/bin/ptweens development.ini
"pyramid.tweens" config value NOT set (implicitly ordered tweens used)

Implicit Tween Chain

Position Name Alias
-------- ---- -----
- - INGRESS
0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory pdbt
1 pyramid.tweens.excview_tween_factory excview
- - MAIN

Here's the ptweens command run against a system configured with explicit
tweens defined in its development.ini file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	$ ptweens development.ini
"pyramid.tweens" config value set (explicitly ordered tweens used)

Explicit Tween Chain (used)

Position Name
-------- ----
- INGRESS
0 starter.tween_factory2
1 starter.tween_factory1
2 pyramid.tweens.excview_tween_factory
- MAIN

Implicit Tween Chain (not used)

Position Name
-------- ----
- INGRESS
0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory
1 pyramid.tweens.excview_tween_factory
- MAIN

Here's the application configuration section of the development.ini used by
the above ptweens command which reports that the explicit tween chain is
used:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	[app:main]
use = egg:starter
reload_templates = true
debug_authorization = false
debug_notfound = false
debug_routematch = false
debug_templates = true
default_locale_name = en
pyramid.include = pyramid_debugtoolbar
pyramid.tweens = starter.tween_factory2
 starter.tween_factory1
 pyramid.tweens.excview_tween_factory

See Registering Tweens for more information about tweens.

Invoking a Request

See also

See also the output of prequest --help.

You can use the prequest command-line utility to send a request to your
application and see the response body without starting a server.

There are two required arguments to prequest:

	The config file/section: follows the format config_file#section_name,
where config_file is the path to your application's .ini file and
section_name is the app section name inside the .ini file. The
section_name is optional; it defaults to main. For example:
development.ini.

	The path: this should be the non-URL-quoted path element of the URL to the
resource you'd like to be rendered on the server. For example, /.

For example:

$ $VENV/bin/prequest development.ini /

This will print the body of the response to the console on which it was
invoked.

Several options are supported by prequest. These should precede any config
file name or URL.

prequest has a -d (i.e., --display-headers) option which prints the
status and headers returned by the server before the output:

$ $VENV/bin/prequest -d development.ini /

This will print the status, headers, and the body of the response to the
console.

You can add request header values by using the --header option:

$ $VENV/bin/prequest --header=Host:example.com development.ini /

Headers are added to the WSGI environment by converting them to their CGI/WSGI
equivalents (e.g., Host=example.com will insert the HTTP_HOST header
variable as the value example.com). Multiple --header options can be
supplied. The special header value content-type sets the CONTENT_TYPE
in the WSGI environment.

By default, prequest sends a GET request. You can change this by using
the -m (aka --method) option. GET, HEAD, POST, and
DELETE are currently supported. When you use POST, the standard input
of the prequest process is used as the POST body:

$ $VENV/bin/prequest -mPOST development.ini / < somefile

Using Custom Arguments to Python when Running p* Scripts

New in version 1.5.

Each of Pyramid's console scripts (pserve, pviews, etc.) can be run
directly using python -m, allowing custom arguments to be sent to the
Python interpreter at runtime. For example:

python -3 -m pyramid.scripts.pserve development.ini

Showing All Installed Distributions and Their Versions

New in version 1.5.

See also

See also the output of pdistreport --help.

You can use the pdistreport command to show the Pyramid version in
use, the Python version in use, and all installed versions of Python
distributions in your Python environment:

$ $VENV/bin/pdistreport
Pyramid version: 1.5dev
Platform Linux-3.2.0-51-generic-x86_64-with-debian-wheezy-sid
Packages:
 authapp 0.0
 /home/chrism/projects/foo/src/authapp
 beautifulsoup4 4.1.3
 /home/chrism/projects/foo/lib/python2.7/site-packages/beautifulsoup4-4.1.3-py2.7.egg
... more output ...

pdistreport takes no options. Its output is useful to paste into a
pastebin when you are having problems and need someone with more familiarity
with Python packaging and distribution than you have to look at your
environment.

Writing a Script

All web applications are, at their hearts, systems which accept a request and
return a response. When a request is accepted by a Pyramid application,
the system receives state from the request which is later relied on by your
application code. For example, one view callable may assume it's
working against a request that has a request.matchdict of a particular
composition, while another assumes a different composition of the matchdict.

In the meantime, it's convenient to be able to write a Python script that can
work "in a Pyramid environment", for instance to update database tables used by
your Pyramid application. But a "real" Pyramid environment doesn't have
a completely static state independent of a request; your application (and
Pyramid itself) is almost always reliant on being able to obtain information
from a request. When you run a Python script that simply imports code from
your application and tries to run it, there just is no request data, because
there isn't any real web request. Therefore some parts of your application and
some Pyramid APIs will not work.

For this reason, Pyramid makes it possible to run a script in an
environment much like the environment produced when a particular
request reaches your Pyramid application. This is achieved by
using the pyramid.paster.bootstrap() command in the body of your script.

New in version 1.1: pyramid.paster.bootstrap()

In the simplest case, pyramid.paster.bootstrap() can be used with a
single argument, which accepts the PasteDeploy .ini file
representing your Pyramid application's configuration as a single argument:

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini')
print(env['request'].route_url('home'))

pyramid.paster.bootstrap() returns a dictionary containing
framework-related information. This dictionary will always contain a
request object as its request key.

The following keys are available in the env dictionary returned by
pyramid.paster.bootstrap():

request

A pyramid.request.Request object implying the current request
state for your script.

app

The WSGI application object generated by bootstrapping.

root

The resource root of your Pyramid application. This is an
object generated by the root factory configured in your
application.

registry

The application registry of your Pyramid application.

closer

A parameterless callable that can be used to pop an internal Pyramid
threadlocal stack (used by pyramid.threadlocal.get_current_registry()
and pyramid.threadlocal.get_current_request()) when your scripting
job is finished.

Let's assume that the /path/to/my/development.ini file used in the example
above looks like so:

[pipeline:main]
pipeline = translogger
 another

[filter:translogger]
filter_app_factory = egg:Paste#translogger
setup_console_handler = False
logger_name = wsgi

[app:another]
use = egg:MyProject

The configuration loaded by the above bootstrap example will use the
configuration implied by the [pipeline:main] section of your configuration
file by default. Specifying /path/to/my/development.ini is logically
equivalent to specifying /path/to/my/development.ini#main. In this case,
we'll be using a configuration that includes an app object which is wrapped
in the Paste "translogger" middleware (which logs requests to the
console).

You can also specify a particular section of the PasteDeploy .ini file to
load instead of main:

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini#another')
print(env['request'].route_url('home'))

The above example specifies the another app, pipeline, or
composite section of your PasteDeploy configuration file. The app
object present in the env dictionary returned by
pyramid.paster.bootstrap() will be a Pyramid router.

Changing the Request

By default, Pyramid will generate a request object in the env dictionary
for the URL http://localhost:80/. This means that any URLs generated by
Pyramid during the execution of your script will be anchored here. This is
generally not what you want.

So how do we make Pyramid generate the correct URLs?

Assuming that you have a route configured in your application like so:

config.add_route('verify', '/verify/{code}')

You need to inform the Pyramid environment that the WSGI application is
handling requests from a certain base. For example, we want to simulate
mounting our application at https://example.com/prefix, to ensure that the
generated URLs are correct for our deployment. This can be done by either
mutating the resulting request object, or more simply by constructing the
desired request and passing it into bootstrap():

from pyramid.paster import bootstrap
from pyramid.request import Request

request = Request.blank('/', base_url='https://example.com/prefix')
env = bootstrap('/path/to/my/development.ini#another', request=request)
print(env['request'].application_url)
will print 'https://example.com/prefix'

Now you can readily use Pyramid's APIs for generating URLs:

env['request'].route_url('verify', code='1337')
will return 'https://example.com/prefix/verify/1337'

Cleanup

When your scripting logic finishes, it's good manners to call the closer
callback:

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini')

.. do stuff ...

env['closer']()

Setting Up Logging

By default, pyramid.paster.bootstrap() does not configure logging
parameters present in the configuration file. If you'd like to configure
logging based on [logger] and related sections in the configuration file,
use the following command:

import pyramid.paster
pyramid.paster.setup_logging('/path/to/my/development.ini')

See Logging for more information on logging within
Pyramid.

Making Your Script into a Console Script

A "console script" is setuptools terminology for a script that gets
installed into the bin directory of a Python virtualenv (or "base"
Python environment) when a distribution which houses that script is
installed. Because it's installed into the bin directory of a virtualenv
when the distribution is installed, it's a convenient way to package and
distribute functionality that you can call from the command-line. It's often
more convenient to create a console script than it is to create a .py
script and instruct people to call it with the "right" Python interpreter. A
console script generates a file that lives in bin, and when it's invoked it
will always use the "right" Python environment, which means it will always be
invoked in an environment where all the libraries it needs (such as Pyramid)
are available.

In general, you can make your script into a console script by doing the
following:

	Use an existing distribution (such as one you've already created via
pcreate) or create a new distribution that possesses at least one package
or module. It should, within any module within the distribution, house a
callable (usually a function) that takes no arguments and which runs any of
the code you wish to run.

	Add a [console_scripts] section to the entry_points argument of the
distribution which creates a mapping between a script name and a dotted name
representing the callable you added to your distribution.

	Run setup.py develop, setup.py install, or easy_install to get
your distribution reinstalled. When you reinstall your distribution, a file
representing the script that you named in the last step will be in the
bin directory of the virtualenv in which you installed the distribution.
It will be executable. Invoking it from a terminal will execute your
callable.

As an example, let's create some code that can be invoked by a console script
that prints the deployment settings of a Pyramid application. To do so, we'll
pretend you have a distribution with a package in it named myproject.
Within this package, we'll pretend you've added a scripts.py module which
contains the following code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	# myproject.scripts module

import optparse
import sys
import textwrap

from pyramid.paster import bootstrap

def settings_show():
 description = """\
 Print the deployment settings for a Pyramid application. Example:
 'show_settings deployment.ini'
 """
 usage = "usage: %prog config_uri"
 parser = optparse.OptionParser(
 usage=usage,
 description=textwrap.dedent(description)
)
 parser.add_option(
 '-o', '--omit',
 dest='omit',
 metavar='PREFIX',
 type='string',
 action='append',
 help=("Omit settings which start with PREFIX (you can use this "
 "option multiple times)")
)

 options, args = parser.parse_args(sys.argv[1:])
 if not len(args) >= 1:
 print('You must provide at least one argument')
 return 2
 config_uri = args[0]
 omit = options.omit
 if omit is None:
 omit = []
 env = bootstrap(config_uri)
 settings, closer = env['registry'].settings, env['closer']
 try:
 for k, v in settings.items():
 if any([k.startswith(x) for x in omit]):
 continue
 print('%-40s %-20s' % (k, v))
 finally:
 closer()

This script uses the Python optparse module to allow us to make sense out
of extra arguments passed to the script. It uses the
pyramid.paster.bootstrap() function to get information about the
application defined by a config file, and prints the deployment settings
defined in that config file.

After adding this script to the package, you'll need to tell your
distribution's setup.py about its existence. Within your distribution's
top-level directory, your setup.py file will look something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	import os

from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.txt')) as f:
 README = f.read()
with open(os.path.join(here, 'CHANGES.txt')) as f:
 CHANGES = f.read()

requires = ['pyramid', 'pyramid_debugtoolbar']

setup(name='MyProject',
 version='0.0',
 description='My project',
 long_description=README + '\n\n' + CHANGES,
 classifiers=[
 "Programming Language :: Python",
 "Framework :: Pylons",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
],
 author='',
 author_email='',
 url='',
 keywords='web pyramid pylons',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=requires,
 tests_require=requires,
 test_suite="myproject",
 entry_points = """\
 [paste.app_factory]
 main = myproject:main
 """,
)

We're going to change the setup.py file to add a [console_scripts] section
within the entry_points string. Within this section, you should specify a
scriptname = dotted.path.to:yourfunction line. For example:

[console_scripts]
show_settings = myproject.scripts:settings_show

The show_settings name will be the name of the script that is installed
into bin. The colon (:) between myproject.scripts and
settings_show above indicates that myproject.scripts is a Python
module, and settings_show is the function in that module which contains the
code you'd like to run as the result of someone invoking the show_settings
script from their command line.

The result will be something like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	import os

from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, 'README.txt')) as f:
 README = f.read()
with open(os.path.join(here, 'CHANGES.txt')) as f:
 CHANGES = f.read()

requires = ['pyramid', 'pyramid_debugtoolbar']

setup(name='MyProject',
 version='0.0',
 description='My project',
 long_description=README + '\n\n' + CHANGES,
 classifiers=[
 "Programming Language :: Python",
 "Framework :: Pylons",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
],
 author='',
 author_email='',
 url='',
 keywords='web pyramid pylons',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=requires,
 tests_require=requires,
 test_suite="myproject",
 entry_points = """\
 [paste.app_factory]
 main = myproject:main
 [console_scripts]
 show_settings = myproject.scripts:settings_show
 """,
)

Once you've done this, invoking $$VENV/bin/python setup.py develop will
install a file named show_settings into the $somevirtualenv/bin
directory with a small bit of Python code that points to your entry point. It
will be executable. Running it without any arguments will print an error and
exit. Running it with a single argument that is the path of a config file will
print the settings. Running it with an --omit=foo argument will omit the
settings that have keys that start with foo. Running it with two "omit"
options (e.g., --omit=foo --omit=bar) will omit all settings that have keys
that start with either foo or bar:

$ $VENV/bin/show_settings development.ini --omit=pyramid --omit=debugtoolbar
debug_routematch False
debug_templates True
reload_templates True
mako.directories []
debug_notfound False
default_locale_name en
reload_resources False
debug_authorization False
reload_assets False
prevent_http_cache False

Pyramid's pserve, pcreate, pshell, prequest, ptweens, and
other p* scripts are implemented as console scripts. When you invoke one
of those, you are using a console script.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Internationalization and Localization

Internationalization (i18n) is the act of creating software with a user
interface that can potentially be displayed in more than one language or
cultural context. Localization (l10n) is the process of displaying the
user interface of an internationalized application in a particular language
or cultural context.

Pyramid offers internationalization and localization subsystems that can
be used to translate the text of buttons, error messages, and other software-
and template-defined values into the native language of a user of your
application.

Creating a Translation String

While you write your software, you can insert specialized markup into your
Python code that makes it possible for the system to translate text values into
the languages used by your application's users. This markup creates a
translation string. A translation string is an object that behaves
mostly like a normal Unicode object, except that it also carries around extra
information related to its job as part of the Pyramid translation
machinery.

Using the TranslationString Class

The most primitive way to create a translation string is to use the
pyramid.i18n.TranslationString callable:

	1
2

	from pyramid.i18n import TranslationString
ts = TranslationString('Add')

This creates a Unicode-like object that is a TranslationString.

Note

For people more familiar with Zope i18n, a TranslationString is a
lot like a zope.i18nmessageid.Message object. It is not a subclass,
however. For people more familiar with Pylons or Django
i18n, using a TranslationString is a lot like using "lazy" versions of
related gettext APIs.

The first argument to TranslationString is the
msgid; it is required. It represents the key into the translation mappings
provided by a particular localization. The msgid argument must be a Unicode
object or an ASCII string. The msgid may optionally contain replacement
markers. For instance:

	1
2

	from pyramid.i18n import TranslationString
ts = TranslationString('Add ${number}')

Within the string above, ${number} is a replacement marker. It will be
replaced by whatever is in the mapping for a translation string. The mapping
may be supplied at the same time as the replacement marker itself:

	1
2

	from pyramid.i18n import TranslationString
ts = TranslationString('Add ${number}', mapping={'number':1})

Any number of replacement markers can be present in the msgid value, any number
of times. Only markers which can be replaced by the values in the mapping
will be replaced at translation time. The others will not be interpolated and
will be output literally.

A translation string should also usually carry a domain. The domain
represents a translation category to disambiguate it from other translations of
the same msgid, in case they conflict.

	1
2
3

	from pyramid.i18n import TranslationString
ts = TranslationString('Add ${number}', mapping={'number':1},
 domain='form')

The above translation string named a domain of form. A translator
function will often use the domain to locate the right translator file on the
filesystem which contains translations for a given domain. In this case, if it
were trying to translate our msgid to German, it might try to find a
translation from a gettext file within a translation directory
like this one:

locale/de/LC_MESSAGES/form.mo

In other words, it would want to take translations from the form.mo
translation file in the German language.

Finally, the TranslationString constructor accepts a default argument. If
a default argument is supplied, it replaces usages of the msgid as the
default value for the translation string. When default is None, the
msgid value passed to a TranslationString is used as an implicit message
identifier. Message identifiers are matched with translations in translation
files, so it is often useful to create translation strings with "opaque"
message identifiers unrelated to their default text:

	1
2
3

	from pyramid.i18n import TranslationString
ts = TranslationString('add-number', default='Add ${number}',
 domain='form', mapping={'number':1})

When default text is used, Default text objects may contain replacement values.

Using the TranslationStringFactory Class

Another way to generate a translation string is to use the
TranslationStringFactory object. This object is a
translation string factory. Basically a translation string factory presets
the domain value of any translation string generated by using it.
For example:

	1
2
3

	from pyramid.i18n import TranslationStringFactory
_ = TranslationStringFactory('pyramid')
ts = _('add-number', default='Add ${number}', mapping={'number':1})

Note

We assigned the translation string factory to the name _. This
is a convention which will be supported by translation file generation
tools.

After assigning _ to the result of a
TranslationStringFactory(), the subsequent result of
calling _ will be a TranslationString instance.
Even though a domain value was not passed to _ (as would have been
necessary if the TranslationString constructor were used
instead of a translation string factory), the domain attribute of the
resulting translation string will be pyramid. As a result, the previous
code example is completely equivalent (except for spelling) to:

	1
2
3

	from pyramid.i18n import TranslationString as _
ts = _('add-number', default='Add ${number}', mapping={'number':1},
 domain='pyramid')

You can set up your own translation string factory much like the one provided
above by using the TranslationStringFactory class. For
example, if you'd like to create a translation string factory which presets the
domain value of generated translation strings to form, you'd do
something like this:

	1
2
3

	from pyramid.i18n import TranslationStringFactory
_ = TranslationStringFactory('form')
ts = _('add-number', default='Add ${number}', mapping={'number':1})

Creating a unique domain for your application via a translation string factory
is best practice. Using your own unique translation domain allows another
person to reuse your application without needing to merge your translation
files with their own. Instead they can just include your package's
translation directory via the
pyramid.config.Configurator.add_translation_dirs() method.

Note

For people familiar with Zope internationalization, a
TranslationStringFactory is a lot like a
zope.i18nmessageid.MessageFactory object. It is not a subclass,
however.

Working with gettext Translation Files

The basis of Pyramid translation services is GNU gettext. Once
your application source code files and templates are marked up with translation
markers, you can work on translations by creating various kinds of gettext
files.

Note

The steps a developer must take to work with gettext message
catalog files within a Pyramid application are very similar to the
steps a Pylons developer must take to do the same. See the
Pylons Internationalization and Localization documentation [http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/i18n.html#i18n] for more information.

GNU gettext uses three types of files in the translation framework, .pot
files, .po files, and .mo files.

.pot (Portable Object Template) files

A .pot file is created by a program which searches through your project's
source code and which picks out every message identifier passed to
one of the _() functions (e.g., translation string
constructions). The list of all message identifiers is placed into a .pot
file, which serves as a template for creating .po files.

.po (Portable Object) files

The list of messages in a .pot file are translated by a human to a
particular language; the result is saved as a .po file.

.mo (Machine Object) files

A .po file is turned into a machine-readable binary file, which is the
.mo file. Compiling the translations to machine code makes the
localized program start faster.

The tools for working with gettext translation files related to a
Pyramid application are Lingua and Gettext. Lingua can
scrape i18n references out of Python and Chameleon files and create the
.pot file. Gettext includes msgmerge tool to update a .po file from
an updated .pot file and msgfmt to compile .po files to .mo
files.

Installing Lingua and Gettext

In order for the commands related to working with gettext translation files
to work properly, you will need to have Lingua and Gettext
installed into the same environment in which Pyramid is installed.

Installation on UNIX

Gettext is often already installed on UNIX systems. You can check if it is
installed by testing if the msgfmt command is available. If it is not
available you can install it through the packaging system from your OS; the
package name is almost always gettext. For example on a Debian or Ubuntu
system run this command:

$ sudo apt-get install gettext

Installing Lingua is done with the Python packaging tools. If the
virtualenv into which you've installed your Pyramid application
lives in /my/virtualenv, you can install Lingua like so:

$ cd /my/virtualenv
$ $VENV/bin/easy_install lingua

Installation on Windows

There are several ways to install Gettext on Windows: it is included in the
Cygwin [http://www.cygwin.com/] collection, or you can use the installer
from the GnuWin32 [http://gnuwin32.sourceforge.net/packages/gettext.htm], or
compile it yourself. Make sure the installation path is added to your
$PATH.

Installing Lingua is done with the Python packaging tools. If the
virtualenv into which you've installed your Pyramid application
lives in C:\my\virtualenv, you can install Lingua like so:

C> %VENV%\Scripts\easy_install lingua

Extracting Messages from Code and Templates

Once Lingua is installed, you may extract a message catalog template from the
code and Chameleon templates which reside in your Pyramid
application. You run a pot-create command to extract the messages:

$ cd /place/where/myapplication/setup.py/lives
$ mkdir -p myapplication/locale
$ $VENV/bin/pot-create -o myapplication/locale/myapplication.pot src

The message catalog .pot template will end up in
myapplication/locale/myapplication.pot.

Initializing a Message Catalog File

Once you've extracted messages into a .pot file (see
Extracting Messages from Code and Templates), to begin localizing the messages present in the
.pot file, you need to generate at least one .po file. A .po file
represents translations of a particular set of messages to a particular locale.
Initialize a .po file for a specific locale from a pre-generated .pot
template by using the msginit command from Gettext:

$ cd /place/where/myapplication/setup.py/lives
$ cd myapplication/locale
$ mkdir -p es/LC_MESSAGES
$ msginit -l es -o es/LC_MESSAGES/myapplication.po

This will create a new message catalog .po file in
myapplication/locale/es/LC_MESSAGES/myapplication.po.

Once the file is there, it can be worked on by a human translator. One tool
which may help with this is Poedit [http://www.poedit.net/].

Note that Pyramid itself ignores the existence of all .po files.
For a running application to have translations available, a .mo file must
exist. See Compiling a Message Catalog File.

Updating a Catalog File

If more translation strings are added to your application, or translation
strings change, you will need to update existing .po files based on changes
to the .pot file, so that the new and changed messages can also be
translated or re-translated.

First, regenerate the .pot file as per Extracting Messages from Code and Templates. Then use
the msgmerge command from Gettext.

$ cd /place/where/myapplication/setup.py/lives
$ cd myapplication/locale
$ msgmerge --update es/LC_MESSAGES/myapplication.po myapplication.pot

Compiling a Message Catalog File

Finally, to prepare an application for performing actual runtime translations,
compile .po files to .mo files using the msgfmt command from
Gettext:

$ cd /place/where/myapplication/setup.py/lives
$ msgfmt -o myapplication/locale/es/LC_MESSAGES/myapplication.mo \
 myapplication/locale/es/LC_MESSAGES/myapplication.po

This will create a .mo file for each .po file in your application. As
long as the translation directory in which the .mo file ends up in
is configured into your application (see
Adding a Translation Directory), these translations will be available to
Pyramid.

Using a Localizer

A localizer is an object that allows you to perform translation or
pluralization "by hand" in an application. You may use the
pyramid.request.Request.localizer attribute to obtain a
localizer. The localizer object will be configured to produce
translations implied by the active locale negotiator, or a default
localizer object if no explicit locale negotiator is registered.

	1
2

	def aview(request):
 localizer = request.localizer

Note

If you need to create a localizer for a locale, use the
pyramid.i18n.make_localizer() function.

Performing a Translation

A localizer has a translate method which accepts either a
translation string or a Unicode string and which returns a Unicode
object representing the translation. Generating a translation in a view
component of an application might look like so:

	1
2
3
4
5
6
7
8
9

	from pyramid.i18n import TranslationString

ts = TranslationString('Add ${number}', mapping={'number':1},
 domain='pyramid')

def aview(request):
 localizer = request.localizer
 translated = localizer.translate(ts) # translation string
 # ... use translated ...

The request.localizer attribute will be a pyramid.i18n.Localizer
object bound to the locale name represented by the request. The translation
returned from its pyramid.i18n.Localizer.translate() method will depend
on the domain attribute of the provided translation string as well as the
locale of the localizer.

Note

If you're using Chameleon templates, you don't need to pre-translate
translation strings this way. See Chameleon Template Support for Translation Strings.

Performing a Pluralization

A localizer has a pluralize method with the following signature:

	1
2

	def pluralize(singular, plural, n, domain=None, mapping=None):
 ...

The simplest case is the singular and plural arguments being passed as
Unicode literals. This returns the appropriate literal according to the locale
pluralization rules for the number n, and interpolates mapping.

	1
2
3
4

	def aview(request):
 localizer = request.localizer
 translated = localizer.pluralize('Item', 'Items', 1, 'mydomain')
 # ... use translated ...

However, for support of other languages, the singular argument should be a
Unicode value representing a message identifier. In this case the
plural value is ignored. domain should be a translation domain,
and mapping should be a dictionary that is used for replacement value
interpolation of the translated string.

The value of n will be used to find the appropriate plural form for the
current language, and pluralize will return a Unicode translation for the
message id singular. The message file must have defined singular as a
translation with plural forms.

The argument provided as singular may be a translation string
object, but the domain and mapping information attached is ignored.

	1
2
3
4
5

	def aview(request):
 localizer = request.localizer
 num = 1
 translated = localizer.pluralize('item_plural', '${number} items',
 num, 'mydomain', mapping={'number':num})

The corresponding message catalog must have language plural definitions and
plural alternatives set.

	1
2
3
4
5
6
7

	"Plural-Forms: nplurals=3; plural=n==0 ? 0 : n==1 ? 1 : 2;"

msgid "item_plural"
msgid_plural ""
msgstr[0] "No items"
msgstr[1] "${number} item"
msgstr[2] "${number} items"

More information on complex plurals can be found in the gettext documentation [https://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/Plural-forms.html].

Obtaining the Locale Name for a Request

You can obtain the locale name related to a request by using the
pyramid.request.Request.locale_name() attribute of the request.

	1
2

	def aview(request):
 locale_name = request.locale_name

The locale name of a request is dynamically computed; it will be the locale
name negotiated by the currently active locale negotiator, or the
default locale name if the locale negotiator returns None. You can
change the default locale name by changing the pyramid.default_locale_name
setting. See Default Locale Name.

Once locale_name() is first run, the locale name
is stored on the request object. Subsequent calls to
locale_name() will return the stored locale name
without invoking the locale negotiator. To avoid this caching, you can
use the pyramid.i18n.negotiate_locale_name() function:

	1
2
3
4

	from pyramid.i18n import negotiate_locale_name

def aview(request):
 locale_name = negotiate_locale_name(request)

You can also obtain the locale name related to a request using the
locale_name attribute of a localizer.

	1
2
3

	def aview(request):
 localizer = request.localizer
 locale_name = localizer.locale_name

Obtaining the locale name as an attribute of a localizer is equivalent to
obtaining a locale name by asking for the
locale_name() attribute.

Performing Date Formatting and Currency Formatting

Pyramid does not itself perform date and currency formatting for
different locales. However, Babel can help you do this via the
babel.core.Locale class. The Babel documentation for this class [http://babel.pocoo.org/en/latest/api/core.html#basic-interface] provides
minimal information about how to perform date and currency related locale
operations. See Installing Lingua and Gettext for information about how to install
Babel.

The babel.core.Locale class requires a locale name as an
argument to its constructor. You can use Pyramid APIs to obtain the
locale name for a request to pass to the babel.core.Locale
constructor. See Obtaining the Locale Name for a Request. For example:

	1
2
3
4
5

	from babel.core import Locale

def aview(request):
 locale_name = request.locale_name
 locale = Locale(locale_name)

Chameleon Template Support for Translation Strings

When a translation string is used as the subject of textual rendering
by a Chameleon template renderer, it will automatically be translated
to the requesting user's language if a suitable translation exists. This is
true of both the ZPT and text variants of the Chameleon template renderers.

For example, in a Chameleon ZPT template, the translation string represented by
"some_translation_string" in each example below will go through translation
before being rendered:

	1

	

	1

	

	1

	${some_translation_string}

	1

	<a tal:attributes="href some_translation_string">Click here

The features represented by attributes of the i18n namespace of Chameleon
will also consult the Pyramid translations. See
http://chameleon.readthedocs.org/en/latest/reference.html#id50.

Note

Unlike when Chameleon is used outside of Pyramid, when it is used
within Pyramid, it does not support use of the zope.i18n
translation framework. Applications which use Pyramid should use the
features documented in this chapter rather than zope.i18n.

Third party Pyramid template renderers might not provide this support
out of the box and may need special code to do an equivalent. For those, you
can always use the more manual translation facility described in
Performing a Translation.

Mako Pyramid i18n Support

There exists a recipe within the Pyramid Community Cookbook named
Mako Internationalization [http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/templates/mako_i18n.html#mako-i18n] which explains how to add
idiomatic i18n support to Mako templates.

Jinja2 Pyramid i18n Support

The add-on pyramid_jinja2 [https://github.com/Pylons/pyramid_jinja2]
provides a scaffold with an example of how to use internationalization with
Jinja2 in Pyramid. See the documentation sections Internalization (i18n) [http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/#internalization-i18n]
and Paster Template I18N [http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/#paster-template-i18n].

Localization-Related Deployment Settings

A Pyramid application will have a pyramid.default_locale_name
setting. This value represents the default locale name used when the
locale negotiator returns None. Pass it to the
Configurator constructor at startup time:

	1
2

	from pyramid.config import Configurator
config = Configurator(settings={'pyramid.default_locale_name':'de'})

You may alternately supply a pyramid.default_locale_name via an
application's .ini file:

	1
2
3
4
5
6

	[app:main]
use = egg:MyProject
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.default_locale_name = de

If this value is not supplied via the Configurator constructor or via a config
file, it will default to en.

If this setting is supplied within the Pyramid application .ini
file, it will be available as a settings key:

	1
2
3

	from pyramid.threadlocal import get_current_registry
settings = get_current_registry().settings
default_locale_name = settings['pyramid.default_locale_name']

"Detecting" Available Languages

Other systems provide an API that returns the set of "available languages" as
indicated by the union of all languages in all translation directories on disk
at the time of the call to the API.

It is by design that Pyramid doesn't supply such an API. Instead the
application itself is responsible for knowing the "available languages". The
rationale is this: any particular application deployment must always know which
languages it should be translatable to anyway, regardless of which translation
files are on disk.

Here's why: it's not a given that because translations exist in a particular
language within the registered set of translation directories that this
particular deployment wants to allow translation to that language. For
example, some translations may exist but they may be incomplete or incorrect.
Or there may be translations to a language but not for all translation domains.

Any nontrivial application deployment will always need to be able to
selectively choose to allow only some languages even if that set of languages
is smaller than all those detected within registered translation directories.
The easiest way to allow for this is to make the application entirely
responsible for knowing which languages are allowed to be translated to instead
of relying on the framework to divine this information from translation
directory file info.

You can set up a system to allow a deployer to select available languages based
on convention by using the pyramid.settings mechanism.

Allow a deployer to modify your application's .ini file:

	1
2
3
4

	[app:main]
use = egg:MyProject
...
available_languages = fr de en ru

Then as a part of the code of a custom locale negotiator:

	1
2
3

	from pyramid.threadlocal import get_current_registry
settings = get_current_registry().settings
languages = settings['available_languages'].split()

This is only a suggestion. You can create your own "available languages"
configuration scheme as necessary.

Activating Translation

By default, a Pyramid application performs no translation. To turn
translation on you must:

	add at least one translation directory to your application.

	ensure that your application sets the locale name correctly.

Adding a Translation Directory

gettext is the underlying machinery behind the Pyramid
translation machinery. A translation directory is a directory organized to be
useful to gettext. A translation directory usually includes a listing
of language directories, each of which itself includes an LC_MESSAGES
directory. Each LC_MESSAGES directory should contain one or more .mo
files. Each .mo file represents a message catalog, which is used to
provide translations to your application.

Adding a translation directory registers all of its constituent
message catalog files within your Pyramid application to be
available to use for translation services. This includes all of the .mo
files found within all LC_MESSAGES directories within each locale directory
in the translation directory.

You can add a translation directory imperatively by using the
pyramid.config.Configurator.add_translation_dirs() during application
startup. For example:

	1
2
3

	from pyramid.config import Configurator
config.add_translation_dirs('my.application:locale/',
 'another.application:locale/')

A message catalog in a translation directory added via
add_translation_dirs() will be merged into
translations from a message catalog added earlier if both translation
directories contain translations for the same locale and translation
domain.

Setting the Locale

When the default locale negotiator (see The Default Locale Negotiator) is
in use, you can inform Pyramid of the current locale name by doing any
of these things before any translations need to be performed:

	Set the _LOCALE_ attribute of the request to a valid locale name (usually
directly within view code), e.g., request._LOCALE_ = 'de'.

	Ensure that a valid locale name value is in the request.params dictionary
under the key named _LOCALE_. This is usually the result of passing a
LOCALE value in the query string or in the body of a form post
associated with a request. For example, visiting
http://my.application?_LOCALE_=de.

	Ensure that a valid locale name value is in the request.cookies
dictionary under the key named _LOCALE_. This is usually the result of
setting a _LOCALE_ cookie in a prior response, e.g.,
response.set_cookie('_LOCALE_', 'de').

Note

If this locale negotiation scheme is inappropriate for a particular
application, you can configure a custom locale negotiator function
into that application as required. See Using a Custom Locale Negotiator.

Locale Negotiators

A locale negotiator informs the operation of a localizer by
telling it what locale name is related to a particular request. A
locale negotiator is a bit of code which accepts a request and which returns a
locale name. It is consulted when
pyramid.i18n.Localizer.translate() or
pyramid.i18n.Localizer.pluralize() is invoked. It is also consulted when
locale_name() is accessed or when
negotiate_locale_name() is invoked.

The Default Locale Negotiator

Most applications can make use of the default locale negotiator, which requires
no additional coding or configuration.

The default locale negotiator implementation named
default_locale_negotiator uses the following set of
steps to determine the locale name.

	First the negotiator looks for the _LOCALE_ attribute of the request
object (possibly set directly by view code or by a listener for an
event).

	Then it looks for the request.params['_LOCALE_'] value.

	Then it looks for the request.cookies['_LOCALE_'] value.

	If no locale can be found via the request, it falls back to using the
default locale name (see Localization-Related Deployment Settings).

	Finally if the default locale name is not explicitly set, it uses the locale
name en.

Using a Custom Locale Negotiator

Locale negotiation is sometimes policy-laden and complex. If the (simple)
default locale negotiation scheme described in Activating Translation is
inappropriate for your application, you may create a special locale
negotiator. Subsequently you may override the default locale negotiator by
adding your newly created locale negotiator to your application's
configuration.

A locale negotiator is simply a callable which accepts a request and returns a
single locale name or None if no locale can be determined.

Here's an implementation of a simple locale negotiator:

	1
2
3

	def my_locale_negotiator(request):
 locale_name = request.params.get('my_locale')
 return locale_name

If a locale negotiator returns None, it signifies to Pyramid that
the default application locale name should be used.

You may add your newly created locale negotiator to your application's
configuration by passing an object which can act as the negotiator (or a
dotted Python name referring to the object) as the
locale_negotiator argument of the Configurator
instance during application startup. For example:

	1
2

	from pyramid.config import Configurator
config = Configurator(locale_negotiator=my_locale_negotiator)

Alternatively, use the
pyramid.config.Configurator.set_locale_negotiator() method.

For example:

	1
2
3

	from pyramid.config import Configurator
config = Configurator()
config.set_locale_negotiator(my_locale_negotiator)

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Virtual Hosting

"Virtual hosting" is, loosely, the act of serving a Pyramid application
or a portion of a Pyramid application under a URL space that it does not
"naturally" inhabit.

Pyramid provides facilities for serving an application under a URL
"prefix", as well as serving a portion of a traversal based
application under a root URL.

Hosting an Application Under a URL Prefix

Pyramid supports a common form of virtual hosting whereby you can host a
Pyramid application as a "subset" of some other site (e.g., under
http://example.com/mypyramidapplication/ as opposed to under
http://example.com/).

If you use a "pure Python" environment, this functionality can be provided by
Paste's urlmap [http://pythonpaste.org/modules/urlmap.html] "composite" WSGI
application. Alternatively, you can use mod_wsgi to serve your
application, which handles this virtual hosting translation for you "under the
hood".

If you use the urlmap composite application "in front" of a Pyramid
application or if you use mod_wsgi to serve up a Pyramid
application, nothing special needs to be done within the application for URLs
to be generated that contain a prefix. paste.urlmap and mod_wsgi
manipulate the WSGI environment in such a way that the PATH_INFO
and SCRIPT_NAME variables are correct for some given prefix.

Here's an example of a PasteDeploy configuration snippet that includes a
urlmap composite.

	1
2
3
4
5
6

	[app:mypyramidapp]
use = egg:mypyramidapp

[composite:main]
use = egg:Paste#urlmap
/pyramidapp = mypyramidapp

This "roots" the Pyramid application at the prefix /pyramidapp and
serves up the composite as the "main" application in the file.

Note

If you're using an Apache server to proxy to a Paste urlmap
composite, you may have to use the ProxyPreserveHost [http://httpd.apache.org/docs/2.2/mod/mod_proxy.html#proxypreservehost]
directive to pass the original HTTP_HOST header along to the
application, so URLs get generated properly. As of this writing the
urlmap composite does not seem to respect the HTTP_X_FORWARDED_HOST
parameter, which will contain the original host header even if HTTP_HOST
is incorrect.

If you use mod_wsgi, you do not need to use a composite application
in your .ini file. The WSGIScriptAlias configuration setting in a
mod_wsgi configuration does the work for you:

	1

	WSGIScriptAlias /pyramidapp /Users/chrism/projects/modwsgi/env/pyramid.wsgi

In the above configuration, we root a Pyramid application at
/pyramidapp within the Apache configuration.

Virtual Root Support

Pyramid also supports "virtual roots", which can be used in
traversal-based (but not URL dispatch-based) applications.

Virtual root support is useful when you'd like to host some resource in a
Pyramid resource tree as an application under a URL pathname that does
not include the resource path itself. For example, you might want to serve the
object at the traversal path /cms as an application reachable via
http://example.com/ (as opposed to http://example.com/cms).

To specify a virtual root, cause an environment variable to be inserted into
the WSGI environ named HTTP_X_VHM_ROOT with a value that is the absolute
pathname to the resource object in the resource tree that should behave as the
"root" resource. As a result, the traversal machinery will respect this value
during traversal (prepending it to the PATH_INFO before traversal starts), and
the pyramid.request.Request.resource_url() API will generate the
"correct" virtually-rooted URLs.

An example of an Apache mod_proxy configuration that will host the /cms
subobject as http://www.example.com/ using this facility is below:

	1
2
3
4
5
6
7
8
9

	NameVirtualHost *:80

<VirtualHost *:80>
 ServerName www.example.com
 RewriteEngine On
 RewriteRule ^/(.*) http://127.0.0.1:6543/$1 [L,P]
 ProxyPreserveHost on
 RequestHeader add X-Vhm-Root /cms
</VirtualHost>

Note

Use of the RequestHeader directive requires that the Apache
mod_headers [http://httpd.apache.org/docs/2.2/mod/mod_headers.html]
module be available in the Apache environment you're using.

For a Pyramid application running under mod_wsgi, the same can
be achieved using SetEnv:

	1
2
3

	<Location />
 SetEnv HTTP_X_VHM_ROOT /cms
</Location>

Setting a virtual root has no effect when using an application based on
URL dispatch.

Further Documentation and Examples

The API documentation in pyramid.traversal documents a
pyramid.traversal.virtual_root() API. When called, it returns the
virtual root object (or the physical root object if no virtual root has been
specified).

Running a Pyramid Application under mod_wsgi has detailed information about using mod_wsgi
to serve Pyramid applications.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Unit, Integration, and Functional Testing

Unit testing is, not surprisingly, the act of testing a "unit" in your
application. In this context, a "unit" is often a function or a method of a
class instance. The unit is also referred to as a "unit under test".

The goal of a single unit test is to test only some permutation of the
"unit under test". If you write a unit test that aims to verify the result of
a particular codepath through a Python function, you need only be concerned
about testing the code that lives in the function body itself. If the
function accepts a parameter that represents a complex application "domain
object" (such as a resource, a database connection, or an SMTP server), the
argument provided to this function during a unit test need not be and likely
should not be a "real" implementation object. For example, although a
particular function implementation may accept an argument that represents an
SMTP server object, and the function may call a method of this object when the
system is operating normally that would result in an email being sent, a unit
test of this codepath of the function does not need to test that an email is
actually sent. It just needs to make sure that the function calls the method
of the object provided as an argument that would send an email if the
argument happened to be the "real" implementation of an SMTP server object.

An integration test, on the other hand, is a different form of testing in
which the interaction between two or more "units" is explicitly tested.
Integration tests verify that the components of your application work together.
You might make sure that an email was actually sent in an integration test.

A functional test is a form of integration test in which the application is
run "literally". You would have to make sure that an email was actually sent
in a functional test, because it tests your code end to end.

It is often considered best practice to write each type of tests for any given
codebase. Unit testing often provides the opportunity to obtain better
"coverage": it's usually possible to supply a unit under test with arguments
and/or an environment which causes all of its potential codepaths to be
executed. This is usually not as easy to do with a set of integration or
functional tests, but integration and functional testing provides a measure of
assurance that your "units" work together, as they will be expected to when
your application is run in production.

The suggested mechanism for unit and integration testing of a Pyramid
application is the Python unittest [http://docs.python.org/3/library/unittest.html#module-unittest] module. Although this module is
named unittest [http://docs.python.org/3/library/unittest.html#module-unittest], it is actually capable of driving both unit and
integration tests. A good unittest [http://docs.python.org/3/library/unittest.html#module-unittest] tutorial is available within Dive
Into Python [http://www.diveintopython.net/unit_testing/index.html] by Mark
Pilgrim.

Pyramid provides a number of facilities that make unit, integration, and
functional tests easier to write. The facilities become particularly useful
when your code calls into Pyramid-related framework functions.

Test Set Up and Tear Down

Pyramid uses a "global" (actually thread local) data structure
to hold two items: the current request and the current
application registry. These data structures are available via the
pyramid.threadlocal.get_current_request() and
pyramid.threadlocal.get_current_registry() functions, respectively. See
Thread Locals for information about these functions and the data
structures they return.

If your code uses these get_current_* functions or calls Pyramid
code which uses get_current_* functions, you will need to call
pyramid.testing.setUp() in your test setup and you will need to call
pyramid.testing.tearDown() in your test teardown.
setUp() pushes a registry onto the thread local
stack, which makes the get_current_* functions work. It returns a
Configurator object which can be used to perform extra configuration
required by the code under test. tearDown() pops the
thread local stack.

Normally when a Configurator is used directly with the main block of a
Pyramid application, it defers performing any "real work" until its .commit
method is called (often implicitly by the
pyramid.config.Configurator.make_wsgi_app() method). The Configurator
returned by setUp() is an autocommitting Configurator,
however, which performs all actions implied by methods called on it
immediately. This is more convenient for unit testing purposes than needing to
call pyramid.config.Configurator.commit() in each test after adding extra
configuration statements.

The use of the setUp() and
tearDown() functions allows you to supply each unit test
method in a test case with an environment that has an isolated registry and an
isolated request for the duration of a single test. Here's an example of using
this feature:

	1
2
3
4
5
6
7
8
9

	import unittest
from pyramid import testing

class MyTest(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

The above will make sure that get_current_registry()
called within a test case method of MyTest will return the
application registry associated with the config Configurator
instance. Each test case method attached to MyTest will use an isolated
registry.

The setUp() and tearDown()
functions accept various arguments that influence the environment of the test.
See the pyramid.testing API for information about the extra arguments
supported by these functions.

If you also want to make get_current_request()
return something other than None during the course of a single test, you
can pass a request object into the pyramid.testing.setUp() within
the setUp method of your test:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import unittest
from pyramid import testing

class MyTest(unittest.TestCase):
 def setUp(self):
 request = testing.DummyRequest()
 self.config = testing.setUp(request=request)

 def tearDown(self):
 testing.tearDown()

If you pass a request object into pyramid.testing.setUp() within
your test case's setUp, any test method attached to the MyTest test
case that directly or indirectly calls
get_current_request() will receive the request
object. Otherwise, during testing,
get_current_request() will return None. We use a
"dummy" request implementation supplied by
pyramid.testing.DummyRequest because it's easier to construct than a
"real" Pyramid request object.

Test setup using a context manager

An alternative style of setting up a test configuration is to use the with
statement and pyramid.testing.testConfig() to create a context manager.
The context manager will call pyramid.testing.setUp() before the code
under test and pyramid.testing.tearDown() afterwards.

This style is useful for small self-contained tests. For example:

	1
2
3
4
5
6
7
8
9

	import unittest

class MyTest(unittest.TestCase):

 def test_my_function(self):
 from pyramid import testing
 with testing.testConfig() as config:
 config.add_route('bar', '/bar/{id}')
 my_function_which_needs_route_bar()

What?

Thread local data structures are always a bit confusing, especially when
they're used by frameworks. Sorry. So here's a rule of thumb: if you don't
know whether you're calling code that uses the
get_current_registry() or
get_current_request() functions, or you don't care
about any of this, but you still want to write test code, just always call
pyramid.testing.setUp() in your test's setUp method and
pyramid.testing.tearDown() in your tests' tearDown method. This
won't really hurt anything if the application you're testing does not call any
get_current* function.

Using the Configurator and pyramid.testing APIs in Unit Tests

The Configurator API and the pyramid.testing module provide a number
of functions which can be used during unit testing. These functions make
configuration declaration calls to the current application
registry, but typically register a "stub" or "dummy" feature in place of the
"real" feature that the code would call if it was being run normally.

For example, let's imagine you want to unit test a Pyramid view
function.

	1
2
3
4
5
6

	from pyramid.httpexceptions import HTTPForbidden

def view_fn(request):
 if request.has_permission('edit'):
 raise HTTPForbidden
 return {'greeting':'hello'}

Note

This code implies that you have defined a renderer imperatively in a
relevant pyramid.config.Configurator instance, otherwise it would
fail when run normally.

Without doing anything special during a unit test, the call to
has_permission() in this view function will
always return a True value. When a Pyramid application starts
normally, it will populate an application registry using
configuration declaration calls made against a Configurator.
But if this application registry is not created and populated (e.g., by
initializing the configurator with an authorization policy), like when you
invoke application code via a unit test, Pyramid API functions will tend
to either fail or return default results. So how do you test the branch of the
code in this view function that raises
HTTPForbidden?

The testing API provided by Pyramid allows you to simulate various
application registry registrations for use under a unit testing framework
without needing to invoke the actual application configuration implied by its
main function. For example, if you wanted to test the above view_fn
(assuming it lived in the package named my.package), you could write a
unittest.TestCase [http://docs.python.org/3/library/unittest.html#unittest.TestCase] that used the testing API.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	import unittest
from pyramid import testing

class MyTest(unittest.TestCase):
 def setUp(self):
 self.config = testing.setUp()

 def tearDown(self):
 testing.tearDown()

 def test_view_fn_forbidden(self):
 from pyramid.httpexceptions import HTTPForbidden
 from my.package import view_fn
 self.config.testing_securitypolicy(userid='hank',
 permissive=False)
 request = testing.DummyRequest()
 request.context = testing.DummyResource()
 self.assertRaises(HTTPForbidden, view_fn, request)

 def test_view_fn_allowed(self):
 from my.package import view_fn
 self.config.testing_securitypolicy(userid='hank',
 permissive=True)
 request = testing.DummyRequest()
 request.context = testing.DummyResource()
 response = view_fn(request)
 self.assertEqual(response, {'greeting':'hello'})

In the above example, we create a MyTest test case that inherits from
unittest.TestCase [http://docs.python.org/3/library/unittest.html#unittest.TestCase]. If it's in our Pyramid application, it will
be found when setup.py test is run. It has two test methods.

The first test method, test_view_fn_forbidden tests the view_fn when
the authentication policy forbids the current user the edit permission. Its
third line registers a "dummy" "non-permissive" authorization policy using the
testing_securitypolicy() method, which is a
special helper method for unit testing.

We then create a pyramid.testing.DummyRequest object which simulates a
WebOb request object API. A pyramid.testing.DummyRequest is a request
object that requires less setup than a "real" Pyramid request. We call
the function being tested with the manufactured request. When the function is
called, pyramid.request.Request.has_permission() will call the "dummy"
authentication policy we've registered through
testing_securitypolicy(), which denies
access. We check that the view function raises a
HTTPForbidden error.

The second test method, named test_view_fn_allowed, tests the alternate
case, where the authentication policy allows access. Notice that we pass
different values to testing_securitypolicy()
to obtain this result. We assert at the end of this that the view function
returns a value.

Note that the test calls the pyramid.testing.setUp() function in its
setUp method and the pyramid.testing.tearDown() function in its
tearDown method. We assign the result of pyramid.testing.setUp() as
config on the unittest class. This is a Configurator object and
all methods of the configurator can be called as necessary within tests. If you
use any of the Configurator APIs during testing, be
sure to use this pattern in your test case's setUp and tearDown; these
methods make sure you're using a "fresh" application registry per test
run.

See the pyramid.testing chapter for the entire Pyramid-specific
testing API. This chapter describes APIs for registering a security policy,
registering resources at paths, registering event listeners, registering views
and view permissions, and classes representing "dummy" implementations of a
request and a resource.

See also

See also the various methods of the Configurator documented in
pyramid.config that begin with the testing_ prefix.

Creating Integration Tests

In Pyramid, a unit test typically relies on "mock" or "dummy"
implementations to give the code under test enough context to run.

"Integration testing" implies another sort of testing. In the context of a
Pyramid integration test, the test logic exercises the functionality of
the code under test and its integration with the rest of the Pyramid
framework.

Creating an integration test for a Pyramid application usually means
invoking the application's includeme function via
pyramid.config.Configurator.include() within the test's setup code. This
causes the entire Pyramid environment to be set up, simulating what
happens when your application is run "for real". This is a heavy-hammer way of
making sure that your tests have enough context to run properly, and tests your
code's integration with the rest of Pyramid.

See also

See also Including Configuration from External Sources

Writing unit tests that use the Configurator API to
set up the right "mock" registrations is often preferred to creating
integration tests. Unit tests will run faster (because they do less for each
test) and are usually easier to reason about.

Creating Functional Tests

Functional tests test your literal application.

In Pyramid, functional tests are typically written using the WebTest
package, which provides APIs for invoking HTTP(S) requests to your application.

Regardless of which testing package you use, ensure to add a
tests_require dependency on that package to your application's
setup.py file. Using the project MyProject generated by the starter
scaffold as described in Creating a Pyramid Project, we would insert the following code immediately following the
requires block in the file MyProject/setup.py.

	11
12
13
14
15
16
17
18
19
20

	requires = [
 'pyramid',
 'pyramid_chameleon',
 'pyramid_debugtoolbar',
 'waitress',
]

test_requires = [
 'webtest',
]

Remember to change the dependency.

	39
40
41

	 install_requires=requires,
 tests_require=test_requires,
 test_suite="myproject",

As always, whenever you change your dependencies, make sure to run the
following command.

$VENV/bin/python setup.py develop

In your MyPackage project, your package is named myproject
which contains a views module, which in turn contains a view
function my_view that returns an HTML body when the root URL is invoked:

	1
2
3
4
5
6

	from pyramid.view import view_config

@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request):
 return {'project': 'MyProject'}

The following example functional test demonstrates invoking the above
view:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	class FunctionalTests(unittest.TestCase):
 def setUp(self):
 from myproject import main
 app = main({})
 from webtest import TestApp
 self.testapp = TestApp(app)

 def test_root(self):
 res = self.testapp.get('/', status=200)
 self.assertTrue('Pyramid' in res.body)

When this test is run, each test method creates a "real" WSGI
application using the main function in your myproject.__init__ module,
using WebTest to wrap that WSGI application. It assigns the result to
self.testapp. In the test named test_root, the TestApp's GET
method is used to invoke the root URL. Finally, an assertion is made that the
returned HTML contains the text Pyramid.

See the WebTest documentation for further information about the methods
available to a webtest.app.TestApp [http://webtest.pythonpaste.org/en/latest/api.html#webtest.app.TestApp] instance.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Resources

A resource is an object that represents a "place" in a tree related to
your application. Every Pyramid application has at least one resource
object: the root resource. Even if you don't define a root resource
manually, a default one is created for you. The root resource is the root of a
resource tree. A resource tree is a set of nested dictionary-like
objects which you can use to represent your website's structure.

In an application which uses traversal to map URLs to code, the
resource tree structure is used heavily to map each URL to a view
callable. When traversal is used, Pyramid will walk through
the resource tree by traversing through its nested dictionary structure in
order to find a context resource. Once a context resource is found,
the context resource and data in the request will be used to find a view
callable.

In an application which uses URL dispatch, the resource tree is only
used indirectly, and is often "invisible" to the developer. In URL dispatch
applications, the resource "tree" is often composed of only the root resource
by itself. This root resource sometimes has security declarations attached to
it, but is not required to have any. In general, the resource tree is much
less important in applications that use URL dispatch than applications that use
traversal.

In "Zope-like" Pyramid applications, resource objects also often store
data persistently, and offer methods related to mutating that persistent data.
In these kinds of applications, resources not only represent the site structure
of your website, but they become the domain model of the application.

Also:

	The context and containment predicate arguments to
add_view() (or a
view_config() decorator) reference a resource class or
resource interface.

	A root factory returns a resource.

	A resource is exposed to view code as the context of a view.

	Various helpful Pyramid API methods expect a resource as an argument
(e.g., resource_url() and others).

Defining a Resource Tree

When traversal is used (as opposed to a purely URL dispatch
based application), Pyramid expects to be able to traverse a tree
composed of resources (the resource tree). Traversal begins at a root
resource, and descends into the tree recursively, trying each resource's
__getitem__ method to resolve a path segment to another resource object.
Pyramid imposes the following policy on resource instances in the tree:

	A container resource (a resource which contains other resources) must supply
a __getitem__ method which is willing to resolve a Unicode name to a
sub-resource. If a sub-resource by a particular name does not exist in a
container resource, the __getitem__ method of the container resource must
raise a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]. If a sub-resource by that name does exist, the
container's __getitem__ should return the sub-resource.

	Leaf resources, which do not contain other resources, must not implement a
__getitem__, or if they do, their __getitem__ method must always
raise a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError].

See Traversal for more information about how traversal works
against resource instances.

Here's a sample resource tree, represented by a variable named root:

	1
2
3
4

	class Resource(dict):
 pass

root = Resource({'a':Resource({'b':Resource({'c':Resource()})})})

The resource tree we've created above is represented by a dictionary-like root
object which has a single child named 'a'. 'a' has a single child
named 'b', and 'b' has a single child named 'c', which has no
children. It is therefore possible to access the 'c' leaf resource like so:

	1

	root['a']['b']['c']

If you returned the above root object from a root factory, the path
/a/b/c would find the 'c' object in the resource tree as the result of
traversal.

In this example, each of the resources in the tree is of the same class. This
is not a requirement. Resource elements in the tree can be of any type. We
used a single class to represent all resources in the tree for the sake of
simplicity, but in a "real" app, the resources in the tree can be arbitrary.

Although the example tree above can service a traversal, the resource instances
in the above example are not aware of location, so their utility in a
"real" application is limited. To make best use of built-in Pyramid API
facilities, your resources should be "location-aware". The next section details
how to make resources location-aware.

Location-Aware Resources

In order for certain Pyramid location, security, URL-generation, and
traversal APIs to work properly against the resources in a resource tree, all
resources in the tree must be location-aware. This means they must
have two attributes: __parent__ and __name__.

The __parent__ attribute of a location-aware resource should be a reference
to the resource's parent resource instance in the tree. The __name__
attribute should be the name with which a resource's parent refers to the
resource via __getitem__.

The __parent__ of the root resource should be None and its __name__
should be the empty string. For instance:

	1
2
3

	class MyRootResource(object):
 __name__ = ''
 __parent__ = None

A resource returned from the root resource's __getitem__ method should have
a __parent__ attribute that is a reference to the root resource, and its
__name__ attribute should match the name by which it is reachable via the
root resource's __getitem__. A container resource within the root resource
should have a __getitem__ that returns resources with a __parent__
attribute that points at the container, and these sub-objects should have a
__name__ attribute that matches the name by which they are retrieved from
the container via __getitem__. This pattern continues recursively "up" the
tree from the root.

The __parent__ attributes of each resource form a linked list that points
"downwards" toward the root. This is analogous to the .. entry in
filesystem directories. If you follow the __parent__ values from any
resource in the resource tree, you will eventually come to the root resource,
just like if you keep executing the cd .. filesystem command, eventually
you will reach the filesystem root directory.

Warning

If your root resource has a __name__ argument that is not None or
the empty string, URLs returned by the
resource_url() function, and paths generated
by the resource_path() and
resource_path_tuple() APIs, will be generated
improperly. The value of __name__ will be prepended to every path and
URL generated (as opposed to a single leading slash or empty tuple element).

For your convenience

If you'd rather not manage the __name__ and __parent__ attributes of
your resources "by hand", an add-on package named
pyramid_traversalwrapper can help.

In order to use this helper feature, you must first install the
pyramid_traversalwrapper package (available via PyPI), then register
its ModelGraphTraverser as the traversal policy, rather than the default
Pyramid traverser. The package contains instructions for doing so.

Once Pyramid is configured with this feature, you will no longer need
to manage the __parent__ and __name__ attributes on resource objects
"by hand". Instead, as necessary during traversal, Pyramid will wrap
each resource (even the root resource) in a LocationProxy, which will
dynamically assign a __name__ and a __parent__ to the traversed
resource, based on the last traversed resource and the name supplied to
__getitem__. The root resource will have a __name__ attribute of
None and a __parent__ attribute of None.

Applications which use tree-walking Pyramid APIs require location-aware
resources. These APIs include (but are not limited to)
resource_url(),
find_resource(), find_root(),
find_interface(),
resource_path(),
resource_path_tuple(),
traverse(), virtual_root(),
and (usually) has_permission() and
principals_allowed_by_permission().

In general, since so much Pyramid infrastructure depends on
location-aware resources, it's a good idea to make each resource in your tree
location-aware.

Generating the URL of a Resource

If your resources are location-aware, you can use the
pyramid.request.Request.resource_url() API to generate a URL for the
resource. This URL will use the resource's position in the parent tree to
create a resource path, and it will prefix the path with the current
application URL to form a fully-qualified URL with the scheme, host, port, and
path. You can also pass extra arguments to
resource_url() to influence the generated URL.

The simplest call to resource_url() looks like
this:

	1

	url = request.resource_url(resource)

The request in the above example is an instance of a Pyramid
request object.

If the resource referred to as resource in the above example was the root
resource, and the host that was used to contact the server was example.com,
the URL generated would be http://example.com/. However, if the resource
was a child of the root resource named a, the generated URL would be
http://example.com/a/.

A slash is appended to all resource URLs when
resource_url() is used to generate them in this
simple manner, because resources are "places" in the hierarchy, and URLs are
meant to be clicked on to be visited. Relative URLs that you include on HTML
pages rendered as the result of the default view of a resource are more apt to
be relative to these resources than relative to their parent.

You can also pass extra elements to
resource_url():

	1

	url = request.resource_url(resource, 'foo', 'bar')

If the resource referred to as resource in the above example was the root
resource, and the host that was used to contact the server was example.com,
the URL generated would be http://example.com/foo/bar. Any number of extra
elements can be passed to resource_url() as
extra positional arguments. When extra elements are passed, they are appended
to the resource's URL. A slash is not appended to the final segment when
elements are passed.

You can also pass a query string:

	1

	url = request.resource_url(resource, query={'a':'1'})

If the resource referred to as resource in the above example was the root
resource, and the host that was used to contact the server was example.com,
the URL generated would be http://example.com/?a=1.

When a virtual root is active, the URL generated by
resource_url() for a resource may be "shorter"
than its physical tree path. See Virtual Root Support for more
information about virtually rooting a resource.

For more information about generating resource URLs, see the documentation for
pyramid.request.Request.resource_url().

Overriding Resource URL Generation

If a resource object implements a __resource_url__ method, this method will
be called when resource_url() is called to
generate a URL for the resource, overriding the default URL returned for the
resource by resource_url().

The __resource_url__ hook is passed two arguments: request and
info. request is the request object passed to
resource_url(). info is a dictionary with
the following keys:

	physical_path

	A string representing the "physical path" computed for the resource, as
defined by pyramid.traversal.resource_path(resource). It will begin and
end with a slash.

	virtual_path

	A string representing the "virtual path" computed for the resource, as
defined by Virtual Root Support. This will be identical to the
physical path if virtual rooting is not enabled. It will begin and end with
a slash.

	app_url

	A string representing the application URL generated during
request.resource_url. It will not end with a slash. It represents a
potentially customized URL prefix, containing potentially custom scheme, host
and port information passed by the user to request.resource_url. It
should be preferred over use of request.application_url.

The __resource_url__ method of a resource should return a string
representing a URL. If it cannot override the default, it should return
None. If it returns None, the default URL will be returned.

Here's an example __resource_url__ method.

	1
2
3

	class Resource(object):
 def __resource_url__(self, request, info):
 return info['app_url'] + info['virtual_path']

The above example actually just generates and returns the default URL, which
would have been what was generated by the default resource_url machinery,
but your code can perform arbitrary logic as necessary. For example, your code
may wish to override the hostname or port number of the generated URL.

Note that the URL generated by __resource_url__ should be fully qualified,
should end in a slash, and should not contain any query string or anchor
elements (only path elements) to work with
resource_url().

Generating the Path To a Resource

pyramid.traversal.resource_path() returns a string object representing
the absolute physical path of the resource object based on its position in the
resource tree. Each segment of the path is separated with a slash character.

	1
2

	from pyramid.traversal import resource_path
url = resource_path(resource)

If resource in the example above was accessible in the tree as
root['a']['b'], the above example would generate the string /a/b.

Any positional arguments passed in to resource_path()
will be appended as path segments to the end of the resource path.

	1
2

	from pyramid.traversal import resource_path
url = resource_path(resource, 'foo', 'bar')

If resource in the example above was accessible in the tree as
root['a']['b'], the above example would generate the string
/a/b/foo/bar.

The resource passed in must be location-aware.

The presence or absence of a virtual root has no impact on the behavior
of resource_path().

Finding a Resource by Path

If you have a string path to a resource, you can grab the resource from that
place in the application's resource tree using
pyramid.traversal.find_resource().

You can resolve an absolute path by passing a string prefixed with a / as
the path argument:

	1
2

	from pyramid.traversal import find_resource
url = find_resource(anyresource, '/path')

Or you can resolve a path relative to the resource that you pass in to
pyramid.traversal.find_resource() by passing a string that isn't prefixed
by /:

	1
2

	from pyramid.traversal import find_resource
url = find_resource(anyresource, 'path')

Often the paths you pass to find_resource() are
generated by the resource_path() API. These APIs are
"mirrors" of each other.

If the path cannot be resolved when calling
find_resource() (if the respective resource in the
tree does not exist), a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] will be raised.

See the pyramid.traversal.find_resource() documentation for more
information about resolving a path to a resource.

Obtaining the Lineage of a Resource

pyramid.location.lineage() returns a generator representing the
lineage of the location-aware resource object.

The lineage() function returns the resource that is
passed into it, then each parent of the resource in order. For example, if the
resource tree is composed like so:

	1
2
3
4
5

	class Thing(object): pass

thing1 = Thing()
thing2 = Thing()
thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn it into a
list, we will get:

	1
2

	list(lineage(thing2))
[<Thing object at thing2>, <Thing object at thing1>]

The generator returned by lineage() first returns
unconditionally the resource that was passed into it. Then, if the resource
supplied a __parent__ attribute, it returns the resource represented by
resource.__parent__. If that resource has a __parent__ attribute, it
will return that resource's parent, and so on, until the resource being
inspected either has no __parent__ attribute or has a __parent__
attribute of None.

See the documentation for pyramid.location.lineage() for more
information.

Determining if a Resource is in the Lineage of Another Resource

Use the pyramid.location.inside() function to determine if one resource
is in the lineage of another resource.

For example, if the resource tree is:

	1
2
3
4
5

	class Thing(object): pass

a = Thing()
b = Thing()
b.__parent__ = a

Calling inside(b, a) will return True, because b has a lineage that
includes a. However, calling inside(a, b) will return False
because a does not have a lineage that includes b.

The argument list for inside() is (resource1,
resource2). resource1 is "inside" resource2 if resource2 is a
lineage ancestor of resource1. It is a lineage ancestor if its
parent (or one of its parent's parents, etc.) is an ancestor.

See pyramid.location.inside() for more information.

Finding the Root Resource

Use the pyramid.traversal.find_root() API to find the root
resource. The root resource is the resource at the root of the resource
tree. The API accepts a single argument: resource. This is a resource
that is location-aware. It can be any resource in the tree for which
you want to find the root.

For example, if the resource tree is:

	1
2
3
4
5

	class Thing(object): pass

a = Thing()
b = Thing()
b.__parent__ = a

Calling find_root(b) will return a.

The root resource is also available as request.root within view
callable code.

The presence or absence of a virtual root has no impact on the behavior
of find_root(). The root object returned is always
the physical root object.

Resources Which Implement Interfaces

Resources can optionally be made to implement an interface. An
interface is used to tag a resource object with a "type" that later can be
referred to within view configuration and by
pyramid.traversal.find_interface().

Specifying an interface instead of a class as the context or
containment predicate arguments within view configuration
statements makes it possible to use a single view callable for more than one
class of resource objects. If your application is simple enough that you see
no reason to want to do this, you can skip reading this section of the chapter.

For example, here's some code which describes a blog entry which also declares
that the blog entry implements an interface.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	import datetime
from zope.interface import implementer
from zope.interface import Interface

class IBlogEntry(Interface):
 pass

@implementer(IBlogEntry)
class BlogEntry(object):
 def __init__(self, title, body, author):
 self.title = title
 self.body = body
 self.author = author
 self.created = datetime.datetime.now()

This resource consists of two things: the class which defines the resource
constructor as the class BlogEntry, and an interface attached to
the class via an implementer class decorator using the IBlogEntry
interface as its sole argument.

The interface object used must be an instance of a class that inherits from
zope.interface.Interface.

A resource class may implement zero or more interfaces. You specify that a
resource implements an interface by using the
zope.interface.implementer() function as a class decorator. The above
BlogEntry resource implements the IBlogEntry interface.

You can also specify that a particular resource instance provides an
interface as opposed to its class. When you declare that a class implements an
interface, all instances of that class will also provide that interface.
However, you can also just say that a single object provides the interface. To
do so, use the zope.interface.directlyProvides() function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import datetime
from zope.interface import directlyProvides
from zope.interface import Interface

class IBlogEntry(Interface):
 pass

class BlogEntry(object):
 def __init__(self, title, body, author):
 self.title = title
 self.body = body
 self.author = author
 self.created = datetime.datetime.now()

entry = BlogEntry('title', 'body', 'author')
directlyProvides(entry, IBlogEntry)

zope.interface.directlyProvides() will replace any existing interface
that was previously provided by an instance. If a resource object already has
instance-level interface declarations that you don't want to replace, use the
zope.interface.alsoProvides() function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	import datetime
from zope.interface import alsoProvides
from zope.interface import directlyProvides
from zope.interface import Interface

class IBlogEntry1(Interface):
 pass

class IBlogEntry2(Interface):
 pass

class BlogEntry(object):
 def __init__(self, title, body, author):
 self.title = title
 self.body = body
 self.author = author
 self.created = datetime.datetime.now()

entry = BlogEntry('title', 'body', 'author')
directlyProvides(entry, IBlogEntry1)
alsoProvides(entry, IBlogEntry2)

zope.interface.alsoProvides() will augment the set of interfaces directly
provided by an instance instead of overwriting them like
zope.interface.directlyProvides() does.

For more information about how resource interfaces can be used by view
configuration, see Using Resource Interfaces in View Configuration.

Finding a Resource with a Class or Interface in Lineage

Use the find_interface() API to locate a parent that
is of a particular Python class, or which implements some interface.

For example, if your resource tree is composed as follows:

	1
2
3
4
5
6

	class Thing1(object): pass
class Thing2(object): pass

a = Thing1()
b = Thing2()
b.__parent__ = a

Calling find_interface(a, Thing1) will return the a resource because
a is of class Thing1 (the resource passed as the first argument is
considered first, and is returned if the class or interface specification
matches).

Calling find_interface(b, Thing1) will return the a resource because
a is of class Thing1 and a is the first resource in b's lineage
of this class.

Calling find_interface(b, Thing2) will return the b resource.

The second argument to find_interface may also be a interface
instead of a class. If it is an interface, each resource in the lineage is
checked to see if the resource implements the specificed interface (instead of
seeing if the resource is of a class).

See also

See also Resources Which Implement Interfaces.

Pyramid API Functions That Act Against Resources

A resource object is used as the context provided to a view. See
Traversal and URL Dispatch for more information
about how a resource object becomes the context.

The APIs provided by pyramid.traversal are used against resource objects.
These functions can be used to find the "path" of a resource, the root resource
in a resource tree, or to generate a URL for a resource.

The APIs provided by pyramid.location are used against resources. These
can be used to walk down a resource tree, or conveniently locate one resource
"inside" another.

Some APIs on the pyramid.request.Request accept a resource object as a
parameter. For example, the has_permission() API
accepts a resource object as one of its arguments; the ACL is obtained from
this resource or one of its ancestors. Other security related APIs on the
pyramid.request.Request class also accept context as an
argument, and a context is always a resource.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Hello Traversal World

Traversal is an alternative to URL dispatch which allows Pyramid applications
to map URLs to code.

If code speaks louder than words, maybe this will help. Here is a single-file
Pyramid application that uses traversal:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

class Resource(dict):
 pass

def get_root(request):
 return Resource({'a': Resource({'b': Resource({'c': Resource()})})})

def hello_world_of_resources(context, request):
 output = "Here's a resource and its children: %s" % context
 return Response(output)

if __name__ == '__main__':
 config = Configurator(root_factory=get_root)
 config.add_view(hello_world_of_resources, context=Resource)
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

You may notice that this application is intentionally very similar to the
"hello world" application from Creating Your First Pyramid Application.

On lines 5-6, we create a trivial resource class that's just a
dictionary subclass.

On lines 8-9, we hard-code a resource tree in our root factory
function.

On lines 11-13, we define a single view callable that can display a
single instance of our Resource class, passed as the context argument.

The rest of the file sets up and serves our Pyramid WSGI app. Line 18
is where our view gets configured for use whenever the traversal ends with an
instance of our Resource class.

Interestingly, there are no URLs explicitly configured in this application.
Instead, the URL space is defined entirely by the keys in the resource tree.

Example requests

If this example is running on http://localhost:8080, and the user browses to
http://localhost:8080/a/b, Pyramid will call get_root(request) to get the
root resource, then traverse the tree from there by key; starting from the
root, it will find the child with key "a", then its child with key "b";
then use that as the context argument for calling
hello_world_of_resources.

Or, if the user browses to http://localhost:8080/, Pyramid will stop at the
root—the outermost Resource instance, in this case—and use that as the
context argument to the same view.

Or, if the user browses to a key that doesn't exist in this resource tree, like
http://localhost:8080/xyz or http://localhost:8080/a/b/c/d, the traversal will
end by raising a KeyError, and Pyramid will turn that into a 404 HTTP response.

A more complicated application could have many types of resources, with
different view callables defined for each type, and even multiple views for
each type.

See also

Full technical details may be found in Traversal.

For more about why you might use traversal, see
Much Ado About Traversal.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Much Ado About Traversal

(Or, why you should care about it.)

Note

This chapter was adapted, with permission, from a blog post by Rob Miller [http://blog.nonsequitarian.org/], originally published at
http://blog.nonsequitarian.org/2010/much-ado-about-traversal/.

Traversal is an alternative to URL dispatch which allows Pyramid
applications to map URLs to code.

Note

Ex-Zope users who are already familiar with traversal and view lookup
conceptually may want to skip directly to the Traversal
chapter, which discusses technical details. This chapter is mostly aimed at
people who have previous Pylons experience or experience in another
framework which does not provide traversal, and need an introduction to the
"why" of traversal.

Some folks who have been using Pylons and its Routes-based URL matching for a
long time are being exposed for the first time, via Pyramid, to new
ideas such as "traversal" and "view lookup" as a way to route
incoming HTTP requests to callable code. Some of the same folks believe that
traversal is hard to understand. Others question its usefulness; URL matching
has worked for them so far, so why should they even consider dealing with
another approach, one which doesn't fit their brain and which doesn't provide
any immediately obvious value?

You can be assured that if you don't want to understand traversal, you don't
have to. You can happily build Pyramid applications with only
URL dispatch. However, there are some straightforward, real-world use
cases that are much more easily served by a traversal-based approach than by a
pattern-matching mechanism. Even if you haven't yet hit one of these use cases
yourself, understanding these new ideas is worth the effort for any web
developer so you know when you might want to use them. Traversal is
actually a straightforward metaphor easily comprehended by anyone who's ever
used a run-of-the-mill file system with folders and files.

URL Dispatch

Let's step back and consider the problem we're trying to solve. An HTTP
request for a particular path has been routed to our web application. The
requested path will possibly invoke a specific view callable function
defined somewhere in our app. We're trying to determine which callable
function, if any, should be invoked for a given requested URL.

Many systems, including Pyramid, offer a simple solution. They offer the
concept of "URL matching". URL matching approaches this problem by parsing the
URL path and comparing the results to a set of registered "patterns", defined
by a set of regular expressions or some other URL path templating syntax. Each
pattern is mapped to a callable function somewhere; if the request path matches
a specific pattern, the associated function is called. If the request path
matches more than one pattern, some conflict resolution scheme is used, usually
a simple order precedence so that the first match will take priority over any
subsequent matches. If a request path doesn't match any of the defined
patterns, a "404 Not Found" response is returned.

In Pyramid, we offer an implementation of URL matching which we call URL
dispatch. Using Pyramid syntax, we might have a match pattern such as
/{userid}/photos/{photoid}, mapped to a photo_view() function defined
somewhere in our code. Then a request for a path such as
/joeschmoe/photos/photo1 would be a match, and the photo_view()
function would be invoked to handle the request. Similarly,
/{userid}/blog/{year}/{month}/{postid} might map to a blog_post_view()
function, so /joeschmoe/blog/2010/12/urlmatching would trigger the
function, which presumably would know how to find and render the
urlmatching blog post.

Historical Refresher

Now that we've refreshed our understanding of URL dispatch, we'll dig
in to the idea of traversal. Before we do, though, let's take a trip down
memory lane. If you've been doing web work for a while, you may remember a
time when we didn't have fancy web frameworks like Pylons and
Pyramid. Instead, we had general purpose HTTP servers that primarily
served files off of a file system. The "root" of a given site mapped to a
particular folder somewhere on the file system. Each segment of the request
URL path represented a subdirectory. The final path segment would be either a
directory or a file, and once the server found the right file it would package
it up in an HTTP response and send it back to the client. So serving up a
request for /joeschmoe/photos/photo1 literally meant that there was a
joeschmoe folder somewhere, which contained a photos folder, which in
turn contained a photo1 file. If at any point along the way we find that
there is not a folder or file matching the requested path, we return a 404
response.

As the web grew more dynamic, however, a little bit of extra complexity was
added. Technologies such as CGI and HTTP server modules were developed. Files
were still looked up on the file system, but if the file ended with (for
example) .cgi or .php, or if it lived in a special folder, instead of
simply sending the file to the client the server would read the file, execute
it using an interpreter of some sort, and then send the output from this
process to the client as the final result. The server configuration specified
which files would trigger some dynamic code, with the default case being to
just serve the static file.

Traversal (a.k.a., Resource Location)

Believe it or not, if you understand how serving files from a file system
works, you understand traversal. And if you understand that a server might do
something different based on what type of file a given request specifies, then
you understand view lookup.

The major difference between file system lookup and traversal is that a file
system lookup steps through nested directories and files in a file system tree,
while traversal steps through nested dictionary-type objects in a
resource tree. Let's take a detailed look at one of our example paths,
so we can see what I mean.

The path /joeschmoe/photos/photo1, has four segments: /, joeschmoe,
photos and photo1. With file system lookup we might have a root folder
(/) containing a nested folder (joeschmoe), which contains another
nested folder (photos), which finally contains a JPG file (photo1).
With traversal, we instead have a dictionary-like root object. Asking for the
joeschmoe key gives us another dictionary-like object. Asking in turn for
the photos key gives us yet another mapping object, which finally
(hopefully) contains the resource that we're looking for within its values,
referenced by the photo1 key.

In pure Python terms, then, the traversal or "resource location" portion of
satisfying the /joeschmoe/photos/photo1 request will look something like
this pseudocode:

get_root()['joeschmoe']['photos']['photo1']

get_root() is some function that returns a root traversal resource.
If all of the specified keys exist, then the returned object will be the
resource that is being requested, analogous to the JPG file that was retrieved
in the file system example. If a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] is generated anywhere along
the way, Pyramid will return 404. (This isn't precisely true, as you'll
see when we learn about view lookup below, but the basic idea holds.)

What Is a "Resource"?

"Files on a file system I understand", you might say. "But what are these
nested dictionary things? Where do these objects, these 'resources', live?
What are they?"

Since Pyramid is not a highly opinionated framework, it makes no
restriction on how a resource is implemented; a developer can implement
them as they wish. One common pattern used is to persist all of the resources,
including the root, in a database as a graph. The root object is a
dictionary-like object. Dictionary-like objects in Python supply a
__getitem__ method which is called when key lookup is done. Under the
hood, when adict is a dictionary-like object, Python translates
adict['a'] to adict.__getitem__('a'). Try doing this in a Python
interpreter prompt if you don't believe us:

>>> adict = {}
>>> adict['a'] = 1
>>> adict['a']
1
>>> adict.__getitem__('a')
1

The dictionary-like root object stores the ids of all of its subresources as
keys, and provides a __getitem__ implementation that fetches them. So
get_root() fetches the unique root object, while
get_root()['joeschmoe'] returns a different object, also stored in the
database, which in turn has its own subresources and __getitem__
implementation, and so on. These resources might be persisted in a relational
database, one of the many "NoSQL" solutions that are becoming popular these
days, or anywhere else; it doesn't matter. As long as the returned objects
provide the dictionary-like API (i.e., as long as they have an appropriately
implemented __getitem__ method), then traversal will work.

In fact, you don't need a "database" at all. You could use plain dictionaries,
with your site's URL structure hard-coded directly in the Python source. Or
you could trivially implement a set of objects with __getitem__ methods
that search for files in specific directories, and thus precisely recreate the
traditional mechanism of having the URL path mapped directly to a folder
structure on the file system. Traversal is in fact a superset of file system
lookup.

Note

See the chapter entitled Resources for a more
technical overview of resources.

View Lookup

At this point we're nearly there. We've covered traversal, which is the
process by which a specific resource is retrieved according to a specific URL
path. But what is "view lookup"?

The need for view lookup is simple: there is more than one possible action that
you might want to take after finding a resource. With our photo
example, for instance, you might want to view the photo in a page, but you
might also want to provide a way for the user to edit the photo and any
associated metadata. We'll call the former the view view, and the latter
will be the edit view. (Original, I know.) Pyramid has a
centralized view application registry where named views can be
associated with specific resource types. So in our example, we'll assume that
we've registered view and edit views for photo objects, and that we've
specified the view view as the default, so that
/joeschmoe/photos/photo1/view and /joeschmoe/photos/photo1 are
equivalent. The edit view would sensibly be provided by a request for
/joeschmoe/photos/photo1/edit.

Hopefully it's clear that the first portion of the edit view's URL path is
going to resolve to the same resource as the non-edit version, specifically the
resource returned by get_root()['joeschmoe']['photos']['photo1']. But
traversal ends there; the photo1 resource doesn't have an edit key. In
fact, it might not even be a dictionary-like object, in which case
photo1['edit'] would be meaningless. When the Pyramid resource
location has been resolved to a leaf resource, but the entire request path
has not yet been expended, the very next path segment is treated as a
view name. The registry is then checked to see if a view of the given
name has been specified for a resource of the given type. If so, the view
callable is invoked, with the resource passed in as the related context
object (also available as request.context). If a view callable could not
be found, Pyramid will return a "404 Not Found" response.

You might conceptualize a request for /joeschmoe/photos/photo1/edit as
ultimately converted into the following piece of Pythonic pseudocode:

context = get_root()['joeschmoe']['photos']['photo1']
view_callable = get_view(context, 'edit')
request.context = context
view_callable(request)

The get_root and get_view functions don't really exist. Internally,
Pyramid does something more complicated. But the example above is a
reasonable approximation of the view lookup algorithm in pseudocode.

Use Cases

Why should we care about traversal? URL matching is easier to explain, and
it's good enough, right?

In some cases, yes, but certainly not in all cases. So far we've had very
structured URLs, where our paths have had a specific, small number of pieces,
like this:

/{userid}/{typename}/{objectid}[/{view_name}]

In all of the examples thus far, we've hard coded the typename value, assuming
that we'd know at development time what names were going to be used ("photos",
"blog", etc.). But what if we don't know what these names will be? Or, worse
yet, what if we don't know anything about the structure of the URLs inside a
user's folder? We could be writing a CMS where we want the end user to be able
to arbitrarily add content and other folders inside his folder. He might
decide to nest folders dozens of layers deep. How will you construct matching
patterns that could account for every possible combination of paths that might
develop?

It might be possible, but it certainly won't be easy. The matching patterns
are going to become complex quickly as you try to handle all of the edge cases.

With traversal, however, it's straightforward. Twenty layers of nesting would
be no problem. Pyramid will happily call __getitem__ as many times
as it needs to, until it runs out of path segments or until a resource raises a
KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]. Each resource only needs to know how to fetch its immediate
children, and the traversal algorithm takes care of the rest. Also, since the
structure of the resource tree can live in the database and not in the code,
it's simple to let users modify the tree at runtime to set up their own
personalized "directory" structures.

Another use case in which traversal shines is when there is a need to support a
context-dependent security policy. One example might be a document management
infrastructure for a large corporation, where members of different departments
have varying access levels to the various other departments' files.
Reasonably, even specific files might need to be made available to specific
individuals. Traversal does well here if your resources actually represent the
data objects related to your documents, because the idea of a resource
authorization is baked right into the code resolution and calling process.
Resource objects can store ACLs, which can be inherited and/or overridden by
the subresources.

If each resource can thus generate a context-based ACL, then whenever view code
is attempting to perform a sensitive action, it can check against that ACL to
see whether the current user should be allowed to perform the action. In this
way you achieve so called "instance based" or "row level" security which is
considerably harder to model using a traditional tabular approach.
Pyramid actively supports such a scheme, and in fact if you register
your views with guarded permissions and use an authorization policy,
Pyramid can check against a resource's ACL when deciding whether or not
the view itself is available to the current user.

In summary, there are entire classes of problems that are more easily served by
traversal and view lookup than by URL dispatch. If your problems don't
require it, great, stick with URL dispatch. But if you're using
Pyramid and you ever find that you do need to support one of these use
cases, you'll be glad you have traversal in your toolkit.

Note

It is even possible to mix and match traversal with URL
dispatch in the same Pyramid application. See the
Combining Traversal and URL Dispatch chapter for details.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Traversal

This chapter explains the technical details of how traversal works in Pyramid.

For a quick example, see Hello Traversal World.

For more about why you might use traversal, see Much Ado About Traversal.

A traversal uses the URL (Universal Resource Locator) to find a
resource located in a resource tree, which is a set of nested
dictionary-like objects. Traversal is done by using each segment of the path
portion of the URL to navigate through the resource tree. You might
think of this as looking up files and directories in a file system. Traversal
walks down the path until it finds a published resource, analogous to a file
system "directory" or "file". The resource found as the result of a traversal
becomes the context of the request. Then, the view
lookup subsystem is used to find some view code willing to "publish" this
resource by generating a response.

Note

Using Traversal to map a URL to code is optional. If you're creating
your first Pyramid application, it probably makes more sense to use
URL dispatch to map URLs to code instead of traversal, as new Pyramid
developers tend to find URL dispatch slightly easier to understand. If you
use URL dispatch, you needn't read this chapter.

Traversal Details

Traversal is dependent on information in a request object.
Every request object contains URL path information in the PATH_INFO
portion of the WSGI environment. The PATH_INFO string is the
portion of a request's URL following the hostname and port number, but before
any query string elements or fragment element. For example the PATH_INFO
portion of the URL http://example.com:8080/a/b/c?foo=1 is /a/b/c.

Traversal treats the PATH_INFO segment of a URL as a sequence of path
segments. For example, the PATH_INFO string /a/b/c is converted to the
sequence ['a', 'b', 'c'].

This path sequence is then used to descend through the resource tree,
looking up a resource for each path segment. Each lookup uses the
__getitem__ method of a resource in the tree.

For example, if the path info sequence is ['a', 'b', 'c']:

	Traversal starts by acquiring the root resource of the
application by calling the root factory. The root factory can
be configured to return whatever object is appropriate as the traversal root
of your application.

	Next, the first element ('a') is popped from the path segment sequence
and is used as a key to lookup the corresponding resource in the root. This
invokes the root resource's __getitem__ method using that value ('a')
as an argument.

	If the root resource "contains" a resource with key 'a', its
__getitem__ method will return it. The context temporarily
becomes the "A" resource.

	The next segment ('b') is popped from the path sequence, and the "A"
resource's __getitem__ is called with that value ('b') as an
argument; we'll presume it succeeds.

	The "A" resource's __getitem__ returns another resource, which we'll call
"B". The context temporarily becomes the "B" resource.

Traversal continues until the path segment sequence is exhausted or a path
element cannot be resolved to a resource. In either case, the context
resource is the last object that the traversal successfully resolved. If any
resource found during traversal lacks a __getitem__ method, or if its
__getitem__ method raises a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError], traversal ends immediately,
and that resource becomes the context.

The results of a traversal also include a view name. If
traversal ends before the path segment sequence is exhausted, the view
name is the next remaining path segment element. If the traversal
expends all of the path segments, then the view name is the empty
string ('').

The combination of the context resource and the view name found via
traversal is used later in the same request by the view lookup
subsystem to find a view callable. How Pyramid performs view
lookup is explained within the View Configuration chapter.

The Resource Tree

The resource tree is a set of nested dictionary-like resource objects that
begins with a root resource. In order to use traversal to
resolve URLs to code, your application must supply a resource tree to
Pyramid.

In order to supply a root resource for an application the Pyramid
Router is configured with a callback known as a root factory.
The root factory is supplied by the application at startup time as the
root_factory argument to the Configurator.

The root factory is a Python callable that accepts a request object,
and returns the root object of the resource tree. A function or class
is typically used as an application's root factory. Here's an example of a
simple root factory class:

	1
2
3

	class Root(dict):
 def __init__(self, request):
 pass

Here's an example of using this root factory within startup configuration, by
passing it to an instance of a Configurator named config:

	1

	config = Configurator(root_factory=Root)

The root_factory argument to the Configurator
constructor registers this root factory to be called to generate a root
resource whenever a request enters the application. The root factory
registered this way is also known as the global root factory. A root factory
can alternatively be passed to the Configurator as a dotted Python
name which can refer to a root factory defined in a different module.

If no root factory is passed to the Pyramid Configurator
constructor, or if the root_factory value specified is None, a
default root factory is used. The default root factory always returns
a resource that has no child resources; it is effectively empty.

Usually a root factory for a traversal-based application will be more
complicated than the above Root class. In particular it may be associated
with a database connection or another persistence mechanism. The above
Root class is analogous to the default root factory present in Pyramid. The
default root factory is very simple and not very useful.

Note

If the items contained within the resource tree are "persistent" (they have
state that lasts longer than the execution of a single process), they become
analogous to the concept of domain model objects used by many other
frameworks.

The resource tree consists of container resources and leaf resources. There
is only one difference between a container resource and a leaf resource:
container resources possess a __getitem__ method (making it
"dictionary-like") while leaf resources do not. The __getitem__ method
was chosen as the signifying difference between the two types of resources
because the presence of this method is how Python itself typically determines
whether an object is "containerish" or not (dictionary objects are
"containerish").

Each container resource is presumed to be willing to return a child resource or
raise a KeyError based on a name passed to its __getitem__.

Leaf-level instances must not have a __getitem__. If instances that you'd
like to be leaves already happen to have a __getitem__ through some
historical inequity, you should subclass these resource types and cause their
__getitem__ methods to simply raise a KeyError. Or just disuse them
and think up another strategy.

Usually the traversal root is a container resource, and as such it contains
other resources. However, it doesn't need to be a container. Your resource
tree can be as shallow or as deep as you require.

In general, the resource tree is traversed beginning at its root resource using
a sequence of path elements described by the PATH_INFO of the current
request. If there are path segments, the root resource's __getitem__ is
called with the next path segment, and it is expected to return another
resource. The resulting resource's __getitem__ is called with the very
next path segment, and it is expected to return another resource. This happens
ad infinitum until all path segments are exhausted.

The Traversal Algorithm

This section will attempt to explain the Pyramid traversal algorithm.
We'll provide a description of the algorithm, a diagram of how the algorithm
works, and some example traversal scenarios that might help you understand how
the algorithm operates against a specific resource tree.

We'll also talk a bit about view lookup. The
View Configuration chapter discusses view lookup in detail, and
it is the canonical source for information about views. Technically,
view lookup is a Pyramid subsystem that is separated from
traversal entirely. However, we'll describe the fundamental behavior of view
lookup in the examples in the next few sections to give you an idea of how
traversal and view lookup cooperate, because they are almost always used
together.

A Description of the Traversal Algorithm

When a user requests a page from your traversal-powered application, the system
uses this algorithm to find a context resource and a view name.

	The request for the page is presented to the Pyramid router
in terms of a standard WSGI request, which is represented by a WSGI
environment and a WSGI start_response callable.

	The router creates a request object based on the WSGI environment.

	The root factory is called with the request. It returns a
root resource.

	The router uses the WSGI environment's PATH_INFO information to
determine the path segments to traverse. The leading slash is stripped off
PATH_INFO, and the remaining path segments are split on the slash
character to form a traversal sequence.

The traversal algorithm by default attempts to first URL-unquote and then
Unicode-decode each path segment derived from PATH_INFO from its
natural byte string (str type) representation. URL unquoting is
performed using the Python standard library urllib.unquote function.
Conversion from a URL-decoded string into Unicode is attempted using the
UTF-8 encoding. If any URL-unquoted path segment in PATH_INFO is not
decodeable using the UTF-8 decoding, a TypeError [http://docs.python.org/3/library/exceptions.html#TypeError] is raised. A
segment will be fully URL-unquoted and UTF8-decoded before it is passed in
to the __getitem__ of any resource during traversal.

Thus a request with a PATH_INFO variable of /a/b/c maps to the
traversal sequence [u'a', u'b', u'c'].

	Traversal begins at the root resource returned by the root factory.
For the traversal sequence [u'a', u'b', u'c'], the root resource's
__getitem__ is called with the name 'a'. Traversal continues
through the sequence. In our example, if the root resource's
__getitem__ called with the name a returns a resource (a.k.a.
resource "A"), that resource's __getitem__ is called with the name
'b'. If resource "A" returns a resource "B" when asked for 'b',
resource B's __getitem__ is then asked for the name 'c', and may
return resource "C".

	Traversal ends when either (a) the entire path is exhausted, (b) when any
resource raises a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] from its __getitem__, (c) when any
non-final path element traversal does not have a __getitem__ method
(resulting in an AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError]), or (d) when any path element is
prefixed with the set of characters @@ (indicating that the characters
following the @@ token should be treated as a view name).

	When traversal ends for any of the reasons in the previous step, the last
resource found during traversal is deemed to be the context. If
the path has been exhausted when traversal ends, the view name is
deemed to be the empty string (''). However, if the path was not
exhausted before traversal terminated, the first remaining path segment is
treated as the view name.

	Any subsequent path elements after the view name is found are
deemed the subpath. The subpath is always a sequence of path
segments that come from PATH_INFO that are "left over" after traversal
has completed.

Once the context resource, the view name, and associated
attributes such as the subpath are located, the job of
traversal is finished. It passes back the information it obtained to
its caller, the Pyramid Router, which subsequently invokes
view lookup with the context and view name information.

The traversal algorithm exposes two special cases:

	You will often end up with a view name that is the empty string as
the result of a particular traversal. This indicates that the view lookup
machinery should lookup the default view. The default view is a view
that is registered with no name or a view which is registered with a name
that equals the empty string.

	If any path segment element begins with the special characters @@ (think
of them as goggles), the value of that segment minus the goggle characters is
considered the view name immediately and traversal stops there. This
allows you to address views that may have the same names as resource names in
the tree unambiguously.

Finally, traversal is responsible for locating a virtual root. A
virtual root is used during "virtual hosting". See the Virtual Hosting
chapter for information. We won't speak more about it in this chapter.

[image: ../_images/resourcetreetraverser.png]

Traversal Algorithm Examples

No one can be expected to understand the traversal algorithm by analogy and
description alone, so let's examine some traversal scenarios that use concrete
URLs and resource tree compositions.

Let's pretend the user asks for http://example.com/foo/bar/baz/biz/buz.txt.
The request's PATH_INFO in that case is /foo/bar/baz/biz/buz.txt.
Let's further pretend that when this request comes in, we're traversing the
following resource tree:

/--
 |
 |-- foo
 |
 ----bar

Here's what happens:

	traversal traverses the root, and attempts to find "foo", which it
finds.

	traversal traverses "foo", and attempts to find "bar", which it
finds.

	traversal traverses "bar", and attempts to find "baz", which it does
not find (the "bar" resource raises a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] when asked for "baz").

The fact that it does not find "baz" at this point does not signify an error
condition. It signifies the following:

	The context is the "bar" resource (the context is the last resource
found during traversal).

	The view name is baz.

	The subpath is ('biz', 'buz.txt').

At this point, traversal has ended, and view lookup begins.

Because it's the "context" resource, the view lookup machinery examines "bar"
to find out what "type" it is. Let's say it finds that the context is a Bar
type (because "bar" happens to be an instance of the class Bar). Using the
view name (baz) and the type, view lookup asks the
application registry this question:

	Please find me a view callable registered using a view
configuration with the name "baz" that can be used for the class Bar.

Let's say that view lookup finds no matching view type. In this circumstance,
the Pyramid router returns the result of the Not Found
View and the request ends.

However, for this tree:

/--
 |
 |-- foo
 |
 ----bar
 |
 ----baz
 |
 biz

The user asks for http://example.com/foo/bar/baz/biz/buz.txt

	traversal traverses "foo", and attempts to find "bar", which it
finds.

	traversal traverses "bar", and attempts to find "baz", which it
finds.

	traversal traverses "baz", and attempts to find "biz", which it
finds.

	traversal traverses "biz", and attempts to find "buz.txt", which it
does not find.

The fact that it does not find a resource related to "buz.txt" at this point
does not signify an error condition. It signifies the following:

	The context is the "biz" resource (the context is the last resource
found during traversal).

	The view name is "buz.txt".

	The subpath is an empty sequence (()).

At this point, traversal has ended, and view lookup begins.

Because it's the "context" resource, the view lookup machinery examines the
"biz" resource to find out what "type" it is. Let's say it finds that the
resource is a Biz type (because "biz" is an instance of the Python class
Biz). Using the view name (buz.txt) and the type, view lookup
asks the application registry this question:

	Please find me a view callable registered with a view
configuration with the name buz.txt that can be used for class Biz.

Let's say that question is answered by the application registry. In such a
situation, the application registry returns a view callable. The view
callable is then called with the current WebOb request as the
sole argument, request. It is expected to return a response.

The Example View Callables Accept Only a Request; How Do I Access
the Context Resource?

Most of the examples in this documentation assume that a view callable is
typically passed only a request object. Sometimes your view
callables need access to the context resource, especially when you
use traversal. You might use a supported alternative view callable
argument list in your view callables such as the (context, request)
calling convention described in Alternate View Callable Argument/Calling Conventions.
But you don't need to if you don't want to. In view callables that accept
only a request, the context resource found by traversal is available
as the context attribute of the request object, e.g.,
request.context. The view name is available as the view_name
attribute of the request object, e.g., request.view_name. Other
Pyramid-specific request attributes are also available as described
in Special Attributes Added to the Request by Pyramid.

Using Resource Interfaces in View Configuration

Instead of registering your views with a context that names a Python
resource class, you can optionally register a view callable with a
context which is an interface. An interface can be attached
arbitrarily to any resource object. View lookup treats context interfaces
specially, and therefore the identity of a resource can be divorced from that
of the class which implements it. As a result, associating a view with an
interface can provide more flexibility for sharing a single view between two or
more different implementations of a resource type. For example, if two
resource objects of different Python class types share the same interface, you
can use the same view configuration to specify both of them as a context.

In order to make use of interfaces in your application during view dispatch,
you must create an interface and mark up your resource classes or instances
with interface declarations that refer to this interface.

To attach an interface to a resource class, you define the interface and use
the zope.interface.implementer() class decorator to associate the
interface with the class.

	1
2
3
4
5
6
7
8
9

	from zope.interface import Interface
from zope.interface import implementer

class IHello(Interface):
 """ A marker interface """

@implementer(IHello)
class Hello(object):
 pass

To attach an interface to a resource instance, you define the interface and
use the zope.interface.alsoProvides() function to associate the interface
with the instance. This function mutates the instance in such a way that the
interface is attached to it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from zope.interface import Interface
from zope.interface import alsoProvides

class IHello(Interface):
 """ A marker interface """

class Hello(object):
 pass

def make_hello():
 hello = Hello()
 alsoProvides(hello, IHello)
 return hello

Regardless of how you associate an interface—with either a resource instance
or a resource class—the resulting code to associate that interface with a view
callable is the same. Assuming the above code that defines an IHello
interface lives in the root of your application, and its module is named
"resources.py", the interface declaration below will associate the
mypackage.views.hello_world view with resources that implement, or provide,
this interface.

	1
2
3
4

	# config is an instance of pyramid.config.Configurator

config.add_view('mypackage.views.hello_world', name='hello.html',
 context='mypackage.resources.IHello')

Any time a resource that is determined to be the context provides this
interface, and a view named hello.html is looked up against it as per the
URL, the mypackage.views.hello_world view callable will be invoked.

Note, in cases where a view is registered against a resource class, and a view
is also registered against an interface that the resource class implements, an
ambiguity arises. Views registered for the resource class take precedence over
any views registered for any interface the resource class implements. Thus, if
one view configuration names a context of both the class type of a
resource, and another view configuration names a context of interface
implemented by the resource's class, and both view configurations are otherwise
identical, the view registered for the context's class will "win".

For more information about defining resources with interfaces for use within
view configuration, see Resources Which Implement Interfaces.

References

A tutorial showing how traversal can be used within a Pyramid
application exists in ZODB + Traversal Wiki Tutorial.

See the View Configuration chapter for detailed information about
view lookup.

The pyramid.traversal module contains API functions that deal with
traversal, such as traversal invocation from within application code.

The pyramid.request.Request.resource_url() method generates a URL when
given a resource retrieved from a resource tree.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Security

Pyramid provides an optional, declarative, security system. Security in
Pyramid is separated into authentication and authorization. The two
systems communicate via principal identifiers. Authentication is merely
the mechanism by which credentials provided in the request are resolved
to one or more principal identifiers. These identifiers represent the
users and groups that are in effect during the request. Authorization then
determines access based on the principal identifiers, the requested
permission, and a context.

The Pyramid authorization system can prevent a view from being
invoked based on an authorization policy. Before a view is invoked, the
authorization system can use the credentials in the request along with
the context resource to determine if access will be allowed. Here's
how it works at a high level:

	A user may or may not have previously visited the application and supplied
authentication credentials, including a userid. If so, the
application may have called pyramid.security.remember() to remember
these.

	A request is generated when a user visits the application.

	Based on the request, a context resource is located through
resource location. A context is located differently depending on
whether the application uses traversal or URL dispatch, but a
context is ultimately found in either case. See the
URL Dispatch chapter for more information.

	A view callable is located by view lookup using the context
as well as other attributes of the request.

	If an authentication policy is in effect, it is passed the request.
It will return some number of principal identifiers. To do this, the
policy would need to determine the authenticated userid present in
the request.

	If an authorization policy is in effect and the view
configuration associated with the view callable that was found has a
permission associated with it, the authorization policy is passed the
context, some number of principal identifiers returned by the
authentication policy, and the permission associated with the view;
it will allow or deny access.

	If the authorization policy allows access, the view callable is invoked.

	If the authorization policy denies access, the view callable is not invoked.
Instead the forbidden view is invoked.

Authorization is enabled by modifying your application to include an
authentication policy and authorization policy. Pyramid
comes with a variety of implementations of these policies. To provide maximal
flexibility, Pyramid also allows you to create custom authentication
policies and authorization policies.

Enabling an Authorization Policy

Pyramid does not enable any authorization policy by default. All views
are accessible by completely anonymous users. In order to begin protecting
views from execution based on security settings, you need to enable an
authorization policy.

Enabling an Authorization Policy Imperatively

Use the set_authorization_policy() method of
the Configurator to enable an authorization policy.

You must also enable an authentication policy in order to enable the
authorization policy. This is because authorization, in general, depends upon
authentication. Use the
set_authentication_policy() method during
application setup to specify the authentication policy.

For example:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator
from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy
authn_policy = AuthTktAuthenticationPolicy('seekrit', hashalg='sha512')
authz_policy = ACLAuthorizationPolicy()
config = Configurator()
config.set_authentication_policy(authn_policy)
config.set_authorization_policy(authz_policy)

Note

The authentication_policy and authorization_policy arguments
may also be passed to their respective methods mentioned above as
dotted Python name values, each representing the dotted name path to
a suitable implementation global defined at Python module scope.

The above configuration enables a policy which compares the value of an "auth
ticket" cookie passed in the request's environment which contains a reference
to a single principal against the principals present in any
ACL found in the resource tree when attempting to call some
view.

While it is possible to mix and match different authentication and
authorization policies, it is an error to configure a Pyramid application with
an authentication policy but without the authorization policy or vice versa. If
you do this, you'll receive an error at application startup time.

See also

See also the pyramid.authorization and pyramid.authentication
modules for alternative implementations of authorization and authentication
policies.

Protecting Views with Permissions

To protect a view callable from invocation based on a user's security
settings when a particular type of resource becomes the context, you
must pass a permission to view configuration. Permissions are
usually just strings, and they have no required composition: you can name
permissions whatever you like.

For example, the following view declaration protects the view named
add_entry.html when the context resource is of type Blog with the
add permission using the pyramid.config.Configurator.add_view() API:

	1
2
3
4
5
6

	# config is an instance of pyramid.config.Configurator

config.add_view('mypackage.views.blog_entry_add_view',
 name='add_entry.html',
 context='mypackage.resources.Blog',
 permission='add')

The equivalent view registration including the add permission name may be
performed via the @view_config decorator:

	1
2
3
4
5
6
7

	from pyramid.view import view_config
from resources import Blog

@view_config(context=Blog, name='add_entry.html', permission='add')
def blog_entry_add_view(request):
 """ Add blog entry code goes here """
 pass

As a result of any of these various view configuration statements, if an
authorization policy is in place when the view callable is found during normal
application operations, the requesting user will need to possess the add
permission against the context resource in order to be able to invoke
the blog_entry_add_view view. If they do not, the Forbidden view
will be invoked.

Setting a Default Permission

If a permission is not supplied to a view configuration, the registered view
will always be executable by entirely anonymous users: any authorization policy
in effect is ignored.

In support of making it easier to configure applications which are "secure by
default", Pyramid allows you to configure a default permission. If
supplied, the default permission is used as the permission string to all view
registrations which don't otherwise name a permission argument.

The pyramid.config.Configurator.set_default_permission() method supports
configuring a default permission for an application.

When a default permission is registered:

	If a view configuration names an explicit permission, the default
permission is ignored for that view registration, and the
view-configuration-named permission is used.

	If a view configuration names the permission
pyramid.security.NO_PERMISSION_REQUIRED, the default permission is
ignored, and the view is registered without a permission (making it
available to all callers regardless of their credentials).

Warning

When you register a default permission, all views (even exception
view views) are protected by a permission. For all views which are truly
meant to be anonymously accessible, you will need to associate the view's
configuration with the pyramid.security.NO_PERMISSION_REQUIRED
permission.

Assigning ACLs to Your Resource Objects

When the default Pyramid authorization policy determines whether
a user possesses a particular permission with respect to a resource, it
examines the ACL associated with the resource. An ACL is associated
with a resource by adding an __acl__ attribute to the resource object.
This attribute can be defined on the resource instance if you need
instance-level security, or it can be defined on the resource class if you
just need type-level security.

For example, an ACL might be attached to the resource for a blog via its class:

	1
2
3
4
5
6
7
8
9

	from pyramid.security import Allow
from pyramid.security import Everyone

class Blog(object):
 __acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'add'),
 (Allow, 'group:editors', 'edit'),
]

Or, if your resources are persistent, an ACL might be specified via the
__acl__ attribute of an instance of a resource:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.security import Allow
from pyramid.security import Everyone

class Blog(object):
 pass

blog = Blog()

blog.__acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'add'),
 (Allow, 'group:editors', 'edit'),
]

Whether an ACL is attached to a resource's class or an instance of the resource
itself, the effect is the same. It is useful to decorate individual resource
instances with an ACL (as opposed to just decorating their class) in
applications such as content management systems where fine-grained access is
required on an object-by-object basis.

Dynamic ACLs are also possible by turning the ACL into a callable on the
resource. This may allow the ACL to dynamically generate rules based on
properties of the instance.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.security import Allow
from pyramid.security import Everyone

class Blog(object):
 def __acl__(self):
 return [
 (Allow, Everyone, 'view'),
 (Allow, self.owner, 'edit'),
 (Allow, 'group:editors', 'edit'),
]

 def __init__(self, owner):
 self.owner = owner

Elements of an ACL

Here's an example ACL:

	1
2
3
4
5
6
7
8

	from pyramid.security import Allow
from pyramid.security import Everyone

__acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'add'),
 (Allow, 'group:editors', 'edit'),
]

The example ACL indicates that the pyramid.security.Everyone
principal—a special system-defined principal indicating, literally, everyone—is
allowed to view the blog, and the group:editors principal is allowed to add
to and edit the blog.

Each element of an ACL is an ACE, or access control entry. For example,
in the above code block, there are three ACEs: (Allow, Everyone, 'view'),
(Allow, 'group:editors', 'add'), and (Allow, 'group:editors', 'edit').

The first element of any ACE is either pyramid.security.Allow, or
pyramid.security.Deny, representing the action to take when the ACE
matches. The second element is a principal. The third argument is a
permission or sequence of permission names.

A principal is usually a user id, however it also may be a group id if your
authentication system provides group information and the effective
authentication policy policy is written to respect group information.
See Extending Default Authentication Policies.

Each ACE in an ACL is processed by an authorization policy in the order
dictated by the ACL. So if you have an ACL like this:

	1
2
3
4
5
6
7
8

	from pyramid.security import Allow
from pyramid.security import Deny
from pyramid.security import Everyone

__acl__ = [
 (Allow, Everyone, 'view'),
 (Deny, Everyone, 'view'),
]

The default authorization policy will allow everyone the view permission,
even though later in the ACL you have an ACE that denies everyone the view
permission. On the other hand, if you have an ACL like this:

	1
2
3
4
5
6
7
8

	from pyramid.security import Everyone
from pyramid.security import Allow
from pyramid.security import Deny

__acl__ = [
 (Deny, Everyone, 'view'),
 (Allow, Everyone, 'view'),
]

The authorization policy will deny everyone the view permission, even though
later in the ACL, there is an ACE that allows everyone.

The third argument in an ACE can also be a sequence of permission names instead
of a single permission name. So instead of creating multiple ACEs representing
a number of different permission grants to a single group:editors group, we
can collapse this into a single ACE, as below.

	1
2
3
4
5
6
7

	from pyramid.security import Allow
from pyramid.security import Everyone

__acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', ('add', 'edit')),
]

Special Principal Names

Special principal names exist in the pyramid.security module. They can
be imported for use in your own code to populate ACLs, e.g.,
pyramid.security.Everyone.

pyramid.security.Everyone

Literally, everyone, no matter what. This object is actually a string under
the hood (system.Everyone). Every user is the principal named
"Everyone" during every request, even if a security policy is not in use.

pyramid.security.Authenticated

Any user with credentials as determined by the current security policy. You
might think of it as any user that is "logged in". This object is actually a
string under the hood (system.Authenticated).

Special Permissions

Special permission names exist in the pyramid.security module. These
can be imported for use in ACLs.

pyramid.security.ALL_PERMISSIONS

An object representing, literally, all permissions. Useful in an ACL like
so: (Allow, 'fred', ALL_PERMISSIONS). The ALL_PERMISSIONS object is
actually a stand-in object that has a __contains__ method that always
returns True, which, for all known authorization policies, has the effect
of indicating that a given principal has any permission asked for by the
system.

Special ACEs

A convenience ACE is defined representing a deny to everyone of all
permissions in pyramid.security.DENY_ALL. This ACE is often used as
the last ACE of an ACL to explicitly cause inheriting authorization policies
to "stop looking up the traversal tree" (effectively breaking any inheritance).
For example, an ACL which allows only fred the view permission for a
particular resource, despite what inherited ACLs may say when the default
authorization policy is in effect, might look like so:

	1
2
3
4

	from pyramid.security import Allow
from pyramid.security import DENY_ALL

__acl__ = [(Allow, 'fred', 'view'), DENY_ALL]

Under the hood, the pyramid.security.DENY_ALL ACE equals the
following:

	1
2

	from pyramid.security import ALL_PERMISSIONS
__acl__ = [(Deny, Everyone, ALL_PERMISSIONS)]

ACL Inheritance and Location-Awareness

While the default authorization policy is in place, if a resource
object does not have an ACL when it is the context, its parent is consulted
for an ACL. If that object does not have an ACL, its parent is consulted for
an ACL, ad infinitum, until we've reached the root and there are no more
parents left.

In order to allow the security machinery to perform ACL inheritance, resource
objects must provide location-awareness. Providing location-awareness
means two things: the root object in the resource tree must have a __name__
attribute and a __parent__ attribute.

	1
2
3

	class Blog(object):
 __name__ = ''
 __parent__ = None

An object with a __parent__ attribute and a __name__ attribute is said
to be location-aware. Location-aware objects define a __parent__
attribute which points at their parent object. The root object's
__parent__ is None.

See also

See also pyramid.location for documentations of functions which use
location-awareness.

See also

See also Location-Aware Resources.

Changing the Forbidden View

When Pyramid denies a view invocation due to an authorization denial,
the special forbidden view is invoked. Out of the box, this forbidden view
is very plain. See Changing the Forbidden View within
Using Hooks for instructions on how to create a custom forbidden view
and arrange for it to be called when view authorization is denied.

Debugging View Authorization Failures

If your application in your judgment is allowing or denying view access
inappropriately, start your application under a shell using the
PYRAMID_DEBUG_AUTHORIZATION environment variable set to 1. For
example:

$ PYRAMID_DEBUG_AUTHORIZATION=1 $VENV/bin/pserve myproject.ini

When any authorization takes place during a top-level view rendering, a message
will be logged to the console (to stderr) about what ACE in which ACL permitted
or denied the authorization based on authentication information.

This behavior can also be turned on in the application .ini file by setting
the pyramid.debug_authorization key to true within the application's
configuration section, e.g.:

	1
2
3

	[app:main]
use = egg:MyProject
pyramid.debug_authorization = true

With this debug flag turned on, the response sent to the browser will also
contain security debugging information in its body.

Debugging Imperative Authorization Failures

The pyramid.request.Request.has_permission() API is used to check
security within view functions imperatively. It returns instances of objects
that are effectively booleans. But these objects are not raw True or
False objects, and have information attached to them about why the
permission was allowed or denied. The object will be one of
pyramid.security.ACLAllowed, pyramid.security.ACLDenied,
pyramid.security.Allowed, or pyramid.security.Denied, as
documented in pyramid.security. At the very minimum, these objects will
have a msg attribute, which is a string indicating why the permission was
denied or allowed. Introspecting this information in the debugger or via print
statements when a call to has_permission() fails
is often useful.

Extending Default Authentication Policies

Pyramid ships with some built in authentication policies for use in your
applications. See pyramid.authentication for the available policies.
They differ on their mechanisms for tracking authentication credentials between
requests, however they all interface with your application in mostly the same
way.

Above you learned about Assigning ACLs to Your Resource Objects. Each principal used in
the ACL is matched against the list returned from
pyramid.interfaces.IAuthenticationPolicy.effective_principals().
Similarly, pyramid.request.Request.authenticated_userid() maps to
pyramid.interfaces.IAuthenticationPolicy.authenticated_userid().

You may control these values by subclassing the default authentication
policies. For example, below we subclass the
pyramid.authentication.AuthTktAuthenticationPolicy and define extra
functionality to query our database before confirming that the userid
is valid in order to avoid blindly trusting the value in the cookie (what if
the cookie is still valid, but the user has deleted their account?). We then
use that userid to augment the effective_principals with
information about groups and other state for that user.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from pyramid.authentication import AuthTktAuthenticationPolicy

class MyAuthenticationPolicy(AuthTktAuthenticationPolicy):
 def authenticated_userid(self, request):
 userid = self.unauthenticated_userid(request)
 if userid:
 if request.verify_userid_is_still_valid(userid):
 return userid

 def effective_principals(self, request):
 principals = [Everyone]
 userid = self.authenticated_userid(request)
 if userid:
 principals += [Authenticated, str(userid)]
 return principals

In most instances authenticated_userid and effective_principals are
application-specific, whereas unauthenticated_userid, remember, and
forget are generic and focused on transport and serialization of data
between consecutive requests.

Creating Your Own Authentication Policy

Pyramid ships with a number of useful out-of-the-box security policies
(see pyramid.authentication). However, creating your own authentication
policy is often necessary when you want to control the "horizontal and
vertical" of how your users authenticate. Doing so is a matter of creating an
instance of something that implements the following interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	class IAuthenticationPolicy(object):
 """ An object representing a Pyramid authentication policy. """

 def authenticated_userid(self, request):
 """ Return the authenticated :term:`userid` or ``None`` if
 no authenticated userid can be found. This method of the
 policy should ensure that a record exists in whatever
 persistent store is used related to the user (the user
 should not have been deleted); if a record associated with
 the current id does not exist in a persistent store, it
 should return ``None``.

 """

 def unauthenticated_userid(self, request):
 """ Return the *unauthenticated* userid. This method
 performs the same duty as ``authenticated_userid`` but is
 permitted to return the userid based only on data present
 in the request; it needn't (and shouldn't) check any
 persistent store to ensure that the user record related to
 the request userid exists.

 This method is intended primarily a helper to assist the
 ``authenticated_userid`` method in pulling credentials out
 of the request data, abstracting away the specific headers,
 query strings, etc that are used to authenticate the request.

 """

 def effective_principals(self, request):
 """ Return a sequence representing the effective principals
 typically including the :term:`userid` and any groups belonged
 to by the current user, always including 'system' groups such
 as ``pyramid.security.Everyone`` and
 ``pyramid.security.Authenticated``.

 """

 def remember(self, request, userid, **kw):
 """ Return a set of headers suitable for 'remembering' the
 :term:`userid` named ``userid`` when set in a response. An
 individual authentication policy and its consumers can
 decide on the composition and meaning of **kw.

 """

 def forget(self, request):
 """ Return a set of headers suitable for 'forgetting' the
 current user on subsequent requests.

 """

After you do so, you can pass an instance of such a class into the
set_authentication_policy method at
configuration time to use it.

Creating Your Own Authorization Policy

An authorization policy is a policy that allows or denies access after a user
has been authenticated. Most Pyramid applications will use the default
pyramid.authorization.ACLAuthorizationPolicy.

However, in some cases, it's useful to be able to use a different authorization
policy than the default ACLAuthorizationPolicy.
For example, it might be desirable to construct an alternate authorization
policy which allows the application to use an authorization mechanism that does
not involve ACL objects.

Pyramid ships with only a single default authorization policy, so you'll
need to create your own if you'd like to use a different one. Creating and
using your own authorization policy is a matter of creating an instance of an
object that implements the following interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class IAuthorizationPolicy(object):
 """ An object representing a Pyramid authorization policy. """
 def permits(self, context, principals, permission):
 """ Return ``True`` if any of the ``principals`` is allowed the
 ``permission`` in the current ``context``, else return ``False``
 """

 def principals_allowed_by_permission(self, context, permission):
 """ Return a set of principal identifiers allowed by the
 ``permission`` in ``context``. This behavior is optional; if you
 choose to not implement it you should define this method as
 something which raises a ``NotImplementedError``. This method
 will only be called when the
 ``pyramid.security.principals_allowed_by_permission`` API is
 used."""

After you do so, you can pass an instance of such a class into the
set_authorization_policy method at
configuration time to use it.

Admonishment Against Secret-Sharing

A "secret" is required by various components of Pyramid. For example, the
authentication policy below uses a secret value seekrit:

authn_policy = AuthTktAuthenticationPolicy('seekrit', hashalg='sha512')

A session factory also requires a secret:

my_session_factory = SignedCookieSessionFactory('itsaseekreet')

It is tempting to use the same secret for multiple Pyramid subsystems. For
example, you might be tempted to use the value seekrit as the secret for
both the authentication policy and the session factory defined above. This is
a bad idea, because in both cases, these secrets are used to sign the payload
of the data.

If you use the same secret for two different parts of your application for
signing purposes, it may allow an attacker to get his chosen plaintext signed,
which would allow the attacker to control the content of the payload. Re-using
a secret across two different subsystems might drop the security of signing to
zero. Keys should not be re-used across different contexts where an attacker
has the possibility of providing a chosen plaintext.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Combining Traversal and URL Dispatch

When you write most Pyramid applications, you'll be using one or the
other of two available resource location subsystems: traversal or URL
dispatch. However, to solve a limited set of problems, it's useful to use
both traversal and URL dispatch together within the same application.
Pyramid makes this possible via hybrid applications.

Warning

Reasoning about the behavior of a "hybrid" URL dispatch + traversal
application can be challenging. To successfully reason about using URL
dispatch and traversal together, you need to understand URL pattern
matching, root factories, and the traversal algorithm, and the
potential interactions between them. Therefore, we don't recommend creating
an application that relies on hybrid behavior unless you must.

A Review of Non-Hybrid Applications

When used according to the tutorials in its documentation, Pyramid is a
"dual-mode" framework: the tutorials explain how to create an application in
terms of using either URL dispatch or traversal. This
chapter details how you might combine these two dispatch mechanisms, but we'll
review how they work in isolation before trying to combine them.

URL Dispatch Only

An application that uses URL dispatch exclusively to map URLs to code
will often have statements like this within its application startup
configuration:

	1
2
3
4
5
6
7

	# config is an instance of pyramid.config.Configurator

config.add_route('foobar', '{foo}/{bar}')
config.add_route('bazbuz', '{baz}/{buz}')

config.add_view('myproject.views.foobar', route_name='foobar')
config.add_view('myproject.views.bazbuz', route_name='bazbuz')

Each route corresponds to one or more view callables. Each view
callable is associated with a route by passing a route_name parameter that
matches its name during a call to
add_view(). When a route is matched during
a request, view lookup is used to match the request to its associated
view callable. The presence of calls to
add_route() signify that an application is
using URL dispatch.

Traversal Only

An application that uses only traversal will have view configuration
declarations that look like this:

	1
2
3
4

	# config is an instance of pyramid.config.Configurator

config.add_view('mypackage.views.foobar', name='foobar')
config.add_view('mypackage.views.bazbuz', name='bazbuz')

When the above configuration is applied to an application, the
mypackage.views.foobar view callable above will be called when the URL
/foobar is visited. Likewise, the view mypackage.views.bazbuz will be
called when the URL /bazbuz is visited.

Typically, an application that uses traversal exclusively won't perform any
calls to pyramid.config.Configurator.add_route() in its startup code.

Hybrid Applications

Either traversal or URL dispatch alone can be used to create a Pyramid
application. However, it is also possible to combine the concepts of traversal
and URL dispatch when building an application, the result of which is a hybrid
application. In a hybrid application, traversal is performed after a
particular route has matched.

A hybrid application is a lot more like a "pure" traversal-based application
than it is like a "pure" URL-dispatch based application. But unlike in a "pure"
traversal-based application, in a hybrid application traversal is
performed during a request after a route has already matched. This means that
the URL pattern that represents the pattern argument of a route must match
the PATH_INFO of a request, and after the route pattern has matched, most
of the "normal" rules of traversal with respect to resource location
and view lookup apply.

There are only four real differences between a purely traversal-based
application and a hybrid application:

	In a purely traversal-based application, no routes are defined. In a hybrid
application, at least one route will be defined.

	In a purely traversal-based application, the root object used is global,
implied by the root factory provided at startup time. In a hybrid
application, the root object at which traversal begins may be varied
on a per-route basis.

	In a purely traversal-based application, the PATH_INFO of the underlying
WSGI environment is used wholesale as a traversal path. In a hybrid
application, the traversal path is not the entire PATH_INFO string, but a
portion of the URL determined by a matching pattern in the matched route
configuration's pattern.

	In a purely traversal-based application, view configurations which do not
mention a route_name argument are considered during view lookup.
In a hybrid application, when a route is matched, only view configurations
which mention that route's name as a route_name are considered during
view lookup.

More generally, a hybrid application is a traversal-based application except:

	the traversal root is chosen based on the route configuration of the route
that matched, instead of from the root_factory supplied during
application startup configuration.

	the traversal path is chosen based on the route configuration of the route
that matched, rather than from the PATH_INFO of a request.

	the set of views that may be chosen during view lookup when a route
matches are limited to those which specifically name a route_name in
their configuration that is the same as the matched route's name.

To create a hybrid mode application, use a route configuration that
implies a particular root factory and which also includes a pattern
argument that contains a special dynamic part: either *traverse or
*subpath.

The Root Object for a Route Match

A hybrid application implies that traversal is performed during a request after
a route has matched. Traversal, by definition, must always begin at a root
object. Therefore it's important to know which root object will be traversed
after a route has matched.

Figuring out which root object results from a particular route match is
straightforward. When a route is matched:

	If the route's configuration has a factory argument which points to a
root factory callable, that callable will be called to generate a
root object.

	If the route's configuration does not have a factory argument, the
global root factory will be called to generate a root
object. The global root factory is the callable implied by the
root_factory argument passed to the Configurator
at application startup time.

	If a root_factory argument is not provided to the
Configurator at startup time, a default root
factory is used. The default root factory is used to generate a root object.

Note

Root factories related to a route were explained previously within
Route Factories. Both the global root factory and default root
factory were explained previously within The Resource Tree.

Using *traverse in a Route Pattern

A hybrid application most often implies the inclusion of a route configuration
that contains the special token *traverse at the end of a route's pattern:

	1

	config.add_route('home', '{foo}/{bar}/*traverse')

A *traverse token at the end of the pattern in a route's configuration
implies a "remainder" capture value. When it is used, it will match the
remainder of the path segments of the URL. This remainder becomes the path
used to perform traversal.

Note

The *remainder route pattern syntax is explained in more detail within
Route Pattern Syntax.

A hybrid mode application relies more heavily on traversal to do
resource location and view lookup than most examples indicate
within URL Dispatch.

Because the pattern of the above route ends with *traverse, when this route
configuration is matched during a request, Pyramid will attempt to use
traversal against the root object implied by the root
factory that is implied by the route's configuration. Since no
root_factory argument is explicitly specified for this route, this will
either be the global root factory for the application, or the default root
factory. Once traversal has found a context resource,
view lookup will be invoked in almost exactly the same way it would
have been invoked in a "pure" traversal-based application.

Let's assume there is no global root factory configured in this
application. The default root factory cannot be traversed; it has no
useful __getitem__ method. So we'll need to associate this route
configuration with a custom root factory in order to create a useful hybrid
application. To that end, let's imagine that we've created a root factory that
looks like so in a module named routes.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	class Resource(object):
 def __init__(self, subobjects):
 self.subobjects = subobjects

 def __getitem__(self, name):
 return self.subobjects[name]

root = Resource(
 {'a': Resource({'b': Resource({'c': Resource({})})})}
)

def root_factory(request):
 return root

Above we've defined a (bogus) resource tree that can be traversed, and a
root_factory function that can be used as part of a particular route
configuration statement:

	1
2

	config.add_route('home', '{foo}/{bar}/*traverse',
 factory='mypackage.routes.root_factory')

The factory above points at the function we've defined. It will return an
instance of the Resource class as a root object whenever this route is
matched. Instances of the Resource class can be used for tree traversal
because they have a __getitem__ method that does something nominally
useful. Since traversal uses __getitem__ to walk the resources of a
resource tree, using traversal against the root resource implied by our route
statement is a reasonable thing to do.

Note

We could have also used our root_factory function as the root_factory
argument of the Configurator constructor, instead of
associating it with a particular route inside the route's configuration.
Every hybrid route configuration that is matched, but which does not name a
factory attribute, will use the global root_factory function to
generate a root object.

When the route configuration named home above is matched during a request,
the matchdict generated will be based on its pattern:
{foo}/{bar}/*traverse. The "capture value" implied by the *traverse
element in the pattern will be used to traverse the resource tree in order to
find a context resource, starting from the root object returned from the root
factory. In the above example, the root object found will be the
instance named root in routes.py.

If the URL that matched a route with the pattern {foo}/{bar}/*traverse is
http://example.com/one/two/a/b/c, the traversal path used against the root
object will be a/b/c. As a result, Pyramid will attempt to traverse
through the edges 'a', 'b', and 'c', beginning at the root object.

In our above example, this particular set of traversal steps will mean that the
context resource of the view would be the Resource object we've
named 'c' in our bogus resource tree, and the view name resulting
from traversal will be the empty string. If you need a refresher about why
this outcome is presumed, see The Traversal Algorithm.

At this point, a suitable view callable will be found and invoked using
view lookup as described in View Configuration, but with a
caveat: in order for view lookup to work, we need to define a view
configuration that will match when view lookup is invoked after a route
matches:

	1
2
3

	config.add_route('home', '{foo}/{bar}/*traverse',
 factory='mypackage.routes.root_factory')
config.add_view('mypackage.views.myview', route_name='home')

Note that the above call to add_view()
includes a route_name argument. View configurations that include a
route_name argument are meant to associate a particular view declaration
with a route, using the route's name, in order to indicate that the view should
only be invoked when the route matches.

Calls to add_view() may pass a
route_name attribute, which refers to the value of an existing route's
name argument. In the above example, the route name is home, referring
to the name of the route defined above it.

The above mypackage.views.myview view callable will be invoked when the
following conditions are met:

	The route named "home" is matched.

	The view name resulting from traversal is the empty string.

	The context resource is any object.

It is also possible to declare alternative views that may be invoked when a
hybrid route is matched:

	1
2
3
4
5

	config.add_route('home', '{foo}/{bar}/*traverse',
 factory='mypackage.routes.root_factory')
config.add_view('mypackage.views.myview', route_name='home')
config.add_view('mypackage.views.another_view', route_name='home',
 name='another')

The add_view call for mypackage.views.another_view above names a
different view and, more importantly, a different view name. The above
mypackage.views.another_view view will be invoked when the following
conditions are met:

	The route named "home" is matched.

	The view name resulting from traversal is another.

	The context resource is any object.

For instance, if the URL http://example.com/one/two/a/another is provided
to an application that uses the previously mentioned resource tree, the
mypackage.views.another_view view callable will be called instead of the
mypackage.views.myview view callable because the view name will be
another instead of the empty string.

More complicated matching can be composed. All arguments to route
configuration statements and view configuration statements are supported in
hybrid applications (such as predicate arguments).

Using the traverse Argument in a Route Definition

Rather than using the *traverse remainder marker in a pattern, you can use
the traverse argument to the add_route()
method.

When you use the *traverse remainder marker, the traversal path is limited
to being the remainder segments of a request URL when a route matches.
However, when you use the traverse argument or attribute, you have more
control over how to compose a traversal path.

Here's a use of the traverse pattern in a call to
add_route():

	1
2

	config.add_route('abc', '/articles/{article}/edit',
 traverse='/{article}')

The syntax of the traverse argument is the same as it is for pattern.

If, as above, the pattern provided is /articles/{article}/edit, and the
traverse argument provided is /{article}, when a request comes in that
causes the route to match in such a way that the article match value is
1 (when the request URI is /articles/1/edit), the traversal path will
be generated as /1. This means that the root object's __getitem__ will
be called with the name 1 during the traversal phase. If the 1 object
exists, it will become the context of the request. The
Traversal chapter has more information about traversal.

If the traversal path contains segment marker names which are not present in
the pattern argument, a runtime error will occur. The traverse pattern
should not contain segment markers that do not exist in the path.

Note that the traverse argument is ignored when attached to a route that
has a *traverse remainder marker in its pattern.

Traversal will begin at the root object implied by this route (either the
global root, or the object returned by the factory associated with this
route).

Making Global Views Match

By default, only view configurations that mention a route_name will be
found during view lookup when a route that has a *traverse in its pattern
matches. You can allow views without a route_name attribute to match a
route by adding the use_global_views flag to the route definition. For
example, the myproject.views.bazbuz view below will be found if the route
named abc below is matched and the PATH_INFO is /abc/bazbuz, even
though the view configuration statement does not have the route_name="abc"
attribute.

	1
2

	config.add_route('abc', '/abc/*traverse', use_global_views=True)
config.add_view('myproject.views.bazbuz', name='bazbuz')

Using *subpath in a Route Pattern

There are certain extremely rare cases when you'd like to influence the
traversal subpath when a route matches without actually performing
traversal. For instance, the pyramid.wsgi.wsgiapp2() decorator and the
pyramid.static.static_view helper attempt to compute PATH_INFO
from the request's subpath when its use_subpath argument is True, so
it's useful to be able to influence this value.

When *subpath exists in a pattern, no path is actually traversed, but the
traversal algorithm will return a subpath list implied by the capture
value of *subpath. You'll see this pattern most commonly in route
declarations that look like this:

	1
2
3
4
5
6

	from pyramid.static import static_view

www = static_view('mypackage:static', use_subpath=True)

config.add_route('static', '/static/*subpath')
config.add_view(www, route_name='static')

mypackage.views.www is an instance of pyramid.static.static_view.
This effectively tells the static helper to traverse everything in the subpath
as a filename.

Generating Hybrid URLs

New in version 1.5.

The pyramid.request.Request.resource_url() method and the
pyramid.request.Request.resource_path() method both accept optional
keyword arguments that make it easier to generate route-prefixed URLs that
contain paths to traversal resources: route_name, route_kw, and
route_remainder_name.

Any route that has a pattern that contains a *remainder pattern (any
stararg remainder pattern, such as *traverse, *subpath, or *fred)
can be used as the target name for request.resource_url(..., route_name=)
and request.resource_path(..., route_name=).

For example, let's imagine you have a route defined in your Pyramid application
like so:

config.add_route('mysection', '/mysection*traverse')

If you'd like to generate the URL http://example.com/mysection/a/, you can
use the following incantation, assuming that the variable a below points to
a resource that is a child of the root with a __name__ of a:

request.resource_url(a, route_name='mysection')

You can generate only the path portion /mysection/a/ assuming the same:

request.resource_path(a, route_name='mysection')

The path is virtual host aware, so if the X-Vhm-Root environment variable
is present in the request, and it's set to /a, the above call to
request.resource_url would generate http://example.com/mysection/, and
the above call to request.resource_path would generate /mysection/. See
Virtual Root Support for more information.

If the route you're trying to use needs simple dynamic part values to be filled
in to succesfully generate the URL, you can pass these as the route_kw
argument to resource_url and resource_path. For example, assuming that
the route definition is like so:

config.add_route('mysection', '/{id}/mysection*traverse')

You can pass route_kw in to fill in {id} above:

request.resource_url(a, route_name='mysection', route_kw={'id':'1'})

If you pass route_kw but do not pass route_name, route_kw will be
ignored.

By default this feature works by calling route_url under the hood, and
passing the value of the resource path to that function as traverse. If
your route has a different *stararg remainder name (such as *subpath),
you can tell resource_url or resource_path to use that instead of
traverse by passing route_remainder_name. For example, if you have the
following route:

config.add_route('mysection', '/mysection*subpath')

You can fill in the *subpath value using resource_url by doing:

request.resource_path(a, route_name='mysection',
 route_remainder_name='subpath')

If you pass route_remainder_name but do not pass route_name,
route_remainder_name will be ignored.

If you try to use resource_path or resource_url when the route_name
argument points at a route that does not have a remainder stararg, an error
will not be raised, but the generated URL will not contain any remainder
information either.

All other values that are normally passable to resource_path and
resource_url (such as query, anchor, host, port, and
positional elements) work as you might expect in this configuration.

Note that this feature is incompatible with the __resource_url__ feature
(see Overriding Resource URL Generation) implemented on resource
objects. Any __resource_url__ supplied by your resource will be ignored
when you pass route_name.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Invoking a Subrequest

New in version 1.4.

Pyramid allows you to invoke a subrequest at any point during the
processing of a request. Invoking a subrequest allows you to obtain a
response object from a view callable within your Pyramid
application while you're executing a different view callable within the same
application.

Here's an example application which uses a subrequest:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.request import Request

def view_one(request):
 subreq = Request.blank('/view_two')
 response = request.invoke_subrequest(subreq)
 return response

def view_two(request):
 request.response.body = 'This came from view_two'
 return request.response

if __name__ == '__main__':
 config = Configurator()
 config.add_route('one', '/view_one')
 config.add_route('two', '/view_two')
 config.add_view(view_one, route_name='one')
 config.add_view(view_two, route_name='two')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

When /view_one is visted in a browser, the text printed in the browser pane
will be This came from view_two. The view_one view used the
pyramid.request.Request.invoke_subrequest() API to obtain a response from
another view (view_two) within the same application when it executed. It
did so by constructing a new request that had a URL that it knew would match
the view_two view registration, and passed that new request along to
pyramid.request.Request.invoke_subrequest(). The view_two view
callable was invoked, and it returned a response. The view_one view
callable then simply returned the response it obtained from the view_two
view callable.

Note that it doesn't matter if the view callable invoked via a subrequest
actually returns a literal Response object. Any view callable that uses a
renderer or which returns an object that can be interpreted by a response
adapter when found and invoked via
pyramid.request.Request.invoke_subrequest() will return a Response
object:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.request import Request

def view_one(request):
 subreq = Request.blank('/view_two')
 response = request.invoke_subrequest(subreq)
 return response

def view_two(request):
 return 'This came from view_two'

if __name__ == '__main__':
 config = Configurator()
 config.add_route('one', '/view_one')
 config.add_route('two', '/view_two')
 config.add_view(view_one, route_name='one')
 config.add_view(view_two, route_name='two', renderer='string')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

Even though the view_two view callable returned a string, it was invoked in
such a way that the string renderer associated with the view registration
that was found turned it into a "real" response object for consumption by
view_one.

Being able to unconditionally obtain a response object by invoking a view
callable indirectly is the main advantage to using
pyramid.request.Request.invoke_subrequest() instead of simply importing a
view callable and executing it directly. Note that there's not much advantage
to invoking a view using a subrequest if you can invoke a view callable
directly. Subrequests are slower and are less convenient if you actually do
want just the literal information returned by a function that happens to be a
view callable.

Note that, by default, if a view callable invoked by a subrequest raises an
exception, the exception will be raised to the caller of
invoke_subrequest() even if you have a
exception view configured:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.request import Request

def view_one(request):
 subreq = Request.blank('/view_two')
 response = request.invoke_subrequest(subreq)
 return response

def view_two(request):
 raise ValueError('foo')

def excview(request):
 request.response.body = b'An exception was raised'
 request.response.status_int = 500
 return request.response

if __name__ == '__main__':
 config = Configurator()
 config.add_route('one', '/view_one')
 config.add_route('two', '/view_two')
 config.add_view(view_one, route_name='one')
 config.add_view(view_two, route_name='two', renderer='string')
 config.add_view(excview, context=Exception)
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

When we run the above code and visit /view_one in a browser, the
excview exception view will not be executed. Instead, the call
to invoke_subrequest() will cause a
ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception to be raised and a response will never be
generated. We can change this behavior; how to do so is described below in our
discussion of the use_tweens argument.

Subrequests with Tweens

The pyramid.request.Request.invoke_subrequest() API accepts two
arguments: a required positional argument request, and an optional keyword
argument use_tweens which defaults to False.

The request object passed to the API must be an object that implements the
Pyramid request interface (such as a pyramid.request.Request
instance). If use_tweens is True, the request will be sent to the
tween in the tween stack closest to the request ingress. If
use_tweens is False, the request will be sent to the main router
handler, and no tweens will be invoked.

In the example above, the call to
invoke_subrequest() will always raise an
exception. This is because it's using the default value for use_tweens,
which is False. Alternatively, you can pass use_tweens=True to ensure
that it will convert an exception to a Response if an exception view is
configured, instead of raising the exception. This is because exception views
are called by the exception view tween as described in
Custom Exception Views when any view raises an exception.

We can cause the subrequest to be run through the tween stack by passing
use_tweens=True to the call to
invoke_subrequest(), like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.request import Request

def view_one(request):
 subreq = Request.blank('/view_two')
 response = request.invoke_subrequest(subreq, use_tweens=True)
 return response

def view_two(request):
 raise ValueError('foo')

def excview(request):
 request.response.body = b'An exception was raised'
 request.response.status_int = 500
 return request.response

if __name__ == '__main__':
 config = Configurator()
 config.add_route('one', '/view_one')
 config.add_route('two', '/view_two')
 config.add_view(view_one, route_name='one')
 config.add_view(view_two, route_name='two', renderer='string')
 config.add_view(excview, context=Exception)
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

In the above case, the call to request.invoke_subrequest(subreq) will not
raise an exception. Instead, it will retrieve a "500" response from the
attempted invocation of view_two, because the tween which invokes an
exception view to generate a response is run, and therefore excview is
executed.

This is one of the major differences between specifying the use_tweens=True
and use_tweens=False arguments to
invoke_subrequest(). use_tweens=True may
also imply invoking a transaction commit or abort for the logic executed in the
subrequest if you've got pyramid_tm in the tween list, injecting debug HTML
if you've got pyramid_debugtoolbar in the tween list, and other
tween-related side effects as defined by your particular tween list.

The invoke_subrequest() function also
unconditionally does the following:

	It manages the threadlocal stack so that
get_current_request() and
get_current_registry() work during a request (they
will return the subrequest instead of the original request).

	It adds a registry attribute and an invoke_subrequest attribute (a
callable) to the request object to which it is handed.

	It sets request extensions (such as those added via
add_request_method() or
set_request_property()) on the subrequest
object passed as request.

	It causes a NewRequest event to be sent at the
beginning of request processing.

	It causes a ContextFound event to be sent when a
context resource is found.

	It ensures that the user implied by the request passed in has the necessary
authorization to invoke the view callable before calling it.

	It calls any response callback functions defined within the
subrequest's lifetime if a response is obtained from the Pyramid application.

	It causes a NewResponse event to be sent if a
response is obtained.

	It calls any finished callback functions defined within the
subrequest's lifetime.

The invocation of a subrequest has more or less exactly the same effect as the
invocation of a request received by the Pyramid router from a web client
when use_tweens=True. When use_tweens=False, the tweens are skipped
but all the other steps take place.

It's a poor idea to use the original request object as an argument to
invoke_subrequest(). You should construct a new
request instead as demonstrated in the above example, using
pyramid.request.Request.blank(). Once you've constructed a request
object, you'll need to massage it to match the view callable that you'd like to
be executed during the subrequest. This can be done by adjusting the
subrequest's URL, its headers, its request method, and other attributes. The
documentation for pyramid.request.Request exposes the methods you
should call and attributes you should set on the request that you create, then
massage it into something that will actually match the view you'd like to call
via a subrequest.

We've demonstrated use of a subrequest from within a view callable, but you can
use the invoke_subrequest() API from within a
tween or an event handler as well. Even though you can do it, it's usually a
poor idea to invoke invoke_subrequest() from
within a tween, because tweens already, by definition, have access to a
function that will cause a subrequest (they are passed a handle function).
It's fine to invoke invoke_subrequest() from
within an event handler, however.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Using Hooks

"Hooks" can be used to influence the behavior of the Pyramid framework
in various ways.

Changing the Not Found View

When Pyramid can't map a URL to view code, it invokes a Not Found
View, which is a view callable. The default Not Found View can be
overridden through application configuration.

If your application uses imperative configuration, you can replace the
Not Found View by using the
pyramid.config.Configurator.add_notfound_view() method:

	1
2
3
4
5
6

	def notfound(request):
 return Response('Not Found, dude', status='404 Not Found')

def main(globals, **settings):
 config = Configurator()
 config.add_notfound_view(notfound)

The Not Found View callable is a view callable like any other.

If your application instead uses pyramid.view.view_config decorators
and a scan, you can replace the Not Found View by using the
pyramid.view.notfound_view_config decorator:

	1
2
3
4
5
6
7
8
9

	from pyramid.view import notfound_view_config

@notfound_view_config()
def notfound(request):
 return Response('Not Found, dude', status='404 Not Found')

def main(globals, **settings):
 config = Configurator()
 config.scan()

This does exactly what the imperative example above showed.

Your application can define multiple Not Found Views if necessary. Both
pyramid.config.Configurator.add_notfound_view() and
pyramid.view.notfound_view_config take most of the same arguments as
pyramid.config.Configurator.add_view and
pyramid.view.view_config, respectively. This means that Not Found
Views can carry predicates limiting their applicability. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.view import notfound_view_config

@notfound_view_config(request_method='GET')
def notfound_get(request):
 return Response('Not Found during GET, dude', status='404 Not Found')

@notfound_view_config(request_method='POST')
def notfound_post(request):
 return Response('Not Found during POST, dude', status='404 Not Found')

def main(globals, **settings):
 config = Configurator()
 config.scan()

The notfound_get view will be called when a view could not be found and the
request method was GET. The notfound_post view will be called when a
view could not be found and the request method was POST.

Like any other view, the Not Found View must accept at least a request
parameter, or both context and request. The request is the current
request representing the denied action. The context (if used in
the call signature) will be the instance of the
HTTPNotFound exception that caused the view to
be called.

Both pyramid.config.Configurator.add_notfound_view() and
pyramid.view.notfound_view_config can be used to automatically
redirect requests to slash-appended routes. See
Redirecting to Slash-Appended Routes for examples.

Here's some sample code that implements a minimal Not Found View
callable:

	1
2
3
4

	from pyramid.httpexceptions import HTTPNotFound

def notfound(request):
 return HTTPNotFound()

Note

When a Not Found View callable is invoked, it is passed a request.
The exception attribute of the request will be an instance of the
HTTPNotFound exception that caused the Not
Found View to be called. The value of request.exception.message will be
a value explaining why the Not Found exception was raised. This message has
different values depending on whether the pyramid.debug_notfound
environment setting is true or false.

Note

Both pyramid.config.Configurator.add_notfound_view() and
pyramid.view.notfound_view_config are new as of Pyramid 1.3.
Older Pyramid documentation instructed users to use add_view instead,
with a context of HTTPNotFound. This still works; the convenience
method and decorator are just wrappers around this functionality.

Warning

When a Not Found View callable accepts an argument list as described in
Alternate View Callable Argument/Calling Conventions, the context passed as the
first argument to the view callable will be the
HTTPNotFound exception instance. If
available, the resource context will still be available as
request.context.

Changing the Forbidden View

When Pyramid can't authorize execution of a view based on the
authorization policy in use, it invokes a forbidden view. The
default forbidden response has a 403 status code and is very plain, but the
view which generates it can be overridden as necessary.

The forbidden view callable is a view callable like any other. The
view configuration which causes it to be a "forbidden" view consists of
using the pyramid.config.Configurator.add_forbidden_view() API or the
pyramid.view.forbidden_view_config decorator.

For example, you can add a forbidden view by using the
pyramid.config.Configurator.add_forbidden_view() method to register a
forbidden view:

	1
2
3
4
5
6

	def forbidden(request):
 return Response('forbidden')

def main(globals, **settings):
 config = Configurator()
 config.add_forbidden_view(forbidden_view)

If instead you prefer to use decorators and a scan, you can use the
pyramid.view.forbidden_view_config decorator to mark a view callable
as a forbidden view:

	1
2
3
4
5
6
7
8
9

	from pyramid.view import forbidden_view_config

@forbidden_view_config()
def forbidden(request):
 return Response('forbidden')

def main(globals, **settings):
 config = Configurator()
 config.scan()

Like any other view, the forbidden view must accept at least a request
parameter, or both context and request. If a forbidden view callable
accepts both context and request, the HTTP Exception is passed as
context. The context as found by the router when the view was denied (which
you normally would expect) is available as request.context. The
request is the current request representing the denied action.

Here's some sample code that implements a minimal forbidden view:

	1
2
3
4
5

	from pyramid.view import view_config
from pyramid.response import Response

def forbidden_view(request):
 return Response('forbidden')

Note

When a forbidden view callable is invoked, it is passed a request.
The exception attribute of the request will be an instance of the
HTTPForbidden exception that caused the
forbidden view to be called. The value of request.exception.message
will be a value explaining why the forbidden exception was raised, and
request.exception.result will be extended information about the
forbidden exception. These messages have different values depending on
whether the pyramid.debug_authorization environment setting is true or
false.

Changing the Request Factory

Whenever Pyramid handles a request from a WSGI server, it
creates a request object based on the WSGI environment it has been
passed. By default, an instance of the pyramid.request.Request class
is created to represent the request object.

The class (a.k.a., "factory") that Pyramid uses to create a request
object instance can be changed by passing a request_factory argument to the
constructor of the configurator. This argument can be either a
callable or a dotted Python name representing a callable.

	1
2
3
4
5
6

	from pyramid.request import Request

class MyRequest(Request):
 pass

config = Configurator(request_factory=MyRequest)

If you're doing imperative configuration, and you'd rather do it after you've
already constructed a configurator, it can also be registered via the
pyramid.config.Configurator.set_request_factory() method:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator
from pyramid.request import Request

class MyRequest(Request):
 pass

config = Configurator()
config.set_request_factory(MyRequest)

Adding Methods or Properties to a Request Object

New in version 1.4.

Since each Pyramid application can only have one request factory,
changing the request factory is not that
extensible, especially if you want to build composable features (e.g., Pyramid
add-ons and plugins).

A lazy property can be registered to the request object via the
pyramid.config.Configurator.add_request_method() API. This allows you to
specify a callable that will be available on the request object, but will not
actually execute the function until accessed.

Warning

This will silently override methods and properties from request
factory that have the same name.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator

def total(request, *args):
 return sum(args)

def prop(request):
 print("getting the property")
 return "the property"

config = Configurator()
config.add_request_method(total)
config.add_request_method(prop, reify=True)

In the above example, total is added as a method. However, prop is
added as a property and its result is cached per-request by setting
reify=True. This way, we eliminate the overhead of running the function
multiple times.

>>> request.total(1, 2, 3)
6
>>> request.prop
getting the property
the property
>>> request.prop
the property

To not cache the result of request.prop, set property=True instead of
reify=True.

Here is an example of passing a class to Configurator.add_request_method:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from pyramid.config import Configurator
from pyramid.decorator import reify

class ExtraStuff(object):

 def __init__(self, request):
 self.request = request

 def total(self, *args):
 return sum(args)

 # use @property if you don't want to cache the result
 @reify
 def prop(self):
 print("getting the property")
 return "the property"

config = Configurator()
config.add_request_method(ExtraStuff, 'extra', reify=True)

We attach and cache an object named extra to the request object.

>>> request.extra.total(1, 2, 3)
6
>>> request.extra.prop
getting the property
the property
>>> request.extra.prop
the property

Using the Before Render Event

Subscribers to the pyramid.events.BeforeRender event may introspect
and modify the set of renderer globals before they are passed to a
renderer. This event object iself has a dictionary-like interface that
can be used for this purpose. For example:

	1
2
3
4
5
6

	from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def add_global(event):
 event['mykey'] = 'foo'

An object of this type is sent as an event just before a renderer is
invoked.

If a subscriber attempts to add a key that already exists in the renderer
globals dictionary, a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] is raised. This limitation is enforced
because event subscribers do not possess any relative ordering. The set of
keys added to the renderer globals dictionary by all
pyramid.events.BeforeRender subscribers and renderer globals factories
must be unique.

The dictionary returned from the view is accessible through the
rendering_val attribute of a BeforeRender
event.

Suppose you return {'mykey': 'somevalue', 'mykey2': 'somevalue2'} from your
view callable, like so:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='some_renderer')
def myview(request):
 return {'mykey': 'somevalue', 'mykey2': 'somevalue2'}

rendering_val can be used to access these values from the
BeforeRender object:

	1
2
3
4
5
6
7

	from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def read_return(event):
 # {'mykey': 'somevalue'} is returned from the view
 print(event.rendering_val['mykey'])

See the API documentation for the BeforeRender event
interface at pyramid.interfaces.IBeforeRender.

Using Response Callbacks

Unlike many other web frameworks, Pyramid does not eagerly create a
global response object. Adding a response callback allows an
application to register an action to be performed against whatever response
object is returned by a view, usually in order to mutate the response.

The pyramid.request.Request.add_response_callback() method is used to
register a response callback.

A response callback is a callable which accepts two positional parameters:
request and response. For example:

	1
2
3
4
5

	def cache_callback(request, response):
 """Set the cache_control max_age for the response"""
 if request.exception is not None:
 response.cache_control.max_age = 360
request.add_response_callback(cache_callback)

No response callback is called if an unhandled exception happens in application
code, or if the response object returned by a view callable is invalid.
Response callbacks are, however, invoked when a exception view is
rendered successfully. In such a case, the request.exception attribute
of the request when it enters a response callback will be an exception object
instead of its default value of None.

Response callbacks are called in the order they're added
(first-to-most-recently-added). All response callbacks are called before the
NewResponse event is sent. Errors raised by response
callbacks are not handled specially. They will be propagated to the caller of
the Pyramid router application.

A response callback has a lifetime of a single request. If you want a
response callback to happen as the result of every request, you must
re-register the callback into every new request (perhaps within a subscriber of
a NewRequest event).

Using Finished Callbacks

A finished callback is a function that will be called unconditionally
by the Pyramid router at the very end of request processing. A
finished callback can be used to perform an action at the end of a request
unconditionally.

The pyramid.request.Request.add_finished_callback() method is used to
register a finished callback.

A finished callback is a callable which accepts a single positional parameter:
request. For example:

	1
2
3
4
5
6
7
8

	import logging

log = logging.getLogger(__name__)

def log_callback(request):
 """Log information at the end of request"""
 log.debug('Request is finished.')
request.add_finished_callback(log_callback)

Finished callbacks are called in the order they're added
(first-to-most-recently-added). Finished callbacks (unlike a response
callback) are always called, even if an exception happens in application
code that prevents a response from being generated.

The set of finished callbacks associated with a request are called very late
in the processing of that request; they are essentially the very last thing
called by the router before a request "ends". They are called after
response processing has already occurred in a top-level finally: block
within the router request processing code. As a result, mutations performed to
the request provided to a finished callback will have no meaningful effect,
because response processing will have already occurred, and the request's scope
will expire almost immediately after all finished callbacks have been
processed.

Errors raised by finished callbacks are not handled specially. They will be
propagated to the caller of the Pyramid router application.

A finished callback has a lifetime of a single request. If you want a
finished callback to happen as the result of every request, you must
re-register the callback into every new request (perhaps within a subscriber of
a NewRequest event).

Changing the Traverser

The default traversal algorithm that Pyramid uses is explained
in The Traversal Algorithm. Though it is rarely necessary, this default
algorithm can be swapped out selectively for a different traversal pattern via
configuration.

	1
2
3
4

	from pyramid.config import Configurator
from myapp.traversal import Traverser
config = Configurator()
config.add_traverser(Traverser)

In the example above, myapp.traversal.Traverser is assumed to be a class
that implements the following interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	class Traverser(object):
 def __init__(self, root):
 """ Accept the root object returned from the root factory """

 def __call__(self, request):
 """ Return a dictionary with (at least) the keys ``root``,
 ``context``, ``view_name``, ``subpath``, ``traversed``,
 ``virtual_root``, and ``virtual_root_path``. These values are
 typically the result of a resource tree traversal. ``root``
 is the physical root object, ``context`` will be a resource
 object, ``view_name`` will be the view name used (a Unicode
 name), ``subpath`` will be a sequence of Unicode names that
 followed the view name but were not traversed, ``traversed``
 will be a sequence of Unicode names that were traversed
 (including the virtual root path, if any) ``virtual_root``
 will be a resource object representing the virtual root (or the
 physical root if traversal was not performed), and
 ``virtual_root_path`` will be a sequence representing the
 virtual root path (a sequence of Unicode names) or None if
 traversal was not performed.

 Extra keys for special purpose functionality can be added as
 necessary.

 All values returned in the dictionary will be made available
 as attributes of the ``request`` object.
 """

More than one traversal algorithm can be active at the same time. For
instance, if your root factory returns more than one type of object
conditionally, you could claim that an alternative traverser adapter is "for"
only one particular class or interface. When the root factory returned an
object that implemented that class or interface, a custom traverser would be
used. Otherwise the default traverser would be used. For example:

	1
2
3
4
5

	from myapp.traversal import Traverser
from myapp.resources import MyRoot
from pyramid.config import Configurator
config = Configurator()
config.add_traverser(Traverser, MyRoot)

If the above stanza was added to a Pyramid __init__.py file's main
function, Pyramid would use the myapp.traversal.Traverser only when
the application root factory returned an instance of the
myapp.resources.MyRoot object. Otherwise it would use the default
Pyramid traverser to do traversal.

Changing How pyramid.request.Request.resource_url() Generates a URL

When you add a traverser as described in Changing the Traverser, it's
often convenient to continue to use the
pyramid.request.Request.resource_url() API. However, since the way
traversal is done will have been modified, the URLs it generates by default may
be incorrect when used against resources derived from your custom traverser.

If you've added a traverser, you can change how
resource_url() generates a URL for a specific
type of resource by adding a call to
pyramid.config.Configurator.add_resource_url_adapter().

For example:

	1
2
3
4

	from myapp.traversal import ResourceURLAdapter
from myapp.resources import MyRoot

config.add_resource_url_adapter(ResourceURLAdapter, MyRoot)

In the above example, the myapp.traversal.ResourceURLAdapter class will be
used to provide services to resource_url() any
time the resource passed to resource_url is of the class
myapp.resources.MyRoot. The resource_iface argument MyRoot
represents the type of interface that must be possessed by the resource for
this resource url factory to be found. If the resource_iface argument is
omitted, this resource URL adapter will be used for all resources.

The API that must be implemented by a class that provides
IResourceURL is as follows:

	1
2
3
4
5
6
7
8
9

	class MyResourceURL(object):
 """ An adapter which provides the virtual and physical paths of a
 resource
 """
 def __init__(self, resource, request):
 """ Accept the resource and request and set self.physical_path and
 self.virtual_path """
 self.virtual_path = some_function_of(resource, request)
 self.physical_path = some_other_function_of(resource, request)

The default context URL generator is available for perusal as the class
pyramid.traversal.ResourceURL in the traversal module [https://github.com/Pylons/pyramid/blob/master/pyramid/traversal.py] of the
Pylons GitHub Pyramid repository.

See pyramid.config.Configurator.add_resource_url_adapter() for more
information.

Changing How Pyramid Treats View Responses

New in version 1.1.

It is possible to control how Pyramid treats the result of calling a view
callable on a per-type basis by using a hook involving
pyramid.config.Configurator.add_response_adapter() or the
response_adapter decorator.

Pyramid, in various places, adapts the result of calling a view callable to the
IResponse interface to ensure that the object
returned by the view callable is a "true" response object. The vast majority
of time, the result of this adaptation is the result object itself, as view
callables written by "civilians" who read the narrative documentation contained
in this manual will always return something that implements the
IResponse interface. Most typically, this will be
an instance of the pyramid.response.Response class or a subclass. If a
civilian returns a non-Response object from a view callable that isn't
configured to use a renderer, they will typically expect the router to
raise an error. However, you can hook Pyramid in such a way that users can
return arbitrary values from a view callable by providing an adapter which
converts the arbitrary return value into something that implements
IResponse.

For example, if you'd like to allow view callables to return bare string
objects (without requiring a renderer to convert a string to a response
object), you can register an adapter which converts the string to a Response:

	1
2
3
4
5
6
7
8
9

	from pyramid.response import Response

def string_response_adapter(s):
 response = Response(s)
 return response

config is an instance of pyramid.config.Configurator

config.add_response_adapter(string_response_adapter, str)

Likewise, if you want to be able to return a simplified kind of response object
from view callables, you can use the IResponse hook to register an adapter to
the more complex IResponse interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.response import Response

class SimpleResponse(object):
 def __init__(self, body):
 self.body = body

def simple_response_adapter(simple_response):
 response = Response(simple_response.body)
 return response

config is an instance of pyramid.config.Configurator

config.add_response_adapter(simple_response_adapter, SimpleResponse)

If you want to implement your own Response object instead of using the
pyramid.response.Response object in any capacity at all, you'll have
to make sure that the object implements every attribute and method outlined in
pyramid.interfaces.IResponse and you'll have to ensure that it uses
zope.interface.implementer(IResponse) as a class decorator.

	1
2
3
4
5
6
7

	from pyramid.interfaces import IResponse
from zope.interface import implementer

@implementer(IResponse)
class MyResponse(object):
 # ... an implementation of every method and attribute
 # documented in IResponse should follow ...

When an alternate response object implementation is returned by a view
callable, if that object asserts that it implements
IResponse (via
zope.interface.implementer(IResponse)) , an adapter needn't be registered
for the object; Pyramid will use it directly.

An IResponse adapter for webob.Response (as opposed to
pyramid.response.Response) is registered by Pyramid by default at
startup time, as by their nature, instances of this class (and instances of
subclasses of the class) will natively provide IResponse. The adapter
registered for webob.Response simply returns the response object.

Instead of using pyramid.config.Configurator.add_response_adapter(), you
can use the pyramid.response.response_adapter decorator:

	1
2
3
4
5
6
7

	from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(str)
def string_response_adapter(s):
 response = Response(s)
 return response

The above example, when scanned, has the same effect as:

config.add_response_adapter(string_response_adapter, str)

The response_adapter decorator will have no effect
until activated by a scan.

Using a View Mapper

The default calling conventions for view callables are documented in the
Views chapter. You can change the way users define view
callables by employing a view mapper.

A view mapper is an object that accepts a set of keyword arguments and which
returns a callable. The returned callable is called with the view
callable object. The returned callable should itself return another callable
which can be called with the "internal calling protocol" (context,
request).

You can use a view mapper in a number of ways:

	by setting a __view_mapper__ attribute (which is the view mapper object)
on the view callable itself

	by passing the mapper object to pyramid.config.Configurator.add_view()
(or its declarative and decorator equivalents) as the mapper argument

	by registering a default view mapper

Here's an example of a view mapper that emulates (somewhat) a Pylons
"controller". The mapper is initialized with some keyword arguments. Its
__call__ method accepts the view object (which will be a class). It uses
the attr keyword argument it is passed to determine which attribute should
be used as an action method. The wrapper method it returns accepts (context,
request) and returns the result of calling the action method with keyword
arguments implied by the matchdict after popping the action out of
it. This somewhat emulates the Pylons style of calling action methods with
routing parameters pulled out of the route matching dict as keyword arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	# framework

class PylonsControllerViewMapper(object):
 def __init__(self, **kw):
 self.kw = kw

 def __call__(self, view):
 attr = self.kw['attr']
 def wrapper(context, request):
 matchdict = request.matchdict.copy()
 matchdict.pop('action', None)
 inst = view(request)
 meth = getattr(inst, attr)
 return meth(**matchdict)
 return wrapper

class BaseController(object):
 __view_mapper__ = PylonsControllerViewMapper

A user might make use of these framework components like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	# user application

from pyramid.response import Response
from pyramid.config import Configurator
import pyramid_handlers
from wsgiref.simple_server import make_server

class MyController(BaseController):
 def index(self, id):
 return Response(id)

if __name__ == '__main__':
 config = Configurator()
 config.include(pyramid_handlers)
 config.add_handler('one', '/{id}', MyController, action='index')
 config.add_handler('two', '/{action}/{id}', MyController)
 server.make_server('0.0.0.0', 8080, config.make_wsgi_app())
 server.serve_forever()

The pyramid.config.Configurator.set_view_mapper() method can be used to
set a default view mapper (overriding the superdefault view mapper used by
Pyramid itself).

A single view registration can use a view mapper by passing the mapper as the
mapper argument to add_view().

Registering Configuration Decorators

Decorators such as view_config don't change the behavior
of the functions or classes they're decorating. Instead when a scan is
performed, a modified version of the function or class is registered with
Pyramid.

You may wish to have your own decorators that offer such behaviour. This is
possible by using the Venusian package in the same way that it is used
by Pyramid.

By way of example, let's suppose you want to write a decorator that registers
the function it wraps with a Zope Component Architecture "utility"
within the application registry provided by Pyramid. The
application registry and the utility inside the registry is likely only to be
available once your application's configuration is at least partially
completed. A normal decorator would fail as it would be executed before the
configuration had even begun.

However, using Venusian, the decorator could be written as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import venusian
from mypackage.interfaces import IMyUtility

class registerFunction(object):

 def __init__(self, path):
 self.path = path

 def register(self, scanner, name, wrapped):
 registry = scanner.config.registry
 registry.getUtility(IMyUtility).register(
 self.path, wrapped)

 def __call__(self, wrapped):
 venusian.attach(wrapped, self.register)
 return wrapped

This decorator could then be used to register functions throughout your code:

	1
2
3

	@registerFunction('/some/path')
def my_function():
 do_stuff()

However, the utility would only be looked up when a scan was performed,
enabling you to set up the utility in advance:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from zope.interface import implementer

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from mypackage.interfaces import IMyUtility

@implementer(IMyUtility)
class UtilityImplementation:

 def __init__(self):
 self.registrations = {}

 def register(self, path, callable_):
 self.registrations[path] = callable_

if __name__ == '__main__':
 config = Configurator()
 config.registry.registerUtility(UtilityImplementation())
 config.scan()
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

For full details, please read the Venusian documentation [http://docs.repoze.org/venusian].

Registering Tweens

New in version 1.2: Tweens

A tween (a contraction of the word "between") is a bit of code that
sits between the Pyramid router's main request handling function and the
upstream WSGI component that uses Pyramid as its "app". This is a
feature that may be used by Pyramid framework extensions to provide, for
example, Pyramid-specific view timing support bookkeeping code that examines
exceptions before they are returned to the upstream WSGI application. Tweens
behave a bit like WSGI middleware, but they have the benefit of
running in a context in which they have access to the Pyramid request,
response, and application registry, as well as the Pyramid
rendering machinery.

Creating a Tween

To create a tween, you must write a "tween factory". A tween factory must be a
globally importable callable which accepts two arguments: handler and
registry. handler will be either the main Pyramid request handling
function or another tween. registry will be the Pyramid application
registry represented by this Configurator. A tween factory must return the
tween (a callable object) when it is called.

A tween is called with a single argument, request, which is the
request created by Pyramid's router when it receives a WSGI request. A
tween should return a response, usually the one generated by the
downstream Pyramid application.

You can write the tween factory as a simple closure-returning function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	def simple_tween_factory(handler, registry):
 # one-time configuration code goes here

 def simple_tween(request):
 # code to be executed for each request before
 # the actual application code goes here

 response = handler(request)

 # code to be executed for each request after
 # the actual application code goes here

 return response

 return simple_tween

Alternatively, the tween factory can be a class with the __call__ magic
method:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class simple_tween_factory(object):
 def __init__(self, handler, registry):
 self.handler = handler
 self.registry = registry

 # one-time configuration code goes here

 def __call__(self, request):
 # code to be executed for each request before
 # the actual application code goes here

 response = self.handler(request)

 # code to be executed for each request after
 # the actual application code goes here

 return response

You should avoid mutating any state on the tween instance. The tween is
invoked once per request and any shared mutable state needs to be carefully
handled to avoid any race conditions.

The closure style performs slightly better and enables you to conditionally
omit the tween from the request processing pipeline (see the following timing
tween example), whereas the class style makes it easier to have shared mutable
state and allows subclassing.

Here's a complete example of a tween that logs the time spent processing each
request:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	# in a module named myapp.tweens

import time
from pyramid.settings import asbool
import logging

log = logging.getLogger(__name__)

def timing_tween_factory(handler, registry):
 if asbool(registry.settings.get('do_timing')):
 # if timing support is enabled, return a wrapper
 def timing_tween(request):
 start = time.time()
 try:
 response = handler(request)
 finally:
 end = time.time()
 log.debug('The request took %s seconds' %
 (end - start))
 return response
 return timing_tween
 # if timing support is not enabled, return the original
 # handler
 return handler

In the above example, the tween factory defines a timing_tween tween and
returns it if asbool(registry.settings.get('do_timing')) is true. It
otherwise simply returns the handler which it was given. The
registry.settings attribute is a handle to the deployment settings provided
by the user (usually in an .ini file). In this case, if the user has
defined a do_timing setting and that setting is True, the user has said
they want to do timing, so the tween factory returns the timing tween; it
otherwise just returns the handler it has been provided, preventing any timing.

The example timing tween simply records the start time, calls the downstream
handler, logs the number of seconds consumed by the downstream handler, and
returns the response.

Registering an Implicit Tween Factory

Once you've created a tween factory, you can register it into the implicit
tween chain using the pyramid.config.Configurator.add_tween() method
using its dotted Python name.

Here's an example of registering a tween factory as an "implicit" tween in a
Pyramid application:

	1
2
3

	from pyramid.config import Configurator
config = Configurator()
config.add_tween('myapp.tweens.timing_tween_factory')

Note that you must use a dotted Python name as the first argument to
pyramid.config.Configurator.add_tween(); this must point at a tween
factory. You cannot pass the tween factory object itself to the method: it
must be dotted Python name that points to a globally importable object.
In the above example, we assume that a timing_tween_factory tween factory
was defined in a module named myapp.tweens, so the tween factory is
importable as myapp.tweens.timing_tween_factory.

When you use pyramid.config.Configurator.add_tween(), you're instructing
the system to use your tween factory at startup time unless the user has
provided an explicit tween list in their configuration. This is what's meant
by an "implicit" tween. A user can always elect to supply an explicit tween
list, reordering or disincluding implicitly added tweens. See
Explicit Tween Ordering for more information about explicit tween
ordering.

If more than one call to pyramid.config.Configurator.add_tween() is made
within a single application configuration, the tweens will be chained together
at application startup time. The first tween factory added via add_tween
will be called with the Pyramid exception view tween factory as its handler
argument, then the tween factory added directly after that one will be called
with the result of the first tween factory as its handler argument, and so
on, ad infinitum until all tween factories have been called. The Pyramid router
will use the outermost tween produced by this chain (the tween generated by the
very last tween factory added) as its request handler function. For example:

	1
2
3
4
5

	from pyramid.config import Configurator

config = Configurator()
config.add_tween('myapp.tween_factory1')
config.add_tween('myapp.tween_factory2')

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
myapp.tween_factory2
myapp.tween_factory1
pyramid.tweens.excview_tween_factory (implicit)
MAIN (implicit)

Suggesting Implicit Tween Ordering

By default, as described above, the ordering of the chain is controlled
entirely by the relative ordering of calls to
pyramid.config.Configurator.add_tween(). However, the caller of
add_tween can provide an optional hint that can influence the implicit
tween chain ordering by supplying under or over (or both) arguments to
add_tween(). These hints are only used when
an explicit tween ordering is not used. See Explicit Tween Ordering for
a description of how to set an explicit tween ordering.

Allowable values for under or over (or both) are:

	None (the default),

	a dotted Python name to a tween factory: a string representing the
predicted dotted name of a tween factory added in a call to add_tween in
the same configuration session,

	one of the constants pyramid.tweens.MAIN,
pyramid.tweens.INGRESS, or pyramid.tweens.EXCVIEW, or

	an iterable of any combination of the above. This allows the user to specify
fallbacks if the desired tween is not included, as well as compatibility
with multiple other tweens.

Effectively, over means "closer to the request ingress than" and under
means "closer to the main Pyramid application than". You can think of an onion
with outer layers over the inner layers, the application being under all the
layers at the center.

For example, the following call to
add_tween() will attempt to place the tween
factory represented by myapp.tween_factory directly "above" (in ptweens
order) the main Pyramid request handler.

	1
2
3

	import pyramid.tweens

config.add_tween('myapp.tween_factory', over=pyramid.tweens.MAIN)

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
pyramid.tweens.excview_tween_factory (implicit)
myapp.tween_factory
MAIN (implicit)

Likewise, calling the following call to
add_tween() will attempt to place this tween
factory "above" the main handler but "below" a separately added tween factory:

	1
2
3
4
5
6
7

	import pyramid.tweens

config.add_tween('myapp.tween_factory1',
 over=pyramid.tweens.MAIN)
config.add_tween('myapp.tween_factory2',
 over=pyramid.tweens.MAIN,
 under='myapp.tween_factory1')

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
pyramid.tweens.excview_tween_factory (implicit)
myapp.tween_factory1
myapp.tween_factory2
MAIN (implicit)

Specifying neither over nor under is equivalent to specifying
under=INGRESS.

If all options for under (or over) cannot be found in the current
configuration, it is an error. If some options are specified purely for
compatibilty with other tweens, just add a fallback of MAIN or INGRESS.
For example, under=('someothertween', 'someothertween2', INGRESS). This
constraint will require the tween to be located under the someothertween
tween, the someothertween2 tween, and INGRESS. If any of these is not
in the current configuration, this constraint will only organize itself based
on the tweens that are present.

Explicit Tween Ordering

Implicit tween ordering is obviously only best-effort. Pyramid will attempt to
provide an implicit order of tweens as best it can using hints provided by
calls to add_tween(). But because it's only
best-effort, if very precise tween ordering is required, the only surefire way
to get it is to use an explicit tween order. The deploying user can override
the implicit tween inclusion and ordering implied by calls to
add_tween() entirely by using the
pyramid.tweens settings value. When used, this settings value must be a
list of Python dotted names which will override the ordering (and inclusion) of
tween factories in the implicit tween chain. For example:

	1
2
3
4
5
6
7
8
9

	[app:main]
use = egg:MyApp
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.tweens = myapp.my_cool_tween_factory
 pyramid.tweens.excview_tween_factory

In the above configuration, calls made during configuration to
pyramid.config.Configurator.add_tween() are ignored, and the user is
telling the system to use the tween factories he has listed in the
pyramid.tweens configuration setting (each is a dotted Python name
which points to a tween factory) instead of any tween factories added via
pyramid.config.Configurator.add_tween(). The first tween factory in
the pyramid.tweens list will be used as the producer of the effective
Pyramid request handling function; it will wrap the tween factory
declared directly "below" it, ad infinitum. The "main" Pyramid request handler
is implicit, and always "at the bottom".

Note

Pyramid's own exception view handling logic is implemented as a
tween factory function: pyramid.tweens.excview_tween_factory(). If
Pyramid exception view handling is desired, and tween factories are
specified via the pyramid.tweens configuration setting, the
pyramid.tweens.excview_tween_factory() function must be added to the
pyramid.tweens configuration setting list explicitly. If it is not
present, Pyramid will not perform exception view handling.

Tween Conflicts and Ordering Cycles

Pyramid will prevent the same tween factory from being added to the tween chain
more than once using configuration conflict detection. If you wish to add the
same tween factory more than once in a configuration, you should either: (a)
use a tween factory that is a separate globally importable instance object from
the factory that it conflicts with; (b) use a function or class as a tween
factory with the same logic as the other tween factory it conflicts with, but
with a different __name__ attribute; or (c) call
pyramid.config.Configurator.commit() between calls to
pyramid.config.Configurator.add_tween().

If a cycle is detected in implicit tween ordering when over and under
are used in any call to add_tween, an exception will be raised at startup
time.

Displaying Tween Ordering

The ptweens command-line utility can be used to report the current implict
and explicit tween chains used by an application. See
Displaying "Tweens".

Adding a Third Party View, Route, or Subscriber Predicate

New in version 1.4.

View and Route Predicates

View and route predicates used during configuration allow you to narrow the set
of circumstances under which a view or route will match. For example, the
request_method view predicate can be used to ensure a view callable is only
invoked when the request's method is POST:

@view_config(request_method='POST')
def someview(request):
 ...

Likewise, a similar predicate can be used as a route predicate:

config.add_route('name', '/foo', request_method='POST')

Many other built-in predicates exists (request_param, and others). You can
add third-party predicates to the list of available predicates by using one of
pyramid.config.Configurator.add_view_predicate() or
pyramid.config.Configurator.add_route_predicate(). The former adds a
view predicate, the latter a route predicate.

When using one of those APIs, you pass a name and a factory to add a
predicate during Pyramid's configuration stage. For example:

config.add_view_predicate('content_type', ContentTypePredicate)

The above example adds a new predicate named content_type to the list of
available predicates for views. This will allow the following view
configuration statement to work:

	1
2

	@view_config(content_type='File')
def aview(request): ...

The first argument to pyramid.config.Configurator.add_view_predicate(),
the name, is a string representing the name that is expected to be passed to
view_config (or its imperative analogue add_view).

The second argument is a view or route predicate factory, or a dotted
Python name which refers to a view or route predicate factory. A view or
route predicate factory is most often a class with a constructor
(__init__), a text method, a phash method, and a __call__
method. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class ContentTypePredicate(object):
 def __init__(self, val, config):
 self.val = val

 def text(self):
 return 'content_type = %s' % (self.val,)

 phash = text

 def __call__(self, context, request):
 return getattr(context, 'content_type', None) == self.val

The constructor of a predicate factory takes two arguments: val and
config. The val argument will be the argument passed to
view_config (or add_view). In the example above, it will be the string
File. The second argument, config, will be the Configurator instance
at the time of configuration.

The text method must return a string. It should be useful to describe the
behavior of the predicate in error messages.

The phash method must return a string or a sequence of strings. It's most
often the same as text, as long as text uniquely describes the
predicate's name and the value passed to the constructor. If text is more
general, or doesn't describe things that way, phash should return a string
with the name and the value serialized. The result of phash is not seen in
output anywhere, it just informs the uniqueness constraints for view
configuration.

The __call__ method of a predicate factory must accept a resource
(context) and a request, and must return True or False. It is the
"meat" of the predicate.

You can use the same predicate factory as both a view predicate and as a route
predicate, but you'll need to call add_view_predicate and
add_route_predicate separately with the same factory.

Subscriber Predicates

Subscriber predicates work almost exactly like view and route predicates. They
narrow the set of circumstances in which a subscriber will be called. There are
several minor differences between a subscriber predicate and a view or route
predicate:

	There are no default subscriber predicates. You must register one to use
one.

	The __call__ method of a subscriber predicate accepts a single event
object instead of a context and a request.

	Not every subscriber predicate can be used with every event type. Some
subscriber predicates will assume a certain event type.

Here's an example of a subscriber predicate that can be used in conjunction
with a subscriber that subscribes to the pyramid.events.NewRequest
event type.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class RequestPathStartsWith(object):
 def __init__(self, val, config):
 self.val = val

 def text(self):
 return 'path_startswith = %s' % (self.val,)

 phash = text

 def __call__(self, event):
 return event.request.path.startswith(self.val)

Once you've created a subscriber predicate, it may registered via
pyramid.config.Configurator.add_subscriber_predicate(). For example:

config.add_subscriber_predicate(
 'request_path_startswith', RequestPathStartsWith)

Once a subscriber predicate is registered, you can use it in a call to
pyramid.config.Configurator.add_subscriber() or to
pyramid.events.subscriber. Here's an example of using the previously
registered request_path_startswith predicate in a call to
add_subscriber():

	1
2
3
4
5
6
7
8
9

	# define a subscriber in your code

def yosubscriber(event):
 event.request.yo = 'YO!'

and at configuration time

config.add_subscriber(yosubscriber, NewRequest,
 request_path_startswith='/add_yo')

Here's the same subscriber/predicate/event-type combination used via
subscriber.

	1
2
3
4
5

	from pyramid.events import subscriber

@subscriber(NewRequest, request_path_startswith='/add_yo')
def yosubscriber(event):
 event.request.yo = 'YO!'

In either of the above configurations, the yosubscriber callable will only
be called if the request path starts with /add_yo. Otherwise the event
subscriber will not be called.

Note that the request_path_startswith subscriber you defined can be used
with events that have a request attribute, but not ones that do not. So,
for example, the predicate can be used with subscribers registered for
pyramid.events.NewRequest and pyramid.events.ContextFound
events, but it cannot be used with subscribers registered for
pyramid.events.ApplicationCreated because the latter type of event has
no request attribute. The point being, unlike route and view predicates,
not every type of subscriber predicate will necessarily be applicable for use
in every subscriber registration. It is not the responsibility of the
predicate author to make every predicate make sense for every event type; it is
the responsibility of the predicate consumer to use predicates that make sense
for a particular event type registration.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Pyramid Configuration Introspection

New in version 1.3.

When Pyramid starts up, each call to a configuration directive causes
one or more introspectable objects to be registered with an
introspector. The introspector can be queried by application code to
obtain information about the configuration of the running application. This
feature is useful for debug toolbars, command-line scripts which show some
aspect of configuration, and for runtime reporting of startup-time
configuration settings.

Using the Introspector

Here's an example of using Pyramid's introspector from within a view callable:

	1
2
3
4
5
6
7
8
9

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='bar')
def show_current_route_pattern(request):
 introspector = request.registry.introspector
 route_name = request.matched_route.name
 route_intr = introspector.get('routes', route_name)
 return Response(str(route_intr['pattern']))

This view will return a response that contains the "pattern" argument provided
to the add_route method of the route which matched when the view was
called. It uses the pyramid.interfaces.IIntrospector.get() method to
return an introspectable in the category routes with a
discriminator equal to the matched route name. It then uses the
returned introspectable to obtain a "pattern" value.

The introspectable returned by the query methods of the introspector has
methods and attributes described by
pyramid.interfaces.IIntrospectable. In particular, the
get(),
get_category(),
categories(),
categorized(), and
related() methods of an introspector
can be used to query for introspectables.

Introspectable Objects

Introspectable objects are returned from query methods of an introspector. Each
introspectable object implements the attributes and methods documented at
pyramid.interfaces.IIntrospectable.

The important attributes shared by all introspectables are the following:

title

A human-readable text title describing the introspectable

category_name

A text category name describing the introspection category to which this
introspectable belongs. It is often a plural if there are expected to be
more than one introspectable registered within the category.

discriminator

A hashable object representing the unique value of this introspectable within
its category.

discriminator_hash

The integer hash of the discriminator (useful in HTML links).

type_name

The text name of a subtype within this introspectable's category. If there
is only one type name in this introspectable's category, this value will
often be a singular version of the category name but it can be an arbitrary
value.

action_info

An object describing the directive call site which caused this introspectable
to be registered. It contains attributes described in
pyramid.interfaces.IActionInfo.

Besides having the attributes described above, an introspectable is a
dictionary-like object. An introspectable can be queried for data values via
its __getitem__, get, keys, values, or items methods.
For example:

	1
2

	route_intr = introspector.get('routes', 'edit_user')
pattern = route_intr['pattern']

Pyramid Introspection Categories

The list of concrete introspection categories provided by built-in Pyramid
configuration directives follows. Add-on packages may supply other
introspectables in categories not described here.

subscribers

Each introspectable in the subscribers category represents a call to
pyramid.config.Configurator.add_subscriber() (or the decorator
equivalent). Each will have the following data.

subscriber

The subscriber callable object (the resolution of the subscriber
argument passed to add_subscriber).

interfaces

A sequence of interfaces (or classes) that are subscribed to (the
resolution of the ifaces argument passed to add_subscriber).

derived_subscriber

A wrapper around the subscriber used internally by the system so it can
call it with more than one argument if your original subscriber accepts
only one.

predicates

The predicate objects created as the result of passing predicate arguments
to add_subscriber.

derived_predicates

Wrappers around the predicate objects created as the result of passing
predicate arguments to add_subscriber (to be used when predicates take
only one value but must be passed more than one).

response adapters

Each introspectable in the response adapters category represents a call
to pyramid.config.Configurator.add_response_adapter() (or a decorator
equivalent). Each will have the following data.

adapter

The adapter object (the resolved adapter argument to
add_response_adapter).

type

The resolved type_or_iface argument passed to add_response_adapter.

root factories

Each introspectable in the root factories category represents a call to
pyramid.config.Configurator.set_root_factory() (or the Configurator
constructor equivalent) or a factory argument passed to
pyramid.config.Configurator.add_route(). Each will have the following
data.

factory

The factory object (the resolved factory argument to
set_root_factory).

route_name

The name of the route which will use this factory. If this is the
default root factory (if it's registered during a call to
set_root_factory), this value will be None.

session factory

Only one introspectable will exist in the session factory category. It
represents a call to pyramid.config.Configurator.set_session_factory()
(or the Configurator constructor equivalent). It will have the following
data.

factory

The factory object (the resolved factory argument to
set_session_factory).

request factory

Only one introspectable will exist in the request factory category. It
represents a call to pyramid.config.Configurator.set_request_factory()
(or the Configurator constructor equivalent). It will have the following
data.

factory

The factory object (the resolved factory argument to
set_request_factory).

locale negotiator

Only one introspectable will exist in the locale negotiator category. It
represents a call to
pyramid.config.Configurator.set_locale_negotiator() (or the
Configurator constructor equivalent). It will have the following data.

negotiator

The factory object (the resolved negotiator argument to
set_locale_negotiator).

renderer factories

Each introspectable in the renderer factories category represents a call
to pyramid.config.Configurator.add_renderer() (or the Configurator
constructor equivalent). Each will have the following data.

name

The name of the renderer (the value of the name argument to
add_renderer).

factory

The factory object (the resolved factory argument to add_renderer).

routes

Each introspectable in the routes category represents a call to
pyramid.config.Configurator.add_route(). Each will have the following
data.

name

The name argument passed to add_route.

pattern

The pattern argument passed to add_route.

factory

The (resolved) factory argument passed to add_route.

xhr

The xhr argument passed to add_route.

request_method

The request_method argument passed to add_route.

request_methods

A sequence of request method names implied by the request_method
argument passed to add_route or the value None if a
request_method argument was not supplied.

path_info

The path_info argument passed to add_route.

request_param

The request_param argument passed to add_route.

header

The header argument passed to add_route.

accept

The accept argument passed to add_route.

traverse

The traverse argument passed to add_route.

custom_predicates

The custom_predicates argument passed to add_route.

pregenerator

The pregenerator argument passed to add_route.

static

The static argument passed to add_route.

use_global_views

The use_global_views argument passed to add_route.

object

The pyramid.interfaces.IRoute object that is used to perform
matching and generation for this route.

authentication policy

There will be one and only one introspectable in the authentication
policy category. It represents a call to the
pyramid.config.Configurator.set_authentication_policy() method (or
its Configurator constructor equivalent). It will have the following data.

policy

The policy object (the resolved policy argument to
set_authentication_policy).

authorization policy

There will be one and only one introspectable in the authorization policy
category. It represents a call to the
pyramid.config.Configurator.set_authorization_policy() method (or its
Configurator constructor equivalent). It will have the following data.

policy

The policy object (the resolved policy argument to
set_authorization_policy).

default permission

There will be one and only one introspectable in the default permission
category. It represents a call to the
pyramid.config.Configurator.set_default_permission() method (or its
Configurator constructor equivalent). It will have the following data.

value

The permission name passed to set_default_permission.

views

Each introspectable in the views category represents a call to
pyramid.config.Configurator.add_view(). Each will have the following
data.

name

The name argument passed to add_view.

context

The (resolved) context argument passed to add_view.

containment

The (resolved) containment argument passed to add_view.

request_param

The request_param argument passed to add_view.

request_methods

A sequence of request method names implied by the request_method
argument passed to add_view or the value None if a
request_method argument was not supplied.

route_name

The route_name argument passed to add_view.

attr

The attr argument passed to add_view.

xhr

The xhr argument passed to add_view.

accept

The accept argument passed to add_view.

header

The header argument passed to add_view.

path_info

The path_info argument passed to add_view.

match_param

The match_param argument passed to add_view.

csrf_token

The csrf_token argument passed to add_view.

callable

The (resolved) view argument passed to add_view. Represents the
"raw" view callable.

derived_callable

The view callable derived from the view argument passed to
add_view. Represents the view callable which Pyramid itself calls
(wrapped in security and other wrappers).

mapper

The (resolved) mapper argument passed to add_view.

decorator

The (resolved) decorator argument passed to add_view.

permissions

Each introspectable in the permissions category represents a call to
pyramid.config.Configurator.add_view() that has an explicit
permission argument or a call to
pyramid.config.Configurator.set_default_permission(). Each will have
the following data.

value

The permission name passed to add_view or set_default_permission.

templates

Each introspectable in the templates category represents a call to
pyramid.config.Configurator.add_view() that has a renderer
argument which points to a template. Each will have the following data.

name

The renderer's name (a string).

type

The renderer's type (a string).

renderer

The pyramid.interfaces.IRendererInfo object which represents this
template's renderer.

view mappers

Each introspectable in the view mappers category represents a call to
pyramid.config.Configurator.add_view() that has an explicit mapper
argument or a call to
pyramid.config.Configurator.set_view_mapper(). Each will have
the following data.

mapper

The (resolved) mapper argument passed to add_view or
set_view_mapper.

asset overrides

Each introspectable in the asset overrides category represents a call to
pyramid.config.Configurator.override_asset(). Each will have the
following data.

to_override

The to_override argument (an asset spec) passed to override_asset.

override_with

The override_with argument (an asset spec) passed to
override_asset.

translation directories

Each introspectable in the translation directories category represents an
individual element in a specs argument passed to
pyramid.config.Configurator.add_translation_dirs(). Each will have the
following data.

directory

The absolute path of the translation directory.

spec

The asset specification passed to add_translation_dirs.

tweens

Each introspectable in the tweens category represents a call to
pyramid.config.Configurator.add_tween(). Each will have the following
data.

name

The dotted name to the tween factory as a string (passed as the
tween_factory argument to add_tween).

factory

The (resolved) tween factory object.

type

implicit or explicit as a string.

under

The under argument passed to add_tween (a string).

over

The over argument passed to add_tween (a string).

static views

Each introspectable in the static views category represents a call to
pyramid.config.Configurator.add_static_view(). Each will have the
following data.

name

The name argument provided to add_static_view.

spec

A normalized version of the spec argument provided to
add_static_view.

traversers

Each introspectable in the traversers category represents a call to
pyramid.config.Configurator.add_traverser(). Each will have the
following data.

iface

The (resolved) interface or class object that represents the return value
of a root factory for which this traverser will be used.

adapter

The (resolved) traverser class.

resource url adapters

Each introspectable in the resource url adapters category represents a
call to pyramid.config.Configurator.add_resource_url_adapter(). Each
will have the following data.

adapter

The (resolved) resource URL adapter class.

resource_iface

The (resolved) interface or class object that represents the resource
interface for which this URL adapter is registered.

request_iface

The (resolved) interface or class object that represents the request
interface for which this URL adapter is registered.

Introspection in the Toolbar

The Pyramid debug toolbar (part of the pyramid_debugtoolbar package)
provides a canned view of all registered introspectables and their
relationships. It is currently under the "Global" tab in the main navigation,
and it looks something like this:

[image: ../_images/tb_introspector.png]

Disabling Introspection

You can disable Pyramid introspection by passing the flag
introspection=False to the Configurator constructor in your
application setup:

from pyramid.config import Configurator
config = Configurator(..., introspection=False)

When introspection is False, all introspectables generated by
configuration directives are thrown away.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Extending an Existing Pyramid Application

If a Pyramid developer has obeyed certain constraints while building an
application, a third party should be able to change the application's behavior
without needing to modify its source code. The behavior of a Pyramid
application that obeys certain constraints can be overridden or extended
without modification.

We'll define some jargon here for the benefit of identifying the parties
involved in such an effort.

	Developer

	The original application developer.

	Integrator

	Another developer who wishes to reuse the application written by the original
application developer in an unanticipated context. They may also wish to
modify the original application without changing the original application's
source code.

The Difference Between "Extensible" and "Pluggable" Applications

Other web frameworks, such as Django, advertise that they allow
developers to create "pluggable applications". They claim that if you create
an application in a certain way, it will be integratable in a sensible,
structured way into another arbitrarily-written application or project created
by a third-party developer.

Pyramid, as a platform, does not claim to provide such a feature. The
platform provides no guarantee that you can create an application and package
it up such that an arbitrary integrator can use it as a subcomponent in a
larger Pyramid application or project. Pyramid does not mandate the
constraints necessary for such a pattern to work satisfactorily. Because
Pyramid is not very "opinionated", developers are able to use wildly different
patterns and technologies to build an application. A given Pyramid application
may happen to be reusable by a particular third party integrator because the
integrator and the original developer may share similar base technology choices
(such as the use of a particular relational database or ORM). But the same
application may not be reusable by a different developer, because they have
made different technology choices which are incompatible with the original
developer's.

As a result, the concept of a "pluggable application" is left to layers built
above Pyramid, such as a "CMS" layer or "application server" layer. Such
layers are apt to provide the necessary "opinions" (such as mandating a storage
layer, a templating system, and a structured, well-documented pattern of
registering that certain URLs map to certain bits of code) which makes the
concept of a "pluggable application" possible. "Pluggable applications", thus,
should not plug into Pyramid itself but should instead plug into a system
written atop Pyramid.

Although it does not provide for "pluggable applications", Pyramid does
provide a rich set of mechanisms which allows for the extension of a single
existing application. Such features can be used by frameworks built using
Pyramid as a base. All Pyramid applications may not be pluggable, but all
Pyramid applications are extensible.

Rules for Building an Extensible Application

There is only one rule you need to obey if you want to build a maximally
extensible Pyramid application: as a developer, you should factor any
overridable imperative configuration you've created into functions
which can be used via pyramid.config.Configurator.include(), rather than
inlined as calls to methods of a Configurator within the main
function in your application's __init__.py. For example, rather than:

	1
2
3
4
5
6

	from pyramid.config import Configurator

if __name__ == '__main__':
 config = Configurator()
 config.add_view('myapp.views.view1', name='view1')
 config.add_view('myapp.views.view2', name='view2')

You should move the calls to add_view outside of the (non-reusable) if
__name__ == '__main__' block, and into a reusable function:

	1
2
3
4
5
6
7
8
9

	from pyramid.config import Configurator

if __name__ == '__main__':
 config = Configurator()
 config.include(add_views)

def add_views(config):
 config.add_view('myapp.views.view1', name='view1')
 config.add_view('myapp.views.view2', name='view2')

Doing this allows an integrator to maximally reuse the configuration statements
that relate to your application by allowing them to selectively include or
exclude the configuration functions you've created from an "override package".

Alternatively you can use ZCML for the purpose of making configuration
extensible and overridable. ZCML declarations that belong to an
application can be overridden and extended by integrators as necessary in a
similar fashion. If you use only ZCML to configure your application,
it will automatically be maximally extensible without any manual effort. See
pyramid_zcml for information about using ZCML.

Fundamental Plugpoints

The fundamental "plug points" of an application developed using Pyramid
are routes, views, and assets. Routes are declarations made using the
pyramid.config.Configurator.add_route() method. Views are declarations
made using the pyramid.config.Configurator.add_view() method. Assets are
files that are accessed by Pyramid using the pkg_resources API
such as static files and templates via a asset specification. Other
directives and configurator methods also deal in routes, views, and assets.
For example, the add_handler directive of the pyramid_handlers package
adds a single route and some number of views.

Extending an Existing Application

The steps for extending an existing application depend largely on whether the
application does or does not use configuration decorators or imperative code.

If the Application Has Configuration Decorations

You've inherited a Pyramid application which you'd like to extend or
override that uses pyramid.view.view_config decorators or other
configuration decoration decorators.

If you just want to extend the application, you can run a scan
against the application's package, then add additional configuration that
registers more views or routes.

	1
2
3

	if __name__ == '__main__':
 config.scan('someotherpackage')
 config.add_view('mypackage.views.myview', name='myview')

If you want to override configuration in the application, you may need to
run pyramid.config.Configurator.commit() after performing the scan of the
original package, then add additional configuration that registers more views
or routes which perform overrides.

	1
2
3
4

	if __name__ == '__main__':
 config.scan('someotherpackage')
 config.commit()
 config.add_view('mypackage.views.myview', name='myview')

Once this is done, you should be able to extend or override the application
like any other (see Extending the Application).

You can alternatively just prevent a scan from happening by omitting
any call to the pyramid.config.Configurator.scan() method. This will
cause the decorators attached to objects in the target application to do
nothing. At this point, you will need to convert all the configuration done in
decorators into equivalent imperative configuration or ZCML, and add that
configuration or ZCML to a separate Python package as described in
Extending the Application.

Extending the Application

To extend or override the behavior of an existing application, you will need to
create a new package which includes the configuration of the old package, and
you'll perhaps need to create implementations of the types of things you'd like
to override (such as views), to which they are referred within the original
package.

The general pattern for extending an existing application looks something like
this:

	Create a new Python package. The easiest way to do this is to create a new
Pyramid application using the scaffold mechanism. See
Creating the Project for more information.

	In the new package, create Python files containing views and other overridden
elements, such as templates and static assets as necessary.

	Install the new package into the same Python environment as the original
application (e.g., $VENV/bin/python setup.py develop or
$VENV/bin/python setup.py install).

	Change the main function in the new package's __init__.py to include
the original Pyramid application's configuration functions via
pyramid.config.Configurator.include() statements or a scan.

	Wire the new views and assets created in the new package up using imperative
registrations within the main function of the __init__.py file of the
new application. This wiring should happen after including the
configuration functions of the old application. These registrations will
extend or override any registrations performed by the original application.
See Overriding Views, Overriding Routes, and
Overriding Assets.

Overriding Views

The view configuration declarations that you make which override
application behavior will usually have the same view predicate
attributes as the original that you wish to override. These <view>
declarations will point at "new" view code in the override package that you've
created. The new view code itself will usually be copy-and-paste copies of
view callables from the original application with slight tweaks.

For example, if the original application has the following configure_views
configuration method:

	1
2

	def configure_views(config):
 config.add_view('theoriginalapp.views.theview', name='theview')

You can override the first view configuration statement made by
configure_views within the override package, after loading the original
configuration function:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator
from originalapp import configure_views

if __name == '__main__':
 config = Configurator()
 config.include(configure_views)
 config.add_view('theoverrideapp.views.theview', name='theview')

In this case, the theoriginalapp.views.theview view will never be executed.
Instead, a new view, theoverrideapp.views.theview will be executed when
request circumstances dictate.

A similar pattern can be used to extend the application with add_view
declarations. Just register a new view against some other set of predicates to
make sure the URLs it implies are available on some other page rendering.

Overriding Routes

Route setup is currently typically performed in a sequence of ordered calls to
add_route(). Because these calls are
ordered relative to each other, and because this ordering is typically
important, you should retain their relative ordering when performing an
override. Typically this means copying all the add_route statements into
the override package's file and changing them as necessary. Then exclude any
add_route statements from the original application.

Overriding Assets

Assets are files on the filesystem that are accessible within a Python
package. An entire chapter is devoted to assets: Static Assets.
Within this chapter is a section named Overriding Assets. This
section of that chapter describes in detail how to override package assets with
other assets by using the pyramid.config.Configurator.override_asset()
method. Add such override_asset calls to your override package's
__init__.py to perform overrides.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Advanced Configuration

To support application extensibility, the Pyramid Configurator
by default detects configuration conflicts and allows you to include
configuration imperatively from other packages or modules. It also by default
performs configuration in two separate phases. This allows you to ignore
relative configuration statement ordering in some circumstances.

Conflict Detection

Here's a familiar example of one of the simplest Pyramid applications,
configured imperatively:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

When you start this application, all will be OK. However, what happens if we
try to add another view to the configuration with the same set of
predicate arguments as one we've already added?

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def goodbye_world(request):
 return Response('Goodbye world!')

if __name__ == '__main__':
 config = Configurator()

 config.add_view(hello_world, name='hello')

 # conflicting view configuration
 config.add_view(goodbye_world, name='hello')

 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

The application now has two conflicting view configuration statements. When we
try to start it again, it won't start. Instead we'll receive a traceback that
ends something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	Traceback (most recent call last):
 File "app.py", line 12, in <module>
 app = config.make_wsgi_app()
 File "pyramid/config.py", line 839, in make_wsgi_app
 self.commit()
 File "pyramid/pyramid/config.py", line 473, in commit
 self._ctx.execute_actions()
 ... more code ...
pyramid.exceptions.ConfigurationConflictError:
 Conflicting configuration actions
 For: ('view', None, '', None, <InterfaceClass pyramid.interfaces.IView>,
 None, None, None, None, None, False, None, None, None)
 Line 14 of file app.py in <module>: 'config.add_view(hello_world)'
 Line 17 of file app.py in <module>: 'config.add_view(goodbye_world)'

This traceback is trying to tell us:

	We've got conflicting information for a set of view configuration statements
(The For: line).

	There are two statements which conflict, shown beneath the For: line:
config.add_view(hello_world. 'hello') on line 14 of app.py, and
config.add_view(goodbye_world, 'hello') on line 17 of app.py.

These two configuration statements are in conflict because we've tried to tell
the system that the set of predicate values for both view
configurations are exactly the same. Both the hello_world and
goodbye_world views are configured to respond under the same set of
circumstances. This circumstance, the view name represented by the
name= predicate, is hello.

This presents an ambiguity that Pyramid cannot resolve. Rather than
allowing the circumstance to go unreported, by default Pyramid raises a
ConfigurationConflictError error and prevents the application from
running.

Conflict detection happens for any kind of configuration: imperative
configuration or configuration that results from the execution of a
scan.

Manually Resolving Conflicts

There are a number of ways to manually resolve conflicts: by changing
registrations to not conflict, by strategically using
pyramid.config.Configurator.commit(), or by using an "autocommitting"
configurator.

The Right Thing

The most correct way to resolve conflicts is to "do the needful": change your
configuration code to not have conflicting configuration statements. The
details of how this is done depends entirely on the configuration statements
made by your application. Use the detail provided in the
ConfigurationConflictError to track down the offending conflicts and
modify your configuration code accordingly.

If you're getting a conflict while trying to extend an existing application,
and that application has a function which performs configuration like this one:

	1
2

	def add_routes(config):
 config.add_route(...)

Don't call this function directly with config as an argument. Instead, use
pyramid.config.Configurator.include():

	1

	config.include(add_routes)

Using include() instead of calling the
function directly provides a modicum of automated conflict resolution, with the
configuration statements you define in the calling code overriding those of the
included function.

See also

See also Automatic Conflict Resolution and
Including Configuration from External Sources.

Using config.commit()

You can manually commit a configuration by using the
commit() method between configuration calls.
For example, we prevent conflicts from occurring in the application we examined
previously as the result of adding a commit. Here's the application that
generates conflicts:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def goodbye_world(request):
 return Response('Goodbye world!')

if __name__ == '__main__':
 config = Configurator()

 config.add_view(hello_world, name='hello')

 # conflicting view configuration
 config.add_view(goodbye_world, name='hello')

 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

We can prevent the two add_view calls from conflicting by issuing a call to
commit() between them:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def goodbye_world(request):
 return Response('Goodbye world!')

if __name__ == '__main__':
 config = Configurator()

 config.add_view(hello_world, name='hello')

 config.commit() # commit any pending configuration actions

 # no-longer-conflicting view configuration
 config.add_view(goodbye_world, name='hello')

 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

In the above example we've issued a call to
commit() between the two add_view calls.
commit() will execute any pending
configuration statements.

Calling commit() is safe at any time. It
executes all pending configuration actions and leaves the configuration action
list "clean".

Note that commit() has no effect when you're
using an autocommitting configurator (see Using an Autocommitting Configurator).

Using an Autocommitting Configurator

You can also use a heavy hammer to circumvent conflict detection by using a
configurator constructor parameter: autocommit=True. For example:

	1
2
3
4

	from pyramid.config import Configurator

if __name__ == '__main__':
 config = Configurator(autocommit=True)

When the autocommit parameter passed to the Configurator is True,
conflict detection (and Two-Phase Configuration) is disabled. Configuration
statements will be executed immediately, and succeeding statements will
override preceding ones.

commit() has no effect when autocommit
is True.

If you use a Configurator in code that performs unit testing, it's usually a
good idea to use an autocommitting Configurator, because you are usually
unconcerned about conflict detection or two-phase configuration in test code.

Automatic Conflict Resolution

If your code uses the include() method to
include external configuration, some conflicts are automatically resolved.
Configuration statements that are made as the result of an "include" will be
overridden by configuration statements that happen within the caller of the
"include" method.

Automatic conflict resolution supports this goal. If a user wants to reuse a
Pyramid application, and they want to customize the configuration of this
application without hacking its code "from outside", they can "include" a
configuration function from the package and override only some of its
configuration statements within the code that does the include. No conflicts
will be generated by configuration statements within the code that does the
including, even if configuration statements in the included code would conflict
if it was moved "up" to the calling code.

Methods Which Provide Conflict Detection

These are the methods of the configurator which provide conflict detection:

add_view(),
add_route(),
add_renderer(),
add_request_method(),
set_request_factory(),
set_session_factory(),
set_request_property(),
set_root_factory(),
set_view_mapper(),
set_authentication_policy(),
set_authorization_policy(),
set_locale_negotiator(),
set_default_permission(),
add_traverser(),
add_resource_url_adapter(),
and add_response_adapter().

add_static_view() also indirectly provides
conflict detection, because it's implemented in terms of the conflict-aware
add_route and add_view methods.

Including Configuration from External Sources

Some application programmers will factor their configuration code in such a way
that it is easy to reuse and override configuration statements. For example,
such a developer might factor out a function used to add routes to their
application:

	1
2

	def add_routes(config):
 config.add_route(...)

Rather than calling this function directly with config as an argument,
instead use pyramid.config.Configurator.include():

	1

	config.include(add_routes)

Using include rather than calling the function directly will allow
Automatic Conflict Resolution to work.

include() can also accept a module
as an argument:

	1
2
3

	import myapp

config.include(myapp)

For this to work properly, the myapp module must contain a callable with
the special name includeme, which should perform configuration (like the
add_routes callable we showed above as an example).

include() can also accept a dotted
Python name to a function or a module.

Note

See The <include> Tag [http://docs.pylonsproject.org/projects/pyramid-zcml/en/latest/narr.html#the-include-tag] for a declarative alternative to the
include() method.

Two-Phase Configuration

When a non-autocommitting Configurator is used to do configuration (the
default), configuration execution happens in two phases. In the first phase,
"eager" configuration actions (actions that must happen before all others, such
as registering a renderer) are executed, and discriminators are computed for
each of the actions that depend on the result of the eager actions. In the
second phase, the discriminators of all actions are compared to do conflict
detection.

Due to this, for configuration methods that have no internal ordering
constraints, execution order of configuration method calls is not important.
For example, the relative ordering of
add_view() and
add_renderer() is unimportant when a
non-autocommitting configurator is used. This code snippet:

	1
2

	config.add_view('some.view', renderer='path_to_custom/renderer.rn')
config.add_renderer('.rn', SomeCustomRendererFactory)

Has the same result as:

	1
2

	config.add_renderer('.rn', SomeCustomRendererFactory)
config.add_view('some.view', renderer='path_to_custom/renderer.rn')

Even though the view statement depends on the registration of a custom
renderer, due to two-phase configuration, the order in which the configuration
statements are issued is not important. add_view will be able to find the
.rn renderer even if add_renderer is called after add_view.

The same is untrue when you use an autocommitting configurator (see
Using an Autocommitting Configurator). When an autocommitting configurator is
used, two-phase configuration is disabled, and configuration statements must be
ordered in dependency order.

Some configuration methods, such as
add_route() have internal ordering
constraints: the routes they imply require relative ordering. Such ordering
constraints are not absolved by two-phase configuration. Routes are still
added in configuration execution order.

More Information

For more information, see the article A Whirlwind Tour of Advanced
Configuration Tactics [http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/configuration/whirlwind_tour.html#whirlwind-adv-conf] in the Pyramid Community
Cookbook.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Extending Pyramid Configuration

Pyramid allows you to extend its Configurator with custom directives. Custom
directives can use other directives, they can add a custom action, they
can participate in conflict resolution, and they can provide some
number of introspectable objects.

Adding Methods to the Configurator via add_directive

Framework extension writers can add arbitrary methods to a Configurator
by using the pyramid.config.Configurator.add_directive() method of the
configurator. Using add_directive() makes it
possible to extend a Pyramid configurator in arbitrary ways, and allows it to
perform application-specific tasks more succinctly.

The add_directive() method accepts two
positional arguments: a method name and a callable object. The callable object
is usually a function that takes the configurator instance as its first
argument and accepts other arbitrary positional and keyword arguments. For
example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.events import NewRequest
from pyramid.config import Configurator

def add_newrequest_subscriber(config, subscriber):
 config.add_subscriber(subscriber, NewRequest)

if __name__ == '__main__':
 config = Configurator()
 config.add_directive('add_newrequest_subscriber',
 add_newrequest_subscriber)

Once add_directive() is called, a user can
then call the added directive by its given name as if it were a built-in method
of the Configurator:

	1
2
3
4

	def mysubscriber(event):
 print(event.request)

config.add_newrequest_subscriber(mysubscriber)

A call to add_directive() is often "hidden"
within an includeme function within a "frameworky" package meant to be
included as per Including Configuration from External Sources via
include(). For example, if you put this
code in a package named pyramid_subscriberhelpers:

	1
2
3

	def includeme(config):
 config.add_directive('add_newrequest_subscriber',
 add_newrequest_subscriber)

The user of the add-on package pyramid_subscriberhelpers would then be able
to install it and subsequently do:

	1
2
3
4
5
6
7

	def mysubscriber(event):
 print(event.request)

from pyramid.config import Configurator
config = Configurator()
config.include('pyramid_subscriberhelpers')
config.add_newrequest_subscriber(mysubscriber)

Using config.action in a Directive

If a custom directive can't do its work exclusively in terms of existing
configurator methods (such as
pyramid.config.Configurator.add_subscriber() as above), the directive may
need to make use of the pyramid.config.Configurator.action() method. This
method adds an entry to the list of "actions" that Pyramid will attempt to
process when pyramid.config.Configurator.commit() is called. An action is
simply a dictionary that includes a discriminator, possibly a callback
function, and possibly other metadata used by Pyramid's action system.

Here's an example directive which uses the "action" method:

	1
2
3
4
5
6
7
8

	def add_jammyjam(config, jammyjam):
 def register():
 config.registry.jammyjam = jammyjam
 config.action('jammyjam', register)

if __name__ == '__main__':
 config = Configurator()
 config.add_directive('add_jammyjam', add_jammyjam)

Fancy, but what does it do? The action method accepts a number of arguments.
In the above directive named add_jammyjam, we call
action() with two arguments: the string
jammyjam is passed as the first argument named discriminator, and the
closure function named register is passed as the second argument named
callable.

When the action() method is called, it
appends an action to the list of pending configuration actions. All pending
actions with the same discriminator value are potentially in conflict with one
another (see Conflict Detection). When the
commit() method of the Configurator is
called (either explicitly or as the result of calling
make_wsgi_app()), conflicting actions are
potentially automatically resolved as per Automatic Conflict Resolution.
If a conflict cannot be automatically resolved, a
pyramid.exceptions.ConfigurationConflictError is raised and application
startup is prevented.

In our above example, therefore, if a consumer of our add_jammyjam
directive did this:

config.add_jammyjam('first')
config.add_jammyjam('second')

When the action list was committed resulting from the set of calls above, our
user's application would not start, because the discriminators of the actions
generated by the two calls are in direct conflict. Automatic conflict
resolution cannot resolve the conflict (because no config.include is
involved), and the user provided no intermediate
pyramid.config.Configurator.commit() call between the calls to
add_jammyjam to ensure that the successive calls did not conflict with each
other.

This demonstrates the purpose of the discriminator argument to the action
method: it's used to indicate a uniqueness constraint for an action. Two
actions with the same discriminator will conflict unless the conflict is
automatically or manually resolved. A discriminator can be any hashable object,
but it is generally a string or a tuple. You use a discriminator to
declaratively ensure that the user doesn't provide ambiguous configuration
statements.

But let's imagine that a consumer of add_jammyjam used it in such a way
that no configuration conflicts are generated.

config.add_jammyjam('first')

What happens now? When the add_jammyjam method is called, an action is
appended to the pending actions list. When the pending configuration actions
are processed during commit(), and no
conflicts occur, the callable provided as the second argument to the
action() method within add_jammyjam is
called with no arguments. The callable in add_jammyjam is the register
closure function. It simply sets the value config.registry.jammyjam to
whatever the user passed in as the jammyjam argument to the
add_jammyjam function. Therefore, the result of the user's call to our
directive will set the jammyjam attribute of the registry to the string
first. A callable is used by a directive to defer the result of a user's
call to the directive until conflict detection has had a chance to do its job.

Other arguments exist to the action()
method, including args, kw, order, and introspectables.

args and kw exist as values, which if passed will be used as arguments
to the callable function when it is called back. For example, our
directive might use them like so:

	1
2
3
4
5
6

	def add_jammyjam(config, jammyjam):
 def register(*arg, **kw):
 config.registry.jammyjam_args = arg
 config.registry.jammyjam_kw = kw
 config.registry.jammyjam = jammyjam
 config.action('jammyjam', register, args=('one',), kw={'two':'two'})

In the above example, when this directive is used to generate an action, and
that action is committed, config.registry.jammyjam_args will be set to
('one',) and config.registry.jammyjam_kw will be set to
{'two':'two'}. args and kw are honestly not very useful when your
callable is a closure function, because you already usually have access to
every local in the directive without needing them to be passed back. They can
be useful, however, if you don't use a closure as a callable.

order is a crude order control mechanism. order defaults to the
integer 0; it can be set to any other integer. All actions that share an
order will be called before other actions that share a higher order. This
makes it possible to write a directive with callable logic that relies on the
execution of the callable of another directive being done first. For example,
Pyramid's pyramid.config.Configurator.add_view() directive registers an
action with a higher order than the
pyramid.config.Configurator.add_route() method. Due to this, the
add_view method's callable can assume that, if a route_name was passed
to it, that a route by this name was already registered by add_route, and
if such a route has not already been registered, it's a configuration error (a
view that names a nonexistent route via its route_name parameter will never
be called).

introspectables is a sequence of introspectable objects. You can
pass a sequence of introspectables to the
action() method, which allows you to augment
Pyramid's configuration introspection system.

Adding Configuration Introspection

New in version 1.3.

Pyramid provides a configuration introspection system that can be used by
debugging tools to provide visibility into the configuration of a running
application.

All built-in Pyramid directives (such as
pyramid.config.Configurator.add_view() and
pyramid.config.Configurator.add_route()) register a set of
introspectables when called. For example, when you register a view via
add_view, the directive registers at least one introspectable: an
introspectable about the view registration itself, providing human-consumable
values for the arguments passed into it. You can later use the introspection
query system to determine whether a particular view uses a renderer, or whether
a particular view is limited to a particular request method, or against which
routes a particular view is registered. The Pyramid "debug toolbar" makes use
of the introspection system in various ways to display information to Pyramid
developers.

Introspection values are set when a sequence of introspectable objects
is passed to the action() method. Here's an
example of a directive which uses introspectables:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	def add_jammyjam(config, value):
 def register():
 config.registry.jammyjam = value
 intr = config.introspectable(category_name='jammyjams',
 discriminator='jammyjam',
 title='a jammyjam',
 type_name=None)
 intr['value'] = value
 config.action('jammyjam', register, introspectables=(intr,))

if __name__ == '__main__':
 config = Configurator()
 config.add_directive('add_jammyjam', add_jammyjam)

If you notice, the above directive uses the introspectable attribute of a
Configurator (pyramid.config.Configurator.introspectable) to create an
introspectable object. The introspectable object's constructor requires at
least four arguments: the category_name, the discriminator, the
title, and the type_name.

The category_name is a string representing the logical category for this
introspectable. Usually the category_name is a pluralization of the type of
object being added via the action.

The discriminator is a value unique within the category (unlike the
action discriminator, which must be unique within the entire set of actions).
It is typically a string or tuple representing the values unique to this
introspectable within the category. It is used to generate links and as part
of a relationship-forming target for other introspectables.

The title is a human-consumable string that can be used by introspection
system frontends to show a friendly summary of this introspectable.

The type_name is a value that can be used to subtype this introspectable
within its category for sorting and presentation purposes. It can be any
value.

An introspectable is also dictionary-like. It can contain any set of key/value
pairs, typically related to the arguments passed to its related directive.
While the category_name, discriminator, title, and type_name
are metadata about the introspectable, the values provided as key/value pairs
are the actual data provided by the introspectable. In the above example, we
set the value key to the value of the value argument passed to the
directive.

Our directive above mutates the introspectable, and passes it in to the
action method as the first element of a tuple as the value of the
introspectable keyword argument. This associates this introspectable with
the action. Introspection tools will then display this introspectable in their
index.

Introspectable Relationships

Two introspectables may have relationships between each other.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	def add_jammyjam(config, value, template):
 def register():
 config.registry.jammyjam = (value, template)
 intr = config.introspectable(category_name='jammyjams',
 discriminator='jammyjam',
 title='a jammyjam',
 type_name=None)
 intr['value'] = value
 tmpl_intr = config.introspectable(category_name='jammyjam templates',
 discriminator=template,
 title=template,
 type_name=None)
 tmpl_intr['value'] = template
 intr.relate('jammyjam templates', template)
 config.action('jammyjam', register, introspectables=(intr, tmpl_intr))

if __name__ == '__main__':
 config = Configurator()
 config.add_directive('add_jammyjam', add_jammyjam)

In the above example, the add_jammyjam directive registers two
introspectables: the first is related to the value passed to the directive,
and the second is related to the template passed to the directive. If you
believe a concept within a directive is important enough to have its own
introspectable, you can cause the same directive to register more than one
introspectable, registering one introspectable for the "main idea" and another
for a related concept.

The call to intr.relate above
(pyramid.interfaces.IIntrospectable.relate()) is passed two arguments: a
category name and a directive. The example above effectively indicates that
the directive wishes to form a relationship between the intr introspectable
and the tmpl_intr introspectable; the arguments passed to relate are
the category name and discriminator of the tmpl_intr introspectable.

Relationships need not be made between two introspectables created by the same
directive. Instead a relationship can be formed between an introspectable
created in one directive and another introspectable created in another by
calling relate on either side with the other directive's category name and
discriminator. An error will be raised at configuration commit time if you
attempt to relate an introspectable with another nonexistent introspectable,
however.

Introspectable relationships will show up in frontend system renderings of
introspection values. For example, if a view registration names a route name,
the introspectable related to the view callable will show a reference to the
route to which it relates and vice versa.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Creating Pyramid Scaffolds

You can extend Pyramid by creating a scaffold template. A scaffold
template is useful if you'd like to distribute a customizable configuration of
Pyramid to other users. Once you've created a scaffold, and someone has
installed the distribution that houses the scaffold, they can use the
pcreate script to create a custom version of your scaffold's template.
Pyramid itself uses scaffolds to allow people to bootstrap new projects. For
example, pcreate -s alchemy MyStuff causes Pyramid to render the
alchemy scaffold template to the MyStuff directory.

Basics

A scaffold template is just a bunch of source files and directories on disk. A
small definition class points at this directory. It is in turn pointed at by a
setuptools "entry point" which registers the scaffold so it can be
found by the pcreate command.

To create a scaffold template, create a Python distribution to house
the scaffold which includes a setup.py that relies on the setuptools
package. See Packaging and Distributing Projects [https://packaging.python.org/en/latest/distributing/] for more information
about how to do this. For example, we'll pretend the distribution you create
is named CoolExtension, and it has a package directory within it named
coolextension.

Once you've created the distribution, put a "scaffolds" directory within your
distribution's package directory, and create a file within that directory named
__init__.py with something like the following:

	1
2
3
4
5
6
7

	# CoolExtension/coolextension/scaffolds/__init__.py

from pyramid.scaffolds import PyramidTemplate

class CoolExtensionTemplate(PyramidTemplate):
 _template_dir = 'coolextension_scaffold'
 summary = 'My cool extension'

Once this is done, within the scaffolds directory, create a template
directory. Our example used a template directory named
coolextension_scaffold.

As you create files and directories within the template directory, note that:

	Files which have a name which are suffixed with the value _tmpl will be
rendered, and replacing any instance of the literal string {{var}} with
the string value of the variable named var provided to the scaffold.

	Files and directories with filenames that contain the string +var+ will
have that string replaced with the value of the var variable provided to
the scaffold.

	Files that start with a dot (e.g., .env) are ignored and will not be
copied over to the destination directory. If you want to include a file with
a leading dot, then you must replace the dot with +dot+ (e.g.,
+dot+env).

Otherwise, files and directories which live in the template directory will be
copied directly without modification to the pcreate output location.

The variables provided by the default PyramidTemplate include project
(the project name provided by the user as an argument to pcreate),
package (a lowercasing and normalizing of the project name provided by the
user), random_string (a long random string), and package_logger (the
name of the package's logger).

See Pyramid's "scaffolds" package
(https://github.com/Pylons/pyramid/tree/master/pyramid/scaffolds) for concrete
examples of scaffold directories (zodb, alchemy, and starter, for
example).

After you've created the template directory, add the following to the
entry_points value of your distribution's setup.py:

[pyramid.scaffold]
coolextension=coolextension.scaffolds:CoolExtensionTemplate

For example:

def setup(
 ...,
 entry_points = """\
 [pyramid.scaffold]
 coolextension=coolextension.scaffolds:CoolExtensionTemplate
 """
)

Run your distribution's setup.py develop or setup.py install command.
After that, you should be able to see your scaffolding template listed when you
run pcreate -l. It will be named coolextension because that's the name
we gave it in the entry point setup. Running pcreate -s coolextension
MyStuff will then render your scaffold to an output directory named
MyStuff.

See the module documentation for pyramid.scaffolds for information about
the API of the pyramid.scaffolds.Template class and related classes.
You can override methods of this class to get special behavior.

Supporting Older Pyramid Versions

Because different versions of Pyramid handled scaffolding differently, if you
want to have extension scaffolds that can work across Pyramid 1.0.X, 1.1.X,
1.2.X and 1.3.X, you'll need to use something like this bit of horror while
defining your scaffold template:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	try: # pyramid 1.0.X
 # "pyramid.paster.paste_script..." doesn't exist past 1.0.X
 from pyramid.paster import paste_script_template_renderer
 from pyramid.paster import PyramidTemplate
except ImportError:
 try: # pyramid 1.1.X, 1.2.X
 # trying to import "paste_script_template_renderer" fails on 1.3.X
 from pyramid.scaffolds import paste_script_template_renderer
 from pyramid.scaffolds import PyramidTemplate
 except ImportError: # pyramid >=1.3a2
 paste_script_template_renderer = None
 from pyramid.scaffolds import PyramidTemplate

class CoolExtensionTemplate(PyramidTemplate):
 _template_dir = 'coolextension_scaffold'
 summary = 'My cool extension'
 template_renderer = staticmethod(paste_script_template_renderer)

And then in the setup.py of the package that contains your scaffold, define
the template as a target of both paste.paster_create_template (for
paster create) and pyramid.scaffold (for pcreate).

[paste.paster_create_template]
coolextension=coolextension.scaffolds:CoolExtensionTemplate
[pyramid.scaffold]
coolextension=coolextension.scaffolds:CoolExtensionTemplate

Doing this hideousness will allow your scaffold to work as a paster create
target (under 1.0, 1.1, or 1.2) or as a pcreate target (under 1.3). If an
invoker tries to run paster create against a scaffold defined this way
under 1.3, an error is raised instructing them to use pcreate instead.

If you want to support Pyramid 1.3 only, it's much cleaner, and the API is
stable:

	1
2
3
4
5

	from pyramid.scaffolds import PyramidTemplate

class CoolExtensionTemplate(PyramidTemplate):
 _template_dir = 'coolextension_scaffold'
 summary = 'My cool_extension'

You only need to specify a paste.paster_create_template entry point target
in your setup.py if you want your scaffold to be consumable by users of
Pyramid 1.0, 1.1, or 1.2. To support only 1.3, specifying only the
pyramid.scaffold entry point is good enough. If you want to support both
paster create and pcreate (meaning you want to support Pyramid 1.2 and
some older version), you'll need to define both.

Examples

Existing third-party distributions which house scaffolding are available via
PyPI. The pyramid_jqm, pyramid_zcml, and pyramid_jinja2
packages house scaffolds. You can install and examine these packages to see
how they work in the quest to develop your own scaffolding.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Upgrading Pyramid

When a new version of Pyramid is released, it will sometimes deprecate a
feature or remove a feature that was deprecated in an older release. When
features are removed from Pyramid, applications that depend on those features
will begin to break. This chapter explains how to ensure your Pyramid
applications keep working when you upgrade the Pyramid version you're using.

About Release Numbering

Conventionally, application version numbering in Python is described as
major.minor.micro. If your Pyramid version is "1.2.3", it means you're
running a version of Pyramid with the major version "1", the minor version
"2" and the micro version "3". A "major" release is one that increments the
first-dot number; 2.X.X might follow 1.X.X. A "minor" release is one that
increments the second-dot number; 1.3.X might follow 1.2.X. A "micro"
release is one that increments the third-dot number; 1.2.3 might follow
1.2.2. In general, micro releases are "bugfix-only", and contain no new
features, minor releases contain new features but are largely backwards
compatible with older versions, and a major release indicates a large set of
backwards incompatibilities.

The Pyramid core team is conservative when it comes to removing features. We
don't remove features unnecessarily, but we're human and we make mistakes which
cause some features to be evolutionary dead ends. Though we are willing to
support dead-end features for some amount of time, some eventually have to be
removed when the cost of supporting them outweighs the benefit of keeping them
around, because each feature in Pyramid represents a certain documentation and
maintenance burden.

Deprecation and removal policy

When a feature is scheduled for removal from Pyramid or any of its official
add-ons, the core development team takes these steps:

	Using the feature will begin to generate a DeprecationWarning, indicating
the version in which the feature became deprecated.

	A note is added to the documentation indicating that the feature is
deprecated.

	A note is added to the Pyramid Change History about the deprecation.

When a deprecated feature is eventually removed:

	The feature is removed.

	A note is added to the Pyramid Change History about the removal.

Features are never removed in micro releases. They are only removed in minor
and major releases. Deprecated features are kept around for at least three
minor releases from the time the feature became deprecated. Therefore, if a
feature is added in Pyramid 1.0, but it's deprecated in Pyramid 1.1, it will be
kept around through all 1.1.X releases, all 1.2.X releases and all 1.3.X
releases. It will finally be removed in the first 1.4.X release.

Sometimes features are "docs-deprecated" instead of formally deprecated. This
means that the feature will be kept around indefinitely, but it will be removed
from the documentation or a note will be added to the documentation telling
folks to use some other newer feature. This happens when the cost of keeping
an old feature around is very minimal and the support and documentation burden
is very low. For example, we might rename a function that is an API without
changing the arguments it accepts. In this case, we'll often rename the
function, and change the docs to point at the new function name, but leave
around a backwards compatibility alias to the old function name so older code
doesn't break.

"Docs deprecated" features tend to work "forever", meaning that they won't be
removed, and they'll never generate a deprecation warning. However, such
changes are noted in the Pyramid Change History, so it's possible to know that you
should change older spellings to newer ones to ensure that people reading your
code can find the APIs you're using in the Pyramid docs.

Python support policy

At the time of a Pyramid version release, each supports all versions of Python
through the end of their lifespans. The end-of-life for a given version of
Python is when security updates are no longer released.

	Python 3.2 Lifespan [https://www.python.org/dev/peps/pep-0392/#lifespan]
ends February 2016.

	Python 3.3 Lifespan [https://www.python.org/dev/peps/pep-0392/#lifespan]
ends September 2017.

	Python 3.4 Lifespan [https://www.python.org/dev/peps/pep-0429/] TBD.

	Python 3.5 Lifespan [https://www.python.org/dev/peps/pep-0478/] TBD.

	Python 3.6 Lifespan [https://www.python.org/dev/peps/pep-0494/#id4]
December 2021.

To determine the Python support for a specific release of Pyramid, view its
tox.ini file at the root of the repository's version.

Consulting the change history

Your first line of defense against application failures caused by upgrading to
a newer Pyramid release is always to read the Pyramid Change History to find the
deprecations and removals for each release between the release you're currently
running and the one to which you wish to upgrade. The change history notes
every deprecation within a Deprecation section and every removal within a
Backwards Incompatibilies section for each release.

The change history often contains instructions for changing your code to avoid
deprecation warnings and how to change docs-deprecated spellings to newer ones.
You can follow along with each deprecation explanation in the change history,
simply doing a grep or other code search to your application, using the change
log examples to remediate each potential problem.

Testing your application under a new Pyramid release

Once you've upgraded your application to a new Pyramid release and you've
remediated as much as possible by using the change history notes, you'll want
to run your application's tests (see Run the tests) in such a way that
you can see DeprecationWarnings printed to the console when the tests run.

$ python -Wd setup.py test -q

The -Wd argument tells Python to print deprecation warnings to the console.
Note that the -Wd flag is only required for Python 2.7 and better: Python
versions 2.6 and older print deprecation warnings to the console by default.
See the Python -W flag documentation [http://docs.python.org/using/cmdline.html#cmdoption-W] for more information.

As your tests run, deprecation warnings will be printed to the console
explaining the deprecation and providing instructions about how to prevent the
deprecation warning from being issued. For example:

$ python -Wd setup.py test -q
.. elided ...
running build_ext
/home/chrism/projects/pyramid/env27/myproj/myproj/views.py:3:
DeprecationWarning: static: The "pyramid.view.static" class is deprecated
as of Pyramid 1.1; use the "pyramid.static.static_view" class instead with
the "use_subpath" argument set to True.
 from pyramid.view import static
.
--
Ran 1 test in 0.014s

OK

In the above case, it's line #3 in the myproj.views module (from
pyramid.view import static) that is causing the problem:

	1
2
3
4

	from pyramid.view import view_config

from pyramid.view import static
myview = static('static', 'static')

The deprecation warning tells me how to fix it, so I can change the code to do
things the newer way:

	1
2
3
4

	from pyramid.view import view_config

from pyramid.static import static_view
myview = static_view('static', 'static', use_subpath=True)

When I run the tests again, the deprecation warning is no longer printed to my
console:

$ python -Wd setup.py test -q
.. elided ...
running build_ext
.
--
Ran 1 test in 0.014s

OK

My application doesn't have any tests or has few tests

If your application has no tests, or has only moderate test coverage, running
tests won't tell you very much, because the Pyramid codepaths that generate
deprecation warnings won't be executed.

In this circumstance, you can start your application interactively under a
server run with the PYTHONWARNINGS environment variable set to default.
On UNIX, you can do that via:

$ PYTHONWARNINGS=default $VENV/bin/pserve development.ini

On Windows, you need to issue two commands:

C:\> set PYTHONWARNINGS=default
C:\> Scripts/pserve.exe development.ini

At this point, it's ensured that deprecation warnings will be printed to the
console whenever a codepath is hit that generates one. You can then click
around in your application interactively to try to generate them, and remediate
as explained in Testing your application under a new Pyramid release.

See the PYTHONWARNINGS environment variable documentation [http://docs.python.org/using/cmdline.html#envvar-PYTHONWARNINGS] or the
Python -W flag documentation [http://docs.python.org/using/cmdline.html#cmdoption-W] for more information.

Upgrading to the very latest Pyramid release

When you upgrade your application to the most recent Pyramid release,
it's advisable to upgrade step-wise through each most recent minor release,
beginning with the one that you know your application currently runs under,
and ending on the most recent release. For example, if your application is
running in production on Pyramid 1.2.1, and the most recent Pyramid 1.3
release is Pyramid 1.3.3, and the most recent Pyramid release is 1.4.4, it's
advisable to do this:

	Upgrade your environment to the most recent 1.2 release. For example, the
most recent 1.2 release might be 1.2.3, so upgrade to it. Then run your
application's tests under 1.2.3 as described in
Testing your application under a new Pyramid release. Note any deprecation warnings and
remediate.

	Upgrade to the most recent 1.3 release, 1.3.3. Run your application's tests,
note any deprecation warnings, and remediate.

	Upgrade to 1.4.4. Run your application's tests, note any deprecation
warnings, and remediate.

If you skip testing your application under each minor release (for example if
you upgrade directly from 1.2.1 to 1.4.4), you might miss a deprecation warning
and waste more time trying to figure out an error caused by a feature removal
than it would take to upgrade stepwise through each minor release.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Thread Locals

A thread local variable is a variable that appears to be a "global"
variable to an application which uses it. However, unlike a true global
variable, one thread or process serving the application may receive a different
value than another thread or process when that variable is "thread local".

When a request is processed, Pyramid makes two thread local
variables available to the application: a "registry" and a "request".

Why and How Pyramid Uses Thread Local Variables

How are thread locals beneficial to Pyramid and application developers
who use Pyramid? Well, usually they're decidedly not. Using a
global or a thread local variable in any application usually makes it a lot
harder to understand for a casual reader. Use of a thread local or a global is
usually just a way to avoid passing some value around between functions, which
is itself usually a very bad idea, at least if code readability counts as an
important concern.

For historical reasons, however, thread local variables are indeed consulted by
various Pyramid API functions. For example, the implementation of the
pyramid.security function named
authenticated_userid() (deprecated as of 1.5) retrieves
the thread local application registry as a matter of course to find an
authentication policy. It uses the
pyramid.threadlocal.get_current_registry() function to retrieve the
application registry, from which it looks up the authentication policy; it then
uses the authentication policy to retrieve the authenticated user id. This is
how Pyramid allows arbitrary authentication policies to be "plugged in".

When they need to do so, Pyramid internals use two API functions to
retrieve the request and application registry:
get_current_request() and
get_current_registry(). The former returns the
"current" request; the latter returns the "current" registry. Both
get_current_* functions retrieve an object from a thread-local data
structure. These API functions are documented in pyramid.threadlocal.

These values are thread locals rather than true globals because one Python
process may be handling multiple simultaneous requests or even multiple
Pyramid applications. If they were true globals, Pyramid could
not handle multiple simultaneous requests or allow more than one Pyramid
application instance to exist in a single Python process.

Because one Pyramid application is permitted to call another
Pyramid application from its own view code (perhaps as a
WSGI app with help from the pyramid.wsgi.wsgiapp2() decorator),
these variables are managed in a stack during normal system operations. The
stack instance itself is a threading.local [http://docs.python.org/3/library/threading.html#threading.local].

During normal operations, the thread locals stack is managed by a
Router object. At the beginning of a request, the Router pushes the
application's registry and the request on to the stack. At the end of a
request, the stack is popped. The topmost request and registry on the stack
are considered "current". Therefore, when the system is operating normally,
the very definition of "current" is defined entirely by the behavior of a
pyramid Router.

However, during unit testing, no Router code is ever invoked, and the
definition of "current" is defined by the boundary between calls to the
pyramid.config.Configurator.begin() and
pyramid.config.Configurator.end() methods (or between calls to the
pyramid.testing.setUp() and pyramid.testing.tearDown() functions).
These functions push and pop the threadlocal stack when the system is under
test. See Test Set Up and Tear Down for the definitions of these
functions.

Scripts which use Pyramid machinery but never actually start a WSGI
server or receive requests via HTTP, such as scripts which use the
pyramid.scripting API, will never cause any Router code to be executed.
However, the pyramid.scripting APIs also push some values on to the
thread locals stack as a matter of course. Such scripts should expect the
get_current_request() function to always return
None, and should expect the
get_current_registry() function to return exactly
the same application registry for every request.

Why You Shouldn't Abuse Thread Locals

You probably should almost never use the
get_current_request() or
get_current_registry() functions, except perhaps in
tests. In particular, it's almost always a mistake to use
get_current_request or get_current_registry in application code because
its usage makes it possible to write code that can be neither easily tested nor
scripted. Inappropriate usage is defined as follows:

	get_current_request should never be called within the body of a
view callable, or within code called by a view callable. View
callables already have access to the request (it's passed in to each as
request).

	get_current_request should never be called in resource code. If a
resource needs access to the request, it should be passed the request by a
view callable.

	get_current_request function should never be called because it's "easier"
or "more elegant" to think about calling it than to pass a request through a
series of function calls when creating some API design. Your application
should instead, almost certainly, pass around data derived from the request
rather than relying on being able to call this function to obtain the request
in places that actually have no business knowing about it. Parameters are
meant to be passed around as function arguments; this is why they exist.
Don't try to "save typing" or create "nicer APIs" by using this function in
the place where a request is required; this will only lead to sadness later.

	Neither get_current_request nor get_current_registry should ever be
called within application-specific forks of third-party library code. The
library you've forked almost certainly has nothing to do with Pyramid,
and making it dependent on Pyramid (rather than making your
pyramid application depend upon it) means you're forming a dependency
in the wrong direction.

Use of the get_current_request() function in
application code is still useful in very limited circumstances. As a rule of
thumb, usage of get_current_request is useful within code which is meant
to eventually be removed. For instance, you may find yourself wanting to
deprecate some API that expects to be passed a request object in favor of one
that does not expect to be passed a request object. But you need to keep
implementations of the old API working for some period of time while you
deprecate the older API. So you write a "facade" implementation of the new API
which calls into the code which implements the older API. Since the new API
does not require the request, your facade implementation doesn't have local
access to the request when it needs to pass it into the older API
implementation. After some period of time, the older implementation code is
disused and the hack that uses get_current_request is removed. This would
be an appropriate place to use the get_current_request.

Use of the get_current_registry() function should be
limited to testing scenarios. The registry made current by use of the
pyramid.config.Configurator.begin() method during a test (or via
pyramid.testing.setUp()) when you do not pass one in is available to you
via this API.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Using the Zope Component Architecture in Pyramid

Under the hood, Pyramid uses a Zope Component Architecture
component registry as its application registry. The Zope Component
Architecture is referred to colloquially as the "ZCA."

The zope.component API used to access data in a traditional Zope
application can be opaque. For example, here is a typical "unnamed utility"
lookup using the zope.component.getUtility() [http://docs.zope.org/zope.component/api/utility.html#zope.component.getUtility] global API as it might
appear in a traditional Zope application:

	1
2
3

	from pyramid.interfaces import ISettings
from zope.component import getUtility
settings = getUtility(ISettings)

After this code runs, settings will be a Python dictionary. But it's
unlikely that any "civilian" will be able to figure this out just by reading
the code casually. When the zope.component.getUtility API is used by a
developer, the conceptual load on a casual reader of code is high.

While the ZCA is an excellent tool with which to build a framework such as
Pyramid, it is not always the best tool with which to build an
application due to the opacity of the zope.component APIs. Accordingly,
Pyramid tends to hide the presence of the ZCA from application
developers. You needn't understand the ZCA to create a Pyramid
application; its use is effectively only a framework implementation detail.

However, developers who are already used to writing Zope applications
often still wish to use the ZCA while building a Pyramid application.
Pyramid makes this possible.

Using the ZCA global API in a Pyramid application

Zope uses a single ZCA registry—the "global" ZCA registry—for all Zope
applications that run in the same Python process, effectively making it
impossible to run more than one Zope application in a single process.

However, for ease of deployment, it's often useful to be able to run more than
a single application per process. For example, use of a PasteDeploy
"composite" allows you to run separate individual WSGI applications in the same
process, each answering requests for some URL prefix. This makes it possible
to run, for example, a TurboGears application at /turbogears and a
Pyramid application at /pyramid, both served up using the same
WSGI server within a single Python process.

Most production Zope applications are relatively large, making it impractical
due to memory constraints to run more than one Zope application per Python
process. However, a Pyramid application may be very small and consume
very little memory, so it's a reasonable goal to be able to run more than one
Pyramid application per process.

In order to make it possible to run more than one Pyramid application in
a single process, Pyramid defaults to using a separate ZCA registry per
application.

While this services a reasonable goal, it causes some issues when trying to use
patterns which you might use to build a typical Zope application to
build a Pyramid application. Without special help, ZCA "global" APIs
such as zope.component.getUtility() [http://docs.zope.org/zope.component/api/utility.html#zope.component.getUtility] and
zope.component.getSiteManager() [http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager] will use the ZCA "global" registry.
Therefore, these APIs will appear to fail when used in a Pyramid
application, because they'll be consulting the ZCA global registry rather than
the component registry associated with your Pyramid application.

There are three ways to fix this: by disusing the ZCA global API entirely, by
using pyramid.config.Configurator.hook_zca() or by passing the ZCA global
registry to the Configurator constructor at startup time. We'll
describe all three methods in this section.

Disusing the global ZCA API

ZCA "global" API functions such as zope.component.getSiteManager,
zope.component.getUtility, zope.component.getAdapter() [http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter], and
zope.component.getMultiAdapter() [http://docs.zope.org/zope.component/api/adapter.html#zope.component.getMultiAdapter] aren't strictly necessary. Every
component registry has a method API that offers the same functionality; it can
be used instead. For example, presuming the registry value below is a Zope
Component Architecture component registry, the following bit of code is
equivalent to zope.component.getUtility(IFoo):

registry.getUtility(IFoo)

The full method API is documented in the zope.component package, but it
largely mirrors the "global" API almost exactly.

If you are willing to disuse the "global" ZCA APIs and use the method interface
of a registry instead, you need only know how to obtain the Pyramid
component registry.

There are two ways of doing so:

	use the pyramid.threadlocal.get_current_registry() function within
Pyramid view or resource code. This will always return the "current"
Pyramid application registry.

	use the attribute of the request object named registry in your
Pyramid view code, e.g., request.registry. This is the ZCA
component registry related to the running Pyramid application.

See Thread Locals for more information about
pyramid.threadlocal.get_current_registry().

Enabling the ZCA global API by using hook_zca

Consider the following bit of idiomatic Pyramid startup code:

	1
2
3
4
5
6

	from pyramid.config import Configurator

def app(global_settings, **settings):
 config = Configurator(settings=settings)
 config.include('some.other.package')
 return config.make_wsgi_app()

When the app function above is run, a Configurator is constructed.
When the configurator is created, it creates a new application
registry (a ZCA component registry). A new registry is constructed whenever
the registry argument is omitted, when a Configurator constructor
is called, or when a registry argument with a value of None is passed
to a Configurator constructor.

During a request, the application registry created by the Configurator is "made
current". This means calls to
get_current_registry() in the thread handling the
request will return the component registry associated with the application.

As a result, application developers can use get_current_registry to get the
registry and thus get access to utilities and such, as per
Disusing the global ZCA API. But they still cannot use the global ZCA
API. Without special treatment, the ZCA global APIs will always return the
global ZCA registry (the one in zope.component.globalregistry.base).

To "fix" this and make the ZCA global APIs use the "current" Pyramid
registry, you need to call hook_zca() within
your setup code. For example:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator

def app(global_settings, **settings):
 config = Configurator(settings=settings)
 config.hook_zca()
 config.include('some.other.application')
 return config.make_wsgi_app()

We've added a line to our original startup code, line number 5, which calls
config.hook_zca(). The effect of this line under the hood is that an
analogue of the following code is executed:

	1
2
3

	from zope.component import getSiteManager
from pyramid.threadlocal import get_current_registry
getSiteManager.sethook(get_current_registry)

This causes the ZCA global API to start using the Pyramid application
registry in threads which are running a Pyramid request.

Calling hook_zca is usually sufficient to "fix" the problem of being able
to use the global ZCA API within a Pyramid application. However, it
also means that a Zope application that is running in the same process may
start using the Pyramid global registry instead of the Zope global
registry, effectively inverting the original problem. In such a case, follow
the steps in the next section, Enabling the ZCA global API by using the ZCA global registry.

Enabling the ZCA global API by using the ZCA global registry

You can tell your Pyramid application to use the ZCA global registry at
startup time instead of constructing a new one:

	1
2
3
4
5
6
7
8
9

	from zope.component import getGlobalSiteManager
from pyramid.config import Configurator

def app(global_settings, **settings):
 globalreg = getGlobalSiteManager()
 config = Configurator(registry=globalreg)
 config.setup_registry(settings=settings)
 config.include('some.other.application')
 return config.make_wsgi_app()

Lines 5, 6, and 7 above are the interesting ones. Line 5 retrieves the global
ZCA component registry. Line 6 creates a Configurator, passing the
global ZCA registry into its constructor as the registry argument. Line 7
"sets up" the global registry with Pyramid-specific registrations; this is code
that is normally executed when a registry is constructed rather than created,
but we must call it "by hand" when we pass an explicit registry.

At this point, Pyramid will use the ZCA global registry rather than
creating a new application-specific registry. Since by default the ZCA global
API will use this registry, things will work as you might expect in a Zope app
when you use the global ZCA API.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

API Documentation

Comprehensive reference material for every public API exposed by Pyramid:

	pyramid.authentication

	pyramid.authorization

	pyramid.compat

	pyramid.config

	pyramid.decorator

	pyramid.events

	pyramid.exceptions

	pyramid.httpexceptions

	pyramid.i18n

	pyramid.interfaces

	pyramid.location

	pyramid.paster

	pyramid.path

	pyramid.registry

	pyramid.renderers

	pyramid.request

	pyramid.response

	pyramid.scaffolds

	pyramid.scripting

	pyramid.security

	pyramid.session

	pyramid.settings

	pyramid.static

	pyramid.testing

	pyramid.threadlocal

	pyramid.traversal

	pyramid.tweens

	pyramid.url

	pyramid.view

	pyramid.wsgi

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.authentication

Authentication Policies

	
class AuthTktAuthenticationPolicy(secret, callback=None, cookie_name='auth_tkt', secure=False, include_ip=False, timeout=None, reissue_time=None, max_age=None, path='/', http_only=False, wild_domain=True, debug=False, hashalg=<object object>, parent_domain=False, domain=None)[source]

	A Pyramid authentication policy which
obtains data from a Pyramid "auth ticket" cookie.

Warning

The default hash algorithm used in this policy is MD5 and has known
hash collision vulnerabilities. The risk of an exploit is low.
However, for improved authentication security, use
hashalg='sha512'.

Constructor Arguments

secret

The secret (a string) used for auth_tkt cookie signing. This value
should be unique across all values provided to Pyramid for various
subsystem secrets (see Admonishment Against Secret-Sharing).
Required.

callback

Default: None. A callback passed the userid and the
request, expected to return None if the userid doesn't
exist or a sequence of principal identifiers (possibly empty) if
the user does exist. If callback is None, the userid
will be assumed to exist with no principals. Optional.

cookie_name

Default: auth_tkt. The cookie name used
(string). Optional.

secure

Default: False. Only send the cookie back over a secure
conn. Optional.

include_ip

Default: False. Make the requesting IP address part of
the authentication data in the cookie. Optional.

For IPv6 this option is not recommended. The mod_auth_tkt
specification does not specify how to handle IPv6 addresses, so using
this option in combination with IPv6 addresses may cause an
incompatible cookie. It ties the authentication ticket to that
individual's IPv6 address.

timeout

Default: None. Maximum number of seconds which a newly
issued ticket will be considered valid. After this amount of
time, the ticket will expire (effectively logging the user
out). If this value is None, the ticket never expires.
Optional.

reissue_time

Default: None. If this parameter is set, it represents the number
of seconds that must pass before an authentication token cookie is
automatically reissued as the result of a request which requires
authentication. The duration is measured as the number of seconds
since the last auth_tkt cookie was issued and 'now'. If this value is
0, a new ticket cookie will be reissued on every request which
requires authentication.

A good rule of thumb: if you want auto-expired cookies based on
inactivity: set the timeout value to 1200 (20 mins) and set the
reissue_time value to perhaps a tenth of the timeout value
(120 or 2 mins). It's nonsensical to set the timeout value lower
than the reissue_time value, as the ticket will never be reissued
if so. However, such a configuration is not explicitly prevented.

Optional.

max_age

Default: None. The max age of the auth_tkt cookie, in
seconds. This differs from timeout inasmuch as timeout
represents the lifetime of the ticket contained in the cookie,
while this value represents the lifetime of the cookie itself.
When this value is set, the cookie's Max-Age and
Expires settings will be set, allowing the auth_tkt cookie
to last between browser sessions. It is typically nonsensical
to set this to a value that is lower than timeout or
reissue_time, although it is not explicitly prevented.
Optional.

path

Default: /. The path for which the auth_tkt cookie is valid.
May be desirable if the application only serves part of a domain.
Optional.

http_only

Default: False. Hide cookie from JavaScript by setting the
HttpOnly flag. Not honored by all browsers.
Optional.

wild_domain

Default: True. An auth_tkt cookie will be generated for the
wildcard domain. If your site is hosted as example.com this
will make the cookie available for sites underneath example.com
such as www.example.com.
Optional.

parent_domain

Default: False. An auth_tkt cookie will be generated for the
parent domain of the current site. For example if your site is
hosted under www.example.com a cookie will be generated for
.example.com. This can be useful if you have multiple sites
sharing the same domain. This option supercedes the wild_domain
option.
Optional.

This option is available as of Pyramid 1.5.

domain

Default: None. If provided the auth_tkt cookie will only be
set for this domain. This option is not compatible with wild_domain
and parent_domain.
Optional.

This option is available as of Pyramid 1.5.

hashalg

Default: md5 (the literal string).

Any hash algorithm supported by Python's hashlib.new() function
can be used as the hashalg.

Cookies generated by different instances of AuthTktAuthenticationPolicy
using different hashalg options are not compatible. Switching the
hashalg will imply that all existing users with a valid cookie will
be required to re-login.

A warning is emitted at startup if an explicit hashalg is not
passed. This is for backwards compatibility reasons.

This option is available as of Pyramid 1.4.

Optional.

Note

md5 is the default for backwards compatibility reasons. However,
if you don't specify md5 as the hashalg explicitly, a warning is
issued at application startup time. An explicit value of sha512
is recommended for improved security, and sha512 will become the
default in a future Pyramid version.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	A list of headers which will delete appropriate cookies.

	
remember(request, principal, **kw)[source]

	Accepts the following kw args: max_age=<int-seconds>,
``tokens=<sequence-of-ascii-strings>.

Return a list of headers which will set appropriate cookies on
the response.

	
unauthenticated_userid(request)[source]

	The userid key within the auth_tkt cookie.

	
class RemoteUserAuthenticationPolicy(environ_key='REMOTE_USER', callback=None, debug=False)[source]

	A Pyramid authentication policy which
obtains data from the REMOTE_USER WSGI environment variable.

Constructor Arguments

environ_key

Default: REMOTE_USER. The key in the WSGI environ which
provides the userid.

callback

Default: None. A callback passed the userid and the request,
expected to return None if the userid doesn't exist or a sequence of
principal identifiers (possibly empty) representing groups if the
user does exist. If callback is None, the userid will be assumed
to exist with no group principals.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	A no-op. The REMOTE_USER does not provide a protocol for
forgetting the user. This will be application-specific and can
be done somewhere else or in a subclass.

	
remember(request, principal, **kw)[source]

	A no-op. The REMOTE_USER does not provide a protocol for
remembering the user. This will be application-specific and can
be done somewhere else or in a subclass.

	
unauthenticated_userid(request)[source]

	The REMOTE_USER value found within the environ.

	
class SessionAuthenticationPolicy(prefix='auth.', callback=None, debug=False)[source]

	A Pyramid authentication policy which gets its data from the
configured session. For this authentication policy to work, you
will have to follow the instructions in the Sessions to
configure a session factory.

Constructor Arguments

prefix

A prefix used when storing the authentication parameters in the
session. Defaults to 'auth.'. Optional.

callback

Default: None. A callback passed the userid and the
request, expected to return None if the userid doesn't
exist or a sequence of principal identifiers (possibly empty) if
the user does exist. If callback is None, the userid
will be assumed to exist with no principals. Optional.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	Remove the stored principal from the session.

	
remember(request, principal, **kw)[source]

	Store a principal in the session.

	
class BasicAuthAuthenticationPolicy(check, realm='Realm', debug=False)[source]

	A Pyramid authentication policy which uses HTTP standard basic
authentication protocol to authenticate users. To use this policy you will
need to provide a callback which checks the supplied user credentials
against your source of login data.

Constructor Arguments

check

A callback function passed a username, password and request, in that
order as positional arguments. Expected to return None if the
userid doesn't exist or a sequence of principal identifiers (possibly
empty) if the user does exist.

realm

Default: "Realm". The Basic Auth Realm string. Usually displayed to
the user by the browser in the login dialog.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

Issuing a challenge

Regular browsers will not send username/password credentials unless they
first receive a challenge from the server. The following recipe will
register a view that will send a Basic Auth challenge to the user whenever
there is an attempt to call a view which results in a Forbidden response:

from pyramid.httpexceptions import HTTPUnauthorized
from pyramid.security import forget
from pyramid.view import forbidden_view_config

@forbidden_view_config()
def basic_challenge(request):
 response = HTTPUnauthorized()
 response.headers.update(forget(request))
 return response

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	Returns challenge headers. This should be attached to a response
to indicate that credentials are required.

	
remember(request, principal, **kw)[source]

	A no-op. Basic authentication does not provide a protocol for
remembering the user. Credentials are sent on every request.

	
unauthenticated_userid(request)[source]

	The userid parsed from the Authorization request header.

	
class RepozeWho1AuthenticationPolicy(identifier_name='auth_tkt', callback=None)[source]

	A Pyramid authentication policy which
obtains data from the repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who] 1.X WSGI 'API' (the
repoze.who.identity key in the WSGI environment).

Constructor Arguments

identifier_name

Default: auth_tkt. The repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who] plugin name that
performs remember/forget. Optional.

callback

Default: None. A callback passed the repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who] identity
and the request, expected to return None if the user
represented by the identity doesn't exist or a sequence of principal
identifiers (possibly empty) representing groups if the user does
exist. If callback is None, the userid will be assumed to exist
with no group principals.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

	
authenticated_userid(request)[source]

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)[source]

	A list of effective principals derived from the identity.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no identity, or
the callback returns None, this will be the only principal.

If the callback does not return None and an identity is
found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback.

	
forget(request)[source]

	Forget the current authenticated user.

Return headers that, if included in a response, will delete the
cookie responsible for tracking the current user.

	
remember(request, principal, **kw)[source]

	Store the principal as repoze.who.userid.

The identity to authenticated to repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who]
will contain the given principal as userid, and
provide all keyword arguments as additional identity
keys. Useful keys could be max_age or userdata.

	
unauthenticated_userid(request)[source]

	Return the repoze.who.userid key from the detected identity.

Helper Classes

	
class AuthTktCookieHelper(secret, cookie_name='auth_tkt', secure=False, include_ip=False, timeout=None, reissue_time=None, max_age=None, http_only=False, path='/', wild_domain=True, hashalg='md5', parent_domain=False, domain=None)[source]

	A helper class for use in third-party authentication policy
implementations. See
pyramid.authentication.AuthTktAuthenticationPolicy for the
meanings of the constructor arguments.

	
class AuthTicket(secret, userid, ip, tokens=(), user_data='', time=None, cookie_name='auth_tkt', secure=False, hashalg='md5')

	This class represents an authentication token. You must pass in
the shared secret, the userid, and the IP address. Optionally you
can include tokens (a list of strings, representing role names),
'user_data', which is arbitrary data available for your own use in
later scripts. Lastly, you can override the cookie name and
timestamp.

Once you provide all the arguments, use .cookie_value() to
generate the appropriate authentication ticket.

Usage:

token = AuthTicket('sharedsecret', 'username',
 os.environ['REMOTE_ADDR'], tokens=['admin'])
val = token.cookie_value()

	
exception AuthTktCookieHelper.BadTicket(msg, expected=None)

	Exception raised when a ticket can't be parsed. If we get far enough to
determine what the expected digest should have been, expected is set.
This should not be shown by default, but can be useful for debugging.

	
AuthTktCookieHelper.forget(request)[source]

	Return a set of expires Set-Cookie headers, which will destroy
any existing auth_tkt cookie when attached to a response

	
AuthTktCookieHelper.identify(request)[source]

	Return a dictionary with authentication information, or None
if no valid auth_tkt is attached to request

	
static AuthTktCookieHelper.parse_ticket(secret, ticket, ip, hashalg='md5')

	Parse the ticket, returning (timestamp, userid, tokens, user_data).

If the ticket cannot be parsed, a BadTicket exception will be raised
with an explanation.

	
AuthTktCookieHelper.remember(request, userid, max_age=None, tokens=())[source]

	Return a set of Set-Cookie headers; when set into a response,
these headers will represent a valid authentication ticket.

	max_age

	The max age of the auth_tkt cookie, in seconds. When this value is
set, the cookie's Max-Age and Expires settings will be set,
allowing the auth_tkt cookie to last between browser sessions. If
this value is None, the max_age value provided to the
helper itself will be used as the max_age value. Default:
None.

	tokens

	A sequence of strings that will be placed into the auth_tkt tokens
field. Each string in the sequence must be of the Python str
type and must match the regex ^[A-Za-z][A-Za-z0-9+_-]*$.
Tokens are available in the returned identity when an auth_tkt is
found in the request and unpacked. Default: ().

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.authorization

	
class ACLAuthorizationPolicy[source]

	An authorization policy which consults an ACL
object attached to a context to determine authorization
information about a principal or multiple principals.
If the context is part of a lineage, the context's parents
are consulted for ACL information too. The following is true
about this security policy.

	When checking whether the 'current' user is permitted (via the
permits method), the security policy consults the
context for an ACL first. If no ACL exists on the context,
or one does exist but the ACL does not explicitly allow or deny
access for any of the effective principals, consult the
context's parent ACL, and so on, until the lineage is exhausted
or we determine that the policy permits or denies.

During this processing, if any pyramid.security.Deny
ACE is found matching any principal in principals, stop
processing by returning an
pyramid.security.ACLDenied instance (equals
False) immediately. If any
pyramid.security.Allow ACE is found matching any
principal, stop processing by returning an
pyramid.security.ACLAllowed instance (equals
True) immediately. If we exhaust the context's
lineage, and no ACE has explicitly permitted or denied
access, return an instance of
pyramid.security.ACLDenied (equals False).

	When computing principals allowed by a permission via the
pyramid.security.principals_allowed_by_permission()
method, we compute the set of principals that are explicitly
granted the permission in the provided context. We do
this by walking 'up' the object graph from the root to the
context. During this walking process, if we find an explicit
pyramid.security.Allow ACE for a principal that
matches the permission, the principal is included in the
allow list. However, if later in the walking process that
principal is mentioned in any pyramid.security.Deny
ACE for the permission, the principal is removed from the allow
list. If a pyramid.security.Deny to the principal
pyramid.security.Everyone is encountered during the
walking process that matches the permission, the allow list
is cleared for all principals encountered in previous ACLs. The
walking process ends after we've processed the any ACL directly
attached to context; a set of principals is returned.

Objects of this class implement the
pyramid.interfaces.IAuthorizationPolicy interface.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.compat

The pyramid.compat module provides platform and version compatibility for
Pyramid and its add-ons across Python platform and version differences. APIs
will be removed from this module over time as Pyramid ceases to support
systems which require compatibility imports.

	
ascii_native_(s)[source]

	Python 3: If s is an instance of text_type, return
s.encode('ascii'), otherwise return str(s, 'ascii', 'strict')

Python 2: If s is an instance of text_type, return
s.encode('ascii'), otherwise return str(s)

	
binary_type

	Binary type for this platform. For Python 3, it's bytes. For
Python 2, it's str.

	
bytes_(s, encoding='latin-1', errors='strict')[source]

	If s is an instance of text_type, return
s.encode(encoding, errors), otherwise return s

	
class_types

	Sequence of class types for this platform. For Python 3, it's
(type,). For Python 2, it's (type, types.ClassType).

	
configparser

	On Python 2, the ConfigParser module, on Python 3, the
configparser module.

	
escape(v)[source]

	On Python 2, the cgi.escape function, on Python 3, the
html.escape function.

	
exec_(code, globs=None, locs=None)

	Exec code in a compatible way on both Python 2 and 3.

	
im_func

	On Python 2, the string value im_func, on Python 3, the string
value __func__.

	
input_(v)

	On Python 2, the raw_input function, on Python 3, the
input function.

	
integer_types

	Sequence of integer types for this platform. For Python 3, it's
(int,). For Python 2, it's (int, long).

	
is_nonstr_iter(v)[source]

	Return True if v is a non-str iterable on both Python 2 and
Python 3.

	
iteritems_(d)[source]

	Return d.items() on Python 3, d.iteritems() on Python 2.

	
itervalues_(d)[source]

	Return d.values() on Python 3, d.itervalues() on Python 2.

	
iterkeys_(d)[source]

	Return d.keys() on Python 3, d.iterkeys() on Python 2.

	
long

	Long type for this platform. For Python 3, it's int. For
Python 2, it's long.

	
map_(v)[source]

	Return list(map(v)) on Python 3, map(v) on Python 2.

	
pickle

	cPickle module if it exists, pickle module otherwise.

	
PY3

	True if running on Python 3, False otherwise.

	
PYPY

	True if running on PyPy, False otherwise.

	
reraise(tp, value, tb=None)[source]

	Reraise an exception in a compatible way on both Python 2 and Python 3,
e.g. reraise(*sys.exc_info()).

	
string_types

	Sequence of string types for this platform. For Python 3, it's
(str,). For Python 2, it's (basestring,).

	
SimpleCookie[source]

	On Python 2, the Cookie.SimpleCookie class, on Python 3, the
http.cookies.SimpleCookie module.

	
text_(s, encoding='latin-1', errors='strict')[source]

	If s is an instance of binary_type, return
s.decode(encoding, errors), otherwise return s

	
text_type

	Text type for this platform. For Python 3, it's str. For Python
2, it's unicode.

	
native_(s, encoding='latin-1', errors='strict')[source]

	Python 3: If s is an instance of text_type, return s, otherwise
return str(s, encoding, errors)

Python 2: If s is an instance of text_type, return
s.encode(encoding, errors), otherwise return str(s)

	
urlparse

	urlparse module on Python 2, urllib.parse module on Python 3.

	
url_quote

	urllib.quote function on Python 2, urllib.parse.quote function
on Python 3.

	
url_quote_plus

	urllib.quote_plus function on Python 2, urllib.parse.quote_plus
function on Python 3.

	
url_unquote

	urllib.unquote function on Python 2, urllib.parse.unquote
function on Python 3.

	
url_encode

	urllib.urlencode function on Python 2, urllib.parse.urlencode
function on Python 3.

	
url_open

	urllib2.urlopen function on Python 2, urllib.request.urlopen
function on Python 3.

	
url_unquote_text(v, encoding='utf-8', errors='replace')

	On Python 2, return url_unquote(v).decode(encoding(encoding, errors));
on Python 3, return the result of urllib.parse.unquote.

	
url_unquote_native(v, encoding='utf-8', errors='replace')

	On Python 2, return native_(url_unquote_text_v, encoding, errors));
on Python 3, return the result of urllib.parse.unquote.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.config

	
class Configurator(registry=None, package=None, settings=None, root_factory=None, authentication_policy=None, authorization_policy=None, renderers=None, debug_logger=None, locale_negotiator=None, request_factory=None, default_permission=None, session_factory=None, default_view_mapper=None, autocommit=False, exceptionresponse_view=<function default_exceptionresponse_view>, route_prefix=None, introspection=True)[source]

	A Configurator is used to configure a Pyramid
application registry.

If the registry argument is not None, it must
be an instance of the pyramid.registry.Registry class
representing the registry to configure. If registry is None, the
configurator will create a pyramid.registry.Registry instance
itself; it will also perform some default configuration that would not
otherwise be done. After its construction, the configurator may be used
to add further configuration to the registry.

Warning

If registry is assigned the above-mentioned class
instance, all other constructor arguments are ignored,
with the exception of package.

If the package argument is passed, it must be a reference to a Python
package (e.g. sys.modules['thepackage']) or a dotted
Python name to the same. This value is used as a basis to convert
relative paths passed to various configuration methods, such as methods
which accept a renderer argument, into absolute paths. If None
is passed (the default), the package is assumed to be the Python package
in which the caller of the Configurator constructor lives.

If the settings argument is passed, it should be a Python dictionary
representing the deployment settings for this application. These
are later retrievable using the
pyramid.registry.Registry.settings attribute (aka
request.registry.settings).

If the root_factory argument is passed, it should be an object
representing the default root factory for your application or a
dotted Python name to the same. If it is None, a default
root factory will be used.

If authentication_policy is passed, it should be an instance
of an authentication policy or a dotted Python
name to the same.

If authorization_policy is passed, it should be an instance of
an authorization policy or a dotted Python name to
the same.

Note

A ConfigurationError will be raised when an
authorization policy is supplied without also supplying an
authentication policy (authorization requires authentication).

If renderers is None (the default), a default set of
renderer factories is used. Else, it should be a list of
tuples representing a set of renderer factories which should be
configured into this application, and each tuple representing a set of
positional values that should be passed to
pyramid.config.Configurator.add_renderer().

If debug_logger is not passed, a default debug logger that logs to a
logger will be used (the logger name will be the package name of the
caller of this configurator). If it is passed, it should be an
instance of the logging.Logger [http://docs.python.org/3/library/logging.html#logging.Logger] (PEP 282) standard library class
or a Python logger name. The debug logger is used by Pyramid
itself to log warnings and authorization debugging information.

If locale_negotiator is passed, it should be a locale
negotiator implementation or a dotted Python name to
same. See Using a Custom Locale Negotiator.

If request_factory is passed, it should be a request
factory implementation or a dotted Python name to the same.
See Changing the Request Factory. By default it is None,
which means use the default request factory.

If default_permission is passed, it should be a
permission string to be used as the default permission for
all view configuration registrations performed against this
Configurator. An example of a permission string:'view'.
Adding a default permission makes it unnecessary to protect each
view configuration with an explicit permission, unless your
application policy requires some exception for a particular view.
By default, default_permission is None, meaning that view
configurations which do not explicitly declare a permission will
always be executable by entirely anonymous users (any
authorization policy in effect is ignored).

See also

See also Setting a Default Permission.

If session_factory is passed, it should be an object which
implements the session factory interface. If a nondefault
value is passed, the session_factory will be used to create a
session object when request.session is accessed. Note that
the same outcome can be achieved by calling
pyramid.config.Configurator.set_session_factory(). By
default, this argument is None, indicating that no session
factory will be configured (and thus accessing request.session
will throw an error) unless set_session_factory is called later
during configuration.

If autocommit is True, every method called on the configurator
will cause an immediate action, and no configuration conflict detection
will be used. If autocommit is False, most methods of the
configurator will defer their action until
pyramid.config.Configurator.commit() is called. When
pyramid.config.Configurator.commit() is called, the actions implied
by the called methods will be checked for configuration conflicts unless
autocommit is True. If a conflict is detected, a
ConfigurationConflictError will be raised. Calling
pyramid.config.Configurator.make_wsgi_app() always implies a final
commit.

If default_view_mapper is passed, it will be used as the default
view mapper factory for view configurations that don't otherwise
specify one (see pyramid.interfaces.IViewMapperFactory). If
default_view_mapper is not passed, a superdefault view mapper will be
used.

If exceptionresponse_view is passed, it must be a view
callable or None. If it is a view callable, it will be used as an
exception view callable when an exception response is raised. If
exceptionresponse_view is None, no exception response view will
be registered, and all raised exception responses will be bubbled up to
Pyramid's caller. By
default, the pyramid.httpexceptions.default_exceptionresponse_view
function is used as the exceptionresponse_view.

If route_prefix is passed, all routes added with
pyramid.config.Configurator.add_route() will have the specified path
prepended to their pattern.

If introspection is passed, it must be a boolean value. If it's
True, introspection values during actions will be kept for use
for tools like the debug toolbar. If it's False, introspection
values provided by registrations will be ignored. By default, it is
True.

New in version 1.1: The exceptionresponse_view argument.

New in version 1.2: The route_prefix argument.

New in version 1.3: The introspection argument.

Controlling Configuration State

	
commit()[source]

	Commit any pending configuration actions. If a configuration
conflict is detected in the pending configuration actions, this method
will raise a ConfigurationConflictError; within the traceback
of this error will be information about the source of the conflict,
usually including file names and line numbers of the cause of the
configuration conflicts.

	
begin(request=None)[source]

	Indicate that application or test configuration has begun.
This pushes a dictionary containing the application
registry implied by registry attribute of this
configurator and the request implied by the
request argument onto the thread local stack
consulted by various pyramid.threadlocal API
functions.

	
end()[source]

	Indicate that application or test configuration has ended.
This pops the last value pushed onto the thread local
stack (usually by the begin method) and returns that
value.

	
include(callable, route_prefix=None)[source]

	Include a configuration callable, to support imperative
application extensibility.

Warning

In versions of Pyramid prior to 1.2, this
function accepted *callables, but this has been changed
to support only a single callable.

A configuration callable should be a callable that accepts a single
argument named config, which will be an instance of a
Configurator. However, be warned that it will not be the same
configurator instance on which you call this method. The
code which runs as a result of calling the callable should invoke
methods on the configurator passed to it which add configuration
state. The return value of a callable will be ignored.

Values allowed to be presented via the callable argument to
this method: any callable Python object or any dotted Python
name which resolves to a callable Python object. It may also be a
Python module, in which case, the module will be searched for
a callable named includeme, which will be treated as the
configuration callable.

For example, if the includeme function below lives in a module
named myapp.myconfig:

	1
2
3
4
5
6
7
8

	# myapp.myconfig module

def my_view(request):
 from pyramid.response import Response
 return Response('OK')

def includeme(config):
 config.add_view(my_view)

You might cause it to be included within your Pyramid application like
so:

	1
2
3
4
5

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator()
 config.include('myapp.myconfig.includeme')

Because the function is named includeme, the function name can
also be omitted from the dotted name reference:

	1
2
3
4
5

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator()
 config.include('myapp.myconfig')

Included configuration statements will be overridden by local
configuration statements if an included callable causes a
configuration conflict by registering something with the same
configuration parameters.

If the route_prefix is supplied, it must be a string. Any calls
to pyramid.config.Configurator.add_route() within the included
callable will have their pattern prefixed with the value of
route_prefix. This can be used to help mount a set of routes at a
different location than the included callable's author intended, while
still maintaining the same route names. For example:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator

def included(config):
 config.add_route('show_users', '/show')

def main(global_config, **settings):
 config = Configurator()
 config.include(included, route_prefix='/users')

In the above configuration, the show_users route will have an
effective route pattern of /users/show, instead of /show
because the route_prefix argument will be prepended to the
pattern.

New in version 1.2: The route_prefix parameter.

	
make_wsgi_app()[source]

	Commits any pending configuration statements, sends a
pyramid.events.ApplicationCreated event to all listeners,
adds this configuration's registry to
pyramid.config.global_registries, and returns a
Pyramid WSGI application representing the committed
configuration state.

	
scan(package=None, categories=None, onerror=None, ignore=None, **kw)[source]

	Scan a Python package and any of its subpackages for objects
marked with configuration decoration such as
pyramid.view.view_config. Any decorated object found will
influence the current configuration state.

The package argument should be a Python package or module
object (or a dotted Python name which refers to such a
package or module). If package is None, the package of the
caller is used.

The categories argument, if provided, should be the
Venusian 'scan categories' to use during scanning. Providing
this argument is not often necessary; specifying scan categories is
an extremely advanced usage. By default, categories is None
which will execute all Venusian decorator callbacks including
Pyramid-related decorators such as
pyramid.view.view_config. See the Venusian
documentation for more information about limiting a scan by using an
explicit set of categories.

The onerror argument, if provided, should be a Venusian
onerror callback function. The onerror function is passed to
venusian.Scanner.scan() [http://docs.pylonsproject.org/projects/venusian/en/latest/api.html#venusian.Scanner.scan] to influence error behavior when an
exception is raised during the scanning process. See the
Venusian documentation for more information about onerror
callbacks.

The ignore argument, if provided, should be a Venusian ignore
value. Providing an ignore argument allows the scan to ignore
particular modules, packages, or global objects during a scan.
ignore can be a string or a callable, or a list containing
strings or callables. The simplest usage of ignore is to provide
a module or package by providing a full path to its dotted name. For
example: config.scan(ignore='my.module.subpackage') would ignore
the my.module.subpackage package during a scan, which would
prevent the subpackage and any of its submodules from being imported
and scanned. See the Venusian documentation for more
information about the ignore argument.

To perform a scan, Pyramid creates a Venusian Scanner object.
The kw argument represents a set of keyword arguments to pass to
the Venusian Scanner object's constructor. See the
venusian documentation (its Scanner class) for more
information about the constructor. By default, the only keyword
arguments passed to the Scanner constructor are {'config':self}
where self is this configurator object. This services the
requirement of all built-in Pyramid decorators, but extension systems
may require additional arguments. Providing this argument is not
often necessary; it's an advanced usage.

New in version 1.1: The **kw argument.

New in version 1.3: The ignore argument.

Adding Routes and Views

	
add_route(name, pattern=None, permission=None, factory=None, for_=None, header=None, xhr=None, accept=None, path_info=None, request_method=None, request_param=None, traverse=None, custom_predicates=(), use_global_views=False, path=None, pregenerator=None, static=False, **predicates)

	Add a route configuration to the current
configuration state, as well as possibly a view
configuration to be used to specify a view callable
that will be invoked when this route matches. The arguments
to this method are divided into predicate, non-predicate,
and view-related types. Route predicate arguments
narrow the circumstances in which a route will be match a
request; non-predicate arguments are informational.

Non-Predicate Arguments

name

The name of the route, e.g. myroute. This attribute is
required. It must be unique among all defined routes in a given
application.

factory

A Python object (often a function or a class) or a dotted
Python name which refers to the same object that will generate a
Pyramid root resource object when this route matches. For
example, mypackage.resources.MyFactory. If this argument is
not specified, a default root factory will be used. See
The Resource Tree for more information about root factories.

traverse

If you would like to cause the context to be
something other than the root object when this route
matches, you can spell a traversal pattern as the
traverse argument. This traversal pattern will be used
as the traversal path: traversal will begin at the root
object implied by this route (either the global root, or the
object returned by the factory associated with this
route).

The syntax of the traverse argument is the same as it is
for pattern. For example, if the pattern provided to
add_route is articles/{article}/edit, and the
traverse argument provided to add_route is
/{article}, when a request comes in that causes the route
to match in such a way that the article match value is
'1' (when the request URI is /articles/1/edit), the
traversal path will be generated as /1. This means that
the root object's __getitem__ will be called with the
name '1' during the traversal phase. If the '1' object
exists, it will become the context of the request.
Traversal has more information about
traversal.

If the traversal path contains segment marker names which
are not present in the pattern argument, a runtime error
will occur. The traverse pattern should not contain
segment markers that do not exist in the pattern
argument.

A similar combining of routing and traversal is available
when a route is matched which contains a *traverse
remainder marker in its pattern (see
Using *traverse in a Route Pattern). The traverse
argument to add_route allows you to associate route patterns
with an arbitrary traversal path without using a
*traverse remainder marker; instead you can use other
match information.

Note that the traverse argument to add_route is
ignored when attached to a route that has a *traverse
remainder marker in its pattern.

pregenerator

This option should be a callable object that implements the
pyramid.interfaces.IRoutePregenerator interface. A
pregenerator is a callable called by the
pyramid.request.Request.route_url() function to augment or
replace the arguments it is passed when generating a URL for the
route. This is a feature not often used directly by applications,
it is meant to be hooked by frameworks that use Pyramid as
a base.

use_global_views

When a request matches this route, and view lookup cannot
find a view which has a route_name predicate argument
that matches the route, try to fall back to using a view
that otherwise matches the context, request, and view name
(but which does not match the route_name predicate).

static

If static is True, this route will never match an incoming
request; it will only be useful for URL generation. By default,
static is False. See Static Routes.

New in version 1.1.

Predicate Arguments

pattern

The pattern of the route e.g. ideas/{idea}. This
argument is required. See Route Pattern Syntax
for information about the syntax of route patterns. If the
pattern doesn't match the current URL, route matching
continues.

Note

For backwards compatibility purposes (as of Pyramid 1.0), a
path keyword argument passed to this function will be used to
represent the pattern value if the pattern argument is
None. If both path and pattern are passed, pattern
wins.

xhr

This value should be either True or False. If this
value is specified and is True, the request must
possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header for this route to match. This
is useful for detecting AJAX requests issued from jQuery,
Prototype and other Javascript libraries. If this predicate
returns False, route matching continues.

request_method

A string representing an HTTP method name, e.g. GET, POST,
HEAD, DELETE, PUT or a tuple of elements containing
HTTP method names. If this argument is not specified, this route
will match if the request has any request method. If this
predicate returns False, route matching continues.

Changed in version 1.2: The ability to pass a tuple of items as request_method.
Previous versions allowed only a string.

path_info

This value represents a regular expression pattern that will
be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will return
True. If this predicate returns False, route
matching continues.

request_param

This value can be any string. A view declaration with this
argument ensures that the associated route will only match
when the request has a key in the request.params
dictionary (an HTTP GET or POST variable) that has a
name which matches the supplied value. If the value
supplied as the argument has a = sign in it,
e.g. request_param="foo=123", then the key
(foo) must both exist in the request.params dictionary, and
the value must match the right hand side of the expression (123)
for the route to "match" the current request. If this predicate
returns False, route matching continues.

header

This argument represents an HTTP header name or a header
name/value pair. If the argument contains a : (colon),
it will be considered a name/value pair
(e.g. User-Agent:Mozilla/.* or Host:localhost). If
the value contains a colon, the value portion should be a
regular expression. If the value does not contain a colon,
the entire value will be considered to be the header name
(e.g. If-Modified-Since). If the value evaluates to a
header name only without a value, the header specified by
the name must be present in the request for this predicate
to be true. If the value evaluates to a header name/value
pair, the header specified by the name must be present in
the request and the regular expression specified as the
value must match the header value. Whether or not the value
represents a header name or a header name/value pair, the
case of the header name is not significant. If this
predicate returns False, route matching continues.

accept

This value represents a match query for one or more
mimetypes in the Accept HTTP request header. If this
value is specified, it must be in one of the following
forms: a mimetype match token in the form text/plain, a
wildcard mimetype match token in the form text/* or a
match-all wildcard mimetype match token in the form */*.
If any of the forms matches the Accept header of the
request, or if the Accept header isn't set at all in the
request, this predicate will be true. If this predicate
returns False, route matching continues.

effective_principals

If specified, this value should be a principal identifier or
a sequence of principal identifiers. If the
pyramid.request.Request.effective_principals property
indicates that every principal named in the argument list is present
in the current request, this predicate will return True; otherwise it
will return False. For example:
effective_principals=pyramid.security.Authenticated or
effective_principals=('fred', 'group:admins').

New in version 1.4a4.

custom_predicates

Deprecated since version 1.5: This value should be a sequence of references to custom
predicate callables. Use custom predicates when no set of
predefined predicates does what you need. Custom predicates
can be combined with predefined predicates as necessary.
Each custom predicate callable should accept two arguments:
info and request and should return either True
or False after doing arbitrary evaluation of the info
and/or the request. If all custom and non-custom predicate
callables return True the associated route will be
considered viable for a given request. If any predicate
callable returns False, route matching continues. Note
that the value info passed to a custom route predicate
is a dictionary containing matching information; see
Custom Route Predicates for more information about
info.

predicates

Pass a key/value pair here to use a third-party predicate
registered via
pyramid.config.Configurator.add_route_predicate(). More than
one key/value pair can be used at the same time. See
View and Route Predicates for more information about
third-party predicates.

New in version 1.4.

	
add_static_view(name, path, **kw)

	Add a view used to render static assets such as images
and CSS files.

The name argument is a string representing an
application-relative local URL prefix. It may alternately be a full
URL.

The path argument is the path on disk where the static files
reside. This can be an absolute path, a package-relative path, or a
asset specification.

The cache_max_age keyword argument is input to set the
Expires and Cache-Control headers for static assets served.
Note that this argument has no effect when the name is a url
prefix. By default, this argument is None, meaning that no
particular Expires or Cache-Control headers are set in the response.

The permission keyword argument is used to specify the
permission required by a user to execute the static view. By
default, it is the string
pyramid.security.NO_PERMISSION_REQUIRED, a special sentinel
which indicates that, even if a default permission exists for
the current application, the static view should be renderered to
completely anonymous users. This default value is permissive
because, in most web apps, static assets seldom need protection from
viewing. If permission is specified, the security checking will
be performed against the default root factory ACL.

Any other keyword arguments sent to add_static_view are passed on
to pyramid.config.Configurator.add_route() (e.g. factory,
perhaps to define a custom factory with a custom ACL for this static
view).

Usage

The add_static_view function is typically used in conjunction
with the pyramid.request.Request.static_url() method.
add_static_view adds a view which renders a static asset when
some URL is visited; pyramid.request.Request.static_url()
generates a URL to that asset.

The name argument to add_static_view is usually a simple URL
prefix (e.g. 'images'). When this is the case, the
pyramid.request.Request.static_url() API will generate a URL
which points to a Pyramid view, which will serve up a set of assets
that live in the package itself. For example:

add_static_view('images', 'mypackage:images/')

Code that registers such a view can generate URLs to the view via
pyramid.request.Request.static_url():

request.static_url('mypackage:images/logo.png')

When add_static_view is called with a name argument that
represents a URL prefix, as it is above, subsequent calls to
pyramid.request.Request.static_url() with paths that start with
the path argument passed to add_static_view will generate a
URL something like http://<Pyramid app URL>/images/logo.png,
which will cause the logo.png file in the images subdirectory
of the mypackage package to be served.

add_static_view can alternately be used with a name argument
which is a URL, causing static assets to be served from an external
webserver. This happens when the name argument is a fully
qualified URL (e.g. starts with http:// or similar). In this
mode, the name is used as the prefix of the full URL when
generating a URL using pyramid.request.Request.static_url().
Furthermore, if a protocol-relative URL (e.g. //example.com/images)
is used as the name argument, the generated URL will use the
protocol of the request (http or https, respectively).

For example, if add_static_view is called like so:

add_static_view('http://example.com/images', 'mypackage:images/')

Subsequently, the URLs generated by
pyramid.request.Request.static_url() for that static view will
be prefixed with http://example.com/images (the external webserver
listening on example.com must be itself configured to respond
properly to such a request.):

static_url('mypackage:images/logo.png', request)

See Serving Static Assets for more information.

	
add_view(view=None, name='', for_=None, permission=None, request_type=None, route_name=None, request_method=None, request_param=None, containment=None, attr=None, renderer=None, wrapper=None, xhr=None, accept=None, header=None, path_info=None, custom_predicates=(), context=None, decorator=None, mapper=None, http_cache=None, match_param=None, check_csrf=None, **predicates)

	Add a view configuration to the current
configuration state. Arguments to add_view are broken
down below into predicate arguments and non-predicate
arguments. Predicate arguments narrow the circumstances in
which the view callable will be invoked when a request is
presented to Pyramid; non-predicate arguments are
informational.

Non-Predicate Arguments

view

A view callable or a dotted Python name
which refers to a view callable. This argument is required
unless a renderer argument also exists. If a
renderer argument is passed, and a view argument is
not provided, the view callable defaults to a callable that
returns an empty dictionary (see
Writing View Callables Which Use a Renderer).

permission

A permission that the user must possess in order to invoke
the view callable. See Configuring View Security for
more information about view security and permissions. This is
often a string like view or edit.

If permission is omitted, a default permission may be used
for this view registration if one was named as the
pyramid.config.Configurator constructor's
default_permission argument, or if
pyramid.config.Configurator.set_default_permission() was used
prior to this view registration. Pass the value
pyramid.security.NO_PERMISSION_REQUIRED as the permission
argument to explicitly indicate that the view should always be
executable by entirely anonymous users, regardless of the default
permission, bypassing any authorization policy that may be
in effect.

attr

This knob is most useful when the view definition is a class.

The view machinery defaults to using the __call__ method
of the view callable (or the function itself, if the
view callable is a function) to obtain a response. The
attr value allows you to vary the method attribute used
to obtain the response. For example, if your view was a
class, and the class has a method named index and you
wanted to use this method instead of the class' __call__
method to return the response, you'd say attr="index" in the
view configuration for the view.

renderer

This is either a single string term (e.g. json) or a
string implying a path or asset specification
(e.g. templates/views.pt) naming a renderer
implementation. If the renderer value does not contain
a dot ., the specified string will be used to look up a
renderer implementation, and that renderer implementation
will be used to construct a response from the view return
value. If the renderer value contains a dot (.),
the specified term will be treated as a path, and the
filename extension of the last element in the path will be
used to look up the renderer implementation, which will be
passed the full path. The renderer implementation will be
used to construct a response from the view return
value.

Note that if the view itself returns a response (see
View Callable Responses), the specified renderer implementation
is never called.

When the renderer is a path, although a path is usually just
a simple relative pathname (e.g. templates/foo.pt,
implying that a template named "foo.pt" is in the
"templates" directory relative to the directory of the
current package of the Configurator), a path can be
absolute, starting with a slash on UNIX or a drive letter
prefix on Windows. The path can alternately be a
asset specification in the form
some.dotted.package_name:relative/path, making it
possible to address template assets which live in a
separate package.

The renderer attribute is optional. If it is not
defined, the "null" renderer is assumed (no rendering is
performed and the value is passed back to the upstream
Pyramid machinery unmodified).

http_cache

New in version 1.1.

When you supply an http_cache value to a view configuration,
the Expires and Cache-Control headers of a response
generated by the associated view callable are modified. The value
for http_cache may be one of the following:

	A nonzero integer. If it's a nonzero integer, it's treated as a
number of seconds. This number of seconds will be used to
compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view.
For example: http_cache=3600 instructs the requesting browser
to 'cache this response for an hour, please'.

	A datetime.timedelta instance. If it's a
datetime.timedelta instance, it will be converted into a
number of seconds, and that number of seconds will be used to
compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view.
For example: http_cache=datetime.timedelta(days=1) instructs
the requesting browser to 'cache this response for a day, please'.

	Zero (0). If the value is zero, the Cache-Control and
Expires headers present in all responses from this view will
be composed such that client browser cache (and any intermediate
caches) are instructed to never cache the response.

	A two-tuple. If it's a two tuple (e.g. http_cache=(1,
{'public':True})), the first value in the tuple may be a
nonzero integer or a datetime.timedelta instance; in either
case this value will be used as the number of seconds to cache
the response. The second value in the tuple must be a
dictionary. The values present in the dictionary will be used as
input to the Cache-Control response header. For example:
http_cache=(3600, {'public':True}) means 'cache for an hour,
and add public to the Cache-Control header of the response'.
All keys and values supported by the
webob.cachecontrol.CacheControl interface may be added to the
dictionary. Supplying {'public':True} is equivalent to
calling response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to
calling response.cache_expires(value) within your view's body.

Providing a two-tuple value as http_cache is equivalent to
calling response.cache_expires(value[0], **value[1]) within your
view's body.

If you wish to avoid influencing, the Expires header, and
instead wish to only influence Cache-Control headers, pass a
tuple as http_cache with the first element of None, e.g.:
(None, {'public':True}).

If you wish to prevent a view that uses http_cache in its
configuration from having its caching response headers changed by
this machinery, set response.cache_control.prevent_auto = True
before returning the response from the view. This effectively
disables any HTTP caching done by http_cache for that response.

wrapper

The view name of a different view
configuration which will receive the response body of this
view as the request.wrapped_body attribute of its own
request, and the response returned by this
view as the request.wrapped_response attribute of its
own request. Using a wrapper makes it possible to "chain"
views together to form a composite response. The response
of the outermost wrapper view will be returned to the user.
The wrapper view will be found as any view is found: see
View Configuration. The "best" wrapper view will be found
based on the lookup ordering: "under the hood" this wrapper
view is looked up via
pyramid.view.render_view_to_response(context, request,
'wrapper_viewname'). The context and request of a wrapper
view is the same context and request of the inner view. If
this attribute is unspecified, no view wrapping is done.

decorator

A dotted Python name to function (or the function itself,
or an iterable of the aforementioned) which will be used to
decorate the registered view callable. The decorator
function(s) will be called with the view callable as a single
argument. The view callable it is passed will accept
(context, request). The decorator(s) must return a
replacement view callable which also accepts (context,
request).

If decorator is an iterable, the callables will be combined and
used in the order provided as a decorator.
For example:

@view_config(...,
 decorator=(decorator2,
 decorator1))
def myview(request):

Is similar to doing:

@view_config(...)
@decorator2
@decorator1
def myview(request):
 ...

Except with the existing benefits of decorator= (having a common
decorator syntax for all view calling conventions and not having to
think about preserving function attributes such as __name__ and
__module__ within decorator logic).

All view callables in the decorator chain must return a response
object implementing pyramid.interfaces.IResponse or raise
an exception:

def log_timer(wrapped):
 def wrapper(context, request):
 start = time.time()
 response = wrapped(context, request)
 duration = time.time() - start
 response.headers['X-View-Time'] = '%.3f' % (duration,)
 log.info('view took %.3f seconds', duration)
 return response
 return wrapper

Changed in version 1.4a4: Passing an iterable.

mapper

A Python object or dotted Python name which refers to a
view mapper, or None. By default it is None, which
indicates that the view should use the default view mapper. This
plug-point is useful for Pyramid extension developers, but it's not
very useful for 'civilians' who are just developing stock Pyramid
applications. Pay no attention to the man behind the curtain.

Predicate Arguments

name

The view name. Read Traversal to
understand the concept of a view name.

context

An object or a dotted Python name referring to an
interface or class object that the context must be
an instance of, or the interface that the
context must provide in order for this view to be
found and called. This predicate is true when the
context is an instance of the represented class or
if the context provides the represented interface;
it is otherwise false. This argument may also be provided
to add_view as for_ (an older, still-supported
spelling).

route_name

This value must match the name of a route
configuration declaration (see URL Dispatch)
that must match before this view will be called.

request_type

This value should be an interface that the
request must provide in order for this view to be
found and called. This value exists only for backwards
compatibility purposes.

request_method

This value can be either a strings (such as GET, POST,
PUT, DELETE, or HEAD) representing an HTTP
REQUEST_METHOD, or a tuple containing one or more of these
strings. A view declaration with this argument ensures that the
view will only be called when the method attribute of the
request (aka the REQUEST_METHOD of the WSGI environment) matches
a supplied value. Note that use of GET also implies that the
view will respond to HEAD as of Pyramid 1.4.

Changed in version 1.2: The ability to pass a tuple of items as request_method.
Previous versions allowed only a string.

request_param

This value can be any string or any sequence of strings. A view
declaration with this argument ensures that the view will only be
called when the request has a key in the request.params
dictionary (an HTTP GET or POST variable) that has a
name which matches the supplied value (if the value is a string)
or values (if the value is a tuple). If any value
supplied has a = sign in it,
e.g. request_param="foo=123", then the key (foo)
must both exist in the request.params dictionary, and
the value must match the right hand side of the expression
(123) for the view to "match" the current request.

match_param

New in version 1.2.

This value can be a string of the format "key=value" or a tuple
containing one or more of these strings.

A view declaration with this argument ensures that the view will
only be called when the request has key/value pairs in its
matchdict that equal those supplied in the predicate.
e.g. match_param="action=edit" would require the action
parameter in the matchdict match the right hand side of
the expression (edit) for the view to "match" the current
request.

If the match_param is a tuple, every key/value pair must match
for the predicate to pass.

containment

This value should be a Python class or interface (or a
dotted Python name) that an object in the
lineage of the context must provide in order for this view
to be found and called. The nodes in your object graph must be
"location-aware" to use this feature. See
Location-Aware Resources for more information about
location-awareness.

xhr

This value should be either True or False. If this
value is specified and is True, the request
must possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header that has the value
XMLHttpRequest for this view to be found and called.
This is useful for detecting AJAX requests issued from
jQuery, Prototype and other Javascript libraries.

accept

The value of this argument represents a match query for one
or more mimetypes in the Accept HTTP request header. If
this value is specified, it must be in one of the following
forms: a mimetype match token in the form text/plain, a
wildcard mimetype match token in the form text/* or a
match-all wildcard mimetype match token in the form */*.
If any of the forms matches the Accept header of the
request, this predicate will be true.

header

This value represents an HTTP header name or a header
name/value pair. If the value contains a : (colon), it
will be considered a name/value pair
(e.g. User-Agent:Mozilla/.* or Host:localhost). The
value portion should be a regular expression. If the value
does not contain a colon, the entire value will be
considered to be the header name
(e.g. If-Modified-Since). If the value evaluates to a
header name only without a value, the header specified by
the name must be present in the request for this predicate
to be true. If the value evaluates to a header name/value
pair, the header specified by the name must be present in
the request and the regular expression specified as the
value must match the header value. Whether or not the value
represents a header name or a header name/value pair, the
case of the header name is not significant.

path_info

This value represents a regular expression pattern that will
be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will be
True.

check_csrf

If specified, this value should be one of None, True,
False, or a string representing the 'check name'. If the value
is True or a string, CSRF checking will be performed. If the
value is False or None, CSRF checking will not be performed.

If the value provided is a string, that string will be used as the
'check name'. If the value provided is True, csrf_token will
be used as the check name.

If CSRF checking is performed, the checked value will be the value
of request.params[check_name]. This value will be compared
against the value of request.session.get_csrf_token(), and the
check will pass if these two values are the same. If the check
passes, the associated view will be permitted to execute. If the
check fails, the associated view will not be permitted to execute.

Note that using this feature requires a session factory to
have been configured.

New in version 1.4a2.

physical_path

If specified, this value should be a string or a tuple representing
the physical path of the context found via traversal for this
predicate to match as true. For example: physical_path='/' or
physical_path='/a/b/c' or physical_path=('', 'a', 'b', 'c').
This is not a path prefix match or a regex, it's a whole-path match.
It's useful when you want to always potentially show a view when some
object is traversed to, but you can't be sure about what kind of
object it will be, so you can't use the context predicate. The
individual path elements inbetween slash characters or in tuple
elements should be the Unicode representation of the name of the
resource and should not be encoded in any way.

New in version 1.4a3.

effective_principals

If specified, this value should be a principal identifier or
a sequence of principal identifiers. If the
pyramid.request.Request.effective_principals property
indicates that every principal named in the argument list is present
in the current request, this predicate will return True; otherwise it
will return False. For example:
effective_principals=pyramid.security.Authenticated or
effective_principals=('fred', 'group:admins').

New in version 1.4a4.

custom_predicates

Deprecated since version 1.5: This value should be a sequence of references to custom
predicate callables. Use custom predicates when no set of
predefined predicates do what you need. Custom predicates
can be combined with predefined predicates as necessary.
Each custom predicate callable should accept two arguments:
context and request and should return either
True or False after doing arbitrary evaluation of
the context and/or the request. The predicates argument
to this method and the ability to register third-party view
predicates via
pyramid.config.Configurator.add_view_predicate()
obsoletes this argument, but it is kept around for backwards
compatibility.

predicates

Pass a key/value pair here to use a third-party predicate
registered via
pyramid.config.Configurator.add_view_predicate(). More than
one key/value pair can be used at the same time. See
View and Route Predicates for more information about
third-party predicates.

	
add_notfound_view(view=None, attr=None, renderer=None, wrapper=None, route_name=None, request_type=None, request_method=None, request_param=None, containment=None, xhr=None, accept=None, header=None, path_info=None, custom_predicates=(), decorator=None, mapper=None, match_param=None, append_slash=False, **predicates)

	Add a default Not Found View to the current configuration state.
The view will be called when Pyramid or application code raises an
pyramid.httpexceptions.HTTPNotFound exception (e.g. when a
view cannot be found for the request). The simplest example is:

def notfound(request):
 return Response('Not Found', status='404 Not Found')

config.add_notfound_view(notfound)

All arguments except append_slash have the same meaning as
pyramid.config.Configurator.add_view() and each predicate
argument restricts the set of circumstances under which this notfound
view will be invoked. Unlike
pyramid.config.Configurator.add_view(), this method will raise
an exception if passed name, permission, context,
for_, or http_cache keyword arguments. These argument values
make no sense in the context of a Not Found View.

If append_slash is True, when this Not Found View is invoked,
and the current path info does not end in a slash, the notfound logic
will attempt to find a route that matches the request's path
info suffixed with a slash. If such a route exists, Pyramid will
issue a redirect to the URL implied by the route; if it does not,
Pyramid will return the result of the view callable provided as
view, as normal.

New in version 1.3.

	
add_forbidden_view(view=None, attr=None, renderer=None, wrapper=None, route_name=None, request_type=None, request_method=None, request_param=None, containment=None, xhr=None, accept=None, header=None, path_info=None, custom_predicates=(), decorator=None, mapper=None, match_param=None, **predicates)

	Add a forbidden view to the current configuration state. The
view will be called when Pyramid or application code raises a
pyramid.httpexceptions.HTTPForbidden exception and the set of
circumstances implied by the predicates provided are matched. The
simplest example is:

def forbidden(request):
 return Response('Forbidden', status='403 Forbidden')

config.add_forbidden_view(forbidden)

All arguments have the same meaning as
pyramid.config.Configurator.add_view() and each predicate
argument restricts the set of circumstances under which this notfound
view will be invoked. Unlike
pyramid.config.Configurator.add_view(), this method will raise
an exception if passed name, permission, context,
for_, or http_cache keyword arguments. These argument values
make no sense in the context of a forbidden view.

New in version 1.3.

Adding an Event Subscriber

	
add_subscriber(subscriber, iface=None, **predicates)

	Add an event subscriber for the event stream
implied by the supplied iface interface.

The subscriber argument represents a callable object (or a
dotted Python name which identifies a callable); it will be
called with a single object event whenever Pyramid emits
an event associated with the iface, which may be an
interface or a class or a dotted Python name to a
global object representing an interface or a class.

Using the default iface value, None will cause the subscriber
to be registered for all event types. See Using Events for
more information about events and subscribers.

Any number of predicate keyword arguments may be passed in
**predicates. Each predicate named will narrow the set of
circumstances in which the subscriber will be invoked. Each named
predicate must have been registered via
pyramid.config.Configurator.add_subscriber_predicate() before it
can be used. See Subscriber Predicates for more information.

New in version 1.4: The **predicates argument.

Using Security

	
set_authentication_policy(policy)

	Override the Pyramid authentication policy in the
current configuration. The policy argument must be an instance
of an authentication policy or a dotted Python name
that points at an instance of an authentication policy.

Note

Using the authentication_policy argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_authorization_policy(policy)

	Override the Pyramid authorization policy in the
current configuration. The policy argument must be an instance
of an authorization policy or a dotted Python name that points
at an instance of an authorization policy.

Note

Using the authorization_policy argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_default_permission(permission)

	Set the default permission to be used by all subsequent
view configuration registrations. permission
should be a permission string to be used as the
default permission. An example of a permission
string:'view'. Adding a default permission makes it
unnecessary to protect each view configuration with an
explicit permission, unless your application policy requires
some exception for a particular view.

If a default permission is not set, views represented by
view configuration registrations which do not explicitly
declare a permission will be executable by entirely anonymous
users (any authorization policy is ignored).

Later calls to this method override will conflict with earlier calls;
there can be only one default permission active at a time within an
application.

Warning

If a default permission is in effect, view configurations meant to
create a truly anonymously accessible view (even exception
view views) must use the value of the permission importable as
pyramid.security.NO_PERMISSION_REQUIRED. When this string
is used as the permission for a view configuration, the default
permission is ignored, and the view is registered, making it
available to all callers regardless of their credentials.

See also

See also Setting a Default Permission.

Note

Using the default_permission argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
add_permission(permission_name)

	A configurator directive which registers a free-standing
permission without associating it with a view callable. This can be
used so that the permission shows up in the introspectable data under
the permissions category (permissions mentioned via add_view
already end up in there). For example:

config = Configurator()
config.add_permission('view')

Extending the Request Object

	
add_request_method(callable=None, name=None, property=False, reify=False)

	Add a property or method to the request object.

When adding a method to the request, callable may be any
function that receives the request object as the first
parameter. If name is None then it will be computed
from the name of the callable.

When adding a property to the request, callable can either
be a callable that accepts the request as its single positional
parameter, or it can be a property descriptor. If name is
None, the name of the property will be computed from the
name of the callable.

If the callable is a property descriptor a ValueError
will be raised if name is None or reify is True.

See pyramid.request.Request.set_property() for more
details on property vs reify. When reify is
True, the value of property is assumed to also be
True.

In all cases, callable may also be a
dotted Python name which refers to either a callable or
a property descriptor.

If callable is None then the method is only used to
assist in conflict detection between different addons requesting
the same attribute on the request object.

This is the recommended method for extending the request object
and should be used in favor of providing a custom request
factory via
pyramid.config.Configurator.set_request_factory().

New in version 1.4.

	
set_request_property(*args, **kw)

	

Using I18N

	
add_translation_dirs(*specs)

	Add one or more translation directory paths to the
current configuration state. The specs argument is a
sequence that may contain absolute directory paths
(e.g. /usr/share/locale) or asset specification
names naming a directory path (e.g. some.package:locale)
or a combination of the two.

Example:

config.add_translation_dirs('/usr/share/locale',
 'some.package:locale')

Later calls to add_translation_dir insert directories into the
beginning of the list of translation directories created by earlier
calls. This means that the same translation found in a directory
added later in the configuration process will be found before one
added earlier in the configuration process. However, if multiple
specs are provided in a single call to add_translation_dirs, the
directories will be inserted into the beginning of the directory list
in the order they're provided in the *specs list argument (items
earlier in the list trump ones later in the list).

	
set_locale_negotiator(negotiator)

	Set the locale negotiator for this application. The
locale negotiator is a callable which accepts a
request object and which returns a locale
name. The negotiator argument should be the locale
negotiator implementation or a dotted Python name
which refers to such an implementation.

Later calls to this method override earlier calls; there can
be only one locale negotiator active at a time within an
application. See Activating Translation for more
information.

Note

Using the locale_negotiator argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

Overriding Assets

	
override_asset(to_override, override_with, _override=None)

	Add a Pyramid asset override to the current
configuration state.

to_override is a asset specification to the
asset being overridden.

override_with is a asset specification to the
asset that is performing the override.

See Static Assets for more
information about asset overrides.

Getting and Adding Settings

	
add_settings(settings=None, **kw)

	Augment the deployment settings with one or more
key/value pairs.

You may pass a dictionary:

config.add_settings({'external_uri':'http://example.com'})

Or a set of key/value pairs:

config.add_settings(external_uri='http://example.com')

This function is useful when you need to test code that accesses the
pyramid.registry.Registry.settings API (or the
pyramid.config.Configurator.get_settings() API) and
which uses values from that API.

	
get_settings()

	Return a deployment settings object for the current
application. A deployment settings object is a dictionary-like
object that contains key/value pairs based on the dictionary passed
as the settings argument to the
pyramid.config.Configurator constructor.

Note

the pyramid.registry.Registry.settings API
performs the same duty.

Hooking Pyramid Behavior

	
add_renderer(name, factory)

	Add a Pyramid renderer factory to the
current configuration state.

The name argument is the renderer name. Use None to
represent the default renderer (a renderer which will be used for all
views unless they name another renderer specifically).

The factory argument is Python reference to an
implementation of a renderer factory or a
dotted Python name to same.

	
add_resource_url_adapter(adapter, resource_iface=None)

	
New in version 1.3.

When you add a traverser as described in
Changing the Traverser, it's convenient to continue to use the
pyramid.request.Request.resource_url() API. However, since the
way traversal is done may have been modified, the URLs that
resource_url generates by default may be incorrect when resources
are returned by a custom traverser.

If you've added a traverser, you can change how
resource_url() generates a URL for a
specific type of resource by calling this method.

The adapter argument represents a class that implements the
IResourceURL interface. The class
constructor should accept two arguments in its constructor (the
resource and the request) and the resulting instance should provide
the attributes detailed in that interface (virtual_path and
physical_path, in particular).

The resource_iface argument represents a class or interface that
the resource should possess for this url adapter to be used when
pyramid.request.Request.resource_url() looks up a resource url
adapter. If resource_iface is not passed, or it is passed as
None, the url adapter will be used for every type of resource.

See Changing How pyramid.request.Request.resource_url() Generates a URL for more information.

	
add_response_adapter(adapter, type_or_iface)

	When an object of type (or interface) type_or_iface is
returned from a view callable, Pyramid will use the adapter
adapter to convert it into an object which implements the
pyramid.interfaces.IResponse interface. If adapter is
None, an object returned of type (or interface) type_or_iface
will itself be used as a response object.

adapter and type_or_interface may be Python objects or
strings representing dotted names to importable Python global
objects.

See Changing How Pyramid Treats View Responses for more information.

	
add_traverser(adapter, iface=None)

	The superdefault traversal algorithm that Pyramid uses
is explained in The Traversal Algorithm. Though it is rarely
necessary, this default algorithm can be swapped out selectively for
a different traversal pattern via configuration. The section
entitled Changing the Traverser details how to create a
traverser class.

For example, to override the superdefault traverser used by Pyramid,
you might do something like this:

from myapp.traversal import MyCustomTraverser
config.add_traverser(MyCustomTraverser)

This would cause the Pyramid superdefault traverser to never be used;
instead all traversal would be done using your MyCustomTraverser
class, no matter which object was returned by the root
factory of this application. Note that we passed no arguments to
the iface keyword parameter. The default value of iface,
None represents that the registered traverser should be used when
no other more specific traverser is available for the object returned
by the root factory.

However, more than one traversal algorithm can be active at the same
time. The traverser used can depend on the result of the root
factory. For instance, if your root factory returns more than one
type of object conditionally, you could claim that an alternate
traverser adapter should be used against one particular class or
interface returned by that root factory. When the root factory
returned an object that implemented that class or interface, a custom
traverser would be used. Otherwise, the default traverser would be
used. The iface argument represents the class of the object that
the root factory might return or an interface that the object
might implement.

To use a particular traverser only when the root factory returns a
particular class:

config.add_traverser(MyCustomTraverser, MyRootClass)

When more than one traverser is active, the "most specific" traverser
will be used (the one that matches the class or interface of the
value returned by the root factory most closely).

Note that either adapter or iface can be a dotted
Python name or a Python object.

See Changing the Traverser for more information.

	
add_tween(tween_factory, under=None, over=None)

	
New in version 1.2.

Add a 'tween factory'. A tween (a contraction of 'between')
is a bit of code that sits between the Pyramid router's main request
handling function and the upstream WSGI component that uses
Pyramid as its 'app'. Tweens are a feature that may be used
by Pyramid framework extensions, to provide, for example,
Pyramid-specific view timing support, bookkeeping code that examines
exceptions before they are returned to the upstream WSGI application,
or a variety of other features. Tweens behave a bit like
WSGI 'middleware' but they have the benefit of running in a
context in which they have access to the Pyramid application
registry as well as the Pyramid rendering machinery.

Note

You can view the tween ordering configured into a given
Pyramid application by using the ptweens
command. See Displaying "Tweens".

The tween_factory argument must be a dotted Python name
to a global object representing the tween factory.

The under and over arguments allow the caller of
add_tween to provide a hint about where in the tween chain this
tween factory should be placed when an implicit tween chain is used.
These hints are only used when an explicit tween chain is not used
(when the pyramid.tweens configuration value is not set).
Allowable values for under or over (or both) are:

	None (the default).

	A dotted Python name to a tween factory: a string
representing the dotted name of a tween factory added in a call to
add_tween in the same configuration session.

	One of the constants pyramid.tweens.MAIN,
pyramid.tweens.INGRESS, or pyramid.tweens.EXCVIEW.

	An iterable of any combination of the above. This allows the user
to specify fallbacks if the desired tween is not included, as well
as compatibility with multiple other tweens.

under means 'closer to the main Pyramid application than',
over means 'closer to the request ingress than'.

For example, calling add_tween('myapp.tfactory',
over=pyramid.tweens.MAIN) will attempt to place the tween factory
represented by the dotted name myapp.tfactory directly 'above'
(in ptweens order) the main Pyramid request handler.
Likewise, calling add_tween('myapp.tfactory',
over=pyramid.tweens.MAIN, under='mypkg.someothertween') will
attempt to place this tween factory 'above' the main handler but
'below' (a fictional) 'mypkg.someothertween' tween factory.

If all options for under (or over) cannot be found in the
current configuration, it is an error. If some options are specified
purely for compatibilty with other tweens, just add a fallback of
MAIN or INGRESS. For example, under=('mypkg.someothertween',
'mypkg.someothertween2', INGRESS). This constraint will require
the tween to be located under both the 'mypkg.someothertween' tween,
the 'mypkg.someothertween2' tween, and INGRESS. If any of these is
not in the current configuration, this constraint will only organize
itself based on the tweens that are present.

Specifying neither over nor under is equivalent to specifying
under=INGRESS.

Implicit tween ordering is obviously only best-effort. Pyramid will
attempt to present an implicit order of tweens as best it can, but
the only surefire way to get any particular ordering is to use an
explicit tween order. A user may always override the implicit tween
ordering by using an explicit pyramid.tweens configuration value
setting.

under, and over arguments are ignored when an explicit tween
chain is specified using the pyramid.tweens configuration value.

For more information, see Registering Tweens.

	
add_route_predicate(name, factory, weighs_more_than=None, weighs_less_than=None)

	Adds a route predicate factory. The view predicate can later be
named as a keyword argument to
pyramid.config.Configurator.add_route().

name should be the name of the predicate. It must be a valid
Python identifier (it will be used as a keyword argument to
add_route).

factory should be a predicate factory or dotted
Python name which refers to a predicate factory.

See View and Route Predicates for more information.

New in version 1.4.

	
add_view_predicate(name, factory, weighs_more_than=None, weighs_less_than=None)

	
New in version 1.4.

Adds a view predicate factory. The associated view predicate can
later be named as a keyword argument to
pyramid.config.Configurator.add_view() in the
predicates anonyous keyword argument dictionary.

name should be the name of the predicate. It must be a valid
Python identifier (it will be used as a keyword argument to
add_view by others).

factory should be a predicate factory or dotted
Python name which refers to a predicate factory.

See View and Route Predicates for more information.

	
set_request_factory(factory)

	The object passed as factory should be an object (or a
dotted Python name which refers to an object) which
will be used by the Pyramid router to create all
request objects. This factory object must have the same
methods and attributes as the
pyramid.request.Request class (particularly
__call__, and blank).

See pyramid.config.Configurator.add_request_method()
for a less intrusive way to extend the request objects with
custom methods and properties.

Note

Using the request_factory argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

	
set_root_factory(factory)

	Add a root factory to the current configuration
state. If the factory argument is None a default root
factory will be registered.

Note

Using the root_factory argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_session_factory(factory)

	Configure the application with a session factory. If this
method is called, the factory argument must be a session
factory callable or a dotted Python name to that factory.

Note

Using the session_factory argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_view_mapper(mapper)

	Setting a view mapper makes it possible to make use of
view callable objects which implement different call
signatures than the ones supported by Pyramid as described in
its narrative documentation.

The mapper argument should be an object implementing
pyramid.interfaces.IViewMapperFactory or a dotted
Python name to such an object. The provided mapper will become
the default view mapper to be used by all subsequent view
configuration registrations.

See also

See also Using a View Mapper.

Note

Using the default_view_mapper argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

Extension Author APIs

	
action(discriminator, callable=None, args=(), kw=None, order=0, introspectables=(), **extra)[source]

	Register an action which will be executed when
pyramid.config.Configurator.commit() is called (or executed
immediately if autocommit is True).

Warning

This method is typically only used by Pyramid
framework extension authors, not by Pyramid application
developers.

The discriminator uniquely identifies the action. It must be
given, but it can be None, to indicate that the action never
conflicts. It must be a hashable value.

The callable is a callable object which performs the task
associated with the action when the action is executed. It is
optional.

args and kw are tuple and dict objects respectively, which
are passed to callable when this action is executed. Both are
optional.

order is a grouping mechanism; an action with a lower order will
be executed before an action with a higher order (has no effect when
autocommit is True).

introspectables is a sequence of introspectable objects
(or the empty sequence if no introspectable objects are associated
with this action). If this configurator's introspection
attribute is False, these introspectables will be ignored.

extra provides a facility for inserting extra keys and values
into an action dictionary.

	
add_directive(name, directive, action_wrap=True)[source]

	Add a directive method to the configurator.

Warning

This method is typically only used by Pyramid
framework extension authors, not by Pyramid application
developers.

Framework extenders can add directive methods to a configurator by
instructing their users to call config.add_directive('somename',
'some.callable'). This will make some.callable accessible as
config.somename. some.callable should be a function which
accepts config as a first argument, and arbitrary positional and
keyword arguments following. It should use config.action as
necessary to perform actions. Directive methods can then be invoked
like 'built-in' directives such as add_view, add_route, etc.

The action_wrap argument should be True for directives which
perform config.action with potentially conflicting
discriminators. action_wrap will cause the directive to be
wrapped in a decorator which provides more accurate conflict
cause information.

add_directive does not participate in conflict detection, and
later calls to add_directive will override earlier calls.

	
with_package(package)[source]

	Return a new Configurator instance with the same registry
as this configurator. package may be an actual Python package
object or a dotted Python name representing a package.

	
derive_view(view, attr=None, renderer=None)

	Create a view callable using the function, instance,
or class (or dotted Python name referring to the same)
provided as view object.

Warning

This method is typically only used by Pyramid framework
extension authors, not by Pyramid application developers.

This is API is useful to framework extenders who create
pluggable systems which need to register 'proxy' view
callables for functions, instances, or classes which meet the
requirements of being a Pyramid view callable. For
example, a some_other_framework function in another
framework may want to allow a user to supply a view callable,
but he may want to wrap the view callable in his own before
registering the wrapper as a Pyramid view callable.
Because a Pyramid view callable can be any of a
number of valid objects, the framework extender will not know
how to call the user-supplied object. Running it through
derive_view normalizes it to a callable which accepts two
arguments: context and request.

For example:

def some_other_framework(user_supplied_view):
 config = Configurator(reg)
 proxy_view = config.derive_view(user_supplied_view)
 def my_wrapper(context, request):
 do_something_that_mutates(request)
 return proxy_view(context, request)
 config.add_view(my_wrapper)

The view object provided should be one of the following:

	A function or another non-class callable object that accepts
a request as a single positional argument and which
returns a response object.

	A function or other non-class callable object that accepts
two positional arguments, context, request and which
returns a response object.

	A class which accepts a single positional argument in its
constructor named request, and which has a __call__
method that accepts no arguments that returns a
response object.

	A class which accepts two positional arguments named
context, request, and which has a __call__ method
that accepts no arguments that returns a response
object.

	A dotted Python name which refers to any of the
kinds of objects above.

This API returns a callable which accepts the arguments
context, request and which returns the result of calling
the provided view object.

The attr keyword argument is most useful when the view
object is a class. It names the method that should be used as
the callable. If attr is not provided, the attribute
effectively defaults to __call__. See
Defining a View Callable as a Class for more information.

The renderer keyword argument should be a renderer
name. If supplied, it will cause the returned callable to use
a renderer to convert the user-supplied view result to
a response object. If a renderer argument is not
supplied, the user-supplied view must itself return a
response object.

Utility Methods

	
absolute_asset_spec(relative_spec)[source]

	Resolve the potentially relative asset
specification string passed as relative_spec into an
absolute asset specification string and return the string.
Use the package of this configurator as the package to
which the asset specification will be considered relative
when generating an absolute asset specification. If the
provided relative_spec argument is already absolute, or if
the relative_spec is not a string, it is simply returned.

	
maybe_dotted(dotted)[source]

	Resolve the dotted Python name dotted to a
global Python object. If dotted is not a string, return
it without attempting to do any name resolution. If
dotted is a relative dotted name (e.g. .foo.bar,
consider it relative to the package argument supplied to
this Configurator's constructor.

ZCA-Related APIs

	
hook_zca()

	Call zope.component.getSiteManager.sethook() with the
argument pyramid.threadlocal.get_current_registry, causing
the Zope Component Architecture 'global' APIs such as
zope.component.getSiteManager() [http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager],
zope.component.getAdapter() [http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter] and others to use the
Pyramid application registry rather than the Zope
'global' registry.

	
unhook_zca()

	Call zope.component.getSiteManager.reset() to undo the
action of pyramid.config.Configurator.hook_zca().

	
setup_registry(settings=None, root_factory=None, authentication_policy=None, authorization_policy=None, renderers=None, debug_logger=None, locale_negotiator=None, request_factory=None, default_permission=None, session_factory=None, default_view_mapper=None, exceptionresponse_view=<function default_exceptionresponse_view>)[source]

	When you pass a non-None registry argument to the
Configurator constructor, no initial setup is performed
against the registry. This is because the registry you pass in may
have already been initialized for use under Pyramid via a
different configurator. However, in some circumstances (such as when
you want to use a global registry instead of a registry created as a
result of the Configurator constructor), or when you want to reset
the initial setup of a registry, you do want to explicitly
initialize the registry associated with a Configurator for use under
Pyramid. Use setup_registry to do this initialization.

setup_registry configures settings, a root factory, security
policies, renderers, a debug logger, a locale negotiator, and various
other settings using the configurator's current registry, as per the
descriptions in the Configurator constructor.

Testing Helper APIs

	
testing_add_renderer(path, renderer=None)

	Unit/integration testing helper: register a renderer at
path (usually a relative filename ala templates/foo.pt
or an asset specification) and return the renderer object.
If the renderer argument is None, a 'dummy' renderer will
be used. This function is useful when testing code that calls
the pyramid.renderers.render() function or
pyramid.renderers.render_to_response() function or
any other render_* or get_* API of the
pyramid.renderers module.

Note that calling this method for with a path argument
representing a renderer factory type (e.g. for foo.pt
usually implies the chameleon_zpt renderer factory)
clobbers any existing renderer factory registered for that
type.

Note

This method is also available under the alias
testing_add_template (an older name for it).

	
testing_add_subscriber(event_iface=None)

	Unit/integration testing helper: Registers a
subscriber which listens for events of the type
event_iface. This method returns a list object which is
appended to by the subscriber whenever an event is captured.

When an event is dispatched that matches the value implied by
the event_iface argument, that event will be appended to
the list. You can then compare the values in the list to
expected event notifications. This method is useful when
testing code that wants to call
pyramid.registry.Registry.notify(),
or zope.component.event.dispatch().

The default value of event_iface (None) implies a
subscriber registered for any kind of event.

	
testing_resources(resources)

	Unit/integration testing helper: registers a dictionary of
resource objects that can be resolved via the
pyramid.traversal.find_resource() API.

The pyramid.traversal.find_resource() API is called with
a path as one of its arguments. If the dictionary you
register when calling this method contains that path as a
string key (e.g. /foo/bar or foo/bar), the
corresponding value will be returned to find_resource (and
thus to your code) when
pyramid.traversal.find_resource() is called with an
equivalent path string or tuple.

	
testing_securitypolicy(userid=None, groupids=(), permissive=True, remember_result=None, forget_result=None)

	Unit/integration testing helper: Registers a pair of faux
Pyramid security policies: a authentication
policy and a authorization policy.

The behavior of the registered authorization policy
depends on the permissive argument. If permissive is
true, a permissive authorization policy is registered;
this policy allows all access. If permissive is false, a
nonpermissive authorization policy is registered; this
policy denies all access.

remember_result, if provided, should be the result returned by
the remember method of the faux authentication policy. If it is
not provided (or it is provided, and is None), the default value
[] (the empty list) will be returned by remember.

forget_result, if provided, should be the result returned by
the forget method of the faux authentication policy. If it is
not provided (or it is provided, and is None), the default value
[] (the empty list) will be returned by forget.

The behavior of the registered authentication policy
depends on the values provided for the userid and
groupids argument. The authentication policy will return
the userid identifier implied by the userid argument and
the group ids implied by the groupids argument when the
pyramid.request.Request.authenticated_userid or
pyramid.request.Request.effective_principals APIs are
used.

This function is most useful when testing code that uses
the APIs named pyramid.request.Request.has_permission(),
pyramid.request.Request.authenticated_userid,
pyramid.request.Request.effective_principals, and
pyramid.security.principals_allowed_by_permission().

New in version 1.4: The remember_result argument.

New in version 1.4: The forget_result argument.

Attributes

	
introspectable

	A shortcut attribute which points to the
pyramid.registry.Introspectable class (used during
directives to provide introspection to actions).

New in version 1.3.

	
introspector

	The introspector related to this configuration. It is an
instance implementing the pyramid.interfaces.IIntrospector
interface.

New in version 1.3.

	
registry

	The application registry which holds the configuration
associated with this configurator.

	
global_registries

	The set of registries that have been created for Pyramid
applications, one for each call to
pyramid.config.Configurator.make_wsgi_app() in the current
process. The object itself supports iteration and has a last property
containing the last registry loaded.

The registries contained in this object are stored as weakrefs, thus they
will only exist for the lifetime of the actual applications for which they
are being used.

	
class not_(value)[source]

	You can invert the meaning of any predicate value by wrapping it in a call
to pyramid.config.not_.

	1
2
3
4
5
6
7

	from pyramid.config import not_

config.add_view(
 'mypackage.views.my_view',
 route_name='ok',
 request_method=not_('POST')
)

The above example will ensure that the view is called if the request method
is not POST, at least if no other view is more specific.

This technique of wrapping a predicate value in not_ can be used
anywhere predicate values are accepted:

	pyramid.config.Configurator.add_view()

	pyramid.config.Configurator.add_route()

	pyramid.config.Configurator.add_subscriber()

	pyramid.view.view_config()

	pyramid.events.subscriber()

New in version 1.5.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.decorator

	
reify(wrapped)[source]

	Use as a class method decorator. It operates almost exactly like the
Python @property decorator, but it puts the result of the method it
decorates into the instance dict after the first call, effectively
replacing the function it decorates with an instance variable. It is, in
Python parlance, a non-data descriptor. An example:

class Foo(object):
 @reify
 def jammy(self):
 print('jammy called')
 return 1

And usage of Foo:

>>> f = Foo()
>>> v = f.jammy
'jammy called'
>>> print(v)
1
>>> f.jammy
1
>>> # jammy func not called the second time; it replaced itself with 1

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.events

Functions

	
subscriber(*ifaces, **predicates)[source]

	Decorator activated via a scan which treats the function
being decorated as an event subscriber for the set of interfaces passed
as *ifaces and the set of predicate terms passed as **predicates
to the decorator constructor.

For example:

from pyramid.events import NewRequest
from pyramid.events import subscriber

@subscriber(NewRequest)
def mysubscriber(event):
 event.request.foo = 1

More than one event type can be passed as a constructor argument. The
decorated subscriber will be called for each event type.

from pyramid.events import NewRequest, NewResponse
from pyramid.events import subscriber

@subscriber(NewRequest, NewResponse)
def mysubscriber(event):
 print(event)

When the subscriber decorator is used without passing an arguments,
the function it decorates is called for every event sent:

from pyramid.events import subscriber

@subscriber()
def mysubscriber(event):
 print(event)

This method will have no effect until a scan is performed
against the package or module which contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan('somepackage_containing_subscribers')

Any **predicate arguments will be passed along to
pyramid.config.Configurator.add_subscriber(). See
Subscriber Predicates for a description of how predicates can
narrow the set of circumstances in which a subscriber will be called.

Event Types

	
class ApplicationCreated(app)[source]

	An instance of this class is emitted as an event when
the pyramid.config.Configurator.make_wsgi_app() is
called. The instance has an attribute, app, which is an
instance of the router that will handle WSGI requests.
This class implements the
pyramid.interfaces.IApplicationCreated interface.

Note

For backwards compatibility purposes, this class can also be imported as
pyramid.events.WSGIApplicationCreatedEvent. This was the name
of the event class before Pyramid 1.0.

	
class NewRequest(request)[source]

	An instance of this class is emitted as an event
whenever Pyramid begins to process a new request. The
event instance has an attribute, request, which is a
request object. This event class implements the
pyramid.interfaces.INewRequest interface.

	
class ContextFound(request)[source]

	An instance of this class is emitted as an event after
the Pyramid router finds a context
object (after it performs traversal) but before any view code is
executed. The instance has an attribute, request, which is
the request object generated by Pyramid.

Notably, the request object will have an attribute named
context, which is the context that will be provided to the
view which will eventually be called, as well as other attributes
attached by context-finding code.

This class implements the
pyramid.interfaces.IContextFound interface.

Note

As of Pyramid 1.0, for backwards compatibility purposes, this
event may also be imported as pyramid.events.AfterTraversal.

	
class NewResponse(request, response)[source]

	An instance of this class is emitted as an event
whenever any Pyramid view or exception
view returns a response.

The instance has two attributes:request, which is the request
which caused the response, and response, which is the response
object returned by a view or renderer.

If the response was generated by an exception view, the
request will have an attribute named exception, which is the
exception object which caused the exception view to be executed. If the
response was generated by a 'normal' view, this attribute of the request
will be None.

This event will not be generated if a response cannot be created due to
an exception that is not caught by an exception view (no response is
created under this circumstace).

This class implements the
pyramid.interfaces.INewResponse interface.

Note

Postprocessing a response is usually better handled in a WSGI
middleware component than in subscriber code that is
called by a pyramid.interfaces.INewResponse event.
The pyramid.interfaces.INewResponse event exists
almost purely for symmetry with the
pyramid.interfaces.INewRequest event.

	
class BeforeRender(system, rendering_val=None)[source]

	Subscribers to this event may introspect and modify the set of
renderer globals before they are passed to a renderer.
This event object iself has a dictionary-like interface that can be used
for this purpose. For example:

from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def add_global(event):
 event['mykey'] = 'foo'

An object of this type is sent as an event just before a renderer
is invoked.

If a subscriber adds a key via __setitem__ that already exists in
the renderer globals dictionary, it will overwrite the older value there.
This can be problematic because event subscribers to the BeforeRender
event do not possess any relative ordering. For maximum interoperability
with other third-party subscribers, if you write an event subscriber meant
to be used as a BeforeRender subscriber, your subscriber code will need to
ensure no value already exists in the renderer globals dictionary before
setting an overriding value (which can be done using .get or
__contains__ of the event object).

The dictionary returned from the view is accessible through the
rendering_val attribute of a BeforeRender
event.

Suppose you return {'mykey': 'somevalue', 'mykey2': 'somevalue2'} from
your view callable, like so:

from pyramid.view import view_config

@view_config(renderer='some_renderer')
def myview(request):
 return {'mykey': 'somevalue', 'mykey2': 'somevalue2'}

rendering_val can be used to access these values from the
BeforeRender object:

from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def read_return(event):
 # {'mykey': 'somevalue'} is returned from the view
 print(event.rendering_val['mykey'])

In other words, rendering_val is the (non-system) value returned
by a view or passed to render* as value. This feature is new in
Pyramid 1.2.

For a description of the values present in the renderer globals dictionary,
see System Values Used During Rendering.

See also

See also pyramid.interfaces.IBeforeRender.

	
update(E, **F)

	Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in
E: D[k] = v. In either case, this is followed by: for k in F: D[k] =
F[k].

	
clear() None. Remove all items from D.

	

	
copy() a shallow copy of D

	

	
fromkeys()

	Returns a new dict with keys from iterable and values equal to value.

	
get(k[, d]) D[k] if k in D, else d. d defaults to None.

	

	
items() a set-like object providing a view on D's items

	

	
keys() a set-like object providing a view on D's keys

	

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
popitem() (k, v), remove and return some (key, value) pair as a

	2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
values() an object providing a view on D's values

	

See Using Events for more information about how to register
code which subscribes to these events.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.exceptions

	
exception BadCSRFToken(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	This exception indicates the request has failed cross-site request
forgery token validation.

	
exception PredicateMismatch(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	This exception is raised by multiviews when no view matches
all given predicates.

This exception subclasses the HTTPNotFound exception for a
specific reason: if it reaches the main exception handler, it should
be treated as HTTPNotFound` by any exception view
registrations. Thus, typically, this exception will not be seen
publicly.

However, this exception will be raised if the predicates of all
views configured to handle another exception context cannot be
successfully matched. For instance, if a view is configured to
handle a context of HTTPForbidden and the configured with
additional predicates, then PredicateMismatch will be
raised if:

	An original view callable has raised HTTPForbidden (thus
invoking an exception view); and

	The given request fails to match all predicates for said
exception view associated with HTTPForbidden.

The same applies to any type of exception being handled by an
exception view.

	
Forbidden

	alias of HTTPForbidden

	
NotFound

	alias of HTTPNotFound

	
exception ConfigurationError[source]

	Raised when inappropriate input values are supplied to an API
method of a Configurator

	
exception URLDecodeError[source]

	This exception is raised when Pyramid cannot
successfully decode a URL or a URL path segment. This exception
behaves just like the Python builtin
UnicodeDecodeError [http://docs.python.org/3/library/exceptions.html#UnicodeDecodeError]. It is a subclass of the builtin
UnicodeDecodeError [http://docs.python.org/3/library/exceptions.html#UnicodeDecodeError] exception only for identity purposes,
mostly so an exception view can be registered when a URL cannot be
decoded.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.httpexceptions

HTTP Exceptions

This module contains Pyramid HTTP exception classes. Each class relates to a
single HTTP status code. Each class is a subclass of the
HTTPException. Each exception class is also a response
object.

Each exception class has a status code according to RFC 2068 [https://tools.ietf.org/html/rfc2068.html]:
codes with 100-300 are not really errors; 400s are client errors,
and 500s are server errors.

	Exception

	
	HTTPException

	
	HTTPSuccessful

	
	200 - HTTPOk

	201 - HTTPCreated

	202 - HTTPAccepted

	203 - HTTPNonAuthoritativeInformation

	204 - HTTPNoContent

	205 - HTTPResetContent

	206 - HTTPPartialContent

	HTTPRedirection

	
	300 - HTTPMultipleChoices

	301 - HTTPMovedPermanently

	302 - HTTPFound

	303 - HTTPSeeOther

	304 - HTTPNotModified

	305 - HTTPUseProxy

	307 - HTTPTemporaryRedirect

	HTTPError

	
	HTTPClientError

	
	400 - HTTPBadRequest

	401 - HTTPUnauthorized

	402 - HTTPPaymentRequired

	403 - HTTPForbidden

	404 - HTTPNotFound

	405 - HTTPMethodNotAllowed

	406 - HTTPNotAcceptable

	407 - HTTPProxyAuthenticationRequired

	408 - HTTPRequestTimeout

	409 - HTTPConflict

	410 - HTTPGone

	411 - HTTPLengthRequired

	412 - HTTPPreconditionFailed

	413 - HTTPRequestEntityTooLarge

	414 - HTTPRequestURITooLong

	415 - HTTPUnsupportedMediaType

	416 - HTTPRequestRangeNotSatisfiable

	417 - HTTPExpectationFailed

	422 - HTTPUnprocessableEntity

	423 - HTTPLocked

	424 - HTTPFailedDependency

	HTTPServerError

	
	500 - HTTPInternalServerError

	501 - HTTPNotImplemented

	502 - HTTPBadGateway

	503 - HTTPServiceUnavailable

	504 - HTTPGatewayTimeout

	505 - HTTPVersionNotSupported

	507 - HTTPInsufficientStorage

HTTP exceptions are also response objects, thus they accept most of
the same parameters that can be passed to a regular
Response. Each HTTP exception also has the
following attributes:

	code

	the HTTP status code for the exception

	title

	remainder of the status line (stuff after the code)

	explanation

	a plain-text explanation of the error message that is
not subject to environment or header substitutions;
it is accessible in the template via ${explanation}

	detail

	a plain-text message customization that is not subject
to environment or header substitutions; accessible in
the template via ${detail}

	body_template

	a String.template-format content fragment used for environment
and header substitution; the default template includes both
the explanation and further detail provided in the
message.

Each HTTP exception accepts the following parameters, any others will
be forwarded to its Response superclass:

	detail

	a plain-text override of the default detail

	headers

	a list of (k,v) header pairs

	comment

	a plain-text additional information which is
usually stripped/hidden for end-users

	body_template

	a string.Template object containing a content fragment in HTML
that frames the explanation and further detail

	body

	a string that will override the body_template and be used as the
body of the response.

Substitution of response headers into template values is always performed.
Substitution of WSGI environment values is performed if a request is
passed to the exception's constructor.

The subclasses of _HTTPMove
(HTTPMultipleChoices, HTTPMovedPermanently,
HTTPFound, HTTPSeeOther, HTTPUseProxy and
HTTPTemporaryRedirect) are redirections that require a Location
field. Reflecting this, these subclasses have one additional keyword argument:
location, which indicates the location to which to redirect.

	
status_map

	A mapping of integer status code to HTTP exception class (eg. the integer
"401" maps to pyramid.httpexceptions.HTTPUnauthorized). All
mapped exception classes are children of pyramid.httpexceptions,

	
exception_response(status_code, **kw)[source]

	Creates an HTTP exception based on a status code. Example:

raise exception_response(404) # raises an HTTPNotFound exception.

The values passed as kw are provided to the exception's constructor.

	
exception HTTPException(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	

	
exception HTTPOk(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

Indicates that the request has succeeded.

code: 200, title: OK

	
exception HTTPRedirection(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for exceptions with status codes in the 300s (redirections)

This is an abstract base class for 3xx redirection. It indicates
that further action needs to be taken by the user agent in order
to fulfill the request. It does not necessarly signal an error
condition.

	
exception HTTPError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for exceptions with status codes in the 400s and 500s

This is an exception which indicates that an error has occurred,
and that any work in progress should not be committed.

	
exception HTTPClientError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for the 400s, where the client is in error

This is an error condition in which the client is presumed to be
in-error. This is an expected problem, and thus is not considered
a bug. A server-side traceback is not warranted. Unless specialized,
this is a '400 Bad Request'

	
exception HTTPServerError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for the 500s, where the server is in-error

This is an error condition in which the server is presumed to be
in-error. Unless specialized, this is a '500 Internal Server Error'.

	
exception HTTPCreated(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that request has been fulfilled and resulted in a new
resource being created.

code: 201, title: Created

	
exception HTTPAccepted(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the request has been accepted for processing, but the
processing has not been completed.

code: 202, title: Accepted

	
exception HTTPNonAuthoritativeInformation(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the returned metainformation in the entity-header is
not the definitive set as available from the origin server, but is
gathered from a local or a third-party copy.

code: 203, title: Non-Authoritative Information

	
exception HTTPNoContent(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the server has fulfilled the request but does
not need to return an entity-body, and might want to return updated
metainformation.

code: 204, title: No Content

	
exception HTTPResetContent(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the server has fulfilled the request and
the user agent SHOULD reset the document view which caused the
request to be sent.

code: 205, title: Reset Content

	
exception HTTPPartialContent(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the server has fulfilled the partial GET
request for the resource.

code: 206, title: Partial Content

	
exception HTTPMultipleChoices(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource corresponds to any one
of a set of representations, each with its own specific location,
and agent-driven negotiation information is being provided so that
the user can select a preferred representation and redirect its
request to that location.

code: 300, title: Multiple Choices

	
exception HTTPMovedPermanently(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource has been assigned a new
permanent URI and any future references to this resource SHOULD use
one of the returned URIs.

code: 301, title: Moved Permanently

	
exception HTTPFound(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource resides temporarily under
a different URI.

code: 302, title: Found

	
exception HTTPSeeOther(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the response to the request can be found under
a different URI and SHOULD be retrieved using a GET method on that
resource.

code: 303, title: See Other

	
exception HTTPNotModified(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPRedirection

This indicates that if the client has performed a conditional GET
request and access is allowed, but the document has not been
modified, the server SHOULD respond with this status code.

code: 304, title: Not Modified

	
exception HTTPUseProxy(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource MUST be accessed through
the proxy given by the Location field.

code: 305, title: Use Proxy

	
exception HTTPTemporaryRedirect(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource resides temporarily
under a different URI.

code: 307, title: Temporary Redirect

	
exception HTTPBadRequest(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the body or headers failed validity checks,
preventing the server from being able to continue processing.

code: 400, title: Bad Request

	
exception HTTPUnauthorized(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the request requires user authentication.

code: 401, title: Unauthorized

	
exception HTTPPaymentRequired(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

code: 402, title: Payment Required

	
exception HTTPForbidden(detail=None, headers=None, comment=None, body_template=None, result=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server understood the request, but is
refusing to fulfill it.

code: 403, title: Forbidden

Raise this exception within view code to immediately return the
forbidden view to the invoking user. Usually this is a basic
403 page, but the forbidden view can be customized as necessary. See
Changing the Forbidden View. A Forbidden exception will be
the context of a Forbidden View.

This exception's constructor treats two arguments specially. The first
argument, detail, should be a string. The value of this string will
be used as the message attribute of the exception object. The second
special keyword argument, result is usually an instance of
pyramid.security.Denied or pyramid.security.ACLDenied
each of which indicates a reason for the forbidden error. However,
result is also permitted to be just a plain boolean False object
or None. The result value will be used as the result
attribute of the exception object. It defaults to None.

The Forbidden View can use the attributes of a Forbidden
exception as necessary to provide extended information in an error
report shown to a user.

	
exception HTTPNotFound(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server did not find anything matching the
Request-URI.

code: 404, title: Not Found

Raise this exception within view code to immediately
return the Not Found View to the invoking user. Usually
this is a basic 404 page, but the Not Found View can be
customized as necessary. See Changing the Not Found View.

This exception's constructor accepts a detail argument
(the first argument), which should be a string. The value of this
string will be available as the message attribute of this exception,
for availability to the Not Found View.

	
exception HTTPMethodNotAllowed(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the method specified in the Request-Line is
not allowed for the resource identified by the Request-URI.

code: 405, title: Method Not Allowed

	
exception HTTPNotAcceptable(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates the resource identified by the request is only
capable of generating response entities which have content
characteristics not acceptable according to the accept headers
sent in the request.

code: 406, title: Not Acceptable

	
exception HTTPProxyAuthenticationRequired(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This is similar to 401, but indicates that the client must first
authenticate itself with the proxy.

code: 407, title: Proxy Authentication Required

	
exception HTTPRequestTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the client did not produce a request within
the time that the server was prepared to wait.

code: 408, title: Request Timeout

	
exception HTTPConflict(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the request could not be completed due to a
conflict with the current state of the resource.

code: 409, title: Conflict

	
exception HTTPGone(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the requested resource is no longer available
at the server and no forwarding address is known.

code: 410, title: Gone

	
exception HTTPLengthRequired(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server refuses to accept the request
without a defined Content-Length.

code: 411, title: Length Required

	
exception HTTPPreconditionFailed(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the precondition given in one or more of the
request-header fields evaluated to false when it was tested on the
server.

code: 412, title: Precondition Failed

	
exception HTTPRequestEntityTooLarge(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is refusing to process a request
because the request entity is larger than the server is willing or
able to process.

code: 413, title: Request Entity Too Large

	
exception HTTPRequestURITooLong(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the Request-URI is longer than the server is willing to
interpret.

code: 414, title: Request-URI Too Long

	
exception HTTPUnsupportedMediaType(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the entity of the request is in a format not supported by
the requested resource for the requested method.

code: 415, title: Unsupported Media Type

	
exception HTTPRequestRangeNotSatisfiable(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

The server SHOULD return a response with this status code if a
request included a Range request-header field, and none of the
range-specifier values in this field overlap the current extent
of the selected resource, and the request did not include an
If-Range request-header field.

code: 416, title: Request Range Not Satisfiable

	
exception HTTPExpectationFailed(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indidcates that the expectation given in an Expect
request-header field could not be met by this server.

code: 417, title: Expectation Failed

	
exception HTTPUnprocessableEntity(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is unable to process the contained
instructions. Only for WebDAV.

code: 422, title: Unprocessable Entity

	
exception HTTPLocked(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the resource is locked. Only for WebDAV

code: 423, title: Locked

	
exception HTTPFailedDependency(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the method could not be performed because the
requested action depended on another action and that action failed.
Only for WebDAV.

code: 424, title: Failed Dependency

	
exception HTTPInternalServerError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the application raised an unexcpected exception.

code: 500, title: Internal Server Error

	
exception HTTPNotImplemented(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server does not support the functionality
required to fulfill the request.

code: 501, title: Not Implemented

	
exception HTTPBadGateway(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
received an invalid response from the upstream server it accessed
in attempting to fulfill the request.

code: 502, title: Bad Gateway

	
exception HTTPServiceUnavailable(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server is currently unable to handle the
request due to a temporary overloading or maintenance of the server.

code: 503, title: Service Unavailable

	
exception HTTPGatewayTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
did not receive a timely response from the upstream server specified
by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary server
(e.g. DNS) it needed to access in attempting to complete the request.

code: 504, title: Gateway Timeout

	
exception HTTPVersionNotSupported(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server does not support, or refuses to
support, the HTTP protocol version that was used in the request
message.

code: 505, title: HTTP Version Not Supported

	
exception HTTPInsufficientStorage(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server does not have enough space to save
the resource.

code: 507, title: Insufficient Storage

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.i18n

	
class TranslationString[source]

	The constructor for a translation string. A translation
string is a Unicode-like object that has some extra metadata.

This constructor accepts one required argument named msgid.
msgid must be the message identifier for the
translation string. It must be a unicode object or a str
object encoded in the default system encoding.

Optional keyword arguments to this object's constructor include
domain, default, and mapping.

domain represents the translation domain. By default,
the translation domain is None, indicating that this
translation string is associated with the default translation
domain (usually messages).

default represents an explicit default text for this
translation string. Default text appears when the translation
string cannot be translated. Usually, the msgid of a
translation string serves double duty as its default text.
However, using this option you can provide a different default
text for this translation string. This feature is useful when the
default of a translation string is too complicated or too long to
be used as a message identifier. If default is provided, it
must be a unicode object or a str object encoded in the
default system encoding (usually means ASCII). If default is
None (its default value), the msgid value used by this
translation string will be assumed to be the value of default.

mapping, if supplied, must be a dictionary-like object which
represents the replacement values for any translation
string replacement marker instances found within the msgid
(or default) value of this translation string.

context represents the translation context. By default,
the translation context is None.

After a translation string is constructed, it behaves like most
other unicode objects; its msgid value will be displayed
when it is treated like a unicode object. Only when its
ugettext method is called will it be translated.

Its default value is available as the default attribute of the
object, its translation domain is available as the
domain attribute, and the mapping is available as the
mapping attribute. The object otherwise behaves much like a
Unicode string.

	
TranslationStringFactory(factory_domain)[source]

	Create a factory which will generate translation strings
without requiring that each call to the factory be passed a
domain value. A single argument is passed to this class'
constructor: domain. This value will be used as the
domain values of translationstring.TranslationString [http://docs.pylonsproject.org/projects/translationstring/en/latest/api.html#translationstring.TranslationString]
objects generated by the __call__ of this class. The
msgid, mapping, and default values provided to the
__call__ method of an instance of this class have the meaning
as described by the constructor of the
translationstring.TranslationString [http://docs.pylonsproject.org/projects/translationstring/en/latest/api.html#translationstring.TranslationString]

	
class Localizer(locale_name, translations)[source]

	An object providing translation and pluralizations related to
the current request's locale name. A
pyramid.i18n.Localizer object is created using the
pyramid.i18n.get_localizer() function.

	
locale_name

	The locale name for this localizer (e.g. en or en_US).

	
pluralize(singular, plural, n, domain=None, mapping=None)[source]

	Return a Unicode string translation by using two
message identifier objects as a singular/plural pair
and an n value representing the number that appears in the
message using gettext plural forms support. The singular
and plural objects should be unicode strings. There is no
reason to use translation string objects as arguments as all
metadata is ignored.

n represents the number of elements. domain is the
translation domain to use to do the pluralization, and mapping
is the interpolation mapping that should be used on the result. If
the domain is not supplied, a default domain is used (usually
messages).

Example:

num = 1
translated = localizer.pluralize('Add ${num} item',
 'Add ${num} items',
 num,
 mapping={'num':num})

If using the gettext plural support, which is required for
languages that have pluralisation rules other than n != 1, the
singular argument must be the message_id defined in the
translation file. The plural argument is not used in this case.

Example:

num = 1
translated = localizer.pluralize('item_plural',
 '',
 num,
 mapping={'num':num})

	
translate(tstring, domain=None, mapping=None)[source]

	Translate a translation string to the current language
and interpolate any replacement markers in the result. The
translate method accepts three arguments: tstring
(required), domain (optional) and mapping (optional).
When called, it will translate the tstring translation
string to a unicode object using the current locale. If
the current locale could not be determined, the result of
interpolation of the default value is returned. The optional
domain argument can be used to specify or override the
domain of the tstring (useful when tstring is a normal
string rather than a translation string). The optional
mapping argument can specify or override the tstring
interpolation mapping, useful when the tstring argument is
a simple string instead of a translation string.

Example:

from pyramid.18n import TranslationString
ts = TranslationString('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})
translated = localizer.translate(ts)

Example:

translated = localizer.translate('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})

	
get_localizer(request)[source]

	
Deprecated since version 1.5: Use the pyramid.request.Request.localizer attribute directly
instead. Retrieve a pyramid.i18n.Localizer object
corresponding to the current request's locale name.

	
negotiate_locale_name(request)[source]

	Negotiate and return the locale name associated with
the current request.

	
get_locale_name(request)[source]

	
Deprecated since version 1.5: Use pyramid.request.Request.locale_name directly instead.
Return the locale name associated with the current request.

	
default_locale_negotiator(request)[source]

	The default locale negotiator. Returns a locale name
or None.

	First, the negotiator looks for the _LOCALE_ attribute of
the request object (possibly set by a view or a listener for an
event). If the attribute exists and it is not None,
its value will be used.

	Then it looks for the request.params['_LOCALE_'] value.

	Then it looks for the request.cookies['_LOCALE_'] value.

	Finally, the negotiator returns None if the locale could not
be determined via any of the previous checks (when a locale
negotiator returns None, it signifies that the
default locale name should be used.)

	
make_localizer(current_locale_name, translation_directories)[source]

	Create a pyramid.i18n.Localizer object
corresponding to the provided locale name from the
translations found in the list of translation directories.

See Internationalization and Localization for more information about using
Pyramid internationalization and localization services within
an application.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.interfaces

Event-Related Interfaces

	
interface IApplicationCreated[source]

	Event issued when the
pyramid.config.Configurator.make_wsgi_app() method
is called. See the documentation attached to
pyramid.events.ApplicationCreated for more
information.

Note

For backwards compatibility with Pyramid
versions before 1.0, this interface can also be imported as
pyramid.interfaces.IWSGIApplicationCreatedEvent.

	
app

	Created application

	
interface INewRequest[source]

	An event type that is emitted whenever Pyramid
begins to process a new request. See the documentation attached
to pyramid.events.NewRequest for more information.

	
request

	The request object

	
interface IContextFound[source]

	An event type that is emitted after Pyramid finds a
context object but before it calls any view code. See the
documentation attached to pyramid.events.ContextFound
for more information.

Note

For backwards compatibility with versions of
Pyramid before 1.0, this event interface can also be
imported as pyramid.interfaces.IAfterTraversal.

	
request

	The request object

	
interface INewResponse[source]

	An event type that is emitted whenever any Pyramid
view returns a response. See the
documentation attached to pyramid.events.NewResponse
for more information.

	
request

	The request object

	
response

	The response object

	
interface IBeforeRender[source]

	Extends: pyramid.interfaces.IDict

Subscribers to this event may introspect and modify the set of
renderer globals before they are passed to a renderer.
The event object itself provides a dictionary-like interface for adding
and removing renderer globals. The keys and values of the
dictionary are those globals. For example:

from repoze.events import subscriber
from pyramid.interfaces import IBeforeRender

@subscriber(IBeforeRender)
def add_global(event):
 event['mykey'] = 'foo'

See also

See also Using the Before Render Event.

	
rendering_val

	The value returned by a view or passed to a render method for this rendering. This feature is new in Pyramid 1.2.

Other Interfaces

	
interface IAuthenticationPolicy[source]

	An object representing a Pyramid authentication policy.

	
forget(request)

	Return a set of headers suitable for 'forgetting' the
current user on subsequent requests.

	
effective_principals(request)

	Return a sequence representing the effective principals
including the userid and any groups belonged to by the current
user, including 'system' groups such as Everyone and
Authenticated.

	
authenticated_userid(request)

	Return the authenticated userid or None if no authenticated
userid can be found. This method of the policy should ensure that a
record exists in whatever persistent store is used related to the
user (the user should not have been deleted); if a record associated
with the current id does not exist in a persistent store, it should
return None.

	
remember(request, principal, **kw)

	Return a set of headers suitable for 'remembering' the
principal named principal when set in a response. An
individual authentication policy and its consumers can decide
on the composition and meaning of **kw.

	
unauthenticated_userid(request)

	Return the unauthenticated userid. This method performs the
same duty as authenticated_userid but is permitted to return the
userid based only on data present in the request; it needn't (and
shouldn't) check any persistent store to ensure that the user record
related to the request userid exists.

	
interface IAuthorizationPolicy[source]

	An object representing a Pyramid authorization policy.

	
permits(context, principals, permission)

	Return True if any of the principals is allowed the
permission in the current context, else return False

	
principals_allowed_by_permission(context, permission)

	Return a set of principal identifiers allowed by the
permission in context. This behavior is optional; if you
choose to not implement it you should define this method as
something which raises a NotImplementedError. This method
will only be called when the
pyramid.security.principals_allowed_by_permission API is
used.

	
interface IExceptionResponse[source]

	Extends: pyramid.interfaces.IException, pyramid.interfaces.IResponse

An interface representing a WSGI response which is also an exception
object. Register an exception view using this interface as a context
to apply the registered view for all exception types raised by
Pyramid internally (any exception that inherits from
pyramid.response.Response, including
pyramid.httpexceptions.HTTPNotFound and
pyramid.httpexceptions.HTTPForbidden).

	
prepare(environ)

	Prepares the response for being called as a WSGI application

	
interface IRoute[source]

	Interface representing the type of object returned from
IRoutesMapper.get_route

	
predicates

	A sequence of route predicate objects used to determine if a request matches this route or not after basic pattern matching has been completed.

	
factory

	The root factory used by the Pyramid router when this route matches (or None)

	
match(path)

	If the path passed to this function can be matched by the
pattern of this route, return a dictionary (the
'matchdict'), which will contain keys representing the dynamic
segment markers in the pattern mapped to values extracted from
the provided path.

If the path passed to this function cannot be matched by
the pattern of this route, return None.

	
name

	The route name

	
generate(kw)

	Generate a URL based on filling in the dynamic segment markers
in the pattern using the kw dictionary provided.

	
pattern

	The route pattern

	
pregenerator

	This attribute should either be None or a callable object implementing the IRoutePregenerator interface

	
interface IRoutePregenerator[source]

	
	
__call__(request, elements, kw)

	A pregenerator is a function associated by a developer with a
route. The pregenerator for a route is called by
pyramid.request.Request.route_url() in order to adjust the set
of arguments passed to it by the user for special purposes, such as
Pylons 'subdomain' support. It will influence the URL returned by
route_url.

A pregenerator should return a two-tuple of (elements, kw)
after examining the originals passed to this function, which
are the arguments (request, elements, kw). The simplest
pregenerator is:

def pregenerator(request, elements, kw):
 return elements, kw

You can employ a pregenerator by passing a pregenerator
argument to the
pyramid.config.Configurator.add_route()
function.

	
interface ISession[source]

	Extends: pyramid.interfaces.IDict

An interface representing a session (a web session object,
usually accessed via request.session.

Keys and values of a session must be pickleable.

	
peek_flash(queue='')

	Peek at a queue in the flash storage. The queue remains in
flash storage after this message is called. The queue is returned;
it is a list of flash messages added by
pyramid.interfaces.ISession.flash()

	
created

	Integer representing Epoch time when created.

	
flash(msg, queue='', allow_duplicate=True)

	Push a flash message onto the end of the flash queue represented
by queue. An alternate flash message queue can used by passing
an optional queue, which must be a string. If
allow_duplicate is false, if the msg already exists in the
queue, it will not be re-added.

	
new

	Boolean attribute. If True, the session is new.

	
pop_flash(queue='')

	Pop a queue from the flash storage. The queue is removed from
flash storage after this message is called. The queue is returned;
it is a list of flash messages added by
pyramid.interfaces.ISession.flash()

	
invalidate()

	Invalidate the session. The action caused by
invalidate is implementation-dependent, but it should have
the effect of completely dissociating any data stored in the
session with the current request. It might set response
values (such as one which clears a cookie), or it might not.

An invalidated session may be used after the call to invalidate
with the effect that a new session is created to store the data. This
enables workflows requiring an entirely new session, such as in the
case of changing privilege levels or preventing fixation attacks.

	
get_csrf_token()

	Return a random cross-site request forgery protection token. It
will be a string. If a token was previously added to the session via
new_csrf_token, that token will be returned. If no CSRF token
was previously set into the session, new_csrf_token will be
called, which will create and set a token, and this token will be
returned.

	
new_csrf_token()

	Create and set into the session a new, random cross-site request
forgery protection token. Return the token. It will be a string.

	
changed()

	Mark the session as changed. A user of a session should
call this method after he or she mutates a mutable object that
is a value of the session (it should not be required after
mutating the session itself). For example, if the user has
stored a dictionary in the session under the key foo, and
he or she does session['foo'] = {}, changed() needn't
be called. However, if subsequently he or she does
session['foo']['a'] = 1, changed() must be called for
the sessioning machinery to notice the mutation of the
internal dictionary.

	
interface ISessionFactory[source]

	An interface representing a factory which accepts a request object and
returns an ISession object

	
__call__(request)

	Return an ISession object

	
interface IRendererInfo[source]

	An object implementing this interface is passed to every
renderer factory constructor as its only argument (conventionally
named info)

	
registry

	The "current" application registry when the renderer was created

	
name

	The value passed by the user as the renderer name

	
package

	The "current package" when the renderer configuration statement was found

	
type

	The renderer type name

	
settings

	The deployment settings dictionary related to the current application

	
interface IRendererFactory[source]

	
	
__call__(info)

	Return an object that implements
pyramid.interfaces.IRenderer. info is an
object that implements pyramid.interfaces.IRendererInfo.

	
interface IRenderer[source]

	
	
__call__(value, system)

	Call the renderer with the result of the
view (value) passed in and return a result (a string or
unicode object useful as a response body). Values computed by
the system are passed by the system in the system
parameter, which is a dictionary. Keys in the dictionary
include: view (the view callable that returned the value),
renderer_name (the template name or simple name of the
renderer), context (the context object passed to the
view), and request (the request object passed to the
view).

	
interface IViewMapperFactory[source]

	
	
__call__(self, **kw)

	Return an object which implements
pyramid.interfaces.IViewMapper. kw will be a dictionary
containing view-specific arguments, such as permission,
predicates, attr, renderer, and other items. An
IViewMapperFactory is used by
pyramid.config.Configurator.add_view() to provide a plugpoint
to extension developers who want to modify potential view callable
invocation signatures and response values.

	
interface IViewMapper[source]

	
	
__call__(self, object)

	Provided with an arbitrary object (a function, class, or
instance), returns a callable with the call signature (context,
request). The callable returned should itself return a Response
object. An IViewMapper is returned by
pyramid.interfaces.IViewMapperFactory.

	
interface IDict[source]

	
	
values()

	Return a list of values from the dictionary

	
clear()

	Clear all values from the dictionary

	
get(k, default=None)

	Return the value for key k from the renderer dictionary, or
the default if no such value exists.

	
__contains__(k)

	Return True if key k exists in the dictionary.

	
keys()

	Return a list of keys from the dictionary

	
__delitem__(k)

	Delete an item from the dictionary which is passed to the
renderer as the renderer globals dictionary.

	
popitem()

	Pop the item with key k from the dictionary and return it as a
two-tuple (k, v). If k doesn't exist, raise a KeyError.

	
__getitem__(k)

	Return the value for key k from the dictionary or raise a
KeyError if the key doesn't exist

	
__iter__()

	Return an iterator over the keys of this dictionary

	
items()

	Return a list of [(k,v)] pairs from the dictionary

	
__setitem__(k, value)

	Set a key/value pair into the dictionary

	
setdefault(k, default=None)

	Return the existing value for key k in the dictionary. If no
value with k exists in the dictionary, set the default
value into the dictionary under the k name passed. If a value already
existed in the dictionary, return it. If a value did not exist in
the dictionary, return the default

	
pop(k, default=None)

	Pop the key k from the dictionary and return its value. If k
doesn't exist, and default is provided, return the default. If k
doesn't exist and default is not provided, raise a KeyError.

	
update(d)

	Update the renderer dictionary with another dictionary d.

	
interface IMultiDict[source]

	Extends: pyramid.interfaces.IDict

An ordered dictionary that can have multiple values for each key. A
multidict adds the methods getall, getone, mixed, extend,
add, and dict_of_lists to the normal dictionary interface. A
multidict data structure is used as request.POST, request.GET,
and request.params within an Pyramid application.

	
getall(key)

	Return a list of all values matching the key (may be an empty
list)

	
add(key, value)

	Add the key and value, not overwriting any previous value.

	
extend(other=None, **kwargs)

	Add a set of keys and values, not overwriting any previous
values. The other structure may be a list of two-tuples or a
dictionary. If **kwargs is passed, its value will overwrite
existing values.

	
getone(key)

	Get one value matching the key, raising a KeyError if multiple
values were found.

	
mixed()

	Returns a dictionary where the values are either single values,
or a list of values when a key/value appears more than once in this
dictionary. This is similar to the kind of dictionary often used to
represent the variables in a web request.

	
dict_of_lists()

	Returns a dictionary where each key is associated with a list of
values.

	
interface IResponse[source]

	Represents a WSGI response using the WebOb response interface.
Some attribute and method documentation of this interface references
RFC 2616 [https://tools.ietf.org/html/rfc2616.html].

This interface is most famously implemented by
pyramid.response.Response and the HTTP exception classes in
pyramid.httpexceptions.

	
content_type

	Get/set the Content-Type header (or None), without the charset
or any parameters. If you include parameters (or ; at all) when
setting the content_type, any existing parameters will be deleted;
otherwise they will be preserved.

	
RequestClass

	Alias for pyramid.request.Request

	
retry_after

	Gets and sets and deletes the Retry-After header. For more
information on Retry-After see RFC 2616 section 14.37. Converts
using HTTP date or delta seconds.

	
age

	Gets and sets and deletes the Age header. Converts using int.
For more information on Age see RFC 2616, section 14.6.

	
www_authenticate

	Gets and sets and deletes the WWW-Authenticate header. For more
information on WWW-Authenticate see RFC 2616 section 14.47. Converts
using 'parse_auth' and 'serialize_auth'.

	
allow

	Gets and sets and deletes the Allow header. Converts using
list. For more information on Allow see RFC 2616, Section 14.7.

	
vary

	Gets and sets and deletes the Vary header. For more information
on Vary see section 14.44. Converts using list.

	
environ

	Get/set the request environ associated with this response,
if any.

	
copy()

	Makes a copy of the response and returns the copy.

	
set_cookie(key, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, comment=None, expires=None, overwrite=False)

	Set (add) a cookie for the response

	
headerlist

	The list of response headers.

	
app_iter_range(start, stop)

	Return a new app_iter built from the response app_iter that
serves up only the given start:stop range.

	
conditional_response_app(environ, start_response)

	Like the normal __call__ interface, but checks conditional
headers:

	If-Modified-Since (304 Not Modified; only on GET, HEAD)

	If-None-Match (304 Not Modified; only on GET, HEAD)

	Range (406 Partial Content; only on GET, HEAD)

	
date

	Gets and sets and deletes the Date header. For more information on
Date see RFC 2616 section 14.18. Converts using HTTP date.

	
cache_expires

	Get/set the Cache-Control and Expires headers. This sets the
response to expire in the number of seconds passed when set.

	
md5_etag(body=None, set_content_md5=False)

	Generate an etag for the response object using an MD5 hash of the
body (the body parameter, or self.body if not given). Sets self.etag.
If set_content_md5 is True sets self.content_md5 as well

	
charset

	Get/set the charset (in the Content-Type)

	
status

	The status string.

	
content_length

	Gets and sets and deletes the Content-Length header. For more
information on Content-Length see RFC 2616 section 14.17.
Converts using int.

	
cache_control

	Get/set/modify the Cache-Control header (RFC 2616 section 14.9)

	
accept_ranges

	Gets and sets and deletes the Accept-Ranges header. For more
information on Accept-Ranges see RFC 2616, section 14.5

	
headers

	The headers in a dictionary-like object

	
content_md5

	Gets and sets and deletes the Content-MD5 header. For more
information on Content-MD5 see RFC 2616 section 14.14.

	
expires

	Gets and sets and deletes the Expires header. For more
information on Expires see RFC 2616 section 14.21. Converts using
HTTP date.

	
last_modified

	Gets and sets and deletes the Last-Modified header. For more
information on Last-Modified see RFC 2616 section 14.29. Converts
using HTTP date.

	
delete_cookie(key, path='/', domain=None)

	Delete a cookie from the client. Note that path and domain must
match how the cookie was originally set. This sets the cookie to the
empty string, and max_age=0 so that it should expire immediately.

	
status_int

	The status as an integer

	
unset_cookie(key, strict=True)

	Unset a cookie with the given name (remove it from the
response).

	
content_disposition

	Gets and sets and deletes the Content-Disposition header.
For more information on Content-Disposition see RFC 2616 section
19.5.1.

	
content_language

	Gets and sets and deletes the Content-Language header. Converts
using list. For more information about Content-Language see RFC 2616
section 14.12.

	
body

	The body of the response, as a str. This will read in the entire
app_iter if necessary.

	
pragma

	Gets and sets and deletes the Pragma header. For more information
on Pragma see RFC 2616 section 14.32.

	
merge_cookies(resp)

	Merge the cookies that were set on this response with the given
resp object (which can be any WSGI application). If the resp is a
webob.Response object, then the other object will be modified
in-place.

	
request

	Return the request associated with this response if any.

	
content_range

	Gets and sets and deletes the Content-Range header. For more
information on Content-Range see section 14.16. Converts using
ContentRange object.

	
unicode_body

	Get/set the unicode value of the body (using the charset of
the Content-Type)

	
encode_content(encoding='gzip', lazy=False)

	Encode the content with the given encoding (only gzip and
identity are supported).

	
etag

	Gets and sets and deletes the ETag header. For more information
on ETag see RFC 2616 section 14.19. Converts using Entity tag.

	
content_location

	Gets and sets and deletes the Content-Location header. For more
information on Content-Location see RFC 2616 section 14.14.

	
__call__(environ, start_response)

	WSGI call interface, should call the start_response
callback and should return an iterable

	
app_iter

	Returns the app_iter of the response.

If body was set, this will create an app_iter from that body
(a single-item list)

	
location

	Gets and sets and deletes the Location header. For more
information on Location see RFC 2616 section 14.30.

	
content_type_params

	A dictionary of all the parameters in the content type. This is
not a view, set to change, modifications of the dict would not
be applied otherwise.

	
server

	Gets and sets and deletes the Server header. For more information
on Server see RFC216 section 14.38.

	
body_file

	A file-like object that can be used to write to the body. If you
passed in a list app_iter, that app_iter will be modified by writes.

	
content_encoding

	Gets and sets and deletes the Content-Encoding header. For more
information about Content-Encoding see RFC 2616 section 14.11.

	
interface IIntrospectable[source]

	An introspectable object used for configuration introspection. In
addition to the methods below, objects which implement this interface
must also implement all the methods of Python's
collections.MutableMapping (the "dictionary interface"), and must be
hashable.

	
relate(category_name, discriminator)

	Indicate an intent to relate this IIntrospectable with another
IIntrospectable (the one associated with the category_name and
discriminator) during action execution.

	
__hash__()

	Introspectables must be hashable. The typical implementation of
an introsepectable's __hash__ is:

return hash((self.category_name,) + (self.discriminator,))

	
discriminator

	introspectable discriminator (within category) (must be hashable)

	
title

	Text title describing this introspectable

	
discriminator_hash

	an integer hash of the discriminator

	
action_info

	An IActionInfo object representing the caller that invoked the creation of this introspectable (usually a sentinel until updated during self.register)

	
category_name

	introspection category name

	
type_name

	Text type name describing this introspectable

	
register(introspector, action_info)

	Register this IIntrospectable with an introspector. This method
is invoked during action execution. Adds the introspectable and its
relations to the introspector. introspector should be an object
implementing IIntrospector. action_info should be a object
implementing the interface pyramid.interfaces.IActionInfo
representing the call that registered this introspectable.
Pseudocode for an implementation of this method:

def register(self, introspector, action_info):
 self.action_info = action_info
 introspector.add(self)
 for methodname, category_name, discriminator in self._relations:
 method = getattr(introspector, methodname)
 method((i.category_name, i.discriminator),
 (category_name, discriminator))

	
order

	integer order in which registered with introspector (managed by introspector, usually)

	
unrelate(category_name, discriminator)

	Indicate an intent to break the relationship between this
IIntrospectable with another IIntrospectable (the one associated with
the category_name and discriminator) during action execution.

	
interface IIntrospector[source]

	
	
get_category(category_name, default=None, sort_key=None)

	Get a sequence of dictionaries in the form
[{'introspectable':IIntrospectable, 'related':[sequence of related
IIntrospectables]}, ...] where each introspectable is part of the
category associated with category_name .

If the category named category_name does not exist in the
introspector the value passed as default will be returned.

If sort_key is None, the sequence will be returned in the
order the introspectables were added to the introspector. Otherwise,
sort_key should be a function that accepts an IIntrospectable and
returns a value from it (ala the key function of Python's
sorted callable).

	
categorized(sort_key=None)

	Get a sequence of tuples in the form [(category_name,
[{'introspectable':IIntrospectable, 'related':[sequence of related
IIntrospectables]}, ...])] representing all known
introspectables. If sort_key is None, each introspectables
sequence will be returned in the order the introspectables were added
to the introspector. Otherwise, sort_key should be a function that
accepts an IIntrospectable and returns a value from it (ala the
key function of Python's sorted callable).

	
add(intr)

	Add the IIntrospectable intr (use instead of
pyramid.interfaces.IIntrospector.add() when you have a custom
IIntrospectable). Replaces any existing introspectable registered
using the same category/discriminator.

This method is not typically called directly, instead it's called
indirectly by pyramid.interfaces.IIntrospector.register()

	
categories()

	Return a sorted sequence of category names known by
this introspector

	
related(intr)

	Return a sequence of IIntrospectables related to the
IIntrospectable intr. Return the empty sequence if no relations
for exist.

	
get(category_name, discriminator, default=None)

	Get the IIntrospectable related to the category_name and the
discriminator (or discriminator hash) discriminator. If it does
not exist in the introspector, return the value of default

	
remove(category_name, discriminator)

	Remove the IIntrospectable related to category_name and
discriminator from the introspector, and fix up any relations
that the introspectable participates in. This method will not raise
an error if an introspectable related to the category name and
discriminator does not exist.

	
relate(*pairs)

	Given any number of (category_name, discriminator) pairs
passed as positional arguments, relate the associated introspectables
to each other. The introspectable related to each pair must have
already been added via .add or .add_intr; a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]
will result if this is not true. An error will not be raised if any
pair has already been associated with another.

This method is not typically called directly, instead it's called
indirectly by pyramid.interfaces.IIntrospector.register()

	
unrelate(*pairs)

	Given any number of (category_name, discriminator) pairs
passed as positional arguments, unrelate the associated introspectables
from each other. The introspectable related to each pair must have
already been added via .add or .add_intr; a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]
will result if this is not true. An error will not be raised if any
pair is not already related to another.

This method is not typically called directly, instead it's called
indirectly by pyramid.interfaces.IIntrospector.register()

	
interface IActionInfo[source]

	Class which provides code introspection capability associated with an
action. The ParserInfo class used by ZCML implements the same interface.

	
__str__()

	Return a representation of the action information (including
source code from file, if possible)

	
file

	Filename of action-invoking code as a string

	
line

	Starting line number in file (as an integer) of action-invoking code.This will be None if the value could not be determined.

	
interface IAssetDescriptor[source]

	Describes an asset.

	
stream()

	Returns an input stream for reading asset contents. Raises an
exception if the asset is a directory or does not exist.

	
isdir()

	Returns True if the asset is a directory, otherwise returns False.

	
abspath()

	Returns an absolute path in the filesystem to the asset.

	
exists()

	Returns True if asset exists, otherwise returns False.

	
listdir()

	Returns iterable of filenames of directory contents. Raises an
exception if asset is not a directory.

	
absspec()

	Returns the absolute asset specification for this asset
(e.g. mypackage:templates/foo.pt).

	
interface IResourceURL[source]

	
	
virtual_path

	The virtual url path of the resource as a string.

	
physical_path

	The physical url path of the resource as a string.

	
virtual_path_tuple

	The virtual url path of the resource as a tuple. (New in 1.5)

	
physical_path_tuple

	The physical url path of the resource as a tuple. (New in 1.5)

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.location

	
lineage(resource)[source]

	Return a generator representing the lineage of the
resource object implied by the resource argument. The
generator first returns resource unconditionally. Then, if
resource supplies a __parent__ attribute, return the resource
represented by resource.__parent__. If that resource has a
__parent__ attribute, return that resource's parent, and so on,
until the resource being inspected either has no __parent__
attribute or which has a __parent__ attribute of None.
For example, if the resource tree is:

thing1 = Thing()
thing2 = Thing()
thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn
it into a list, we will get:

list(lineage(thing2))
[<Thing object at thing2>, <Thing object at thing1>]

	
inside(resource1, resource2)[source]

	Is resource1 'inside' resource2? Return True if so, else
False.

resource1 is 'inside' resource2 if resource2 is a
lineage ancestor of resource1. It is a lineage ancestor
if its parent (or one of its parent's parents, etc.) is an
ancestor.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.paster

	
bootstrap(config_uri, request=None, options=None)[source]

	Load a WSGI application from the PasteDeploy config file specified
by config_uri. The environment will be configured as if it is
currently serving request, leaving a natural environment in place
to write scripts that can generate URLs and utilize renderers.

This function returns a dictionary with app, root, closer,
request, and registry keys. app is the WSGI app loaded
(based on the config_uri), root is the traversal root resource
of the Pyramid application, and closer is a parameterless callback
that may be called when your script is complete (it pops a threadlocal
stack).

Note

Most operations within Pyramid expect to be invoked within the
context of a WSGI request, thus it's important when loading your
application to anchor it when executing scripts and other code that is
not normally invoked during active WSGI requests.

Note

For a complex config file containing multiple Pyramid
applications, this function will setup the environment under the context
of the last-loaded Pyramid application. You may load a specific
application yourself by using the lower-level functions
pyramid.paster.get_app() and pyramid.scripting.prepare() in
conjunction with pyramid.config.global_registries.

config_uri -- specifies the PasteDeploy config file to use for the
interactive shell. The format is inifile#name. If the name is left
off, main will be assumed.

request -- specified to anchor the script to a given set of WSGI
parameters. For example, most people would want to specify the host,
scheme and port such that their script will generate URLs in relation
to those parameters. A request with default parameters is constructed
for you if none is provided. You can mutate the request's environ
later to setup a specific host/port/scheme/etc.

options Is passed to get_app for use as variable assignments like
{'http_port': 8080} and then use %(http_port)s in the
config file.

See Writing a Script for more information about how to use this
function.

	
get_app(config_uri, name=None, options=None)[source]

	Return the WSGI application named name in the PasteDeploy
config file specified by config_uri.

options, if passed, should be a dictionary used as variable assignments
like {'http_port': 8080}. This is useful if e.g. %(http_port)s is
used in the config file.

If the name is None, this will attempt to parse the name from
the config_uri string expecting the format inifile#name.
If no name is found, the name will default to "main".

	
get_appsettings(config_uri, name=None, options=None)[source]

	Return a dictionary representing the key/value pairs in an app
section within the file represented by config_uri.

options, if passed, should be a dictionary used as variable assignments
like {'http_port': 8080}. This is useful if e.g. %(http_port)s is
used in the config file.

If the name is None, this will attempt to parse the name from
the config_uri string expecting the format inifile#name.
If no name is found, the name will default to "main".

	
setup_logging(config_uri)[source]

	Set up logging via the logging module's fileConfig function with the
filename specified via config_uri (a string in the form
filename#sectionname).

ConfigParser defaults are specified for the special __file__
and here variables, similar to PasteDeploy config loading.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.path

	
CALLER_PACKAGE

	A constant used by the constructor of
pyramid.path.DottedNameResolver and
pyramid.path.AssetResolver.

	
class DottedNameResolver(package=pyramid.path.CALLER_PACKAGE)[source]

	A class used to resolve a dotted Python name to a package or
module object.

New in version 1.3.

The constructor accepts a single argument named package which may be
any of:

	A fully qualified (not relative) dotted name to a module or package

	a Python module or package object

	The value None

	The constant value pyramid.path.CALLER_PACKAGE.

The default value is pyramid.path.CALLER_PACKAGE.

The package is used when a relative dotted name is supplied to the
resolve() method. A dotted name
which has a . (dot) or : (colon) as its first character is
treated as relative.

If package is None, the resolver will only be able to resolve
fully qualified (not relative) names. Any attempt to resolve a
relative name will result in an ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception.

If package is pyramid.path.CALLER_PACKAGE,
the resolver will treat relative dotted names as relative to
the caller of the resolve()
method.

If package is a module or module name (as opposed to a package or
package name), its containing package is computed and this
package used to derive the package name (all names are resolved relative
to packages, never to modules). For example, if the package argument
to this type was passed the string xml.dom.expatbuilder, and
.mindom is supplied to the
resolve() method, the resulting
import would be for xml.minidom, because xml.dom.expatbuilder is
a module object, not a package object.

If package is a package or package name (as opposed to a module or
module name), this package will be used to relative compute
dotted names. For example, if the package argument to this type was
passed the string xml.dom, and .minidom is supplied to the
resolve() method, the resulting
import would be for xml.minidom.

	
maybe_resolve(dotted)[source]

	This method behaves just like
resolve(), except if the
dotted value passed is not a string, it is simply returned. For
example:

import xml
r = DottedNameResolver()
v = r.maybe_resolve(xml)
v is the xml module; no exception raised

	
resolve(dotted)[source]

	This method resolves a dotted name reference to a global Python
object (an object which can be imported) to the object itself.

Two dotted name styles are supported:

	pkg_resources-style dotted names where non-module attributes
of a package are separated from the rest of the path using a :
e.g. package.module:attr.

	zope.dottedname-style dotted names where non-module
attributes of a package are separated from the rest of the path
using a . e.g. package.module.attr.

These styles can be used interchangeably. If the supplied name
contains a : (colon), the pkg_resources resolution
mechanism will be chosen, otherwise the zope.dottedname
resolution mechanism will be chosen.

If the dotted argument passed to this method is not a string, a
ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] will be raised.

When a dotted name cannot be resolved, a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] error is
raised.

Example:

r = DottedNameResolver()
v = r.resolve('xml') # v is the xml module

	
class AssetResolver(package=pyramid.path.CALLER_PACKAGE)[source]

	A class used to resolve an asset specification to an
asset descriptor.

New in version 1.3.

The constructor accepts a single argument named package which may be
any of:

	A fully qualified (not relative) dotted name to a module or package

	a Python module or package object

	The value None

	The constant value pyramid.path.CALLER_PACKAGE.

The default value is pyramid.path.CALLER_PACKAGE.

The package is used when a relative asset specification is supplied
to the resolve() method. An asset
specification without a colon in it is treated as relative.

If package is None, the resolver will
only be able to resolve fully qualified (not relative) asset
specifications. Any attempt to resolve a relative asset specification
will result in an ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception.

If package is pyramid.path.CALLER_PACKAGE,
the resolver will treat relative asset specifications as
relative to the caller of the resolve()
method.

If package is a module or module name (as opposed to a package or
package name), its containing package is computed and this
package is used to derive the package name (all names are resolved relative
to packages, never to modules). For example, if the package argument
to this type was passed the string xml.dom.expatbuilder, and
template.pt is supplied to the
resolve() method, the resulting absolute
asset spec would be xml.minidom:template.pt, because
xml.dom.expatbuilder is a module object, not a package object.

If package is a package or package name (as opposed to a module or
module name), this package will be used to compute relative
asset specifications. For example, if the package argument to this
type was passed the string xml.dom, and template.pt is supplied
to the resolve() method, the resulting
absolute asset spec would be xml.minidom:template.pt.

	
resolve(spec)[source]

	Resolve the asset spec named as spec to an object that has the
attributes and methods described in
pyramid.interfaces.IAssetDescriptor.

If spec is an absolute filename
(e.g. /path/to/myproject/templates/foo.pt) or an absolute asset
spec (e.g. myproject:templates.foo.pt), an asset descriptor is
returned without taking into account the package passed to this
class' constructor.

If spec is a relative asset specification (an asset
specification without a : in it, e.g. templates/foo.pt), the
package argument of the constructor is used as the package
portion of the asset spec. For example:

a = AssetResolver('myproject')
resolver = a.resolve('templates/foo.pt')
print(resolver.abspath())
-> /path/to/myproject/templates/foo.pt

If the AssetResolver is constructed without a package argument of
None, and a relative asset specification is passed to
resolve, an ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception is raised.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.registry

	
class Registry(name='', bases=())[source]

	A registry object is an application registry. It is used by
the framework itself to perform mappings of URLs to view callables, as
well as servicing other various framework duties. A registry has its own
internal API, but this API is rarely used by Pyramid application
developers (it's usually only used by developers of the Pyramid
framework). But it has a number of attributes that may be useful to
application developers within application code, such as settings,
which is a dictionary containing application deployment settings.

For information about the purpose and usage of the application registry,
see Using the Zope Component Architecture in Pyramid.

The application registry is usually accessed as request.registry in
application code.

	
settings

	The dictionary-like deployment settings object. See
Deployment Settings for information. This object is often
accessed as request.registry.settings or
config.registry.settings in a typical Pyramid application.

	
introspector

	
New in version 1.3.

When a registry is set up (or created) by a Configurator, the
registry will be decorated with an instance named introspector
implementing the pyramid.interfaces.IIntrospector interface.

See also

See also pyramid.config.Configurator.introspector.

When a registry is created "by hand", however, this attribute will not
exist until set up by a configurator.

This attribute is often accessed as request.registry.introspector in
a typical Pyramid application.

	
notify(*events)[source]

	Fire one or more events. All event subscribers to the event(s)
will be notified. The subscribers will be called synchronously.
This method is often accessed as request.registry.notify
in Pyramid applications to fire custom events. See
Creating Your Own Events for more information.

	
class Introspectable[source]

	
New in version 1.3.

The default implementation of the interface
pyramid.interfaces.IIntrospectable used by framework exenders.
An instance of this class is created when
pyramid.config.Configurator.introspectable is called.

	
class Deferred(func)[source]

	Can be used by a third-party configuration extender to wrap a
discriminator during configuration if an immediately hashable
discriminator cannot be computed because it relies on unresolved values.
The function should accept no arguments and should return a hashable
discriminator.

New in version 1.4.

	
undefer(v)[source]

	Function which accepts an object and returns it unless it is a
pyramid.registry.Deferred instance. If it is an instance of
that class, its resolve method is called, and the result of the
method is returned.

New in version 1.4.

	
class predvalseq[source]

	A subtype of tuple used to represent a sequence of predicate values

New in version 1.4.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.renderers

	
get_renderer(renderer_name, package=None)[source]

	Return the renderer object for the renderer renderer_name.

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer name
will be converted to an absolute asset specification by
combining the package package with the relative
asset specification renderer_name. If package is None
(the default), the package name of the caller of this function
will be used as the package.

	
render(renderer_name, value, request=None, package=None)[source]

	Using the renderer renderer_name (a template
or a static renderer), render the value (or set of values) present
in value. Return the result of the renderer's __call__
method (usually a string or Unicode).

If the renderer_name refers to a file on disk, such as when the
renderer is a template, it's usually best to supply the name as an
asset specification
(e.g. packagename:path/to/template.pt).

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer path
will be converted to an absolute asset specification by
combining the package package with the relative
asset specification renderer_name. If package
is None (the default), the package name of the caller of
this function will be used as the package.

The value provided will be supplied as the input to the
renderer. Usually, for template renderings, this should be a
dictionary. For other renderers, this will need to be whatever
sort of value the renderer expects.

The 'system' values supplied to the renderer will include a basic set of
top-level system names, such as request, context,
renderer_name, and view. See System Values Used During Rendering for
the full list. If renderer globals have been specified, these
will also be used to augment the value.

Supply a request parameter in order to provide the renderer
with the most correct 'system' values (request and context
in particular).

	
render_to_response(renderer_name, value, request=None, package=None)[source]

	Using the renderer renderer_name (a template
or a static renderer), render the value (or set of values) using
the result of the renderer's __call__ method (usually a string
or Unicode) as the response body.

If the renderer name refers to a file on disk (such as when the
renderer is a template), it's usually best to supply the name as a
asset specification.

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer name
will be converted to an absolute asset specification by
combining the package package with the relative
asset specification renderer_name. If you do
not supply a package (or package is None) the package
name of the caller of this function will be used as the package.

The value provided will be supplied as the input to the
renderer. Usually, for template renderings, this should be a
dictionary. For other renderers, this will need to be whatever
sort of value the renderer expects.

The 'system' values supplied to the renderer will include a basic set of
top-level system names, such as request, context,
renderer_name, and view. See System Values Used During Rendering for
the full list. If renderer globals have been specified, these
will also be used to argument the value.

Supply a request parameter in order to provide the renderer
with the most correct 'system' values (request and context
in particular). Keep in mind that if the request parameter is
not passed in, any changes to request.response attributes made
before calling this function will be ignored.

	
class JSON(serializer=<function dumps>, adapters=(), **kw)[source]

	Renderer that returns a JSON-encoded string.

Configure a custom JSON renderer using the
add_renderer() API at application
startup time:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('myjson', JSON(indent=4))

Once this renderer is registered as above, you can use
myjson as the renderer= parameter to @view_config or
add_view`():

from pyramid.view import view_config

@view_config(renderer='myjson')
def myview(request):
 return {'greeting':'Hello world'}

Custom objects can be serialized using the renderer by either
implementing the __json__ magic method, or by registering
adapters with the renderer. See
Serializing Custom Objects for more information.

Note

The default serializer uses json.JSONEncoder. A different
serializer can be specified via the serializer argument. Custom
serializers should accept the object, a callback default, and any
extra kw keyword arguments passed during renderer construction.
This feature isn't widely used but it can be used to replace the
stock JSON serializer with, say, simplejson. If all you want to
do, however, is serialize custom objects, you should use the method
explained in Serializing Custom Objects instead
of replacing the serializer.

New in version 1.4: Prior to this version, there was no public API for supplying options
to the underlying serializer without defining a custom renderer.

	
add_adapter(type_or_iface, adapter)[source]

	When an object of the type (or interface) type_or_iface fails
to automatically encode using the serializer, the renderer will use
the adapter adapter to convert it into a JSON-serializable
object. The adapter must accept two arguments: the object and the
currently active request.

class Foo(object):
 x = 5

def foo_adapter(obj, request):
 return obj.x

renderer = JSON(indent=4)
renderer.add_adapter(Foo, foo_adapter)

When you've done this, the JSON renderer will be able to serialize
instances of the Foo class when they're encountered in your view
results.

	
class JSONP(param_name='callback', **kw)[source]

	JSONP [http://en.wikipedia.org/wiki/JSONP] renderer factory helper
which implements a hybrid json/jsonp renderer. JSONP is useful for
making cross-domain AJAX requests.

Configure a JSONP renderer using the
pyramid.config.Configurator.add_renderer() API at application
startup time:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback'))

The class' constructor also accepts arbitrary keyword arguments. All
keyword arguments except param_name are passed to the json.dumps
function as its keyword arguments.

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback', indent=4))

Changed in version 1.4: The ability of this class to accept a **kw in its constructor.

The arguments passed to this class' constructor mean the same thing as
the arguments passed to pyramid.renderers.JSON (including
serializer and adapters).

Once this renderer is registered via
add_renderer() as above, you can use
jsonp as the renderer= parameter to @view_config or
pyramid.config.Configurator.add_view`():

from pyramid.view import view_config

@view_config(renderer='jsonp')
def myview(request):
 return {'greeting':'Hello world'}

When a view is called that uses the JSONP renderer:

	If there is a parameter in the request's HTTP query string that matches
the param_name of the registered JSONP renderer (by default,
callback), the renderer will return a JSONP response.

	If there is no callback parameter in the request's query string, the
renderer will return a 'plain' JSON response.

New in version 1.1.

See also

See also JSONP Renderer.

	
add_adapter(type_or_iface, adapter)

	When an object of the type (or interface) type_or_iface fails
to automatically encode using the serializer, the renderer will use
the adapter adapter to convert it into a JSON-serializable
object. The adapter must accept two arguments: the object and the
currently active request.

class Foo(object):
 x = 5

def foo_adapter(obj, request):
 return obj.x

renderer = JSON(indent=4)
renderer.add_adapter(Foo, foo_adapter)

When you've done this, the JSON renderer will be able to serialize
instances of the Foo class when they're encountered in your view
results.

	
null_renderer

	An object that can be used in advanced integration cases as input to the
view configuration renderer= argument. When the null renderer is used
as a view renderer argument, Pyramid avoids converting the view callable
result into a Response object. This is useful if you want to reuse the
view configuration and lookup machinery outside the context of its use by
the Pyramid router.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.request

	
class Request(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)[source]

	A subclass of the WebOb Request class. An instance of
this class is created by the router and is provided to a
view callable (and to other subsystems) as the request
argument.

The documentation below (save for the add_response_callback and
add_finished_callback methods, which are defined in this subclass
itself, and the attributes context, registry, root,
subpath, traversed, view_name, virtual_root , and
virtual_root_path, each of which is added to the request by the
router at request ingress time) are autogenerated from the WebOb
source code used when this documentation was generated.

Due to technical constraints, we can't yet display the WebOb
version number from which this documentation is autogenerated, but
it will be the 'prevailing WebOb version' at the time of the
release of this Pyramid version. See
http://webob.org/ for further information.

	
context

	The context will be available as the context
attribute of the request object. It will be the context
object implied by the current request. See
Traversal for information about context objects.

	
registry

	The application registry will be available as the
registry attribute of the request object. See
Using the Zope Component Architecture in Pyramid for more information about the application
registry.

	
root

	The root object will be available as the root
attribute of the request object. It will be the resource
object at which traversal started (the root). See
Traversal for information about root objects.

	
subpath

	The traversal subpath will be available as the
subpath attribute of the request object. It will
be a sequence containing zero or more elements (which will be
Unicode objects). See Traversal for information
about the subpath.

	
traversed

	The "traversal path" will be available as the traversed
attribute of the request object. It will be a sequence
representing the ordered set of names that were used to
traverse to the context, not including the view name or
subpath. If there is a virtual root associated with the
request, the virtual root path is included within the traversal
path. See Traversal for more information.

	
view_name

	The view name will be available as the view_name
attribute of the request object. It will be a single
string (possibly the empty string if we're rendering a default
view). See Traversal for information about view
names.

	
virtual_root

	The virtual root will be available as the
virtual_root attribute of the request object. It
will be the virtual root object implied by the current request.
See Virtual Hosting for more information about virtual
roots.

	
virtual_root_path

	The virtual root path will be available as the
virtual_root_path attribute of the request object.
It will be a sequence representing the ordered set of names
that were used to traverse to the virtual root object. See
Virtual Hosting for more information about virtual
roots.

	
exception

	If an exception was raised by a root factory or a
view callable, or at various other points where
Pyramid executes user-defined code during the
processing of a request, the exception object which was caught
will be available as the exception attribute of the request
within a exception view, a response callback or a
finished callback. If no exception occurred, the value
of request.exception will be None within response and
finished callbacks.

	
exc_info

	If an exception was raised by a root factory or a view
callable, or at various other points where Pyramid executes
user-defined code during the processing of a request, result of
sys.exc_info() will be available as the exc_info attribute of
the request within a exception view, a response callback
or a finished callback. If no exception occurred, the value of
request.exc_info will be None within response and finished
callbacks.

	
response

	This attribute is actually a "reified" property which returns an
instance of the pyramid.response.Response class. The response
object returned does not exist until this attribute is accessed. Once
it is accessed, subsequent accesses to this request object will return
the same Response object.

The request.response API can is used by renderers. A render obtains
the response object it will return from a view that uses that renderer
by accessing request.response. Therefore, it's possible to use the
request.response API to set up a response object with "the right"
attributes (e.g. by calling request.response.set_cookie(...) or
request.response.content_type = 'text/plain', etc) within a view
that uses a renderer. For example, within a view that uses a
renderer:

response = request.response
response.set_cookie('mycookie', 'mine, all mine!')
return {'text':'Value that will be used by the renderer'}

Mutations to this response object will be preserved in the response sent
to the client after rendering. For more information about using
request.response in conjunction with a renderer, see
Varying Attributes of Rendered Responses.

Non-renderer code can also make use of request.response instead of
creating a response "by hand". For example, in view code:

response = request.response
response.body = 'Hello!'
response.content_type = 'text/plain'
return response

Note that the response in this circumstance is not "global"; it still
must be returned from the view code if a renderer is not used.

	
session

	If a session factory has been configured, this attribute
will represent the current user's session object. If a
session factory has not been configured, requesting the
request.session attribute will cause a
pyramid.exceptions.ConfigurationError to be raised.

	
matchdict

	If a route has matched during this request, this attribute will
be a dictionary containing the values matched by the URL pattern
associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See
The Matchdict.

	
matched_route

	If a route has matched during this request, this attribute will
be an object representing the route matched by the URL pattern
associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See
The Matched Route.

	
authenticated_userid

	
New in version 1.5.

A property which returns the userid of the currently authenticated user
or None if there is no authentication policy in effect or
there is no currently authenticated user. This differs from
unauthenticated_userid, because the
effective authentication policy will have ensured that a record
associated with the userid exists in persistent storage; if it has
not, this value will be None.

	
unauthenticated_userid

	
New in version 1.5.

A property which returns a value which represents the claimed (not
verified) user id of the credentials present in the request. None if
there is no authentication policy in effect or there is no user
data associated with the current request. This differs from
authenticated_userid, because the
effective authentication policy will not ensure that a record associated
with the userid exists in persistent storage. Even if the userid
does not exist in persistent storage, this value will be the value
of the userid claimed by the request data.

	
effective_principals

	
New in version 1.5.

A property which returns the list of 'effective' principal
identifiers for this request. This will include the userid of the
currently authenticated user if a user is currently authenticated. If no
authentication policy is in effect, this will return a sequence
containing only the pyramid.security.Everyone principal.

	
invoke_subrequest(request, use_tweens=False)

	
New in version 1.4a1.

Obtain a response object from the Pyramid application based on
information in the request object provided. The request object
must be an object that implements the Pyramid request interface (such
as a pyramid.request.Request instance). If use_tweens is
True, the request will be sent to the tween in the tween
stack closest to the request ingress. If use_tweens is False,
the request will be sent to the main router handler, and no tweens will
be invoked.

This function also:

	manages the threadlocal stack (so that
get_current_request() and
get_current_registry() work during a
request)

	Adds a registry attribute (the current Pyramid registry) and a
invoke_subrequest attribute (a callable) to the request object it's
handed.

	sets request extensions (such as those added via
add_request_method() or
set_request_property()) on the
request it's passed.

	causes a NewRequest event to be sent at the
beginning of request processing.

	causes a ContextFound event to be sent
when a context resource is found.

	Ensures that the user implied by the request passed has the necessary
authorization to invoke view callable before calling it.

	Calls any response callback functions defined within the
request's lifetime if a response is obtained from the Pyramid
application.

	causes a NewResponse event to be sent if a
response is obtained.

	Calls any finished callback functions defined within the
request's lifetime.

invoke_subrequest isn't actually a method of the Request object;
it's a callable added when the Pyramid router is invoked, or when a
subrequest is invoked. This means that it's not available for use on a
request provided by e.g. the pshell environment.

See also

See also Invoking a Subrequest.

	
has_permission(permission, context=None)

	Given a permission and an optional context, returns an instance of
pyramid.security.Allowed if the permission is granted to this
request with the provided context, or the context already associated
with the request. Otherwise, returns an instance of
pyramid.security.Denied. This method delegates to the current
authentication and authorization policies. Returns
pyramid.security.Allowed unconditionally if no authentication
policy has been registered for this request. If context is not
supplied or is supplied as None, the context used is the
request.context attribute.

	Parameters:	
	permission (unicode, str) -- Does this request have the given permission?

	context (object [http://docs.python.org/3/library/functions.html#object]) -- A resource object or None

	Returns:	pyramid.security.PermitsResult

New in version 1.5.

	
add_response_callback(callback)

	Add a callback to the set of callbacks to be called by the
router at a point after a response object is
successfully created. Pyramid does not have a
global response object: this functionality allows an
application to register an action to be performed against the
response once one is created.

A 'callback' is a callable which accepts two positional
parameters: request and response. For example:

	1
2
3
4

	def cache_callback(request, response):
 'Set the cache_control max_age for the response'
 response.cache_control.max_age = 360
request.add_response_callback(cache_callback)

Response callbacks are called in the order they're added
(first-to-most-recently-added). No response callback is
called if an exception happens in application code, or if the
response object returned by view code is invalid.

All response callbacks are called after the tweens and
before the pyramid.events.NewResponse event is sent.

Errors raised by callbacks are not handled specially. They
will be propagated to the caller of the Pyramid
router application.

See also

See also Using Response Callbacks.

	
add_finished_callback(callback)

	Add a callback to the set of callbacks to be called
unconditionally by the router at the very end of
request processing.

callback is a callable which accepts a single positional
parameter: request. For example:

	1
2
3
4
5
6
7
8
9

	import transaction

def commit_callback(request):
 '''commit or abort the transaction associated with request'''
 if request.exception is not None:
 transaction.abort()
 else:
 transaction.commit()
request.add_finished_callback(commit_callback)

Finished callbacks are called in the order they're added (
first- to most-recently- added). Finished callbacks (unlike
response callbacks) are always called, even if an exception
happens in application code that prevents a response from
being generated.

The set of finished callbacks associated with a request are
called very late in the processing of that request; they are
essentially the last thing called by the router. They
are called after response processing has already occurred in a
top-level finally: block within the router request
processing code. As a result, mutations performed to the
request provided to a finished callback will have no
meaningful effect, because response processing will have
already occurred, and the request's scope will expire almost
immediately after all finished callbacks have been processed.

Errors raised by finished callbacks are not handled specially.
They will be propagated to the caller of the Pyramid
router application.

See also

See also Using Finished Callbacks.

	
route_url(route_name, *elements, **kw)

	Generates a fully qualified URL for a named Pyramid
route configuration.

Use the route's name as the first positional argument.
Additional positional arguments (*elements) are appended to the
URL as path segments after it is generated.

Use keyword arguments to supply values which match any dynamic
path elements in the route definition. Raises a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]
exception if the URL cannot be generated for any reason (not
enough arguments, for example).

For example, if you've defined a route named "foobar" with the path
{foo}/{bar}/*traverse:

request.route_url('foobar',
 foo='1') => <KeyError exception>
request.route_url('foobar',
 foo='1',
 bar='2') => <KeyError exception>
request.route_url('foobar',
 foo='1',
 bar='2',
 traverse=('a','b')) => http://e.com/1/2/a/b
request.route_url('foobar',
 foo='1',
 bar='2',
 traverse='/a/b') => http://e.com/1/2/a/b

Values replacing :segment arguments can be passed as strings
or Unicode objects. They will be encoded to UTF-8 and URL-quoted
before being placed into the generated URL.

Values replacing *remainder arguments can be passed as strings
or tuples of Unicode/string values. If a tuple is passed as a
*remainder replacement value, its values are URL-quoted and
encoded to UTF-8. The resulting strings are joined with slashes
and rendered into the URL. If a string is passed as a
*remainder replacement value, it is tacked on to the URL
after being URL-quoted-except-for-embedded-slashes.

If no _query keyword argument is provided, the request query string
will be returned in the URL. If it is present, it will be used to
compose a query string that will be tacked on to the end of the URL,
replacing any request query string. The value of _query may be a
sequence of two-tuples or a data structure with an .items()
method that returns a sequence of two-tuples (presumably a dictionary).
This data structure will be turned into a query string per the
documentation of pyramid.url.urlencode() function. This will
produce a query string in the x-www-form-urlencoded format. A
non-x-www-form-urlencoded query string may be used by passing a
string value as _query in which case it will be URL-quoted
(e.g. query="foo bar" will become "foo%20bar"). However, the result
will not need to be in k=v form as required by
x-www-form-urlencoded. After the query data is turned into a query
string, a leading ? is prepended, and the resulting string is
appended to the generated URL.

Note

Python data structures that are passed as _query which are
sequences or dictionaries are turned into a string under the same
rules as when run through urllib.urlencode() [http://docs.python.org/library/urllib.html#urllib.urlencode] with the doseq
argument equal to True. This means that sequences can be passed
as values, and a k=v pair will be placed into the query string for
each value.

Changed in version 1.5: Allow the _query option to be a string to enable alternative
encodings.

If a keyword argument _anchor is present, its string
representation will be quoted per RFC 3986#section-3.5 [https://tools.ietf.org/html/rfc3986.html#section-3.5] and used as
a named anchor in the generated URL
(e.g. if _anchor is passed as foo and the route URL is
http://example.com/route/url, the resulting generated URL will
be http://example.com/route/url#foo).

Note

If _anchor is passed as a string, it should be UTF-8 encoded. If
_anchor is passed as a Unicode object, it will be converted to
UTF-8 before being appended to the URL.

Changed in version 1.5: The _anchor option will be escaped instead of using
its raw string representation.

If both _anchor and _query are specified, the anchor
element will always follow the query element,
e.g. http://example.com?foo=1#bar.

If any of the keyword arguments _scheme, _host, or _port
is passed and is non-None, the provided value will replace the
named portion in the generated URL. For example, if you pass
_host='foo.com', and the URL that would have been generated
without the host replacement is http://example.com/a, the result
will be http://foo.com/a.

Note that if _scheme is passed as https, and _port is not
passed, the _port value is assumed to have been passed as
443. Likewise, if _scheme is passed as http and
_port is not passed, the _port value is assumed to have been
passed as 80. To avoid this behavior, always explicitly pass
_port whenever you pass _scheme.

If a keyword _app_url is present, it will be used as the
protocol/hostname/port/leading path prefix of the generated URL.
For example, using an _app_url of
http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from
this function if the expansion of the route pattern associated
with the route_name expanded to /fleeb/flub. If
_app_url is not specified, the result of
request.application_url will be used as the prefix (the
default).

If both _app_url and any of _scheme, _host, or _port
are passed, _app_url takes precedence and any values passed for
_scheme, _host, and _port will be ignored.

This function raises a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] if the URL cannot be
generated due to missing replacement names. Extra replacement
names are ignored.

If the route object which matches the route_name argument has
a pregenerator, the *elements and **kw
arguments passed to this function might be augmented or changed.

	
route_path(route_name, *elements, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for a named Pyramid route configuration.

This function accepts the same argument as
pyramid.request.Request.route_url() and performs the same duty.
It just omits the host, port, and scheme information in the return
value; only the script_name, path, query parameters, and anchor data
are present in the returned string.

For example, if you've defined a route named 'foobar' with the path
/{foo}/{bar}, this call to route_path:

request.route_path('foobar', foo='1', bar='2')

Will return the string /1/2.

Note

Calling request.route_path('route') is the same as calling
request.route_url('route', _app_url=request.script_name).
pyramid.request.Request.route_path() is, in fact,
implemented in terms of pyramid.request.Request.route_url()
in just this way. As a result, any _app_url passed within the
**kw values to route_path will be ignored.

	
current_route_url(*elements, **kw)

	Generates a fully qualified URL for a named Pyramid
route configuration based on the 'current route'.

This function supplements
pyramid.request.Request.route_url(). It presents an easy way to
generate a URL for the 'current route' (defined as the route which
matched when the request was generated).

The arguments to this method have the same meaning as those with the
same names passed to pyramid.request.Request.route_url(). It
also understands an extra argument which route_url does not named
_route_name.

The route name used to generate a URL is taken from either the
_route_name keyword argument or the name of the route which is
currently associated with the request if _route_name was not
passed. Keys and values from the current request matchdict
are combined with the kw arguments to form a set of defaults
named newkw. Then request.route_url(route_name, *elements,
**newkw) is called, returning a URL.

Examples follow.

If the 'current route' has the route pattern /foo/{page} and the
current url path is /foo/1 , the matchdict will be
{'page':'1'}. The result of request.current_route_url() in
this situation will be /foo/1.

If the 'current route' has the route pattern /foo/{page} and the
current url path is /foo/1, the matchdict will be
{'page':'1'}. The result of
request.current_route_url(page='2') in this situation will be
/foo/2.

Usage of the _route_name keyword argument: if our routing table
defines routes /foo/{action} named 'foo' and
/foo/{action}/{page} named fooaction, and the current url
pattern is /foo/view (which has matched the /foo/{action}
route), we may want to use the matchdict args to generate a URL to
the fooaction route. In this scenario,
request.current_route_url(_route_name='fooaction', page='5')
Will return string like: /foo/view/5.

	
current_route_path(*elements, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for the Pyramid route configuration matched
by the current request.

This function accepts the same argument as
pyramid.request.Request.current_route_url() and performs the
same duty. It just omits the host, port, and scheme information in
the return value; only the script_name, path, query parameters, and
anchor data are present in the returned string.

For example, if the route matched by the current request has the
pattern /{foo}/{bar}, this call to current_route_path:

request.current_route_path(foo='1', bar='2')

Will return the string /1/2.

Note

Calling request.current_route_path('route') is the same
as calling request.current_route_url('route',
_app_url=request.script_name).
pyramid.request.Request.current_route_path() is, in fact,
implemented in terms of
pyramid.request.Request.current_route_url() in just this
way. As a result, any _app_url passed within the **kw
values to current_route_path will be ignored.

	
static_url(path, **kw)

	Generates a fully qualified URL for a static asset.
The asset must live within a location defined via the
pyramid.config.Configurator.add_static_view()
configuration declaration (see Serving Static Assets).

Example:

request.static_url('mypackage:static/foo.css') =>

 http://example.com/static/foo.css

The path argument points at a file or directory on disk which
a URL should be generated for. The path may be either a
relative path (e.g. static/foo.css) or an absolute path (e.g.
/abspath/to/static/foo.css) or a asset specification
(e.g. mypackage:static/foo.css).

The purpose of the **kw argument is the same as the purpose of
the pyramid.request.Request.route_url() **kw argument. See
the documentation for that function to understand the arguments which
you can provide to it. However, typically, you don't need to pass
anything as *kw when generating a static asset URL.

This function raises a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if a static view
definition cannot be found which matches the path specification.

	
static_path(path, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for a static resource.

This function accepts the same argument as
pyramid.request.Request.static_url() and performs the
same duty. It just omits the host, port, and scheme information in
the return value; only the script_name, path, query parameters, and
anchor data are present in the returned string.

Example:

request.static_path('mypackage:static/foo.css') =>

 /static/foo.css

Note

Calling request.static_path(apath) is the same as calling
request.static_url(apath, _app_url=request.script_name).
pyramid.request.Request.static_path() is, in fact, implemented
in terms of :meth:`pyramid.request.Request.static_url in just this
way. As a result, any _app_url passed within the **kw values
to static_path will be ignored.

	
resource_url(resource, *elements, **kw)

	Generate a string representing the absolute URL of the
resource object based on the wsgi.url_scheme,
HTTP_HOST or SERVER_NAME in the request, plus any
SCRIPT_NAME. The overall result of this method is always a
UTF-8 encoded string.

Examples:

request.resource_url(resource) =>

 http://example.com/

request.resource_url(resource, 'a.html') =>

 http://example.com/a.html

request.resource_url(resource, 'a.html', query={'q':'1'}) =>

 http://example.com/a.html?q=1

request.resource_url(resource, 'a.html', anchor='abc') =>

 http://example.com/a.html#abc

request.resource_url(resource, app_url='') =>

 /

Any positional arguments passed in as elements must be strings
Unicode objects, or integer objects. These will be joined by slashes
and appended to the generated resource URL. Each of the elements
passed in is URL-quoted before being appended; if any element is
Unicode, it will converted to a UTF-8 bytestring before being
URL-quoted. If any element is an integer, it will be converted to its
string representation before being URL-quoted.

Warning

if no elements arguments are specified, the resource
URL will end with a trailing slash. If any
elements are used, the generated URL will not
end in a trailing slash.

If a keyword argument query is present, it will be used to compose
a query string that will be tacked on to the end of the URL. The value
of query may be a sequence of two-tuples or a data structure with
an .items() method that returns a sequence of two-tuples
(presumably a dictionary). This data structure will be turned into a
query string per the documentation of :func:pyramid.url.urlencode
function. This will produce a query string in the
x-www-form-urlencoded encoding. A non-x-www-form-urlencoded
query string may be used by passing a string value as query in
which case it will be URL-quoted (e.g. query="foo bar" will become
"foo%20bar"). However, the result will not need to be in k=v form
as required by x-www-form-urlencoded. After the query data is
turned into a query string, a leading ? is prepended, and the
resulting string is appended to the generated URL.

Note

Python data structures that are passed as query which are
sequences or dictionaries are turned into a string under the same
rules as when run through urllib.urlencode() [http://docs.python.org/library/urllib.html#urllib.urlencode] with the doseq
argument equal to True. This means that sequences can be passed
as values, and a k=v pair will be placed into the query string for
each value.

Changed in version 1.5: Allow the query option to be a string to enable alternative
encodings.

If a keyword argument anchor is present, its string
representation will be used as a named anchor in the generated URL
(e.g. if anchor is passed as foo and the resource URL is
http://example.com/resource/url, the resulting generated URL will
be http://example.com/resource/url#foo).

Note

If anchor is passed as a string, it should be UTF-8 encoded. If
anchor is passed as a Unicode object, it will be converted to
UTF-8 before being appended to the URL.

Changed in version 1.5: The anchor option will be escaped instead of using
its raw string representation.

If both anchor and query are specified, the anchor element
will always follow the query element,
e.g. http://example.com?foo=1#bar.

If any of the keyword arguments scheme, host, or port is
passed and is non-None, the provided value will replace the named
portion in the generated URL. For example, if you pass
host='foo.com', and the URL that would have been generated
without the host replacement is http://example.com/a, the result
will be http://foo.com/a.

If scheme is passed as https, and an explicit port is not
passed, the port value is assumed to have been passed as 443.
Likewise, if scheme is passed as http and port is not
passed, the port value is assumed to have been passed as
80. To avoid this behavior, always explicitly pass port
whenever you pass scheme.

If a keyword argument app_url is passed and is not None, it
should be a string that will be used as the port/hostname/initial
path portion of the generated URL instead of the default request
application URL. For example, if app_url='http://foo', then the
resulting url of a resource that has a path of /baz/bar will be
http://foo/baz/bar. If you want to generate completely relative
URLs with no leading scheme, host, port, or initial path, you can
pass app_url=''. Passing app_url='' when the resource path is
/baz/bar will return /baz/bar.

New in version 1.3: app_url

If app_url is passed and any of scheme, port, or host
are also passed, app_url will take precedence and the values
passed for scheme, host, and/or port will be ignored.

If the resource passed in has a __resource_url__ method, it
will be used to generate the URL (scheme, host, port, path) for the
base resource which is operated upon by this function.

See also

See also Overriding Resource URL Generation.

New in version 1.5: route_name, route_kw, and route_remainder_name

If route_name is passed, this function will delegate its URL
production to the route_url function. Calling
resource_url(someresource, 'element1', 'element2', query={'a':1},
route_name='blogentry') is roughly equivalent to doing:

remainder_path = request.resource_path(someobject)
url = request.route_url(
 'blogentry',
 'element1',
 'element2',
 _query={'a':'1'},
 traverse=traversal_path,
)

It is only sensible to pass route_name if the route being named has
a *remainder stararg value such as *traverse. The remainder
value will be ignored in the output otherwise.

By default, the resource path value will be passed as the name
traverse when route_url is called. You can influence this by
passing a different route_remainder_name value if the route has a
different *stararg value at its end. For example if the route
pattern you want to replace has a *subpath stararg ala
/foo*subpath:

request.resource_url(
 resource,
 route_name='myroute',
 route_remainder_name='subpath'
)

If route_name is passed, it is also permissible to pass
route_kw, which will passed as additional keyword arguments to
route_url. Saying resource_url(someresource, 'element1',
'element2', route_name='blogentry', route_kw={'id':'4'},
_query={'a':'1'}) is roughly equivalent to:

remainder_path = request.resource_path_tuple(someobject)
kw = {'id':'4', '_query':{'a':'1'}, 'traverse':traversal_path}
url = request.route_url(
 'blogentry',
 'element1',
 'element2',
 **kw,
)

If route_kw or route_remainder_name is passed, but
route_name is not passed, both route_kw and
route_remainder_name will be ignored. If route_name
is passed, the __resource_url__ method of the resource passed is
ignored unconditionally. This feature is incompatible with
resources which generate their own URLs.

Note

If the resource used is the result of a traversal, it
must be location-aware. The resource can also be the context
of a URL dispatch; contexts found this way do not need to be
location-aware.

Note

If a 'virtual root path' is present in the request environment (the
value of the WSGI environ key HTTP_X_VHM_ROOT), and the resource
was obtained via traversal, the URL path will not include the
virtual root prefix (it will be stripped off the left hand side of
the generated URL).

Note

For backwards compatibility purposes, this method is also
aliased as the model_url method of request.

	
resource_path(resource, *elements, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for a resource.

This function accepts the same argument as
pyramid.request.Request.resource_url() and performs the same
duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and
anchor data are present in the returned string.

Note

Calling request.resource_path(resource) is the same as calling
request.resource_path(resource, app_url=request.script_name).
pyramid.request.Request.resource_path() is, in fact,
implemented in terms of
pyramid.request.Request.resource_url() in just this way. As
a result, any app_url passed within the **kw values to
route_path will be ignored. scheme, host, and
port are also ignored.

	
json_body

	This property will return the JSON-decoded variant of the request
body. If the request body is not well-formed JSON, or there is no
body associated with this request, this property will raise an
exception.

See also

See also Dealing with a JSON-Encoded Request Body.

	
set_property(callable, name=None, reify=False)

	Add a callable or a property descriptor to the request instance.

Properties, unlike attributes, are lazily evaluated by executing
an underlying callable when accessed. They can be useful for
adding features to an object without any cost if those features
go unused.

A property may also be reified via the
pyramid.decorator.reify decorator by setting
reify=True, allowing the result of the evaluation to be
cached. Thus the value of the property is only computed once for
the lifetime of the object.

callable can either be a callable that accepts the request as
its single positional parameter, or it can be a property
descriptor.

If the callable is a property descriptor a ValueError
will be raised if name is None or reify is True.

If name is None, the name of the property will be computed
from the name of the callable.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	def _connect(request):
 conn = request.registry.dbsession()
 def cleanup(request):
 # since version 1.5, request.exception is no
 # longer eagerly cleared
 if request.exception is not None:
 conn.rollback()
 else:
 conn.commit()
 conn.close()
 request.add_finished_callback(cleanup)
 return conn

@subscriber(NewRequest)
def new_request(event):
 request = event.request
 request.set_property(_connect, 'db', reify=True)

The subscriber doesn't actually connect to the database, it just
provides the API which, when accessed via request.db, will
create the connection. Thanks to reify, only one connection is
made per-request even if request.db is accessed many times.

This pattern provides a way to augment the request object
without having to subclass it, which can be useful for extension
authors.

New in version 1.3.

	
localizer

	A localizer which will use the current locale name to
translate values.

New in version 1.5.

	
locale_name

	The locale name of the current request as computed by the
locale negotiator.

New in version 1.5.

	
GET

	Return a MultiDict containing all the variables from the
QUERY_STRING.

	
POST

	Return a MultiDict containing all the variables from a form
request. Returns an empty dict-like object for non-form requests.

Form requests are typically POST requests, however PUT & PATCH requests
with an appropriate Content-Type are also supported.

	
accept

	Gets and sets the Accept header (HTTP spec section 14.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1]).

	
accept_charset

	Gets and sets the Accept-Charset header (HTTP spec section 14.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.2]).

	
accept_encoding

	Gets and sets the Accept-Encoding header (HTTP spec section 14.3 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3]).

	
accept_language

	Gets and sets the Accept-Language header (HTTP spec section 14.4 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4]).

	
application_url

	The URL including SCRIPT_NAME (no PATH_INFO or query string)

	
as_bytes(skip_body=False)

	Return HTTP bytes representing this request.
If skip_body is True, exclude the body.
If skip_body is an integer larger than one, skip body
only if its length is bigger than that number.

	
authorization

	Gets and sets the Authorization header (HTTP spec section 14.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8]). Converts it using parse_auth and serialize_auth.

	
blank(path, environ=None, base_url=None, headers=None, POST=None, **kw)

	Create a blank request environ (and Request wrapper) with the
given path (path should be urlencoded), and any keys from
environ.

The path will become path_info, with any query string split
off and used.

All necessary keys will be added to the environ, but the
values you pass in will take precedence. If you pass in
base_url then wsgi.url_scheme, HTTP_HOST, and SCRIPT_NAME will
be filled in from that value.

Any extra keyword will be passed to __init__.

	
body

	Return the content of the request body.

	
body_file

	Input stream of the request (wsgi.input).
Setting this property resets the content_length and seekable flag
(unlike setting req.body_file_raw).

	
body_file_raw

	Gets and sets the wsgi.input key in the environment.

	
body_file_seekable

	Get the body of the request (wsgi.input) as a seekable file-like
object. Middleware and routing applications should use this
attribute over .body_file.

If you access this value, CONTENT_LENGTH will also be updated.

	
cache_control

	Get/set/modify the Cache-Control header (HTTP spec section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

	
call_application(application, catch_exc_info=False)

	Call the given WSGI application, returning (status_string,
headerlist, app_iter)

Be sure to call app_iter.close() if it's there.

If catch_exc_info is true, then returns (status_string,
headerlist, app_iter, exc_info), where the fourth item may
be None, but won't be if there was an exception. If you don't
do this and there was an exception, the exception will be
raised directly.

	
client_addr

	The effective client IP address as a string. If the
HTTP_X_FORWARDED_FOR header exists in the WSGI environ, this
attribute returns the client IP address present in that header
(e.g. if the header value is 192.168.1.1, 192.168.1.2, the value
will be 192.168.1.1). If no HTTP_X_FORWARDED_FOR header is
present in the environ at all, this attribute will return the value
of the REMOTE_ADDR header. If the REMOTE_ADDR header is
unset, this attribute will return the value None.

Warning

It is possible for user agents to put someone else's IP or just
any string in HTTP_X_FORWARDED_FOR as it is a normal HTTP
header. Forward proxies can also provide incorrect values (private
IP addresses etc). You cannot "blindly" trust the result of this
method to provide you with valid data unless you're certain that
HTTP_X_FORWARDED_FOR has the correct values. The WSGI server
must be behind a trusted proxy for this to be true.

	
content_length

	Gets and sets the Content-Length header (HTTP spec section 14.13 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13]). Converts it using int.

	
content_type

	Return the content type, but leaving off any parameters (like
charset, but also things like the type in application/atom+xml;
type=entry)

If you set this property, you can include parameters, or if
you don't include any parameters in the value then existing
parameters will be preserved.

	
cookies

	Return a dictionary of cookies as found in the request.

	
copy()

	Copy the request and environment object.

This only does a shallow copy, except of wsgi.input

	
copy_body()

	Copies the body, in cases where it might be shared with
another request object and that is not desired.

This copies the body in-place, either into a BytesIO object
or a temporary file.

	
copy_get()

	Copies the request and environment object, but turning this request
into a GET along the way. If this was a POST request (or any other
verb) then it becomes GET, and the request body is thrown away.

	
date

	Gets and sets the Date header (HTTP spec section 14.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8]). Converts it using HTTP date.

	
domain

	Returns the domain portion of the host value. Equivalent to:

domain = request.host
if ':' in domain:
 domain = domain.split(':', 1)[0]

This will be equivalent to the domain portion of the HTTP_HOST
value in the environment if it exists, or the SERVER_NAME value in
the environment if it doesn't. For example, if the environment
contains an HTTP_HOST value of foo.example.com:8000,
request.domain will return foo.example.com.

Note that this value cannot be set on the request. To set the host
value use webob.request.Request.host() instead.

	
from_bytes(b)

	Create a request from HTTP bytes data. If the bytes contain
extra data after the request, raise a ValueError.

	
from_file(fp)

	Read a request from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the request, not the end of the
file (unless the request is a POST or PUT and has no
Content-Length, in that case, the entire file is read).

This reads the request as represented by str(req); it may
not read every valid HTTP request properly.

	
get_response(application=None, catch_exc_info=False)

	Like .call_application(application), except returns a
response object with .status, .headers, and .body
attributes.

This will use self.ResponseClass to figure out the class
of the response object to return.

If application is not given, this will send the request to
self.make_default_send_app()

	
headers

	All the request headers as a case-insensitive dictionary-like
object.

	
host

	Host name provided in HTTP_HOST, with fall-back to SERVER_NAME

	
host_port

	The effective server port number as a string. If the HTTP_HOST
header exists in the WSGI environ, this attribute returns the port
number present in that header. If the HTTP_HOST header exists but
contains no explicit port number: if the WSGI url scheme is "https" ,
this attribute returns "443", if the WSGI url scheme is "http", this
attribute returns "80" . If no HTTP_HOST header is present in
the environ at all, this attribute will return the value of the
SERVER_PORT header (which is guaranteed to be present).

	
host_url

	The URL through the host (no path)

	
http_version

	Gets and sets the SERVER_PROTOCOL key in the environment.

	
if_match

	Gets and sets the If-Match header (HTTP spec section 14.24 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24]). Converts it as a Etag.

	
if_modified_since

	Gets and sets the If-Modified-Since header (HTTP spec section 14.25 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25]). Converts it using HTTP date.

	
if_none_match

	Gets and sets the If-None-Match header (HTTP spec section 14.26 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26]). Converts it as a Etag.

	
if_range

	Gets and sets the If-Range header (HTTP spec section 14.27 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27]). Converts it using IfRange object.

	
if_unmodified_since

	Gets and sets the If-Unmodified-Since header (HTTP spec section 14.28 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28]). Converts it using HTTP date.

	
is_body_readable

	webob.is_body_readable is a flag that tells us
that we can read the input stream even though
CONTENT_LENGTH is missing. This allows FakeCGIBody
to work and can be used by servers to support
chunked encoding in requests.
For background see https://bitbucket.org/ianb/webob/issue/6

	
is_body_seekable

	Gets and sets the webob.is_body_seekable key in the environment.

	
is_response(ob)[source]

	Return True if the object passed as ob is a valid
response object, False otherwise.

	
is_xhr

	Is X-Requested-With header present and equal to XMLHttpRequest?

Note: this isn't set by every XMLHttpRequest request, it is
only set if you are using a Javascript library that sets it
(or you set the header yourself manually). Currently
Prototype and jQuery are known to set this header.

	
json

	Access the body of the request as JSON

	
localizer

	Convenience property to return a localizer

	
make_body_seekable()

	This forces environ['wsgi.input'] to be seekable.
That means that, the content is copied into a BytesIO or temporary
file and flagged as seekable, so that it will not be unnecessarily
copied again.

After calling this method the .body_file is always seeked to the
start of file and .content_length is not None.

The choice to copy to BytesIO is made from
self.request_body_tempfile_limit

	
make_tempfile()

	Create a tempfile to store big request body.
This API is not stable yet. A 'size' argument might be added.

	
max_forwards

	Gets and sets the Max-Forwards header (HTTP spec section 14.31 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.31]). Converts it using int.

	
method

	Gets and sets the REQUEST_METHOD key in the environment.

	
params

	A dictionary-like object containing both the parameters from
the query string and request body.

	
path

	The path of the request, without host or query string

	
path_info

	Gets and sets the PATH_INFO key in the environment.

	
path_info_peek()

	Returns the next segment on PATH_INFO, or None if there is no
next segment. Doesn't modify the environment.

	
path_info_pop(pattern=None)

	'Pops' off the next segment of PATH_INFO, pushing it onto
SCRIPT_NAME, and returning the popped segment. Returns None if
there is nothing left on PATH_INFO.

Does not return '' when there's an empty segment (like
/path//path); these segments are just ignored.

Optional pattern argument is a regexp to match the return value
before returning. If there is no match, no changes are made to the
request and None is returned.

	
path_qs

	The path of the request, without host but with query string

	
path_url

	The URL including SCRIPT_NAME and PATH_INFO, but not QUERY_STRING

	
pragma

	Gets and sets the Pragma header (HTTP spec section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32]).

	
query_string

	Gets and sets the QUERY_STRING key in the environment.

	
range

	Gets and sets the Range header (HTTP spec section 14.35 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35]). Converts it using Range object.

	
referer

	Gets and sets the Referer header (HTTP spec section 14.36 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36]).

	
referrer

	Gets and sets the Referer header (HTTP spec section 14.36 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36]).

	
relative_url(other_url, to_application=False)

	Resolve other_url relative to the request URL.

If to_application is True, then resolve it relative to the
URL with only SCRIPT_NAME

	
remote_addr

	Gets and sets the REMOTE_ADDR key in the environment.

	
remote_user

	Gets and sets the REMOTE_USER key in the environment.

	
remove_conditional_headers(remove_encoding=True, remove_range=True, remove_match=True, remove_modified=True)

	Remove headers that make the request conditional.

These headers can cause the response to be 304 Not Modified,
which in some cases you may not want to be possible.

This does not remove headers like If-Match, which are used for
conflict detection.

	
response

	This attribute is actually a "reified" property which returns an
instance of the pyramid.response.Response. class. The
response object returned does not exist until this attribute is
accessed. Subsequent accesses will return the same Response object.

The request.response API is used by renderers. A render obtains
the response object it will return from a view that uses that renderer
by accessing request.response. Therefore, it's possible to use the
request.response API to set up a response object with "the
right" attributes (e.g. by calling request.response.set_cookie())
within a view that uses a renderer. Mutations to this response object
will be preserved in the response sent to the client.

	
scheme

	Gets and sets the wsgi.url_scheme key in the environment.

	
script_name

	Gets and sets the SCRIPT_NAME key in the environment.

	
send(application=None, catch_exc_info=False)

	Like .call_application(application), except returns a
response object with .status, .headers, and .body
attributes.

This will use self.ResponseClass to figure out the class
of the response object to return.

If application is not given, this will send the request to
self.make_default_send_app()

	
server_name

	Gets and sets the SERVER_NAME key in the environment.

	
server_port

	Gets and sets the SERVER_PORT key in the environment. Converts it using int.

	
session

	Obtain the session object associated with this
request. If a session factory has not been registered
during application configuration, a
pyramid.exceptions.ConfigurationError will be raised

	
text

	Get/set the text value of the body

	
upath_info

	Gets and sets the PATH_INFO key in the environment.

	
url

	The full request URL, including QUERY_STRING

	
url_encoding

	Gets and sets the webob.url_encoding key in the environment.

	
urlargs

	Return any positional variables matched in the URL.

Takes values from environ['wsgiorg.routing_args'].
Systems like routes set this value.

	
urlvars

	Return any named variables matched in the URL.

Takes values from environ['wsgiorg.routing_args'].
Systems like routes set this value.

	
uscript_name

	Gets and sets the SCRIPT_NAME key in the environment.

	
user_agent

	Gets and sets the User-Agent header (HTTP spec section 14.43 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.43]).

Note

For information about the API of a multidict structure (such as
that used as request.GET, request.POST, and request.params),
see pyramid.interfaces.IMultiDict.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.response

	
class Response(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, **kw)[source]

	
	
accept_ranges

	Gets and sets the Accept-Ranges header (HTTP spec section 14.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5]).

	
age

	Gets and sets the Age header (HTTP spec section 14.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.6]). Converts it using int.

	
allow

	Gets and sets the Allow header (HTTP spec section 14.7 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.7]). Converts it using list.

	
app_iter

	Returns the app_iter of the response.

If body was set, this will create an app_iter from that body
(a single-item list)

	
app_iter_range(start, stop)[source]

	Return a new app_iter built from the response app_iter, that
serves up only the given start:stop range.

	
body

	The body of the response, as a str. This will read in the
entire app_iter if necessary.

	
body_file

	A file-like object that can be used to write to the
body. If you passed in a list app_iter, that app_iter will be
modified by writes.

	
cache_control

	Get/set/modify the Cache-Control header (HTTP spec section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

	
charset

	Get/set the charset (in the Content-Type)

	
conditional_response_app(environ, start_response)[source]

	Like the normal __call__ interface, but checks conditional headers:

	If-Modified-Since (304 Not Modified; only on GET, HEAD)

	If-None-Match (304 Not Modified; only on GET, HEAD)

	Range (406 Partial Content; only on GET, HEAD)

	
content_disposition

	Gets and sets the Content-Disposition header (HTTP spec section 19.5.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1]).

	
content_encoding

	Gets and sets the Content-Encoding header (HTTP spec section 14.11 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11]).

	
content_language

	Gets and sets the Content-Language header (HTTP spec section 14.12 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.12]). Converts it using list.

	
content_length

	Gets and sets the Content-Length header (HTTP spec section 14.17 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]). Converts it using int.

	
content_location

	Gets and sets the Content-Location header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

	
content_md5

	Gets and sets the Content-MD5 header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

	
content_range

	Gets and sets the Content-Range header (HTTP spec section 14.16 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.16]). Converts it using ContentRange object.

	
content_type

	Get/set the Content-Type header (or None), without the
charset or any parameters.

If you include parameters (or ; at all) when setting the
content_type, any existing parameters will be deleted;
otherwise they will be preserved.

	
content_type_params

	A dictionary of all the parameters in the content type.

(This is not a view, set to change, modifications of the dict would not
be applied otherwise)

	
copy()[source]

	Makes a copy of the response

	
date

	Gets and sets the Date header (HTTP spec section 14.18 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18]). Converts it using HTTP date.

	
delete_cookie(name, path='/', domain=None)[source]

	Delete a cookie from the client. Note that path and domain must match
how the cookie was originally set.

This sets the cookie to the empty string, and max_age=0 so
that it should expire immediately.

	
encode_content(encoding='gzip', lazy=False)[source]

	Encode the content with the given encoding (only gzip and
identity are supported).

	
etag

	Gets and sets the ETag header (HTTP spec section 14.19 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19]). Converts it using Entity tag.

	
expires

	Gets and sets the Expires header (HTTP spec section 14.21 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21]). Converts it using HTTP date.

	
from_file(fp)[source]

	Reads a response from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the response, not the end of the
file.

This reads the response as represented by str(resp); it
may not read every valid HTTP response properly. Responses
must have a Content-Length

	
headerlist

	The list of response headers

	
headers

	The headers in a dictionary-like object

	
json

	Access the body of the response as JSON

	
json_body

	Access the body of the response as JSON

	
last_modified

	Gets and sets the Last-Modified header (HTTP spec section 14.29 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29]). Converts it using HTTP date.

	
location

	Gets and sets the Location header (HTTP spec section 14.30 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30]).

	
md5_etag(body=None, set_content_md5=False)[source]

	Generate an etag for the response object using an MD5 hash of
the body (the body parameter, or self.body if not given)

Sets self.etag
If set_content_md5 is True sets self.content_md5 as well

	
merge_cookies(resp)[source]

	Merge the cookies that were set on this response with the
given resp object (which can be any WSGI application).

If the resp is a webob.Response [http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Response] object, then the
other object will be modified in-place.

	
pragma

	Gets and sets the Pragma header (HTTP spec section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32]).

	
retry_after

	Gets and sets the Retry-After header (HTTP spec section 14.37 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37]). Converts it using HTTP date or delta seconds.

	
server

	Gets and sets the Server header (HTTP spec section 14.38 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.38]).

	
set_cookie(name=None, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, comment=None, expires=None, overwrite=False, key=None)[source]

	Set (add) a cookie for the response.

Arguments are:

name

The cookie name.

value

The cookie value, which should be a string or None. If
value is None, it's equivalent to calling the
webob.response.Response.unset_cookie() [http://docs.webob.org/en/latest/api/response.html#webob.response.Response.unset_cookie] method for this
cookie key (it effectively deletes the cookie on the client).

max_age

An integer representing a number of seconds, datetime.timedelta,
or None. This value is used as the Max-Age of the generated
cookie. If expires is not passed and this value is not
None, the max_age value will also influence the Expires
value of the cookie (Expires will be set to now + max_age). If
this value is None, the cookie will not have a Max-Age value
(unless expires is set). If both max_age and expires are
set, this value takes precedence.

path

A string representing the cookie Path value. It defaults to
/.

domain

A string representing the cookie Domain, or None. If
domain is None, no Domain value will be sent in the
cookie.

secure

A boolean. If it's True, the secure flag will be sent in
the cookie, if it's False, the secure flag will not be
sent in the cookie.

httponly

A boolean. If it's True, the HttpOnly flag will be sent
in the cookie, if it's False, the HttpOnly flag will not
be sent in the cookie.

comment

A string representing the cookie Comment value, or None.
If comment is None, no Comment value will be sent in
the cookie.

expires

A datetime.timedelta object representing an amount of time,
datetime.datetime or None. A non-None value is used to
generate the Expires value of the generated cookie. If
max_age is not passed, but this value is not None, it will
influence the Max-Age header. If this value is None, the
Expires cookie value will be unset (unless max_age is set).
If max_age is set, it will be used to generate the expires
and this value is ignored.

overwrite

If this key is True, before setting the cookie, unset any
existing cookie.

	
status

	The status string

	
status_code

	The status as an integer

	
status_int

	The status as an integer

	
text

	Get/set the text value of the body (using the charset of the
Content-Type)

	
ubody

	Deprecated alias for .text

	
unicode_body

	Deprecated alias for .text

	
unset_cookie(name, strict=True)[source]

	Unset a cookie with the given name (remove it from the
response).

	
vary

	Gets and sets the Vary header (HTTP spec section 14.44 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44]). Converts it using list.

	
www_authenticate

	Gets and sets the WWW-Authenticate header (HTTP spec section 14.47 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.47]). Converts it using parse_auth and serialize_auth.

	
class FileResponse(path, request=None, cache_max_age=None, content_type=None, content_encoding=None)[source]

	A Response object that can be used to serve a static file from disk
simply.

path is a file path on disk.

request must be a Pyramid request object. Note
that a request must be passed if the response is meant to attempt to
use the wsgi.file_wrapper feature of the web server that you're using
to serve your Pyramid application.

cache_max_age is the number of seconds that should be used
to HTTP cache this response.

content_type is the content_type of the response.

content_encoding is the content_encoding of the response.
It's generally safe to leave this set to None if you're serving a
binary file. This argument will be ignored if you also leave
content-type as None.

	
class FileIter(file, block_size=262144)[source]

	A fixed-block-size iterator for use as a WSGI app_iter.

file is a Python file pointer (or at least an object with a read
method that takes a size hint).

block_size is an optional block size for iteration.

Functions

	
response_adapter(*types_or_ifaces)[source]

	Decorator activated via a scan which treats the function
being decorated as a response adapter for the set of types or
interfaces passed as *types_or_ifaces to the decorator constructor.

For example, if you scan the following response adapter:

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(int)
def myadapter(i):
 return Response(status=i)

You can then return an integer from your view callables, and it will be
converted into a response with the integer as the status code.

More than one type or interface can be passed as a constructor argument.
The decorated response adapter will be called for each type or interface.

import json

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(dict, list)
def myadapter(ob):
 return Response(json.dumps(ob))

This method will have no effect until a scan is performed
agains the package or module which contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan('somepackage_containing_adapters')

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.scaffolds

	
class Template(name)[source]

	Inherit from this base class and override methods to use the Pyramid
scaffolding system.

	
post(command, output_dir, vars)[source]

	Called after template is applied.

	
pre(command, output_dir, vars)[source]

	Called before template is applied.

	
render_template(content, vars, filename=None)[source]

	Return a bytestring representing a templated file based on the
input (content) and the variable names defined (vars). filename
is used for exception reporting.

	
template_dir()[source]

	Return the template directory of the scaffold. By default, it
returns the value of os.path.join(self.module_dir(),
self._template_dir) (self.module_dir() returns the module in
which your subclass has been defined). If self._template_dir is
a tuple this method just returns the value instead of trying to
construct a path. If _template_dir is a tuple, it should be a
2-element tuple: (package_name, package_relative_path).

	
class PyramidTemplate(name)[source]

	A class that can be used as a base class for Pyramid scaffolding
templates.

	
post(command, output_dir, vars)[source]

	Overrides pyramid.scaffolds.template.Template.post(), to
print "Welcome to Pyramid. Sorry for the convenience." after a
successful scaffolding rendering.

	
pre(command, output_dir, vars)[source]

	Overrides pyramid.scaffolds.template.Template.pre(), adding
several variables to the default variables list (including
random_string, and package_logger). It also prevents common
misnamings (such as naming a package "site" or naming a package
logger "root".

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.scripting

	
get_root(app, request=None)[source]

	Return a tuple composed of (root, closer) when provided a
router instance as the app argument. The root
returned is the application root object. The closer returned
is a callable (accepting no arguments) that should be called when
your scripting application is finished using the root.

request is passed to the Pyramid application root
factory to compute the root. If request is None, a default
will be constructed using the registry's Request Factory
via the pyramid.interfaces.IRequestFactory.blank() method.

	
prepare(request=None, registry=None)[source]

	This function pushes data onto the Pyramid threadlocal stack
(request and registry), making those objects 'current'. It
returns a dictionary useful for bootstrapping a Pyramid
application in a scripting environment.

request is passed to the Pyramid application root
factory to compute the root. If request is None, a default
will be constructed using the registry's Request Factory
via the pyramid.interfaces.IRequestFactory.blank() method.

If registry is not supplied, the last registry loaded from
pyramid.config.global_registries will be used. If you
have loaded more than one Pyramid application in the
current process, you may not want to use the last registry
loaded, thus you can search the global_registries and supply
the appropriate one based on your own criteria.

The function returns a dictionary composed of root,
closer, registry, request and root_factory. The
root returned is the application's root resource object. The
closer returned is a callable (accepting no arguments) that
should be called when your scripting application is finished
using the root. registry is the registry object passed or
the last registry loaded into
pyramid.config.global_registries if no registry is passed.
request is the request object passed or the constructed request
if no request is passed. root_factory is the root factory used
to construct the root.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.security

Authentication API Functions

	
authenticated_userid(request)[source]

	A function that returns the value of the property
pyramid.request.Request.authenticated_userid.

Deprecated since version 1.5: Use pyramid.request.Request.authenticated_userid instead.

	
unauthenticated_userid(request)[source]

	A function that returns the value of the property
pyramid.request.Request.unauthenticated_userid.

Deprecated since version 1.5: Use pyramid.request.Request.unauthenticated_userid instead.

	
effective_principals(request)[source]

	A function that returns the value of the property
pyramid.request.Request.effective_principals.

Deprecated since version 1.5: Use pyramid.request.Request.effective_principals instead.

	
forget(request)[source]

	Return a sequence of header tuples (e.g. [('Set-Cookie',
'foo=abc')]) suitable for 'forgetting' the set of credentials
possessed by the currently authenticated user. A common usage
might look like so within the body of a view function
(response is assumed to be an WebOb -style
response object computed previously by the view code):

from pyramid.security import forget
headers = forget(request)
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will
always return an empty sequence.

	
remember(request, principal, **kw)[source]

	Returns a sequence of header tuples (e.g. [('Set-Cookie', 'foo=abc')])
on this request's response.
These headers are suitable for 'remembering' a set of credentials
implied by the data passed as principal and *kw using the
current authentication policy. Common usage might look
like so within the body of a view function (response is
assumed to be a WebOb -style response object
computed previously by the view code):

from pyramid.security import remember
headers = remember(request, 'chrism', password='123', max_age='86400')
response = request.response
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will
always return an empty sequence. If used, the composition and
meaning of **kw must be agreed upon by the calling code and
the effective authentication policy.

Authorization API Functions

	
has_permission(permission, context, request)[source]

	A function that calls pyramid.request.Request.has_permission()
and returns its result.

Deprecated since version 1.5: Use pyramid.request.Request.has_permission() instead.

Changed in version 1.5a3: If context is None, then attempt to use the context attribute of self;
if not set, then the AttributeError is propagated.

	
principals_allowed_by_permission(context, permission)[source]

	Provided a context (a resource object), and a permission
(a string or unicode object), if a authorization policy is
in effect, return a sequence of principal ids that possess
the permission in the context. If no authorization policy is
in effect, this will return a sequence with the single value
pyramid.security.Everyone (the special principal
identifier representing all principals).

Note

even if an authorization policy is in effect,
some (exotic) authorization policies may not implement the
required machinery for this function; those will cause a
NotImplementedError [http://docs.python.org/3/library/exceptions.html#NotImplementedError] exception to be raised when this
function is invoked.

	
view_execution_permitted(context, request, name='')[source]

	If the view specified by context and name is protected
by a permission, check the permission associated with the
view using the effective authentication/authorization policies and
the request. Return a boolean result. If no
authorization policy is in effect, or if the view is not
protected by a permission, return True. If no view can view found,
an exception will be raised.

Changed in version 1.4a4: An exception is raised if no view is found.

Constants

	
Everyone

	The special principal id named 'Everyone'. This principal id is
granted to all requests. Its actual value is the string
'system.Everyone'.

	
Authenticated

	The special principal id named 'Authenticated'. This principal id
is granted to all requests which contain any other non-Everyone
principal id (according to the authentication policy).
Its actual value is the string 'system.Authenticated'.

	
ALL_PERMISSIONS

	An object that can be used as the permission member of an ACE
which matches all permissions unconditionally. For example, an
ACE that uses ALL_PERMISSIONS might be composed like so:
('Deny', 'system.Everyone', ALL_PERMISSIONS).

	
DENY_ALL

	A convenience shorthand ACE that defines ('Deny',
'system.Everyone', ALL_PERMISSIONS). This is often used as the
last ACE in an ACL in systems that use an "inheriting" security
policy, representing the concept "don't inherit any other ACEs".

	
NO_PERMISSION_REQUIRED

	A special permission which indicates that the view should always
be executable by entirely anonymous users, regardless of the
default permission, bypassing any authorization policy
that may be in effect. Its actual value is the string
'__no_permission_required__'.

Return Values

	
Allow

	The ACE "action" (the first element in an ACE e.g. (Allow, Everyone,
'read') that means allow access. A sequence of ACEs makes up an
ACL. It is a string, and its actual value is "Allow".

	
Deny

	The ACE "action" (the first element in an ACE e.g. (Deny,
'george', 'read') that means deny access. A sequence of ACEs
makes up an ACL. It is a string, and its actual value is "Deny".

	
class ACLDenied[source]

	An instance of ACLDenied represents that a security check made
explicitly against ACL was denied. It evaluates equal to all boolean
false types. It also has the following attributes: acl, ace,
permission, principals, and context. These attributes
indicate the security values involved in the request. Its __str__ method
prints a summary of these attributes for debugging purposes. The same
summary is available as the msg attribute.

	
class ACLAllowed[source]

	An instance of ACLAllowed represents that a security check made
explicitly against ACL was allowed. It evaluates equal to all boolean
true types. It also has the following attributes: acl, ace,
permission, principals, and context. These attributes
indicate the security values involved in the request. Its __str__ method
prints a summary of these attributes for debugging purposes. The same
summary is available as the msg attribute.

	
class Denied[source]

	An instance of Denied is returned when a security-related
API or other Pyramid code denies an action unrelated to
an ACL check. It evaluates equal to all boolean false types. It
has an attribute named msg describing the circumstances for
the deny.

	
class Allowed[source]

	An instance of Allowed is returned when a security-related
API or other Pyramid code allows an action unrelated to
an ACL check. It evaluates equal to all boolean true types. It
has an attribute named msg describing the circumstances for
the allow.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.session

	
signed_serialize(data, secret)[source]

	Serialize any pickleable structure (data) and sign it
using the secret (must be a string). Return the
serialization, which includes the signature as its first 40 bytes.
The signed_deserialize method will deserialize such a value.

This function is useful for creating signed cookies. For example:

cookieval = signed_serialize({'a':1}, 'secret')
response.set_cookie('signed_cookie', cookieval)

	
signed_deserialize(serialized, secret, hmac=<module 'hmac' from '/home/docs/checkouts/readthedocs.org/user_builds/pyramid/envs/1.5-branch/lib/python3.4/hmac.py'>)[source]

	Deserialize the value returned from signed_serialize. If
the value cannot be deserialized for any reason, a
ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception will be raised.

This function is useful for deserializing a signed cookie value
created by signed_serialize. For example:

cookieval = request.cookies['signed_cookie']
data = signed_deserialize(cookieval, 'secret')

	
check_csrf_token(request, token='csrf_token', header='X-CSRF-Token', raises=True)[source]

	Check the CSRF token in the request's session against the value in
request.params.get(token) or request.headers.get(header).
If a token keyword is not supplied to this function, the string
csrf_token will be used to look up the token in request.params.
If a header keyword is not supplied to this function, the string
X-CSRF-Token will be used to look up the token in request.headers.

If the value supplied by param or by header doesn't match the value
supplied by request.session.get_csrf_token(), and raises is
True, this function will raise an
pyramid.exceptions.BadCSRFToken exception.
If the check does succeed and raises is False, this
function will return False. If the CSRF check is successful, this
function will return True unconditionally.

Note that using this function requires that a session factory is
configured.

New in version 1.4a2.

	
SignedCookieSessionFactory(secret, cookie_name='session', max_age=None, path='/', domain=None, secure=False, httponly=False, set_on_exception=True, timeout=1200, reissue_time=0, hashalg='sha512', salt='pyramid.session.', serializer=None)[source]

	
New in version 1.5.

Configure a session factory which will provide signed
cookie-based sessions. The return value of this
function is a session factory, which may be provided as
the session_factory argument of a
pyramid.config.Configurator constructor, or used
as the session_factory argument of the
pyramid.config.Configurator.set_session_factory()
method.

The session factory returned by this function will create sessions
which are limited to storing fewer than 4000 bytes of data (as the
payload must fit into a single cookie).

Parameters:

	secret

	A string which is used to sign the cookie. The secret should be at
least as long as the block size of the selected hash algorithm. For
sha512 this would mean a 128 bit (64 character) secret. It should
be unique within the set of secret values provided to Pyramid for
its various subsystems (see Admonishment Against Secret-Sharing).

	hashalg

	The HMAC digest algorithm to use for signing. The algorithm must be
supported by the hashlib [http://docs.python.org/3/library/hashlib.html#module-hashlib] library. Default: 'sha512'.

	salt

	A namespace to avoid collisions between different uses of a shared
secret. Reusing a secret for different parts of an application is
strongly discouraged (see Admonishment Against Secret-Sharing).
Default: 'pyramid.session.'.

	cookie_name

	The name of the cookie used for sessioning. Default: 'session'.

	max_age

	The maximum age of the cookie used for sessioning (in seconds).
Default: None (browser scope).

	path

	The path used for the session cookie. Default: '/'.

	domain

	The domain used for the session cookie. Default: None (no domain).

	secure

	The 'secure' flag of the session cookie. Default: False.

	httponly

	Hide the cookie from Javascript by setting the 'HttpOnly' flag of the
session cookie. Default: False.

	timeout

	A number of seconds of inactivity before a session times out. If
None then the cookie never expires. This lifetime only applies
to the value within the cookie. Meaning that if the cookie expires
due to a lower max_age, then this setting has no effect.
Default: 1200.

	reissue_time

	The number of seconds that must pass before the cookie is automatically
reissued as the result of accessing the session. The
duration is measured as the number of seconds since the last session
cookie was issued and 'now'. If this value is 0, a new cookie
will be reissued on every request accessing the session. If None
then the cookie's lifetime will never be extended.

A good rule of thumb: if you want auto-expired cookies based on
inactivity: set the timeout value to 1200 (20 mins) and set the
reissue_time value to perhaps a tenth of the timeout value
(120 or 2 mins). It's nonsensical to set the timeout value lower
than the reissue_time value, as the ticket will never be reissued.
However, such a configuration is not explicitly prevented.

Default: 0.

	set_on_exception

	If True, set a session cookie even if an exception occurs
while rendering a view. Default: True.

	serializer

	An object with two methods: loads and dumps. The loads
method should accept bytes and return a Python object. The dumps
method should accept a Python object and return bytes. A ValueError
should be raised for malformed inputs. If a serializer is not passed,
the pyramid.session.PickleSerializer serializer will be used.

	
UnencryptedCookieSessionFactoryConfig(secret, timeout=1200, cookie_name='session', cookie_max_age=None, cookie_path='/', cookie_domain=None, cookie_secure=False, cookie_httponly=False, cookie_on_exception=True, signed_serialize=<function signed_serialize>, signed_deserialize=<function signed_deserialize>)[source]

	
Deprecated since version 1.5: Use pyramid.session.SignedCookieSessionFactory() instead.
Caveat: Cookies generated using SignedCookieSessionFactory are not
compatible with cookies generated using
UnencryptedCookieSessionFactory, so existing user session data
will be destroyed if you switch to it.

Configure a session factory which will provide unencrypted
(but signed) cookie-based sessions. The return value of this
function is a session factory, which may be provided as
the session_factory argument of a
pyramid.config.Configurator constructor, or used
as the session_factory argument of the
pyramid.config.Configurator.set_session_factory()
method.

The session factory returned by this function will create sessions
which are limited to storing fewer than 4000 bytes of data (as the
payload must fit into a single cookie).

Parameters:

	secret

	A string which is used to sign the cookie.

	timeout

	A number of seconds of inactivity before a session times out.

	cookie_name

	The name of the cookie used for sessioning.

	cookie_max_age

	The maximum age of the cookie used for sessioning (in seconds).
Default: None (browser scope).

	cookie_path

	The path used for the session cookie.

	cookie_domain

	The domain used for the session cookie. Default: None (no domain).

	cookie_secure

	The 'secure' flag of the session cookie.

	cookie_httponly

	The 'httpOnly' flag of the session cookie.

	cookie_on_exception

	If True, set a session cookie even if an exception occurs
while rendering a view.

	signed_serialize

	A callable which takes more or less arbitrary Python data structure and
a secret and returns a signed serialization in bytes.
Default: signed_serialize (using pickle).

	signed_deserialize

	A callable which takes a signed and serialized data structure in bytes
and a secret and returns the original data structure if the signature
is valid. Default: signed_deserialize (using pickle).

	
BaseCookieSessionFactory(serializer, cookie_name='session', max_age=None, path='/', domain=None, secure=False, httponly=False, timeout=1200, reissue_time=0, set_on_exception=True)[source]

	
New in version 1.5.

Configure a session factory which will provide cookie-based
sessions. The return value of this function is a session factory,
which may be provided as the session_factory argument of a
pyramid.config.Configurator constructor, or used as the
session_factory argument of the
pyramid.config.Configurator.set_session_factory() method.

The session factory returned by this function will create sessions
which are limited to storing fewer than 4000 bytes of data (as the
payload must fit into a single cookie).

Parameters:

	serializer

	An object with two methods: loads and dumps. The loads
method should accept bytes and return a Python object. The dumps
method should accept a Python object and return bytes. A ValueError
should be raised for malformed inputs.

	cookie_name

	The name of the cookie used for sessioning. Default: 'session'.

	max_age

	The maximum age of the cookie used for sessioning (in seconds).
Default: None (browser scope).

	path

	The path used for the session cookie. Default: '/'.

	domain

	The domain used for the session cookie. Default: None (no domain).

	secure

	The 'secure' flag of the session cookie. Default: False.

	httponly

	Hide the cookie from Javascript by setting the 'HttpOnly' flag of the
session cookie. Default: False.

	timeout

	A number of seconds of inactivity before a session times out. If
None then the cookie never expires. This lifetime only applies
to the value within the cookie. Meaning that if the cookie expires
due to a lower max_age, then this setting has no effect.
Default: 1200.

	reissue_time

	The number of seconds that must pass before the cookie is automatically
reissued as the result of a request which accesses the session. The
duration is measured as the number of seconds since the last session
cookie was issued and 'now'. If this value is 0, a new cookie
will be reissued on every request accessing the session. If None
then the cookie's lifetime will never be extended.

A good rule of thumb: if you want auto-expired cookies based on
inactivity: set the timeout value to 1200 (20 mins) and set the
reissue_time value to perhaps a tenth of the timeout value
(120 or 2 mins). It's nonsensical to set the timeout value lower
than the reissue_time value, as the ticket will never be reissued.
However, such a configuration is not explicitly prevented.

Default: 0.

	set_on_exception

	If True, set a session cookie even if an exception occurs
while rendering a view. Default: True.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.settings

	
asbool(s)[source]

	Return the boolean value True if the case-lowered value of string
input s is any of t, true, y, on, or 1, otherwise
return the boolean value False. If s is the value None,
return False. If s is already one of the boolean values True
or False, return it.

	
aslist(value, flatten=True)[source]

	Return a list of strings, separating the input based on newlines
and, if flatten=True (the default), also split on spaces within
each line.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.static

	
class static_view(root_dir, cache_max_age=3600, package_name=None, use_subpath=False, index='index.html')[source]

	An instance of this class is a callable which can act as a
Pyramid view callable; this view will serve
static files from a directory on disk based on the root_dir
you provide to its constructor.

The directory may contain subdirectories (recursively); the static
view implementation will descend into these directories as
necessary based on the components of the URL in order to resolve a
path into a response.

You may pass an absolute or relative filesystem path or a
asset specification representing the directory
containing static files as the root_dir argument to this
class' constructor.

If the root_dir path is relative, and the package_name
argument is None, root_dir will be considered relative to
the directory in which the Python file which calls static
resides. If the package_name name argument is provided, and a
relative root_dir is provided, the root_dir will be
considered relative to the Python package specified by
package_name (a dotted path to a Python package).

cache_max_age influences the Expires and Max-Age
response headers returned by the view (default is 3600 seconds or
one hour).

use_subpath influences whether request.subpath will be used as
PATH_INFO when calling the underlying WSGI application which actually
serves the static files. If it is True, the static application will
consider request.subpath as PATH_INFO input. If it is False,
the static application will consider request.environ[PATH_INFO] as
PATH_INFO input. By default, this is False.

Note

If the root_dir is relative to a package, or is a
asset specification the Pyramid
pyramid.config.Configurator method can be used to override
assets within the named root_dir package-relative directory.
However, if the root_dir is absolute, configuration will not be able
to override the assets it contains.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.testing

	
setUp(registry=None, request=None, hook_zca=True, autocommit=True, settings=None, package=None)[source]

	Set Pyramid registry and request thread locals for the
duration of a single unit test.

Use this function in the setUp method of a unittest test case
which directly or indirectly uses:

	any method of the pyramid.config.Configurator
object returned by this function.

	the pyramid.threadlocal.get_current_registry() or
pyramid.threadlocal.get_current_request() functions.

If you use the get_current_* functions (or call Pyramid code
that uses these functions) without calling setUp,
pyramid.threadlocal.get_current_registry() will return a global
application registry, which may cause unit tests to not be
isolated with respect to registrations they perform.

If the registry argument is None, a new empty
application registry will be created (an instance of the
pyramid.registry.Registry class). If the registry
argument is not None, the value passed in should be an
instance of the pyramid.registry.Registry class or a
suitable testing analogue.

After setUp is finished, the registry returned by the
pyramid.threadlocal.get_current_registry() function will
be the passed (or constructed) registry until
pyramid.testing.tearDown() is called (or
pyramid.testing.setUp() is called again) .

If the hook_zca argument is True, setUp will attempt
to perform the operation zope.component.getSiteManager.sethook(
pyramid.threadlocal.get_current_registry), which will cause
the Zope Component Architecture global API
(e.g. zope.component.getSiteManager() [http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager],
zope.component.getAdapter() [http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter], and so on) to use the registry
constructed by setUp as the value it returns from
zope.component.getSiteManager() [http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager]. If the
zope.component package cannot be imported, or if
hook_zca is False, the hook will not be set.

If settings is not None, it must be a dictionary representing the
values passed to a Configurator as its settings= argument.

If package is None it will be set to the caller's package. The
package setting in the pyramid.config.Configurator will
affect any relative imports made via
pyramid.config.Configurator.include() or
pyramid.config.Configurator.maybe_dotted().

This function returns an instance of the
pyramid.config.Configurator class, which can be
used for further configuration to set up an environment suitable
for a unit or integration test. The registry attribute
attached to the Configurator instance represents the 'current'
application registry; the same registry will be returned
by pyramid.threadlocal.get_current_registry() during the
execution of the test.

	
tearDown(unhook_zca=True)[source]

	Undo the effects of pyramid.testing.setUp(). Use this
function in the tearDown method of a unit test that uses
pyramid.testing.setUp() in its setUp method.

If the unhook_zca argument is True (the default), call
zope.component.getSiteManager.reset(). This undoes the
action of pyramid.testing.setUp() when called with the
argument hook_zca=True. If zope.component cannot be
imported, unhook_zca is set to False.

	
testConfig(registry=None, request=None, hook_zca=True, autocommit=True, settings=None)[source]

	Returns a context manager for test set up.

This context manager calls pyramid.testing.setUp() when
entering and pyramid.testing.tearDown() when exiting.

All arguments are passed directly to pyramid.testing.setUp().
If the ZCA is hooked, it will always be un-hooked in tearDown.

This context manager allows you to write test code like this:

	1
2
3
4

	with testConfig() as config:
 config.add_route('bar', '/bar/{id}')
 req = DummyRequest()
 resp = myview(req),

	
cleanUp(*arg, **kw)[source]

	An alias for pyramid.testing.setUp().

	
class DummyResource(__name__=None, __parent__=None, __provides__=None, **kw)[source]

	A dummy Pyramid resource object.

	
clone(__name__=<object object>, __parent__=<object object>, **kw)[source]

	Create a clone of the resource object. If __name__ or
__parent__ arguments are passed, use these values to
override the existing __name__ or __parent__ of the
resource. If any extra keyword args are passed in via the kw
argument, use these keywords to add to or override existing
resource keywords (attributes).

	
items()[source]

	Return the items set by __setitem__

	
keys()[source]

	Return the keys set by __setitem__

	
values()[source]

	Return the values set by __setitem__

	
class DummyRequest(params=None, environ=None, headers=None, path='/', cookies=None, post=None, **kw)[source]

	A DummyRequest object (incompletely) imitates a request object.

The params, environ, headers, path, and
cookies arguments correspond to their WebOb
equivalents.

The post argument, if passed, populates the request's
POST attribute, but not params, in order to allow testing
that the app accepts data for a given view only from POST requests.
This argument also sets self.method to "POST".

Extra keyword arguments are assigned as attributes of the request
itself.

Note that DummyRequest does not have complete fidelity with a "real"
request. For example, by default, the DummyRequest GET and POST
attributes are of type dict, unlike a normal Request's GET and POST,
which are of type MultiDict. If your code uses the features of
MultiDict, you should either use a real pyramid.request.Request
or adapt your DummyRequest by replacing the attributes with MultiDict
instances.

Other similar incompatibilities exist. If you need all the features of
a Request, use the pyramid.request.Request class itself rather
than this class while writing tests.

	
class DummyTemplateRenderer(string_response='')[source]

	An instance of this class is returned from
pyramid.config.Configurator.testing_add_renderer(). It has a
helper function (assert_) that makes it possible to make an
assertion which compares data passed to the renderer by the view
function against expected key/value pairs.

	
assert_(**kw)[source]

	Accept an arbitrary set of assertion key/value pairs. For
each assertion key/value pair assert that the renderer
(eg. pyramid.renderers.render_to_response())
received the key with a value that equals the asserted
value. If the renderer did not receive the key at all, or the
value received by the renderer doesn't match the assertion
value, raise an AssertionError [http://docs.python.org/3/library/exceptions.html#AssertionError].

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.threadlocal

	
get_current_request()[source]

	Return the currently active request or None if no request
is currently active.

This function should be used extremely sparingly, usually only
in unit testing code. It's almost always usually a mistake to use
get_current_request outside a testing context because its
usage makes it possible to write code that can be neither easily
tested nor scripted.

	
get_current_registry()[source]

	Return the currently active application registry or the
global application registry if no request is currently active.

This function should be used extremely sparingly, usually only
in unit testing code. It's almost always usually a mistake to use
get_current_registry outside a testing context because its
usage makes it possible to write code that can be neither easily
tested nor scripted.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.traversal

	
find_interface(resource, class_or_interface)[source]

	Return the first resource found in the lineage of resource
which, a) if class_or_interface is a Python class object, is an
instance of the class or any subclass of that class or b) if
class_or_interface is a interface, provides the specified
interface. Return None if no resource providing interface_or_class
can be found in the lineage. The resource passed in must be
location-aware.

	
find_resource(resource, path)[source]

	Given a resource object and a string or tuple representing a path
(such as the return value of pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple()), return a resource in this
application's resource tree at the specified path. The resource passed
in must be location-aware. If the path cannot be resolved (if
the respective node in the resource tree does not exist), a
KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] will be raised.

This function is the logical inverse of
pyramid.traversal.resource_path() and
pyramid.traversal.resource_path_tuple(); it can resolve any
path string or tuple generated by either of those functions.

Rules for passing a string as the path argument: if the
first character in the path string is the /
character, the path is considered absolute and the resource tree
traversal will start at the root resource. If the first character
of the path string is not the / character, the path is
considered relative and resource tree traversal will begin at the resource
object supplied to the function as the resource argument. If an
empty string is passed as path, the resource passed in will
be returned. Resource path strings must be escaped in the following
manner: each Unicode path segment must be encoded as UTF-8 and as
each path segment must escaped via Python's urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a (absolute) or
to%20the/La%20Pe%C3%B1a (relative). The
pyramid.traversal.resource_path() function generates strings
which follow these rules (albeit only absolute ones).

Rules for passing text (Unicode) as the path argument are the same
as those for a string. In particular, the text may not have any nonascii
characters in it.

Rules for passing a tuple as the path argument: if the first
element in the path tuple is the empty string (for example ('',
'a', 'b', 'c'), the path is considered absolute and the resource tree
traversal will start at the resource tree root object. If the first
element in the path tuple is not the empty string (for example
('a', 'b', 'c')), the path is considered relative and resource tree
traversal will begin at the resource object supplied to the function
as the resource argument. If an empty sequence is passed as
path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within
the tuple is required (each segment may be any string or unicode
object representing a resource name). Resource path tuples generated by
pyramid.traversal.resource_path_tuple() can always be
resolved by find_resource.

Note

For backwards compatibility purposes, this function can also
be imported as pyramid.traversal.find_model(), although doing so
will emit a deprecation warning.

	
find_root(resource)[source]

	Find the root node in the resource tree to which resource
belongs. Note that resource should be location-aware.
Note that the root resource is available in the request object by
accessing the request.root attribute.

	
resource_path(resource, *elements)[source]

	Return a string object representing the absolute physical path of the
resource object based on its position in the resource tree, e.g
/foo/bar. Any positional arguments passed in as elements will be
appended as path segments to the end of the resource path. For instance,
if the resource's path is /foo/bar and elements equals ('a',
'b'), the returned string will be /foo/bar/a/b. The first
character in the string will always be the / character (a leading
/ character in a path string represents that the path is absolute).

Resource path strings returned will be escaped in the following
manner: each unicode path segment will be encoded as UTF-8 and
each path segment will be escaped via Python's urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a.

This function is a logical inverse of
pyramid.traversal.find_resource: it can be used to generate
path references that can later be resolved via that function.

The resource passed in must be location-aware.

Note

Each segment in the path string returned will use the __name__
attribute of the resource it represents within the resource tree. Each
of these segments should be a unicode or string object (as per the
contract of location-awareness). However, no conversion or
safety checking of resource names is performed. For instance, if one of
the resources in your tree has a __name__ which (by error) is a
dictionary, the pyramid.traversal.resource_path() function will
attempt to append it to a string and it will cause a
pyramid.exceptions.URLDecodeError.

Note

The root resource must have a __name__ attribute with a
value of either None or the empty string for paths to be generated
properly. If the root resource has a non-null __name__ attribute,
its name will be prepended to the generated path rather than a single
leading '/' character.

Note

For backwards compatibility purposes, this function can also
be imported as model_path, although doing so will cause
a deprecation warning to be emitted.

	
resource_path_tuple(resource, *elements)[source]

	Return a tuple representing the absolute physical path of the
resource object based on its position in a resource tree, e.g
('', 'foo', 'bar'). Any positional arguments passed in as
elements will be appended as elements in the tuple
representing the resource path. For instance, if the resource's
path is ('', 'foo', 'bar') and elements equals ('a', 'b'),
the returned tuple will be ('', 'foo', 'bar', 'a', 'b'). The
first element of this tuple will always be the empty string (a
leading empty string element in a path tuple represents that the
path is absolute).

This function is a logical inverse of
pyramid.traversal.find_resource(): it can be used to
generate path references that can later be resolved by that function.

The resource passed in must be location-aware.

Note

Each segment in the path tuple returned will equal the __name__
attribute of the resource it represents within the resource tree. Each
of these segments should be a unicode or string object (as per the
contract of location-awareness). However, no conversion or
safety checking of resource names is performed. For instance, if one of
the resources in your tree has a __name__ which (by error) is a
dictionary, that dictionary will be placed in the path tuple; no warning
or error will be given.

Note

The root resource must have a __name__ attribute with a
value of either None or the empty string for path tuples to be
generated properly. If the root resource has a non-null __name__
attribute, its name will be the first element in the generated path tuple
rather than the empty string.

Note

For backwards compatibility purposes, this function can also be imported
as model_path_tuple, although doing so will cause a deprecation
warning to be emitted.

	
quote_path_segment(segment, safe='')[source]

	

	
virtual_root(resource, request)[source]

	Provided any resource and a request object, return
the resource object representing the virtual root of the
current request. Using a virtual root in a
traversal -based Pyramid application permits
rooting, for example, the resource at the traversal path /cms at
http://example.com/ instead of rooting it at
http://example.com/cms/.

If the resource passed in is a context obtained via
traversal, and if the HTTP_X_VHM_ROOT key is in the
WSGI environment, the value of this key will be treated as a
'virtual root path': the pyramid.traversal.find_resource()
API will be used to find the virtual root resource using this path;
if the resource is found, it will be returned. If the
HTTP_X_VHM_ROOT key is not present in the WSGI environment,
the physical root of the resource tree will be returned instead.

Virtual roots are not useful at all in applications that use
URL dispatch. Contexts obtained via URL dispatch don't
really support being virtually rooted (each URL dispatch context
is both its own physical and virtual root). However if this API
is called with a resource argument which is a context obtained
via URL dispatch, the resource passed in will be returned
unconditionally.

	
traverse(resource, path)[source]

	Given a resource object as resource and a string or tuple
representing a path as path (such as the return value of
pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple() or the value of
request.environ['PATH_INFO']), return a dictionary with the
keys context, root, view_name, subpath,
traversed, virtual_root, and virtual_root_path.

A definition of each value in the returned dictionary:

	context: The context (a resource object) found
via traversal or url dispatch. If the path passed in is the
empty string, the value of the resource argument passed to this
function is returned.

	root: The resource object at which traversal begins.
If the resource passed in was found via url dispatch or if the
path passed in was relative (non-absolute), the value of the
resource argument passed to this function is returned.

	view_name: The view name found during
traversal or url dispatch; if the resource was
found via traversal, this is usually a representation of the
path segment which directly follows the path to the context
in the path. The view_name will be a Unicode object or
the empty string. The view_name will be the empty string if
there is no element which follows the context path. An
example: if the path passed is /foo/bar, and a resource
object is found at /foo (but not at /foo/bar), the 'view
name' will be u'bar'. If the resource was found via
urldispatch, the view_name will be the name the route found was
registered with.

	subpath: For a resource found via traversal, this
is a sequence of path segments found in the path that follow
the view_name (if any). Each of these items is a Unicode
object. If no path segments follow the view_name, the
subpath will be the empty sequence. An example: if the path
passed is /foo/bar/baz/buz, and a resource object is found at
/foo (but not /foo/bar), the 'view name' will be
u'bar' and the subpath will be [u'baz', u'buz'].
For a resource found via url dispatch, the subpath will be a
sequence of values discerned from *subpath in the route
pattern matched or the empty sequence.

	traversed: The sequence of path elements traversed from the
root to find the context object during traversal.
Each of these items is a Unicode object. If no path segments
were traversed to find the context object (e.g. if the
path provided is the empty string), the traversed value
will be the empty sequence. If the resource is a resource found
via url dispatch, traversed will be None.

	virtual_root: A resource object representing the 'virtual' root
of the resource tree being traversed during traversal.
See Virtual Hosting for a definition of the virtual root
object. If no virtual hosting is in effect, and the path
passed in was absolute, the virtual_root will be the
physical root resource object (the object at which traversal
begins). If the resource passed in was found via URL
dispatch or if the path passed in was relative, the
virtual_root will always equal the root object (the
resource passed in).

	virtual_root_path -- If traversal was used to find
the resource, this will be the sequence of path elements
traversed to find the virtual_root resource. Each of these
items is a Unicode object. If no path segments were traversed
to find the virtual_root resource (e.g. if virtual hosting is
not in effect), the traversed value will be the empty list.
If url dispatch was used to find the resource, this will be
None.

If the path cannot be resolved, a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] will be raised.

Rules for passing a string as the path argument: if the
first character in the path string is the with the /
character, the path will considered absolute and the resource tree
traversal will start at the root resource. If the first character
of the path string is not the / character, the path is
considered relative and resource tree traversal will begin at the resource
object supplied to the function as the resource argument. If an
empty string is passed as path, the resource passed in will
be returned. Resource path strings must be escaped in the following
manner: each Unicode path segment must be encoded as UTF-8 and
each path segment must escaped via Python's urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a (absolute) or
to%20the/La%20Pe%C3%B1a (relative). The
pyramid.traversal.resource_path() function generates strings
which follow these rules (albeit only absolute ones).

Rules for passing a tuple as the path argument: if the first
element in the path tuple is the empty string (for example ('',
'a', 'b', 'c'), the path is considered absolute and the resource tree
traversal will start at the resource tree root object. If the first
element in the path tuple is not the empty string (for example
('a', 'b', 'c')), the path is considered relative and resource tree
traversal will begin at the resource object supplied to the function
as the resource argument. If an empty sequence is passed as
path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within
the tuple is required (each segment may be any string or unicode
object representing a resource name).

Explanation of the conversion of path segment values to
Unicode during traversal: Each segment is URL-unquoted, and
decoded into Unicode. Each segment is assumed to be encoded using
the UTF-8 encoding (or a subset, such as ASCII); a
pyramid.exceptions.URLDecodeError is raised if a segment
cannot be decoded. If a segment name is empty or if it is .,
it is ignored. If a segment name is .., the previous segment
is deleted, and the .. is ignored. As a result of this
process, the return values view_name, each element in the
subpath, each element in traversed, and each element in
the virtual_root_path will be Unicode as opposed to a string,
and will be URL-decoded.

	
traversal_path(path)[source]

	Variant of pyramid.traversal.traversal_path_info() suitable for
decoding paths that are URL-encoded.

If this function is passed a Unicode object instead of a sequence of
bytes as path, that Unicode object must directly encodeable to
ASCII. For example, u'/foo' will work but u'/<unprintable unicode>' (a
Unicode object with characters that cannot be encoded to ascii) will
not. A UnicodeEncodeError [http://docs.python.org/3/library/exceptions.html#UnicodeEncodeError] will be raised if the Unicode cannot be
encoded directly to ASCII.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.tweens

	
excview_tween_factory(handler, registry)[source]

	A tween factory which produces a tween that catches an
exception raised by downstream tweens (or the main Pyramid request
handler) and, if possible, converts it into a Response using an
exception view.

	
MAIN

	Constant representing the main Pyramid handling function, for use in
under and over arguments to
pyramid.config.Configurator.add_tween().

	
INGRESS

	Constant representing the request ingress, for use in under and
over arguments to pyramid.config.Configurator.add_tween().

	
EXCVIEW

	Constant representing the exception view tween, for use in under
and over arguments to
pyramid.config.Configurator.add_tween().

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.url

Utility functions for dealing with URLs in pyramid

	
resource_url(context, request, *elements, query=None, anchor=None)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.resource_url(resource, *elements, **kw)

See pyramid.request.Request.resource_url() for more information.

	
route_url(route_name, request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.route_url(route_name, *elements, **kw)

See pyramid.request.Request.route_url() for more information.

	
current_route_url(request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.current_route_url(*elements, **kw)

See pyramid.request.Request.current_route_url() for more
information.

	
route_path(route_name, request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.route_path(route_name, *elements, **kw)

See pyramid.request.Request.route_path() for more information.

	
current_route_path(request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.current_route_path(*elements, **kw)

See pyramid.request.Request.current_route_path() for more
information.

	
static_url(path, request, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.static_url(path, **kw)

See pyramid.request.Request.static_url() for more information.

	
static_path(path, request, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.static_path(path, **kw)

See pyramid.request.Request.static_path() for more information.

	
urlencode(query, doseq=True)[source]

	An alternate implementation of Python's stdlib urllib.urlencode
function [http://docs.python.org/library/urllib.html] which
accepts unicode keys and values within the query
dict/sequence; all Unicode keys and values are first converted to
UTF-8 before being used to compose the query string.

The value of query must be a sequence of two-tuples
representing key/value pairs or an object (often a dictionary)
with an .items() method that returns a sequence of two-tuples
representing key/value pairs.

For minimal calling convention backwards compatibility, this
version of urlencode accepts but ignores a second argument
conventionally named doseq. The Python stdlib version behaves
differently when doseq is False and when a sequence is
presented as one of the values. This version always behaves in
the doseq=True mode, no matter what the value of the second
argument.

See the Python stdlib documentation for urllib.urlencode for
more information.

Changed in version 1.5: In a key/value pair, if the value is None then it will be
dropped from the resulting output.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.view

	
render_view_to_response(context, request, name='', secure=True)[source]

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request and
return a response object. This function will return
None if a corresponding view callable cannot be found
(when no view configuration matches the combination of
name / context / and request).

If secure` is True, and the view callable found is
protected by a permission, the permission will be checked before calling
the view function. If the permission check disallows view execution
(based on the current authorization policy), a
pyramid.httpexceptions.HTTPForbidden exception will be raised.
The exception's args attribute explains why the view access was
disallowed.

If secure is False, no permission checking is done.

	
render_view_to_iterable(context, request, name='', secure=True)[source]

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request and
return an iterable object which represents the body of a response.
This function will return None if a corresponding view
callable cannot be found (when no view configuration
matches the combination of name / context / and
request). Additionally, this function will raise a
ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if a view function is found and called but the
view function's result does not have an app_iter attribute.

You can usually get the bytestring representation of the return value of
this function by calling b''.join(iterable), or just use
pyramid.view.render_view() instead.

If secure is True, and the view is protected by a permission, the
permission will be checked before the view function is invoked. If the
permission check disallows view execution (based on the current
authentication policy), a
pyramid.httpexceptions.HTTPForbidden exception will be raised; its
args attribute explains why the view access was disallowed.

If secure is False, no permission checking is
done.

	
render_view(context, request, name='', secure=True)[source]

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request
and unwind the view response's app_iter (see
View Callable Responses) into a single bytestring. This function will
return None if a corresponding view callable cannot be
found (when no view configuration matches the combination
of name / context / and request). Additionally, this
function will raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if a view function is
found and called but the view function's result does not have an
app_iter attribute. This function will return None if a
corresponding view cannot be found.

If secure is True, and the view is protected by a permission, the
permission will be checked before the view is invoked. If the permission
check disallows view execution (based on the current authorization
policy), a pyramid.httpexceptions.HTTPForbidden exception will be
raised; its args attribute explains why the view access was
disallowed.

If secure is False, no permission checking is done.

	
class view_config(**settings)[source]

	A function, class or method decorator which allows a
developer to create view registrations nearer to a view
callable definition than use imperative
configuration to do the same.

For example, this code in a module views.py:

from resources import MyResource

@view_config(name='my_view', context=MyResource, permission='read',
 route_name='site1')
def my_view(context, request):
 return 'OK'

Might replace the following call to the
pyramid.config.Configurator.add_view() method:

import views
from resources import MyResource
config.add_view(views.my_view, context=MyResource, name='my_view',
 permission='read', route_name='site1')

pyramid.view.view_config supports the following keyword
arguments: context, permission, name,
request_type, route_name, request_method, request_param,
containment, xhr, accept, header, path_info,
custom_predicates, decorator, mapper, http_cache,
match_param, check_csrf, physical_path, and predicates.

The meanings of these arguments are the same as the arguments passed to
pyramid.config.Configurator.add_view(). If any argument is left
out, its default will be the equivalent add_view default.

An additional keyword argument named _depth is provided for people who
wish to reuse this class from another decorator. The default value is
0 and should be specified relative to the view_config invocation.
It will be passed in to the venusian attach function as the
depth of the callstack when Venusian checks if the decorator is being used
in a class or module context. It's not often used, but it can be useful
in this circumstance. See the attach function in Venusian for more
information.

See also

See also Adding View Configuration Using the @view_config Decorator for
details about using pyramid.view.view_config.

Warning

view_config will work ONLY on module top level members
because of the limitation of venusian.Scanner.scan.

	
class view_defaults(**settings)[source]

	A class decorator which, when applied to a class, will
provide defaults for all view configurations that use the class. This
decorator accepts all the arguments accepted by
pyramid.view.view_config(), and each has the same meaning.

See @view_defaults Class Decorator for more information.

	
class notfound_view_config(**settings)[source]

	
New in version 1.3.

An analogue of pyramid.view.view_config which registers a
Not Found View.

The notfound_view_config constructor accepts most of the same arguments
as the constructor of pyramid.view.view_config. It can be used
in the same places, and behaves in largely the same way, except it always
registers a not found exception view instead of a 'normal' view.

Example:

from pyramid.view import notfound_view_config
from pyramid.response import Response

@notfound_view_config()
def notfound(request):
 return Response('Not found, dude!', status='404 Not Found')

All arguments except append_slash have the same meaning as
pyramid.view.view_config() and each predicate
argument restricts the set of circumstances under which this notfound
view will be invoked.

If append_slash is True, when the Not Found View is invoked, and
the current path info does not end in a slash, the notfound logic will
attempt to find a route that matches the request's path info
suffixed with a slash. If such a route exists, Pyramid will issue a
redirect to the URL implied by the route; if it does not, Pyramid will
return the result of the view callable provided as view, as normal.

See Changing the Not Found View for detailed usage information.

	
class forbidden_view_config(**settings)[source]

	
New in version 1.3.

An analogue of pyramid.view.view_config which registers a
forbidden view.

The forbidden_view_config constructor accepts most of the same arguments
as the constructor of pyramid.view.view_config. It can be used
in the same places, and behaves in largely the same way, except it always
registers a forbidden exception view instead of a 'normal' view.

Example:

from pyramid.view import forbidden_view_config
from pyramid.response import Response

@forbidden_view_config()
def forbidden(request):
 return Response('You are not allowed', status='401 Unauthorized')

All arguments passed to this function have the same meaning as
pyramid.view.view_config() and each predicate argument restricts
the set of circumstances under which this notfound view will be invoked.

See Changing the Forbidden View for detailed usage information.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.wsgi

	
wsgiapp(wrapped)[source]

	Decorator to turn a WSGI application into a Pyramid
view callable. This decorator differs from the
pyramid.wsgi.wsgiapp2() decorator inasmuch as fixups of
PATH_INFO and SCRIPT_NAME within the WSGI environment are
not performed before the application is invoked.

E.g., the following in a views.py module:

@wsgiapp
def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

Allows the following call to
pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp decorator will convert the result of the WSGI
application to a Response and return it to
Pyramid as if the WSGI app were a Pyramid
view.

	
wsgiapp2(wrapped)[source]

	Decorator to turn a WSGI application into a Pyramid
view callable. This decorator differs from the
pyramid.wsgi.wsgiapp() decorator inasmuch as fixups of
PATH_INFO and SCRIPT_NAME within the WSGI environment
are performed before the application is invoked.

E.g. the following in a views.py module:

@wsgiapp2
def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

Allows the following call to
pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp2 decorator will convert the result of the WSGI
application to a Response and return it to Pyramid as if the WSGI
app were a Pyramid view. The SCRIPT_NAME and PATH_INFO
values present in the WSGI environment are fixed up before the
application is invoked. In particular, a new WSGI environment is
generated, and the subpath of the request passed to wsgiapp2
is used as the new request's PATH_INFO and everything preceding the
subpath is used as the SCRIPT_NAME. The new environment is passed to
the downstream WSGI application.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.authentication

Authentication Policies

	
class AuthTktAuthenticationPolicy(secret, callback=None, cookie_name='auth_tkt', secure=False, include_ip=False, timeout=None, reissue_time=None, max_age=None, path='/', http_only=False, wild_domain=True, debug=False, hashalg=<object object>, parent_domain=False, domain=None)[source]

	A Pyramid authentication policy which
obtains data from a Pyramid "auth ticket" cookie.

Warning

The default hash algorithm used in this policy is MD5 and has known
hash collision vulnerabilities. The risk of an exploit is low.
However, for improved authentication security, use
hashalg='sha512'.

Constructor Arguments

secret

The secret (a string) used for auth_tkt cookie signing. This value
should be unique across all values provided to Pyramid for various
subsystem secrets (see Admonishment Against Secret-Sharing).
Required.

callback

Default: None. A callback passed the userid and the
request, expected to return None if the userid doesn't
exist or a sequence of principal identifiers (possibly empty) if
the user does exist. If callback is None, the userid
will be assumed to exist with no principals. Optional.

cookie_name

Default: auth_tkt. The cookie name used
(string). Optional.

secure

Default: False. Only send the cookie back over a secure
conn. Optional.

include_ip

Default: False. Make the requesting IP address part of
the authentication data in the cookie. Optional.

For IPv6 this option is not recommended. The mod_auth_tkt
specification does not specify how to handle IPv6 addresses, so using
this option in combination with IPv6 addresses may cause an
incompatible cookie. It ties the authentication ticket to that
individual's IPv6 address.

timeout

Default: None. Maximum number of seconds which a newly
issued ticket will be considered valid. After this amount of
time, the ticket will expire (effectively logging the user
out). If this value is None, the ticket never expires.
Optional.

reissue_time

Default: None. If this parameter is set, it represents the number
of seconds that must pass before an authentication token cookie is
automatically reissued as the result of a request which requires
authentication. The duration is measured as the number of seconds
since the last auth_tkt cookie was issued and 'now'. If this value is
0, a new ticket cookie will be reissued on every request which
requires authentication.

A good rule of thumb: if you want auto-expired cookies based on
inactivity: set the timeout value to 1200 (20 mins) and set the
reissue_time value to perhaps a tenth of the timeout value
(120 or 2 mins). It's nonsensical to set the timeout value lower
than the reissue_time value, as the ticket will never be reissued
if so. However, such a configuration is not explicitly prevented.

Optional.

max_age

Default: None. The max age of the auth_tkt cookie, in
seconds. This differs from timeout inasmuch as timeout
represents the lifetime of the ticket contained in the cookie,
while this value represents the lifetime of the cookie itself.
When this value is set, the cookie's Max-Age and
Expires settings will be set, allowing the auth_tkt cookie
to last between browser sessions. It is typically nonsensical
to set this to a value that is lower than timeout or
reissue_time, although it is not explicitly prevented.
Optional.

path

Default: /. The path for which the auth_tkt cookie is valid.
May be desirable if the application only serves part of a domain.
Optional.

http_only

Default: False. Hide cookie from JavaScript by setting the
HttpOnly flag. Not honored by all browsers.
Optional.

wild_domain

Default: True. An auth_tkt cookie will be generated for the
wildcard domain. If your site is hosted as example.com this
will make the cookie available for sites underneath example.com
such as www.example.com.
Optional.

parent_domain

Default: False. An auth_tkt cookie will be generated for the
parent domain of the current site. For example if your site is
hosted under www.example.com a cookie will be generated for
.example.com. This can be useful if you have multiple sites
sharing the same domain. This option supercedes the wild_domain
option.
Optional.

This option is available as of Pyramid 1.5.

domain

Default: None. If provided the auth_tkt cookie will only be
set for this domain. This option is not compatible with wild_domain
and parent_domain.
Optional.

This option is available as of Pyramid 1.5.

hashalg

Default: md5 (the literal string).

Any hash algorithm supported by Python's hashlib.new() function
can be used as the hashalg.

Cookies generated by different instances of AuthTktAuthenticationPolicy
using different hashalg options are not compatible. Switching the
hashalg will imply that all existing users with a valid cookie will
be required to re-login.

A warning is emitted at startup if an explicit hashalg is not
passed. This is for backwards compatibility reasons.

This option is available as of Pyramid 1.4.

Optional.

Note

md5 is the default for backwards compatibility reasons. However,
if you don't specify md5 as the hashalg explicitly, a warning is
issued at application startup time. An explicit value of sha512
is recommended for improved security, and sha512 will become the
default in a future Pyramid version.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	A list of headers which will delete appropriate cookies.

	
remember(request, principal, **kw)[source]

	Accepts the following kw args: max_age=<int-seconds>,
``tokens=<sequence-of-ascii-strings>.

Return a list of headers which will set appropriate cookies on
the response.

	
unauthenticated_userid(request)[source]

	The userid key within the auth_tkt cookie.

	
class RemoteUserAuthenticationPolicy(environ_key='REMOTE_USER', callback=None, debug=False)[source]

	A Pyramid authentication policy which
obtains data from the REMOTE_USER WSGI environment variable.

Constructor Arguments

environ_key

Default: REMOTE_USER. The key in the WSGI environ which
provides the userid.

callback

Default: None. A callback passed the userid and the request,
expected to return None if the userid doesn't exist or a sequence of
principal identifiers (possibly empty) representing groups if the
user does exist. If callback is None, the userid will be assumed
to exist with no group principals.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	A no-op. The REMOTE_USER does not provide a protocol for
forgetting the user. This will be application-specific and can
be done somewhere else or in a subclass.

	
remember(request, principal, **kw)[source]

	A no-op. The REMOTE_USER does not provide a protocol for
remembering the user. This will be application-specific and can
be done somewhere else or in a subclass.

	
unauthenticated_userid(request)[source]

	The REMOTE_USER value found within the environ.

	
class SessionAuthenticationPolicy(prefix='auth.', callback=None, debug=False)[source]

	A Pyramid authentication policy which gets its data from the
configured session. For this authentication policy to work, you
will have to follow the instructions in the Sessions to
configure a session factory.

Constructor Arguments

prefix

A prefix used when storing the authentication parameters in the
session. Defaults to 'auth.'. Optional.

callback

Default: None. A callback passed the userid and the
request, expected to return None if the userid doesn't
exist or a sequence of principal identifiers (possibly empty) if
the user does exist. If callback is None, the userid
will be assumed to exist with no principals. Optional.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	Remove the stored principal from the session.

	
remember(request, principal, **kw)[source]

	Store a principal in the session.

	
class BasicAuthAuthenticationPolicy(check, realm='Realm', debug=False)[source]

	A Pyramid authentication policy which uses HTTP standard basic
authentication protocol to authenticate users. To use this policy you will
need to provide a callback which checks the supplied user credentials
against your source of login data.

Constructor Arguments

check

A callback function passed a username, password and request, in that
order as positional arguments. Expected to return None if the
userid doesn't exist or a sequence of principal identifiers (possibly
empty) if the user does exist.

realm

Default: "Realm". The Basic Auth Realm string. Usually displayed to
the user by the browser in the login dialog.

debug

Default: False. If debug is True, log messages to the
Pyramid debug logger about the results of various authentication
steps. The output from debugging is useful for reporting to maillist
or IRC channels when asking for support.

Issuing a challenge

Regular browsers will not send username/password credentials unless they
first receive a challenge from the server. The following recipe will
register a view that will send a Basic Auth challenge to the user whenever
there is an attempt to call a view which results in a Forbidden response:

from pyramid.httpexceptions import HTTPUnauthorized
from pyramid.security import forget
from pyramid.view import forbidden_view_config

@forbidden_view_config()
def basic_challenge(request):
 response = HTTPUnauthorized()
 response.headers.update(forget(request))
 return response

	
authenticated_userid(request)

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)

	A list of effective principals derived from request.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no authenticated
userid, or the callback returns None, this will be the
only principal:

return [Everyone]

If the callback does not return None and an authenticated
userid is found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

	
forget(request)[source]

	Returns challenge headers. This should be attached to a response
to indicate that credentials are required.

	
remember(request, principal, **kw)[source]

	A no-op. Basic authentication does not provide a protocol for
remembering the user. Credentials are sent on every request.

	
unauthenticated_userid(request)[source]

	The userid parsed from the Authorization request header.

	
class RepozeWho1AuthenticationPolicy(identifier_name='auth_tkt', callback=None)[source]

	A Pyramid authentication policy which
obtains data from the repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who] 1.X WSGI 'API' (the
repoze.who.identity key in the WSGI environment).

Constructor Arguments

identifier_name

Default: auth_tkt. The repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who] plugin name that
performs remember/forget. Optional.

callback

Default: None. A callback passed the repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who] identity
and the request, expected to return None if the user
represented by the identity doesn't exist or a sequence of principal
identifiers (possibly empty) representing groups if the user does
exist. If callback is None, the userid will be assumed to exist
with no group principals.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

	
authenticated_userid(request)[source]

	Return the authenticated userid or None.

If no callback is registered, this will be the same as
unauthenticated_userid.

If a callback is registered, this will return the userid if
and only if the callback returns a value that is not None.

	
effective_principals(request)[source]

	A list of effective principals derived from the identity.

This will return a list of principals including, at least,
pyramid.security.Everyone. If there is no identity, or
the callback returns None, this will be the only principal.

If the callback does not return None and an identity is
found, then the principals will include
pyramid.security.Authenticated, the authenticated_userid
and the list of principals returned by the callback.

	
forget(request)[source]

	Forget the current authenticated user.

Return headers that, if included in a response, will delete the
cookie responsible for tracking the current user.

	
remember(request, principal, **kw)[source]

	Store the principal as repoze.who.userid.

The identity to authenticated to repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who]
will contain the given principal as userid, and
provide all keyword arguments as additional identity
keys. Useful keys could be max_age or userdata.

	
unauthenticated_userid(request)[source]

	Return the repoze.who.userid key from the detected identity.

Helper Classes

	
class AuthTktCookieHelper(secret, cookie_name='auth_tkt', secure=False, include_ip=False, timeout=None, reissue_time=None, max_age=None, http_only=False, path='/', wild_domain=True, hashalg='md5', parent_domain=False, domain=None)[source]

	A helper class for use in third-party authentication policy
implementations. See
pyramid.authentication.AuthTktAuthenticationPolicy for the
meanings of the constructor arguments.

	
class AuthTicket(secret, userid, ip, tokens=(), user_data='', time=None, cookie_name='auth_tkt', secure=False, hashalg='md5')

	This class represents an authentication token. You must pass in
the shared secret, the userid, and the IP address. Optionally you
can include tokens (a list of strings, representing role names),
'user_data', which is arbitrary data available for your own use in
later scripts. Lastly, you can override the cookie name and
timestamp.

Once you provide all the arguments, use .cookie_value() to
generate the appropriate authentication ticket.

Usage:

token = AuthTicket('sharedsecret', 'username',
 os.environ['REMOTE_ADDR'], tokens=['admin'])
val = token.cookie_value()

	
exception AuthTktCookieHelper.BadTicket(msg, expected=None)

	Exception raised when a ticket can't be parsed. If we get far enough to
determine what the expected digest should have been, expected is set.
This should not be shown by default, but can be useful for debugging.

	
AuthTktCookieHelper.forget(request)[source]

	Return a set of expires Set-Cookie headers, which will destroy
any existing auth_tkt cookie when attached to a response

	
AuthTktCookieHelper.identify(request)[source]

	Return a dictionary with authentication information, or None
if no valid auth_tkt is attached to request

	
static AuthTktCookieHelper.parse_ticket(secret, ticket, ip, hashalg='md5')

	Parse the ticket, returning (timestamp, userid, tokens, user_data).

If the ticket cannot be parsed, a BadTicket exception will be raised
with an explanation.

	
AuthTktCookieHelper.remember(request, userid, max_age=None, tokens=())[source]

	Return a set of Set-Cookie headers; when set into a response,
these headers will represent a valid authentication ticket.

	max_age

	The max age of the auth_tkt cookie, in seconds. When this value is
set, the cookie's Max-Age and Expires settings will be set,
allowing the auth_tkt cookie to last between browser sessions. If
this value is None, the max_age value provided to the
helper itself will be used as the max_age value. Default:
None.

	tokens

	A sequence of strings that will be placed into the auth_tkt tokens
field. Each string in the sequence must be of the Python str
type and must match the regex ^[A-Za-z][A-Za-z0-9+_-]*$.
Tokens are available in the returned identity when an auth_tkt is
found in the request and unpacked. Default: ().

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.authorization

	
class ACLAuthorizationPolicy[source]

	An authorization policy which consults an ACL
object attached to a context to determine authorization
information about a principal or multiple principals.
If the context is part of a lineage, the context's parents
are consulted for ACL information too. The following is true
about this security policy.

	When checking whether the 'current' user is permitted (via the
permits method), the security policy consults the
context for an ACL first. If no ACL exists on the context,
or one does exist but the ACL does not explicitly allow or deny
access for any of the effective principals, consult the
context's parent ACL, and so on, until the lineage is exhausted
or we determine that the policy permits or denies.

During this processing, if any pyramid.security.Deny
ACE is found matching any principal in principals, stop
processing by returning an
pyramid.security.ACLDenied instance (equals
False) immediately. If any
pyramid.security.Allow ACE is found matching any
principal, stop processing by returning an
pyramid.security.ACLAllowed instance (equals
True) immediately. If we exhaust the context's
lineage, and no ACE has explicitly permitted or denied
access, return an instance of
pyramid.security.ACLDenied (equals False).

	When computing principals allowed by a permission via the
pyramid.security.principals_allowed_by_permission()
method, we compute the set of principals that are explicitly
granted the permission in the provided context. We do
this by walking 'up' the object graph from the root to the
context. During this walking process, if we find an explicit
pyramid.security.Allow ACE for a principal that
matches the permission, the principal is included in the
allow list. However, if later in the walking process that
principal is mentioned in any pyramid.security.Deny
ACE for the permission, the principal is removed from the allow
list. If a pyramid.security.Deny to the principal
pyramid.security.Everyone is encountered during the
walking process that matches the permission, the allow list
is cleared for all principals encountered in previous ACLs. The
walking process ends after we've processed the any ACL directly
attached to context; a set of principals is returned.

Objects of this class implement the
pyramid.interfaces.IAuthorizationPolicy interface.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.compat

The pyramid.compat module provides platform and version compatibility for
Pyramid and its add-ons across Python platform and version differences. APIs
will be removed from this module over time as Pyramid ceases to support
systems which require compatibility imports.

	
ascii_native_(s)[source]

	Python 3: If s is an instance of text_type, return
s.encode('ascii'), otherwise return str(s, 'ascii', 'strict')

Python 2: If s is an instance of text_type, return
s.encode('ascii'), otherwise return str(s)

	
binary_type

	Binary type for this platform. For Python 3, it's bytes. For
Python 2, it's str.

	
bytes_(s, encoding='latin-1', errors='strict')[source]

	If s is an instance of text_type, return
s.encode(encoding, errors), otherwise return s

	
class_types

	Sequence of class types for this platform. For Python 3, it's
(type,). For Python 2, it's (type, types.ClassType).

	
configparser

	On Python 2, the ConfigParser module, on Python 3, the
configparser module.

	
escape(v)[source]

	On Python 2, the cgi.escape function, on Python 3, the
html.escape function.

	
exec_(code, globs=None, locs=None)

	Exec code in a compatible way on both Python 2 and 3.

	
im_func

	On Python 2, the string value im_func, on Python 3, the string
value __func__.

	
input_(v)

	On Python 2, the raw_input function, on Python 3, the
input function.

	
integer_types

	Sequence of integer types for this platform. For Python 3, it's
(int,). For Python 2, it's (int, long).

	
is_nonstr_iter(v)[source]

	Return True if v is a non-str iterable on both Python 2 and
Python 3.

	
iteritems_(d)[source]

	Return d.items() on Python 3, d.iteritems() on Python 2.

	
itervalues_(d)[source]

	Return d.values() on Python 3, d.itervalues() on Python 2.

	
iterkeys_(d)[source]

	Return d.keys() on Python 3, d.iterkeys() on Python 2.

	
long

	Long type for this platform. For Python 3, it's int. For
Python 2, it's long.

	
map_(v)[source]

	Return list(map(v)) on Python 3, map(v) on Python 2.

	
pickle

	cPickle module if it exists, pickle module otherwise.

	
PY3

	True if running on Python 3, False otherwise.

	
PYPY

	True if running on PyPy, False otherwise.

	
reraise(tp, value, tb=None)[source]

	Reraise an exception in a compatible way on both Python 2 and Python 3,
e.g. reraise(*sys.exc_info()).

	
string_types

	Sequence of string types for this platform. For Python 3, it's
(str,). For Python 2, it's (basestring,).

	
SimpleCookie[source]

	On Python 2, the Cookie.SimpleCookie class, on Python 3, the
http.cookies.SimpleCookie module.

	
text_(s, encoding='latin-1', errors='strict')[source]

	If s is an instance of binary_type, return
s.decode(encoding, errors), otherwise return s

	
text_type

	Text type for this platform. For Python 3, it's str. For Python
2, it's unicode.

	
native_(s, encoding='latin-1', errors='strict')[source]

	Python 3: If s is an instance of text_type, return s, otherwise
return str(s, encoding, errors)

Python 2: If s is an instance of text_type, return
s.encode(encoding, errors), otherwise return str(s)

	
urlparse

	urlparse module on Python 2, urllib.parse module on Python 3.

	
url_quote

	urllib.quote function on Python 2, urllib.parse.quote function
on Python 3.

	
url_quote_plus

	urllib.quote_plus function on Python 2, urllib.parse.quote_plus
function on Python 3.

	
url_unquote

	urllib.unquote function on Python 2, urllib.parse.unquote
function on Python 3.

	
url_encode

	urllib.urlencode function on Python 2, urllib.parse.urlencode
function on Python 3.

	
url_open

	urllib2.urlopen function on Python 2, urllib.request.urlopen
function on Python 3.

	
url_unquote_text(v, encoding='utf-8', errors='replace')

	On Python 2, return url_unquote(v).decode(encoding(encoding, errors));
on Python 3, return the result of urllib.parse.unquote.

	
url_unquote_native(v, encoding='utf-8', errors='replace')

	On Python 2, return native_(url_unquote_text_v, encoding, errors));
on Python 3, return the result of urllib.parse.unquote.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.config

	
class Configurator(registry=None, package=None, settings=None, root_factory=None, authentication_policy=None, authorization_policy=None, renderers=None, debug_logger=None, locale_negotiator=None, request_factory=None, default_permission=None, session_factory=None, default_view_mapper=None, autocommit=False, exceptionresponse_view=<function default_exceptionresponse_view>, route_prefix=None, introspection=True)[source]

	A Configurator is used to configure a Pyramid
application registry.

If the registry argument is not None, it must
be an instance of the pyramid.registry.Registry class
representing the registry to configure. If registry is None, the
configurator will create a pyramid.registry.Registry instance
itself; it will also perform some default configuration that would not
otherwise be done. After its construction, the configurator may be used
to add further configuration to the registry.

Warning

If registry is assigned the above-mentioned class
instance, all other constructor arguments are ignored,
with the exception of package.

If the package argument is passed, it must be a reference to a Python
package (e.g. sys.modules['thepackage']) or a dotted
Python name to the same. This value is used as a basis to convert
relative paths passed to various configuration methods, such as methods
which accept a renderer argument, into absolute paths. If None
is passed (the default), the package is assumed to be the Python package
in which the caller of the Configurator constructor lives.

If the settings argument is passed, it should be a Python dictionary
representing the deployment settings for this application. These
are later retrievable using the
pyramid.registry.Registry.settings attribute (aka
request.registry.settings).

If the root_factory argument is passed, it should be an object
representing the default root factory for your application or a
dotted Python name to the same. If it is None, a default
root factory will be used.

If authentication_policy is passed, it should be an instance
of an authentication policy or a dotted Python
name to the same.

If authorization_policy is passed, it should be an instance of
an authorization policy or a dotted Python name to
the same.

Note

A ConfigurationError will be raised when an
authorization policy is supplied without also supplying an
authentication policy (authorization requires authentication).

If renderers is None (the default), a default set of
renderer factories is used. Else, it should be a list of
tuples representing a set of renderer factories which should be
configured into this application, and each tuple representing a set of
positional values that should be passed to
pyramid.config.Configurator.add_renderer().

If debug_logger is not passed, a default debug logger that logs to a
logger will be used (the logger name will be the package name of the
caller of this configurator). If it is passed, it should be an
instance of the logging.Logger [http://docs.python.org/3/library/logging.html#logging.Logger] (PEP 282) standard library class
or a Python logger name. The debug logger is used by Pyramid
itself to log warnings and authorization debugging information.

If locale_negotiator is passed, it should be a locale
negotiator implementation or a dotted Python name to
same. See Using a Custom Locale Negotiator.

If request_factory is passed, it should be a request
factory implementation or a dotted Python name to the same.
See Changing the Request Factory. By default it is None,
which means use the default request factory.

If default_permission is passed, it should be a
permission string to be used as the default permission for
all view configuration registrations performed against this
Configurator. An example of a permission string:'view'.
Adding a default permission makes it unnecessary to protect each
view configuration with an explicit permission, unless your
application policy requires some exception for a particular view.
By default, default_permission is None, meaning that view
configurations which do not explicitly declare a permission will
always be executable by entirely anonymous users (any
authorization policy in effect is ignored).

See also

See also Setting a Default Permission.

If session_factory is passed, it should be an object which
implements the session factory interface. If a nondefault
value is passed, the session_factory will be used to create a
session object when request.session is accessed. Note that
the same outcome can be achieved by calling
pyramid.config.Configurator.set_session_factory(). By
default, this argument is None, indicating that no session
factory will be configured (and thus accessing request.session
will throw an error) unless set_session_factory is called later
during configuration.

If autocommit is True, every method called on the configurator
will cause an immediate action, and no configuration conflict detection
will be used. If autocommit is False, most methods of the
configurator will defer their action until
pyramid.config.Configurator.commit() is called. When
pyramid.config.Configurator.commit() is called, the actions implied
by the called methods will be checked for configuration conflicts unless
autocommit is True. If a conflict is detected, a
ConfigurationConflictError will be raised. Calling
pyramid.config.Configurator.make_wsgi_app() always implies a final
commit.

If default_view_mapper is passed, it will be used as the default
view mapper factory for view configurations that don't otherwise
specify one (see pyramid.interfaces.IViewMapperFactory). If
default_view_mapper is not passed, a superdefault view mapper will be
used.

If exceptionresponse_view is passed, it must be a view
callable or None. If it is a view callable, it will be used as an
exception view callable when an exception response is raised. If
exceptionresponse_view is None, no exception response view will
be registered, and all raised exception responses will be bubbled up to
Pyramid's caller. By
default, the pyramid.httpexceptions.default_exceptionresponse_view
function is used as the exceptionresponse_view.

If route_prefix is passed, all routes added with
pyramid.config.Configurator.add_route() will have the specified path
prepended to their pattern.

If introspection is passed, it must be a boolean value. If it's
True, introspection values during actions will be kept for use
for tools like the debug toolbar. If it's False, introspection
values provided by registrations will be ignored. By default, it is
True.

New in version 1.1: The exceptionresponse_view argument.

New in version 1.2: The route_prefix argument.

New in version 1.3: The introspection argument.

Controlling Configuration State

	
commit()[source]

	Commit any pending configuration actions. If a configuration
conflict is detected in the pending configuration actions, this method
will raise a ConfigurationConflictError; within the traceback
of this error will be information about the source of the conflict,
usually including file names and line numbers of the cause of the
configuration conflicts.

	
begin(request=None)[source]

	Indicate that application or test configuration has begun.
This pushes a dictionary containing the application
registry implied by registry attribute of this
configurator and the request implied by the
request argument onto the thread local stack
consulted by various pyramid.threadlocal API
functions.

	
end()[source]

	Indicate that application or test configuration has ended.
This pops the last value pushed onto the thread local
stack (usually by the begin method) and returns that
value.

	
include(callable, route_prefix=None)[source]

	Include a configuration callable, to support imperative
application extensibility.

Warning

In versions of Pyramid prior to 1.2, this
function accepted *callables, but this has been changed
to support only a single callable.

A configuration callable should be a callable that accepts a single
argument named config, which will be an instance of a
Configurator. However, be warned that it will not be the same
configurator instance on which you call this method. The
code which runs as a result of calling the callable should invoke
methods on the configurator passed to it which add configuration
state. The return value of a callable will be ignored.

Values allowed to be presented via the callable argument to
this method: any callable Python object or any dotted Python
name which resolves to a callable Python object. It may also be a
Python module, in which case, the module will be searched for
a callable named includeme, which will be treated as the
configuration callable.

For example, if the includeme function below lives in a module
named myapp.myconfig:

	1
2
3
4
5
6
7
8

	# myapp.myconfig module

def my_view(request):
 from pyramid.response import Response
 return Response('OK')

def includeme(config):
 config.add_view(my_view)

You might cause it to be included within your Pyramid application like
so:

	1
2
3
4
5

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator()
 config.include('myapp.myconfig.includeme')

Because the function is named includeme, the function name can
also be omitted from the dotted name reference:

	1
2
3
4
5

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator()
 config.include('myapp.myconfig')

Included configuration statements will be overridden by local
configuration statements if an included callable causes a
configuration conflict by registering something with the same
configuration parameters.

If the route_prefix is supplied, it must be a string. Any calls
to pyramid.config.Configurator.add_route() within the included
callable will have their pattern prefixed with the value of
route_prefix. This can be used to help mount a set of routes at a
different location than the included callable's author intended, while
still maintaining the same route names. For example:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator

def included(config):
 config.add_route('show_users', '/show')

def main(global_config, **settings):
 config = Configurator()
 config.include(included, route_prefix='/users')

In the above configuration, the show_users route will have an
effective route pattern of /users/show, instead of /show
because the route_prefix argument will be prepended to the
pattern.

New in version 1.2: The route_prefix parameter.

	
make_wsgi_app()[source]

	Commits any pending configuration statements, sends a
pyramid.events.ApplicationCreated event to all listeners,
adds this configuration's registry to
pyramid.config.global_registries, and returns a
Pyramid WSGI application representing the committed
configuration state.

	
scan(package=None, categories=None, onerror=None, ignore=None, **kw)[source]

	Scan a Python package and any of its subpackages for objects
marked with configuration decoration such as
pyramid.view.view_config. Any decorated object found will
influence the current configuration state.

The package argument should be a Python package or module
object (or a dotted Python name which refers to such a
package or module). If package is None, the package of the
caller is used.

The categories argument, if provided, should be the
Venusian 'scan categories' to use during scanning. Providing
this argument is not often necessary; specifying scan categories is
an extremely advanced usage. By default, categories is None
which will execute all Venusian decorator callbacks including
Pyramid-related decorators such as
pyramid.view.view_config. See the Venusian
documentation for more information about limiting a scan by using an
explicit set of categories.

The onerror argument, if provided, should be a Venusian
onerror callback function. The onerror function is passed to
venusian.Scanner.scan() [http://docs.pylonsproject.org/projects/venusian/en/latest/api.html#venusian.Scanner.scan] to influence error behavior when an
exception is raised during the scanning process. See the
Venusian documentation for more information about onerror
callbacks.

The ignore argument, if provided, should be a Venusian ignore
value. Providing an ignore argument allows the scan to ignore
particular modules, packages, or global objects during a scan.
ignore can be a string or a callable, or a list containing
strings or callables. The simplest usage of ignore is to provide
a module or package by providing a full path to its dotted name. For
example: config.scan(ignore='my.module.subpackage') would ignore
the my.module.subpackage package during a scan, which would
prevent the subpackage and any of its submodules from being imported
and scanned. See the Venusian documentation for more
information about the ignore argument.

To perform a scan, Pyramid creates a Venusian Scanner object.
The kw argument represents a set of keyword arguments to pass to
the Venusian Scanner object's constructor. See the
venusian documentation (its Scanner class) for more
information about the constructor. By default, the only keyword
arguments passed to the Scanner constructor are {'config':self}
where self is this configurator object. This services the
requirement of all built-in Pyramid decorators, but extension systems
may require additional arguments. Providing this argument is not
often necessary; it's an advanced usage.

New in version 1.1: The **kw argument.

New in version 1.3: The ignore argument.

Adding Routes and Views

	
add_route(name, pattern=None, permission=None, factory=None, for_=None, header=None, xhr=None, accept=None, path_info=None, request_method=None, request_param=None, traverse=None, custom_predicates=(), use_global_views=False, path=None, pregenerator=None, static=False, **predicates)

	Add a route configuration to the current
configuration state, as well as possibly a view
configuration to be used to specify a view callable
that will be invoked when this route matches. The arguments
to this method are divided into predicate, non-predicate,
and view-related types. Route predicate arguments
narrow the circumstances in which a route will be match a
request; non-predicate arguments are informational.

Non-Predicate Arguments

name

The name of the route, e.g. myroute. This attribute is
required. It must be unique among all defined routes in a given
application.

factory

A Python object (often a function or a class) or a dotted
Python name which refers to the same object that will generate a
Pyramid root resource object when this route matches. For
example, mypackage.resources.MyFactory. If this argument is
not specified, a default root factory will be used. See
The Resource Tree for more information about root factories.

traverse

If you would like to cause the context to be
something other than the root object when this route
matches, you can spell a traversal pattern as the
traverse argument. This traversal pattern will be used
as the traversal path: traversal will begin at the root
object implied by this route (either the global root, or the
object returned by the factory associated with this
route).

The syntax of the traverse argument is the same as it is
for pattern. For example, if the pattern provided to
add_route is articles/{article}/edit, and the
traverse argument provided to add_route is
/{article}, when a request comes in that causes the route
to match in such a way that the article match value is
'1' (when the request URI is /articles/1/edit), the
traversal path will be generated as /1. This means that
the root object's __getitem__ will be called with the
name '1' during the traversal phase. If the '1' object
exists, it will become the context of the request.
Traversal has more information about
traversal.

If the traversal path contains segment marker names which
are not present in the pattern argument, a runtime error
will occur. The traverse pattern should not contain
segment markers that do not exist in the pattern
argument.

A similar combining of routing and traversal is available
when a route is matched which contains a *traverse
remainder marker in its pattern (see
Using *traverse in a Route Pattern). The traverse
argument to add_route allows you to associate route patterns
with an arbitrary traversal path without using a
*traverse remainder marker; instead you can use other
match information.

Note that the traverse argument to add_route is
ignored when attached to a route that has a *traverse
remainder marker in its pattern.

pregenerator

This option should be a callable object that implements the
pyramid.interfaces.IRoutePregenerator interface. A
pregenerator is a callable called by the
pyramid.request.Request.route_url() function to augment or
replace the arguments it is passed when generating a URL for the
route. This is a feature not often used directly by applications,
it is meant to be hooked by frameworks that use Pyramid as
a base.

use_global_views

When a request matches this route, and view lookup cannot
find a view which has a route_name predicate argument
that matches the route, try to fall back to using a view
that otherwise matches the context, request, and view name
(but which does not match the route_name predicate).

static

If static is True, this route will never match an incoming
request; it will only be useful for URL generation. By default,
static is False. See Static Routes.

New in version 1.1.

Predicate Arguments

pattern

The pattern of the route e.g. ideas/{idea}. This
argument is required. See Route Pattern Syntax
for information about the syntax of route patterns. If the
pattern doesn't match the current URL, route matching
continues.

Note

For backwards compatibility purposes (as of Pyramid 1.0), a
path keyword argument passed to this function will be used to
represent the pattern value if the pattern argument is
None. If both path and pattern are passed, pattern
wins.

xhr

This value should be either True or False. If this
value is specified and is True, the request must
possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header for this route to match. This
is useful for detecting AJAX requests issued from jQuery,
Prototype and other Javascript libraries. If this predicate
returns False, route matching continues.

request_method

A string representing an HTTP method name, e.g. GET, POST,
HEAD, DELETE, PUT or a tuple of elements containing
HTTP method names. If this argument is not specified, this route
will match if the request has any request method. If this
predicate returns False, route matching continues.

Changed in version 1.2: The ability to pass a tuple of items as request_method.
Previous versions allowed only a string.

path_info

This value represents a regular expression pattern that will
be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will return
True. If this predicate returns False, route
matching continues.

request_param

This value can be any string. A view declaration with this
argument ensures that the associated route will only match
when the request has a key in the request.params
dictionary (an HTTP GET or POST variable) that has a
name which matches the supplied value. If the value
supplied as the argument has a = sign in it,
e.g. request_param="foo=123", then the key
(foo) must both exist in the request.params dictionary, and
the value must match the right hand side of the expression (123)
for the route to "match" the current request. If this predicate
returns False, route matching continues.

header

This argument represents an HTTP header name or a header
name/value pair. If the argument contains a : (colon),
it will be considered a name/value pair
(e.g. User-Agent:Mozilla/.* or Host:localhost). If
the value contains a colon, the value portion should be a
regular expression. If the value does not contain a colon,
the entire value will be considered to be the header name
(e.g. If-Modified-Since). If the value evaluates to a
header name only without a value, the header specified by
the name must be present in the request for this predicate
to be true. If the value evaluates to a header name/value
pair, the header specified by the name must be present in
the request and the regular expression specified as the
value must match the header value. Whether or not the value
represents a header name or a header name/value pair, the
case of the header name is not significant. If this
predicate returns False, route matching continues.

accept

This value represents a match query for one or more
mimetypes in the Accept HTTP request header. If this
value is specified, it must be in one of the following
forms: a mimetype match token in the form text/plain, a
wildcard mimetype match token in the form text/* or a
match-all wildcard mimetype match token in the form */*.
If any of the forms matches the Accept header of the
request, or if the Accept header isn't set at all in the
request, this predicate will be true. If this predicate
returns False, route matching continues.

effective_principals

If specified, this value should be a principal identifier or
a sequence of principal identifiers. If the
pyramid.request.Request.effective_principals property
indicates that every principal named in the argument list is present
in the current request, this predicate will return True; otherwise it
will return False. For example:
effective_principals=pyramid.security.Authenticated or
effective_principals=('fred', 'group:admins').

New in version 1.4a4.

custom_predicates

Deprecated since version 1.5: This value should be a sequence of references to custom
predicate callables. Use custom predicates when no set of
predefined predicates does what you need. Custom predicates
can be combined with predefined predicates as necessary.
Each custom predicate callable should accept two arguments:
info and request and should return either True
or False after doing arbitrary evaluation of the info
and/or the request. If all custom and non-custom predicate
callables return True the associated route will be
considered viable for a given request. If any predicate
callable returns False, route matching continues. Note
that the value info passed to a custom route predicate
is a dictionary containing matching information; see
Custom Route Predicates for more information about
info.

predicates

Pass a key/value pair here to use a third-party predicate
registered via
pyramid.config.Configurator.add_route_predicate(). More than
one key/value pair can be used at the same time. See
View and Route Predicates for more information about
third-party predicates.

New in version 1.4.

	
add_static_view(name, path, **kw)

	Add a view used to render static assets such as images
and CSS files.

The name argument is a string representing an
application-relative local URL prefix. It may alternately be a full
URL.

The path argument is the path on disk where the static files
reside. This can be an absolute path, a package-relative path, or a
asset specification.

The cache_max_age keyword argument is input to set the
Expires and Cache-Control headers for static assets served.
Note that this argument has no effect when the name is a url
prefix. By default, this argument is None, meaning that no
particular Expires or Cache-Control headers are set in the response.

The permission keyword argument is used to specify the
permission required by a user to execute the static view. By
default, it is the string
pyramid.security.NO_PERMISSION_REQUIRED, a special sentinel
which indicates that, even if a default permission exists for
the current application, the static view should be renderered to
completely anonymous users. This default value is permissive
because, in most web apps, static assets seldom need protection from
viewing. If permission is specified, the security checking will
be performed against the default root factory ACL.

Any other keyword arguments sent to add_static_view are passed on
to pyramid.config.Configurator.add_route() (e.g. factory,
perhaps to define a custom factory with a custom ACL for this static
view).

Usage

The add_static_view function is typically used in conjunction
with the pyramid.request.Request.static_url() method.
add_static_view adds a view which renders a static asset when
some URL is visited; pyramid.request.Request.static_url()
generates a URL to that asset.

The name argument to add_static_view is usually a simple URL
prefix (e.g. 'images'). When this is the case, the
pyramid.request.Request.static_url() API will generate a URL
which points to a Pyramid view, which will serve up a set of assets
that live in the package itself. For example:

add_static_view('images', 'mypackage:images/')

Code that registers such a view can generate URLs to the view via
pyramid.request.Request.static_url():

request.static_url('mypackage:images/logo.png')

When add_static_view is called with a name argument that
represents a URL prefix, as it is above, subsequent calls to
pyramid.request.Request.static_url() with paths that start with
the path argument passed to add_static_view will generate a
URL something like http://<Pyramid app URL>/images/logo.png,
which will cause the logo.png file in the images subdirectory
of the mypackage package to be served.

add_static_view can alternately be used with a name argument
which is a URL, causing static assets to be served from an external
webserver. This happens when the name argument is a fully
qualified URL (e.g. starts with http:// or similar). In this
mode, the name is used as the prefix of the full URL when
generating a URL using pyramid.request.Request.static_url().
Furthermore, if a protocol-relative URL (e.g. //example.com/images)
is used as the name argument, the generated URL will use the
protocol of the request (http or https, respectively).

For example, if add_static_view is called like so:

add_static_view('http://example.com/images', 'mypackage:images/')

Subsequently, the URLs generated by
pyramid.request.Request.static_url() for that static view will
be prefixed with http://example.com/images (the external webserver
listening on example.com must be itself configured to respond
properly to such a request.):

static_url('mypackage:images/logo.png', request)

See Serving Static Assets for more information.

	
add_view(view=None, name='', for_=None, permission=None, request_type=None, route_name=None, request_method=None, request_param=None, containment=None, attr=None, renderer=None, wrapper=None, xhr=None, accept=None, header=None, path_info=None, custom_predicates=(), context=None, decorator=None, mapper=None, http_cache=None, match_param=None, check_csrf=None, **predicates)

	Add a view configuration to the current
configuration state. Arguments to add_view are broken
down below into predicate arguments and non-predicate
arguments. Predicate arguments narrow the circumstances in
which the view callable will be invoked when a request is
presented to Pyramid; non-predicate arguments are
informational.

Non-Predicate Arguments

view

A view callable or a dotted Python name
which refers to a view callable. This argument is required
unless a renderer argument also exists. If a
renderer argument is passed, and a view argument is
not provided, the view callable defaults to a callable that
returns an empty dictionary (see
Writing View Callables Which Use a Renderer).

permission

A permission that the user must possess in order to invoke
the view callable. See Configuring View Security for
more information about view security and permissions. This is
often a string like view or edit.

If permission is omitted, a default permission may be used
for this view registration if one was named as the
pyramid.config.Configurator constructor's
default_permission argument, or if
pyramid.config.Configurator.set_default_permission() was used
prior to this view registration. Pass the value
pyramid.security.NO_PERMISSION_REQUIRED as the permission
argument to explicitly indicate that the view should always be
executable by entirely anonymous users, regardless of the default
permission, bypassing any authorization policy that may be
in effect.

attr

This knob is most useful when the view definition is a class.

The view machinery defaults to using the __call__ method
of the view callable (or the function itself, if the
view callable is a function) to obtain a response. The
attr value allows you to vary the method attribute used
to obtain the response. For example, if your view was a
class, and the class has a method named index and you
wanted to use this method instead of the class' __call__
method to return the response, you'd say attr="index" in the
view configuration for the view.

renderer

This is either a single string term (e.g. json) or a
string implying a path or asset specification
(e.g. templates/views.pt) naming a renderer
implementation. If the renderer value does not contain
a dot ., the specified string will be used to look up a
renderer implementation, and that renderer implementation
will be used to construct a response from the view return
value. If the renderer value contains a dot (.),
the specified term will be treated as a path, and the
filename extension of the last element in the path will be
used to look up the renderer implementation, which will be
passed the full path. The renderer implementation will be
used to construct a response from the view return
value.

Note that if the view itself returns a response (see
View Callable Responses), the specified renderer implementation
is never called.

When the renderer is a path, although a path is usually just
a simple relative pathname (e.g. templates/foo.pt,
implying that a template named "foo.pt" is in the
"templates" directory relative to the directory of the
current package of the Configurator), a path can be
absolute, starting with a slash on UNIX or a drive letter
prefix on Windows. The path can alternately be a
asset specification in the form
some.dotted.package_name:relative/path, making it
possible to address template assets which live in a
separate package.

The renderer attribute is optional. If it is not
defined, the "null" renderer is assumed (no rendering is
performed and the value is passed back to the upstream
Pyramid machinery unmodified).

http_cache

New in version 1.1.

When you supply an http_cache value to a view configuration,
the Expires and Cache-Control headers of a response
generated by the associated view callable are modified. The value
for http_cache may be one of the following:

	A nonzero integer. If it's a nonzero integer, it's treated as a
number of seconds. This number of seconds will be used to
compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view.
For example: http_cache=3600 instructs the requesting browser
to 'cache this response for an hour, please'.

	A datetime.timedelta instance. If it's a
datetime.timedelta instance, it will be converted into a
number of seconds, and that number of seconds will be used to
compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view.
For example: http_cache=datetime.timedelta(days=1) instructs
the requesting browser to 'cache this response for a day, please'.

	Zero (0). If the value is zero, the Cache-Control and
Expires headers present in all responses from this view will
be composed such that client browser cache (and any intermediate
caches) are instructed to never cache the response.

	A two-tuple. If it's a two tuple (e.g. http_cache=(1,
{'public':True})), the first value in the tuple may be a
nonzero integer or a datetime.timedelta instance; in either
case this value will be used as the number of seconds to cache
the response. The second value in the tuple must be a
dictionary. The values present in the dictionary will be used as
input to the Cache-Control response header. For example:
http_cache=(3600, {'public':True}) means 'cache for an hour,
and add public to the Cache-Control header of the response'.
All keys and values supported by the
webob.cachecontrol.CacheControl interface may be added to the
dictionary. Supplying {'public':True} is equivalent to
calling response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to
calling response.cache_expires(value) within your view's body.

Providing a two-tuple value as http_cache is equivalent to
calling response.cache_expires(value[0], **value[1]) within your
view's body.

If you wish to avoid influencing, the Expires header, and
instead wish to only influence Cache-Control headers, pass a
tuple as http_cache with the first element of None, e.g.:
(None, {'public':True}).

If you wish to prevent a view that uses http_cache in its
configuration from having its caching response headers changed by
this machinery, set response.cache_control.prevent_auto = True
before returning the response from the view. This effectively
disables any HTTP caching done by http_cache for that response.

wrapper

The view name of a different view
configuration which will receive the response body of this
view as the request.wrapped_body attribute of its own
request, and the response returned by this
view as the request.wrapped_response attribute of its
own request. Using a wrapper makes it possible to "chain"
views together to form a composite response. The response
of the outermost wrapper view will be returned to the user.
The wrapper view will be found as any view is found: see
View Configuration. The "best" wrapper view will be found
based on the lookup ordering: "under the hood" this wrapper
view is looked up via
pyramid.view.render_view_to_response(context, request,
'wrapper_viewname'). The context and request of a wrapper
view is the same context and request of the inner view. If
this attribute is unspecified, no view wrapping is done.

decorator

A dotted Python name to function (or the function itself,
or an iterable of the aforementioned) which will be used to
decorate the registered view callable. The decorator
function(s) will be called with the view callable as a single
argument. The view callable it is passed will accept
(context, request). The decorator(s) must return a
replacement view callable which also accepts (context,
request).

If decorator is an iterable, the callables will be combined and
used in the order provided as a decorator.
For example:

@view_config(...,
 decorator=(decorator2,
 decorator1))
def myview(request):

Is similar to doing:

@view_config(...)
@decorator2
@decorator1
def myview(request):
 ...

Except with the existing benefits of decorator= (having a common
decorator syntax for all view calling conventions and not having to
think about preserving function attributes such as __name__ and
__module__ within decorator logic).

All view callables in the decorator chain must return a response
object implementing pyramid.interfaces.IResponse or raise
an exception:

def log_timer(wrapped):
 def wrapper(context, request):
 start = time.time()
 response = wrapped(context, request)
 duration = time.time() - start
 response.headers['X-View-Time'] = '%.3f' % (duration,)
 log.info('view took %.3f seconds', duration)
 return response
 return wrapper

Changed in version 1.4a4: Passing an iterable.

mapper

A Python object or dotted Python name which refers to a
view mapper, or None. By default it is None, which
indicates that the view should use the default view mapper. This
plug-point is useful for Pyramid extension developers, but it's not
very useful for 'civilians' who are just developing stock Pyramid
applications. Pay no attention to the man behind the curtain.

Predicate Arguments

name

The view name. Read Traversal to
understand the concept of a view name.

context

An object or a dotted Python name referring to an
interface or class object that the context must be
an instance of, or the interface that the
context must provide in order for this view to be
found and called. This predicate is true when the
context is an instance of the represented class or
if the context provides the represented interface;
it is otherwise false. This argument may also be provided
to add_view as for_ (an older, still-supported
spelling).

route_name

This value must match the name of a route
configuration declaration (see URL Dispatch)
that must match before this view will be called.

request_type

This value should be an interface that the
request must provide in order for this view to be
found and called. This value exists only for backwards
compatibility purposes.

request_method

This value can be either a strings (such as GET, POST,
PUT, DELETE, or HEAD) representing an HTTP
REQUEST_METHOD, or a tuple containing one or more of these
strings. A view declaration with this argument ensures that the
view will only be called when the method attribute of the
request (aka the REQUEST_METHOD of the WSGI environment) matches
a supplied value. Note that use of GET also implies that the
view will respond to HEAD as of Pyramid 1.4.

Changed in version 1.2: The ability to pass a tuple of items as request_method.
Previous versions allowed only a string.

request_param

This value can be any string or any sequence of strings. A view
declaration with this argument ensures that the view will only be
called when the request has a key in the request.params
dictionary (an HTTP GET or POST variable) that has a
name which matches the supplied value (if the value is a string)
or values (if the value is a tuple). If any value
supplied has a = sign in it,
e.g. request_param="foo=123", then the key (foo)
must both exist in the request.params dictionary, and
the value must match the right hand side of the expression
(123) for the view to "match" the current request.

match_param

New in version 1.2.

This value can be a string of the format "key=value" or a tuple
containing one or more of these strings.

A view declaration with this argument ensures that the view will
only be called when the request has key/value pairs in its
matchdict that equal those supplied in the predicate.
e.g. match_param="action=edit" would require the action
parameter in the matchdict match the right hand side of
the expression (edit) for the view to "match" the current
request.

If the match_param is a tuple, every key/value pair must match
for the predicate to pass.

containment

This value should be a Python class or interface (or a
dotted Python name) that an object in the
lineage of the context must provide in order for this view
to be found and called. The nodes in your object graph must be
"location-aware" to use this feature. See
Location-Aware Resources for more information about
location-awareness.

xhr

This value should be either True or False. If this
value is specified and is True, the request
must possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header that has the value
XMLHttpRequest for this view to be found and called.
This is useful for detecting AJAX requests issued from
jQuery, Prototype and other Javascript libraries.

accept

The value of this argument represents a match query for one
or more mimetypes in the Accept HTTP request header. If
this value is specified, it must be in one of the following
forms: a mimetype match token in the form text/plain, a
wildcard mimetype match token in the form text/* or a
match-all wildcard mimetype match token in the form */*.
If any of the forms matches the Accept header of the
request, this predicate will be true.

header

This value represents an HTTP header name or a header
name/value pair. If the value contains a : (colon), it
will be considered a name/value pair
(e.g. User-Agent:Mozilla/.* or Host:localhost). The
value portion should be a regular expression. If the value
does not contain a colon, the entire value will be
considered to be the header name
(e.g. If-Modified-Since). If the value evaluates to a
header name only without a value, the header specified by
the name must be present in the request for this predicate
to be true. If the value evaluates to a header name/value
pair, the header specified by the name must be present in
the request and the regular expression specified as the
value must match the header value. Whether or not the value
represents a header name or a header name/value pair, the
case of the header name is not significant.

path_info

This value represents a regular expression pattern that will
be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will be
True.

check_csrf

If specified, this value should be one of None, True,
False, or a string representing the 'check name'. If the value
is True or a string, CSRF checking will be performed. If the
value is False or None, CSRF checking will not be performed.

If the value provided is a string, that string will be used as the
'check name'. If the value provided is True, csrf_token will
be used as the check name.

If CSRF checking is performed, the checked value will be the value
of request.params[check_name]. This value will be compared
against the value of request.session.get_csrf_token(), and the
check will pass if these two values are the same. If the check
passes, the associated view will be permitted to execute. If the
check fails, the associated view will not be permitted to execute.

Note that using this feature requires a session factory to
have been configured.

New in version 1.4a2.

physical_path

If specified, this value should be a string or a tuple representing
the physical path of the context found via traversal for this
predicate to match as true. For example: physical_path='/' or
physical_path='/a/b/c' or physical_path=('', 'a', 'b', 'c').
This is not a path prefix match or a regex, it's a whole-path match.
It's useful when you want to always potentially show a view when some
object is traversed to, but you can't be sure about what kind of
object it will be, so you can't use the context predicate. The
individual path elements inbetween slash characters or in tuple
elements should be the Unicode representation of the name of the
resource and should not be encoded in any way.

New in version 1.4a3.

effective_principals

If specified, this value should be a principal identifier or
a sequence of principal identifiers. If the
pyramid.request.Request.effective_principals property
indicates that every principal named in the argument list is present
in the current request, this predicate will return True; otherwise it
will return False. For example:
effective_principals=pyramid.security.Authenticated or
effective_principals=('fred', 'group:admins').

New in version 1.4a4.

custom_predicates

Deprecated since version 1.5: This value should be a sequence of references to custom
predicate callables. Use custom predicates when no set of
predefined predicates do what you need. Custom predicates
can be combined with predefined predicates as necessary.
Each custom predicate callable should accept two arguments:
context and request and should return either
True or False after doing arbitrary evaluation of
the context and/or the request. The predicates argument
to this method and the ability to register third-party view
predicates via
pyramid.config.Configurator.add_view_predicate()
obsoletes this argument, but it is kept around for backwards
compatibility.

predicates

Pass a key/value pair here to use a third-party predicate
registered via
pyramid.config.Configurator.add_view_predicate(). More than
one key/value pair can be used at the same time. See
View and Route Predicates for more information about
third-party predicates.

	
add_notfound_view(view=None, attr=None, renderer=None, wrapper=None, route_name=None, request_type=None, request_method=None, request_param=None, containment=None, xhr=None, accept=None, header=None, path_info=None, custom_predicates=(), decorator=None, mapper=None, match_param=None, append_slash=False, **predicates)

	Add a default Not Found View to the current configuration state.
The view will be called when Pyramid or application code raises an
pyramid.httpexceptions.HTTPNotFound exception (e.g. when a
view cannot be found for the request). The simplest example is:

def notfound(request):
 return Response('Not Found', status='404 Not Found')

config.add_notfound_view(notfound)

All arguments except append_slash have the same meaning as
pyramid.config.Configurator.add_view() and each predicate
argument restricts the set of circumstances under which this notfound
view will be invoked. Unlike
pyramid.config.Configurator.add_view(), this method will raise
an exception if passed name, permission, context,
for_, or http_cache keyword arguments. These argument values
make no sense in the context of a Not Found View.

If append_slash is True, when this Not Found View is invoked,
and the current path info does not end in a slash, the notfound logic
will attempt to find a route that matches the request's path
info suffixed with a slash. If such a route exists, Pyramid will
issue a redirect to the URL implied by the route; if it does not,
Pyramid will return the result of the view callable provided as
view, as normal.

New in version 1.3.

	
add_forbidden_view(view=None, attr=None, renderer=None, wrapper=None, route_name=None, request_type=None, request_method=None, request_param=None, containment=None, xhr=None, accept=None, header=None, path_info=None, custom_predicates=(), decorator=None, mapper=None, match_param=None, **predicates)

	Add a forbidden view to the current configuration state. The
view will be called when Pyramid or application code raises a
pyramid.httpexceptions.HTTPForbidden exception and the set of
circumstances implied by the predicates provided are matched. The
simplest example is:

def forbidden(request):
 return Response('Forbidden', status='403 Forbidden')

config.add_forbidden_view(forbidden)

All arguments have the same meaning as
pyramid.config.Configurator.add_view() and each predicate
argument restricts the set of circumstances under which this notfound
view will be invoked. Unlike
pyramid.config.Configurator.add_view(), this method will raise
an exception if passed name, permission, context,
for_, or http_cache keyword arguments. These argument values
make no sense in the context of a forbidden view.

New in version 1.3.

Adding an Event Subscriber

	
add_subscriber(subscriber, iface=None, **predicates)

	Add an event subscriber for the event stream
implied by the supplied iface interface.

The subscriber argument represents a callable object (or a
dotted Python name which identifies a callable); it will be
called with a single object event whenever Pyramid emits
an event associated with the iface, which may be an
interface or a class or a dotted Python name to a
global object representing an interface or a class.

Using the default iface value, None will cause the subscriber
to be registered for all event types. See Using Events for
more information about events and subscribers.

Any number of predicate keyword arguments may be passed in
**predicates. Each predicate named will narrow the set of
circumstances in which the subscriber will be invoked. Each named
predicate must have been registered via
pyramid.config.Configurator.add_subscriber_predicate() before it
can be used. See Subscriber Predicates for more information.

New in version 1.4: The **predicates argument.

Using Security

	
set_authentication_policy(policy)

	Override the Pyramid authentication policy in the
current configuration. The policy argument must be an instance
of an authentication policy or a dotted Python name
that points at an instance of an authentication policy.

Note

Using the authentication_policy argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_authorization_policy(policy)

	Override the Pyramid authorization policy in the
current configuration. The policy argument must be an instance
of an authorization policy or a dotted Python name that points
at an instance of an authorization policy.

Note

Using the authorization_policy argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_default_permission(permission)

	Set the default permission to be used by all subsequent
view configuration registrations. permission
should be a permission string to be used as the
default permission. An example of a permission
string:'view'. Adding a default permission makes it
unnecessary to protect each view configuration with an
explicit permission, unless your application policy requires
some exception for a particular view.

If a default permission is not set, views represented by
view configuration registrations which do not explicitly
declare a permission will be executable by entirely anonymous
users (any authorization policy is ignored).

Later calls to this method override will conflict with earlier calls;
there can be only one default permission active at a time within an
application.

Warning

If a default permission is in effect, view configurations meant to
create a truly anonymously accessible view (even exception
view views) must use the value of the permission importable as
pyramid.security.NO_PERMISSION_REQUIRED. When this string
is used as the permission for a view configuration, the default
permission is ignored, and the view is registered, making it
available to all callers regardless of their credentials.

See also

See also Setting a Default Permission.

Note

Using the default_permission argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
add_permission(permission_name)

	A configurator directive which registers a free-standing
permission without associating it with a view callable. This can be
used so that the permission shows up in the introspectable data under
the permissions category (permissions mentioned via add_view
already end up in there). For example:

config = Configurator()
config.add_permission('view')

Extending the Request Object

	
add_request_method(callable=None, name=None, property=False, reify=False)

	Add a property or method to the request object.

When adding a method to the request, callable may be any
function that receives the request object as the first
parameter. If name is None then it will be computed
from the name of the callable.

When adding a property to the request, callable can either
be a callable that accepts the request as its single positional
parameter, or it can be a property descriptor. If name is
None, the name of the property will be computed from the
name of the callable.

If the callable is a property descriptor a ValueError
will be raised if name is None or reify is True.

See pyramid.request.Request.set_property() for more
details on property vs reify. When reify is
True, the value of property is assumed to also be
True.

In all cases, callable may also be a
dotted Python name which refers to either a callable or
a property descriptor.

If callable is None then the method is only used to
assist in conflict detection between different addons requesting
the same attribute on the request object.

This is the recommended method for extending the request object
and should be used in favor of providing a custom request
factory via
pyramid.config.Configurator.set_request_factory().

New in version 1.4.

	
set_request_property(*args, **kw)

	

Using I18N

	
add_translation_dirs(*specs)

	Add one or more translation directory paths to the
current configuration state. The specs argument is a
sequence that may contain absolute directory paths
(e.g. /usr/share/locale) or asset specification
names naming a directory path (e.g. some.package:locale)
or a combination of the two.

Example:

config.add_translation_dirs('/usr/share/locale',
 'some.package:locale')

Later calls to add_translation_dir insert directories into the
beginning of the list of translation directories created by earlier
calls. This means that the same translation found in a directory
added later in the configuration process will be found before one
added earlier in the configuration process. However, if multiple
specs are provided in a single call to add_translation_dirs, the
directories will be inserted into the beginning of the directory list
in the order they're provided in the *specs list argument (items
earlier in the list trump ones later in the list).

	
set_locale_negotiator(negotiator)

	Set the locale negotiator for this application. The
locale negotiator is a callable which accepts a
request object and which returns a locale
name. The negotiator argument should be the locale
negotiator implementation or a dotted Python name
which refers to such an implementation.

Later calls to this method override earlier calls; there can
be only one locale negotiator active at a time within an
application. See Activating Translation for more
information.

Note

Using the locale_negotiator argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

Overriding Assets

	
override_asset(to_override, override_with, _override=None)

	Add a Pyramid asset override to the current
configuration state.

to_override is a asset specification to the
asset being overridden.

override_with is a asset specification to the
asset that is performing the override.

See Static Assets for more
information about asset overrides.

Getting and Adding Settings

	
add_settings(settings=None, **kw)

	Augment the deployment settings with one or more
key/value pairs.

You may pass a dictionary:

config.add_settings({'external_uri':'http://example.com'})

Or a set of key/value pairs:

config.add_settings(external_uri='http://example.com')

This function is useful when you need to test code that accesses the
pyramid.registry.Registry.settings API (or the
pyramid.config.Configurator.get_settings() API) and
which uses values from that API.

	
get_settings()

	Return a deployment settings object for the current
application. A deployment settings object is a dictionary-like
object that contains key/value pairs based on the dictionary passed
as the settings argument to the
pyramid.config.Configurator constructor.

Note

the pyramid.registry.Registry.settings API
performs the same duty.

Hooking Pyramid Behavior

	
add_renderer(name, factory)

	Add a Pyramid renderer factory to the
current configuration state.

The name argument is the renderer name. Use None to
represent the default renderer (a renderer which will be used for all
views unless they name another renderer specifically).

The factory argument is Python reference to an
implementation of a renderer factory or a
dotted Python name to same.

	
add_resource_url_adapter(adapter, resource_iface=None)

	
New in version 1.3.

When you add a traverser as described in
Changing the Traverser, it's convenient to continue to use the
pyramid.request.Request.resource_url() API. However, since the
way traversal is done may have been modified, the URLs that
resource_url generates by default may be incorrect when resources
are returned by a custom traverser.

If you've added a traverser, you can change how
resource_url() generates a URL for a
specific type of resource by calling this method.

The adapter argument represents a class that implements the
IResourceURL interface. The class
constructor should accept two arguments in its constructor (the
resource and the request) and the resulting instance should provide
the attributes detailed in that interface (virtual_path and
physical_path, in particular).

The resource_iface argument represents a class or interface that
the resource should possess for this url adapter to be used when
pyramid.request.Request.resource_url() looks up a resource url
adapter. If resource_iface is not passed, or it is passed as
None, the url adapter will be used for every type of resource.

See Changing How pyramid.request.Request.resource_url() Generates a URL for more information.

	
add_response_adapter(adapter, type_or_iface)

	When an object of type (or interface) type_or_iface is
returned from a view callable, Pyramid will use the adapter
adapter to convert it into an object which implements the
pyramid.interfaces.IResponse interface. If adapter is
None, an object returned of type (or interface) type_or_iface
will itself be used as a response object.

adapter and type_or_interface may be Python objects or
strings representing dotted names to importable Python global
objects.

See Changing How Pyramid Treats View Responses for more information.

	
add_traverser(adapter, iface=None)

	The superdefault traversal algorithm that Pyramid uses
is explained in The Traversal Algorithm. Though it is rarely
necessary, this default algorithm can be swapped out selectively for
a different traversal pattern via configuration. The section
entitled Changing the Traverser details how to create a
traverser class.

For example, to override the superdefault traverser used by Pyramid,
you might do something like this:

from myapp.traversal import MyCustomTraverser
config.add_traverser(MyCustomTraverser)

This would cause the Pyramid superdefault traverser to never be used;
instead all traversal would be done using your MyCustomTraverser
class, no matter which object was returned by the root
factory of this application. Note that we passed no arguments to
the iface keyword parameter. The default value of iface,
None represents that the registered traverser should be used when
no other more specific traverser is available for the object returned
by the root factory.

However, more than one traversal algorithm can be active at the same
time. The traverser used can depend on the result of the root
factory. For instance, if your root factory returns more than one
type of object conditionally, you could claim that an alternate
traverser adapter should be used against one particular class or
interface returned by that root factory. When the root factory
returned an object that implemented that class or interface, a custom
traverser would be used. Otherwise, the default traverser would be
used. The iface argument represents the class of the object that
the root factory might return or an interface that the object
might implement.

To use a particular traverser only when the root factory returns a
particular class:

config.add_traverser(MyCustomTraverser, MyRootClass)

When more than one traverser is active, the "most specific" traverser
will be used (the one that matches the class or interface of the
value returned by the root factory most closely).

Note that either adapter or iface can be a dotted
Python name or a Python object.

See Changing the Traverser for more information.

	
add_tween(tween_factory, under=None, over=None)

	
New in version 1.2.

Add a 'tween factory'. A tween (a contraction of 'between')
is a bit of code that sits between the Pyramid router's main request
handling function and the upstream WSGI component that uses
Pyramid as its 'app'. Tweens are a feature that may be used
by Pyramid framework extensions, to provide, for example,
Pyramid-specific view timing support, bookkeeping code that examines
exceptions before they are returned to the upstream WSGI application,
or a variety of other features. Tweens behave a bit like
WSGI 'middleware' but they have the benefit of running in a
context in which they have access to the Pyramid application
registry as well as the Pyramid rendering machinery.

Note

You can view the tween ordering configured into a given
Pyramid application by using the ptweens
command. See Displaying "Tweens".

The tween_factory argument must be a dotted Python name
to a global object representing the tween factory.

The under and over arguments allow the caller of
add_tween to provide a hint about where in the tween chain this
tween factory should be placed when an implicit tween chain is used.
These hints are only used when an explicit tween chain is not used
(when the pyramid.tweens configuration value is not set).
Allowable values for under or over (or both) are:

	None (the default).

	A dotted Python name to a tween factory: a string
representing the dotted name of a tween factory added in a call to
add_tween in the same configuration session.

	One of the constants pyramid.tweens.MAIN,
pyramid.tweens.INGRESS, or pyramid.tweens.EXCVIEW.

	An iterable of any combination of the above. This allows the user
to specify fallbacks if the desired tween is not included, as well
as compatibility with multiple other tweens.

under means 'closer to the main Pyramid application than',
over means 'closer to the request ingress than'.

For example, calling add_tween('myapp.tfactory',
over=pyramid.tweens.MAIN) will attempt to place the tween factory
represented by the dotted name myapp.tfactory directly 'above'
(in ptweens order) the main Pyramid request handler.
Likewise, calling add_tween('myapp.tfactory',
over=pyramid.tweens.MAIN, under='mypkg.someothertween') will
attempt to place this tween factory 'above' the main handler but
'below' (a fictional) 'mypkg.someothertween' tween factory.

If all options for under (or over) cannot be found in the
current configuration, it is an error. If some options are specified
purely for compatibilty with other tweens, just add a fallback of
MAIN or INGRESS. For example, under=('mypkg.someothertween',
'mypkg.someothertween2', INGRESS). This constraint will require
the tween to be located under both the 'mypkg.someothertween' tween,
the 'mypkg.someothertween2' tween, and INGRESS. If any of these is
not in the current configuration, this constraint will only organize
itself based on the tweens that are present.

Specifying neither over nor under is equivalent to specifying
under=INGRESS.

Implicit tween ordering is obviously only best-effort. Pyramid will
attempt to present an implicit order of tweens as best it can, but
the only surefire way to get any particular ordering is to use an
explicit tween order. A user may always override the implicit tween
ordering by using an explicit pyramid.tweens configuration value
setting.

under, and over arguments are ignored when an explicit tween
chain is specified using the pyramid.tweens configuration value.

For more information, see Registering Tweens.

	
add_route_predicate(name, factory, weighs_more_than=None, weighs_less_than=None)

	Adds a route predicate factory. The view predicate can later be
named as a keyword argument to
pyramid.config.Configurator.add_route().

name should be the name of the predicate. It must be a valid
Python identifier (it will be used as a keyword argument to
add_route).

factory should be a predicate factory or dotted
Python name which refers to a predicate factory.

See View and Route Predicates for more information.

New in version 1.4.

	
add_view_predicate(name, factory, weighs_more_than=None, weighs_less_than=None)

	
New in version 1.4.

Adds a view predicate factory. The associated view predicate can
later be named as a keyword argument to
pyramid.config.Configurator.add_view() in the
predicates anonyous keyword argument dictionary.

name should be the name of the predicate. It must be a valid
Python identifier (it will be used as a keyword argument to
add_view by others).

factory should be a predicate factory or dotted
Python name which refers to a predicate factory.

See View and Route Predicates for more information.

	
set_request_factory(factory)

	The object passed as factory should be an object (or a
dotted Python name which refers to an object) which
will be used by the Pyramid router to create all
request objects. This factory object must have the same
methods and attributes as the
pyramid.request.Request class (particularly
__call__, and blank).

See pyramid.config.Configurator.add_request_method()
for a less intrusive way to extend the request objects with
custom methods and properties.

Note

Using the request_factory argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

	
set_root_factory(factory)

	Add a root factory to the current configuration
state. If the factory argument is None a default root
factory will be registered.

Note

Using the root_factory argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_session_factory(factory)

	Configure the application with a session factory. If this
method is called, the factory argument must be a session
factory callable or a dotted Python name to that factory.

Note

Using the session_factory argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

	
set_view_mapper(mapper)

	Setting a view mapper makes it possible to make use of
view callable objects which implement different call
signatures than the ones supported by Pyramid as described in
its narrative documentation.

The mapper argument should be an object implementing
pyramid.interfaces.IViewMapperFactory or a dotted
Python name to such an object. The provided mapper will become
the default view mapper to be used by all subsequent view
configuration registrations.

See also

See also Using a View Mapper.

Note

Using the default_view_mapper argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

Extension Author APIs

	
action(discriminator, callable=None, args=(), kw=None, order=0, introspectables=(), **extra)[source]

	Register an action which will be executed when
pyramid.config.Configurator.commit() is called (or executed
immediately if autocommit is True).

Warning

This method is typically only used by Pyramid
framework extension authors, not by Pyramid application
developers.

The discriminator uniquely identifies the action. It must be
given, but it can be None, to indicate that the action never
conflicts. It must be a hashable value.

The callable is a callable object which performs the task
associated with the action when the action is executed. It is
optional.

args and kw are tuple and dict objects respectively, which
are passed to callable when this action is executed. Both are
optional.

order is a grouping mechanism; an action with a lower order will
be executed before an action with a higher order (has no effect when
autocommit is True).

introspectables is a sequence of introspectable objects
(or the empty sequence if no introspectable objects are associated
with this action). If this configurator's introspection
attribute is False, these introspectables will be ignored.

extra provides a facility for inserting extra keys and values
into an action dictionary.

	
add_directive(name, directive, action_wrap=True)[source]

	Add a directive method to the configurator.

Warning

This method is typically only used by Pyramid
framework extension authors, not by Pyramid application
developers.

Framework extenders can add directive methods to a configurator by
instructing their users to call config.add_directive('somename',
'some.callable'). This will make some.callable accessible as
config.somename. some.callable should be a function which
accepts config as a first argument, and arbitrary positional and
keyword arguments following. It should use config.action as
necessary to perform actions. Directive methods can then be invoked
like 'built-in' directives such as add_view, add_route, etc.

The action_wrap argument should be True for directives which
perform config.action with potentially conflicting
discriminators. action_wrap will cause the directive to be
wrapped in a decorator which provides more accurate conflict
cause information.

add_directive does not participate in conflict detection, and
later calls to add_directive will override earlier calls.

	
with_package(package)[source]

	Return a new Configurator instance with the same registry
as this configurator. package may be an actual Python package
object or a dotted Python name representing a package.

	
derive_view(view, attr=None, renderer=None)

	Create a view callable using the function, instance,
or class (or dotted Python name referring to the same)
provided as view object.

Warning

This method is typically only used by Pyramid framework
extension authors, not by Pyramid application developers.

This is API is useful to framework extenders who create
pluggable systems which need to register 'proxy' view
callables for functions, instances, or classes which meet the
requirements of being a Pyramid view callable. For
example, a some_other_framework function in another
framework may want to allow a user to supply a view callable,
but he may want to wrap the view callable in his own before
registering the wrapper as a Pyramid view callable.
Because a Pyramid view callable can be any of a
number of valid objects, the framework extender will not know
how to call the user-supplied object. Running it through
derive_view normalizes it to a callable which accepts two
arguments: context and request.

For example:

def some_other_framework(user_supplied_view):
 config = Configurator(reg)
 proxy_view = config.derive_view(user_supplied_view)
 def my_wrapper(context, request):
 do_something_that_mutates(request)
 return proxy_view(context, request)
 config.add_view(my_wrapper)

The view object provided should be one of the following:

	A function or another non-class callable object that accepts
a request as a single positional argument and which
returns a response object.

	A function or other non-class callable object that accepts
two positional arguments, context, request and which
returns a response object.

	A class which accepts a single positional argument in its
constructor named request, and which has a __call__
method that accepts no arguments that returns a
response object.

	A class which accepts two positional arguments named
context, request, and which has a __call__ method
that accepts no arguments that returns a response
object.

	A dotted Python name which refers to any of the
kinds of objects above.

This API returns a callable which accepts the arguments
context, request and which returns the result of calling
the provided view object.

The attr keyword argument is most useful when the view
object is a class. It names the method that should be used as
the callable. If attr is not provided, the attribute
effectively defaults to __call__. See
Defining a View Callable as a Class for more information.

The renderer keyword argument should be a renderer
name. If supplied, it will cause the returned callable to use
a renderer to convert the user-supplied view result to
a response object. If a renderer argument is not
supplied, the user-supplied view must itself return a
response object.

Utility Methods

	
absolute_asset_spec(relative_spec)[source]

	Resolve the potentially relative asset
specification string passed as relative_spec into an
absolute asset specification string and return the string.
Use the package of this configurator as the package to
which the asset specification will be considered relative
when generating an absolute asset specification. If the
provided relative_spec argument is already absolute, or if
the relative_spec is not a string, it is simply returned.

	
maybe_dotted(dotted)[source]

	Resolve the dotted Python name dotted to a
global Python object. If dotted is not a string, return
it without attempting to do any name resolution. If
dotted is a relative dotted name (e.g. .foo.bar,
consider it relative to the package argument supplied to
this Configurator's constructor.

ZCA-Related APIs

	
hook_zca()

	Call zope.component.getSiteManager.sethook() with the
argument pyramid.threadlocal.get_current_registry, causing
the Zope Component Architecture 'global' APIs such as
zope.component.getSiteManager() [http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager],
zope.component.getAdapter() [http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter] and others to use the
Pyramid application registry rather than the Zope
'global' registry.

	
unhook_zca()

	Call zope.component.getSiteManager.reset() to undo the
action of pyramid.config.Configurator.hook_zca().

	
setup_registry(settings=None, root_factory=None, authentication_policy=None, authorization_policy=None, renderers=None, debug_logger=None, locale_negotiator=None, request_factory=None, default_permission=None, session_factory=None, default_view_mapper=None, exceptionresponse_view=<function default_exceptionresponse_view>)[source]

	When you pass a non-None registry argument to the
Configurator constructor, no initial setup is performed
against the registry. This is because the registry you pass in may
have already been initialized for use under Pyramid via a
different configurator. However, in some circumstances (such as when
you want to use a global registry instead of a registry created as a
result of the Configurator constructor), or when you want to reset
the initial setup of a registry, you do want to explicitly
initialize the registry associated with a Configurator for use under
Pyramid. Use setup_registry to do this initialization.

setup_registry configures settings, a root factory, security
policies, renderers, a debug logger, a locale negotiator, and various
other settings using the configurator's current registry, as per the
descriptions in the Configurator constructor.

Testing Helper APIs

	
testing_add_renderer(path, renderer=None)

	Unit/integration testing helper: register a renderer at
path (usually a relative filename ala templates/foo.pt
or an asset specification) and return the renderer object.
If the renderer argument is None, a 'dummy' renderer will
be used. This function is useful when testing code that calls
the pyramid.renderers.render() function or
pyramid.renderers.render_to_response() function or
any other render_* or get_* API of the
pyramid.renderers module.

Note that calling this method for with a path argument
representing a renderer factory type (e.g. for foo.pt
usually implies the chameleon_zpt renderer factory)
clobbers any existing renderer factory registered for that
type.

Note

This method is also available under the alias
testing_add_template (an older name for it).

	
testing_add_subscriber(event_iface=None)

	Unit/integration testing helper: Registers a
subscriber which listens for events of the type
event_iface. This method returns a list object which is
appended to by the subscriber whenever an event is captured.

When an event is dispatched that matches the value implied by
the event_iface argument, that event will be appended to
the list. You can then compare the values in the list to
expected event notifications. This method is useful when
testing code that wants to call
pyramid.registry.Registry.notify(),
or zope.component.event.dispatch().

The default value of event_iface (None) implies a
subscriber registered for any kind of event.

	
testing_resources(resources)

	Unit/integration testing helper: registers a dictionary of
resource objects that can be resolved via the
pyramid.traversal.find_resource() API.

The pyramid.traversal.find_resource() API is called with
a path as one of its arguments. If the dictionary you
register when calling this method contains that path as a
string key (e.g. /foo/bar or foo/bar), the
corresponding value will be returned to find_resource (and
thus to your code) when
pyramid.traversal.find_resource() is called with an
equivalent path string or tuple.

	
testing_securitypolicy(userid=None, groupids=(), permissive=True, remember_result=None, forget_result=None)

	Unit/integration testing helper: Registers a pair of faux
Pyramid security policies: a authentication
policy and a authorization policy.

The behavior of the registered authorization policy
depends on the permissive argument. If permissive is
true, a permissive authorization policy is registered;
this policy allows all access. If permissive is false, a
nonpermissive authorization policy is registered; this
policy denies all access.

remember_result, if provided, should be the result returned by
the remember method of the faux authentication policy. If it is
not provided (or it is provided, and is None), the default value
[] (the empty list) will be returned by remember.

forget_result, if provided, should be the result returned by
the forget method of the faux authentication policy. If it is
not provided (or it is provided, and is None), the default value
[] (the empty list) will be returned by forget.

The behavior of the registered authentication policy
depends on the values provided for the userid and
groupids argument. The authentication policy will return
the userid identifier implied by the userid argument and
the group ids implied by the groupids argument when the
pyramid.request.Request.authenticated_userid or
pyramid.request.Request.effective_principals APIs are
used.

This function is most useful when testing code that uses
the APIs named pyramid.request.Request.has_permission(),
pyramid.request.Request.authenticated_userid,
pyramid.request.Request.effective_principals, and
pyramid.security.principals_allowed_by_permission().

New in version 1.4: The remember_result argument.

New in version 1.4: The forget_result argument.

Attributes

	
introspectable

	A shortcut attribute which points to the
pyramid.registry.Introspectable class (used during
directives to provide introspection to actions).

New in version 1.3.

	
introspector

	The introspector related to this configuration. It is an
instance implementing the pyramid.interfaces.IIntrospector
interface.

New in version 1.3.

	
registry

	The application registry which holds the configuration
associated with this configurator.

	
global_registries

	The set of registries that have been created for Pyramid
applications, one for each call to
pyramid.config.Configurator.make_wsgi_app() in the current
process. The object itself supports iteration and has a last property
containing the last registry loaded.

The registries contained in this object are stored as weakrefs, thus they
will only exist for the lifetime of the actual applications for which they
are being used.

	
class not_(value)[source]

	You can invert the meaning of any predicate value by wrapping it in a call
to pyramid.config.not_.

	1
2
3
4
5
6
7

	from pyramid.config import not_

config.add_view(
 'mypackage.views.my_view',
 route_name='ok',
 request_method=not_('POST')
)

The above example will ensure that the view is called if the request method
is not POST, at least if no other view is more specific.

This technique of wrapping a predicate value in not_ can be used
anywhere predicate values are accepted:

	pyramid.config.Configurator.add_view()

	pyramid.config.Configurator.add_route()

	pyramid.config.Configurator.add_subscriber()

	pyramid.view.view_config()

	pyramid.events.subscriber()

New in version 1.5.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.decorator

	
reify(wrapped)[source]

	Use as a class method decorator. It operates almost exactly like the
Python @property decorator, but it puts the result of the method it
decorates into the instance dict after the first call, effectively
replacing the function it decorates with an instance variable. It is, in
Python parlance, a non-data descriptor. An example:

class Foo(object):
 @reify
 def jammy(self):
 print('jammy called')
 return 1

And usage of Foo:

>>> f = Foo()
>>> v = f.jammy
'jammy called'
>>> print(v)
1
>>> f.jammy
1
>>> # jammy func not called the second time; it replaced itself with 1

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.events

Functions

	
subscriber(*ifaces, **predicates)[source]

	Decorator activated via a scan which treats the function
being decorated as an event subscriber for the set of interfaces passed
as *ifaces and the set of predicate terms passed as **predicates
to the decorator constructor.

For example:

from pyramid.events import NewRequest
from pyramid.events import subscriber

@subscriber(NewRequest)
def mysubscriber(event):
 event.request.foo = 1

More than one event type can be passed as a constructor argument. The
decorated subscriber will be called for each event type.

from pyramid.events import NewRequest, NewResponse
from pyramid.events import subscriber

@subscriber(NewRequest, NewResponse)
def mysubscriber(event):
 print(event)

When the subscriber decorator is used without passing an arguments,
the function it decorates is called for every event sent:

from pyramid.events import subscriber

@subscriber()
def mysubscriber(event):
 print(event)

This method will have no effect until a scan is performed
against the package or module which contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan('somepackage_containing_subscribers')

Any **predicate arguments will be passed along to
pyramid.config.Configurator.add_subscriber(). See
Subscriber Predicates for a description of how predicates can
narrow the set of circumstances in which a subscriber will be called.

Event Types

	
class ApplicationCreated(app)[source]

	An instance of this class is emitted as an event when
the pyramid.config.Configurator.make_wsgi_app() is
called. The instance has an attribute, app, which is an
instance of the router that will handle WSGI requests.
This class implements the
pyramid.interfaces.IApplicationCreated interface.

Note

For backwards compatibility purposes, this class can also be imported as
pyramid.events.WSGIApplicationCreatedEvent. This was the name
of the event class before Pyramid 1.0.

	
class NewRequest(request)[source]

	An instance of this class is emitted as an event
whenever Pyramid begins to process a new request. The
event instance has an attribute, request, which is a
request object. This event class implements the
pyramid.interfaces.INewRequest interface.

	
class ContextFound(request)[source]

	An instance of this class is emitted as an event after
the Pyramid router finds a context
object (after it performs traversal) but before any view code is
executed. The instance has an attribute, request, which is
the request object generated by Pyramid.

Notably, the request object will have an attribute named
context, which is the context that will be provided to the
view which will eventually be called, as well as other attributes
attached by context-finding code.

This class implements the
pyramid.interfaces.IContextFound interface.

Note

As of Pyramid 1.0, for backwards compatibility purposes, this
event may also be imported as pyramid.events.AfterTraversal.

	
class NewResponse(request, response)[source]

	An instance of this class is emitted as an event
whenever any Pyramid view or exception
view returns a response.

The instance has two attributes:request, which is the request
which caused the response, and response, which is the response
object returned by a view or renderer.

If the response was generated by an exception view, the
request will have an attribute named exception, which is the
exception object which caused the exception view to be executed. If the
response was generated by a 'normal' view, this attribute of the request
will be None.

This event will not be generated if a response cannot be created due to
an exception that is not caught by an exception view (no response is
created under this circumstace).

This class implements the
pyramid.interfaces.INewResponse interface.

Note

Postprocessing a response is usually better handled in a WSGI
middleware component than in subscriber code that is
called by a pyramid.interfaces.INewResponse event.
The pyramid.interfaces.INewResponse event exists
almost purely for symmetry with the
pyramid.interfaces.INewRequest event.

	
class BeforeRender(system, rendering_val=None)[source]

	Subscribers to this event may introspect and modify the set of
renderer globals before they are passed to a renderer.
This event object iself has a dictionary-like interface that can be used
for this purpose. For example:

from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def add_global(event):
 event['mykey'] = 'foo'

An object of this type is sent as an event just before a renderer
is invoked.

If a subscriber adds a key via __setitem__ that already exists in
the renderer globals dictionary, it will overwrite the older value there.
This can be problematic because event subscribers to the BeforeRender
event do not possess any relative ordering. For maximum interoperability
with other third-party subscribers, if you write an event subscriber meant
to be used as a BeforeRender subscriber, your subscriber code will need to
ensure no value already exists in the renderer globals dictionary before
setting an overriding value (which can be done using .get or
__contains__ of the event object).

The dictionary returned from the view is accessible through the
rendering_val attribute of a BeforeRender
event.

Suppose you return {'mykey': 'somevalue', 'mykey2': 'somevalue2'} from
your view callable, like so:

from pyramid.view import view_config

@view_config(renderer='some_renderer')
def myview(request):
 return {'mykey': 'somevalue', 'mykey2': 'somevalue2'}

rendering_val can be used to access these values from the
BeforeRender object:

from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def read_return(event):
 # {'mykey': 'somevalue'} is returned from the view
 print(event.rendering_val['mykey'])

In other words, rendering_val is the (non-system) value returned
by a view or passed to render* as value. This feature is new in
Pyramid 1.2.

For a description of the values present in the renderer globals dictionary,
see System Values Used During Rendering.

See also

See also pyramid.interfaces.IBeforeRender.

	
update(E, **F)

	Update D from dict/iterable E and F. If E has a .keys() method, does:
for k in E: D[k] = E[k] If E lacks .keys() method, does: for (k, v) in
E: D[k] = v. In either case, this is followed by: for k in F: D[k] =
F[k].

	
clear() None. Remove all items from D.

	

	
copy() a shallow copy of D

	

	
fromkeys()

	Returns a new dict with keys from iterable and values equal to value.

	
get(k[, d]) D[k] if k in D, else d. d defaults to None.

	

	
items() a set-like object providing a view on D's items

	

	
keys() a set-like object providing a view on D's keys

	

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
popitem() (k, v), remove and return some (key, value) pair as a

	2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
values() an object providing a view on D's values

	

See Using Events for more information about how to register
code which subscribes to these events.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.exceptions

	
exception BadCSRFToken(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	This exception indicates the request has failed cross-site request
forgery token validation.

	
exception PredicateMismatch(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	This exception is raised by multiviews when no view matches
all given predicates.

This exception subclasses the HTTPNotFound exception for a
specific reason: if it reaches the main exception handler, it should
be treated as HTTPNotFound` by any exception view
registrations. Thus, typically, this exception will not be seen
publicly.

However, this exception will be raised if the predicates of all
views configured to handle another exception context cannot be
successfully matched. For instance, if a view is configured to
handle a context of HTTPForbidden and the configured with
additional predicates, then PredicateMismatch will be
raised if:

	An original view callable has raised HTTPForbidden (thus
invoking an exception view); and

	The given request fails to match all predicates for said
exception view associated with HTTPForbidden.

The same applies to any type of exception being handled by an
exception view.

	
Forbidden

	alias of HTTPForbidden

	
NotFound

	alias of HTTPNotFound

	
exception ConfigurationError[source]

	Raised when inappropriate input values are supplied to an API
method of a Configurator

	
exception URLDecodeError[source]

	This exception is raised when Pyramid cannot
successfully decode a URL or a URL path segment. This exception
behaves just like the Python builtin
UnicodeDecodeError [http://docs.python.org/3/library/exceptions.html#UnicodeDecodeError]. It is a subclass of the builtin
UnicodeDecodeError [http://docs.python.org/3/library/exceptions.html#UnicodeDecodeError] exception only for identity purposes,
mostly so an exception view can be registered when a URL cannot be
decoded.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.httpexceptions

HTTP Exceptions

This module contains Pyramid HTTP exception classes. Each class relates to a
single HTTP status code. Each class is a subclass of the
HTTPException. Each exception class is also a response
object.

Each exception class has a status code according to RFC 2068 [https://tools.ietf.org/html/rfc2068.html]:
codes with 100-300 are not really errors; 400s are client errors,
and 500s are server errors.

	Exception

	
	HTTPException

	
	HTTPSuccessful

	
	200 - HTTPOk

	201 - HTTPCreated

	202 - HTTPAccepted

	203 - HTTPNonAuthoritativeInformation

	204 - HTTPNoContent

	205 - HTTPResetContent

	206 - HTTPPartialContent

	HTTPRedirection

	
	300 - HTTPMultipleChoices

	301 - HTTPMovedPermanently

	302 - HTTPFound

	303 - HTTPSeeOther

	304 - HTTPNotModified

	305 - HTTPUseProxy

	307 - HTTPTemporaryRedirect

	HTTPError

	
	HTTPClientError

	
	400 - HTTPBadRequest

	401 - HTTPUnauthorized

	402 - HTTPPaymentRequired

	403 - HTTPForbidden

	404 - HTTPNotFound

	405 - HTTPMethodNotAllowed

	406 - HTTPNotAcceptable

	407 - HTTPProxyAuthenticationRequired

	408 - HTTPRequestTimeout

	409 - HTTPConflict

	410 - HTTPGone

	411 - HTTPLengthRequired

	412 - HTTPPreconditionFailed

	413 - HTTPRequestEntityTooLarge

	414 - HTTPRequestURITooLong

	415 - HTTPUnsupportedMediaType

	416 - HTTPRequestRangeNotSatisfiable

	417 - HTTPExpectationFailed

	422 - HTTPUnprocessableEntity

	423 - HTTPLocked

	424 - HTTPFailedDependency

	HTTPServerError

	
	500 - HTTPInternalServerError

	501 - HTTPNotImplemented

	502 - HTTPBadGateway

	503 - HTTPServiceUnavailable

	504 - HTTPGatewayTimeout

	505 - HTTPVersionNotSupported

	507 - HTTPInsufficientStorage

HTTP exceptions are also response objects, thus they accept most of
the same parameters that can be passed to a regular
Response. Each HTTP exception also has the
following attributes:

	code

	the HTTP status code for the exception

	title

	remainder of the status line (stuff after the code)

	explanation

	a plain-text explanation of the error message that is
not subject to environment or header substitutions;
it is accessible in the template via ${explanation}

	detail

	a plain-text message customization that is not subject
to environment or header substitutions; accessible in
the template via ${detail}

	body_template

	a String.template-format content fragment used for environment
and header substitution; the default template includes both
the explanation and further detail provided in the
message.

Each HTTP exception accepts the following parameters, any others will
be forwarded to its Response superclass:

	detail

	a plain-text override of the default detail

	headers

	a list of (k,v) header pairs

	comment

	a plain-text additional information which is
usually stripped/hidden for end-users

	body_template

	a string.Template object containing a content fragment in HTML
that frames the explanation and further detail

	body

	a string that will override the body_template and be used as the
body of the response.

Substitution of response headers into template values is always performed.
Substitution of WSGI environment values is performed if a request is
passed to the exception's constructor.

The subclasses of _HTTPMove
(HTTPMultipleChoices, HTTPMovedPermanently,
HTTPFound, HTTPSeeOther, HTTPUseProxy and
HTTPTemporaryRedirect) are redirections that require a Location
field. Reflecting this, these subclasses have one additional keyword argument:
location, which indicates the location to which to redirect.

	
status_map

	A mapping of integer status code to HTTP exception class (eg. the integer
"401" maps to pyramid.httpexceptions.HTTPUnauthorized). All
mapped exception classes are children of pyramid.httpexceptions,

	
exception_response(status_code, **kw)[source]

	Creates an HTTP exception based on a status code. Example:

raise exception_response(404) # raises an HTTPNotFound exception.

The values passed as kw are provided to the exception's constructor.

	
exception HTTPException(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	

	
exception HTTPOk(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

Indicates that the request has succeeded.

code: 200, title: OK

	
exception HTTPRedirection(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for exceptions with status codes in the 300s (redirections)

This is an abstract base class for 3xx redirection. It indicates
that further action needs to be taken by the user agent in order
to fulfill the request. It does not necessarly signal an error
condition.

	
exception HTTPError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for exceptions with status codes in the 400s and 500s

This is an exception which indicates that an error has occurred,
and that any work in progress should not be committed.

	
exception HTTPClientError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for the 400s, where the client is in error

This is an error condition in which the client is presumed to be
in-error. This is an expected problem, and thus is not considered
a bug. A server-side traceback is not warranted. Unless specialized,
this is a '400 Bad Request'

	
exception HTTPServerError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	base class for the 500s, where the server is in-error

This is an error condition in which the server is presumed to be
in-error. Unless specialized, this is a '500 Internal Server Error'.

	
exception HTTPCreated(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that request has been fulfilled and resulted in a new
resource being created.

code: 201, title: Created

	
exception HTTPAccepted(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the request has been accepted for processing, but the
processing has not been completed.

code: 202, title: Accepted

	
exception HTTPNonAuthoritativeInformation(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the returned metainformation in the entity-header is
not the definitive set as available from the origin server, but is
gathered from a local or a third-party copy.

code: 203, title: Non-Authoritative Information

	
exception HTTPNoContent(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the server has fulfilled the request but does
not need to return an entity-body, and might want to return updated
metainformation.

code: 204, title: No Content

	
exception HTTPResetContent(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the server has fulfilled the request and
the user agent SHOULD reset the document view which caused the
request to be sent.

code: 205, title: Reset Content

	
exception HTTPPartialContent(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPSuccessful

This indicates that the server has fulfilled the partial GET
request for the resource.

code: 206, title: Partial Content

	
exception HTTPMultipleChoices(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource corresponds to any one
of a set of representations, each with its own specific location,
and agent-driven negotiation information is being provided so that
the user can select a preferred representation and redirect its
request to that location.

code: 300, title: Multiple Choices

	
exception HTTPMovedPermanently(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource has been assigned a new
permanent URI and any future references to this resource SHOULD use
one of the returned URIs.

code: 301, title: Moved Permanently

	
exception HTTPFound(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource resides temporarily under
a different URI.

code: 302, title: Found

	
exception HTTPSeeOther(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the response to the request can be found under
a different URI and SHOULD be retrieved using a GET method on that
resource.

code: 303, title: See Other

	
exception HTTPNotModified(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPRedirection

This indicates that if the client has performed a conditional GET
request and access is allowed, but the document has not been
modified, the server SHOULD respond with this status code.

code: 304, title: Not Modified

	
exception HTTPUseProxy(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource MUST be accessed through
the proxy given by the Location field.

code: 305, title: Use Proxy

	
exception HTTPTemporaryRedirect(location='', detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of _HTTPMove

This indicates that the requested resource resides temporarily
under a different URI.

code: 307, title: Temporary Redirect

	
exception HTTPBadRequest(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the body or headers failed validity checks,
preventing the server from being able to continue processing.

code: 400, title: Bad Request

	
exception HTTPUnauthorized(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the request requires user authentication.

code: 401, title: Unauthorized

	
exception HTTPPaymentRequired(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

code: 402, title: Payment Required

	
exception HTTPForbidden(detail=None, headers=None, comment=None, body_template=None, result=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server understood the request, but is
refusing to fulfill it.

code: 403, title: Forbidden

Raise this exception within view code to immediately return the
forbidden view to the invoking user. Usually this is a basic
403 page, but the forbidden view can be customized as necessary. See
Changing the Forbidden View. A Forbidden exception will be
the context of a Forbidden View.

This exception's constructor treats two arguments specially. The first
argument, detail, should be a string. The value of this string will
be used as the message attribute of the exception object. The second
special keyword argument, result is usually an instance of
pyramid.security.Denied or pyramid.security.ACLDenied
each of which indicates a reason for the forbidden error. However,
result is also permitted to be just a plain boolean False object
or None. The result value will be used as the result
attribute of the exception object. It defaults to None.

The Forbidden View can use the attributes of a Forbidden
exception as necessary to provide extended information in an error
report shown to a user.

	
exception HTTPNotFound(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server did not find anything matching the
Request-URI.

code: 404, title: Not Found

Raise this exception within view code to immediately
return the Not Found View to the invoking user. Usually
this is a basic 404 page, but the Not Found View can be
customized as necessary. See Changing the Not Found View.

This exception's constructor accepts a detail argument
(the first argument), which should be a string. The value of this
string will be available as the message attribute of this exception,
for availability to the Not Found View.

	
exception HTTPMethodNotAllowed(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the method specified in the Request-Line is
not allowed for the resource identified by the Request-URI.

code: 405, title: Method Not Allowed

	
exception HTTPNotAcceptable(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates the resource identified by the request is only
capable of generating response entities which have content
characteristics not acceptable according to the accept headers
sent in the request.

code: 406, title: Not Acceptable

	
exception HTTPProxyAuthenticationRequired(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This is similar to 401, but indicates that the client must first
authenticate itself with the proxy.

code: 407, title: Proxy Authentication Required

	
exception HTTPRequestTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the client did not produce a request within
the time that the server was prepared to wait.

code: 408, title: Request Timeout

	
exception HTTPConflict(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the request could not be completed due to a
conflict with the current state of the resource.

code: 409, title: Conflict

	
exception HTTPGone(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the requested resource is no longer available
at the server and no forwarding address is known.

code: 410, title: Gone

	
exception HTTPLengthRequired(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server refuses to accept the request
without a defined Content-Length.

code: 411, title: Length Required

	
exception HTTPPreconditionFailed(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the precondition given in one or more of the
request-header fields evaluated to false when it was tested on the
server.

code: 412, title: Precondition Failed

	
exception HTTPRequestEntityTooLarge(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is refusing to process a request
because the request entity is larger than the server is willing or
able to process.

code: 413, title: Request Entity Too Large

	
exception HTTPRequestURITooLong(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the Request-URI is longer than the server is willing to
interpret.

code: 414, title: Request-URI Too Long

	
exception HTTPUnsupportedMediaType(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is refusing to service the request
because the entity of the request is in a format not supported by
the requested resource for the requested method.

code: 415, title: Unsupported Media Type

	
exception HTTPRequestRangeNotSatisfiable(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

The server SHOULD return a response with this status code if a
request included a Range request-header field, and none of the
range-specifier values in this field overlap the current extent
of the selected resource, and the request did not include an
If-Range request-header field.

code: 416, title: Request Range Not Satisfiable

	
exception HTTPExpectationFailed(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indidcates that the expectation given in an Expect
request-header field could not be met by this server.

code: 417, title: Expectation Failed

	
exception HTTPUnprocessableEntity(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the server is unable to process the contained
instructions. Only for WebDAV.

code: 422, title: Unprocessable Entity

	
exception HTTPLocked(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the resource is locked. Only for WebDAV

code: 423, title: Locked

	
exception HTTPFailedDependency(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPClientError

This indicates that the method could not be performed because the
requested action depended on another action and that action failed.
Only for WebDAV.

code: 424, title: Failed Dependency

	
exception HTTPInternalServerError(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the application raised an unexcpected exception.

code: 500, title: Internal Server Error

	
exception HTTPNotImplemented(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server does not support the functionality
required to fulfill the request.

code: 501, title: Not Implemented

	
exception HTTPBadGateway(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
received an invalid response from the upstream server it accessed
in attempting to fulfill the request.

code: 502, title: Bad Gateway

	
exception HTTPServiceUnavailable(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server is currently unable to handle the
request due to a temporary overloading or maintenance of the server.

code: 503, title: Service Unavailable

	
exception HTTPGatewayTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy,
did not receive a timely response from the upstream server specified
by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary server
(e.g. DNS) it needed to access in attempting to complete the request.

code: 504, title: Gateway Timeout

	
exception HTTPVersionNotSupported(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server does not support, or refuses to
support, the HTTP protocol version that was used in the request
message.

code: 505, title: HTTP Version Not Supported

	
exception HTTPInsufficientStorage(detail=None, headers=None, comment=None, body_template=None, **kw)[source]

	subclass of HTTPServerError

This indicates that the server does not have enough space to save
the resource.

code: 507, title: Insufficient Storage

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.i18n

	
class TranslationString[source]

	The constructor for a translation string. A translation
string is a Unicode-like object that has some extra metadata.

This constructor accepts one required argument named msgid.
msgid must be the message identifier for the
translation string. It must be a unicode object or a str
object encoded in the default system encoding.

Optional keyword arguments to this object's constructor include
domain, default, and mapping.

domain represents the translation domain. By default,
the translation domain is None, indicating that this
translation string is associated with the default translation
domain (usually messages).

default represents an explicit default text for this
translation string. Default text appears when the translation
string cannot be translated. Usually, the msgid of a
translation string serves double duty as its default text.
However, using this option you can provide a different default
text for this translation string. This feature is useful when the
default of a translation string is too complicated or too long to
be used as a message identifier. If default is provided, it
must be a unicode object or a str object encoded in the
default system encoding (usually means ASCII). If default is
None (its default value), the msgid value used by this
translation string will be assumed to be the value of default.

mapping, if supplied, must be a dictionary-like object which
represents the replacement values for any translation
string replacement marker instances found within the msgid
(or default) value of this translation string.

context represents the translation context. By default,
the translation context is None.

After a translation string is constructed, it behaves like most
other unicode objects; its msgid value will be displayed
when it is treated like a unicode object. Only when its
ugettext method is called will it be translated.

Its default value is available as the default attribute of the
object, its translation domain is available as the
domain attribute, and the mapping is available as the
mapping attribute. The object otherwise behaves much like a
Unicode string.

	
TranslationStringFactory(factory_domain)[source]

	Create a factory which will generate translation strings
without requiring that each call to the factory be passed a
domain value. A single argument is passed to this class'
constructor: domain. This value will be used as the
domain values of translationstring.TranslationString [http://docs.pylonsproject.org/projects/translationstring/en/latest/api.html#translationstring.TranslationString]
objects generated by the __call__ of this class. The
msgid, mapping, and default values provided to the
__call__ method of an instance of this class have the meaning
as described by the constructor of the
translationstring.TranslationString [http://docs.pylonsproject.org/projects/translationstring/en/latest/api.html#translationstring.TranslationString]

	
class Localizer(locale_name, translations)[source]

	An object providing translation and pluralizations related to
the current request's locale name. A
pyramid.i18n.Localizer object is created using the
pyramid.i18n.get_localizer() function.

	
locale_name

	The locale name for this localizer (e.g. en or en_US).

	
pluralize(singular, plural, n, domain=None, mapping=None)[source]

	Return a Unicode string translation by using two
message identifier objects as a singular/plural pair
and an n value representing the number that appears in the
message using gettext plural forms support. The singular
and plural objects should be unicode strings. There is no
reason to use translation string objects as arguments as all
metadata is ignored.

n represents the number of elements. domain is the
translation domain to use to do the pluralization, and mapping
is the interpolation mapping that should be used on the result. If
the domain is not supplied, a default domain is used (usually
messages).

Example:

num = 1
translated = localizer.pluralize('Add ${num} item',
 'Add ${num} items',
 num,
 mapping={'num':num})

If using the gettext plural support, which is required for
languages that have pluralisation rules other than n != 1, the
singular argument must be the message_id defined in the
translation file. The plural argument is not used in this case.

Example:

num = 1
translated = localizer.pluralize('item_plural',
 '',
 num,
 mapping={'num':num})

	
translate(tstring, domain=None, mapping=None)[source]

	Translate a translation string to the current language
and interpolate any replacement markers in the result. The
translate method accepts three arguments: tstring
(required), domain (optional) and mapping (optional).
When called, it will translate the tstring translation
string to a unicode object using the current locale. If
the current locale could not be determined, the result of
interpolation of the default value is returned. The optional
domain argument can be used to specify or override the
domain of the tstring (useful when tstring is a normal
string rather than a translation string). The optional
mapping argument can specify or override the tstring
interpolation mapping, useful when the tstring argument is
a simple string instead of a translation string.

Example:

from pyramid.18n import TranslationString
ts = TranslationString('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})
translated = localizer.translate(ts)

Example:

translated = localizer.translate('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})

	
get_localizer(request)[source]

	
Deprecated since version 1.5: Use the pyramid.request.Request.localizer attribute directly
instead. Retrieve a pyramid.i18n.Localizer object
corresponding to the current request's locale name.

	
negotiate_locale_name(request)[source]

	Negotiate and return the locale name associated with
the current request.

	
get_locale_name(request)[source]

	
Deprecated since version 1.5: Use pyramid.request.Request.locale_name directly instead.
Return the locale name associated with the current request.

	
default_locale_negotiator(request)[source]

	The default locale negotiator. Returns a locale name
or None.

	First, the negotiator looks for the _LOCALE_ attribute of
the request object (possibly set by a view or a listener for an
event). If the attribute exists and it is not None,
its value will be used.

	Then it looks for the request.params['_LOCALE_'] value.

	Then it looks for the request.cookies['_LOCALE_'] value.

	Finally, the negotiator returns None if the locale could not
be determined via any of the previous checks (when a locale
negotiator returns None, it signifies that the
default locale name should be used.)

	
make_localizer(current_locale_name, translation_directories)[source]

	Create a pyramid.i18n.Localizer object
corresponding to the provided locale name from the
translations found in the list of translation directories.

See Internationalization and Localization for more information about using
Pyramid internationalization and localization services within
an application.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.interfaces

Event-Related Interfaces

	
interface IApplicationCreated[source]

	Event issued when the
pyramid.config.Configurator.make_wsgi_app() method
is called. See the documentation attached to
pyramid.events.ApplicationCreated for more
information.

Note

For backwards compatibility with Pyramid
versions before 1.0, this interface can also be imported as
pyramid.interfaces.IWSGIApplicationCreatedEvent.

	
app

	Created application

	
interface INewRequest[source]

	An event type that is emitted whenever Pyramid
begins to process a new request. See the documentation attached
to pyramid.events.NewRequest for more information.

	
request

	The request object

	
interface IContextFound[source]

	An event type that is emitted after Pyramid finds a
context object but before it calls any view code. See the
documentation attached to pyramid.events.ContextFound
for more information.

Note

For backwards compatibility with versions of
Pyramid before 1.0, this event interface can also be
imported as pyramid.interfaces.IAfterTraversal.

	
request

	The request object

	
interface INewResponse[source]

	An event type that is emitted whenever any Pyramid
view returns a response. See the
documentation attached to pyramid.events.NewResponse
for more information.

	
request

	The request object

	
response

	The response object

	
interface IBeforeRender[source]

	Extends: pyramid.interfaces.IDict

Subscribers to this event may introspect and modify the set of
renderer globals before they are passed to a renderer.
The event object itself provides a dictionary-like interface for adding
and removing renderer globals. The keys and values of the
dictionary are those globals. For example:

from repoze.events import subscriber
from pyramid.interfaces import IBeforeRender

@subscriber(IBeforeRender)
def add_global(event):
 event['mykey'] = 'foo'

See also

See also Using the Before Render Event.

	
rendering_val

	The value returned by a view or passed to a render method for this rendering. This feature is new in Pyramid 1.2.

Other Interfaces

	
interface IAuthenticationPolicy[source]

	An object representing a Pyramid authentication policy.

	
forget(request)

	Return a set of headers suitable for 'forgetting' the
current user on subsequent requests.

	
effective_principals(request)

	Return a sequence representing the effective principals
including the userid and any groups belonged to by the current
user, including 'system' groups such as Everyone and
Authenticated.

	
authenticated_userid(request)

	Return the authenticated userid or None if no authenticated
userid can be found. This method of the policy should ensure that a
record exists in whatever persistent store is used related to the
user (the user should not have been deleted); if a record associated
with the current id does not exist in a persistent store, it should
return None.

	
remember(request, principal, **kw)

	Return a set of headers suitable for 'remembering' the
principal named principal when set in a response. An
individual authentication policy and its consumers can decide
on the composition and meaning of **kw.

	
unauthenticated_userid(request)

	Return the unauthenticated userid. This method performs the
same duty as authenticated_userid but is permitted to return the
userid based only on data present in the request; it needn't (and
shouldn't) check any persistent store to ensure that the user record
related to the request userid exists.

	
interface IAuthorizationPolicy[source]

	An object representing a Pyramid authorization policy.

	
permits(context, principals, permission)

	Return True if any of the principals is allowed the
permission in the current context, else return False

	
principals_allowed_by_permission(context, permission)

	Return a set of principal identifiers allowed by the
permission in context. This behavior is optional; if you
choose to not implement it you should define this method as
something which raises a NotImplementedError. This method
will only be called when the
pyramid.security.principals_allowed_by_permission API is
used.

	
interface IExceptionResponse[source]

	Extends: pyramid.interfaces.IException, pyramid.interfaces.IResponse

An interface representing a WSGI response which is also an exception
object. Register an exception view using this interface as a context
to apply the registered view for all exception types raised by
Pyramid internally (any exception that inherits from
pyramid.response.Response, including
pyramid.httpexceptions.HTTPNotFound and
pyramid.httpexceptions.HTTPForbidden).

	
prepare(environ)

	Prepares the response for being called as a WSGI application

	
interface IRoute[source]

	Interface representing the type of object returned from
IRoutesMapper.get_route

	
predicates

	A sequence of route predicate objects used to determine if a request matches this route or not after basic pattern matching has been completed.

	
factory

	The root factory used by the Pyramid router when this route matches (or None)

	
match(path)

	If the path passed to this function can be matched by the
pattern of this route, return a dictionary (the
'matchdict'), which will contain keys representing the dynamic
segment markers in the pattern mapped to values extracted from
the provided path.

If the path passed to this function cannot be matched by
the pattern of this route, return None.

	
name

	The route name

	
generate(kw)

	Generate a URL based on filling in the dynamic segment markers
in the pattern using the kw dictionary provided.

	
pattern

	The route pattern

	
pregenerator

	This attribute should either be None or a callable object implementing the IRoutePregenerator interface

	
interface IRoutePregenerator[source]

	
	
__call__(request, elements, kw)

	A pregenerator is a function associated by a developer with a
route. The pregenerator for a route is called by
pyramid.request.Request.route_url() in order to adjust the set
of arguments passed to it by the user for special purposes, such as
Pylons 'subdomain' support. It will influence the URL returned by
route_url.

A pregenerator should return a two-tuple of (elements, kw)
after examining the originals passed to this function, which
are the arguments (request, elements, kw). The simplest
pregenerator is:

def pregenerator(request, elements, kw):
 return elements, kw

You can employ a pregenerator by passing a pregenerator
argument to the
pyramid.config.Configurator.add_route()
function.

	
interface ISession[source]

	Extends: pyramid.interfaces.IDict

An interface representing a session (a web session object,
usually accessed via request.session.

Keys and values of a session must be pickleable.

	
peek_flash(queue='')

	Peek at a queue in the flash storage. The queue remains in
flash storage after this message is called. The queue is returned;
it is a list of flash messages added by
pyramid.interfaces.ISession.flash()

	
created

	Integer representing Epoch time when created.

	
flash(msg, queue='', allow_duplicate=True)

	Push a flash message onto the end of the flash queue represented
by queue. An alternate flash message queue can used by passing
an optional queue, which must be a string. If
allow_duplicate is false, if the msg already exists in the
queue, it will not be re-added.

	
new

	Boolean attribute. If True, the session is new.

	
pop_flash(queue='')

	Pop a queue from the flash storage. The queue is removed from
flash storage after this message is called. The queue is returned;
it is a list of flash messages added by
pyramid.interfaces.ISession.flash()

	
invalidate()

	Invalidate the session. The action caused by
invalidate is implementation-dependent, but it should have
the effect of completely dissociating any data stored in the
session with the current request. It might set response
values (such as one which clears a cookie), or it might not.

An invalidated session may be used after the call to invalidate
with the effect that a new session is created to store the data. This
enables workflows requiring an entirely new session, such as in the
case of changing privilege levels or preventing fixation attacks.

	
get_csrf_token()

	Return a random cross-site request forgery protection token. It
will be a string. If a token was previously added to the session via
new_csrf_token, that token will be returned. If no CSRF token
was previously set into the session, new_csrf_token will be
called, which will create and set a token, and this token will be
returned.

	
new_csrf_token()

	Create and set into the session a new, random cross-site request
forgery protection token. Return the token. It will be a string.

	
changed()

	Mark the session as changed. A user of a session should
call this method after he or she mutates a mutable object that
is a value of the session (it should not be required after
mutating the session itself). For example, if the user has
stored a dictionary in the session under the key foo, and
he or she does session['foo'] = {}, changed() needn't
be called. However, if subsequently he or she does
session['foo']['a'] = 1, changed() must be called for
the sessioning machinery to notice the mutation of the
internal dictionary.

	
interface ISessionFactory[source]

	An interface representing a factory which accepts a request object and
returns an ISession object

	
__call__(request)

	Return an ISession object

	
interface IRendererInfo[source]

	An object implementing this interface is passed to every
renderer factory constructor as its only argument (conventionally
named info)

	
registry

	The "current" application registry when the renderer was created

	
name

	The value passed by the user as the renderer name

	
package

	The "current package" when the renderer configuration statement was found

	
type

	The renderer type name

	
settings

	The deployment settings dictionary related to the current application

	
interface IRendererFactory[source]

	
	
__call__(info)

	Return an object that implements
pyramid.interfaces.IRenderer. info is an
object that implements pyramid.interfaces.IRendererInfo.

	
interface IRenderer[source]

	
	
__call__(value, system)

	Call the renderer with the result of the
view (value) passed in and return a result (a string or
unicode object useful as a response body). Values computed by
the system are passed by the system in the system
parameter, which is a dictionary. Keys in the dictionary
include: view (the view callable that returned the value),
renderer_name (the template name or simple name of the
renderer), context (the context object passed to the
view), and request (the request object passed to the
view).

	
interface IViewMapperFactory[source]

	
	
__call__(self, **kw)

	Return an object which implements
pyramid.interfaces.IViewMapper. kw will be a dictionary
containing view-specific arguments, such as permission,
predicates, attr, renderer, and other items. An
IViewMapperFactory is used by
pyramid.config.Configurator.add_view() to provide a plugpoint
to extension developers who want to modify potential view callable
invocation signatures and response values.

	
interface IViewMapper[source]

	
	
__call__(self, object)

	Provided with an arbitrary object (a function, class, or
instance), returns a callable with the call signature (context,
request). The callable returned should itself return a Response
object. An IViewMapper is returned by
pyramid.interfaces.IViewMapperFactory.

	
interface IDict[source]

	
	
values()

	Return a list of values from the dictionary

	
clear()

	Clear all values from the dictionary

	
get(k, default=None)

	Return the value for key k from the renderer dictionary, or
the default if no such value exists.

	
__contains__(k)

	Return True if key k exists in the dictionary.

	
keys()

	Return a list of keys from the dictionary

	
__delitem__(k)

	Delete an item from the dictionary which is passed to the
renderer as the renderer globals dictionary.

	
popitem()

	Pop the item with key k from the dictionary and return it as a
two-tuple (k, v). If k doesn't exist, raise a KeyError.

	
__getitem__(k)

	Return the value for key k from the dictionary or raise a
KeyError if the key doesn't exist

	
__iter__()

	Return an iterator over the keys of this dictionary

	
items()

	Return a list of [(k,v)] pairs from the dictionary

	
__setitem__(k, value)

	Set a key/value pair into the dictionary

	
setdefault(k, default=None)

	Return the existing value for key k in the dictionary. If no
value with k exists in the dictionary, set the default
value into the dictionary under the k name passed. If a value already
existed in the dictionary, return it. If a value did not exist in
the dictionary, return the default

	
pop(k, default=None)

	Pop the key k from the dictionary and return its value. If k
doesn't exist, and default is provided, return the default. If k
doesn't exist and default is not provided, raise a KeyError.

	
update(d)

	Update the renderer dictionary with another dictionary d.

	
interface IMultiDict[source]

	Extends: pyramid.interfaces.IDict

An ordered dictionary that can have multiple values for each key. A
multidict adds the methods getall, getone, mixed, extend,
add, and dict_of_lists to the normal dictionary interface. A
multidict data structure is used as request.POST, request.GET,
and request.params within an Pyramid application.

	
getall(key)

	Return a list of all values matching the key (may be an empty
list)

	
add(key, value)

	Add the key and value, not overwriting any previous value.

	
extend(other=None, **kwargs)

	Add a set of keys and values, not overwriting any previous
values. The other structure may be a list of two-tuples or a
dictionary. If **kwargs is passed, its value will overwrite
existing values.

	
getone(key)

	Get one value matching the key, raising a KeyError if multiple
values were found.

	
mixed()

	Returns a dictionary where the values are either single values,
or a list of values when a key/value appears more than once in this
dictionary. This is similar to the kind of dictionary often used to
represent the variables in a web request.

	
dict_of_lists()

	Returns a dictionary where each key is associated with a list of
values.

	
interface IResponse[source]

	Represents a WSGI response using the WebOb response interface.
Some attribute and method documentation of this interface references
RFC 2616 [https://tools.ietf.org/html/rfc2616.html].

This interface is most famously implemented by
pyramid.response.Response and the HTTP exception classes in
pyramid.httpexceptions.

	
content_type

	Get/set the Content-Type header (or None), without the charset
or any parameters. If you include parameters (or ; at all) when
setting the content_type, any existing parameters will be deleted;
otherwise they will be preserved.

	
RequestClass

	Alias for pyramid.request.Request

	
retry_after

	Gets and sets and deletes the Retry-After header. For more
information on Retry-After see RFC 2616 section 14.37. Converts
using HTTP date or delta seconds.

	
age

	Gets and sets and deletes the Age header. Converts using int.
For more information on Age see RFC 2616, section 14.6.

	
www_authenticate

	Gets and sets and deletes the WWW-Authenticate header. For more
information on WWW-Authenticate see RFC 2616 section 14.47. Converts
using 'parse_auth' and 'serialize_auth'.

	
allow

	Gets and sets and deletes the Allow header. Converts using
list. For more information on Allow see RFC 2616, Section 14.7.

	
vary

	Gets and sets and deletes the Vary header. For more information
on Vary see section 14.44. Converts using list.

	
environ

	Get/set the request environ associated with this response,
if any.

	
copy()

	Makes a copy of the response and returns the copy.

	
set_cookie(key, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, comment=None, expires=None, overwrite=False)

	Set (add) a cookie for the response

	
headerlist

	The list of response headers.

	
app_iter_range(start, stop)

	Return a new app_iter built from the response app_iter that
serves up only the given start:stop range.

	
conditional_response_app(environ, start_response)

	Like the normal __call__ interface, but checks conditional
headers:

	If-Modified-Since (304 Not Modified; only on GET, HEAD)

	If-None-Match (304 Not Modified; only on GET, HEAD)

	Range (406 Partial Content; only on GET, HEAD)

	
date

	Gets and sets and deletes the Date header. For more information on
Date see RFC 2616 section 14.18. Converts using HTTP date.

	
cache_expires

	Get/set the Cache-Control and Expires headers. This sets the
response to expire in the number of seconds passed when set.

	
md5_etag(body=None, set_content_md5=False)

	Generate an etag for the response object using an MD5 hash of the
body (the body parameter, or self.body if not given). Sets self.etag.
If set_content_md5 is True sets self.content_md5 as well

	
charset

	Get/set the charset (in the Content-Type)

	
status

	The status string.

	
content_length

	Gets and sets and deletes the Content-Length header. For more
information on Content-Length see RFC 2616 section 14.17.
Converts using int.

	
cache_control

	Get/set/modify the Cache-Control header (RFC 2616 section 14.9)

	
accept_ranges

	Gets and sets and deletes the Accept-Ranges header. For more
information on Accept-Ranges see RFC 2616, section 14.5

	
headers

	The headers in a dictionary-like object

	
content_md5

	Gets and sets and deletes the Content-MD5 header. For more
information on Content-MD5 see RFC 2616 section 14.14.

	
expires

	Gets and sets and deletes the Expires header. For more
information on Expires see RFC 2616 section 14.21. Converts using
HTTP date.

	
last_modified

	Gets and sets and deletes the Last-Modified header. For more
information on Last-Modified see RFC 2616 section 14.29. Converts
using HTTP date.

	
delete_cookie(key, path='/', domain=None)

	Delete a cookie from the client. Note that path and domain must
match how the cookie was originally set. This sets the cookie to the
empty string, and max_age=0 so that it should expire immediately.

	
status_int

	The status as an integer

	
unset_cookie(key, strict=True)

	Unset a cookie with the given name (remove it from the
response).

	
content_disposition

	Gets and sets and deletes the Content-Disposition header.
For more information on Content-Disposition see RFC 2616 section
19.5.1.

	
content_language

	Gets and sets and deletes the Content-Language header. Converts
using list. For more information about Content-Language see RFC 2616
section 14.12.

	
body

	The body of the response, as a str. This will read in the entire
app_iter if necessary.

	
pragma

	Gets and sets and deletes the Pragma header. For more information
on Pragma see RFC 2616 section 14.32.

	
merge_cookies(resp)

	Merge the cookies that were set on this response with the given
resp object (which can be any WSGI application). If the resp is a
webob.Response object, then the other object will be modified
in-place.

	
request

	Return the request associated with this response if any.

	
content_range

	Gets and sets and deletes the Content-Range header. For more
information on Content-Range see section 14.16. Converts using
ContentRange object.

	
unicode_body

	Get/set the unicode value of the body (using the charset of
the Content-Type)

	
encode_content(encoding='gzip', lazy=False)

	Encode the content with the given encoding (only gzip and
identity are supported).

	
etag

	Gets and sets and deletes the ETag header. For more information
on ETag see RFC 2616 section 14.19. Converts using Entity tag.

	
content_location

	Gets and sets and deletes the Content-Location header. For more
information on Content-Location see RFC 2616 section 14.14.

	
__call__(environ, start_response)

	WSGI call interface, should call the start_response
callback and should return an iterable

	
app_iter

	Returns the app_iter of the response.

If body was set, this will create an app_iter from that body
(a single-item list)

	
location

	Gets and sets and deletes the Location header. For more
information on Location see RFC 2616 section 14.30.

	
content_type_params

	A dictionary of all the parameters in the content type. This is
not a view, set to change, modifications of the dict would not
be applied otherwise.

	
server

	Gets and sets and deletes the Server header. For more information
on Server see RFC216 section 14.38.

	
body_file

	A file-like object that can be used to write to the body. If you
passed in a list app_iter, that app_iter will be modified by writes.

	
content_encoding

	Gets and sets and deletes the Content-Encoding header. For more
information about Content-Encoding see RFC 2616 section 14.11.

	
interface IIntrospectable[source]

	An introspectable object used for configuration introspection. In
addition to the methods below, objects which implement this interface
must also implement all the methods of Python's
collections.MutableMapping (the "dictionary interface"), and must be
hashable.

	
relate(category_name, discriminator)

	Indicate an intent to relate this IIntrospectable with another
IIntrospectable (the one associated with the category_name and
discriminator) during action execution.

	
__hash__()

	Introspectables must be hashable. The typical implementation of
an introsepectable's __hash__ is:

return hash((self.category_name,) + (self.discriminator,))

	
discriminator

	introspectable discriminator (within category) (must be hashable)

	
title

	Text title describing this introspectable

	
discriminator_hash

	an integer hash of the discriminator

	
action_info

	An IActionInfo object representing the caller that invoked the creation of this introspectable (usually a sentinel until updated during self.register)

	
category_name

	introspection category name

	
type_name

	Text type name describing this introspectable

	
register(introspector, action_info)

	Register this IIntrospectable with an introspector. This method
is invoked during action execution. Adds the introspectable and its
relations to the introspector. introspector should be an object
implementing IIntrospector. action_info should be a object
implementing the interface pyramid.interfaces.IActionInfo
representing the call that registered this introspectable.
Pseudocode for an implementation of this method:

def register(self, introspector, action_info):
 self.action_info = action_info
 introspector.add(self)
 for methodname, category_name, discriminator in self._relations:
 method = getattr(introspector, methodname)
 method((i.category_name, i.discriminator),
 (category_name, discriminator))

	
order

	integer order in which registered with introspector (managed by introspector, usually)

	
unrelate(category_name, discriminator)

	Indicate an intent to break the relationship between this
IIntrospectable with another IIntrospectable (the one associated with
the category_name and discriminator) during action execution.

	
interface IIntrospector[source]

	
	
get_category(category_name, default=None, sort_key=None)

	Get a sequence of dictionaries in the form
[{'introspectable':IIntrospectable, 'related':[sequence of related
IIntrospectables]}, ...] where each introspectable is part of the
category associated with category_name .

If the category named category_name does not exist in the
introspector the value passed as default will be returned.

If sort_key is None, the sequence will be returned in the
order the introspectables were added to the introspector. Otherwise,
sort_key should be a function that accepts an IIntrospectable and
returns a value from it (ala the key function of Python's
sorted callable).

	
categorized(sort_key=None)

	Get a sequence of tuples in the form [(category_name,
[{'introspectable':IIntrospectable, 'related':[sequence of related
IIntrospectables]}, ...])] representing all known
introspectables. If sort_key is None, each introspectables
sequence will be returned in the order the introspectables were added
to the introspector. Otherwise, sort_key should be a function that
accepts an IIntrospectable and returns a value from it (ala the
key function of Python's sorted callable).

	
add(intr)

	Add the IIntrospectable intr (use instead of
pyramid.interfaces.IIntrospector.add() when you have a custom
IIntrospectable). Replaces any existing introspectable registered
using the same category/discriminator.

This method is not typically called directly, instead it's called
indirectly by pyramid.interfaces.IIntrospector.register()

	
categories()

	Return a sorted sequence of category names known by
this introspector

	
related(intr)

	Return a sequence of IIntrospectables related to the
IIntrospectable intr. Return the empty sequence if no relations
for exist.

	
get(category_name, discriminator, default=None)

	Get the IIntrospectable related to the category_name and the
discriminator (or discriminator hash) discriminator. If it does
not exist in the introspector, return the value of default

	
remove(category_name, discriminator)

	Remove the IIntrospectable related to category_name and
discriminator from the introspector, and fix up any relations
that the introspectable participates in. This method will not raise
an error if an introspectable related to the category name and
discriminator does not exist.

	
relate(*pairs)

	Given any number of (category_name, discriminator) pairs
passed as positional arguments, relate the associated introspectables
to each other. The introspectable related to each pair must have
already been added via .add or .add_intr; a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]
will result if this is not true. An error will not be raised if any
pair has already been associated with another.

This method is not typically called directly, instead it's called
indirectly by pyramid.interfaces.IIntrospector.register()

	
unrelate(*pairs)

	Given any number of (category_name, discriminator) pairs
passed as positional arguments, unrelate the associated introspectables
from each other. The introspectable related to each pair must have
already been added via .add or .add_intr; a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]
will result if this is not true. An error will not be raised if any
pair is not already related to another.

This method is not typically called directly, instead it's called
indirectly by pyramid.interfaces.IIntrospector.register()

	
interface IActionInfo[source]

	Class which provides code introspection capability associated with an
action. The ParserInfo class used by ZCML implements the same interface.

	
__str__()

	Return a representation of the action information (including
source code from file, if possible)

	
file

	Filename of action-invoking code as a string

	
line

	Starting line number in file (as an integer) of action-invoking code.This will be None if the value could not be determined.

	
interface IAssetDescriptor[source]

	Describes an asset.

	
stream()

	Returns an input stream for reading asset contents. Raises an
exception if the asset is a directory or does not exist.

	
isdir()

	Returns True if the asset is a directory, otherwise returns False.

	
abspath()

	Returns an absolute path in the filesystem to the asset.

	
exists()

	Returns True if asset exists, otherwise returns False.

	
listdir()

	Returns iterable of filenames of directory contents. Raises an
exception if asset is not a directory.

	
absspec()

	Returns the absolute asset specification for this asset
(e.g. mypackage:templates/foo.pt).

	
interface IResourceURL[source]

	
	
virtual_path

	The virtual url path of the resource as a string.

	
physical_path

	The physical url path of the resource as a string.

	
virtual_path_tuple

	The virtual url path of the resource as a tuple. (New in 1.5)

	
physical_path_tuple

	The physical url path of the resource as a tuple. (New in 1.5)

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.location

	
lineage(resource)[source]

	Return a generator representing the lineage of the
resource object implied by the resource argument. The
generator first returns resource unconditionally. Then, if
resource supplies a __parent__ attribute, return the resource
represented by resource.__parent__. If that resource has a
__parent__ attribute, return that resource's parent, and so on,
until the resource being inspected either has no __parent__
attribute or which has a __parent__ attribute of None.
For example, if the resource tree is:

thing1 = Thing()
thing2 = Thing()
thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn
it into a list, we will get:

list(lineage(thing2))
[<Thing object at thing2>, <Thing object at thing1>]

	
inside(resource1, resource2)[source]

	Is resource1 'inside' resource2? Return True if so, else
False.

resource1 is 'inside' resource2 if resource2 is a
lineage ancestor of resource1. It is a lineage ancestor
if its parent (or one of its parent's parents, etc.) is an
ancestor.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.paster

	
bootstrap(config_uri, request=None, options=None)[source]

	Load a WSGI application from the PasteDeploy config file specified
by config_uri. The environment will be configured as if it is
currently serving request, leaving a natural environment in place
to write scripts that can generate URLs and utilize renderers.

This function returns a dictionary with app, root, closer,
request, and registry keys. app is the WSGI app loaded
(based on the config_uri), root is the traversal root resource
of the Pyramid application, and closer is a parameterless callback
that may be called when your script is complete (it pops a threadlocal
stack).

Note

Most operations within Pyramid expect to be invoked within the
context of a WSGI request, thus it's important when loading your
application to anchor it when executing scripts and other code that is
not normally invoked during active WSGI requests.

Note

For a complex config file containing multiple Pyramid
applications, this function will setup the environment under the context
of the last-loaded Pyramid application. You may load a specific
application yourself by using the lower-level functions
pyramid.paster.get_app() and pyramid.scripting.prepare() in
conjunction with pyramid.config.global_registries.

config_uri -- specifies the PasteDeploy config file to use for the
interactive shell. The format is inifile#name. If the name is left
off, main will be assumed.

request -- specified to anchor the script to a given set of WSGI
parameters. For example, most people would want to specify the host,
scheme and port such that their script will generate URLs in relation
to those parameters. A request with default parameters is constructed
for you if none is provided. You can mutate the request's environ
later to setup a specific host/port/scheme/etc.

options Is passed to get_app for use as variable assignments like
{'http_port': 8080} and then use %(http_port)s in the
config file.

See Writing a Script for more information about how to use this
function.

	
get_app(config_uri, name=None, options=None)[source]

	Return the WSGI application named name in the PasteDeploy
config file specified by config_uri.

options, if passed, should be a dictionary used as variable assignments
like {'http_port': 8080}. This is useful if e.g. %(http_port)s is
used in the config file.

If the name is None, this will attempt to parse the name from
the config_uri string expecting the format inifile#name.
If no name is found, the name will default to "main".

	
get_appsettings(config_uri, name=None, options=None)[source]

	Return a dictionary representing the key/value pairs in an app
section within the file represented by config_uri.

options, if passed, should be a dictionary used as variable assignments
like {'http_port': 8080}. This is useful if e.g. %(http_port)s is
used in the config file.

If the name is None, this will attempt to parse the name from
the config_uri string expecting the format inifile#name.
If no name is found, the name will default to "main".

	
setup_logging(config_uri)[source]

	Set up logging via the logging module's fileConfig function with the
filename specified via config_uri (a string in the form
filename#sectionname).

ConfigParser defaults are specified for the special __file__
and here variables, similar to PasteDeploy config loading.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.path

	
CALLER_PACKAGE

	A constant used by the constructor of
pyramid.path.DottedNameResolver and
pyramid.path.AssetResolver.

	
class DottedNameResolver(package=pyramid.path.CALLER_PACKAGE)[source]

	A class used to resolve a dotted Python name to a package or
module object.

New in version 1.3.

The constructor accepts a single argument named package which may be
any of:

	A fully qualified (not relative) dotted name to a module or package

	a Python module or package object

	The value None

	The constant value pyramid.path.CALLER_PACKAGE.

The default value is pyramid.path.CALLER_PACKAGE.

The package is used when a relative dotted name is supplied to the
resolve() method. A dotted name
which has a . (dot) or : (colon) as its first character is
treated as relative.

If package is None, the resolver will only be able to resolve
fully qualified (not relative) names. Any attempt to resolve a
relative name will result in an ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception.

If package is pyramid.path.CALLER_PACKAGE,
the resolver will treat relative dotted names as relative to
the caller of the resolve()
method.

If package is a module or module name (as opposed to a package or
package name), its containing package is computed and this
package used to derive the package name (all names are resolved relative
to packages, never to modules). For example, if the package argument
to this type was passed the string xml.dom.expatbuilder, and
.mindom is supplied to the
resolve() method, the resulting
import would be for xml.minidom, because xml.dom.expatbuilder is
a module object, not a package object.

If package is a package or package name (as opposed to a module or
module name), this package will be used to relative compute
dotted names. For example, if the package argument to this type was
passed the string xml.dom, and .minidom is supplied to the
resolve() method, the resulting
import would be for xml.minidom.

	
maybe_resolve(dotted)[source]

	This method behaves just like
resolve(), except if the
dotted value passed is not a string, it is simply returned. For
example:

import xml
r = DottedNameResolver()
v = r.maybe_resolve(xml)
v is the xml module; no exception raised

	
resolve(dotted)[source]

	This method resolves a dotted name reference to a global Python
object (an object which can be imported) to the object itself.

Two dotted name styles are supported:

	pkg_resources-style dotted names where non-module attributes
of a package are separated from the rest of the path using a :
e.g. package.module:attr.

	zope.dottedname-style dotted names where non-module
attributes of a package are separated from the rest of the path
using a . e.g. package.module.attr.

These styles can be used interchangeably. If the supplied name
contains a : (colon), the pkg_resources resolution
mechanism will be chosen, otherwise the zope.dottedname
resolution mechanism will be chosen.

If the dotted argument passed to this method is not a string, a
ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] will be raised.

When a dotted name cannot be resolved, a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] error is
raised.

Example:

r = DottedNameResolver()
v = r.resolve('xml') # v is the xml module

	
class AssetResolver(package=pyramid.path.CALLER_PACKAGE)[source]

	A class used to resolve an asset specification to an
asset descriptor.

New in version 1.3.

The constructor accepts a single argument named package which may be
any of:

	A fully qualified (not relative) dotted name to a module or package

	a Python module or package object

	The value None

	The constant value pyramid.path.CALLER_PACKAGE.

The default value is pyramid.path.CALLER_PACKAGE.

The package is used when a relative asset specification is supplied
to the resolve() method. An asset
specification without a colon in it is treated as relative.

If package is None, the resolver will
only be able to resolve fully qualified (not relative) asset
specifications. Any attempt to resolve a relative asset specification
will result in an ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception.

If package is pyramid.path.CALLER_PACKAGE,
the resolver will treat relative asset specifications as
relative to the caller of the resolve()
method.

If package is a module or module name (as opposed to a package or
package name), its containing package is computed and this
package is used to derive the package name (all names are resolved relative
to packages, never to modules). For example, if the package argument
to this type was passed the string xml.dom.expatbuilder, and
template.pt is supplied to the
resolve() method, the resulting absolute
asset spec would be xml.minidom:template.pt, because
xml.dom.expatbuilder is a module object, not a package object.

If package is a package or package name (as opposed to a module or
module name), this package will be used to compute relative
asset specifications. For example, if the package argument to this
type was passed the string xml.dom, and template.pt is supplied
to the resolve() method, the resulting
absolute asset spec would be xml.minidom:template.pt.

	
resolve(spec)[source]

	Resolve the asset spec named as spec to an object that has the
attributes and methods described in
pyramid.interfaces.IAssetDescriptor.

If spec is an absolute filename
(e.g. /path/to/myproject/templates/foo.pt) or an absolute asset
spec (e.g. myproject:templates.foo.pt), an asset descriptor is
returned without taking into account the package passed to this
class' constructor.

If spec is a relative asset specification (an asset
specification without a : in it, e.g. templates/foo.pt), the
package argument of the constructor is used as the package
portion of the asset spec. For example:

a = AssetResolver('myproject')
resolver = a.resolve('templates/foo.pt')
print(resolver.abspath())
-> /path/to/myproject/templates/foo.pt

If the AssetResolver is constructed without a package argument of
None, and a relative asset specification is passed to
resolve, an ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception is raised.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.registry

	
class Registry(name='', bases=())[source]

	A registry object is an application registry. It is used by
the framework itself to perform mappings of URLs to view callables, as
well as servicing other various framework duties. A registry has its own
internal API, but this API is rarely used by Pyramid application
developers (it's usually only used by developers of the Pyramid
framework). But it has a number of attributes that may be useful to
application developers within application code, such as settings,
which is a dictionary containing application deployment settings.

For information about the purpose and usage of the application registry,
see Using the Zope Component Architecture in Pyramid.

The application registry is usually accessed as request.registry in
application code.

	
settings

	The dictionary-like deployment settings object. See
Deployment Settings for information. This object is often
accessed as request.registry.settings or
config.registry.settings in a typical Pyramid application.

	
introspector

	
New in version 1.3.

When a registry is set up (or created) by a Configurator, the
registry will be decorated with an instance named introspector
implementing the pyramid.interfaces.IIntrospector interface.

See also

See also pyramid.config.Configurator.introspector.

When a registry is created "by hand", however, this attribute will not
exist until set up by a configurator.

This attribute is often accessed as request.registry.introspector in
a typical Pyramid application.

	
notify(*events)[source]

	Fire one or more events. All event subscribers to the event(s)
will be notified. The subscribers will be called synchronously.
This method is often accessed as request.registry.notify
in Pyramid applications to fire custom events. See
Creating Your Own Events for more information.

	
class Introspectable[source]

	
New in version 1.3.

The default implementation of the interface
pyramid.interfaces.IIntrospectable used by framework exenders.
An instance of this class is created when
pyramid.config.Configurator.introspectable is called.

	
class Deferred(func)[source]

	Can be used by a third-party configuration extender to wrap a
discriminator during configuration if an immediately hashable
discriminator cannot be computed because it relies on unresolved values.
The function should accept no arguments and should return a hashable
discriminator.

New in version 1.4.

	
undefer(v)[source]

	Function which accepts an object and returns it unless it is a
pyramid.registry.Deferred instance. If it is an instance of
that class, its resolve method is called, and the result of the
method is returned.

New in version 1.4.

	
class predvalseq[source]

	A subtype of tuple used to represent a sequence of predicate values

New in version 1.4.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.renderers

	
get_renderer(renderer_name, package=None)[source]

	Return the renderer object for the renderer renderer_name.

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer name
will be converted to an absolute asset specification by
combining the package package with the relative
asset specification renderer_name. If package is None
(the default), the package name of the caller of this function
will be used as the package.

	
render(renderer_name, value, request=None, package=None)[source]

	Using the renderer renderer_name (a template
or a static renderer), render the value (or set of values) present
in value. Return the result of the renderer's __call__
method (usually a string or Unicode).

If the renderer_name refers to a file on disk, such as when the
renderer is a template, it's usually best to supply the name as an
asset specification
(e.g. packagename:path/to/template.pt).

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer path
will be converted to an absolute asset specification by
combining the package package with the relative
asset specification renderer_name. If package
is None (the default), the package name of the caller of
this function will be used as the package.

The value provided will be supplied as the input to the
renderer. Usually, for template renderings, this should be a
dictionary. For other renderers, this will need to be whatever
sort of value the renderer expects.

The 'system' values supplied to the renderer will include a basic set of
top-level system names, such as request, context,
renderer_name, and view. See System Values Used During Rendering for
the full list. If renderer globals have been specified, these
will also be used to augment the value.

Supply a request parameter in order to provide the renderer
with the most correct 'system' values (request and context
in particular).

	
render_to_response(renderer_name, value, request=None, package=None)[source]

	Using the renderer renderer_name (a template
or a static renderer), render the value (or set of values) using
the result of the renderer's __call__ method (usually a string
or Unicode) as the response body.

If the renderer name refers to a file on disk (such as when the
renderer is a template), it's usually best to supply the name as a
asset specification.

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer name
will be converted to an absolute asset specification by
combining the package package with the relative
asset specification renderer_name. If you do
not supply a package (or package is None) the package
name of the caller of this function will be used as the package.

The value provided will be supplied as the input to the
renderer. Usually, for template renderings, this should be a
dictionary. For other renderers, this will need to be whatever
sort of value the renderer expects.

The 'system' values supplied to the renderer will include a basic set of
top-level system names, such as request, context,
renderer_name, and view. See System Values Used During Rendering for
the full list. If renderer globals have been specified, these
will also be used to argument the value.

Supply a request parameter in order to provide the renderer
with the most correct 'system' values (request and context
in particular). Keep in mind that if the request parameter is
not passed in, any changes to request.response attributes made
before calling this function will be ignored.

	
class JSON(serializer=<function dumps>, adapters=(), **kw)[source]

	Renderer that returns a JSON-encoded string.

Configure a custom JSON renderer using the
add_renderer() API at application
startup time:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('myjson', JSON(indent=4))

Once this renderer is registered as above, you can use
myjson as the renderer= parameter to @view_config or
add_view`():

from pyramid.view import view_config

@view_config(renderer='myjson')
def myview(request):
 return {'greeting':'Hello world'}

Custom objects can be serialized using the renderer by either
implementing the __json__ magic method, or by registering
adapters with the renderer. See
Serializing Custom Objects for more information.

Note

The default serializer uses json.JSONEncoder. A different
serializer can be specified via the serializer argument. Custom
serializers should accept the object, a callback default, and any
extra kw keyword arguments passed during renderer construction.
This feature isn't widely used but it can be used to replace the
stock JSON serializer with, say, simplejson. If all you want to
do, however, is serialize custom objects, you should use the method
explained in Serializing Custom Objects instead
of replacing the serializer.

New in version 1.4: Prior to this version, there was no public API for supplying options
to the underlying serializer without defining a custom renderer.

	
add_adapter(type_or_iface, adapter)[source]

	When an object of the type (or interface) type_or_iface fails
to automatically encode using the serializer, the renderer will use
the adapter adapter to convert it into a JSON-serializable
object. The adapter must accept two arguments: the object and the
currently active request.

class Foo(object):
 x = 5

def foo_adapter(obj, request):
 return obj.x

renderer = JSON(indent=4)
renderer.add_adapter(Foo, foo_adapter)

When you've done this, the JSON renderer will be able to serialize
instances of the Foo class when they're encountered in your view
results.

	
class JSONP(param_name='callback', **kw)[source]

	JSONP [http://en.wikipedia.org/wiki/JSONP] renderer factory helper
which implements a hybrid json/jsonp renderer. JSONP is useful for
making cross-domain AJAX requests.

Configure a JSONP renderer using the
pyramid.config.Configurator.add_renderer() API at application
startup time:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback'))

The class' constructor also accepts arbitrary keyword arguments. All
keyword arguments except param_name are passed to the json.dumps
function as its keyword arguments.

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback', indent=4))

Changed in version 1.4: The ability of this class to accept a **kw in its constructor.

The arguments passed to this class' constructor mean the same thing as
the arguments passed to pyramid.renderers.JSON (including
serializer and adapters).

Once this renderer is registered via
add_renderer() as above, you can use
jsonp as the renderer= parameter to @view_config or
pyramid.config.Configurator.add_view`():

from pyramid.view import view_config

@view_config(renderer='jsonp')
def myview(request):
 return {'greeting':'Hello world'}

When a view is called that uses the JSONP renderer:

	If there is a parameter in the request's HTTP query string that matches
the param_name of the registered JSONP renderer (by default,
callback), the renderer will return a JSONP response.

	If there is no callback parameter in the request's query string, the
renderer will return a 'plain' JSON response.

New in version 1.1.

See also

See also JSONP Renderer.

	
add_adapter(type_or_iface, adapter)

	When an object of the type (or interface) type_or_iface fails
to automatically encode using the serializer, the renderer will use
the adapter adapter to convert it into a JSON-serializable
object. The adapter must accept two arguments: the object and the
currently active request.

class Foo(object):
 x = 5

def foo_adapter(obj, request):
 return obj.x

renderer = JSON(indent=4)
renderer.add_adapter(Foo, foo_adapter)

When you've done this, the JSON renderer will be able to serialize
instances of the Foo class when they're encountered in your view
results.

	
null_renderer

	An object that can be used in advanced integration cases as input to the
view configuration renderer= argument. When the null renderer is used
as a view renderer argument, Pyramid avoids converting the view callable
result into a Response object. This is useful if you want to reuse the
view configuration and lookup machinery outside the context of its use by
the Pyramid router.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.request

	
class Request(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)[source]

	A subclass of the WebOb Request class. An instance of
this class is created by the router and is provided to a
view callable (and to other subsystems) as the request
argument.

The documentation below (save for the add_response_callback and
add_finished_callback methods, which are defined in this subclass
itself, and the attributes context, registry, root,
subpath, traversed, view_name, virtual_root , and
virtual_root_path, each of which is added to the request by the
router at request ingress time) are autogenerated from the WebOb
source code used when this documentation was generated.

Due to technical constraints, we can't yet display the WebOb
version number from which this documentation is autogenerated, but
it will be the 'prevailing WebOb version' at the time of the
release of this Pyramid version. See
http://webob.org/ for further information.

	
context

	The context will be available as the context
attribute of the request object. It will be the context
object implied by the current request. See
Traversal for information about context objects.

	
registry

	The application registry will be available as the
registry attribute of the request object. See
Using the Zope Component Architecture in Pyramid for more information about the application
registry.

	
root

	The root object will be available as the root
attribute of the request object. It will be the resource
object at which traversal started (the root). See
Traversal for information about root objects.

	
subpath

	The traversal subpath will be available as the
subpath attribute of the request object. It will
be a sequence containing zero or more elements (which will be
Unicode objects). See Traversal for information
about the subpath.

	
traversed

	The "traversal path" will be available as the traversed
attribute of the request object. It will be a sequence
representing the ordered set of names that were used to
traverse to the context, not including the view name or
subpath. If there is a virtual root associated with the
request, the virtual root path is included within the traversal
path. See Traversal for more information.

	
view_name

	The view name will be available as the view_name
attribute of the request object. It will be a single
string (possibly the empty string if we're rendering a default
view). See Traversal for information about view
names.

	
virtual_root

	The virtual root will be available as the
virtual_root attribute of the request object. It
will be the virtual root object implied by the current request.
See Virtual Hosting for more information about virtual
roots.

	
virtual_root_path

	The virtual root path will be available as the
virtual_root_path attribute of the request object.
It will be a sequence representing the ordered set of names
that were used to traverse to the virtual root object. See
Virtual Hosting for more information about virtual
roots.

	
exception

	If an exception was raised by a root factory or a
view callable, or at various other points where
Pyramid executes user-defined code during the
processing of a request, the exception object which was caught
will be available as the exception attribute of the request
within a exception view, a response callback or a
finished callback. If no exception occurred, the value
of request.exception will be None within response and
finished callbacks.

	
exc_info

	If an exception was raised by a root factory or a view
callable, or at various other points where Pyramid executes
user-defined code during the processing of a request, result of
sys.exc_info() will be available as the exc_info attribute of
the request within a exception view, a response callback
or a finished callback. If no exception occurred, the value of
request.exc_info will be None within response and finished
callbacks.

	
response

	This attribute is actually a "reified" property which returns an
instance of the pyramid.response.Response class. The response
object returned does not exist until this attribute is accessed. Once
it is accessed, subsequent accesses to this request object will return
the same Response object.

The request.response API can is used by renderers. A render obtains
the response object it will return from a view that uses that renderer
by accessing request.response. Therefore, it's possible to use the
request.response API to set up a response object with "the right"
attributes (e.g. by calling request.response.set_cookie(...) or
request.response.content_type = 'text/plain', etc) within a view
that uses a renderer. For example, within a view that uses a
renderer:

response = request.response
response.set_cookie('mycookie', 'mine, all mine!')
return {'text':'Value that will be used by the renderer'}

Mutations to this response object will be preserved in the response sent
to the client after rendering. For more information about using
request.response in conjunction with a renderer, see
Varying Attributes of Rendered Responses.

Non-renderer code can also make use of request.response instead of
creating a response "by hand". For example, in view code:

response = request.response
response.body = 'Hello!'
response.content_type = 'text/plain'
return response

Note that the response in this circumstance is not "global"; it still
must be returned from the view code if a renderer is not used.

	
session

	If a session factory has been configured, this attribute
will represent the current user's session object. If a
session factory has not been configured, requesting the
request.session attribute will cause a
pyramid.exceptions.ConfigurationError to be raised.

	
matchdict

	If a route has matched during this request, this attribute will
be a dictionary containing the values matched by the URL pattern
associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See
The Matchdict.

	
matched_route

	If a route has matched during this request, this attribute will
be an object representing the route matched by the URL pattern
associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See
The Matched Route.

	
authenticated_userid

	
New in version 1.5.

A property which returns the userid of the currently authenticated user
or None if there is no authentication policy in effect or
there is no currently authenticated user. This differs from
unauthenticated_userid, because the
effective authentication policy will have ensured that a record
associated with the userid exists in persistent storage; if it has
not, this value will be None.

	
unauthenticated_userid

	
New in version 1.5.

A property which returns a value which represents the claimed (not
verified) user id of the credentials present in the request. None if
there is no authentication policy in effect or there is no user
data associated with the current request. This differs from
authenticated_userid, because the
effective authentication policy will not ensure that a record associated
with the userid exists in persistent storage. Even if the userid
does not exist in persistent storage, this value will be the value
of the userid claimed by the request data.

	
effective_principals

	
New in version 1.5.

A property which returns the list of 'effective' principal
identifiers for this request. This will include the userid of the
currently authenticated user if a user is currently authenticated. If no
authentication policy is in effect, this will return a sequence
containing only the pyramid.security.Everyone principal.

	
invoke_subrequest(request, use_tweens=False)

	
New in version 1.4a1.

Obtain a response object from the Pyramid application based on
information in the request object provided. The request object
must be an object that implements the Pyramid request interface (such
as a pyramid.request.Request instance). If use_tweens is
True, the request will be sent to the tween in the tween
stack closest to the request ingress. If use_tweens is False,
the request will be sent to the main router handler, and no tweens will
be invoked.

This function also:

	manages the threadlocal stack (so that
get_current_request() and
get_current_registry() work during a
request)

	Adds a registry attribute (the current Pyramid registry) and a
invoke_subrequest attribute (a callable) to the request object it's
handed.

	sets request extensions (such as those added via
add_request_method() or
set_request_property()) on the
request it's passed.

	causes a NewRequest event to be sent at the
beginning of request processing.

	causes a ContextFound event to be sent
when a context resource is found.

	Ensures that the user implied by the request passed has the necessary
authorization to invoke view callable before calling it.

	Calls any response callback functions defined within the
request's lifetime if a response is obtained from the Pyramid
application.

	causes a NewResponse event to be sent if a
response is obtained.

	Calls any finished callback functions defined within the
request's lifetime.

invoke_subrequest isn't actually a method of the Request object;
it's a callable added when the Pyramid router is invoked, or when a
subrequest is invoked. This means that it's not available for use on a
request provided by e.g. the pshell environment.

See also

See also Invoking a Subrequest.

	
has_permission(permission, context=None)

	Given a permission and an optional context, returns an instance of
pyramid.security.Allowed if the permission is granted to this
request with the provided context, or the context already associated
with the request. Otherwise, returns an instance of
pyramid.security.Denied. This method delegates to the current
authentication and authorization policies. Returns
pyramid.security.Allowed unconditionally if no authentication
policy has been registered for this request. If context is not
supplied or is supplied as None, the context used is the
request.context attribute.

	Parameters:	
	permission (unicode, str) -- Does this request have the given permission?

	context (object [http://docs.python.org/3/library/functions.html#object]) -- A resource object or None

	Returns:	pyramid.security.PermitsResult

New in version 1.5.

	
add_response_callback(callback)

	Add a callback to the set of callbacks to be called by the
router at a point after a response object is
successfully created. Pyramid does not have a
global response object: this functionality allows an
application to register an action to be performed against the
response once one is created.

A 'callback' is a callable which accepts two positional
parameters: request and response. For example:

	1
2
3
4

	def cache_callback(request, response):
 'Set the cache_control max_age for the response'
 response.cache_control.max_age = 360
request.add_response_callback(cache_callback)

Response callbacks are called in the order they're added
(first-to-most-recently-added). No response callback is
called if an exception happens in application code, or if the
response object returned by view code is invalid.

All response callbacks are called after the tweens and
before the pyramid.events.NewResponse event is sent.

Errors raised by callbacks are not handled specially. They
will be propagated to the caller of the Pyramid
router application.

See also

See also Using Response Callbacks.

	
add_finished_callback(callback)

	Add a callback to the set of callbacks to be called
unconditionally by the router at the very end of
request processing.

callback is a callable which accepts a single positional
parameter: request. For example:

	1
2
3
4
5
6
7
8
9

	import transaction

def commit_callback(request):
 '''commit or abort the transaction associated with request'''
 if request.exception is not None:
 transaction.abort()
 else:
 transaction.commit()
request.add_finished_callback(commit_callback)

Finished callbacks are called in the order they're added (
first- to most-recently- added). Finished callbacks (unlike
response callbacks) are always called, even if an exception
happens in application code that prevents a response from
being generated.

The set of finished callbacks associated with a request are
called very late in the processing of that request; they are
essentially the last thing called by the router. They
are called after response processing has already occurred in a
top-level finally: block within the router request
processing code. As a result, mutations performed to the
request provided to a finished callback will have no
meaningful effect, because response processing will have
already occurred, and the request's scope will expire almost
immediately after all finished callbacks have been processed.

Errors raised by finished callbacks are not handled specially.
They will be propagated to the caller of the Pyramid
router application.

See also

See also Using Finished Callbacks.

	
route_url(route_name, *elements, **kw)

	Generates a fully qualified URL for a named Pyramid
route configuration.

Use the route's name as the first positional argument.
Additional positional arguments (*elements) are appended to the
URL as path segments after it is generated.

Use keyword arguments to supply values which match any dynamic
path elements in the route definition. Raises a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError]
exception if the URL cannot be generated for any reason (not
enough arguments, for example).

For example, if you've defined a route named "foobar" with the path
{foo}/{bar}/*traverse:

request.route_url('foobar',
 foo='1') => <KeyError exception>
request.route_url('foobar',
 foo='1',
 bar='2') => <KeyError exception>
request.route_url('foobar',
 foo='1',
 bar='2',
 traverse=('a','b')) => http://e.com/1/2/a/b
request.route_url('foobar',
 foo='1',
 bar='2',
 traverse='/a/b') => http://e.com/1/2/a/b

Values replacing :segment arguments can be passed as strings
or Unicode objects. They will be encoded to UTF-8 and URL-quoted
before being placed into the generated URL.

Values replacing *remainder arguments can be passed as strings
or tuples of Unicode/string values. If a tuple is passed as a
*remainder replacement value, its values are URL-quoted and
encoded to UTF-8. The resulting strings are joined with slashes
and rendered into the URL. If a string is passed as a
*remainder replacement value, it is tacked on to the URL
after being URL-quoted-except-for-embedded-slashes.

If no _query keyword argument is provided, the request query string
will be returned in the URL. If it is present, it will be used to
compose a query string that will be tacked on to the end of the URL,
replacing any request query string. The value of _query may be a
sequence of two-tuples or a data structure with an .items()
method that returns a sequence of two-tuples (presumably a dictionary).
This data structure will be turned into a query string per the
documentation of pyramid.url.urlencode() function. This will
produce a query string in the x-www-form-urlencoded format. A
non-x-www-form-urlencoded query string may be used by passing a
string value as _query in which case it will be URL-quoted
(e.g. query="foo bar" will become "foo%20bar"). However, the result
will not need to be in k=v form as required by
x-www-form-urlencoded. After the query data is turned into a query
string, a leading ? is prepended, and the resulting string is
appended to the generated URL.

Note

Python data structures that are passed as _query which are
sequences or dictionaries are turned into a string under the same
rules as when run through urllib.urlencode() [http://docs.python.org/library/urllib.html#urllib.urlencode] with the doseq
argument equal to True. This means that sequences can be passed
as values, and a k=v pair will be placed into the query string for
each value.

Changed in version 1.5: Allow the _query option to be a string to enable alternative
encodings.

If a keyword argument _anchor is present, its string
representation will be quoted per RFC 3986#section-3.5 [https://tools.ietf.org/html/rfc3986.html#section-3.5] and used as
a named anchor in the generated URL
(e.g. if _anchor is passed as foo and the route URL is
http://example.com/route/url, the resulting generated URL will
be http://example.com/route/url#foo).

Note

If _anchor is passed as a string, it should be UTF-8 encoded. If
_anchor is passed as a Unicode object, it will be converted to
UTF-8 before being appended to the URL.

Changed in version 1.5: The _anchor option will be escaped instead of using
its raw string representation.

If both _anchor and _query are specified, the anchor
element will always follow the query element,
e.g. http://example.com?foo=1#bar.

If any of the keyword arguments _scheme, _host, or _port
is passed and is non-None, the provided value will replace the
named portion in the generated URL. For example, if you pass
_host='foo.com', and the URL that would have been generated
without the host replacement is http://example.com/a, the result
will be http://foo.com/a.

Note that if _scheme is passed as https, and _port is not
passed, the _port value is assumed to have been passed as
443. Likewise, if _scheme is passed as http and
_port is not passed, the _port value is assumed to have been
passed as 80. To avoid this behavior, always explicitly pass
_port whenever you pass _scheme.

If a keyword _app_url is present, it will be used as the
protocol/hostname/port/leading path prefix of the generated URL.
For example, using an _app_url of
http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from
this function if the expansion of the route pattern associated
with the route_name expanded to /fleeb/flub. If
_app_url is not specified, the result of
request.application_url will be used as the prefix (the
default).

If both _app_url and any of _scheme, _host, or _port
are passed, _app_url takes precedence and any values passed for
_scheme, _host, and _port will be ignored.

This function raises a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] if the URL cannot be
generated due to missing replacement names. Extra replacement
names are ignored.

If the route object which matches the route_name argument has
a pregenerator, the *elements and **kw
arguments passed to this function might be augmented or changed.

	
route_path(route_name, *elements, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for a named Pyramid route configuration.

This function accepts the same argument as
pyramid.request.Request.route_url() and performs the same duty.
It just omits the host, port, and scheme information in the return
value; only the script_name, path, query parameters, and anchor data
are present in the returned string.

For example, if you've defined a route named 'foobar' with the path
/{foo}/{bar}, this call to route_path:

request.route_path('foobar', foo='1', bar='2')

Will return the string /1/2.

Note

Calling request.route_path('route') is the same as calling
request.route_url('route', _app_url=request.script_name).
pyramid.request.Request.route_path() is, in fact,
implemented in terms of pyramid.request.Request.route_url()
in just this way. As a result, any _app_url passed within the
**kw values to route_path will be ignored.

	
current_route_url(*elements, **kw)

	Generates a fully qualified URL for a named Pyramid
route configuration based on the 'current route'.

This function supplements
pyramid.request.Request.route_url(). It presents an easy way to
generate a URL for the 'current route' (defined as the route which
matched when the request was generated).

The arguments to this method have the same meaning as those with the
same names passed to pyramid.request.Request.route_url(). It
also understands an extra argument which route_url does not named
_route_name.

The route name used to generate a URL is taken from either the
_route_name keyword argument or the name of the route which is
currently associated with the request if _route_name was not
passed. Keys and values from the current request matchdict
are combined with the kw arguments to form a set of defaults
named newkw. Then request.route_url(route_name, *elements,
**newkw) is called, returning a URL.

Examples follow.

If the 'current route' has the route pattern /foo/{page} and the
current url path is /foo/1 , the matchdict will be
{'page':'1'}. The result of request.current_route_url() in
this situation will be /foo/1.

If the 'current route' has the route pattern /foo/{page} and the
current url path is /foo/1, the matchdict will be
{'page':'1'}. The result of
request.current_route_url(page='2') in this situation will be
/foo/2.

Usage of the _route_name keyword argument: if our routing table
defines routes /foo/{action} named 'foo' and
/foo/{action}/{page} named fooaction, and the current url
pattern is /foo/view (which has matched the /foo/{action}
route), we may want to use the matchdict args to generate a URL to
the fooaction route. In this scenario,
request.current_route_url(_route_name='fooaction', page='5')
Will return string like: /foo/view/5.

	
current_route_path(*elements, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for the Pyramid route configuration matched
by the current request.

This function accepts the same argument as
pyramid.request.Request.current_route_url() and performs the
same duty. It just omits the host, port, and scheme information in
the return value; only the script_name, path, query parameters, and
anchor data are present in the returned string.

For example, if the route matched by the current request has the
pattern /{foo}/{bar}, this call to current_route_path:

request.current_route_path(foo='1', bar='2')

Will return the string /1/2.

Note

Calling request.current_route_path('route') is the same
as calling request.current_route_url('route',
_app_url=request.script_name).
pyramid.request.Request.current_route_path() is, in fact,
implemented in terms of
pyramid.request.Request.current_route_url() in just this
way. As a result, any _app_url passed within the **kw
values to current_route_path will be ignored.

	
static_url(path, **kw)

	Generates a fully qualified URL for a static asset.
The asset must live within a location defined via the
pyramid.config.Configurator.add_static_view()
configuration declaration (see Serving Static Assets).

Example:

request.static_url('mypackage:static/foo.css') =>

 http://example.com/static/foo.css

The path argument points at a file or directory on disk which
a URL should be generated for. The path may be either a
relative path (e.g. static/foo.css) or an absolute path (e.g.
/abspath/to/static/foo.css) or a asset specification
(e.g. mypackage:static/foo.css).

The purpose of the **kw argument is the same as the purpose of
the pyramid.request.Request.route_url() **kw argument. See
the documentation for that function to understand the arguments which
you can provide to it. However, typically, you don't need to pass
anything as *kw when generating a static asset URL.

This function raises a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if a static view
definition cannot be found which matches the path specification.

	
static_path(path, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for a static resource.

This function accepts the same argument as
pyramid.request.Request.static_url() and performs the
same duty. It just omits the host, port, and scheme information in
the return value; only the script_name, path, query parameters, and
anchor data are present in the returned string.

Example:

request.static_path('mypackage:static/foo.css') =>

 /static/foo.css

Note

Calling request.static_path(apath) is the same as calling
request.static_url(apath, _app_url=request.script_name).
pyramid.request.Request.static_path() is, in fact, implemented
in terms of :meth:`pyramid.request.Request.static_url in just this
way. As a result, any _app_url passed within the **kw values
to static_path will be ignored.

	
resource_url(resource, *elements, **kw)

	Generate a string representing the absolute URL of the
resource object based on the wsgi.url_scheme,
HTTP_HOST or SERVER_NAME in the request, plus any
SCRIPT_NAME. The overall result of this method is always a
UTF-8 encoded string.

Examples:

request.resource_url(resource) =>

 http://example.com/

request.resource_url(resource, 'a.html') =>

 http://example.com/a.html

request.resource_url(resource, 'a.html', query={'q':'1'}) =>

 http://example.com/a.html?q=1

request.resource_url(resource, 'a.html', anchor='abc') =>

 http://example.com/a.html#abc

request.resource_url(resource, app_url='') =>

 /

Any positional arguments passed in as elements must be strings
Unicode objects, or integer objects. These will be joined by slashes
and appended to the generated resource URL. Each of the elements
passed in is URL-quoted before being appended; if any element is
Unicode, it will converted to a UTF-8 bytestring before being
URL-quoted. If any element is an integer, it will be converted to its
string representation before being URL-quoted.

Warning

if no elements arguments are specified, the resource
URL will end with a trailing slash. If any
elements are used, the generated URL will not
end in a trailing slash.

If a keyword argument query is present, it will be used to compose
a query string that will be tacked on to the end of the URL. The value
of query may be a sequence of two-tuples or a data structure with
an .items() method that returns a sequence of two-tuples
(presumably a dictionary). This data structure will be turned into a
query string per the documentation of :func:pyramid.url.urlencode
function. This will produce a query string in the
x-www-form-urlencoded encoding. A non-x-www-form-urlencoded
query string may be used by passing a string value as query in
which case it will be URL-quoted (e.g. query="foo bar" will become
"foo%20bar"). However, the result will not need to be in k=v form
as required by x-www-form-urlencoded. After the query data is
turned into a query string, a leading ? is prepended, and the
resulting string is appended to the generated URL.

Note

Python data structures that are passed as query which are
sequences or dictionaries are turned into a string under the same
rules as when run through urllib.urlencode() [http://docs.python.org/library/urllib.html#urllib.urlencode] with the doseq
argument equal to True. This means that sequences can be passed
as values, and a k=v pair will be placed into the query string for
each value.

Changed in version 1.5: Allow the query option to be a string to enable alternative
encodings.

If a keyword argument anchor is present, its string
representation will be used as a named anchor in the generated URL
(e.g. if anchor is passed as foo and the resource URL is
http://example.com/resource/url, the resulting generated URL will
be http://example.com/resource/url#foo).

Note

If anchor is passed as a string, it should be UTF-8 encoded. If
anchor is passed as a Unicode object, it will be converted to
UTF-8 before being appended to the URL.

Changed in version 1.5: The anchor option will be escaped instead of using
its raw string representation.

If both anchor and query are specified, the anchor element
will always follow the query element,
e.g. http://example.com?foo=1#bar.

If any of the keyword arguments scheme, host, or port is
passed and is non-None, the provided value will replace the named
portion in the generated URL. For example, if you pass
host='foo.com', and the URL that would have been generated
without the host replacement is http://example.com/a, the result
will be http://foo.com/a.

If scheme is passed as https, and an explicit port is not
passed, the port value is assumed to have been passed as 443.
Likewise, if scheme is passed as http and port is not
passed, the port value is assumed to have been passed as
80. To avoid this behavior, always explicitly pass port
whenever you pass scheme.

If a keyword argument app_url is passed and is not None, it
should be a string that will be used as the port/hostname/initial
path portion of the generated URL instead of the default request
application URL. For example, if app_url='http://foo', then the
resulting url of a resource that has a path of /baz/bar will be
http://foo/baz/bar. If you want to generate completely relative
URLs with no leading scheme, host, port, or initial path, you can
pass app_url=''. Passing app_url='' when the resource path is
/baz/bar will return /baz/bar.

New in version 1.3: app_url

If app_url is passed and any of scheme, port, or host
are also passed, app_url will take precedence and the values
passed for scheme, host, and/or port will be ignored.

If the resource passed in has a __resource_url__ method, it
will be used to generate the URL (scheme, host, port, path) for the
base resource which is operated upon by this function.

See also

See also Overriding Resource URL Generation.

New in version 1.5: route_name, route_kw, and route_remainder_name

If route_name is passed, this function will delegate its URL
production to the route_url function. Calling
resource_url(someresource, 'element1', 'element2', query={'a':1},
route_name='blogentry') is roughly equivalent to doing:

remainder_path = request.resource_path(someobject)
url = request.route_url(
 'blogentry',
 'element1',
 'element2',
 _query={'a':'1'},
 traverse=traversal_path,
)

It is only sensible to pass route_name if the route being named has
a *remainder stararg value such as *traverse. The remainder
value will be ignored in the output otherwise.

By default, the resource path value will be passed as the name
traverse when route_url is called. You can influence this by
passing a different route_remainder_name value if the route has a
different *stararg value at its end. For example if the route
pattern you want to replace has a *subpath stararg ala
/foo*subpath:

request.resource_url(
 resource,
 route_name='myroute',
 route_remainder_name='subpath'
)

If route_name is passed, it is also permissible to pass
route_kw, which will passed as additional keyword arguments to
route_url. Saying resource_url(someresource, 'element1',
'element2', route_name='blogentry', route_kw={'id':'4'},
_query={'a':'1'}) is roughly equivalent to:

remainder_path = request.resource_path_tuple(someobject)
kw = {'id':'4', '_query':{'a':'1'}, 'traverse':traversal_path}
url = request.route_url(
 'blogentry',
 'element1',
 'element2',
 **kw,
)

If route_kw or route_remainder_name is passed, but
route_name is not passed, both route_kw and
route_remainder_name will be ignored. If route_name
is passed, the __resource_url__ method of the resource passed is
ignored unconditionally. This feature is incompatible with
resources which generate their own URLs.

Note

If the resource used is the result of a traversal, it
must be location-aware. The resource can also be the context
of a URL dispatch; contexts found this way do not need to be
location-aware.

Note

If a 'virtual root path' is present in the request environment (the
value of the WSGI environ key HTTP_X_VHM_ROOT), and the resource
was obtained via traversal, the URL path will not include the
virtual root prefix (it will be stripped off the left hand side of
the generated URL).

Note

For backwards compatibility purposes, this method is also
aliased as the model_url method of request.

	
resource_path(resource, *elements, **kw)

	Generates a path (aka a 'relative URL', a URL minus the host, scheme,
and port) for a resource.

This function accepts the same argument as
pyramid.request.Request.resource_url() and performs the same
duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and
anchor data are present in the returned string.

Note

Calling request.resource_path(resource) is the same as calling
request.resource_path(resource, app_url=request.script_name).
pyramid.request.Request.resource_path() is, in fact,
implemented in terms of
pyramid.request.Request.resource_url() in just this way. As
a result, any app_url passed within the **kw values to
route_path will be ignored. scheme, host, and
port are also ignored.

	
json_body

	This property will return the JSON-decoded variant of the request
body. If the request body is not well-formed JSON, or there is no
body associated with this request, this property will raise an
exception.

See also

See also Dealing with a JSON-Encoded Request Body.

	
set_property(callable, name=None, reify=False)

	Add a callable or a property descriptor to the request instance.

Properties, unlike attributes, are lazily evaluated by executing
an underlying callable when accessed. They can be useful for
adding features to an object without any cost if those features
go unused.

A property may also be reified via the
pyramid.decorator.reify decorator by setting
reify=True, allowing the result of the evaluation to be
cached. Thus the value of the property is only computed once for
the lifetime of the object.

callable can either be a callable that accepts the request as
its single positional parameter, or it can be a property
descriptor.

If the callable is a property descriptor a ValueError
will be raised if name is None or reify is True.

If name is None, the name of the property will be computed
from the name of the callable.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	def _connect(request):
 conn = request.registry.dbsession()
 def cleanup(request):
 # since version 1.5, request.exception is no
 # longer eagerly cleared
 if request.exception is not None:
 conn.rollback()
 else:
 conn.commit()
 conn.close()
 request.add_finished_callback(cleanup)
 return conn

@subscriber(NewRequest)
def new_request(event):
 request = event.request
 request.set_property(_connect, 'db', reify=True)

The subscriber doesn't actually connect to the database, it just
provides the API which, when accessed via request.db, will
create the connection. Thanks to reify, only one connection is
made per-request even if request.db is accessed many times.

This pattern provides a way to augment the request object
without having to subclass it, which can be useful for extension
authors.

New in version 1.3.

	
localizer

	A localizer which will use the current locale name to
translate values.

New in version 1.5.

	
locale_name

	The locale name of the current request as computed by the
locale negotiator.

New in version 1.5.

	
GET

	Return a MultiDict containing all the variables from the
QUERY_STRING.

	
POST

	Return a MultiDict containing all the variables from a form
request. Returns an empty dict-like object for non-form requests.

Form requests are typically POST requests, however PUT & PATCH requests
with an appropriate Content-Type are also supported.

	
accept

	Gets and sets the Accept header (HTTP spec section 14.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1]).

	
accept_charset

	Gets and sets the Accept-Charset header (HTTP spec section 14.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.2]).

	
accept_encoding

	Gets and sets the Accept-Encoding header (HTTP spec section 14.3 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3]).

	
accept_language

	Gets and sets the Accept-Language header (HTTP spec section 14.4 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4]).

	
application_url

	The URL including SCRIPT_NAME (no PATH_INFO or query string)

	
as_bytes(skip_body=False)

	Return HTTP bytes representing this request.
If skip_body is True, exclude the body.
If skip_body is an integer larger than one, skip body
only if its length is bigger than that number.

	
authorization

	Gets and sets the Authorization header (HTTP spec section 14.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8]). Converts it using parse_auth and serialize_auth.

	
blank(path, environ=None, base_url=None, headers=None, POST=None, **kw)

	Create a blank request environ (and Request wrapper) with the
given path (path should be urlencoded), and any keys from
environ.

The path will become path_info, with any query string split
off and used.

All necessary keys will be added to the environ, but the
values you pass in will take precedence. If you pass in
base_url then wsgi.url_scheme, HTTP_HOST, and SCRIPT_NAME will
be filled in from that value.

Any extra keyword will be passed to __init__.

	
body

	Return the content of the request body.

	
body_file

	Input stream of the request (wsgi.input).
Setting this property resets the content_length and seekable flag
(unlike setting req.body_file_raw).

	
body_file_raw

	Gets and sets the wsgi.input key in the environment.

	
body_file_seekable

	Get the body of the request (wsgi.input) as a seekable file-like
object. Middleware and routing applications should use this
attribute over .body_file.

If you access this value, CONTENT_LENGTH will also be updated.

	
cache_control

	Get/set/modify the Cache-Control header (HTTP spec section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

	
call_application(application, catch_exc_info=False)

	Call the given WSGI application, returning (status_string,
headerlist, app_iter)

Be sure to call app_iter.close() if it's there.

If catch_exc_info is true, then returns (status_string,
headerlist, app_iter, exc_info), where the fourth item may
be None, but won't be if there was an exception. If you don't
do this and there was an exception, the exception will be
raised directly.

	
client_addr

	The effective client IP address as a string. If the
HTTP_X_FORWARDED_FOR header exists in the WSGI environ, this
attribute returns the client IP address present in that header
(e.g. if the header value is 192.168.1.1, 192.168.1.2, the value
will be 192.168.1.1). If no HTTP_X_FORWARDED_FOR header is
present in the environ at all, this attribute will return the value
of the REMOTE_ADDR header. If the REMOTE_ADDR header is
unset, this attribute will return the value None.

Warning

It is possible for user agents to put someone else's IP or just
any string in HTTP_X_FORWARDED_FOR as it is a normal HTTP
header. Forward proxies can also provide incorrect values (private
IP addresses etc). You cannot "blindly" trust the result of this
method to provide you with valid data unless you're certain that
HTTP_X_FORWARDED_FOR has the correct values. The WSGI server
must be behind a trusted proxy for this to be true.

	
content_length

	Gets and sets the Content-Length header (HTTP spec section 14.13 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13]). Converts it using int.

	
content_type

	Return the content type, but leaving off any parameters (like
charset, but also things like the type in application/atom+xml;
type=entry)

If you set this property, you can include parameters, or if
you don't include any parameters in the value then existing
parameters will be preserved.

	
cookies

	Return a dictionary of cookies as found in the request.

	
copy()

	Copy the request and environment object.

This only does a shallow copy, except of wsgi.input

	
copy_body()

	Copies the body, in cases where it might be shared with
another request object and that is not desired.

This copies the body in-place, either into a BytesIO object
or a temporary file.

	
copy_get()

	Copies the request and environment object, but turning this request
into a GET along the way. If this was a POST request (or any other
verb) then it becomes GET, and the request body is thrown away.

	
date

	Gets and sets the Date header (HTTP spec section 14.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8]). Converts it using HTTP date.

	
domain

	Returns the domain portion of the host value. Equivalent to:

domain = request.host
if ':' in domain:
 domain = domain.split(':', 1)[0]

This will be equivalent to the domain portion of the HTTP_HOST
value in the environment if it exists, or the SERVER_NAME value in
the environment if it doesn't. For example, if the environment
contains an HTTP_HOST value of foo.example.com:8000,
request.domain will return foo.example.com.

Note that this value cannot be set on the request. To set the host
value use webob.request.Request.host() instead.

	
from_bytes(b)

	Create a request from HTTP bytes data. If the bytes contain
extra data after the request, raise a ValueError.

	
from_file(fp)

	Read a request from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the request, not the end of the
file (unless the request is a POST or PUT and has no
Content-Length, in that case, the entire file is read).

This reads the request as represented by str(req); it may
not read every valid HTTP request properly.

	
get_response(application=None, catch_exc_info=False)

	Like .call_application(application), except returns a
response object with .status, .headers, and .body
attributes.

This will use self.ResponseClass to figure out the class
of the response object to return.

If application is not given, this will send the request to
self.make_default_send_app()

	
headers

	All the request headers as a case-insensitive dictionary-like
object.

	
host

	Host name provided in HTTP_HOST, with fall-back to SERVER_NAME

	
host_port

	The effective server port number as a string. If the HTTP_HOST
header exists in the WSGI environ, this attribute returns the port
number present in that header. If the HTTP_HOST header exists but
contains no explicit port number: if the WSGI url scheme is "https" ,
this attribute returns "443", if the WSGI url scheme is "http", this
attribute returns "80" . If no HTTP_HOST header is present in
the environ at all, this attribute will return the value of the
SERVER_PORT header (which is guaranteed to be present).

	
host_url

	The URL through the host (no path)

	
http_version

	Gets and sets the SERVER_PROTOCOL key in the environment.

	
if_match

	Gets and sets the If-Match header (HTTP spec section 14.24 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24]). Converts it as a Etag.

	
if_modified_since

	Gets and sets the If-Modified-Since header (HTTP spec section 14.25 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25]). Converts it using HTTP date.

	
if_none_match

	Gets and sets the If-None-Match header (HTTP spec section 14.26 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26]). Converts it as a Etag.

	
if_range

	Gets and sets the If-Range header (HTTP spec section 14.27 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27]). Converts it using IfRange object.

	
if_unmodified_since

	Gets and sets the If-Unmodified-Since header (HTTP spec section 14.28 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28]). Converts it using HTTP date.

	
is_body_readable

	webob.is_body_readable is a flag that tells us
that we can read the input stream even though
CONTENT_LENGTH is missing. This allows FakeCGIBody
to work and can be used by servers to support
chunked encoding in requests.
For background see https://bitbucket.org/ianb/webob/issue/6

	
is_body_seekable

	Gets and sets the webob.is_body_seekable key in the environment.

	
is_response(ob)[source]

	Return True if the object passed as ob is a valid
response object, False otherwise.

	
is_xhr

	Is X-Requested-With header present and equal to XMLHttpRequest?

Note: this isn't set by every XMLHttpRequest request, it is
only set if you are using a Javascript library that sets it
(or you set the header yourself manually). Currently
Prototype and jQuery are known to set this header.

	
json

	Access the body of the request as JSON

	
localizer

	Convenience property to return a localizer

	
make_body_seekable()

	This forces environ['wsgi.input'] to be seekable.
That means that, the content is copied into a BytesIO or temporary
file and flagged as seekable, so that it will not be unnecessarily
copied again.

After calling this method the .body_file is always seeked to the
start of file and .content_length is not None.

The choice to copy to BytesIO is made from
self.request_body_tempfile_limit

	
make_tempfile()

	Create a tempfile to store big request body.
This API is not stable yet. A 'size' argument might be added.

	
max_forwards

	Gets and sets the Max-Forwards header (HTTP spec section 14.31 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.31]). Converts it using int.

	
method

	Gets and sets the REQUEST_METHOD key in the environment.

	
params

	A dictionary-like object containing both the parameters from
the query string and request body.

	
path

	The path of the request, without host or query string

	
path_info

	Gets and sets the PATH_INFO key in the environment.

	
path_info_peek()

	Returns the next segment on PATH_INFO, or None if there is no
next segment. Doesn't modify the environment.

	
path_info_pop(pattern=None)

	'Pops' off the next segment of PATH_INFO, pushing it onto
SCRIPT_NAME, and returning the popped segment. Returns None if
there is nothing left on PATH_INFO.

Does not return '' when there's an empty segment (like
/path//path); these segments are just ignored.

Optional pattern argument is a regexp to match the return value
before returning. If there is no match, no changes are made to the
request and None is returned.

	
path_qs

	The path of the request, without host but with query string

	
path_url

	The URL including SCRIPT_NAME and PATH_INFO, but not QUERY_STRING

	
pragma

	Gets and sets the Pragma header (HTTP spec section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32]).

	
query_string

	Gets and sets the QUERY_STRING key in the environment.

	
range

	Gets and sets the Range header (HTTP spec section 14.35 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35]). Converts it using Range object.

	
referer

	Gets and sets the Referer header (HTTP spec section 14.36 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36]).

	
referrer

	Gets and sets the Referer header (HTTP spec section 14.36 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36]).

	
relative_url(other_url, to_application=False)

	Resolve other_url relative to the request URL.

If to_application is True, then resolve it relative to the
URL with only SCRIPT_NAME

	
remote_addr

	Gets and sets the REMOTE_ADDR key in the environment.

	
remote_user

	Gets and sets the REMOTE_USER key in the environment.

	
remove_conditional_headers(remove_encoding=True, remove_range=True, remove_match=True, remove_modified=True)

	Remove headers that make the request conditional.

These headers can cause the response to be 304 Not Modified,
which in some cases you may not want to be possible.

This does not remove headers like If-Match, which are used for
conflict detection.

	
response

	This attribute is actually a "reified" property which returns an
instance of the pyramid.response.Response. class. The
response object returned does not exist until this attribute is
accessed. Subsequent accesses will return the same Response object.

The request.response API is used by renderers. A render obtains
the response object it will return from a view that uses that renderer
by accessing request.response. Therefore, it's possible to use the
request.response API to set up a response object with "the
right" attributes (e.g. by calling request.response.set_cookie())
within a view that uses a renderer. Mutations to this response object
will be preserved in the response sent to the client.

	
scheme

	Gets and sets the wsgi.url_scheme key in the environment.

	
script_name

	Gets and sets the SCRIPT_NAME key in the environment.

	
send(application=None, catch_exc_info=False)

	Like .call_application(application), except returns a
response object with .status, .headers, and .body
attributes.

This will use self.ResponseClass to figure out the class
of the response object to return.

If application is not given, this will send the request to
self.make_default_send_app()

	
server_name

	Gets and sets the SERVER_NAME key in the environment.

	
server_port

	Gets and sets the SERVER_PORT key in the environment. Converts it using int.

	
session

	Obtain the session object associated with this
request. If a session factory has not been registered
during application configuration, a
pyramid.exceptions.ConfigurationError will be raised

	
text

	Get/set the text value of the body

	
upath_info

	Gets and sets the PATH_INFO key in the environment.

	
url

	The full request URL, including QUERY_STRING

	
url_encoding

	Gets and sets the webob.url_encoding key in the environment.

	
urlargs

	Return any positional variables matched in the URL.

Takes values from environ['wsgiorg.routing_args'].
Systems like routes set this value.

	
urlvars

	Return any named variables matched in the URL.

Takes values from environ['wsgiorg.routing_args'].
Systems like routes set this value.

	
uscript_name

	Gets and sets the SCRIPT_NAME key in the environment.

	
user_agent

	Gets and sets the User-Agent header (HTTP spec section 14.43 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.43]).

Note

For information about the API of a multidict structure (such as
that used as request.GET, request.POST, and request.params),
see pyramid.interfaces.IMultiDict.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.response

	
class Response(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, **kw)[source]

	
	
accept_ranges

	Gets and sets the Accept-Ranges header (HTTP spec section 14.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5]).

	
age

	Gets and sets the Age header (HTTP spec section 14.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.6]). Converts it using int.

	
allow

	Gets and sets the Allow header (HTTP spec section 14.7 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.7]). Converts it using list.

	
app_iter

	Returns the app_iter of the response.

If body was set, this will create an app_iter from that body
(a single-item list)

	
app_iter_range(start, stop)[source]

	Return a new app_iter built from the response app_iter, that
serves up only the given start:stop range.

	
body

	The body of the response, as a str. This will read in the
entire app_iter if necessary.

	
body_file

	A file-like object that can be used to write to the
body. If you passed in a list app_iter, that app_iter will be
modified by writes.

	
cache_control

	Get/set/modify the Cache-Control header (HTTP spec section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

	
charset

	Get/set the charset (in the Content-Type)

	
conditional_response_app(environ, start_response)[source]

	Like the normal __call__ interface, but checks conditional headers:

	If-Modified-Since (304 Not Modified; only on GET, HEAD)

	If-None-Match (304 Not Modified; only on GET, HEAD)

	Range (406 Partial Content; only on GET, HEAD)

	
content_disposition

	Gets and sets the Content-Disposition header (HTTP spec section 19.5.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1]).

	
content_encoding

	Gets and sets the Content-Encoding header (HTTP spec section 14.11 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11]).

	
content_language

	Gets and sets the Content-Language header (HTTP spec section 14.12 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.12]). Converts it using list.

	
content_length

	Gets and sets the Content-Length header (HTTP spec section 14.17 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]). Converts it using int.

	
content_location

	Gets and sets the Content-Location header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

	
content_md5

	Gets and sets the Content-MD5 header (HTTP spec section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14]).

	
content_range

	Gets and sets the Content-Range header (HTTP spec section 14.16 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.16]). Converts it using ContentRange object.

	
content_type

	Get/set the Content-Type header (or None), without the
charset or any parameters.

If you include parameters (or ; at all) when setting the
content_type, any existing parameters will be deleted;
otherwise they will be preserved.

	
content_type_params

	A dictionary of all the parameters in the content type.

(This is not a view, set to change, modifications of the dict would not
be applied otherwise)

	
copy()[source]

	Makes a copy of the response

	
date

	Gets and sets the Date header (HTTP spec section 14.18 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18]). Converts it using HTTP date.

	
delete_cookie(name, path='/', domain=None)[source]

	Delete a cookie from the client. Note that path and domain must match
how the cookie was originally set.

This sets the cookie to the empty string, and max_age=0 so
that it should expire immediately.

	
encode_content(encoding='gzip', lazy=False)[source]

	Encode the content with the given encoding (only gzip and
identity are supported).

	
etag

	Gets and sets the ETag header (HTTP spec section 14.19 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19]). Converts it using Entity tag.

	
expires

	Gets and sets the Expires header (HTTP spec section 14.21 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21]). Converts it using HTTP date.

	
from_file(fp)[source]

	Reads a response from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the response, not the end of the
file.

This reads the response as represented by str(resp); it
may not read every valid HTTP response properly. Responses
must have a Content-Length

	
headerlist

	The list of response headers

	
headers

	The headers in a dictionary-like object

	
json

	Access the body of the response as JSON

	
json_body

	Access the body of the response as JSON

	
last_modified

	Gets and sets the Last-Modified header (HTTP spec section 14.29 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29]). Converts it using HTTP date.

	
location

	Gets and sets the Location header (HTTP spec section 14.30 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30]).

	
md5_etag(body=None, set_content_md5=False)[source]

	Generate an etag for the response object using an MD5 hash of
the body (the body parameter, or self.body if not given)

Sets self.etag
If set_content_md5 is True sets self.content_md5 as well

	
merge_cookies(resp)[source]

	Merge the cookies that were set on this response with the
given resp object (which can be any WSGI application).

If the resp is a webob.Response [http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Response] object, then the
other object will be modified in-place.

	
pragma

	Gets and sets the Pragma header (HTTP spec section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32]).

	
retry_after

	Gets and sets the Retry-After header (HTTP spec section 14.37 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37]). Converts it using HTTP date or delta seconds.

	
server

	Gets and sets the Server header (HTTP spec section 14.38 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.38]).

	
set_cookie(name=None, value='', max_age=None, path='/', domain=None, secure=False, httponly=False, comment=None, expires=None, overwrite=False, key=None)[source]

	Set (add) a cookie for the response.

Arguments are:

name

The cookie name.

value

The cookie value, which should be a string or None. If
value is None, it's equivalent to calling the
webob.response.Response.unset_cookie() [http://docs.webob.org/en/latest/api/response.html#webob.response.Response.unset_cookie] method for this
cookie key (it effectively deletes the cookie on the client).

max_age

An integer representing a number of seconds, datetime.timedelta,
or None. This value is used as the Max-Age of the generated
cookie. If expires is not passed and this value is not
None, the max_age value will also influence the Expires
value of the cookie (Expires will be set to now + max_age). If
this value is None, the cookie will not have a Max-Age value
(unless expires is set). If both max_age and expires are
set, this value takes precedence.

path

A string representing the cookie Path value. It defaults to
/.

domain

A string representing the cookie Domain, or None. If
domain is None, no Domain value will be sent in the
cookie.

secure

A boolean. If it's True, the secure flag will be sent in
the cookie, if it's False, the secure flag will not be
sent in the cookie.

httponly

A boolean. If it's True, the HttpOnly flag will be sent
in the cookie, if it's False, the HttpOnly flag will not
be sent in the cookie.

comment

A string representing the cookie Comment value, or None.
If comment is None, no Comment value will be sent in
the cookie.

expires

A datetime.timedelta object representing an amount of time,
datetime.datetime or None. A non-None value is used to
generate the Expires value of the generated cookie. If
max_age is not passed, but this value is not None, it will
influence the Max-Age header. If this value is None, the
Expires cookie value will be unset (unless max_age is set).
If max_age is set, it will be used to generate the expires
and this value is ignored.

overwrite

If this key is True, before setting the cookie, unset any
existing cookie.

	
status

	The status string

	
status_code

	The status as an integer

	
status_int

	The status as an integer

	
text

	Get/set the text value of the body (using the charset of the
Content-Type)

	
ubody

	Deprecated alias for .text

	
unicode_body

	Deprecated alias for .text

	
unset_cookie(name, strict=True)[source]

	Unset a cookie with the given name (remove it from the
response).

	
vary

	Gets and sets the Vary header (HTTP spec section 14.44 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44]). Converts it using list.

	
www_authenticate

	Gets and sets the WWW-Authenticate header (HTTP spec section 14.47 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.47]). Converts it using parse_auth and serialize_auth.

	
class FileResponse(path, request=None, cache_max_age=None, content_type=None, content_encoding=None)[source]

	A Response object that can be used to serve a static file from disk
simply.

path is a file path on disk.

request must be a Pyramid request object. Note
that a request must be passed if the response is meant to attempt to
use the wsgi.file_wrapper feature of the web server that you're using
to serve your Pyramid application.

cache_max_age is the number of seconds that should be used
to HTTP cache this response.

content_type is the content_type of the response.

content_encoding is the content_encoding of the response.
It's generally safe to leave this set to None if you're serving a
binary file. This argument will be ignored if you also leave
content-type as None.

	
class FileIter(file, block_size=262144)[source]

	A fixed-block-size iterator for use as a WSGI app_iter.

file is a Python file pointer (or at least an object with a read
method that takes a size hint).

block_size is an optional block size for iteration.

Functions

	
response_adapter(*types_or_ifaces)[source]

	Decorator activated via a scan which treats the function
being decorated as a response adapter for the set of types or
interfaces passed as *types_or_ifaces to the decorator constructor.

For example, if you scan the following response adapter:

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(int)
def myadapter(i):
 return Response(status=i)

You can then return an integer from your view callables, and it will be
converted into a response with the integer as the status code.

More than one type or interface can be passed as a constructor argument.
The decorated response adapter will be called for each type or interface.

import json

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(dict, list)
def myadapter(ob):
 return Response(json.dumps(ob))

This method will have no effect until a scan is performed
agains the package or module which contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan('somepackage_containing_adapters')

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.scaffolds

	
class Template(name)[source]

	Inherit from this base class and override methods to use the Pyramid
scaffolding system.

	
post(command, output_dir, vars)[source]

	Called after template is applied.

	
pre(command, output_dir, vars)[source]

	Called before template is applied.

	
render_template(content, vars, filename=None)[source]

	Return a bytestring representing a templated file based on the
input (content) and the variable names defined (vars). filename
is used for exception reporting.

	
template_dir()[source]

	Return the template directory of the scaffold. By default, it
returns the value of os.path.join(self.module_dir(),
self._template_dir) (self.module_dir() returns the module in
which your subclass has been defined). If self._template_dir is
a tuple this method just returns the value instead of trying to
construct a path. If _template_dir is a tuple, it should be a
2-element tuple: (package_name, package_relative_path).

	
class PyramidTemplate(name)[source]

	A class that can be used as a base class for Pyramid scaffolding
templates.

	
post(command, output_dir, vars)[source]

	Overrides pyramid.scaffolds.template.Template.post(), to
print "Welcome to Pyramid. Sorry for the convenience." after a
successful scaffolding rendering.

	
pre(command, output_dir, vars)[source]

	Overrides pyramid.scaffolds.template.Template.pre(), adding
several variables to the default variables list (including
random_string, and package_logger). It also prevents common
misnamings (such as naming a package "site" or naming a package
logger "root".

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.scripting

	
get_root(app, request=None)[source]

	Return a tuple composed of (root, closer) when provided a
router instance as the app argument. The root
returned is the application root object. The closer returned
is a callable (accepting no arguments) that should be called when
your scripting application is finished using the root.

request is passed to the Pyramid application root
factory to compute the root. If request is None, a default
will be constructed using the registry's Request Factory
via the pyramid.interfaces.IRequestFactory.blank() method.

	
prepare(request=None, registry=None)[source]

	This function pushes data onto the Pyramid threadlocal stack
(request and registry), making those objects 'current'. It
returns a dictionary useful for bootstrapping a Pyramid
application in a scripting environment.

request is passed to the Pyramid application root
factory to compute the root. If request is None, a default
will be constructed using the registry's Request Factory
via the pyramid.interfaces.IRequestFactory.blank() method.

If registry is not supplied, the last registry loaded from
pyramid.config.global_registries will be used. If you
have loaded more than one Pyramid application in the
current process, you may not want to use the last registry
loaded, thus you can search the global_registries and supply
the appropriate one based on your own criteria.

The function returns a dictionary composed of root,
closer, registry, request and root_factory. The
root returned is the application's root resource object. The
closer returned is a callable (accepting no arguments) that
should be called when your scripting application is finished
using the root. registry is the registry object passed or
the last registry loaded into
pyramid.config.global_registries if no registry is passed.
request is the request object passed or the constructed request
if no request is passed. root_factory is the root factory used
to construct the root.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.security

Authentication API Functions

	
authenticated_userid(request)[source]

	A function that returns the value of the property
pyramid.request.Request.authenticated_userid.

Deprecated since version 1.5: Use pyramid.request.Request.authenticated_userid instead.

	
unauthenticated_userid(request)[source]

	A function that returns the value of the property
pyramid.request.Request.unauthenticated_userid.

Deprecated since version 1.5: Use pyramid.request.Request.unauthenticated_userid instead.

	
effective_principals(request)[source]

	A function that returns the value of the property
pyramid.request.Request.effective_principals.

Deprecated since version 1.5: Use pyramid.request.Request.effective_principals instead.

	
forget(request)[source]

	Return a sequence of header tuples (e.g. [('Set-Cookie',
'foo=abc')]) suitable for 'forgetting' the set of credentials
possessed by the currently authenticated user. A common usage
might look like so within the body of a view function
(response is assumed to be an WebOb -style
response object computed previously by the view code):

from pyramid.security import forget
headers = forget(request)
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will
always return an empty sequence.

	
remember(request, principal, **kw)[source]

	Returns a sequence of header tuples (e.g. [('Set-Cookie', 'foo=abc')])
on this request's response.
These headers are suitable for 'remembering' a set of credentials
implied by the data passed as principal and *kw using the
current authentication policy. Common usage might look
like so within the body of a view function (response is
assumed to be a WebOb -style response object
computed previously by the view code):

from pyramid.security import remember
headers = remember(request, 'chrism', password='123', max_age='86400')
response = request.response
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will
always return an empty sequence. If used, the composition and
meaning of **kw must be agreed upon by the calling code and
the effective authentication policy.

Authorization API Functions

	
has_permission(permission, context, request)[source]

	A function that calls pyramid.request.Request.has_permission()
and returns its result.

Deprecated since version 1.5: Use pyramid.request.Request.has_permission() instead.

Changed in version 1.5a3: If context is None, then attempt to use the context attribute of self;
if not set, then the AttributeError is propagated.

	
principals_allowed_by_permission(context, permission)[source]

	Provided a context (a resource object), and a permission
(a string or unicode object), if a authorization policy is
in effect, return a sequence of principal ids that possess
the permission in the context. If no authorization policy is
in effect, this will return a sequence with the single value
pyramid.security.Everyone (the special principal
identifier representing all principals).

Note

even if an authorization policy is in effect,
some (exotic) authorization policies may not implement the
required machinery for this function; those will cause a
NotImplementedError [http://docs.python.org/3/library/exceptions.html#NotImplementedError] exception to be raised when this
function is invoked.

	
view_execution_permitted(context, request, name='')[source]

	If the view specified by context and name is protected
by a permission, check the permission associated with the
view using the effective authentication/authorization policies and
the request. Return a boolean result. If no
authorization policy is in effect, or if the view is not
protected by a permission, return True. If no view can view found,
an exception will be raised.

Changed in version 1.4a4: An exception is raised if no view is found.

Constants

	
Everyone

	The special principal id named 'Everyone'. This principal id is
granted to all requests. Its actual value is the string
'system.Everyone'.

	
Authenticated

	The special principal id named 'Authenticated'. This principal id
is granted to all requests which contain any other non-Everyone
principal id (according to the authentication policy).
Its actual value is the string 'system.Authenticated'.

	
ALL_PERMISSIONS

	An object that can be used as the permission member of an ACE
which matches all permissions unconditionally. For example, an
ACE that uses ALL_PERMISSIONS might be composed like so:
('Deny', 'system.Everyone', ALL_PERMISSIONS).

	
DENY_ALL

	A convenience shorthand ACE that defines ('Deny',
'system.Everyone', ALL_PERMISSIONS). This is often used as the
last ACE in an ACL in systems that use an "inheriting" security
policy, representing the concept "don't inherit any other ACEs".

	
NO_PERMISSION_REQUIRED

	A special permission which indicates that the view should always
be executable by entirely anonymous users, regardless of the
default permission, bypassing any authorization policy
that may be in effect. Its actual value is the string
'__no_permission_required__'.

Return Values

	
Allow

	The ACE "action" (the first element in an ACE e.g. (Allow, Everyone,
'read') that means allow access. A sequence of ACEs makes up an
ACL. It is a string, and its actual value is "Allow".

	
Deny

	The ACE "action" (the first element in an ACE e.g. (Deny,
'george', 'read') that means deny access. A sequence of ACEs
makes up an ACL. It is a string, and its actual value is "Deny".

	
class ACLDenied[source]

	An instance of ACLDenied represents that a security check made
explicitly against ACL was denied. It evaluates equal to all boolean
false types. It also has the following attributes: acl, ace,
permission, principals, and context. These attributes
indicate the security values involved in the request. Its __str__ method
prints a summary of these attributes for debugging purposes. The same
summary is available as the msg attribute.

	
class ACLAllowed[source]

	An instance of ACLAllowed represents that a security check made
explicitly against ACL was allowed. It evaluates equal to all boolean
true types. It also has the following attributes: acl, ace,
permission, principals, and context. These attributes
indicate the security values involved in the request. Its __str__ method
prints a summary of these attributes for debugging purposes. The same
summary is available as the msg attribute.

	
class Denied[source]

	An instance of Denied is returned when a security-related
API or other Pyramid code denies an action unrelated to
an ACL check. It evaluates equal to all boolean false types. It
has an attribute named msg describing the circumstances for
the deny.

	
class Allowed[source]

	An instance of Allowed is returned when a security-related
API or other Pyramid code allows an action unrelated to
an ACL check. It evaluates equal to all boolean true types. It
has an attribute named msg describing the circumstances for
the allow.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.session

	
signed_serialize(data, secret)[source]

	Serialize any pickleable structure (data) and sign it
using the secret (must be a string). Return the
serialization, which includes the signature as its first 40 bytes.
The signed_deserialize method will deserialize such a value.

This function is useful for creating signed cookies. For example:

cookieval = signed_serialize({'a':1}, 'secret')
response.set_cookie('signed_cookie', cookieval)

	
signed_deserialize(serialized, secret, hmac=<module 'hmac' from '/home/docs/checkouts/readthedocs.org/user_builds/pyramid/envs/1.5-branch/lib/python3.4/hmac.py'>)[source]

	Deserialize the value returned from signed_serialize. If
the value cannot be deserialized for any reason, a
ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] exception will be raised.

This function is useful for deserializing a signed cookie value
created by signed_serialize. For example:

cookieval = request.cookies['signed_cookie']
data = signed_deserialize(cookieval, 'secret')

	
check_csrf_token(request, token='csrf_token', header='X-CSRF-Token', raises=True)[source]

	Check the CSRF token in the request's session against the value in
request.params.get(token) or request.headers.get(header).
If a token keyword is not supplied to this function, the string
csrf_token will be used to look up the token in request.params.
If a header keyword is not supplied to this function, the string
X-CSRF-Token will be used to look up the token in request.headers.

If the value supplied by param or by header doesn't match the value
supplied by request.session.get_csrf_token(), and raises is
True, this function will raise an
pyramid.exceptions.BadCSRFToken exception.
If the check does succeed and raises is False, this
function will return False. If the CSRF check is successful, this
function will return True unconditionally.

Note that using this function requires that a session factory is
configured.

New in version 1.4a2.

	
SignedCookieSessionFactory(secret, cookie_name='session', max_age=None, path='/', domain=None, secure=False, httponly=False, set_on_exception=True, timeout=1200, reissue_time=0, hashalg='sha512', salt='pyramid.session.', serializer=None)[source]

	
New in version 1.5.

Configure a session factory which will provide signed
cookie-based sessions. The return value of this
function is a session factory, which may be provided as
the session_factory argument of a
pyramid.config.Configurator constructor, or used
as the session_factory argument of the
pyramid.config.Configurator.set_session_factory()
method.

The session factory returned by this function will create sessions
which are limited to storing fewer than 4000 bytes of data (as the
payload must fit into a single cookie).

Parameters:

	secret

	A string which is used to sign the cookie. The secret should be at
least as long as the block size of the selected hash algorithm. For
sha512 this would mean a 128 bit (64 character) secret. It should
be unique within the set of secret values provided to Pyramid for
its various subsystems (see Admonishment Against Secret-Sharing).

	hashalg

	The HMAC digest algorithm to use for signing. The algorithm must be
supported by the hashlib [http://docs.python.org/3/library/hashlib.html#module-hashlib] library. Default: 'sha512'.

	salt

	A namespace to avoid collisions between different uses of a shared
secret. Reusing a secret for different parts of an application is
strongly discouraged (see Admonishment Against Secret-Sharing).
Default: 'pyramid.session.'.

	cookie_name

	The name of the cookie used for sessioning. Default: 'session'.

	max_age

	The maximum age of the cookie used for sessioning (in seconds).
Default: None (browser scope).

	path

	The path used for the session cookie. Default: '/'.

	domain

	The domain used for the session cookie. Default: None (no domain).

	secure

	The 'secure' flag of the session cookie. Default: False.

	httponly

	Hide the cookie from Javascript by setting the 'HttpOnly' flag of the
session cookie. Default: False.

	timeout

	A number of seconds of inactivity before a session times out. If
None then the cookie never expires. This lifetime only applies
to the value within the cookie. Meaning that if the cookie expires
due to a lower max_age, then this setting has no effect.
Default: 1200.

	reissue_time

	The number of seconds that must pass before the cookie is automatically
reissued as the result of accessing the session. The
duration is measured as the number of seconds since the last session
cookie was issued and 'now'. If this value is 0, a new cookie
will be reissued on every request accessing the session. If None
then the cookie's lifetime will never be extended.

A good rule of thumb: if you want auto-expired cookies based on
inactivity: set the timeout value to 1200 (20 mins) and set the
reissue_time value to perhaps a tenth of the timeout value
(120 or 2 mins). It's nonsensical to set the timeout value lower
than the reissue_time value, as the ticket will never be reissued.
However, such a configuration is not explicitly prevented.

Default: 0.

	set_on_exception

	If True, set a session cookie even if an exception occurs
while rendering a view. Default: True.

	serializer

	An object with two methods: loads and dumps. The loads
method should accept bytes and return a Python object. The dumps
method should accept a Python object and return bytes. A ValueError
should be raised for malformed inputs. If a serializer is not passed,
the pyramid.session.PickleSerializer serializer will be used.

	
UnencryptedCookieSessionFactoryConfig(secret, timeout=1200, cookie_name='session', cookie_max_age=None, cookie_path='/', cookie_domain=None, cookie_secure=False, cookie_httponly=False, cookie_on_exception=True, signed_serialize=<function signed_serialize>, signed_deserialize=<function signed_deserialize>)[source]

	
Deprecated since version 1.5: Use pyramid.session.SignedCookieSessionFactory() instead.
Caveat: Cookies generated using SignedCookieSessionFactory are not
compatible with cookies generated using
UnencryptedCookieSessionFactory, so existing user session data
will be destroyed if you switch to it.

Configure a session factory which will provide unencrypted
(but signed) cookie-based sessions. The return value of this
function is a session factory, which may be provided as
the session_factory argument of a
pyramid.config.Configurator constructor, or used
as the session_factory argument of the
pyramid.config.Configurator.set_session_factory()
method.

The session factory returned by this function will create sessions
which are limited to storing fewer than 4000 bytes of data (as the
payload must fit into a single cookie).

Parameters:

	secret

	A string which is used to sign the cookie.

	timeout

	A number of seconds of inactivity before a session times out.

	cookie_name

	The name of the cookie used for sessioning.

	cookie_max_age

	The maximum age of the cookie used for sessioning (in seconds).
Default: None (browser scope).

	cookie_path

	The path used for the session cookie.

	cookie_domain

	The domain used for the session cookie. Default: None (no domain).

	cookie_secure

	The 'secure' flag of the session cookie.

	cookie_httponly

	The 'httpOnly' flag of the session cookie.

	cookie_on_exception

	If True, set a session cookie even if an exception occurs
while rendering a view.

	signed_serialize

	A callable which takes more or less arbitrary Python data structure and
a secret and returns a signed serialization in bytes.
Default: signed_serialize (using pickle).

	signed_deserialize

	A callable which takes a signed and serialized data structure in bytes
and a secret and returns the original data structure if the signature
is valid. Default: signed_deserialize (using pickle).

	
BaseCookieSessionFactory(serializer, cookie_name='session', max_age=None, path='/', domain=None, secure=False, httponly=False, timeout=1200, reissue_time=0, set_on_exception=True)[source]

	
New in version 1.5.

Configure a session factory which will provide cookie-based
sessions. The return value of this function is a session factory,
which may be provided as the session_factory argument of a
pyramid.config.Configurator constructor, or used as the
session_factory argument of the
pyramid.config.Configurator.set_session_factory() method.

The session factory returned by this function will create sessions
which are limited to storing fewer than 4000 bytes of data (as the
payload must fit into a single cookie).

Parameters:

	serializer

	An object with two methods: loads and dumps. The loads
method should accept bytes and return a Python object. The dumps
method should accept a Python object and return bytes. A ValueError
should be raised for malformed inputs.

	cookie_name

	The name of the cookie used for sessioning. Default: 'session'.

	max_age

	The maximum age of the cookie used for sessioning (in seconds).
Default: None (browser scope).

	path

	The path used for the session cookie. Default: '/'.

	domain

	The domain used for the session cookie. Default: None (no domain).

	secure

	The 'secure' flag of the session cookie. Default: False.

	httponly

	Hide the cookie from Javascript by setting the 'HttpOnly' flag of the
session cookie. Default: False.

	timeout

	A number of seconds of inactivity before a session times out. If
None then the cookie never expires. This lifetime only applies
to the value within the cookie. Meaning that if the cookie expires
due to a lower max_age, then this setting has no effect.
Default: 1200.

	reissue_time

	The number of seconds that must pass before the cookie is automatically
reissued as the result of a request which accesses the session. The
duration is measured as the number of seconds since the last session
cookie was issued and 'now'. If this value is 0, a new cookie
will be reissued on every request accessing the session. If None
then the cookie's lifetime will never be extended.

A good rule of thumb: if you want auto-expired cookies based on
inactivity: set the timeout value to 1200 (20 mins) and set the
reissue_time value to perhaps a tenth of the timeout value
(120 or 2 mins). It's nonsensical to set the timeout value lower
than the reissue_time value, as the ticket will never be reissued.
However, such a configuration is not explicitly prevented.

Default: 0.

	set_on_exception

	If True, set a session cookie even if an exception occurs
while rendering a view. Default: True.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.settings

	
asbool(s)[source]

	Return the boolean value True if the case-lowered value of string
input s is any of t, true, y, on, or 1, otherwise
return the boolean value False. If s is the value None,
return False. If s is already one of the boolean values True
or False, return it.

	
aslist(value, flatten=True)[source]

	Return a list of strings, separating the input based on newlines
and, if flatten=True (the default), also split on spaces within
each line.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.static

	
class static_view(root_dir, cache_max_age=3600, package_name=None, use_subpath=False, index='index.html')[source]

	An instance of this class is a callable which can act as a
Pyramid view callable; this view will serve
static files from a directory on disk based on the root_dir
you provide to its constructor.

The directory may contain subdirectories (recursively); the static
view implementation will descend into these directories as
necessary based on the components of the URL in order to resolve a
path into a response.

You may pass an absolute or relative filesystem path or a
asset specification representing the directory
containing static files as the root_dir argument to this
class' constructor.

If the root_dir path is relative, and the package_name
argument is None, root_dir will be considered relative to
the directory in which the Python file which calls static
resides. If the package_name name argument is provided, and a
relative root_dir is provided, the root_dir will be
considered relative to the Python package specified by
package_name (a dotted path to a Python package).

cache_max_age influences the Expires and Max-Age
response headers returned by the view (default is 3600 seconds or
one hour).

use_subpath influences whether request.subpath will be used as
PATH_INFO when calling the underlying WSGI application which actually
serves the static files. If it is True, the static application will
consider request.subpath as PATH_INFO input. If it is False,
the static application will consider request.environ[PATH_INFO] as
PATH_INFO input. By default, this is False.

Note

If the root_dir is relative to a package, or is a
asset specification the Pyramid
pyramid.config.Configurator method can be used to override
assets within the named root_dir package-relative directory.
However, if the root_dir is absolute, configuration will not be able
to override the assets it contains.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.testing

	
setUp(registry=None, request=None, hook_zca=True, autocommit=True, settings=None, package=None)[source]

	Set Pyramid registry and request thread locals for the
duration of a single unit test.

Use this function in the setUp method of a unittest test case
which directly or indirectly uses:

	any method of the pyramid.config.Configurator
object returned by this function.

	the pyramid.threadlocal.get_current_registry() or
pyramid.threadlocal.get_current_request() functions.

If you use the get_current_* functions (or call Pyramid code
that uses these functions) without calling setUp,
pyramid.threadlocal.get_current_registry() will return a global
application registry, which may cause unit tests to not be
isolated with respect to registrations they perform.

If the registry argument is None, a new empty
application registry will be created (an instance of the
pyramid.registry.Registry class). If the registry
argument is not None, the value passed in should be an
instance of the pyramid.registry.Registry class or a
suitable testing analogue.

After setUp is finished, the registry returned by the
pyramid.threadlocal.get_current_registry() function will
be the passed (or constructed) registry until
pyramid.testing.tearDown() is called (or
pyramid.testing.setUp() is called again) .

If the hook_zca argument is True, setUp will attempt
to perform the operation zope.component.getSiteManager.sethook(
pyramid.threadlocal.get_current_registry), which will cause
the Zope Component Architecture global API
(e.g. zope.component.getSiteManager() [http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager],
zope.component.getAdapter() [http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter], and so on) to use the registry
constructed by setUp as the value it returns from
zope.component.getSiteManager() [http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager]. If the
zope.component package cannot be imported, or if
hook_zca is False, the hook will not be set.

If settings is not None, it must be a dictionary representing the
values passed to a Configurator as its settings= argument.

If package is None it will be set to the caller's package. The
package setting in the pyramid.config.Configurator will
affect any relative imports made via
pyramid.config.Configurator.include() or
pyramid.config.Configurator.maybe_dotted().

This function returns an instance of the
pyramid.config.Configurator class, which can be
used for further configuration to set up an environment suitable
for a unit or integration test. The registry attribute
attached to the Configurator instance represents the 'current'
application registry; the same registry will be returned
by pyramid.threadlocal.get_current_registry() during the
execution of the test.

	
tearDown(unhook_zca=True)[source]

	Undo the effects of pyramid.testing.setUp(). Use this
function in the tearDown method of a unit test that uses
pyramid.testing.setUp() in its setUp method.

If the unhook_zca argument is True (the default), call
zope.component.getSiteManager.reset(). This undoes the
action of pyramid.testing.setUp() when called with the
argument hook_zca=True. If zope.component cannot be
imported, unhook_zca is set to False.

	
testConfig(registry=None, request=None, hook_zca=True, autocommit=True, settings=None)[source]

	Returns a context manager for test set up.

This context manager calls pyramid.testing.setUp() when
entering and pyramid.testing.tearDown() when exiting.

All arguments are passed directly to pyramid.testing.setUp().
If the ZCA is hooked, it will always be un-hooked in tearDown.

This context manager allows you to write test code like this:

	1
2
3
4

	with testConfig() as config:
 config.add_route('bar', '/bar/{id}')
 req = DummyRequest()
 resp = myview(req),

	
cleanUp(*arg, **kw)[source]

	An alias for pyramid.testing.setUp().

	
class DummyResource(__name__=None, __parent__=None, __provides__=None, **kw)[source]

	A dummy Pyramid resource object.

	
clone(__name__=<object object>, __parent__=<object object>, **kw)[source]

	Create a clone of the resource object. If __name__ or
__parent__ arguments are passed, use these values to
override the existing __name__ or __parent__ of the
resource. If any extra keyword args are passed in via the kw
argument, use these keywords to add to or override existing
resource keywords (attributes).

	
items()[source]

	Return the items set by __setitem__

	
keys()[source]

	Return the keys set by __setitem__

	
values()[source]

	Return the values set by __setitem__

	
class DummyRequest(params=None, environ=None, headers=None, path='/', cookies=None, post=None, **kw)[source]

	A DummyRequest object (incompletely) imitates a request object.

The params, environ, headers, path, and
cookies arguments correspond to their WebOb
equivalents.

The post argument, if passed, populates the request's
POST attribute, but not params, in order to allow testing
that the app accepts data for a given view only from POST requests.
This argument also sets self.method to "POST".

Extra keyword arguments are assigned as attributes of the request
itself.

Note that DummyRequest does not have complete fidelity with a "real"
request. For example, by default, the DummyRequest GET and POST
attributes are of type dict, unlike a normal Request's GET and POST,
which are of type MultiDict. If your code uses the features of
MultiDict, you should either use a real pyramid.request.Request
or adapt your DummyRequest by replacing the attributes with MultiDict
instances.

Other similar incompatibilities exist. If you need all the features of
a Request, use the pyramid.request.Request class itself rather
than this class while writing tests.

	
class DummyTemplateRenderer(string_response='')[source]

	An instance of this class is returned from
pyramid.config.Configurator.testing_add_renderer(). It has a
helper function (assert_) that makes it possible to make an
assertion which compares data passed to the renderer by the view
function against expected key/value pairs.

	
assert_(**kw)[source]

	Accept an arbitrary set of assertion key/value pairs. For
each assertion key/value pair assert that the renderer
(eg. pyramid.renderers.render_to_response())
received the key with a value that equals the asserted
value. If the renderer did not receive the key at all, or the
value received by the renderer doesn't match the assertion
value, raise an AssertionError [http://docs.python.org/3/library/exceptions.html#AssertionError].

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.threadlocal

	
get_current_request()[source]

	Return the currently active request or None if no request
is currently active.

This function should be used extremely sparingly, usually only
in unit testing code. It's almost always usually a mistake to use
get_current_request outside a testing context because its
usage makes it possible to write code that can be neither easily
tested nor scripted.

	
get_current_registry()[source]

	Return the currently active application registry or the
global application registry if no request is currently active.

This function should be used extremely sparingly, usually only
in unit testing code. It's almost always usually a mistake to use
get_current_registry outside a testing context because its
usage makes it possible to write code that can be neither easily
tested nor scripted.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.traversal

	
find_interface(resource, class_or_interface)[source]

	Return the first resource found in the lineage of resource
which, a) if class_or_interface is a Python class object, is an
instance of the class or any subclass of that class or b) if
class_or_interface is a interface, provides the specified
interface. Return None if no resource providing interface_or_class
can be found in the lineage. The resource passed in must be
location-aware.

	
find_resource(resource, path)[source]

	Given a resource object and a string or tuple representing a path
(such as the return value of pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple()), return a resource in this
application's resource tree at the specified path. The resource passed
in must be location-aware. If the path cannot be resolved (if
the respective node in the resource tree does not exist), a
KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] will be raised.

This function is the logical inverse of
pyramid.traversal.resource_path() and
pyramid.traversal.resource_path_tuple(); it can resolve any
path string or tuple generated by either of those functions.

Rules for passing a string as the path argument: if the
first character in the path string is the /
character, the path is considered absolute and the resource tree
traversal will start at the root resource. If the first character
of the path string is not the / character, the path is
considered relative and resource tree traversal will begin at the resource
object supplied to the function as the resource argument. If an
empty string is passed as path, the resource passed in will
be returned. Resource path strings must be escaped in the following
manner: each Unicode path segment must be encoded as UTF-8 and as
each path segment must escaped via Python's urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a (absolute) or
to%20the/La%20Pe%C3%B1a (relative). The
pyramid.traversal.resource_path() function generates strings
which follow these rules (albeit only absolute ones).

Rules for passing text (Unicode) as the path argument are the same
as those for a string. In particular, the text may not have any nonascii
characters in it.

Rules for passing a tuple as the path argument: if the first
element in the path tuple is the empty string (for example ('',
'a', 'b', 'c'), the path is considered absolute and the resource tree
traversal will start at the resource tree root object. If the first
element in the path tuple is not the empty string (for example
('a', 'b', 'c')), the path is considered relative and resource tree
traversal will begin at the resource object supplied to the function
as the resource argument. If an empty sequence is passed as
path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within
the tuple is required (each segment may be any string or unicode
object representing a resource name). Resource path tuples generated by
pyramid.traversal.resource_path_tuple() can always be
resolved by find_resource.

Note

For backwards compatibility purposes, this function can also
be imported as pyramid.traversal.find_model(), although doing so
will emit a deprecation warning.

	
find_root(resource)[source]

	Find the root node in the resource tree to which resource
belongs. Note that resource should be location-aware.
Note that the root resource is available in the request object by
accessing the request.root attribute.

	
resource_path(resource, *elements)[source]

	Return a string object representing the absolute physical path of the
resource object based on its position in the resource tree, e.g
/foo/bar. Any positional arguments passed in as elements will be
appended as path segments to the end of the resource path. For instance,
if the resource's path is /foo/bar and elements equals ('a',
'b'), the returned string will be /foo/bar/a/b. The first
character in the string will always be the / character (a leading
/ character in a path string represents that the path is absolute).

Resource path strings returned will be escaped in the following
manner: each unicode path segment will be encoded as UTF-8 and
each path segment will be escaped via Python's urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a.

This function is a logical inverse of
pyramid.traversal.find_resource: it can be used to generate
path references that can later be resolved via that function.

The resource passed in must be location-aware.

Note

Each segment in the path string returned will use the __name__
attribute of the resource it represents within the resource tree. Each
of these segments should be a unicode or string object (as per the
contract of location-awareness). However, no conversion or
safety checking of resource names is performed. For instance, if one of
the resources in your tree has a __name__ which (by error) is a
dictionary, the pyramid.traversal.resource_path() function will
attempt to append it to a string and it will cause a
pyramid.exceptions.URLDecodeError.

Note

The root resource must have a __name__ attribute with a
value of either None or the empty string for paths to be generated
properly. If the root resource has a non-null __name__ attribute,
its name will be prepended to the generated path rather than a single
leading '/' character.

Note

For backwards compatibility purposes, this function can also
be imported as model_path, although doing so will cause
a deprecation warning to be emitted.

	
resource_path_tuple(resource, *elements)[source]

	Return a tuple representing the absolute physical path of the
resource object based on its position in a resource tree, e.g
('', 'foo', 'bar'). Any positional arguments passed in as
elements will be appended as elements in the tuple
representing the resource path. For instance, if the resource's
path is ('', 'foo', 'bar') and elements equals ('a', 'b'),
the returned tuple will be ('', 'foo', 'bar', 'a', 'b'). The
first element of this tuple will always be the empty string (a
leading empty string element in a path tuple represents that the
path is absolute).

This function is a logical inverse of
pyramid.traversal.find_resource(): it can be used to
generate path references that can later be resolved by that function.

The resource passed in must be location-aware.

Note

Each segment in the path tuple returned will equal the __name__
attribute of the resource it represents within the resource tree. Each
of these segments should be a unicode or string object (as per the
contract of location-awareness). However, no conversion or
safety checking of resource names is performed. For instance, if one of
the resources in your tree has a __name__ which (by error) is a
dictionary, that dictionary will be placed in the path tuple; no warning
or error will be given.

Note

The root resource must have a __name__ attribute with a
value of either None or the empty string for path tuples to be
generated properly. If the root resource has a non-null __name__
attribute, its name will be the first element in the generated path tuple
rather than the empty string.

Note

For backwards compatibility purposes, this function can also be imported
as model_path_tuple, although doing so will cause a deprecation
warning to be emitted.

	
quote_path_segment(segment, safe='')[source]

	

	
virtual_root(resource, request)[source]

	Provided any resource and a request object, return
the resource object representing the virtual root of the
current request. Using a virtual root in a
traversal -based Pyramid application permits
rooting, for example, the resource at the traversal path /cms at
http://example.com/ instead of rooting it at
http://example.com/cms/.

If the resource passed in is a context obtained via
traversal, and if the HTTP_X_VHM_ROOT key is in the
WSGI environment, the value of this key will be treated as a
'virtual root path': the pyramid.traversal.find_resource()
API will be used to find the virtual root resource using this path;
if the resource is found, it will be returned. If the
HTTP_X_VHM_ROOT key is not present in the WSGI environment,
the physical root of the resource tree will be returned instead.

Virtual roots are not useful at all in applications that use
URL dispatch. Contexts obtained via URL dispatch don't
really support being virtually rooted (each URL dispatch context
is both its own physical and virtual root). However if this API
is called with a resource argument which is a context obtained
via URL dispatch, the resource passed in will be returned
unconditionally.

	
traverse(resource, path)[source]

	Given a resource object as resource and a string or tuple
representing a path as path (such as the return value of
pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple() or the value of
request.environ['PATH_INFO']), return a dictionary with the
keys context, root, view_name, subpath,
traversed, virtual_root, and virtual_root_path.

A definition of each value in the returned dictionary:

	context: The context (a resource object) found
via traversal or url dispatch. If the path passed in is the
empty string, the value of the resource argument passed to this
function is returned.

	root: The resource object at which traversal begins.
If the resource passed in was found via url dispatch or if the
path passed in was relative (non-absolute), the value of the
resource argument passed to this function is returned.

	view_name: The view name found during
traversal or url dispatch; if the resource was
found via traversal, this is usually a representation of the
path segment which directly follows the path to the context
in the path. The view_name will be a Unicode object or
the empty string. The view_name will be the empty string if
there is no element which follows the context path. An
example: if the path passed is /foo/bar, and a resource
object is found at /foo (but not at /foo/bar), the 'view
name' will be u'bar'. If the resource was found via
urldispatch, the view_name will be the name the route found was
registered with.

	subpath: For a resource found via traversal, this
is a sequence of path segments found in the path that follow
the view_name (if any). Each of these items is a Unicode
object. If no path segments follow the view_name, the
subpath will be the empty sequence. An example: if the path
passed is /foo/bar/baz/buz, and a resource object is found at
/foo (but not /foo/bar), the 'view name' will be
u'bar' and the subpath will be [u'baz', u'buz'].
For a resource found via url dispatch, the subpath will be a
sequence of values discerned from *subpath in the route
pattern matched or the empty sequence.

	traversed: The sequence of path elements traversed from the
root to find the context object during traversal.
Each of these items is a Unicode object. If no path segments
were traversed to find the context object (e.g. if the
path provided is the empty string), the traversed value
will be the empty sequence. If the resource is a resource found
via url dispatch, traversed will be None.

	virtual_root: A resource object representing the 'virtual' root
of the resource tree being traversed during traversal.
See Virtual Hosting for a definition of the virtual root
object. If no virtual hosting is in effect, and the path
passed in was absolute, the virtual_root will be the
physical root resource object (the object at which traversal
begins). If the resource passed in was found via URL
dispatch or if the path passed in was relative, the
virtual_root will always equal the root object (the
resource passed in).

	virtual_root_path -- If traversal was used to find
the resource, this will be the sequence of path elements
traversed to find the virtual_root resource. Each of these
items is a Unicode object. If no path segments were traversed
to find the virtual_root resource (e.g. if virtual hosting is
not in effect), the traversed value will be the empty list.
If url dispatch was used to find the resource, this will be
None.

If the path cannot be resolved, a KeyError [http://docs.python.org/3/library/exceptions.html#KeyError] will be raised.

Rules for passing a string as the path argument: if the
first character in the path string is the with the /
character, the path will considered absolute and the resource tree
traversal will start at the root resource. If the first character
of the path string is not the / character, the path is
considered relative and resource tree traversal will begin at the resource
object supplied to the function as the resource argument. If an
empty string is passed as path, the resource passed in will
be returned. Resource path strings must be escaped in the following
manner: each Unicode path segment must be encoded as UTF-8 and
each path segment must escaped via Python's urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a (absolute) or
to%20the/La%20Pe%C3%B1a (relative). The
pyramid.traversal.resource_path() function generates strings
which follow these rules (albeit only absolute ones).

Rules for passing a tuple as the path argument: if the first
element in the path tuple is the empty string (for example ('',
'a', 'b', 'c'), the path is considered absolute and the resource tree
traversal will start at the resource tree root object. If the first
element in the path tuple is not the empty string (for example
('a', 'b', 'c')), the path is considered relative and resource tree
traversal will begin at the resource object supplied to the function
as the resource argument. If an empty sequence is passed as
path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within
the tuple is required (each segment may be any string or unicode
object representing a resource name).

Explanation of the conversion of path segment values to
Unicode during traversal: Each segment is URL-unquoted, and
decoded into Unicode. Each segment is assumed to be encoded using
the UTF-8 encoding (or a subset, such as ASCII); a
pyramid.exceptions.URLDecodeError is raised if a segment
cannot be decoded. If a segment name is empty or if it is .,
it is ignored. If a segment name is .., the previous segment
is deleted, and the .. is ignored. As a result of this
process, the return values view_name, each element in the
subpath, each element in traversed, and each element in
the virtual_root_path will be Unicode as opposed to a string,
and will be URL-decoded.

	
traversal_path(path)[source]

	Variant of pyramid.traversal.traversal_path_info() suitable for
decoding paths that are URL-encoded.

If this function is passed a Unicode object instead of a sequence of
bytes as path, that Unicode object must directly encodeable to
ASCII. For example, u'/foo' will work but u'/<unprintable unicode>' (a
Unicode object with characters that cannot be encoded to ascii) will
not. A UnicodeEncodeError [http://docs.python.org/3/library/exceptions.html#UnicodeEncodeError] will be raised if the Unicode cannot be
encoded directly to ASCII.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.tweens

	
excview_tween_factory(handler, registry)[source]

	A tween factory which produces a tween that catches an
exception raised by downstream tweens (or the main Pyramid request
handler) and, if possible, converts it into a Response using an
exception view.

	
MAIN

	Constant representing the main Pyramid handling function, for use in
under and over arguments to
pyramid.config.Configurator.add_tween().

	
INGRESS

	Constant representing the request ingress, for use in under and
over arguments to pyramid.config.Configurator.add_tween().

	
EXCVIEW

	Constant representing the exception view tween, for use in under
and over arguments to
pyramid.config.Configurator.add_tween().

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.url

Utility functions for dealing with URLs in pyramid

	
resource_url(context, request, *elements, query=None, anchor=None)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.resource_url(resource, *elements, **kw)

See pyramid.request.Request.resource_url() for more information.

	
route_url(route_name, request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.route_url(route_name, *elements, **kw)

See pyramid.request.Request.route_url() for more information.

	
current_route_url(request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.current_route_url(*elements, **kw)

See pyramid.request.Request.current_route_url() for more
information.

	
route_path(route_name, request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.route_path(route_name, *elements, **kw)

See pyramid.request.Request.route_path() for more information.

	
current_route_path(request, *elements, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.current_route_path(*elements, **kw)

See pyramid.request.Request.current_route_path() for more
information.

	
static_url(path, request, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.static_url(path, **kw)

See pyramid.request.Request.static_url() for more information.

	
static_path(path, request, **kw)[source]

	This is a backwards compatibility function. Its result is the same as
calling:

request.static_path(path, **kw)

See pyramid.request.Request.static_path() for more information.

	
urlencode(query, doseq=True)[source]

	An alternate implementation of Python's stdlib urllib.urlencode
function [http://docs.python.org/library/urllib.html] which
accepts unicode keys and values within the query
dict/sequence; all Unicode keys and values are first converted to
UTF-8 before being used to compose the query string.

The value of query must be a sequence of two-tuples
representing key/value pairs or an object (often a dictionary)
with an .items() method that returns a sequence of two-tuples
representing key/value pairs.

For minimal calling convention backwards compatibility, this
version of urlencode accepts but ignores a second argument
conventionally named doseq. The Python stdlib version behaves
differently when doseq is False and when a sequence is
presented as one of the values. This version always behaves in
the doseq=True mode, no matter what the value of the second
argument.

See the Python stdlib documentation for urllib.urlencode for
more information.

Changed in version 1.5: In a key/value pair, if the value is None then it will be
dropped from the resulting output.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.view

	
render_view_to_response(context, request, name='', secure=True)[source]

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request and
return a response object. This function will return
None if a corresponding view callable cannot be found
(when no view configuration matches the combination of
name / context / and request).

If secure` is True, and the view callable found is
protected by a permission, the permission will be checked before calling
the view function. If the permission check disallows view execution
(based on the current authorization policy), a
pyramid.httpexceptions.HTTPForbidden exception will be raised.
The exception's args attribute explains why the view access was
disallowed.

If secure is False, no permission checking is done.

	
render_view_to_iterable(context, request, name='', secure=True)[source]

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request and
return an iterable object which represents the body of a response.
This function will return None if a corresponding view
callable cannot be found (when no view configuration
matches the combination of name / context / and
request). Additionally, this function will raise a
ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if a view function is found and called but the
view function's result does not have an app_iter attribute.

You can usually get the bytestring representation of the return value of
this function by calling b''.join(iterable), or just use
pyramid.view.render_view() instead.

If secure is True, and the view is protected by a permission, the
permission will be checked before the view function is invoked. If the
permission check disallows view execution (based on the current
authentication policy), a
pyramid.httpexceptions.HTTPForbidden exception will be raised; its
args attribute explains why the view access was disallowed.

If secure is False, no permission checking is
done.

	
render_view(context, request, name='', secure=True)[source]

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request
and unwind the view response's app_iter (see
View Callable Responses) into a single bytestring. This function will
return None if a corresponding view callable cannot be
found (when no view configuration matches the combination
of name / context / and request). Additionally, this
function will raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if a view function is
found and called but the view function's result does not have an
app_iter attribute. This function will return None if a
corresponding view cannot be found.

If secure is True, and the view is protected by a permission, the
permission will be checked before the view is invoked. If the permission
check disallows view execution (based on the current authorization
policy), a pyramid.httpexceptions.HTTPForbidden exception will be
raised; its args attribute explains why the view access was
disallowed.

If secure is False, no permission checking is done.

	
class view_config(**settings)[source]

	A function, class or method decorator which allows a
developer to create view registrations nearer to a view
callable definition than use imperative
configuration to do the same.

For example, this code in a module views.py:

from resources import MyResource

@view_config(name='my_view', context=MyResource, permission='read',
 route_name='site1')
def my_view(context, request):
 return 'OK'

Might replace the following call to the
pyramid.config.Configurator.add_view() method:

import views
from resources import MyResource
config.add_view(views.my_view, context=MyResource, name='my_view',
 permission='read', route_name='site1')

pyramid.view.view_config supports the following keyword
arguments: context, permission, name,
request_type, route_name, request_method, request_param,
containment, xhr, accept, header, path_info,
custom_predicates, decorator, mapper, http_cache,
match_param, check_csrf, physical_path, and predicates.

The meanings of these arguments are the same as the arguments passed to
pyramid.config.Configurator.add_view(). If any argument is left
out, its default will be the equivalent add_view default.

An additional keyword argument named _depth is provided for people who
wish to reuse this class from another decorator. The default value is
0 and should be specified relative to the view_config invocation.
It will be passed in to the venusian attach function as the
depth of the callstack when Venusian checks if the decorator is being used
in a class or module context. It's not often used, but it can be useful
in this circumstance. See the attach function in Venusian for more
information.

See also

See also Adding View Configuration Using the @view_config Decorator for
details about using pyramid.view.view_config.

Warning

view_config will work ONLY on module top level members
because of the limitation of venusian.Scanner.scan.

	
class view_defaults(**settings)[source]

	A class decorator which, when applied to a class, will
provide defaults for all view configurations that use the class. This
decorator accepts all the arguments accepted by
pyramid.view.view_config(), and each has the same meaning.

See @view_defaults Class Decorator for more information.

	
class notfound_view_config(**settings)[source]

	
New in version 1.3.

An analogue of pyramid.view.view_config which registers a
Not Found View.

The notfound_view_config constructor accepts most of the same arguments
as the constructor of pyramid.view.view_config. It can be used
in the same places, and behaves in largely the same way, except it always
registers a not found exception view instead of a 'normal' view.

Example:

from pyramid.view import notfound_view_config
from pyramid.response import Response

@notfound_view_config()
def notfound(request):
 return Response('Not found, dude!', status='404 Not Found')

All arguments except append_slash have the same meaning as
pyramid.view.view_config() and each predicate
argument restricts the set of circumstances under which this notfound
view will be invoked.

If append_slash is True, when the Not Found View is invoked, and
the current path info does not end in a slash, the notfound logic will
attempt to find a route that matches the request's path info
suffixed with a slash. If such a route exists, Pyramid will issue a
redirect to the URL implied by the route; if it does not, Pyramid will
return the result of the view callable provided as view, as normal.

See Changing the Not Found View for detailed usage information.

	
class forbidden_view_config(**settings)[source]

	
New in version 1.3.

An analogue of pyramid.view.view_config which registers a
forbidden view.

The forbidden_view_config constructor accepts most of the same arguments
as the constructor of pyramid.view.view_config. It can be used
in the same places, and behaves in largely the same way, except it always
registers a forbidden exception view instead of a 'normal' view.

Example:

from pyramid.view import forbidden_view_config
from pyramid.response import Response

@forbidden_view_config()
def forbidden(request):
 return Response('You are not allowed', status='401 Unauthorized')

All arguments passed to this function have the same meaning as
pyramid.view.view_config() and each predicate argument restricts
the set of circumstances under which this notfound view will be invoked.

See Changing the Forbidden View for detailed usage information.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	API Documentation

pyramid.wsgi

	
wsgiapp(wrapped)[source]

	Decorator to turn a WSGI application into a Pyramid
view callable. This decorator differs from the
pyramid.wsgi.wsgiapp2() decorator inasmuch as fixups of
PATH_INFO and SCRIPT_NAME within the WSGI environment are
not performed before the application is invoked.

E.g., the following in a views.py module:

@wsgiapp
def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

Allows the following call to
pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp decorator will convert the result of the WSGI
application to a Response and return it to
Pyramid as if the WSGI app were a Pyramid
view.

	
wsgiapp2(wrapped)[source]

	Decorator to turn a WSGI application into a Pyramid
view callable. This decorator differs from the
pyramid.wsgi.wsgiapp() decorator inasmuch as fixups of
PATH_INFO and SCRIPT_NAME within the WSGI environment
are performed before the application is invoked.

E.g. the following in a views.py module:

@wsgiapp2
def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

Allows the following call to
pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp2 decorator will convert the result of the WSGI
application to a Response and return it to Pyramid as if the WSGI
app were a Pyramid view. The SCRIPT_NAME and PATH_INFO
values present in the WSGI environment are fixed up before the
application is invoked. In particular, a new WSGI environment is
generated, and the subpath of the request passed to wsgiapp2
is used as the new request's PATH_INFO and everything preceding the
subpath is used as the SCRIPT_NAME. The new environment is passed to
the downstream WSGI application.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

p* Scripts Documentation

Command line programs (p* scripts) included with Pyramid.

	pcreate

	pdistreport

	prequest

	proutes

	pserve

	pshell

	ptweens

	pviews

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pcreate

$ pcreate --help
Usage: pcreate [options] output_directory

Render Pyramid scaffolding to an output directory

Options:
 -h, --help show this help message and exit
 -s SCAFFOLD_NAME, --scaffold=SCAFFOLD_NAME
 Add a scaffold to the create process (multiple -s args
 accepted)
 -t SCAFFOLD_NAME, --template=SCAFFOLD_NAME
 A backwards compatibility alias for -s/--scaffold.
 Add a scaffold to the create process (multiple -t args
 accepted)
 -l, --list List all available scaffold names
 --list-templates A backwards compatibility alias for -l/--list. List
 all available scaffold names.
 --simulate Simulate but do no work
 --overwrite Always overwrite
 --interactive When a file would be overwritten, interrogate

See also

Creating the Project

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pdistreport

$ pdistreport --help
Usage: pdistreport

Show Python distribution versions and locations in use

Options:
 -h, --help show this help message and exit

See also

Showing All Installed Distributions and Their Versions

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

prequest

$ prequest --help
Usage: prequest config_uri path_info [args/options]

Submit a HTTP request to a web application. This command makes an artifical
request to a web application that uses a PasteDeploy (.ini) configuration file
for the server and application. Use "prequest config.ini /path" to request
"/path". Use "prequest --method=POST config.ini /path < data" to do a POST
with the given request body. Use "prequest --method=PUT config.ini /path <
data" to do a PUT with the given request body. Use "prequest --method=PATCH
config.ini /path < data" to do a PATCH with the given request body. Use
"prequest --method=OPTIONS config.ini /path" to do an OPTIONS request. Use
"prequest --method=PROPFIND config.ini /path" to do a PROPFIND request. If
the path is relative (doesn't begin with "/") it is interpreted as relative to
"/". The path passed to this script should be URL-quoted. The path can be
succeeded with a query string (e.g. `/path?a=1&=b2'). The variable
"environ['paste.command_request']" will be set to "True" in the request's WSGI
environment, so your application can distinguish these calls from normal
requests.

Options:
 -h, --help show this help message and exit
 -n NAME, --app-name=NAME
 Load the named application from the config file
 (default 'main')
 --header=NAME:VALUE Header to add to request (you can use this option
 multiple times)
 -d, --display-headers
 Display status and headers before the response body
 -m METHOD, --method=METHOD
 Request method type (GET, POST, PUT, PATCH, DELETE,
 PROPFIND, OPTIONS)
 -l LOGIN, --login=LOGIN
 HTTP basic auth username:password pair

See also

Invoking a Request

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

proutes

$ proutes --help
Usage: proutes config_uri

Print all URL dispatch routes used by a Pyramid application in the order in
which they are evaluated. Each route includes the name of the route, the
pattern of the route, and the view callable which will be invoked when the
route is matched. This command accepts one positional argument named
'config_uri'. It specifies the PasteDeploy config file to use for the
interactive shell. The format is 'inifile#name'. If the name is left off,
'main' will be assumed. Example: 'proutes myapp.ini'.

Options:
 -h, --help show this help message and exit
 -g GLOB, --glob=GLOB Display routes matching glob pattern
 -f FORMAT, --format=FORMAT
 Choose which columns to display, this will override
 the format key in the [proutes] ini section

See also

Displaying All Application Routes

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pserve

$ pserve --help
Usage: pserve config_uri [start|stop|restart|status] [var=value]

This command serves a web application that uses a PasteDeploy configuration
file for the server and application. If start/stop/restart is given, then
--daemon is implied, and it will start (normal operation), stop (--stop-
daemon), or do both. You can also include variable assignments like
'http_port=8080' and then use %(http_port)s in your config files.

Options:
 -h, --help show this help message and exit
 -n NAME, --app-name=NAME
 Load the named application (default main)
 -s SERVER_TYPE, --server=SERVER_TYPE
 Use the named server.
 --server-name=SECTION_NAME
 Use the named server as defined in the configuration
 file (default: main)
 --daemon Run in daemon (background) mode
 --pid-file=FILENAME Save PID to file (default to pyramid.pid if running in
 daemon mode)
 --log-file=LOG_FILE Save output to the given log file (redirects stdout)
 --reload Use auto-restart file monitor
 --reload-interval=RELOAD_INTERVAL
 Seconds between checking files (low number can cause
 significant CPU usage)
 --monitor-restart Auto-restart server if it dies
 -b, --browser Open a web browser to server url
 --status Show the status of the (presumably daemonized) server
 -v, --verbose Set verbose level (default 1)
 -q, --quiet Suppress verbose output
 --user=USERNAME Set the user (usually only possible when run as root)
 --group=GROUP Set the group (usually only possible when run as root)
 --stop-daemon Stop a daemonized server (given a PID file, or default
 pyramid.pid file)

See also

Running the Project Application

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pshell

$ pshell --help
Usage: pshell config_uri

Open an interactive shell with a Pyramid app loaded. This command accepts one
positional argument named "config_uri" which specifies the PasteDeploy config
file to use for the interactive shell. The format is "inifile#name". If the
name is left off, the Pyramid default application will be assumed. Example:
"pshell myapp.ini#main" If you do not point the loader directly at the
section of the ini file containing your Pyramid application, the command will
attempt to find the app for you. If you are loading a pipeline that contains
more than one Pyramid application within it, the loader will use the last one.

Options:
 -h, --help show this help message and exit
 -p PYTHON_SHELL, --python-shell=PYTHON_SHELL
 ipython | bpython | python
 --setup=SETUP A callable that will be passed the environment before
 it is made available to the shell. This option will
 override the 'setup' key in the [pshell] ini section.

See also

The Interactive Shell

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

ptweens

$ ptweens --help
Usage: ptweens config_uri

Print all implicit and explicit tween objects used by a Pyramid application.
The handler output includes whether the system is using an explicit tweens
ordering (will be true when the "pyramid.tweens" deployment setting is used)
or an implicit tweens ordering (will be true when the "pyramid.tweens"
deployment setting is *not* used). This command accepts one positional
argument named "config_uri" which specifies the PasteDeploy config file to use
for the interactive shell. The format is "inifile#name". If the name is left
off, "main" will be assumed. Example: "ptweens myapp.ini#main".

Options:
 -h, --help show this help message and exit

See also

Displaying "Tweens"

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pviews

$ pviews --help
Usage: pviews config_uri url

Print, for a given URL, the views that might match. Underneath each
potentially matching route, list the predicates required. Underneath each
route+predicate set, print each view that might match and its predicates.
This command accepts two positional arguments: 'config_uri' specifies the
PasteDeploy config file to use for the interactive shell. The format is
'inifile#name'. If the name is left off, 'main' will be assumed. 'url'
specifies the path info portion of a URL that will be used to find matching
views. Example: 'proutes myapp.ini#main /url'

Options:
 -h, --help show this help message and exit

See also

Displaying Matching Views for a Given URL

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pcreate

$ pcreate --help
Usage: pcreate [options] output_directory

Render Pyramid scaffolding to an output directory

Options:
 -h, --help show this help message and exit
 -s SCAFFOLD_NAME, --scaffold=SCAFFOLD_NAME
 Add a scaffold to the create process (multiple -s args
 accepted)
 -t SCAFFOLD_NAME, --template=SCAFFOLD_NAME
 A backwards compatibility alias for -s/--scaffold.
 Add a scaffold to the create process (multiple -t args
 accepted)
 -l, --list List all available scaffold names
 --list-templates A backwards compatibility alias for -l/--list. List
 all available scaffold names.
 --simulate Simulate but do no work
 --overwrite Always overwrite
 --interactive When a file would be overwritten, interrogate

See also

Creating the Project

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pdistreport

$ pdistreport --help
Usage: pdistreport

Show Python distribution versions and locations in use

Options:
 -h, --help show this help message and exit

See also

Showing All Installed Distributions and Their Versions

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

prequest

$ prequest --help
Usage: prequest config_uri path_info [args/options]

Submit a HTTP request to a web application. This command makes an artifical
request to a web application that uses a PasteDeploy (.ini) configuration file
for the server and application. Use "prequest config.ini /path" to request
"/path". Use "prequest --method=POST config.ini /path < data" to do a POST
with the given request body. Use "prequest --method=PUT config.ini /path <
data" to do a PUT with the given request body. Use "prequest --method=PATCH
config.ini /path < data" to do a PATCH with the given request body. Use
"prequest --method=OPTIONS config.ini /path" to do an OPTIONS request. Use
"prequest --method=PROPFIND config.ini /path" to do a PROPFIND request. If
the path is relative (doesn't begin with "/") it is interpreted as relative to
"/". The path passed to this script should be URL-quoted. The path can be
succeeded with a query string (e.g. `/path?a=1&=b2'). The variable
"environ['paste.command_request']" will be set to "True" in the request's WSGI
environment, so your application can distinguish these calls from normal
requests.

Options:
 -h, --help show this help message and exit
 -n NAME, --app-name=NAME
 Load the named application from the config file
 (default 'main')
 --header=NAME:VALUE Header to add to request (you can use this option
 multiple times)
 -d, --display-headers
 Display status and headers before the response body
 -m METHOD, --method=METHOD
 Request method type (GET, POST, PUT, PATCH, DELETE,
 PROPFIND, OPTIONS)
 -l LOGIN, --login=LOGIN
 HTTP basic auth username:password pair

See also

Invoking a Request

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

proutes

$ proutes --help
Usage: proutes config_uri

Print all URL dispatch routes used by a Pyramid application in the order in
which they are evaluated. Each route includes the name of the route, the
pattern of the route, and the view callable which will be invoked when the
route is matched. This command accepts one positional argument named
'config_uri'. It specifies the PasteDeploy config file to use for the
interactive shell. The format is 'inifile#name'. If the name is left off,
'main' will be assumed. Example: 'proutes myapp.ini'.

Options:
 -h, --help show this help message and exit
 -g GLOB, --glob=GLOB Display routes matching glob pattern
 -f FORMAT, --format=FORMAT
 Choose which columns to display, this will override
 the format key in the [proutes] ini section

See also

Displaying All Application Routes

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pserve

$ pserve --help
Usage: pserve config_uri [start|stop|restart|status] [var=value]

This command serves a web application that uses a PasteDeploy configuration
file for the server and application. If start/stop/restart is given, then
--daemon is implied, and it will start (normal operation), stop (--stop-
daemon), or do both. You can also include variable assignments like
'http_port=8080' and then use %(http_port)s in your config files.

Options:
 -h, --help show this help message and exit
 -n NAME, --app-name=NAME
 Load the named application (default main)
 -s SERVER_TYPE, --server=SERVER_TYPE
 Use the named server.
 --server-name=SECTION_NAME
 Use the named server as defined in the configuration
 file (default: main)
 --daemon Run in daemon (background) mode
 --pid-file=FILENAME Save PID to file (default to pyramid.pid if running in
 daemon mode)
 --log-file=LOG_FILE Save output to the given log file (redirects stdout)
 --reload Use auto-restart file monitor
 --reload-interval=RELOAD_INTERVAL
 Seconds between checking files (low number can cause
 significant CPU usage)
 --monitor-restart Auto-restart server if it dies
 -b, --browser Open a web browser to server url
 --status Show the status of the (presumably daemonized) server
 -v, --verbose Set verbose level (default 1)
 -q, --quiet Suppress verbose output
 --user=USERNAME Set the user (usually only possible when run as root)
 --group=GROUP Set the group (usually only possible when run as root)
 --stop-daemon Stop a daemonized server (given a PID file, or default
 pyramid.pid file)

See also

Running the Project Application

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pshell

$ pshell --help
Usage: pshell config_uri

Open an interactive shell with a Pyramid app loaded. This command accepts one
positional argument named "config_uri" which specifies the PasteDeploy config
file to use for the interactive shell. The format is "inifile#name". If the
name is left off, the Pyramid default application will be assumed. Example:
"pshell myapp.ini#main" If you do not point the loader directly at the
section of the ini file containing your Pyramid application, the command will
attempt to find the app for you. If you are loading a pipeline that contains
more than one Pyramid application within it, the loader will use the last one.

Options:
 -h, --help show this help message and exit
 -p PYTHON_SHELL, --python-shell=PYTHON_SHELL
 ipython | bpython | python
 --setup=SETUP A callable that will be passed the environment before
 it is made available to the shell. This option will
 override the 'setup' key in the [pshell] ini section.

See also

The Interactive Shell

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

ptweens

$ ptweens --help
Usage: ptweens config_uri

Print all implicit and explicit tween objects used by a Pyramid application.
The handler output includes whether the system is using an explicit tweens
ordering (will be true when the "pyramid.tweens" deployment setting is used)
or an implicit tweens ordering (will be true when the "pyramid.tweens"
deployment setting is *not* used). This command accepts one positional
argument named "config_uri" which specifies the PasteDeploy config file to use
for the interactive shell. The format is "inifile#name". If the name is left
off, "main" will be assumed. Example: "ptweens myapp.ini#main".

Options:
 -h, --help show this help message and exit

See also

Displaying "Tweens"

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

 	p* Scripts Documentation

pviews

$ pviews --help
Usage: pviews config_uri url

Print, for a given URL, the views that might match. Underneath each
potentially matching route, list the predicates required. Underneath each
route+predicate set, print each view that might match and its predicates.
This command accepts two positional arguments: 'config_uri' specifies the
PasteDeploy config file to use for the interactive shell. The format is
'inifile#name'. If the name is left off, 'main' will be assumed. 'url'
specifies the path info portion of a URL that will be used to find matching
views. Example: 'proutes myapp.ini#main /url'

Options:
 -h, --help show this help message and exit

See also

Displaying Matching Views for a Given URL

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

What's New In Pyramid 1.5

This article explains the new features in Pyramid version 1.5 as
compared to its predecessor, Pyramid 1.4. It also documents backwards
incompatibilities between the two versions and deprecations added to
Pyramid 1.5, as well as software dependency changes and notable
documentation additions.

Bug Fix Releases

Pyramid 1.5 was released on 2014-04-08.

The following bug fix releases were made since then. Bug fix releases also
include documentation improvements and other minor feature changes.

	1.5.1 (2014-05-31)

	1.5.2 (2014-11-09)

	1.5.3 (2015-02-22)

	1.5.4 (2015-02-24)

	1.5.5 (2015-04-14)

	1.5.6 (2015-04-14)

	1.5.7 (2015-04-28)

	1.5.8 (2016-01-07)

Major Backwards Incompatibilities

	Pyramid no longer depends on or configures the Mako and Chameleon templating
system renderers by default. Disincluding these templating systems by
default means that the Pyramid core has fewer dependencies and can run on
future platforms without immediate concern for the compatibility of its
templating add-ons. It also makes maintenance slightly more effective, as
different people can maintain the templating system add-ons that they
understand and care about without needing commit access to the Pyramid core,
and it allows users who just don't want to see any packages they don't use
come along for the ride when they install Pyramid.

This means that upon upgrading to Pyramid 1.5a2+, projects that use either
of these templating systems will see a traceback that ends something like
this when their application attempts to render a Chameleon or Mako template:

ValueError: No such renderer factory .pt

Or:

ValueError: No such renderer factory .mako

Or:

ValueError: No such renderer factory .mak

Support for Mako templating has been moved into an add-on package named
pyramid_mako, and support for Chameleon templating has been moved into
an add-on package named pyramid_chameleon. These packages are drop-in
replacements for the old built-in support for these templating langauges.
All you have to do is install them and make them active in your configuration
to register renderer factories for .pt and/or .mako (or .mak) to
make your application work again.

To re-add support for Chameleon and/or Mako template renderers into your
existing projects, follow the below steps.

If you depend on Mako templates:

	Make sure the pyramid_mako package is installed. One way to do this
is by adding pyramid_mako to the install_requires section of your
package's setup.py file and afterwards rerunning setup.py develop:

setup(
 #...
 install_requires=[
 'pyramid_mako', # new dependency
 'pyramid',
 #...
],
)

	Within the portion of your application which instantiates a Pyramid
Configurator (often the main() function in
your project's __init__.py file), tell Pyramid to include the
pyramid_mako includeme:

config = Configurator(.....)
config.include('pyramid_mako')

If you depend on Chameleon templates:

	Make sure the pyramid_chameleon package is installed. One way to do
this is by adding pyramid_chameleon to the install_requires section
of your package's setup.py file and afterwards rerunning
setup.py develop:

setup(
 #...
 install_requires=[
 'pyramid_chameleon', # new dependency
 'pyramid',
 #...
],
)

	Within the portion of your application which instantiates a Pyramid
Configurator (often the main() function in
your project's __init__.py file), tell Pyramid to include the
pyramid_chameleon includeme:

config = Configurator(.....)
config.include('pyramid_chameleon')

Note that it's also fine to install these packages into older Pyramids for
forward compatibility purposes. Even if you don't upgrade to Pyramid 1.5
immediately, performing the above steps in a Pyramid 1.4 installation is
perfectly fine, won't cause any difference, and will give you forward
compatibility when you eventually do upgrade to Pyramid 1.5.

With the removal of Mako and Chameleon support from the core, some
unit tests that use the pyramid.renderers.render* methods may begin to
fail. If any of your unit tests are invoking either
pyramid.renderers.render() or pyramid.renderers.render_to_response()
with either Mako or Chameleon templates then the
pyramid.config.Configurator instance in effect during
the unit test should be also be updated to include the addons, as shown
above. For example:

class ATest(unittest.TestCase):
 def setUp(self):
 self.config = pyramid.testing.setUp()
 self.config.include('pyramid_mako')

 def test_it(self):
 result = pyramid.renderers.render('mypkg:templates/home.mako', {})

Or:

class ATest(unittest.TestCase):
 def setUp(self):
 self.config = pyramid.testing.setUp()
 self.config.include('pyramid_chameleon')

 def test_it(self):
 result = pyramid.renderers.render('mypkg:templates/home.pt', {})

	If you're using the Pyramid debug toolbar, when you upgrade Pyramid to
1.5a2+, you'll also need to upgrade the pyramid_debugtoolbar package to
at least version 1.0.8, as older toolbar versions are not compatible with
Pyramid 1.5a2+ due to the removal of Mako support from the core. It's
fine to use this newer version of the toolbar code with older Pyramids too.

Feature Additions

	Python 3.4 compatibility.

	Add pdistreport script, which prints the Python version in use, the
Pyramid version in use, and the version number and location of all Python
distributions currently installed.

	Add the ability to invert the result of any view, route, or subscriber
predicate value using the not_ class. For example:

from pyramid.config import not_

@view_config(route_name='myroute', request_method=not_('POST'))
def myview(request): ...

The above example will ensure that the view is called if the request method
is not POST, at least if no other view is more specific.

The pyramid.config.not_ class can be used against any value that is
a predicate value passed in any of these contexts:

	pyramid.config.Configurator.add_view()

	pyramid.config.Configurator.add_route()

	pyramid.config.Configurator.add_subscriber()

	pyramid.view.view_config()

	pyramid.events.subscriber()

	View lookup will now search for valid views based on the inheritance
hierarchy of the context. It tries to find views based on the most specific
context first, and upon predicate failure, will move up the inheritance chain
to test views found by the super-type of the context. In the past, only the
most specific type containing views would be checked and if no matching view
could be found then a PredicateMismatch would be raised. Now predicate
mismatches don't hide valid views registered on super-types. Here's an
example that now works:

class IResource(Interface):

 ...

@view_config(context=IResource)
def get(context, request):

 ...

@view_config(context=IResource, request_method='POST')
def post(context, request):

 ...

@view_config(context=IResource, request_method='DELETE')
def delete(context, request):

 ...

@implementer(IResource)
class MyResource:

 ...

@view_config(context=MyResource, request_method='POST')
def override_post(context, request):

 ...

Previously the override_post view registration would hide the get
and delete views in the context of MyResource -- leading to a
predicate mismatch error when trying to use GET or DELETE
methods. Now the views are found and no predicate mismatch is
raised.
See https://github.com/Pylons/pyramid/pull/786 and
https://github.com/Pylons/pyramid/pull/1004 and
https://github.com/Pylons/pyramid/pull/1046

	scripts/prequest.py (aka the prequest console script): added support
for submitting PUT and PATCH requests. See
https://github.com/Pylons/pyramid/pull/1033. add support for submitting
OPTIONS and PROPFIND requests, and allow users to specify basic
authentication credentials in the request via a --login argument to the
script. See https://github.com/Pylons/pyramid/pull/1039.

	The pyramid.config.Configurator.add_route() method now supports being
called with an external URL as pattern. See
https://github.com/Pylons/pyramid/issues/611 and the documentation section
External Routes.

	pyramid.authorization.ACLAuthorizationPolicy supports __acl__ as
a callable. This removes the ambiguity between the potential
AttributeError that would be raised on the context when the property
was not defined and the AttributeError that could be raised from any
user-defined code within a dynamic property. It is recommended to define a
dynamic ACL as a callable to avoid this ambiguity. See
https://github.com/Pylons/pyramid/issues/735.

	Allow a protocol-relative URL (e.g. //example.com/images) to be passed to
pyramid.config.Configurator.add_static_view(). This allows
externally-hosted static URLs to be generated based on the current protocol.

	The pyramid.authentication.AuthTktAuthenticationPolicy class has two
new options to configure its domain usage:

	parent_domain: if set the authentication cookie is set on
the parent domain. This is useful if you have multiple sites sharing the
same domain.

	domain: if provided the cookie is always set for this domain, bypassing
all usual logic.

See https://github.com/Pylons/pyramid/pull/1028,
https://github.com/Pylons/pyramid/pull/1072 and
https://github.com/Pylons/pyramid/pull/1078.

	The pyramid.authentication.AuthTktPolicy now supports IPv6
addresses when using the include_ip=True option. This is possibly
incompatible with alternative auth_tkt implementations, as the
specification does not define how to properly handle IPv6. See
https://github.com/Pylons/pyramid/issues/831.

	Make it possible to use variable arguments via
pyramid.paster.get_appsettings(). This also allowed the generated
initialize_db script from the alchemy scaffold to grow support for
options in the form a=1 b=2 so you can fill in values in a parameterized
.ini file, e.g. initialize_myapp_db etc/development.ini a=1 b=2.
See https://github.com/Pylons/pyramid/pull/911

	The request.session.check_csrf_token() method and the check_csrf view
predicate now take into account the value of the HTTP header named
X-CSRF-Token (as well as the csrf_token form parameter, which they
always did). The header is tried when the form parameter does not exist.

	You can now generate "hybrid" urldispatch/traversal URLs more easily by using
the new route_name, route_kw and route_remainder_name arguments
to resource_url() and
resource_path(). See
Generating Hybrid URLs.

	A new http exception superclass named
HTTPSuccessful was added. You can use this
class as the context of an exception view to catch all 200-series
"exceptions" (e.g. "raise HTTPOk"). This also allows you to catch only the
HTTPOk exception itself; previously this was
impossible because a number of other exceptions (such as HTTPNoContent)
inherited from HTTPOk, but now they do not.

	It is now possible to escape double braces in Pyramid scaffolds (unescaped,
these represent replacement values). You can use \{\{a\}\} to
represent a "bare" {{a}}. See
https://github.com/Pylons/pyramid/pull/862

	Add localizer and locale_name properties (reified) to
pyramid.request.Request. See
https://github.com/Pylons/pyramid/issues/508. Note that the
pyramid.i18n.get_localizer() and pyramid.i18n.get_locale_name()
functions now simply look up these properties on the request.

	The pserve command now takes a -v (or --verbose) flag and a
-q (or --quiet) flag. Output from running pserve can be
controlled using these flags. -v can be specified multiple times to
increase verbosity. -q sets verbosity to 0 unconditionally. The
default verbosity level is 1.

	The alchemy scaffold tests now provide better coverage. See
https://github.com/Pylons/pyramid/pull/1029

	Users can now provide dotted Python names to as the factory argument
the Configurator methods named
add_view_predicate(),
add_route_predicate() and
add_subscriber_predicate(). Instead of
passing the predicate factory directly, you can pass a dotted name which
refers to the factory.

	pyramid.path.package_name() no longer thows an exception when resolving
the package name for namespace packages that have no __file__ attribute.

	An authorization API has been added as a method of the request:
pyramid.request.Request.has_permission(). It is a method-based
alternative to the pyramid.security.has_permission() API and works
exactly the same. The older API is now deprecated.

	Property API attributes have been added to the request for easier access to
authentication data: pyramid.request.Request.authenticated_userid,
pyramid.request.Request.unauthenticated_userid, and
pyramid.request.Request.effective_principals. These are analogues,
respectively, of pyramid.security.authenticated_userid(),
pyramid.security.unauthenticated_userid(), and
pyramid.security.effective_principals(). They operate exactly the
same, except they are attributes of the request instead of functions
accepting a request. They are properties, so they cannot be assigned to.
The older function-based APIs are now deprecated.

	Pyramid's console scripts (pserve, pviews, etc) can now be run
directly, allowing custom arguments to be sent to the python interpreter
at runtime. For example:

python -3 -m pyramid.scripts.pserve development.ini

	Added a specific subclass of pyramid.httpexceptions.HTTPBadRequest
named pyramid.exceptions.BadCSRFToken which will now be raised in
response to failures in the check_csrf_token view predicate. See
https://github.com/Pylons/pyramid/pull/1149

	Added a new SignedCookieSessionFactory which is very similar to the
UnencryptedCookieSessionFactoryConfig but with a clearer focus on
signing content. The custom serializer arguments to this function should
only focus on serializing, unlike its predecessor which required the
serializer to also perform signing.
See https://github.com/Pylons/pyramid/pull/1142 . Note
that cookies generated using SignedCookieSessionFactory are not
compatible with cookies generated using UnencryptedCookieSessionFactory,
so existing user session data will be destroyed if you switch to it.

	Added a new BaseCookieSessionFactory which acts as a generic cookie
factory that can be used by framework implementors to create their own
session implementations. It provides a reusable API which focuses strictly
on providing a dictionary-like object that properly handles renewals,
timeouts, and conformance with the ISession API.
See https://github.com/Pylons/pyramid/pull/1142

	We no longer eagerly clear request.exception and request.exc_info in
the exception view tween. This makes it possible to inspect exception
information within a finished callback. See
https://github.com/Pylons/pyramid/issues/1223.

	Overall improvments for the proutes command. Added --format and
--glob arguments to the command, introduced the method
column for displaying available request methods, and improved the view
output by showing the module instead of just __repr__.
See: https://github.com/Pylons/pyramid/pull/1542

Other Backwards Incompatibilities

	Modified the current_route_url() method. The
method previously returned the URL without the query string by default, it
now does attach the query string unless it is overriden.

	The route_url() and
route_path() APIs no longer quote / to
%2F when a replacement value contains a /. This was pointless, as
WSGI servers always unquote the slash anyway, and Pyramid never sees the
quoted value.

	It is no longer possible to set a locale_name attribute of the request,
nor is it possible to set a localizer attribute of the request. These
are now "reified" properties that look up a locale name and localizer
respectively using the machinery described in Internationalization and Localization.

	If you send an X-Vhm-Root header with a value that ends with any number
of slashes, the trailing slashes will be removed before the URL
is generated when you use resource_url()
or resource_path(). Previously the virtual
root path would not have trailing slashes stripped, which would influence URL
generation.

	The pyramid.interfaces.IResourceURL interface has now grown two new
attributes: virtual_path_tuple and physical_path_tuple. These should
be the tuple form of the resource's path (physical and virtual).

	Removed the request.response_* varying attributes (such
as request.response_headers). These attributes had been deprecated
since Pyramid 1.1, and as per the deprecation policy, have now been removed.

	request.response will no longer be mutated when using the
pyramid.renderers.render() API. Almost all renderers mutate the
request.response response object (for example, the JSON renderer sets
request.response.content_type to application/json), but this is
only necessary when the renderer is generating a response; it was a bug
when it was done as a side effect of calling
pyramid.renderers.render().

	Removed the bfg2pyramid fixer script.

	The pyramid.events.NewResponse event is now sent after response
callbacks are executed. It previously executed before response callbacks
were executed. Rationale: it's more useful to be able to inspect the response
after response callbacks have done their jobs instead of before.

	Removed the class named pyramid.view.static that had been deprecated
since Pyramid 1.1. Instead use pyramid.static.static_view with the
use_subpath=True argument.

	Removed the pyramid.view.is_response function that had been deprecated
since Pyramid 1.1. Use the pyramid.request.Request.is_response()
method instead.

	Removed the ability to pass the following arguments to
pyramid.config.Configurator.add_route(): view, view_context.
view_for, view_permission, view_renderer, and view_attr.
Using these arguments had been deprecated since Pyramid 1.1. Instead of
passing view-related arguments to add_route, use a separate call to
pyramid.config.Configurator.add_view() to associate a view with a route
using its route_name argument. Note that this impacts the
pyramid.config.Configurator.add_static_view() function too, because
it delegates to``add_route``.

	Removed the ability to influence and query a pyramid.request.Request
object as if it were a dictionary. Previously it was possible to use methods
like __getitem__, get, items, and other dictlike methods to
access values in the WSGI environment. This behavior had been deprecated
since Pyramid 1.1. Use methods of request.environ (a real dictionary)
instead.

	Removed ancient backwards compatibily hack in
pyramid.traversal.DefaultRootFactory which populated the __dict__ of
the factory with the matchdict values for compatibility with BFG 0.9.

	The renderer_globals_factory argument to the
pyramid.config.Configurator constructor and the
coresponding argument to setup_registry()
has been removed. The set_renderer_globals_factory method of
Configurator has also been removed. The (internal)
pyramid.interfaces.IRendererGlobals interface was also removed. These
arguments, methods and interfaces had been deprecated since 1.1. Use a
BeforeRender event subscriber as documented in the "Hooks" chapter of the
Pyramid narrative documentation instead of providing renderer globals values
to the configurator.

	The key/values in the _query parameter of
pyramid.request.Request.route_url() and the query parameter of
pyramid.request.Request.resource_url() (and their variants), used to
encode a value of None as the string 'None', leaving the resulting
query string to be a=b&key=None. The value is now dropped in this
situation, leaving a query string of a=b&key=. See
https://github.com/Pylons/pyramid/issues/1119

Deprecations

	Returning a ("defname", dict) tuple from a view which has a Mako renderer
is now deprecated. Instead you should use the renderer spelling
foo#defname.mak in the view configuration definition and return a dict
only.

	The pyramid.config.Configurator.set_request_property() method now issues
a deprecation warning when used. It had been docs-deprecated in 1.4
but did not issue a deprecation warning when used.

	pyramid.security.has_permission() is now deprecated in favor of using
pyramid.request.Request.has_permission().

	The pyramid.security.authenticated_userid(),
pyramid.security.unauthenticated_userid(), and
pyramid.security.effective_principals() functions have been
deprecated. Use pyramid.request.Request.authenticated_userid,
pyramid.request.Request.unauthenticated_userid and
pyramid.request.Request.effective_principals instead.

	Deprecate the pyramid.interfaces.ITemplateRenderer interface. It was
ill-defined and became unused when Mako and Chameleon template bindings were
split into their own packages.

	The pyramid.session.UnencryptedCookieSessionFactoryConfig API has been
deprecated and is superseded by the
pyramid.session.SignedCookieSessionFactory. Note that while the cookies
generated by the UnencryptedCookieSessionFactoryConfig
are compatible with cookies generated by old releases, cookies generated by
the SignedCookieSessionFactory are not. See
https://github.com/Pylons/pyramid/pull/1142

Documentation Enhancements

	A new documentation chapter named Quick Tour of Pyramid was added. It describes
starting out with Pyramid from a high level.

	Added a Quick Tutorial for Pyramid to go with the Quick Tour

	Many other enhancements.

Scaffolding Enhancements

	All scaffolds have a new HTML + CSS theme.

	Updated docs and scaffolds to keep in step with new 2.0 release of
Lingua. This included removing all setup.cfg files from scaffolds
and documentation environments.

Dependency Changes

	Pyramid no longer depends upon Mako or Chameleon.

	Pyramid now depends on WebOb>=1.3 (it uses webob.cookies.CookieProfile
from 1.3+).

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

What's New In Pyramid 1.4

This article explains the new features in Pyramid version 1.4 as
compared to its predecessor, Pyramid 1.3. It also documents backwards
incompatibilities between the two versions and deprecations added to
Pyramid 1.4, as well as software dependency changes and notable
documentation additions.

Major Feature Additions

The major feature additions in Pyramid 1.4 follow.

Third-Party Predicates

	Third-party custom view, route, and subscriber predicates can now be added
for use by view authors via
pyramid.config.Configurator.add_view_predicate(),
pyramid.config.Configurator.add_route_predicate() and
pyramid.config.Configurator.add_subscriber_predicate(). So, for
example, doing this:

config.add_view_predicate('abc', my.package.ABCPredicate)

Might allow a view author to do this in an application that configured that
predicate:

@view_config(abc=1)

Similar features exist for pyramid.config.Configurator.add_route(),
and pyramid.config.Configurator.add_subscriber(). See
Adding a Third Party View, Route, or Subscriber Predicate for more information.

Easy Custom JSON Serialization

	Views can now return custom objects which will be serialized to JSON by a
JSON renderer by defining a __json__ method on the object's class. This
method should return values natively serializable by json.dumps (such
as ints, lists, dictionaries, strings, and so forth). See
Serializing Custom Objects for more information. The JSON
renderer now also allows for the definition of custom type adapters to
convert unknown objects to JSON serializations, in case you can't add a
__json__ method to returned objects.

Partial Mako and Chameleon Template Renderings

	The Mako renderer now supports using a def name in an asset spec. When the
def name is present in the asset spec, the system will render the template
named def within the template instead of rendering the entire template. An
example asset spec which names a def is
package:path/to/template#defname.mako. This will render the def named
defname inside the template.mako template instead of rendering the
entire template. The old way of returning a tuple in the form
('defname', {}) from the view is supported for backward compatibility.

	The Chameleon ZPT renderer now supports using a macro name in an asset
spec. When the macro name is present in the asset spec, the system will
render the macro listed as a define-macro and return the result instead
of rendering the entire template. An example asset spec:
package:path/to/template#macroname.pt. This will render the macro
defined as macroname within the template.pt template instead of the
entire template.

Subrequest Support

	Developers may invoke a subrequest by using the
pyramid.request.Request.invoke_subrequest() API. This allows a
developer to obtain a response from one view callable by issuing a subrequest
from within a different view callable. See Invoking a Subrequest for
more information.

Minor Feature Additions

	pyramid.authentication.AuthTktAuthenticationPolicy has been updated
to support newer hashing algorithms such as sha512. Existing applications
should consider updating if possible for improved security over the default
md5 hashing.

	pyramid.config.Configurator.add_directive() now accepts arbitrary
callables like partials or objects implementing __call__ which don't
have __name__ and __doc__ attributes. See
https://github.com/Pylons/pyramid/issues/621 and
https://github.com/Pylons/pyramid/pull/647.

	As of this release, the request_method view/route predicate, when used,
will also imply that HEAD is implied when you use GET. For
example, using @view_config(request_method='GET') is equivalent to
using @view_config(request_method=('GET', 'HEAD')). Using
@view_config(request_method=('GET', 'POST') is equivalent to using
@view_config(request_method=('GET', 'HEAD', 'POST'). This is because
HEAD is a variant of GET that omits the body, and WebOb has special support
to return an empty body when a HEAD is used.

	pyramid.config.Configurator.add_request_method() has been introduced
to support extending request objects with arbitrary callables. This method
expands on the now documentation-deprecated
pyramid.config.Configurator.set_request_property() by supporting
methods as well as properties. This method also causes less code to be
executed at request construction time than
set_request_property().

	The static view machinery now raises rather than returns
pyramid.httpexceptions.HTTPNotFound and
pyramid.httpexceptions.HTTPMovedPermanently exceptions, so these can
be caught by the Not Found View (and other exception views).

	When there is a predicate mismatch exception (seen when no view matches for
a given request due to predicates not working), the exception now contains
a textual description of the predicate which didn't match.

	An pyramid.config.Configurator.add_permission() directive method was
added to the Configurator. This directive registers a free-standing
permission introspectable into the Pyramid introspection system.
Frameworks built atop Pyramid can thus use the permissions
introspectable category data to build a comprehensive list of permissions
supported by a running system. Before this method was added, permissions
were already registered in this introspectable category as a side effect of
naming them in an pyramid.config.Configurator.add_view() call, this
method just makes it possible to arrange for a permission to be put into
the permissions introspectable category without naming it along with an
associated view. Here's an example of usage of add_permission:

config = Configurator()
config.add_permission('view')

	The pyramid.session.UnencryptedCookieSessionFactoryConfig() function
now accepts signed_serialize and signed_deserialize hooks which may
be used to influence how the sessions are marshalled (by default this is
done with HMAC+pickle).

	pyramid.testing.DummyRequest now supports methods supplied by the
pyramid.util.InstancePropertyMixin class such as set_property.

	Request properties and methods added via
pyramid.config.Configurator.add_request_method() or
pyramid.config.Configurator.set_request_property() are now available to
tweens.

	Request properties and methods added via
pyramid.config.Configurator.add_request_method() or
pyramid.config.Configurator.set_request_property() are now available
in the request object returned from pyramid.paster.bootstrap().

	request.context of environment request during
pyramid.paster.bootstrap() is now the root object if a context isn't
already set on a provided request.

	pyramid.decorator.reify is now an API, and was added to
the API documentation.

	Added the pyramid.testing.testConfig() context manager, which can be
used to generate a configurator in a test, e.g. with
testing.testConfig(...):.

	A new pyramid.session.check_csrf_token() convenience API function was
added.

	A check_csrf view predicate was added. For example, you can now do
config.add_view(someview, check_csrf=True). When the predicate is
checked, if the csrf_token value in request.params matches the csrf
token in the request's session, the view will be permitted to execute.
Otherwise, it will not be permitted to execute.

	Add Base.metadata.bind = engine to alchemy scaffold, so that tables
defined imperatively will work.

	Comments with references to documentation sections placed in scaffold
.ini files.

	Allow multiple values to be specified to the request_param view/route
predicate as a sequence. Previously only a single string value was allowed.
See https://github.com/Pylons/pyramid/pull/705

	Added an HTTP Basic authentication policy
at pyramid.authentication.BasicAuthAuthenticationPolicy.

	The pyramid.config.Configurator.testing_securitypolicy() method now
returns the policy object it creates.

	The DummySecurityPolicy created by
pyramid.config.Configurator.testing_securitypolicy() now sets a
forgotten value on the policy (the value True) when its forget
method is called.

	The DummySecurityPolicy created by
pyramid.config.Configurator.testing_securitypolicy() now sets a
remembered value on the policy, which is the value of the principal
argument it's called with when its remember method is called.

	New physical_path view predicate. If specified, this value should be a
string or a tuple representing the physical traversal path of the context
found via traversal for this predicate to match as true. For example:
physical_path='/' or physical_path='/a/b/c' or physical_path=('',
'a', 'b', 'c'). It's useful when you want to always potentially show a
view when some object is traversed to, but you can't be sure about what kind
of object it will be, so you can't use the context predicate.

	Added an effective_principals route and view predicate.

	Do not allow the userid returned from the
pyramid.security.authenticated_userid() or the userid that is one of the
list of principals returned by pyramid.security.effective_principals()
to be either of the strings system.Everyone or system.Authenticated
when any of the built-in authorization policies that live in
pyramid.authentication are in use. These two strings are reserved for
internal usage by Pyramid and they will no longer be accepted as valid
userids.

	Allow a _depth argument to pyramid.view.view_config, which will
permit limited composition reuse of the decorator by other software that
wants to provide custom decorators that are much like view_config.

	Allow an iterable of decorators to be passed to
pyramid.config.Configurator.add_view(). This allows views to be wrapped
by more than one decorator without requiring combining the decorators
yourself.

	pyramid.security.view_execution_permitted() used to return True if no
view could be found. It now raises a TypeError [http://docs.python.org/3/library/exceptions.html#TypeError] exception in that case,
as it doesn't make sense to assert that a nonexistent view is
execution-permitted. See https://github.com/Pylons/pyramid/issues/299.

	Small microspeed enhancement which anticipates that a
pyramid.response.Response object is likely to be returned from a
view. Some code is shortcut if the class of the object returned by a view is
this class. A similar microoptimization was done to
pyramid.request.Request.is_response().

	Make it possible to use variable arguments on all p* commands
(pserve, pshell, pviews, etc) in the form a=1 b=2 so you can
fill in values in parameterized .ini file, e.g. pshell
etc/development.ini http_port=8080.

	In order to allow people to ignore unused arguments to subscriber callables
and to normalize the relationship between event subscribers and subscriber
predicates, we now allow both subscribers and subscriber predicates to accept
only a single event argument even if they've been subscribed for
notifications that involve multiple interfaces.

Backwards Incompatibilities

	The Pyramid router no longer adds the values bfg.routes.route or
bfg.routes.matchdict to the request's WSGI environment dictionary.
These values were docs-deprecated in repoze.bfg 1.0 (effectively seven
minor releases ago). If your code depended on these values, use
request.matched_route and request.matchdict instead.

	It is no longer possible to pass an environ dictionary directly to
pyramid.traversal.ResourceTreeTraverser.__call__ (aka
ModelGraphTraverser.__call__). Instead, you must pass a request
object. Passing an environment instead of a request has generated a
deprecation warning since Pyramid 1.1.

	Pyramid will no longer work properly if you use the
webob.request.LegacyRequest as a request factory. Instances of the
LegacyRequest class have a request.path_info which return a string.
This Pyramid release assumes that request.path_info will
unconditionally be Unicode.

	The functions from pyramid.chameleon_zpt and pyramid.chameleon_text
named get_renderer, get_template, render_template, and
render_template_to_response have been removed. These have issued a
deprecation warning upon import since Pyramid 1.0. Use
pyramid.renderers.get_renderer(),
pyramid.renderers.get_renderer().implementation(),
pyramid.renderers.render() or
pyramid.renderers.render_to_response() respectively instead of these
functions.

	The pyramid.configuration module was removed. It had been deprecated
since Pyramid 1.0 and printed a deprecation warning upon its use. Use
pyramid.config instead.

	The pyramid.paster.PyramidTemplate API was removed. It had been
deprecated since Pyramid 1.1 and issued a warning on import. If your code
depended on this, adjust your code to import
pyramid.scaffolds.PyramidTemplate instead.

	The pyramid.settings.get_settings() API was removed. It had been
printing a deprecation warning since Pyramid 1.0. If your code depended on
this API, use pyramid.threadlocal.get_current_registry().settings
instead or use the settings attribute of the registry available from
the request (request.registry.settings).

	These APIs from the pyramid.testing module were removed. They have
been printing deprecation warnings since Pyramid 1.0:
	registerDummySecurityPolicy, use
pyramid.config.Configurator.testing_securitypolicy() instead.

	registerResources (aka registerModels), use
pyramid.config.Configurator.testing_resources() instead.

	registerEventListener, use
pyramid.config.Configurator.testing_add_subscriber() instead.

	registerTemplateRenderer (aka registerDummyRenderer), use
pyramid.config.Configurator.testing_add_renderer() instead.

	registerView, use pyramid.config.Configurator.add_view() instead.

	registerUtility, use
pyramid.config.Configurator.registry.registerUtility() instead.

	registerAdapter, use
pyramid.config.Configurator.registry.registerAdapter() instead.

	registerSubscriber, use
pyramid.config.Configurator.add_subscriber() instead.

	registerRoute, use
pyramid.config.Configurator.add_route() instead.

	registerSettings, use
pyramid.config.Configurator.add_settings() instead.

	In Pyramid 1.3 and previous, the __call__ method of a Response object
returned by a view was invoked before any finished callbacks were executed.
As of this release, the __call__ method of a Response object is invoked
after finished callbacks are executed. This is in support of the
pyramid.request.Request.invoke_subrequest() feature.

Deprecations

	The pyramid.config.Configurator.set_request_property() directive has
been documentation-deprecated. The method remains usable but the more
featureful pyramid.config.Configurator.add_request_method() should be
used in its place (it has all of the same capabilities but can also extend
the request object with methods).

	pyramid.authentication.AuthTktAuthenticationPolicy will emit a
deprecation warning if an application is using the policy without explicitly
passing a hashalg argument. This is because the default is "md5" which is
considered theoretically subject to collision attacks. If you really want
"md5" then you must specify it explicitly to get rid of the warning.

Documentation Enhancements

	Added an Upgrading Pyramid chapter to the narrative documentation.
It describes how to cope with deprecations and removals of Pyramid APIs and
how to show Pyramid-generated deprecation warnings while running tests and
while running a server.

	Added a Invoking a Subrequest chapter to the narrative documentation.

	All of the tutorials that use
pyramid.authentication.AuthTktAuthenticationPolicy now explicitly
pass sha512 as a hashalg argument.

	Many cleanups and improvements to narrative and API docs.

Dependency Changes

	Pyramid now requires WebOb 1.2b3+ (the prior Pyramid release only relied on
1.2dev+). This is to ensure that we obtain a version of WebOb that returns
request.path_info as text.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

What's New In Pyramid 1.3

This article explains the new features in Pyramid version 1.3 as
compared to its predecessor, Pyramid 1.2. It also documents backwards
incompatibilities between the two versions and deprecations added to
Pyramid 1.3, as well as software dependency changes and notable
documentation additions.

Major Feature Additions

The major feature additions in Pyramid 1.3 follow.

Python 3 Compatibility

[image: _images/python-3.png]
Pyramid continues to run on Python 2, but Pyramid is now also Python 3
compatible. To use Pyramid under Python 3, Python 3.2 or better is required.

Many Pyramid add-ons are already Python 3 compatible. For example,
pyramid_debugtoolbar, pyramid_jinja2, pyramid_exclog,
pyramid_tm, pyramid_mailer, and pyramid_handlers are all Python
3-ready. But other add-ons are known to work only under Python 2. Also,
some scaffolding dependencies (particularly ZODB) do not yet work under
Python 3.

Please be patient as we gain full ecosystem support for Python 3. You can
see more details about ongoing porting efforts at
https://github.com/Pylons/pyramid/wiki/Python-3-Porting .

Python 3 compatibility required dropping some package dependencies and
support for older Python versions and platforms. See the "Backwards
Incompatibilities" section below for more information.

The paster Command Has Been Replaced

We've replaced the paster command with Pyramid-specific analogues. Why?
The libraries that supported the paster command named Paste and
PasteScript do not run under Python 3, and we were unwilling to port and
maintain them ourselves. As a result, we've had to make some changes.

Previously (in Pyramid 1.0, 1.1 and 1.2), you created a Pyramid application
using paster create, like so:

$ $VENV/bin/paster create -t pyramid_starter foo

In 1.3, you're now instead required to create an application using
pcreate like so:

$ $VENV/bin/pcreate -s starter foo

pcreate is required to be used for internal Pyramid scaffolding;
externally distributed scaffolding may allow for both pcreate and/or
paster create.

In previous Pyramid versions, you ran a Pyramid application like so:

$ $VENV/bin/paster serve development.ini

Instead, you now must use the pserve command in 1.3:

$ $VENV/bin/pserve development.ini

The ini configuration file format supported by Pyramid has not changed.
As a result, Python 2-only users can install PasteScript manually and use
paster serve instead if they like. However, using pserve will work
under both Python 2 and Python 3.

Analogues of paster pshell, paster pviews, paster request and
paster ptweens also exist under the respective console script names
pshell, pviews, prequest and ptweens.

paste.httpserver replaced by waitress in Scaffolds

Because the paste.httpserver server we used previously in scaffolds is
not Python 3 compatible, we've made the default WSGI server used by Pyramid
scaffolding the waitress server. The waitress server is both Python
2 and Python 3 compatible.

Once you create a project from a scaffold, its development.ini and
production.ini will have the following line:

use = egg:waitress#main

Instead of this (which was the default in older versions):

use = egg:Paste#http

Note

paste.httpserver "helped" by converting header values that were Unicode
into strings, which was a feature that subverted the WSGI
specification. The waitress server, on the other hand implements the
WSGI spec more fully. This specifically may affect you if you are modifying
headers on your responses. The following error might be an indicator of
this problem: AssertionError: Header values must be strings, please check
the type of the header being returned. A common case would be returning
Unicode headers instead of string headers.

Compatibility Helper Library

A new pyramid.compat module was added which provides Python 2/3
straddling support for Pyramid add-ons and development environments.

Introspection

A configuration introspection system was added; see
Pyramid Configuration Introspection and Adding Configuration Introspection for more information on
using the introspection system as a developer.

The latest release of the pyramid debug toolbar (0.9.7+) provides an
"Introspection" panel that exposes introspection information to a Pyramid
application developer.

New APIs were added to support introspection
pyramid.registry.Introspectable,
pyramid.config.Configurator.introspector,
pyramid.config.Configurator.introspectable,
pyramid.registry.Registry.introspector.

@view_defaults Decorator

If you use a class as a view, you can use the new
pyramid.view.view_defaults class decorator on the class to provide
defaults to the view configuration information used by every @view_config
decorator that decorates a method of that class.

For instance, if you've got a class that has methods that represent "REST
actions", all which are mapped to the same route, but different request
methods, instead of this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from pyramid.view import view_config
from pyramid.response import Response

class RESTView(object):
 def __init__(self, request):
 self.request = request

 @view_config(route_name='rest', request_method='GET')
 def get(self):
 return Response('get')

 @view_config(route_name='rest', request_method='POST')
 def post(self):
 return Response('post')

 @view_config(route_name='rest', request_method='DELETE')
 def delete(self):
 return Response('delete')

You can do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from pyramid.view import view_defaults
from pyramid.view import view_config
from pyramid.response import Response

@view_defaults(route_name='rest')
class RESTView(object):
 def __init__(self, request):
 self.request = request

 @view_config(request_method='GET')
 def get(self):
 return Response('get')

 @view_config(request_method='POST')
 def post(self):
 return Response('post')

 @view_config(request_method='DELETE')
 def delete(self):
 return Response('delete')

This also works for imperative view configurations that involve a class.

See @view_defaults Class Decorator for more information.

Extending a Request without Subclassing

It is now possible to extend a pyramid.request.Request object
with property descriptors without having to create a custom request factory.
The new method pyramid.config.Configurator.set_request_property()
provides an entry point for addons to register properties which will be
added to each request. New properties may be reified, effectively caching
the return value for the lifetime of the instance. Common use-cases for this
would be to get a database connection for the request or identify the current
user. The new method pyramid.request.Request.set_property() has been
added, as well, but the configurator method should be preferred as it
provides conflict detection and consistency in the lifetime of the
properties.

Not Found and Forbidden View Helpers

Not Found helpers:

	New API: pyramid.config.Configurator.add_notfound_view(). This is a
wrapper for pyramid.config.Configurator.add_view() which provides
support for an "append_slash" feature as well as doing the right thing when
it comes to permissions (a Not Found View should always be public). It
should be preferred over calling add_view directly with
context=HTTPNotFound as was previously recommended.

	New API: pyramid.view.notfound_view_config. This is a decorator
constructor like pyramid.view.view_config that calls
pyramid.config.Configurator.add_notfound_view() when scanned. It
should be preferred over using pyramid.view.view_config with
context=HTTPNotFound as was previously recommended.

Forbidden helpers:

	New API: pyramid.config.Configurator.add_forbidden_view(). This is a
wrapper for pyramid.config.Configurator.add_view() which does the
right thing about permissions. It should be preferred over calling
add_view directly with context=HTTPForbidden as was previously
recommended.

	New API: pyramid.view.forbidden_view_config. This is a decorator
constructor like pyramid.view.view_config that calls
pyramid.config.Configurator.add_forbidden_view() when scanned. It
should be preferred over using pyramid.view.view_config with
context=HTTPForbidden as was previously recommended.

Minor Feature Additions

	New APIs: pyramid.path.AssetResolver and
pyramid.path.DottedNameResolver. The former can be used to
resolve an asset specification to an API that can be used to read
the asset's data, the latter can be used to resolve a dotted Python
name to a module or a package.

	A mako.directories setting is no longer required to use Mako templates
Rationale: Mako template renderers can be specified using an absolute asset
spec. An entire application can be written with such asset specs,
requiring no ordered lookup path.

	bpython interpreter compatibility in pshell. See
IPython or bpython for more information.

	Added pyramid.paster.get_appsettings() API function. This function
returns the settings defined within an [app:...] section in a
PasteDeploy ini file.

	Added pyramid.paster.setup_logging() API function. This function
sets up Python logging according to the logging configuration in a
PasteDeploy ini file.

	Configuration conflict reporting is reported in a more understandable way
("Line 11 in file..." vs. a repr of a tuple of similar info).

	We allow extra keyword arguments to be passed to the
pyramid.config.Configurator.action() method.

	Responses generated by Pyramid's pyramid.static.static_view now use
a wsgi.file_wrapper (see
http://www.python.org/dev/peps/pep-0333/#optional-platform-specific-file-handling)
when one is provided by the web server.

	The pyramid.config.Configurator.scan() method can be passed an
ignore argument, which can be a string, a callable, or a list
consisting of strings and/or callables. This feature allows submodules,
subpackages, and global objects from being scanned. See
http://readthedocs.org/docs/venusian/en/latest/#ignore-scan-argument for
more information about how to use the ignore argument to scan.

	Add pyramid.config.Configurator.add_traverser() API method. See
Changing the Traverser for more information. This is not a new
feature, it just provides an API for adding a traverser without needing to
use the ZCA API.

	Add pyramid.config.Configurator.add_resource_url_adapter() API
method. See Changing How pyramid.request.Request.resource_url() Generates a URL for more information. This is
not a new feature, it just provides an API for adding a resource url
adapter without needing to use the ZCA API.

	Better error messages when a view callable returns a value that cannot be
converted to a response (for example, when a view callable returns a
dictionary without a renderer defined, or doesn't return any value at all).
The error message now contains information about the view callable itself
as well as the result of calling it.

	Better error message when a .pyc-only module is config.include -ed.
This is not permitted due to error reporting requirements, and a better
error message is shown when it is attempted. Previously it would fail with
something like "AttributeError: 'NoneType' object has no attribute
'rfind'".

	The system value req is now supplied to renderers as an alias for
request. This means that you can now, for example, in a template, do
req.route_url(...) instead of request.route_url(...). This is
purely a change to reduce the amount of typing required to use request
methods and attributes from within templates. The value request is
still available too, this is just an alternative.

	A new interface was added: pyramid.interfaces.IResourceURL. An
adapter implementing its interface can be used to override resource URL
generation when pyramid.request.Request.resource_url() is called.
This interface replaces the now-deprecated
pyramid.interfaces.IContextURL interface.

	The dictionary passed to a resource's __resource_url__ method (see
Overriding Resource URL Generation) now contains an app_url key,
representing the application URL generated during
pyramid.request.Request.resource_url(). It represents a potentially
customized URL prefix, containing potentially custom scheme, host and port
information passed by the user to request.resource_url. It should be
used instead of request.application_url where necessary.

	The pyramid.request.Request.resource_url() API now accepts these
arguments: app_url, scheme, host, and port. The app_url
argument can be used to replace the URL prefix wholesale during url
generation. The scheme, host, and port arguments can be used
to replace the respective default values of request.application_url
partially.

	A new API named pyramid.request.Request.resource_path() now exists.
It works like pyramid.request.Request.resource_url() but produces a
relative URL rather than an absolute one.

	The pyramid.request.Request.route_url() API now accepts these
arguments: _app_url, _scheme, _host, and _port. The
_app_url argument can be used to replace the URL prefix wholesale
during url generation. The _scheme, _host, and _port arguments
can be used to replace the respective default values of
request.application_url partially.

	New APIs: pyramid.response.FileResponse and
pyramid.response.FileIter, for usage in views that must serve
files "manually".

Backwards Incompatibilities

	Pyramid no longer runs on Python 2.5. This includes the most recent
release of Jython and the Python 2.5 version of Google App Engine.

The reason? We could not easily "straddle" Python 2 and 3 versions and
support Python 2 versions older than Python 2.6. You will need Python 2.6
or better to run this version of Pyramid. If you need to use Python 2.5,
you should use the most recent 1.2.X release of Pyramid.

	The names of available scaffolds have changed and the flags supported by
pcreate are different than those that were supported by paster
create. For example, pyramid_alchemy is now just alchemy.

	The paster command is no longer the documented way to create projects,
start the server, or run debugging commands. To create projects from
scaffolds, paster create is replaced by the pcreate console script.
To serve up a project, paster serve is replaced by the pserve
console script. New console scripts named pshell, pviews,
proutes, and ptweens do what their paster <commandname>
equivalents used to do. All relevant narrative documentation has been
updated. Rationale: the Paste and PasteScript packages do not run under
Python 3.

	The default WSGI server run as the result of pserve from newly rendered
scaffolding is now the waitress WSGI server instead of the
paste.httpserver server. Rationale: the Paste and PasteScript packages
do not run under Python 3.

	The pshell command (see "paster pshell") no longer accepts a
--disable-ipython command-line argument. Instead, it accepts a -p
or --python-shell argument, which can be any of the values python,
ipython or bpython.

	Removed the pyramid.renderers.renderer_from_name function. It has been
deprecated since Pyramid 1.0, and was never an API.

	To use ZCML with versions of Pyramid >= 1.3, you will need pyramid_zcml
version >= 0.8 and zope.configuration version >= 3.8.0. The
pyramid_zcml package version 0.8 is backwards compatible all the way to
Pyramid 1.0, so you won't be warned if you have older versions installed
and upgrade Pyramid itself "in-place"; it may simply break instead
(particularly if you use ZCML's includeOverrides directive).

	String values passed to pyramid.request.Request.route_url() or
pyramid.request.Request.route_path() that are meant to replace
"remainder" matches will now be URL-quoted except for embedded slashes. For
example:

config.add_route('remain', '/foo*remainder')
request.route_path('remain', remainder='abc / def')
-> '/foo/abc%20/%20def'

Previously string values passed as remainder replacements were tacked on
untouched, without any URL-quoting. But this doesn't really work logically
if the value passed is Unicode (raw unicode cannot be placed in a URL or in
a path) and it is inconsistent with the rest of the URL generation
machinery if the value is a string (it won't be quoted unless by the
caller).

Some folks will have been relying on the older behavior to tack on query
string elements and anchor portions of the URL; sorry, you'll need to
change your code to use the _query and/or _anchor arguments to
route_path or route_url to do this now.

	If you pass a bytestring that contains non-ASCII characters to
pyramid.config.Configurator.add_route() as a pattern, it will now
fail at startup time. Use Unicode instead.

	The path_info route and view predicates now match against
request.upath_info (Unicode) rather than request.path_info
(indeterminate value based on Python 3 vs. Python 2). This has to be done
to normalize matching on Python 2 and Python 3.

	The match_param view predicate no longer accepts a dict. This will have
no negative affect because the implementation was broken for dict-based
arguments.

	The pyramid.interfaces.IContextURL interface has been deprecated.
People have been instructed to use this to register a resource url adapter
in the "Hooks" chapter to use to influence
pyramid.request.Request.resource_url() URL generation for resources
found via custom traversers since Pyramid 1.0.

The interface still exists and registering an adapter using it as
documented in older versions still works, but this interface will be
removed from the software after a few major Pyramid releases. You should
replace it with an equivalent pyramid.interfaces.IResourceURL
adapter, registered using the new
pyramid.config.Configurator.add_resource_url_adapter() API. A
deprecation warning is now emitted when a
pyramid.interfaces.IContextURL adapter is found when
pyramid.request.Request.resource_url() is called.

	Remove pyramid.config.Configurator.with_context class method. It was
never an API, it is only used by pyramid_zcml and its functionality has
been moved to that package's latest release. This means that you'll need
to use the 0.9.2 or later release of pyramid_zcml with this release of
Pyramid.

	The older deprecated set_notfound_view Configurator method is now an
alias for the new add_notfound_view Configurator method. Likewise, the
older deprecated set_forbidden_view is now an alias for the new
add_forbidden_view Configurator method. This has the following impact:
the context sent to views with a (context, request) call signature
registered via the set_notfound_view or set_forbidden_view will now
be an exception object instead of the actual resource context found. Use
request.context to get the actual resource context. It's also
recommended to disuse set_notfound_view in favor of
add_notfound_view, and disuse set_forbidden_view in favor of
add_forbidden_view despite the aliasing.

Deprecations

	The API documentation for pyramid.view.append_slash_notfound_view and
pyramid.view.AppendSlashNotFoundViewFactory was removed. These names
still exist and are still importable, but they are no longer APIs. Use
pyramid.config.Configurator.add_notfound_view(append_slash=True) or
pyramid.view.notfound_view_config(append_slash=True) to get the same
behavior.

	The set_forbidden_view and set_notfound_view methods of the
Configurator were removed from the documentation. They have been
deprecated since Pyramid 1.1.

	All references to the tmpl_context request variable were removed from
the docs. Its existence in Pyramid is confusing for people who were never
Pylons users. It was added as a porting convenience for Pylons users in
Pyramid 1.0, but it never caught on because the Pyramid rendering system is
a lot different than Pylons' was, and alternate ways exist to do what it
was designed to offer in Pylons. It will continue to exist "forever" but
it will not be recommended or mentioned in the docs.

	Remove references to do-nothing pyramid.debug_templates setting in all
Pyramid-provided .ini files. This setting previously told Chameleon to render
better exceptions; now Chameleon always renders nice exceptions regardless of
the value of this setting.

Known Issues

	As of this writing (the release of Pyramid 1.3b2), if you attempt to
install a Pyramid project that used the alchemy scaffold via setup.py
develop on Python 3.2, it will quit with an installation error while
trying to install Pygments. If this happens, please just rerun the
setup.py develop command again, and it will complete successfully.
This is due to a minor bug in SQLAlchemy 0.7.5 under Python 3, and has been
fixed in a later SQLAlchemy release. Keep an eye on
http://www.sqlalchemy.org/trac/ticket/2421

Documentation Enhancements

	The SQLAlchemy + URL Dispatch Wiki Tutorial has been updated. It now uses
@view_config decorators and an explicit database population script.

	Minor updates to the ZODB + Traversal Wiki Tutorial.

	A narrative documentation chapter named Extending Pyramid Configuration was added; it
describes how to add a custom configuration directive, and how use
the pyramid.config.Configurator.action() method within custom
directives. It also describes how to add introspectable objects.

	A narrative documentation chapter named Pyramid Configuration Introspection was
added. It describes how to query the introspection system.

	Added an API docs chapter for pyramid.scaffolds.

	Added a narrative docs chapter named Creating Pyramid Scaffolds.

	Added a description of the prequest command-line script at
Invoking a Request.

	Added a section to the "Command-Line Pyramid" chapter named
Making Your Script into a Console Script.

	Removed the "Running Pyramid on Google App Engine" tutorial from the main
docs. It survives on in the Pyramid Community Cookbook as
Pyramid on Google's App Engine (using appengine-monkey) [http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/deployment/gae.html#appengine-tutorial]. Rationale: it provides the correct info for
the Python 2.5 version of GAE only, and this version of Pyramid does not
support Python 2.5.

	Updated the Changing the Forbidden View section, replacing
explanations of registering a view using add_view or view_config
with ones using add_forbidden_view or forbidden_view_config.

	Updated the Changing the Not Found View section, replacing
explanations of registering a view using add_view or view_config
with ones using add_notfound_view or notfound_view_config.

	Updated the Redirecting to Slash-Appended Routes section, replacing
explanations of registering a view using add_view or view_config
with ones using add_notfound_view or notfound_view_config

	Updated all tutorials to use pyramid.view.forbidden_view_config rather
than pyramid.view.view_config with an HTTPForbidden context.

Dependency Changes

	Pyramid no longer depends on the zope.component package, except as a
testing dependency.

	Pyramid now depends on the following package versions:
zope.interface>=3.8.0, WebOb>=1.2dev, repoze.lru>=0.4,
zope.deprecation>=3.5.0, translationstring>=0.4 for Python 3 compatibility
purposes. It also, as a testing dependency, depends on WebTest>=1.3.1 for
the same reason.

	Pyramid no longer depends on the Paste or PasteScript packages.
These packages are not Python 3 compatible.

	Depend on venusian >= 1.0a3 to provide scan ignore support.

Scaffolding Changes

	Rendered scaffolds have now been changed to be more relocatable (fewer
mentions of the package name within files in the package).

	The routesalchemy scaffold has been renamed alchemy, replacing the
older (traversal-based) alchemy scaffold (which has been retired).

	The alchemy and starter scaffolds are Python 3 compatible.

	The starter scaffold now uses URL dispatch by default.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

What's New In Pyramid 1.2

This article explains the new features in Pyramid version 1.2 as
compared to its predecessor, Pyramid 1.1. It also documents backwards
incompatibilities between the two versions and deprecations added to Pyramid
1.2, as well as software dependency changes and notable documentation
additions.

Major Feature Additions

The major feature additions in Pyramid 1.2 follow.

Debug Toolbar

The scaffolding packages that come with Pyramid now include a debug toolbar
component which can be used to interactively debug an application. See
The Debug Toolbar for more information.

route_prefix Argument to include

The pyramid.config.Configurator.include() method now accepts a
route_prefix argument. This argument allows you to compose URL dispatch
applications together from disparate packages. See Using a Route Prefix to Compose Applications for
more information.

Tweens

A tween is used to wrap the Pyramid router's primary request handling
function. This is a feature that can be used by Pyramid framework extensions,
to provide, for example, view timing support and can provide a convenient
place to hang bookkeeping code. Tweens are a little like WSGI
middleware, but have access to Pyramid functionality such as renderers
and a full-featured request object.

To support this feature, a new configurator directive exists named
pyramid.config.Configurator.add_tween(). This directive adds a
"tween".

Tweens are further described in Registering Tweens.

A new paster command now exists: paster ptweens. This command prints the
current tween configuration for an application. See the section entitled
Displaying "Tweens" for more info.

Scaffolding Changes

	All scaffolds now use the pyramid_tm package rather than the
repoze.tm2 middleware to manage transaction management.

	The ZODB scaffold now uses the pyramid_zodbconn package rather than the
repoze.zodbconn package to provide ZODB integration.

	All scaffolds now use the pyramid_debugtoolbar package rather than the
WebError package to provide interactive debugging features.

	Projects created via a scaffold no longer depend on the WebError package
at all; configuration in the production.ini file which used to require
its error_catcher middleware has been removed. Configuring
error catching / email sending is now the domain of the pyramid_exclog
package (see http://docs.pylonsproject.org/projects/pyramid_exclog/dev/).

	All scaffolds now send the cache_max_age parameter to the
add_static_view method.

Minor Feature Additions

	The [pshell] section in an ini configuration file now treats a
setup key as a dotted name that points to a callable that is passed the
bootstrap environment. It can mutate the environment as necessary during a
paster pshell session. This feature is described in
Writing a Script.

	A new configuration setting named pyramid.includes is now available.
It is described in Including Packages.

	Added a pyramid.security.NO_PERMISSION_REQUIRED constant for use in
permission= statements to view configuration. This constant has a
value of the string __no_permission_required__. This string value was
previously referred to in documentation; now the documentation uses the
constant.

	Added a decorator-based way to configure a response adapter:
pyramid.response.response_adapter. This decorator has the same
use as pyramid.config.Configurator.add_response_adapter() but it's
declarative.

	The pyramid.events.BeforeRender event now has an attribute named
rendering_val. This can be used to introspect the value returned by a
view in a BeforeRender subscriber.

	The Pyramid debug logger now uses the standard logging configuration
(usually set up by Paste as part of startup). This means that output from
e.g. debug_notfound, debug_authorization, etc. will go to the
normal logging channels. The logger name of the debug logger will be the
package name of the caller of the Configurator's constructor.

	A new attribute is available on request objects: exc_info. Its value
will be None until an exception is caught by the Pyramid router, after
which it will be the result of sys.exc_info().

	pyramid.testing.DummyRequest now implements the
add_finished_callback and add_response_callback methods implemented
by pyramid.request.Request.

	New methods of the pyramid.config.Configurator class:
set_authentication_policy() and
set_authorization_policy(). These are
meant to be consumed mostly by add-on authors who wish to offer packages
which register security policies.

	New Configurator method:
pyramid.config.Configurator.set_root_factory(), which can set the
root factory after the Configurator has been constructed.

	Pyramid no longer eagerly commits some default configuration statements at
Configurator construction time, which permits values passed in as
constructor arguments (e.g. authentication_policy and
authorization_policy) to override the same settings obtained via the
pyramid.config.Configurator.include() method.

	Better Mako rendering exceptions; the template line which caused the error
is now shown when a Mako rendering raises an exception.

	New request methods: current_route_url(),
current_route_path(), and
static_path().

	New functions in the pyramid.url module:
current_route_path() and
static_path().

	The pyramid.request.Request.static_url() API (and its brethren
pyramid.request.Request.static_path(),
pyramid.url.static_url(), and pyramid.url.static_path()) now
accept an absolute filename as a "path" argument. This will generate a URL
to an asset as long as the filename is in a directory which was previously
registered as a static view. Previously, trying to generate a URL to an
asset using an absolute file path would raise a ValueError.

	The RemoteUserAuthenticationPolicy,
AuthTktAuthenticationPolicy, and
SessionAuthenticationPolicy constructors
now accept an additional keyword argument named debug. By default,
this keyword argument is False. When it is True, debug information
will be sent to the Pyramid debug logger (usually on stderr) when the
authenticated_userid or effective_principals method is called on
any of these policies. The output produced can be useful when trying to
diagnose authentication-related problems.

	New view predicate: match_param. Example: a view added via
config.add_view(aview, match_param='action=edit') will be called only
when the request.matchdict has a value inside it named action with
a value of edit.

	Support an onerror keyword argument to
pyramid.config.Configurator.scan(). This argument is passed to
venusian.Scanner.scan() [http://docs.pylonsproject.org/projects/venusian/en/latest/api.html#venusian.Scanner.scan] to influence error behavior when an exception
is raised during scanning.

	The request_method predicate argument to
pyramid.config.Configurator.add_view() and
pyramid.config.Configurator.add_route() is now permitted to be a
tuple of HTTP method names. Previously it was restricted to being a string
representing a single HTTP method name.

	Undeprecated pyramid.traversal.find_model,
pyramid.traversal.model_path, pyramid.traversal.model_path_tuple,
and pyramid.url.model_url, which were all deprecated in Pyramid 1.0.
There's just not much cost to keeping them around forever as aliases to
their renamed resource_* prefixed functions.

	Undeprecated pyramid.view.bfg_view, which was deprecated in Pyramid
1.0. This is a low-cost alias to pyramid.view.view_config which we'll
just keep around forever.

	Route pattern replacement marker names can now begin with an underscore.
See https://github.com/Pylons/pyramid/issues/276.

Deprecations

	All Pyramid-related deployment settings (e.g. debug_all,
debug_notfound) are now meant to be prefixed with the prefix
pyramid.. For example: debug_all -> pyramid.debug_all. The
old non-prefixed settings will continue to work indefinitely but supplying
them may print a deprecation warning. All scaffolds and tutorials have
been changed to use prefixed settings.

	The deployment settings dictionary now raises a deprecation warning
when you attempt to access its values via __getattr__ instead of via
__getitem__.

Backwards Incompatibilities

	If a string is passed as the debug_logger parameter to a
Configurator, that string is considered to be the name of a global
Python logger rather than a dotted name to an instance of a logger.

	The pyramid.config.Configurator.include() method now accepts only a
single callable argument. A sequence of callables used to be
permitted. If you are passing more than one callable to
pyramid.config.Configurator.include(), it will break. You now must
now instead make a separate call to the method for each callable.

	It may be necessary to more strictly order configuration route and view
statements when using an "autocommitting" Configurator. In the
past, it was possible to add a view which named a route name before adding
a route with that name when you used an autocommitting configurator. For
example:

config = Configurator(autocommit=True)
config.add_view('my.pkg.someview', route_name='foo')
config.add_route('foo', '/foo')

The above will raise an exception when the view attempts to add itself.
Now you must add the route before adding the view:

config = Configurator(autocommit=True)
config.add_route('foo', '/foo')
config.add_view('my.pkg.someview', route_name='foo')

This won't effect "normal" users, only people who have legacy BFG codebases
that used an autommitting configurator and possibly tests that use the
configurator API (the configurator returned by
pyramid.testing.setUp() is an autocommitting configurator). The
right way to get around this is to use a default non-autocommitting
configurator, which does not have these directive ordering requirements:

 config = Configurator()
 config.add_view('my.pkg.someview', route_name='foo')
 config.add_route('foo', '/foo')

The above will work fine.

	The pyramid.config.Configurator.add_route() directive no longer
returns a route object. This change was required to make route vs. view
configuration processing work properly.

Behavior Differences

	An ETag header is no longer set when serving a static file. A
Last-Modified header is set instead.

	Static file serving no longer supports the wsgi.file_wrapper extension.

	Instead of returning a 403 Forbidden error when a static file is served
that cannot be accessed by the Pyramid process' user due to file
permissions, an IOError (or similar) will be raised.

Documentation Enhancements

	Narrative and API documentation which used the route_url,
route_path, resource_url, static_url, and current_route_url
functions in the pyramid.url package have now been changed to use
eponymous methods of the request instead.

	Added a section entitled Using a Route Prefix to Compose Applications to the "URL Dispatch"
narrative documentation chapter.

	Added a new module to the API docs: pyramid.tweens.

	Added a Registering Tweens section to the "Hooks" narrative chapter.

	Added a Displaying "Tweens" section to the "Command-Line Pyramid"
narrative chapter.

	Added documentation for Explicit Tween Configuration and
Including Packages to the "Environment Variables and .ini Files
Settings" chapter.

	Added a Logging chapter to the narrative docs.

	All tutorials now use - The route_url, route_path,
resource_url, static_url, and current_route_url methods of the
pyramid.request.Request rather than the function variants imported
from pyramid.url.

	The ZODB wiki tutorial now uses the pyramid_zodbconn package rather
than the repoze.zodbconn package to provide ZODB integration.

	Added What makes Pyramid unique to the Introduction narrative
chapter.

Dependency Changes

	Pyramid now relies on PasteScript >= 1.7.4. This version contains a
feature important for allowing flexible logging configuration.

	Pyramid now requires Venusian 1.0a1 or better to support the onerror
keyword argument to pyramid.config.Configurator.scan().

	The zope.configuration package is no longer a dependency.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

What's New In Pyramid 1.1

This article explains the new features in Pyramid version 1.1 as compared to
its predecessor, Pyramid 1.0. It also documents backwards
incompatibilities between the two versions and deprecations added to Pyramid
1.1, as well as software dependency changes and notable documentation
additions.

Terminology Changes

The term "template" used by the Pyramid documentation used to refer to both
"paster templates" and "rendered templates" (templates created by a rendering
engine. i.e. Mako, Chameleon, Jinja, etc.). "Paster templates" will now be
referred to as "scaffolds", whereas the name for "rendered templates" will
remain as "templates."

Major Feature Additions

The major feature additions in Pyramid 1.1 are:

	Support for the request.response attribute.

	New views introspection feature: paster pviews.

	Support for "static" routes.

	Default HTTP exception view.

	http_cache view configuration parameter causes Pyramid to set HTTP
caching headers.

	Features that make it easier to write scripts that work in a Pyramid
environment.

request.response

	Instances of the pyramid.request.Request class now have a
response attribute.

The object passed to a view callable as request is an instance of
pyramid.request.Request. request.response is an instance of
the class pyramid.response.Response. View callables that are
configured with a renderer will return this response object to the
Pyramid router. Therefore, code in a renderer-using view callable can set
response attributes such as request.response.content_type (before they
return, e.g. a dictionary to the renderer) and this will influence the HTTP
return value of the view callable.

request.response can also be used in view callable code that is not
configured to use a renderer. For example, a view callable might do
request.response.body = '123'; return request.response. However, the
response object that is produced by request.response must be returned
when a renderer is not in play in order to have any effect on the HTTP
response (it is not a "global" response, and modifications to it are not
somehow merged into a separately returned response object).

The request.response object is lazily created, so its introduction does
not negatively impact performance.

paster pviews

	A new paster command named paster pviews was added. This command
prints a summary of potentially matching views for a given path. See
the section entitled Displaying Matching Views for a Given URL for more
information.

Static Routes

	The add_route method of the Configurator now accepts a static
argument. If this argument is True, the added route will never be
considered for matching when a request is handled. Instead, it will only
be useful for URL generation via route_url and route_path. See the
section entitled Static Routes for more information.

Default HTTP Exception View

	A default exception view for the interface
pyramid.interfaces.IExceptionResponse is now registered by
default. This means that an instance of any exception class imported from
pyramid.httpexceptions (such as HTTPFound) can now be raised
from within view code; when raised, this exception view will render the
exception to a response.

To allow for configuration of this feature, the Configurator now
accepts an additional keyword argument named exceptionresponse_view.
By default, this argument is populated with a default exception view
function that will be used when an HTTP exception is raised. When None
is passed for this value, an exception view for HTTP exceptions will not be
registered. Passing None returns the behavior of raising an HTTP
exception to that of Pyramid 1.0 (the exception will propagate to
middleware and to the WSGI server).

http_cache

A new value http_cache can be used as a view configuration
parameter.

When you supply an http_cache value to a view configuration, the
Expires and Cache-Control headers of a response generated by the
associated view callable are modified. The value for http_cache may be
one of the following:

	A nonzero integer. If it's a nonzero integer, it's treated as a number
of seconds. This number of seconds will be used to compute the
Expires header and the Cache-Control: max-age parameter of
responses to requests which call this view. For example:
http_cache=3600 instructs the requesting browser to 'cache this
response for an hour, please'.

	A datetime.timedelta instance. If it's a datetime.timedelta
instance, it will be converted into a number of seconds, and that number
of seconds will be used to compute the Expires header and the
Cache-Control: max-age parameter of responses to requests which call
this view. For example: http_cache=datetime.timedelta(days=1)
instructs the requesting browser to 'cache this response for a day,
please'.

	Zero (0). If the value is zero, the Cache-Control and
Expires headers present in all responses from this view will be
composed such that client browser cache (and any intermediate caches) are
instructed to never cache the response.

	A two-tuple. If it's a two tuple (e.g. http_cache=(1,
{'public':True})), the first value in the tuple may be a nonzero
integer or a datetime.timedelta instance; in either case this value
will be used as the number of seconds to cache the response. The second
value in the tuple must be a dictionary. The values present in the
dictionary will be used as input to the Cache-Control response
header. For example: http_cache=(3600, {'public':True}) means 'cache
for an hour, and add public to the Cache-Control header of the
response'. All keys and values supported by the
webob.cachecontrol.CacheControl interface may be added to the
dictionary. Supplying {'public':True} is equivalent to calling
response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires(value) within your view's body.

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires(value[0], **value[1]) within your view's body.

If you wish to avoid influencing, the Expires header, and instead wish
to only influence Cache-Control headers, pass a tuple as http_cache
with the first element of None, e.g.: (None, {'public':True}).

The environment setting PYRAMID_PREVENT_HTTP_CACHE and configuration
file value prevent_http_cache are synonymous and allow you to prevent
HTTP cache headers from being set by Pyramid's http_cache machinery
globally in a process. see Influencing HTTP Caching and
Preventing HTTP Caching.

Easier Scripting Writing

A new API function pyramid.paster.bootstrap() has been added to make
writing scripts that need to work under Pyramid environment easier, e.g.:

from pyramid.paster import bootstrap
info = bootstrap('/path/to/my/development.ini')
request = info['request']
print request.route_url('myroute')

See Writing a Script for more details.

Minor Feature Additions

	It is now possible to invoke paster pshell even if the paste ini file
section name pointed to in its argument is not actually a Pyramid WSGI
application. The shell will work in a degraded mode, and will warn the
user. See "The Interactive Shell" in the "Creating a Pyramid Project"
narrative documentation section.

	The paster pshell, paster pviews, and paster proutes commands
each now under the hood uses pyramid.paster.bootstrap(), which makes
it possible to supply an .ini file without naming the "right" section
in the file that points at the actual Pyramid application. Instead, you
can generally just run paster {pshell|proutes|pviews} development.ini
and it will do mostly the right thing.

	It is now possible to add a [pshell] section to your application's .ini
configuration file, which influences the global names available to a pshell
session. See Extending the Shell.

	The pyramid.config.Configurator.scan() method has grown a **kw
argument. kw argument represents a set of keyword arguments to pass to
the Venusian Scanner object created by Pyramid. (See the
Venusian documentation for more information about Scanner).

	New request property: json_body. This property will return the
JSON-decoded variant of the request body. If the request body is not
well-formed JSON, this property will raise an exception.

	A JSONP [http://en.wikipedia.org/wiki/JSONP] renderer. See
JSONP Renderer for more details.

	New authentication policy:
pyramid.authentication.SessionAuthenticationPolicy, which uses a
session to store credentials.

	A function named pyramid.httpexceptions.exception_response() is a
shortcut that can be used to create HTTP exception response objects using
an HTTP integer status code.

	Integers and longs passed as elements to
pyramid.url.resource_url() or
pyramid.request.Request.resource_url() e.g. resource_url(context,
request, 1, 2) (1 and 2 are the elements) will now be
converted implicitly to strings in the result. Previously passing integers
or longs as elements would cause a TypeError.

	pyramid_alchemy scaffold now uses query.get rather than
query.filter_by to take better advantage of identity map caching.

	pyramid_alchemy scaffold now has unit tests.

	Added a pyramid.i18n.make_localizer() API.

	An exception raised by a pyramid.events.NewRequest event
subscriber can now be caught by an exception view.

	It is now possible to get information about why Pyramid raised a Forbidden
exception from within an exception view. The ACLDenied object returned
by the permits method of each stock authorization policy
(pyramid.interfaces.IAuthorizationPolicy.permits()) is now attached
to the Forbidden exception as its result attribute. Therefore, if
you've created a Forbidden exception view, you can see the ACE, ACL,
permission, and principals involved in the request as
eg. context.result.permission, context.result.acl, etc within the
logic of the Forbidden exception view.

	Don't explicitly prevent the timeout from being lower than the
reissue_time when setting up an
pyramid.authentication.AuthTktAuthenticationPolicy (previously
such a configuration would raise a ValueError, now it's allowed,
although typically nonsensical). Allowing the nonsensical configuration
made the code more understandable and required fewer tests.

	The pyramid.request.Request class now has a ResponseClass
attribute which points at pyramid.response.Response.

	The pyramid.response.Response class now has a RequestClass
interface which points at pyramid.request.Request.

	It is now possible to return an arbitrary object from a Pyramid view
callable even if a renderer is not used, as long as a suitable adapter to
pyramid.interfaces.IResponse is registered for the type of the
returned object by using the new
pyramid.config.Configurator.add_response_adapter() API. See the
section in the Hooks chapter of the documentation entitled
Changing How Pyramid Treats View Responses.

	The Pyramid router will now, by default, call the __call__ method of
response objects when returning a WSGI response. This means that, among
other things, the conditional_response feature response objects
inherited from WebOb will now behave properly.

	New method named pyramid.request.Request.is_response(). This method
should be used instead of the pyramid.view.is_response() function,
which has been deprecated.

	pyramid.exceptions.NotFound is now just an alias for
pyramid.httpexceptions.HTTPNotFound.

	pyramid.exceptions.Forbidden is now just an alias for
pyramid.httpexceptions.HTTPForbidden.

	Added mako.preprocessor config file parameter; allows for a Mako
preprocessor to be specified as a Python callable or Python dotted name.
See https://github.com/Pylons/pyramid/pull/183 for rationale.

	New API class: pyramid.static.static_view. This supersedes the
(now deprecated) pyramid.view.static class.
pyramid.static.static_view, by default, serves up documents as the
result of the request's path_info, attribute rather than it's
subpath attribute (the inverse was true of
pyramid.view.static, and still is).
pyramid.static.static_view exposes a use_subpath flag for use
when you want the static view to behave like the older deprecated version.

	A new api function pyramid.scripting.prepare() has been added. It is
a lower-level analogue of pyramid.paster.bootstrap() that accepts a
request and a registry instead of a config file argument, and is used for
the same purpose:

from pyramid.scripting import prepare
info = prepare(registry=myregistry)
request = info['request']
print request.route_url('myroute')

	A new API function pyramid.scripting.make_request() has been added.
The resulting request will have a registry attribute. It is meant to
be used in conjunction with pyramid.scripting.prepare() and/or
pyramid.paster.bootstrap() (both of which accept a request as an
argument):

from pyramid.scripting import make_request
request = make_request('/')

	New API attribute pyramid.config.global_registries is an iterable
object that contains references to every Pyramid registry loaded into the
current process via pyramid.config.Configurator.make_wsgi_app(). It also
has a last attribute containing the last registry loaded. This is used
by the scripting machinery, and is available for introspection.

	Added the pyramid.renderers.null_renderer object as an API. The
null renderer is an object that can be used in advanced integration cases
as input to the view configuration renderer= argument. When the null
renderer is used as a view renderer argument, Pyramid avoids converting the
view callable result into a Response object. This is useful if you want to
reuse the view configuration and lookup machinery outside the context of
its use by the Pyramid router. (This feature was added for consumption by
the pyramid_rpc package, which uses view configuration and lookup
outside the context of a router in exactly this way.)

Backwards Incompatibilities

	Pyramid no longer supports Python 2.4. Python 2.5 or better is required to
run Pyramid 1.1+. Pyramid, however, does not work under any version of
Python 3 yet.

	The Pyramid router now, by default, expects response objects returned from
view callables to implement the pyramid.interfaces.IResponse
interface. Unlike the Pyramid 1.0 version of this interface, objects which
implement IResponse now must define a __call__ method that accepts
environ and start_response, and which returns an app_iter
iterable, among other things. Previously, it was possible to return any
object which had the three WebOb app_iter, headerlist, and
status attributes as a response, so this is a backwards
incompatibility. It is possible to get backwards compatibility back by
registering an adapter to IResponse from the type of object you're now
returning from view callables. See the section in the Hooks chapter of the
documentation entitled Changing How Pyramid Treats View Responses.

	The pyramid.interfaces.IResponse interface is now much more
extensive. Previously it defined only app_iter, status and
headerlist; now it is basically intended to directly mirror the
webob.Response API, which has many methods and attributes.

	The pyramid.httpexceptions classes named HTTPFound,
HTTPMultipleChoices, HTTPMovedPermanently, HTTPSeeOther,
HTTPUseProxy, and HTTPTemporaryRedirect now accept location as
their first positional argument rather than detail. This means that
you can do, e.g. return pyramid.httpexceptions.HTTPFound('http://foo')
rather than return
pyramid.httpexceptions.HTTPFound(location='http//foo') (the latter will
of course continue to work).

	The pyramid Router attempted to set a value into the key
environ['repoze.bfg.message'] when it caught a view-related exception
for backwards compatibility with applications written for repoze.bfg
during error handling. It did this by using code that looked like so:

"why" is an exception object
try:
 msg = why[0]
except:
 msg = ''

environ['repoze.bfg.message'] = msg

Use of the value environ['repoze.bfg.message'] was docs-deprecated in
Pyramid 1.0. Our standing policy is to not remove features after a
deprecation for two full major releases, so this code was originally slated
to be removed in Pyramid 1.2. However, computing the
repoze.bfg.message value was the source of at least one bug found in
the wild (https://github.com/Pylons/pyramid/issues/199), and there isn't a
foolproof way to both preserve backwards compatibility and to fix the bug.
Therefore, the code which sets the value has been removed in this release.
Code in exception views which relies on this value's presence in the
environment should now use the exception attribute of the request
(e.g. request.exception[0]) to retrieve the message instead of relying
on request.environ['repoze.bfg.message'].

Deprecations and Behavior Differences

Note

Under Python 2.7+, it's necessary to pass the Python interpreter
the correct warning flags to see deprecation warnings emitted by Pyramid
when porting your application from an older version of Pyramid. Use the
PYTHONWARNINGS environment variable with the value all in the
shell you use to invoke paster serve to see these warnings, e.g. on
UNIX, PYTHONWARNINGS=all $VENV/bin/paster serve development.ini.
Python 2.5 and 2.6 show deprecation warnings by default,
so this is unnecessary there.
All deprecation warnings are emitted to the console.

	The pyramid.view.static class has been deprecated in favor of the
newer pyramid.static.static_view class. A deprecation warning is
raised when it is used. You should replace it with a reference to
pyramid.static.static_view with the use_subpath=True argument.

	The paster pshell, paster proutes, and paster pviews commands
now take a single argument in the form /path/to/config.ini#sectionname
rather than the previous 2-argument spelling /path/to/config.ini
sectionname. #sectionname may be omitted, in which case #main is
assumed.

	The default Mako renderer is now configured to escape all HTML in
expression tags. This is intended to help prevent XSS attacks caused by
rendering unsanitized input from users. To revert this behavior in user's
templates, they need to filter the expression through the 'n' filter:

${ myhtml | n }.

See https://github.com/Pylons/pyramid/issues/193.

	Deprecated all assignments to request.response_* attributes (for
example request.response_content_type = 'foo' is now deprecated).
Assignments and mutations of assignable request attributes that were
considered by the framework for response influence are now deprecated:
response_content_type, response_headerlist, response_status,
response_charset, and response_cache_for. Instead of assigning
these to the request object for later detection by the rendering machinery,
users should use the appropriate API of the Response object created by
accessing request.response (e.g. code which does
request.response_content_type = 'abc' should be changed to
request.response.content_type = 'abc').

	Passing view-related parameters to
pyramid.config.Configurator.add_route() is now deprecated.
Previously, a view was permitted to be connected to a route using a set of
view* parameters passed to the add_route method of the
Configurator. This was a shorthand which replaced the need to perform a
subsequent call to add_view. For example, it was valid (and often
recommended) to do:

config.add_route('home', '/', view='mypackage.views.myview',
 view_renderer='some/renderer.pt')

Passing view* arguments to add_route is now deprecated in favor of
connecting a view to a predefined route via
pyramid.config.Configurator.add_view() using the route's
route_name parameter. As a result, the above example should now be
spelled:

config.add_route('home', '/')
config.add_view('mypackage.views.myview', route_name='home',
 renderer='some/renderer.pt')

This deprecation was done to reduce confusion observed in IRC, as well as
to (eventually) reduce documentation burden. A deprecation warning is
now issued when any view-related parameter is passed to add_route.

See also

See also issue #164 on GitHub [https://github.com/Pylons/pyramid/issues/164].

	Passing an environ dictionary to the __call__ method of a
"traverser" (e.g. an object that implements
pyramid.interfaces.ITraverser such as an instance of
pyramid.traversal.ResourceTreeTraverser) as its request
argument now causes a deprecation warning to be emitted. Consumer code
should pass a request object instead. The fact that passing an environ
dict is permitted has been documentation-deprecated since repoze.bfg
1.1, and this capability will be removed entirely in a future version.

	The following (undocumented, dictionary-like) methods of the
pyramid.request.Request object have been deprecated:
__contains__, __delitem__, __getitem__, __iter__,
__setitem__, get, has_key, items, iteritems,
itervalues, keys, pop, popitem, setdefault, update,
and values. Usage of any of these methods will cause a deprecation
warning to be emitted. These methods were added for internal compatibility
in repoze.bfg 1.1 (code that currently expects a request object
expected an environ object in BFG 1.0 and before). In a future version,
these methods will be removed entirely.

	A custom request factory is now required to return a request object that
has a response attribute (or "reified"/lazy property) if the
request is meant to be used in a view that uses a renderer. This
response attribute should be an instance of the class
pyramid.response.Response.

	The JSON and string renderer factories now assign to
request.response.content_type rather than
request.response_content_type.

	Each built-in renderer factory now determines whether it should change the
content type of the response by comparing the response's content type
against the response's default content type; if the content type is the
default content type (usually text/html), the renderer changes the
content type (to application/json or text/plain for JSON and string
renderers respectively).

	The pyramid.wsgi.wsgiapp2() now uses a slightly different method of
figuring out how to "fix" SCRIPT_NAME and PATH_INFO for the
downstream application. As a result, those values may differ slightly from
the perspective of the downstream application (for example, SCRIPT_NAME
will now never possess a trailing slash).

	Previously, pyramid.request.Request inherited from
webob.request.Request [http://docs.webob.org/en/latest/api/request.html#webob.request.Request] and implemented __getattr__,
__setattr__ and __delattr__ itself in order to override "adhoc
attr" WebOb behavior where attributes of the request are stored in the
environ. Now, pyramid.request.Request inherits from (the more
recent) webob.request.BaseRequest [http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest] instead of
webob.request.Request [http://docs.webob.org/en/latest/api/request.html#webob.request.Request], which provides the same behavior.
pyramid.request.Request no longer implements its own
__getattr__, __setattr__ or __delattr__ as a result.

	Deprecated pyramid.view.is_response() function in favor of
(newly-added) pyramid.request.Request.is_response() method.
Determining if an object is truly a valid response object now requires
access to the registry, which is only easily available as a request
attribute. The pyramid.view.is_response() function will still work
until it is removed, but now may return an incorrect answer under some
(very uncommon) circumstances.

	pyramid.response.Response is now a subclass of
webob.response.Response (in order to directly implement the
pyramid.interfaces.IResponse interface, to speed up response
generation).

	The "exception response" objects importable from pyramid.httpexceptions
(e.g. HTTPNotFound) are no longer just import aliases for classes that
actually live in webob.exc. Instead, we've defined our own exception
classes within the module that mirror and emulate the webob.exc
exception response objects almost entirely. See
Pyramid uses its own HTTP exception class hierarchy rather than webob.exc in the Design Defense chapter for more
information.

	When visiting a URL that represented a static view which resolved to a
subdirectory, the index.html of that subdirectory would not be served
properly. Instead, a redirect to /subdir would be issued. This has
been fixed, and now visiting a subdirectory that contains an index.html
within a static view returns the index.html properly.

See also

See also issue #67 on GitHub [https://github.com/Pylons/pyramid/issues/67].

	Deprecated the pyramid.config.Configurator.set_renderer_globals_factory
method and the renderer_globals Configurator constructor parameter.
Users should convert code using this feature to use a BeforeRender event. See
the section Using the Before Render Event in the Hooks chapter.

	In Pyramid 1.0, the pyramid.events.subscriber directive behaved
contrary to the documentation when passed more than one interface object to
its constructor. For example, when the following listener was registered:

@subscriber(IFoo, IBar)
def expects_ifoo_events_and_ibar_events(event):
 print event

The Events chapter docs claimed that the listener would be registered and
listening for both IFoo and IBar events. Instead, it registered an
"object event" subscriber which would only be called if an IObjectEvent was
emitted where the object interface was IFoo and the event interface was
IBar.

The behavior now matches the documentation. If you were relying on the
buggy behavior of the 1.0 subscriber directive in order to register an
object event subscriber, you must now pass a sequence to indicate you'd
like to register a subscriber for an object event. e.g.:

@subscriber([IFoo, IBar])
def expects_object_event(object, event):
 print object, event

	In 1.0, if a pyramid.events.BeforeRender event subscriber added a
value via the __setitem__ or update methods of the event object
with a key that already existed in the renderer globals dictionary, a
KeyError was raised. With the deprecation of the
"add_renderer_globals" feature of the configurator, there was no way to
override an existing value in the renderer globals dictionary that already
existed. Now, the event object will overwrite an older value that is
already in the globals dictionary when its __setitem__ or update is
called (as well as the new setdefault method), just like a plain old
dictionary. As a result, for maximum interoperability with other
third-party subscribers, if you write an event subscriber meant to be used
as a BeforeRender subscriber, your subscriber code will now need to (using
.get or __contains__ of the event object) ensure no value already
exists in the renderer globals dictionary before setting an overriding
value.

	The pyramid.config.Configurator.add_route() method allowed two routes
with the same route to be added without an intermediate call to
pyramid.config.Configurator.commit(). If you now receive a
ConfigurationError at startup time that appears to be add_route
related, you'll need to either a) ensure that all of your route names are
unique or b) call config.commit() before adding a second route with the
name of a previously added name or c) use a Configurator that works in
autocommit mode.

Dependency Changes

	Pyramid now depends on WebOb >= 1.0.2 as tests depend on the bugfix
in that release: "Fix handling of WSGI environs with missing
SCRIPT_NAME". (Note that in reality, everyone should probably be using
1.0.4 or better though, as WebOb 1.0.2 and 1.0.3 were effectively brownbag
releases.)

Documentation Enhancements

	Added a section entitled Writing a Script to the "Command-Line
Pyramid" chapter.

	The ZODB + Traversal Wiki Tutorial was updated slightly.

	The SQLAlchemy + URL Dispatch Wiki Tutorial was updated slightly.

	Made pyramid.interfaces.IAuthenticationPolicy and
pyramid.interfaces.IAuthorizationPolicy public interfaces, and
they are now referred to within the pyramid.authentication and
pyramid.authorization API docs.

	Render the function definitions for each exposed interface in
pyramid.interfaces.

	Add missing docs reference to
pyramid.config.Configurator.set_view_mapper() and refer to it within
the documentation section entitled Using a View Mapper.

	Added section to the "Environment Variables and .ini File Settings"
chapter in the narrative documentation section entitled
Adding a Custom Setting.

	Added documentation for a multidict as
pyramid.interfaces.IMultiDict.

	Added a section to the "URL Dispatch" narrative chapter regarding the new
"static" route feature entitled Static Routes.

	Added API docs for pyramid.httpexceptions.exception_response().

	Added HTTP Exceptions section to Views narrative chapter including a
description of pyramid.httpexceptions.exception_response().

	Added API docs for
pyramid.authentication.SessionAuthenticationPolicy.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

What's New In Pyramid 1.0

This article explains the new features in Pyramid version 1.0 as compared to
its predecessor, repoze.bfg 1.3. It also documents backwards
incompatibilities between the two versions and deprecations added to Pyramid
1.0, as well as software dependency changes and notable documentation
additions.

Major Feature Additions

The major feature additions in Pyramid 1.0 are:

	New name and branding association with the Pylons Project.

	BFG conversion script

	Scaffold improvements

	Terminology changes

	Better platform compatibility and support

	Direct built-in support for the Mako templating language.

	Built-in support for sessions.

	Updated URL dispatch features

	Better imperative extensibility

	ZCML externalized

	Better support for global template variables during rendering

	View mappers

	Testing system improvements

	Authentication support improvements

	Documentation improvements

New Name and Branding

The name of repoze.bfg has been changed to Pyramid. The project is also
now a subproject of a new entity, "The Pylons Project". The Pylons Project
is the project name for a collection of web-framework-related technologies.
Pyramid was the first package in the Pylons Project. Other packages to the
collection have been added over time, such as support packages useful for
Pylons 1 users as well as ex-Zope users. Pyramid is the successor to both
repoze.bfg and Pylons version 1.

The Pyramid codebase is derived almost entirely from repoze.bfg
with some changes made for the sake of Pylons 1 compatibility.

Pyramid is technically backwards incompatible with repoze.bfg, as it
has a new package name, so older imports from the repoze.bfg module will
fail if you do nothing to your existing repoze.bfg application.
However, you won't have to do much to use your existing BFG applications on
Pyramid. There's automation which will change most of your import statements
and ZCML declarations. See
http://docs.pylonsproject.org/projects/pyramid/current/tutorials/bfg/index.html
for upgrade instructions.

Pylons 1 users will need to do more work to use Pyramid, as Pyramid shares no
"DNA" with Pylons. It is hoped that over time documentation and upgrade code
will be developed to help Pylons 1 users transition to Pyramid more easily.

repoze.bfg version 1.3 will be its last major release. Minor updates
will be made for critical bug fixes. Pylons version 1 will continue to see
maintenance releases, as well.

The Repoze project will continue to exist. Repoze will be able to regain its
original focus: bringing Zope technologies to WSGI. The popularity of
repoze.bfg as its own web framework hindered this goal.

We hope that people are attracted at first by the spirit of cooperation
demonstrated by the Pylons Project and the merging of development
communities. It takes humility to sacrifice a little sovereignty and work
together. The opposite, forking or splintering of projects, is much more
common in the open source world. We feel there is a limited amount of oxygen
in the space of "top-tier" Python web frameworks and we don’t do the Python
community a service by over-crowding. By merging the repoze.bfg and
the philosophically-similar Pylons communities, both gain an expanded
audience and a stronger chance of future success.

BFG Conversion Script

The bfg2pyramid conversion script performs a mostly automated conversion
of an existing repoze.bfg application to Pyramid. The process is
described in "Converting a BFG Application to Pyramid".

Scaffold Improvements

	The scaffolds now have much nicer CSS and graphics.

	The development.ini, generated by all scaffolds, is now configured to
use the WebError interactive exception debugger by default.

	All scaffolds have been normalized: each now uses the name main
to represent the function that returns a WSGI application, and each now has
roughly the same shape of development.ini style.

	All preexisting scaffolds now use "imperative" configuration
(starter, routesalchemy, alchemy, zodb) instead of ZCML
configuration.

	The pyramid_zodb, routesalchemy and pyramid_alchemy
scaffolds now use a default "commit veto" hook when configuring the
repoze.tm2 transaction manager in development.ini. This prevents a
transaction from being committed when the response status code is within
the 400 or 500 ranges.

See also

See also http://docs.repoze.org/tm2/#using-a-commit-veto.

Terminology Changes

	The Pyramid concept previously known as "model" is now known as "resource".
As a result, the following API renames have been made. Backwards
compatibility shims for the old names have been left in place in all cases:

pyramid.url.model_url ->
 pyramid.url.resource_url

pyramid.traversal.find_model ->
 pyramid.url.find_resource

pyramid.traversal.model_path ->
 pyramid.traversal.resource_path

pyramid.traversal.model_path_tuple ->
 pyramid.traversal.resource_path_tuple

pyramid.traversal.ModelGraphTraverser ->
 pyramid.traversal.ResourceTreeTraverser

pyramid.config.Configurator.testing_models ->
 pyramid.config.Configurator.testing_resources

pyramid.testing.registerModels ->
 pyramid.testing.registerResources

pyramid.testing.DummyModel ->
 pyramid.testing.DummyResource

	All documentation which previously referred to "model" now refers to
"resource".

	The starter scaffold now has a resources.py module instead
of a models.py module.

	Positional argument names of various APIs have been changed from
model to resource.

	The Pyramid concept previously known as "resource" is now known as "asset".
As a result, the following API changes were made. Backwards compatibility
shims have been left in place as necessary:

pyramid.config.Configurator.absolute_resource_spec ->
 pyramid.config.Configurator.absolute_asset_spec

pyramid.config.Configurator.override_resource ->
 pyramid.config.Configurator.override_asset

	The (non-API) module previously known as pyramid.resource is now
known as pyramid.asset.

	All docs that previously referred to "resource specification" now refer
to "asset specification".

	The setting previously known as BFG_RELOAD_RESOURCES (envvar) or
reload_resources (config file) is now known, respectively, as
PYRAMID_RELOAD_ASSETS and reload_assets.

Better Platform Compatibility and Support

We've made Pyramid's test suite pass on both Jython and PyPy. However,
Chameleon doesn't work on either, so you'll need to use Mako or Jinja2
templates on these platforms.

Sessions

Pyramid now has built-in sessioning support, documented in
Sessions. The sessioning implementation is pluggable. It
also provides flash messaging and cross-site-scripting prevention features.

Using request.session now returns a (dictionary-like) session object if
a session factory has been configured.

A new argument to the Configurator constructor exists: session_factory
and a new method on the configurator exists:
pyramid.config.Configurator.set_session_factory().

Mako

In addition to Chameleon templating, Pyramid now also provides built-in
support for Mako templating. See
Available Add-On Template System Bindings for more information.

URL Dispatch

	URL Dispatch now allows for replacement markers to be located anywhere
in the pattern, instead of immediately following a /.

	URL Dispatch now uses the form {marker} to denote a replace marker in
the route pattern instead of :marker. The old colon-style marker syntax
is still accepted for backwards compatibility. The new format allows a
regular expression for that marker location to be used instead of the
default [^/]+, for example {marker:\d+} is now valid to require the
marker to be digits.

	Addded a new API pyramid.url.current_route_url(), which computes a
URL based on the "current" route (if any) and its matchdict values.

	Added a paster proute command which displays a summary of the routing
table. See the narrative documentation section entitled
Displaying All Application Routes.

	Added debug_routematch configuration setting (settable in your .ini
file) that logs matched routes including the matchdict and predicates.

	Add a pyramid.url.route_path() API, allowing folks to generate
relative URLs. Calling route_path is the same as calling
pyramid.url.route_url() with the argument _app_url equal to the
empty string.

	Add a pyramid.request.Request.route_path() API. This is a
convenience method of the request which calls
pyramid.url.route_url().

	Added class vars matchdict and matched_route to
pyramid.request.Request. Each is set to None when a route
isn't matched during a request.

ZCML Externalized

	The load_zcml method of a Configurator has been removed from the
Pyramid core. Loading ZCML is now a feature of the pyramid_zcml
package, which can be downloaded from PyPI. Documentation for the package
should be available via
http://docs.pylonsproject.org/projects/pyramid_zcml/en/latest/, which describes how to
add a configuration statement to your main block to reobtain this
method. You will also need to add an install_requires dependency upon
the pyramid_zcml distribution to your setup.py file.

	The "Declarative Configuration" narrative chapter has been removed (it was
moved to the pyramid_zcml package).

	Most references to ZCML in narrative chapters have been removed or
redirected to pyramid_zcml locations.

	The starter_zcml paster scaffold has been moved to the pyramid_zcml
package.

Imperative Two-Phase Configuration

To support application extensibility, the Pyramid
Configurator, by default, now detects configuration conflicts and
allows you to include configuration imperatively from other packages or
modules. It also, by default, performs configuration in two separate phases.
This allows you to ignore relative configuration statement ordering in some
circumstances. See Advanced Configuration for more information.

The pyramid.config.Configurator.add_directive() allows framework
extenders to add methods to the configurator, which allows extenders to avoid
subclassing a Configurator just to add methods. See Adding Methods to the Configurator via add_directive for
more info.

Surrounding application configuration with config.begin() and
config.end() is no longer necessary. All scaffolds have been
changed to no longer call these functions.

Better Support for Global Template Variables During Rendering

A new event type named pyramid.interfaces.IBeforeRender is now sent
as an event before a renderer is invoked. Applications may now subscribe to
the IBeforeRender event type in order to introspect the and modify the
set of renderer globals before they are passed to a renderer. The event
object iself has a dictionary-like interface that can be used for this
purpose. For example:

from repoze.events import subscriber
from pyramid.interfaces import IRendererGlobalsEvent

@subscriber(IRendererGlobalsEvent)
def add_global(event):
 event['mykey'] = 'foo'

View Mappers

A "view mapper" subsystem has been extracted, which allows framework
extenders to control how view callables are constructed and called. This
feature is not useful for "civilians", only for extension writers. See
Using a View Mapper for more information.

Testing Support Improvements

The pyramid.testing.setUp() and pyramid.testing.tearDown() APIs
have been undeprecated. They are now the canonical setup and teardown APIs
for test configuration, replacing "direct" creation of a Configurator. This
is a change designed to provide a facade that will protect against any future
Configurator deprecations.

Authentication Support Improvements

	The pyramid.interfaces.IAuthenticationPolicy interface now
specifies an unauthenticated_userid method. This method supports an
important optimization required by people who are using persistent storages
which do not support object caching and whom want to create a "user object"
as a request attribute.

	A new API has been added to the pyramid.security module named
unauthenticated_userid. This API function calls the
unauthenticated_userid method of the effective security policy.

	The class pyramid.authentication.AuthTktCookieHelper is now an
API. This class can be used by third-party authentication policy
developers to help in the mechanics of authentication cookie-setting.

	The pyramid.authentication.AuthTktAuthenticationPolicy now accepts
a tokens parameter via pyramid.security.remember(). The value
must be a sequence of strings. Tokens are placed into the auth_tkt
"tokens" field and returned in the auth_tkt cookie.

	Added a wild_domain argument to
pyramid.authentication.AuthTktAuthenticationPolicy, which defaults
to True. If it is set to False, the feature of the policy which
sets a cookie with a wilcard domain will be turned off.

Documentation Improvements

	Casey Duncan, a good friend, and an excellent technical writer has given us
the gift of professionally editing the entire Pyramid documentation set.
Any faults in the documentation are the development team's, and all
improvements are his.

	The "Resource Location and View Lookup" chapter has been replaced with a
variant of Rob Miller's "Much Ado About Traversal" (originally published at
http://blog.nonsequitarian.org/2010/much-ado-about-traversal/).

	Many users have contributed documentation fixes and improvements including
Ben Bangert, Blaise Laflamme, Rob Miller, Mike Orr, Carlos de la Guardia,
Paul Everitt, Tres Seaver, John Shipman, Marius Gedminas, Chris Rossi,
Joachim Krebs, Xavier Spriet, Reed O'Brien, William Chambers, Charlie
Choiniere, and Jamaludin Ahmad.

Minor Feature Additions

	The settings dictionary passed to the Configurator is now available as
config.registry.settings in configuration code and
request.registry.settings in view code).

	pyramid.config.Configurator.add_view() now accepts a decorator
keyword argument, a callable which will decorate the view callable before
it is added to the registry.

	Allow static renderer provided during view registration to be overridden at
request time via a request attribute named override_renderer, which
should be the name of a previously registered renderer. Useful to provide
"omnipresent" RPC using existing rendered views.

	If a resource implements a __resource_url__ method, it will be called
as the result of invoking the pyramid.url.resource_url() function to
generate a URL, overriding the default logic. See
Generating the URL of a Resource for more information.

	The name registry is now available in a pshell environment by
default. It is the application registry object.

	Added support for json on Google App Engine by catching
NotImplementedError [http://docs.python.org/3/library/exceptions.html#NotImplementedError] and importing simplejson from
django.utils.

	Added the pyramid.httpexceptions module, which is a facade for the
webob.exc module.

	New class: pyramid.response.Response. This is a pure facade for
webob.Response (old code need not change to use this facade, it's
existence is mostly for vanity and documentation-generation purposes).

	The request now has a new attribute: tmpl_context for benefit of
Pylons users.

	New API methods for pyramid.request.Request: model_url,
route_url, and static_url. These are simple passthroughs for their
respective functions in pyramid.url.

Backwards Incompatibilities

	When a pyramid.exceptions.Forbidden error is raised, its status
code now 403 Forbidden. It was previously 401 Unauthorized, for
backwards compatibility purposes with repoze.bfg. This change will
cause problems for users of Pyramid with repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who], which
intercepts 401 Unauthorized by default, but allows 403 Forbidden to
pass through. Those deployments will need to configure repoze.who [http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who]
to also react to 403 Forbidden. To do so, use a repoze.who
challenge_decider that looks like this:

import zope.interface
from repoze.who.interfaces import IChallengeDecider

def challenge_decider(environ, status, headers):
 return status.startswith('403') or status.startswith('401')
zope.interface.directlyProvides(challenge_decider, IChallengeDecider)

	The paster bfgshell command is now known as paster pshell.

	There is no longer an IDebugLogger object registered as a named utility
with the name repoze.bfg.debug.

	These deprecated APIs have been removed:
pyramid.testing.registerViewPermission,
pyramid.testing.registerRoutesMapper, pyramid.request.get_request,
pyramid.security.Unauthorized,
pyramid.view.view_execution_permitted, pyramid.view.NotFound

	The Venusian "category" for all built-in Venusian decorators
(e.g. subscriber and view_config/bfg_view) is now
pyramid instead of bfg.

	The pyramid.renderers.rendered_response function removed; use
pyramid.renderers.render_to_response() instead.

	Renderer factories now accept a renderer info object rather than an
absolute resource specification or an absolute path. The object has the
following attributes: name (the renderer= value), package (the
'current package' when the renderer configuration statement was found),
type: the renderer type, registry: the current registry, and
settings: the deployment settings dictionary. Third-party
repoze.bfg renderer implementations that must be ported to Pyramid will
need to account for this. This change was made primarily to support more
flexible Mako template rendering.

	The presence of the key repoze.bfg.message in the WSGI environment when
an exception occurs is now deprecated. Instead, code which relies on this
environ value should use the exception attribute of the request
(e.g. request.exception[0]) to retrieve the message.

	The values bfg_localizer and bfg_locale_name kept on the request
during internationalization for caching purposes were never APIs. These
however have changed to localizer and locale_name, respectively.

	The default cookie_name value of the
pyramid.authentication.AuthTktAuthenticationPolicy now defaults to
auth_tkt (it used to default to repoze.bfg.auth_tkt).

	The pyramid.testing.zcml_configure() API has been removed. It had
been advertised as removed since repoze.bfg 1.2a1, but hadn't
actually been.

	All environment variables which used to be prefixed with BFG_ are now
prefixed with PYRAMID_ (e.g. BFG_DEBUG_NOTFOUND is now
PYRAMID_DEBUG_NOTFOUND)

	Since the pyramid.interfaces.IAuthenticationPolicy interface now
specifies that a policy implementation must implement an
unauthenticated_userid method, all third-party custom authentication
policies now must implement this method. It, however, will only be called
when the global function named
pyramid.security.unauthenticated_userid() is invoked, so if you're
not invoking that, you will not notice any issues.

	The configure_zcml setting within the deployment settings (within
**settings passed to a Pyramid main function) has ceased to have any
meaning.

	The make_app function has been removed from the pyramid.router
module. It continues life within the pyramid_zcml package. This
leaves the pyramid.router module without any API functions.

Deprecations and Behavior Differences

	pyramid.configuration.Configurator is now deprecated. Use
pyramid.config.Configurator, passing its constructor
autocommit=True instead. The
pyramid.configuration.Configurator alias will live for a long
time, as every application uses it, but its import now issues a deprecation
warning. The pyramid.config.Configurator class has the same API
as the pyramid.configuration.Configurator class, which it means to
replace, except by default it is a non-autocommitting configurator. The
now-deprecated pyramid.configuration.Configurator will autocommit every
time a configuration method is called. The pyramid.configuration
module remains, but it is deprecated. Use pyramid.config instead.

	The pyramid.settings.get_settings() API is now deprecated. Use
pyramid.threadlocals.get_current_registry().settings instead or use the
settings attribute of the registry available from the request
(request.registry.settings).

	The decorator previously known as pyramid.view.bfg_view is now known
most formally as pyramid.view.view_config in docs and scaffolds.

	Obtaining the settings object via
registry.{get|query}Utility(ISettings) is now deprecated. Instead,
obtain the settings object via the registry.settings attribute. A
backwards compatibility shim was added to the registry object to register
the settings object as an ISettings utility when setattr(registry,
'settings', foo) is called, but it will be removed in a later release.

	Obtaining the settings object via pyramid.settings.get_settings()
is now deprecated. Obtain it instead as the settings attribute of the
registry now (obtain the registry via
pyramid.threadlocal.get_registry() or as request.registry).

Dependency Changes

	Depend on Venusian >= 0.5 (for scanning conflict exception decoration).

Documentation Enhancements

	Added a pyramid.httpexceptions API documentation chapter.

	Added a pyramid.session API documentation chapter.

	Added an API chapter for the pyramid.response module.

	Added a Sessions narrative documentation chapter.

	All documentation which previously referred to webob.Response now uses
pyramid.response.Response instead.

	The documentation has been overhauled to use imperative configuration,
moving declarative configuration (ZCML) explanations to an external
package, pyramid_zcml.

	Removed zodbsessions tutorial chapter. It's still useful, but we now
have a SessionFactory abstraction which competes with it, and maintaining
documentation on both ways to do it is a distraction.

	Added an example of WebTest functional testing to the testing narrative
chapter at Creating Functional Tests.

	Extended the Resources chapter with examples of calls to resource-related
APIs.

	Add "Pyramid Provides More Than One Way to Do It" to Design Defense
documentation.

	The (weak) "Converting a CMF Application to Pyramid" tutorial has been
removed from the tutorials section. It was moved to the
pyramid_tutorials Github repository at
http://docs.pylonsproject.org/projects/pyramid_tutorials/dev/.

	Moved "Using ZODB With ZEO" and "Using repoze.catalog Within Pyramid"
tutorials out of core documentation and into the Pyramid Tutorials site
(http://docs.pylonsproject.org/projects/pyramid_tutorials/dev/).

	Removed API documentation for deprecated pyramid.testing APIs named
registerDummySecurityPolicy, registerResources, registerModels,
registerEventListener, registerTemplateRenderer,
registerDummyRenderer, registerView, registerUtility,
registerAdapter, registerSubscriber, registerRoute, and
registerSettings.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Pyramid Change History

1.5.8 (2016-01-07)

	Fix compatibility with Python 3.5.
See https://github.com/Pylons/pyramid/pull/2210

	Ensure that pyramid.httpexceptions.exception_response returns the
appropriate "concreate" class for 400 and 500 status codes.

	pyramid.httpexceptions.HTTPException now defaults to
520 Unknown Error instead of None None to conform with changes in
WebOb 1.5.
See https://github.com/Pylons/pyramid/pull/1865

	Add documentation of command line programs (p* scripts). See
https://github.com/Pylons/pyramid/pull/2191

1.5.7 (2015-04-28)

	Further fix the JSONP renderer by prefixing the returned content with
a comment. This should mitigate attacks from Flash (See CVE-2014-4671).
See https://github.com/Pylons/pyramid/pull/1648

	Allow periods and brackets ([]) in the JSONP callback. The original
fix was overly-restrictive and broke Angular.
See https://github.com/Pylons/pyramid/pull/1648

1.5.6 (2015-04-14)

	1.5.5 was a brown-bag release which was missing files.

1.5.5 (2015-04-14)

	The JSONP renderer created JavaScript code in such a way that a callback
variable could be used to arbitrarily inject javascript into the response
object. https://github.com/Pylons/pyramid/pull/1626

1.5.4 (2015-02-24)

	Fix regression where pserve --reload would not work when running
as a daemon.
Backported from https://github.com/Pylons/pyramid/pull/1592

1.5.3 (2015-02-22)

	Work around an issue where pserve --reload would leave terminal echo
disabled if it reloaded during a pdb session.
Backported from https://github.com/Pylons/pyramid/pull/1577

	Fixed a failing unittest caused by differing mimetypes on various
OS platforms. See https://github.com/Pylons/pyramid/issues/1405

	Overall improvments for the proutes command. Added --format and
--glob arguments to the command, introduced the method
column for displaying available request methods, and improved the view
output by showing the module instead of just __repr__.
See: https://github.com/Pylons/pyramid/pull/1542

	The pyramid.renderers.JSONP renderer would raise an exception if used
without a request object. It will now fallback to behave like
the pyramid.renderers.JSON renderer if there is no request object to
derive a callback from. See https://github.com/Pylons/pyramid/pull/1562

	Prevent "parameters to load are deprecated" DeprecationWarning
from setuptools>=11.3. See https://github.com/Pylons/pyramid/pull/1541

	Avoiding timing attacks against CSRF tokens. Backported from
https://github.com/Pylons/pyramid/pull/1574

	pserve can now take a -b or --browser option to open the server
URL in a web browser. See https://github.com/Pylons/pyramid/pull/1533

1.5.2 (2014-11-09)

Bug Fixes

	pyramid.wsgi.wsgiapp and pyramid.wsgi.wsgiapp2 now raise
ValueError when accidentally passed None.
See https://github.com/Pylons/pyramid/pull/1320

	Work around a bug introduced in Python 2.7.7 on Windows where
mimetypes.guess_type returns Unicode rather than str for the content
type, unlike any previous version of Python. See
https://github.com/Pylons/pyramid/issues/1360 for more information.

Docs

	Removed logging configuration from Quick Tutorial ini files except for
scaffolding- and logging-related chapters to avoid needing to explain it too
early.

	Clarify a previously-implied detail of the ISession.invalidate API
documentation.

1.5.1 (2014-05-31)

	Update scaffold generating machinery to return the version of pyramid and
pyramid docs for use in scaffolds. Updated starter, alchemy and zodb
templates to have links to correctly versioned documentation and reflect
which pyramid was used to generate the scaffold.

	Fix an issue whereby predicates would be resolved as maybe_dotted in the
introspectable but not when passed for registration. This would mean that
add_route_predicate for example can not take a string and turn it into
the actual callable function.
See https://github.com/Pylons/pyramid/pull/1306

	Fix pyramid.testing.setUp to return a Configurator with a proper
package. Previously it was not possible to do package-relative includes
using the returned Configurator during testing. There is now a
package argument that can override this behavior as well.
See https://github.com/Pylons/pyramid/pull/1322

	Removed non-ascii copyright symbol from templates, as this was
causing the scaffolds to fail for project generation on some systems.

	Fix an issue where a pyramid.response.FileResponse may apply a charset
where it does not belong. See https://github.com/Pylons/pyramid/pull/1251

1.5 (2014-04-08)

	Python 3.4 compatibility.

	Avoid crash in pserve --reload under Py3k, when iterating over possibly
mutated sys.modules.

	UnencryptedCookieSessionFactoryConfig failed if the secret contained
higher order characters. See https://github.com/Pylons/pyramid/issues/1246

	Fixed a bug in UnencryptedCookieSessionFactoryConfig and
SignedCookieSessionFactory where timeout=None would cause a new
session to always be created. Also in SignedCookieSessionFactory a
reissue_time=None would cause an exception when modifying the session.
See https://github.com/Pylons/pyramid/issues/1247

	Updated docs and scaffolds to keep in step with new 2.0 release of
Lingua. This included removing all setup.cfg files from scaffolds
and documentation environments.

1.5b1 (2014-02-08)

Features

	We no longer eagerly clear request.exception and request.exc_info in
the exception view tween. This makes it possible to inspect exception
information within a finished callback. See
https://github.com/Pylons/pyramid/issues/1223.

1.5a4 (2014-01-28)

Features

	Updated scaffolds with new theme, fixed documentation and sample project.

Bug Fixes

	Depend on a newer version of WebOb so that we pull in some crucial bug-fixes
that were showstoppers for functionality in Pyramid.

	Add a trailing semicolon to the JSONP response. This fixes JavaScript syntax
errors for old IE versions. See https://github.com/Pylons/pyramid/pull/1205

	Fix a memory leak when the configurator's set_request_property method was
used or when the configurator's add_request_method method was used with
the property=True attribute. See
https://github.com/Pylons/pyramid/issues/1212 .

1.5a3 (2013-12-10)

Features

	An authorization API has been added as a method of the
request: request.has_permission.

request.has_permission is a method-based alternative to the
pyramid.security.has_permission API and works exactly the same. The
older API is now deprecated.

	Property API attributes have been added to the request for easier access to
authentication data: request.authenticated_userid,
request.unauthenticated_userid, and request.effective_principals.

These are analogues, respectively, of
pyramid.security.authenticated_userid,
pyramid.security.unauthenticated_userid, and
pyramid.security.effective_principals. They operate exactly the same,
except they are attributes of the request instead of functions accepting a
request. They are properties, so they cannot be assigned to. The older
function-based APIs are now deprecated.

	Pyramid's console scripts (pserve, pviews, etc) can now be run
directly, allowing custom arguments to be sent to the python interpreter
at runtime. For example:

python -3 -m pyramid.scripts.pserve development.ini

	Added a specific subclass of HTTPBadRequest named
pyramid.exceptions.BadCSRFToken which will now be raised in response
to failures in check_csrf_token.
See https://github.com/Pylons/pyramid/pull/1149

	Added a new SignedCookieSessionFactory which is very similar to the
UnencryptedCookieSessionFactoryConfig but with a clearer focus on signing
content. The custom serializer arguments to this function should only focus
on serializing, unlike its predecessor which required the serializer to also
perform signing. See https://github.com/Pylons/pyramid/pull/1142 . Note
that cookies generated using SignedCookieSessionFactory are not
compatible with cookies generated using UnencryptedCookieSessionFactory,
so existing user session data will be destroyed if you switch to it.

	Added a new BaseCookieSessionFactory which acts as a generic cookie
factory that can be used by framework implementors to create their own
session implementations. It provides a reusable API which focuses strictly
on providing a dictionary-like object that properly handles renewals,
timeouts, and conformance with the ISession API.
See https://github.com/Pylons/pyramid/pull/1142

	The anchor argument to pyramid.request.Request.route_url and
pyramid.request.Request.resource_url and their derivatives will now be
escaped via URL quoting to ensure minimal conformance. See
https://github.com/Pylons/pyramid/pull/1183

	Allow sending of _query and _anchor options to
pyramid.request.Request.static_url when an external URL is being
generated.
See https://github.com/Pylons/pyramid/pull/1183

	You can now send a string as the _query argument to
pyramid.request.Request.route_url and
pyramid.request.Request.resource_url and their derivatives. When a
string is sent instead of a list or dictionary. it is URL-quoted however it
does not need to be in k=v form. This is useful if you want to be able
to use a different query string format than x-www-form-urlencoded. See
https://github.com/Pylons/pyramid/pull/1183

	pyramid.testing.DummyRequest now has a domain attribute to match the
new WebOb 1.3 API. Its value is example.com.

Bug Fixes

	Fix the pcreate script so that when the target directory name ends with a
slash it does not produce a non-working project directory structure.
Previously saying pcreate -s starter /foo/bar/ produced different output
than saying pcreate -s starter /foo/bar. The former did not work
properly.

	Fix the principals_allowed_by_permission method of
ACLAuthorizationPolicy so it anticipates a callable __acl__
on resources. Previously it did not try to call the __acl__
if it was callable.

	The pviews script did not work when a url required custom request
methods in order to perform traversal. Custom methods and descriptors added
via pyramid.config.Configurator.add_request_method will now be present,
allowing traversal to continue.
See https://github.com/Pylons/pyramid/issues/1104

	Remove unused renderer argument from Configurator.add_route.

	Allow the BasicAuthenticationPolicy to work with non-ascii usernames
and passwords. The charset is not passed as part of the header and different
browsers alternate between UTF-8 and Latin-1, so the policy now attempts
to decode with UTF-8 first, and will fallback to Latin-1.
See https://github.com/Pylons/pyramid/pull/1170

	The @view_defaults now apply to notfound and forbidden views
that are defined as methods of a decorated class.
See https://github.com/Pylons/pyramid/issues/1173

Documentation

	Added a "Quick Tutorial" to go with the Quick Tour

	Removed mention of pyramid_beaker from docs. Beaker is no longer
maintained. Point people at pyramid_redis_sessions instead.

	Add documentation for pyramid.interfaces.IRendererFactory and
pyramid.interfaces.IRenderer.

Backwards Incompatibilities

	The key/values in the _query parameter of request.route_url and the
query parameter of request.resource_url (and their variants), used
to encode a value of None as the string 'None', leaving the resulting
query string to be a=b&key=None. The value is now dropped in this
situation, leaving a query string of a=b&key=.
See https://github.com/Pylons/pyramid/issues/1119

Deprecations

	Deprecate the pyramid.interfaces.ITemplateRenderer interface. It was
ill-defined and became unused when Mako and Chameleon template bindings were
split into their own packages.

	The pyramid.session.UnencryptedCookieSessionFactoryConfig API has been
deprecated and is superseded by the
pyramid.session.SignedCookieSessionFactory. Note that while the cookies
generated by the UnencryptedCookieSessionFactoryConfig
are compatible with cookies generated by old releases, cookies generated by
the SignedCookieSessionFactory are not. See
https://github.com/Pylons/pyramid/pull/1142

	The pyramid.security.has_permission API is now deprecated. Instead, use
the newly-added has_permission method of the request object.

	The pyramid.security.effective_principals API is now deprecated.
Instead, use the newly-added effective_principals attribute of the
request object.

	The pyramid.security.authenticated_userid API is now deprecated.
Instead, use the newly-added authenticated_userid attribute of the
request object.

	The pyramid.security.unauthenticated_userid API is now deprecated.
Instead, use the newly-added unauthenticated_userid attribute of the
request object.

Dependencies

	Pyramid now depends on WebOb>=1.3 (it uses webob.cookies.CookieProfile
from 1.3+).

1.5a2 (2013-09-22)

Features

	Users can now provide dotted Python names to as the factory argument
the Configurator methods named add_{view,route,subscriber}_predicate
(instead of passing the predicate factory directly, you can pass a
dotted name which refers to the factory).

Bug Fixes

	Fix an exception in pyramid.path.package_name when resolving the package
name for namespace packages that had no __file__ attribute.

Backwards Incompatibilities

	Pyramid no longer depends on or configures the Mako and Chameleon templating
system renderers by default. Disincluding these templating systems by
default means that the Pyramid core has fewer dependencies and can run on
future platforms without immediate concern for the compatibility of its
templating add-ons. It also makes maintenance slightly more effective, as
different people can maintain the templating system add-ons that they
understand and care about without needing commit access to the Pyramid core,
and it allows users who just don't want to see any packages they don't use
come along for the ride when they install Pyramid.

This means that upon upgrading to Pyramid 1.5a2+, projects that use either
of these templating systems will see a traceback that ends something like
this when their application attempts to render a Chameleon or Mako template:

ValueError: No such renderer factory .pt

Or:

ValueError: No such renderer factory .mako

Or:

ValueError: No such renderer factory .mak

Support for Mako templating has been moved into an add-on package named
pyramid_mako, and support for Chameleon templating has been moved into
an add-on package named pyramid_chameleon. These packages are drop-in
replacements for the old built-in support for these templating langauges.
All you have to do is install them and make them active in your configuration
to register renderer factories for .pt and/or .mako (or .mak) to
make your application work again.

To re-add support for Chameleon and/or Mako template renderers into your
existing projects, follow the below steps.

If you depend on Mako templates:

	Make sure the pyramid_mako package is installed. One way to do this
is by adding pyramid_mako to the install_requires section of your
package's setup.py file and afterwards rerunning setup.py develop:

setup(
 #...
 install_requires=[
 'pyramid_mako', # new dependency
 'pyramid',
 #...
],
)

	Within the portion of your application which instantiates a Pyramid
pyramid.config.Configurator (often the main() function in
your project's __init__.py file), tell Pyramid to include the
pyramid_mako includeme:

config = Configurator(.....)
config.include('pyramid_mako')

If you depend on Chameleon templates:

	Make sure the pyramid_chameleon package is installed. One way to do
this is by adding pyramid_chameleon to the install_requires section
of your package's setup.py file and afterwards rerunning
setup.py develop:

setup(
 #...
 install_requires=[
 'pyramid_chameleon', # new dependency
 'pyramid',
 #...
],
)

	Within the portion of your application which instantiates a Pyramid
~pyramid.config.Configurator (often the main() function in
your project's __init__.py file), tell Pyramid to include the
pyramid_chameleon includeme:

config = Configurator(.....)
config.include('pyramid_chameleon')

Note that it's also fine to install these packages into older Pyramids for
forward compatibility purposes. Even if you don't upgrade to Pyramid 1.5
immediately, performing the above steps in a Pyramid 1.4 installation is
perfectly fine, won't cause any difference, and will give you forward
compatibility when you eventually do upgrade to Pyramid 1.5.

With the removal of Mako and Chameleon support from the core, some
unit tests that use the pyramid.renderers.render* methods may begin to
fail. If any of your unit tests are invoking either
pyramid.renderers.render() or pyramid.renderers.render_to_response()
with either Mako or Chameleon templates then the
pyramid.config.Configurator instance in effect during
the unit test should be also be updated to include the addons, as shown
above. For example:

class ATest(unittest.TestCase):
 def setUp(self):
 self.config = pyramid.testing.setUp()
 self.config.include('pyramid_mako')

 def test_it(self):
 result = pyramid.renderers.render('mypkg:templates/home.mako', {})

Or:

class ATest(unittest.TestCase):
 def setUp(self):
 self.config = pyramid.testing.setUp()
 self.config.include('pyramid_chameleon')

 def test_it(self):
 result = pyramid.renderers.render('mypkg:templates/home.pt', {})

	If you're using the Pyramid debug toolbar, when you upgrade Pyramid to
1.5a2+, you'll also need to upgrade the pyramid_debugtoolbar package to
at least version 1.0.8, as older toolbar versions are not compatible with
Pyramid 1.5a2+ due to the removal of Mako support from the core. It's
fine to use this newer version of the toolbar code with older Pyramids too.

	Removed the request.response_* varying attributes. These attributes
have been deprecated since Pyramid 1.1, and as per the deprecation policy,
have now been removed.

	request.response will no longer be mutated when using the
pyramid.renderers.render() API. Almost all renderers mutate the
request.response response object (for example, the JSON renderer sets
request.response.content_type to application/json), but this is
only necessary when the renderer is generating a response; it was a bug
when it was done as a side effect of calling pyramid.renderers.render().

	Removed the bfg2pyramid fixer script.

	The pyramid.events.NewResponse event is now sent after response
callbacks are executed. It previously executed before response callbacks
were executed. Rationale: it's more useful to be able to inspect the response
after response callbacks have done their jobs instead of before.

	Removed the class named pyramid.view.static that had been deprecated
since Pyramid 1.1. Instead use pyramid.static.static_view with
use_subpath=True argument.

	Removed the pyramid.view.is_response function that had been deprecated
since Pyramid 1.1. Use the pyramid.request.Request.is_response method
instead.

	Removed the ability to pass the following arguments to
pyramid.config.Configurator.add_route: view, view_context.
view_for, view_permission, view_renderer, and view_attr.
Using these arguments had been deprecated since Pyramid 1.1. Instead of
passing view-related arguments to add_route, use a separate call to
pyramid.config.Configurator.add_view to associate a view with a route
using its route_name argument. Note that this impacts the
pyramid.config.Configurator.add_static_view function too, because it
delegates to add_route.

	Removed the ability to influence and query a pyramid.request.Request
object as if it were a dictionary. Previously it was possible to use methods
like __getitem__, get, items, and other dictlike methods to
access values in the WSGI environment. This behavior had been deprecated
since Pyramid 1.1. Use methods of request.environ (a real dictionary)
instead.

	Removed ancient backwards compatibily hack in
pyramid.traversal.DefaultRootFactory which populated the __dict__ of
the factory with the matchdict values for compatibility with BFG 0.9.

	The renderer_globals_factory argument to the
pyramid.config.Configurator` constructor and its ``setup_registry method
has been removed. The set_renderer_globals_factory method of
pyramid.config.Configurator has also been removed. The (internal)
pyramid.interfaces.IRendererGlobals interface was also removed. These
arguments, methods and interfaces had been deprecated since 1.1. Use a
BeforeRender event subscriber as documented in the "Hooks" chapter of the
Pyramid narrative documentation instead of providing renderer globals values
to the configurator.

Deprecations

	The pyramid.config.Configurator.set_request_property method now issues
a deprecation warning when used. It had been docs-deprecated in 1.4
but did not issue a deprecation warning when used.

1.5a1 (2013-08-30)

Features

	A new http exception subclass named pyramid.httpexceptions.HTTPSuccessful
was added. You can use this class as the context of an exception
view to catch all 200-series "exceptions" (e.g. "raise HTTPOk"). This
also allows you to catch only the HTTPOk exception itself; previously
this was impossible because a number of other exceptions
(such as HTTPNoContent) inherited from HTTPOk, but now they do not.

	You can now generate "hybrid" urldispatch/traversal URLs more easily
by using the new route_name, route_kw and route_remainder_name
arguments to request.resource_url and request.resource_path. See
the new section of the "Combining Traversal and URL Dispatch" documentation
chapter entitled "Hybrid URL Generation".

	It is now possible to escape double braces in Pyramid scaffolds (unescaped,
these represent replacement values). You can use \{\{a\}\} to
represent a "bare" {{a}}. See
https://github.com/Pylons/pyramid/pull/862

	Add localizer and locale_name properties (reified) to the request.
See https://github.com/Pylons/pyramid/issues/508. Note that the
pyramid.i18n.get_localizer and pyramid.i18n.get_locale_name functions
now simply look up these properties on the request.

	Add pdistreport script, which prints the Python version in use, the
Pyramid version in use, and the version number and location of all Python
distributions currently installed.

	Add the ability to invert the result of any view, route, or subscriber
predicate using the not_ class. For example:

from pyramid.config import not_

@view_config(route_name='myroute', request_method=not_('POST'))
def myview(request): ...

The above example will ensure that the view is called if the request method
is not POST (at least if no other view is more specific).

The pyramid.config.not_ class can be used against any value that is
a predicate value passed in any of these contexts:

	pyramid.config.Configurator.add_view

	pyramid.config.Configurator.add_route

	pyramid.config.Configurator.add_subscriber

	pyramid.view.view_config

	pyramid.events.subscriber

	scripts/prequest.py: add support for submitting PUT and PATCH
requests. See https://github.com/Pylons/pyramid/pull/1033. add support for
submitting OPTIONS and PROPFIND requests, and allow users to specify
basic authentication credentials in the request via a --login argument to
the script. See https://github.com/Pylons/pyramid/pull/1039.

	ACLAuthorizationPolicy supports __acl__ as a callable. This
removes the ambiguity between the potential AttributeError that would
be raised on the context when the property was not defined and the
AttributeError that could be raised from any user-defined code within
a dynamic property. It is recommended to define a dynamic ACL as a callable
to avoid this ambiguity. See https://github.com/Pylons/pyramid/issues/735.

	Allow a protocol-relative URL (e.g. //example.com/images) to be passed to
pyramid.config.Configurator.add_static_view. This allows
externally-hosted static URLs to be generated based on the current protocol.

	The AuthTktAuthenticationPolicy has two new options to configure its
domain usage:

	parent_domain: if set the authentication cookie is set on
the parent domain. This is useful if you have multiple sites sharing the
same domain.

	domain: if provided the cookie is always set for this domain, bypassing
all usual logic.

See https://github.com/Pylons/pyramid/pull/1028,
https://github.com/Pylons/pyramid/pull/1072 and
https://github.com/Pylons/pyramid/pull/1078.

	The AuthTktAuthenticationPolicy now supports IPv6 addresses when using
the include_ip=True option. This is possibly incompatible with
alternative auth_tkt implementations, as the specification does not
define how to properly handle IPv6. See
https://github.com/Pylons/pyramid/issues/831.

	Make it possible to use variable arguments via
pyramid.paster.get_appsettings. This also allowed the generated
initialize_db script from the alchemy scaffold to grow support
for options in the form a=1 b=2 so you can fill in
values in a parameterized .ini file, e.g.
initialize_myapp_db etc/development.ini a=1 b=2.
See https://github.com/Pylons/pyramid/pull/911

	The request.session.check_csrf_token() method and the check_csrf view
predicate now take into account the value of the HTTP header named
X-CSRF-Token (as well as the csrf_token form parameter, which they
always did). The header is tried when the form parameter does not exist.

	View lookup will now search for valid views based on the inheritance
hierarchy of the context. It tries to find views based on the most
specific context first, and upon predicate failure, will move up the
inheritance chain to test views found by the super-type of the context.
In the past, only the most specific type containing views would be checked
and if no matching view could be found then a PredicateMismatch would be
raised. Now predicate mismatches don't hide valid views registered on
super-types. Here's an example that now works:

class IResource(Interface):

 ...

@view_config(context=IResource)
def get(context, request):

 ...

@view_config(context=IResource, request_method='POST')
def post(context, request):

 ...

@view_config(context=IResource, request_method='DELETE')
def delete(context, request):

 ...

@implementer(IResource)
class MyResource:

 ...

@view_config(context=MyResource, request_method='POST')
def override_post(context, request):

 ...

Previously the override_post view registration would hide the get
and delete views in the context of MyResource -- leading to a
predicate mismatch error when trying to use GET or DELETE
methods. Now the views are found and no predicate mismatch is
raised.
See https://github.com/Pylons/pyramid/pull/786 and
https://github.com/Pylons/pyramid/pull/1004 and
https://github.com/Pylons/pyramid/pull/1046

	The pserve command now takes a -v (or --verbose) flag and a
-q (or --quiet) flag. Output from running pserve can be
controlled using these flags. -v can be specified multiple times to
increase verbosity. -q sets verbosity to 0 unconditionally. The
default verbosity level is 1.

	The alchemy scaffold tests now provide better coverage. See
https://github.com/Pylons/pyramid/pull/1029

	The pyramid.config.Configurator.add_route method now supports being
called with an external URL as pattern. See
https://github.com/Pylons/pyramid/issues/611 and the documentation section
in the "URL Dispatch" chapter entitled "External Routes" for more information.

Bug Fixes

	It was not possible to use pyramid.httpexceptions.HTTPException as
the context of an exception view as very general catchall for
http-related exceptions when you wanted that exception view to override the
default exception view. See https://github.com/Pylons/pyramid/issues/985

	When the pyramid.reload_templates setting was true, and a Chameleon
template was reloaded, and the renderer specification named a macro
(e.g. foo#macroname.pt), renderings of the template after the template
was reloaded due to a file change would produce the entire template body
instead of just a rendering of the macro. See
https://github.com/Pylons/pyramid/issues/1013.

	Fix an obscure problem when combining a virtual root with a route with a
*traverse in its pattern. Now the traversal path generated in
such a configuration will be correct, instead of an element missing
a leading slash.

	Fixed a Mako renderer bug returning a tuple with a previous defname value
in some circumstances. See https://github.com/Pylons/pyramid/issues/1037
for more information.

	Make the pyramid.config.assets.PackageOverrides object implement the API
for __loader__ objects specified in PEP 302. Proxies to the
__loader__ set by the importer, if present; otherwise, raises
NotImplementedError. This makes Pyramid static view overrides work
properly under Python 3.3 (previously they would not). See
https://github.com/Pylons/pyramid/pull/1015 for more information.

	mako_templating: added defensive workaround for non-importability of
mako due to upstream markupsafe dropping Python 3.2 support. Mako
templating will no longer work under the combination of MarkupSafe 0.17 and
Python 3.2 (although the combination of MarkupSafe 0.17 and Python 3.3 or any
supported Python 2 version will work OK).

	Spaces and dots may now be in mako renderer template paths. This was
broken when support for the new makodef syntax was added in 1.4a1.
See https://github.com/Pylons/pyramid/issues/950

	pyramid.debug_authorization=true will now correctly print out
Allowed for views registered with NO_PERMISSION_REQUIRED instead
of invoking the permits method of the authorization policy.
See https://github.com/Pylons/pyramid/issues/954

	Pyramid failed to install on some systems due to being packaged with
some test files containing higher order characters in their names. These
files have now been removed. See
https://github.com/Pylons/pyramid/issues/981

	pyramid.testing.DummyResource didn't define __bool__, so code under
Python 3 would use __len__ to find truthiness; this usually caused an
instance of DummyResource to be "falsy" instead of "truthy". See
https://github.com/Pylons/pyramid/pull/1032

	The alchemy scaffold would break when the database was MySQL during
tables creation. See https://github.com/Pylons/pyramid/pull/1049

	The current_route_url method now attaches the query string to the URL by
default. See
https://github.com/Pylons/pyramid/issues/1040

	Make pserve.cherrypy_server_runner Python 3 compatible. See
https://github.com/Pylons/pyramid/issues/718

Backwards Incompatibilities

	Modified the current_route_url method in pyramid.Request. The method
previously returned the URL without the query string by default, it now does
attach the query string unless it is overriden.

	The route_url and route_path APIs no longer quote /
to %2F when a replacement value contains a /. This was pointless,
as WSGI servers always unquote the slash anyway, and Pyramid never sees the
quoted value.

	It is no longer possible to set a locale_name attribute of the request,
nor is it possible to set a localizer attribute of the request. These
are now "reified" properties that look up a locale name and localizer
respectively using the machinery described in the "Internationalization"
chapter of the documentation.

	If you send an X-Vhm-Root header with a value that ends with a slash (or
any number of slashes), the trailing slash(es) will be removed before a URL
is generated when you use use request.resource_url or
request.resource_path. Previously the virtual root path would not have
trailing slashes stripped, which would influence URL generation.

	The pyramid.interfaces.IResourceURL interface has now grown two new
attributes: virtual_path_tuple and physical_path_tuple. These should
be the tuple form of the resource's path (physical and virtual).

1.4 (2012-12-18)

Docs

	Fix functional tests in the ZODB tutorial

1.4b3 (2012-12-10)

	Packaging release only, no code changes. 1.4b2 was a brownbag release due to
missing directories in the tarball.

1.4b2 (2012-12-10)

Docs

	Scaffolding is now PEP-8 compliant (at least for a brief shining moment).

	Tutorial improvements.

Backwards Incompatibilities

	Modified the _depth argument to pyramid.view.view_config to accept
a value relative to the invocation of view_config itself. Thus, when it
was previously expecting a value of 1 or greater, to reflect that
the caller of view_config is 1 stack frame away from venusian.attach,
this implementation detail is now hidden.

	Modified the _backframes argument to pyramid.util.action_method in a
similar way to the changes described to _depth above. This argument
remains undocumented, but might be used in the wild by some insane person.

1.4b1 (2012-11-21)

Features

	Small microspeed enhancement which anticipates that a
pyramid.response.Response object is likely to be returned from a view.
Some code is shortcut if the class of the object returned by a view is this
class. A similar microoptimization was done to
pyramid.request.Request.is_response.

	Make it possible to use variable arguments on p* commands (pserve,
pshell, pviews, etc) in the form a=1 b=2 so you can fill in
values in parameterized .ini file, e.g. pshell etc/development.ini
http_port=8080. See https://github.com/Pylons/pyramid/pull/714

	A somewhat advanced and obscure feature of Pyramid event handlers is their
ability to handle "multi-interface" notifications. These notifications have
traditionally presented multiple objects to the subscriber callable. For
instance, if an event was sent by code like this:

registry.notify(event, context)

In the past, in order to catch such an event, you were obligated to write and
register an event subscriber that mentioned both the event and the context in
its argument list:

@subscriber([SomeEvent, SomeContextType])
def asubscriber(event, context):
 pass

In many subscriber callables registered this way, it was common for the logic
in the subscriber callable to completely ignore the second and following
arguments (e.g. context in the above example might be ignored), because
they usually existed as attributes of the event anyway. You could usually
get the same value by doing event.context or similar.

The fact that you needed to put an extra argument which you usually ignored
in the subscriber callable body was only a minor annoyance until we added
"subscriber predicates", used to narrow the set of circumstances under which
a subscriber will be executed, in a prior 1.4 alpha release. Once those were
added, the annoyance was escalated, because subscriber predicates needed to
accept the same argument list and arity as the subscriber callables that they
were configured against. So, for example, if you had these two subscriber
registrations in your code:

@subscriber([SomeEvent, SomeContextType])
def asubscriber(event, context):
 pass

@subscriber(SomeOtherEvent)
def asubscriber(event):
 pass

And you wanted to use a subscriber predicate:

@subscriber([SomeEvent, SomeContextType], mypredicate=True)
def asubscriber1(event, context):
 pass

@subscriber(SomeOtherEvent, mypredicate=True)
def asubscriber2(event):
 pass

If an existing mypredicate subscriber predicate had been written in such
a way that it accepted only one argument in its __call__, you could not
use it against a subscription which named more than one interface in its
subscriber interface list. Similarly, if you had written a subscriber
predicate that accepted two arguments, you couldn't use it against a
registration that named only a single interface type.

For example, if you created this predicate:

class MyPredicate(object):
 # portions elided...
 def __call__(self, event):
 return self.val == event.context.foo

It would not work against a multi-interface-registered subscription, so in
the above example, when you attempted to use it against asubscriber1, it
would fail at runtime with a TypeError, claiming something was attempting to
call it with too many arguments.

To hack around this limitation, you were obligated to design the
mypredicate predicate to expect to receive in its __call__ either a
single event argument (a SomeOtherEvent object) or a pair of arguments
(a SomeEvent object and a SomeContextType object), presumably by doing
something like this:

class MyPredicate(object):
 # portions elided...
 def __call__(self, event, context=None):
 return self.val == event.context.foo

This was confusing and bad.

In order to allow people to ignore unused arguments to subscriber callables
and to normalize the relationship between event subscribers and subscriber
predicates, we now allow both subscribers and subscriber predicates to accept
only a single event argument even if they've been subscribed for
notifications that involve multiple interfaces. Subscribers and subscriber
predicates that accept only one argument will receive the first object passed
to notify; this is typically (but not always) the event object. The
other objects involved in the subscription lookup will be discarded. You can
now write an event subscriber that accepts only event even if it
subscribes to multiple interfaces:

@subscriber([SomeEvent, SomeContextType])
def asubscriber(event):
 # this will work!

This prevents you from needing to match the subscriber callable parameters to
the subscription type unnecessarily, especially when you don't make use of
any argument in your subscribers except for the event object itself.

Note, however, that if the event object is not the first
object in the call to notify, you'll run into trouble. For example, if
notify is called with the context argument first:

registry.notify(context, event)

You won't be able to take advantage of the event-only feature. It will
"work", but the object received by your event handler won't be the event
object, it will be the context object, which won't be very useful:

@subscriber([SomeContextType, SomeEvent])
def asubscriber(event):
 # bzzt! you'll be getting the context here as ``event``, and it'll
 # be useless

Existing multiple-argument subscribers continue to work without issue, so you
should continue use those if your system notifies using multiple interfaces
and the first interface is not the event interface. For example:

@subscriber([SomeContextType, SomeEvent])
def asubscriber(context, event):
 # this will still work!

The event-only feature makes it possible to use a subscriber predicate that
accepts only a request argument within both multiple-interface subscriber
registrations and single-interface subscriber registrations. You needn't
make slightly different variations of predicates depending on the
subscription type arguments. Instead, just write all your subscriber
predicates so they only accept event in their __call__ and they'll be
useful across all registrations for subscriptions that use an event as their
first argument, even ones which accept more than just event.

However, the same caveat applies to predicates as to subscriber callables: if
you're subscribing to a multi-interface event, and the first interface is not
the event interface, the predicate won't work properly. In such a case,
you'll need to match the predicate __call__ argument ordering and
composition to the ordering of the interfaces. For example, if the
registration for the subscription uses [SomeContext, SomeEvent], you'll
need to reflect that in the ordering of the parameters of the predicate's
__call__ method:

def __call__(self, context, event):
 return event.request.path.startswith(self.val)

tl;dr: 1) When using multi-interface subscriptions, always use the event type
as the first subscription registration argument and 2) When 1 is true, use
only event in your subscriber and subscriber predicate parameter lists,
no matter how many interfaces the subscriber is notified with. This
combination will result in the maximum amount of reusability of subscriber
predicates and the least amount of thought on your part. Drink responsibly.

Bug Fixes

	A failure when trying to locate the attribute __text__ on route and view
predicates existed when the debug_routematch setting was true or when the
pviews command was used. See https://github.com/Pylons/pyramid/pull/727

Documentation

	Sync up tutorial source files with the files that are rendered by the
scaffold that each uses.

1.4a4 (2012-11-14)

Features

	pyramid.authentication.AuthTktAuthenticationPolicy has been updated to
support newer hashing algorithms such as sha512. Existing applications
should consider updating if possible for improved security over the default
md5 hashing.

	Added an effective_principals route and view predicate.

	Do not allow the userid returned from the authenticated_userid or the
userid that is one of the list of principals returned by
effective_principals to be either of the strings system.Everyone or
system.Authenticated when any of the built-in authorization policies that
live in pyramid.authentication are in use. These two strings are
reserved for internal usage by Pyramid and they will not be accepted as valid
userids.

	Slightly better debug logging from
pyramid.authentication.RepozeWho1AuthenticationPolicy.

	pyramid.security.view_execution_permitted used to return True if no
view could be found. It now raises a TypeError exception in that case, as
it doesn't make sense to assert that a nonexistent view is
execution-permitted. See https://github.com/Pylons/pyramid/issues/299.

	Allow a _depth argument to pyramid.view.view_config, which will
permit limited composition reuse of the decorator by other software that
wants to provide custom decorators that are much like view_config.

	Allow an iterable of decorators to be passed to
pyramid.config.Configurator.add_view. This allows views to be wrapped
by more than one decorator without requiring combining the decorators
yourself.

Bug Fixes

	In the past if a renderer returned None, the body of the resulting
response would be set explicitly to the empty string. Instead, now, the body
is left unchanged, which allows the renderer to set a body itself by using
e.g. request.response.body = b'foo'. The body set by the renderer will
be unmolested on the way out. See
https://github.com/Pylons/pyramid/issues/709

	In uncommon cases, the pyramid_excview_tween_factory might have
inadvertently raised a KeyError looking for request_iface as an
attribute of the request. It no longer fails in this case. See
https://github.com/Pylons/pyramid/issues/700

	Be more tolerant of potential error conditions in match_param and
physical_path predicate implementations; instead of raising an exception,
return False.

	pyramid.view.render_view was not functioning properly under Python 3.x
due to a byte/unicode discrepancy. See
https://github.com/Pylons/pyramid/issues/721

Deprecations

	pyramid.authentication.AuthTktAuthenticationPolicy will emit a warning if
an application is using the policy without explicitly passing a hashalg
argument. This is because the default is "md5" which is considered
theoretically subject to collision attacks. If you really want "md5" then you
must specify it explicitly to get rid of the warning.

Documentation

	All of the tutorials that use
pyramid.authentication.AuthTktAuthenticationPolicy now explicitly pass
sha512 as a hashalg argument.

Internals

	Move TopologicalSorter from pyramid.config.util to pyramid.util,
move CyclicDependencyError from pyramid.config.util to
pyramid.exceptions, rename Singleton to Sentinel and move from
pyramid.config.util to pyramid.util; this is in an effort to
move that stuff that may be an API one day out of pyramid.config.util,
because that package should never be imported from non-Pyramid code.
TopologicalSorter is still not an API, but may become one.

	Get rid of shady monkeypatching of pyramid.request.Request and
pyramid.response.Response done within the __init__.py of Pyramid.
Webob no longer relies on this being done. Instead, the ResponseClass
attribute of the Pyramid Request class is assigned to the Pyramid response
class; that's enough to satisfy WebOb and behave as it did before with the
monkeypatching.

1.4a3 (2012-10-26)

Bug Fixes

	The match_param predicate's text method was fixed to sort its values.
Part of https://github.com/Pylons/pyramid/pull/705

	1.4a pyramid.scripting.prepare behaved differently than 1.3 series
function of same name. In particular, if passed a request, it would not
set the registry attribute of the request like 1.3 did. A symptom
would be that passing a request to pyramid.paster.bootstrap (which uses
the function) that did not have a registry attribute could assume that
the registry would be attached to the request by Pyramid. This assumption
could be made in 1.3, but not in 1.4. The assumption can now be made in
1.4 too (a registry is attached to a request passed to bootstrap or
prepare).

	When registering a view configuration that named a Chameleon ZPT renderer
with a macro name in it (e.g. renderer='some/template#somemacro.pt) as
well as a view configuration without a macro name in it that pointed to the
same template (e.g. renderer='some/template.pt'), internal caching could
confuse the two, and your code might have rendered one instead of the
other.

Features

	Allow multiple values to be specified to the request_param view/route
predicate as a sequence. Previously only a single string value was allowed.
See https://github.com/Pylons/pyramid/pull/705

	Comments with references to documentation sections placed in scaffold
.ini files.

	Added an HTTP Basic authentication policy
at pyramid.authentication.BasicAuthAuthenticationPolicy.

	The Configurator testing_securitypolicy method now returns the policy
object it creates.

	The Configurator testing_securitypolicy method accepts two new
arguments: remember_result and forget_result. If supplied, these
values influence the result of the policy's remember and forget
methods, respectively.

	The DummySecurityPolicy created by testing_securitypolicy now sets a
forgotten value on the policy (the value True) when its forget
method is called.

	The DummySecurityPolicy created by testing_securitypolicy now sets a
remembered value on the policy, which is the value of the principal
argument it's called with when its remember method is called.

	New physical_path view predicate. If specified, this value should be a
string or a tuple representing the physical traversal path of the context
found via traversal for this predicate to match as true. For example:
physical_path='/' or physical_path='/a/b/c' or physical_path=('',
'a', 'b', 'c'). This is not a path prefix match or a regex, it's a
whole-path match. It's useful when you want to always potentially show a
view when some object is traversed to, but you can't be sure about what kind
of object it will be, so you can't use the context predicate. The
individual path elements inbetween slash characters or in tuple elements
should be the Unicode representation of the name of the resource and should
not be encoded in any way.

1.4a2 (2012-09-27)

Bug Fixes

	When trying to determine Mako defnames and Chameleon macro names in asset
specifications, take into account that the filename may have a hyphen in
it. See https://github.com/Pylons/pyramid/pull/692

Features

	A new pyramid.session.check_csrf_token convenience function was added.

	A check_csrf view predicate was added. For example, you can now do
config.add_view(someview, check_csrf=True). When the predicate is
checked, if the csrf_token value in request.params matches the CSRF
token in the request's session, the view will be permitted to execute.
Otherwise, it will not be permitted to execute.

	Add Base.metadata.bind = engine to alchemy template, so that tables
defined imperatively will work.

Documentation

	update wiki2 SQLA tutorial with the changes required after inserting
Base.metadata.bind = engine into the alchemy scaffold.

1.4a1 (2012-09-16)

Bug Fixes

	Forward port from 1.3 branch: When no authentication policy was configured,
a call to pyramid.security.effective_principals would unconditionally
return the empty list. This was incorrect, it should have unconditionally
returned [Everyone], and now does.

	Explicit url dispatch regexes can now contain colons.
https://github.com/Pylons/pyramid/issues/629

	On at least one 64-bit Ubuntu system under Python 3.2, using the
view_config decorator caused a RuntimeError: dictionary changed size
during iteration exception. It no longer does. See
https://github.com/Pylons/pyramid/issues/635 for more information.

	In Mako Templates lookup, check if the uri is already adjusted and bring
it back to an asset spec. Normally occurs with inherited templates or
included components.
https://github.com/Pylons/pyramid/issues/606
https://github.com/Pylons/pyramid/issues/607

	In Mako Templates lookup, check for absolute uri (using mako directories)
when mixing up inheritance with asset specs.
https://github.com/Pylons/pyramid/issues/662

	HTTP Accept headers were not being normalized causing potentially
conflicting view registrations to go unnoticed. Two views that only
differ in the case ('text/html' vs. 'text/HTML') will now raise an error.
https://github.com/Pylons/pyramid/pull/620

	Forward-port from 1.3 branch: when registering multiple views with an
accept predicate in a Pyramid application runing under Python 3, you
might have received a TypeError: unorderable types: function() <
function() exception.

Features

	Python 3.3 compatibility.

	Configurator.add_directive now accepts arbitrary callables like partials or
objects implementing __call__ which dont have __name__ and
__doc__ attributes. See https://github.com/Pylons/pyramid/issues/621
and https://github.com/Pylons/pyramid/pull/647.

	Third-party custom view, route, and subscriber predicates can now be added
for use by view authors via
pyramid.config.Configurator.add_view_predicate,
pyramid.config.Configurator.add_route_predicate and
pyramid.config.Configurator.add_subscriber_predicate. So, for example,
doing this:

config.add_view_predicate('abc', my.package.ABCPredicate)

Might allow a view author to do this in an application that configured that
predicate:

@view_config(abc=1)

Similar features exist for add_route, and add_subscriber. See
"Adding A Third Party View, Route, or Subscriber Predicate" in the Hooks
chapter for more information.

Note that changes made to support the above feature now means that only
actions registered using the same "order" can conflict with one another.
It used to be the case that actions registered at different orders could
potentially conflict, but to my knowledge nothing ever depended on this
behavior (it was a bit silly).

	Custom objects can be made easily JSON-serializable in Pyramid by defining
a __json__ method on the object's class. This method should return
values natively serializable by json.dumps (such as ints, lists,
dictionaries, strings, and so forth).

	The JSON renderer now allows for the definition of custom type adapters to
convert unknown objects to JSON serializations.

	As of this release, the request_method predicate, when used, will also
imply that HEAD is implied when you use GET. For example, using
@view_config(request_method='GET') is equivalent to using
@view_config(request_method=('GET', 'HEAD')). Using
@view_config(request_method=('GET', 'POST') is equivalent to using
@view_config(request_method=('GET', 'HEAD', 'POST'). This is because
HEAD is a variant of GET that omits the body, and WebOb has special support
to return an empty body when a HEAD is used.

	config.add_request_method has been introduced to support extending
request objects with arbitrary callables. This method expands on the
previous config.set_request_property by supporting methods as well as
properties. This method now causes less code to be executed at
request construction time than config.set_request_property in
version 1.3.

	Don't add a ? to URLs generated by request.resource_url if the
query argument is provided but empty.

	Don't add a ? to URLs generated by request.route_url if the
_query argument is provided but empty.

	The static view machinery now raises (rather than returns) HTTPNotFound
and HTTPMovedPermanently exceptions, so these can be caught by the
Not Found View (and other exception views).

	The Mako renderer now supports a def name in an asset spec. When the def
name is present in the asset spec, the system will render the template def
within the template and will return the result. An example asset spec is
package:path/to/template#defname.mako. This will render the def named
defname inside the template.mako template instead of rendering the
entire template. The old way of returning a tuple in the form
('defname', {}) from the view is supported for backward compatibility,

	The Chameleon ZPT renderer now accepts a macro name in an asset spec. When
the macro name is present in the asset spec, the system will render the
macro listed as a define-macro and return the result instead of
rendering the entire template. An example asset spec:
package:path/to/template#macroname.pt. This will render the macro
defined as macroname within the template.pt template instead of the
entire templae.

	When there is a predicate mismatch exception (seen when no view matches for
a given request due to predicates not working), the exception now contains
a textual description of the predicate which didn't match.

	An add_permission directive method was added to the Configurator. This
directive registers a free-standing permission introspectable into the
Pyramid introspection system. Frameworks built atop Pyramid can thus use
the permissions introspectable category data to build a
comprehensive list of permissions supported by a running system. Before
this method was added, permissions were already registered in this
introspectable category as a side effect of naming them in an add_view
call, this method just makes it possible to arrange for a permission to be
put into the permissions introspectable category without naming it
along with an associated view. Here's an example of usage of
add_permission:

config = Configurator()
config.add_permission('view')

	The UnencryptedCookieSessionFactoryConfig now accepts
signed_serialize and signed_deserialize hooks which may be used
to influence how the sessions are marshalled (by default this is done
with HMAC+pickle).

	pyramid.testing.DummyRequest now supports methods supplied by the
pyramid.util.InstancePropertyMixin class such as set_property.

	Request properties and methods added via config.set_request_property or
config.add_request_method are now available to tweens.

	Request properties and methods added via config.set_request_property or
config.add_request_method are now available in the request object
returned from pyramid.paster.bootstrap.

	request.context of environment request during bootstrap is now the
root object if a context isn't already set on a provided request.

	The pyramid.decorator.reify function is now an API, and was added to
the API documentation.

	Added the pyramid.testing.testConfig context manager, which can be used
to generate a configurator in a test, e.g. with testing.testConfig(...):.

	Users can now invoke a subrequest from within view code using a new
request.invoke_subrequest API.

Deprecations

	The pyramid.config.Configurator.set_request_property has been
documentation-deprecated. The method remains usable but the more
featureful pyramid.config.Configurator.add_request_method should be
used in its place (it has all of the same capabilities but can also extend
the request object with methods).

Backwards Incompatibilities

	The Pyramid router no longer adds the values bfg.routes.route or
bfg.routes.matchdict to the request's WSGI environment dictionary.
These values were docs-deprecated in repoze.bfg 1.0 (effectively seven
minor releases ago). If your code depended on these values, use
request.matched_route and request.matchdict instead.

	It is no longer possible to pass an environ dictionary directly to
pyramid.traversal.ResourceTreeTraverser.__call__ (aka
ModelGraphTraverser.__call__). Instead, you must pass a request
object. Passing an environment instead of a request has generated a
deprecation warning since Pyramid 1.1.

	Pyramid will no longer work properly if you use the
webob.request.LegacyRequest as a request factory. Instances of the
LegacyRequest class have a request.path_info which return a string.
This Pyramid release assumes that request.path_info will
unconditionally be Unicode.

	The functions from pyramid.chameleon_zpt and pyramid.chameleon_text
named get_renderer, get_template, render_template, and
render_template_to_response have been removed. These have issued a
deprecation warning upon import since Pyramid 1.0. Use
pyramid.renderers.get_renderer(),
pyramid.renderers.get_renderer().implementation(),
pyramid.renderers.render() or pyramid.renderers.render_to_response
respectively instead of these functions.

	The pyramid.configuration module was removed. It had been deprecated
since Pyramid 1.0 and printed a deprecation warning upon its use. Use
pyramid.config instead.

	The pyramid.paster.PyramidTemplate API was removed. It had been
deprecated since Pyramid 1.1 and issued a warning on import. If your code
depended on this, adjust your code to import
pyramid.scaffolds.PyramidTemplate instead.

	The pyramid.settings.get_settings() API was removed. It had been
printing a deprecation warning since Pyramid 1.0. If your code depended on
this API, use pyramid.threadlocal.get_current_registry().settings
instead or use the settings attribute of the registry available from
the request (request.registry.settings).

	These APIs from the pyramid.testing module were removed. They have
been printing deprecation warnings since Pyramid 1.0:
	registerDummySecurityPolicy, use
pyramid.config.Configurator.testing_securitypolicy instead.

	registerResources (aka registerModels, use
pyramid.config.Configurator.testing_resources instead.

	registerEventListener, use
pyramid.config.Configurator.testing_add_subscriber instead.

	registerTemplateRenderer (aka registerDummyRenderer`), use
pyramid.config.Configurator.testing_add_template instead.

	registerView, use pyramid.config.Configurator.add_view instead.

	registerUtility, use
pyramid.config.Configurator.registry.registerUtility instead.

	registerAdapter, use
pyramid.config.Configurator.registry.registerAdapter instead.

	registerSubscriber, use
pyramid.config.Configurator.add_subscriber instead.

	registerRoute, use
pyramid.config.Configurator.add_route instead.

	registerSettings, use
pyramid.config.Configurator.add_settings instead.

	In Pyramid 1.3 and previous, the __call__ method of a Response object
was invoked before any finished callbacks were executed. As of this
release, the __call__ method of a Response object is invoked after
finished callbacks are executed. This is in support of the
request.invoke_subrequest feature.

	The 200-series exception responses named HTTPCreated, HTTPAccepted,
HTTPNonAuthoritativeInformation, HTTPNoContent, HTTPResetContent,
and HTTPPartialContent in pyramid.httpexceptions no longer inherit
from HTTPOk. Instead they inherit from a new base class named
HTTPSuccessful. This will have no effect on you unless you've registered
an exception view for HTTPOk and expect that exception view to
catch all the aforementioned exceptions.

Documentation

	Added an "Upgrading Pyramid" chapter to the narrative documentation. It
describes how to cope with deprecations and removals of Pyramid APIs and
how to show Pyramid-generated deprecation warnings while running tests and
while running a server.

	Added a "Invoking a Subrequest" chapter to the documentation. It describes
how to use the new request.invoke_subrequest API.

Dependencies

	Pyramid now requires WebOb 1.2b3+ (the prior Pyramid release only relied on
1.2dev+). This is to ensure that we obtain a version of WebOb that returns
request.path_info as text.

1.3 (2012-03-21)

Bug Fixes

	When pyramid.wsgi.wsgiapp2 calls the downstream WSGI app, the app's
environ will no longer have (deprecated and potentially misleading)
bfg.routes.matchdict or bfg.routes.route keys in it. A symptom of
this bug would be a wsgiapp2-wrapped Pyramid app finding the wrong view
because it mistakenly detects that a route was matched when, in fact, it
was not.

	The fix for issue https://github.com/Pylons/pyramid/issues/461 (which made
it possible for instance methods to be used as view callables) introduced a
backwards incompatibility when methods that declared only a request
argument were used. See https://github.com/Pylons/pyramid/issues/503

1.3b3 (2012-03-17)

Bug Fixes

	config.add_view(<aninstancemethod>) raised AttributeError involving
__text__. See https://github.com/Pylons/pyramid/issues/461

	Remove references to do-nothing pyramid.debug_templates setting in all
Pyramid-provided .ini files. This setting previously told Chameleon to
render better exceptions; now Chameleon always renders nice exceptions
regardless of the value of this setting.

Scaffolds

	The alchemy scaffold now shows an informative error message in the
browser if the person creating the project forgets to run the
initialization script.

	The alchemy scaffold initialization script is now called
initialize_<projectname>_db instead of populate_<projectname>.

Documentation

	Wiki tutorials improved due to collaboration at PyCon US 2012 sprints.

1.3b2 (2012-03-02)

Bug Fixes

	The method pyramid.request.Request.partial_application_url is no longer
in the API docs. It was meant to be a private method; its publication in
the documentation as an API method was a mistake, and it has been renamed
to something private.

	When a static view was registered using an absolute filesystem path on
Windows, the request.static_url function did not work to generate URLs
to its resources. Symptom: "No static URL definition matching
c:\foo\bar\baz".

	Make all tests pass on Windows XP.

	Bug in ACL authentication checking on Python 3: the permits and
principals_allowed_by_permission method of
pyramid.authorization.ACLAuthenticationPolicy could return an
inappropriate True value when a permission on an ACL was a string
rather than a sequence, and then only if the ACL permission string was a
substring of the permission value passed to the function.

This bug effects no Pyramid deployment under Python 2; it is a bug that
exists only in deployments running on Python 3. It has existed since
Pyramid 1.3a1.

This bug was due to the presence of an __iter__ attribute on strings
under Python 3 which is not present under strings in Python 2.

1.3b1 (2012-02-26)

Bug Fixes

	pyramid.config.Configurator.with_package didn't work if the
Configurator was an old-style pyramid.configuration.Configurator
instance.

	Pyramid authorization policies did not show up in the introspector.

Deprecations

	All references to the tmpl_context request variable were removed from
the docs. Its existence in Pyramid is confusing for people who were never
Pylons users. It was added as a porting convenience for Pylons users in
Pyramid 1.0, but it never caught on because the Pyramid rendering system is
a lot different than Pylons' was, and alternate ways exist to do what it
was designed to offer in Pylons. It will continue to exist "forever" but
it will not be recommended or mentioned in the docs.

1.3a9 (2012-02-22)

Features

	Add an introspection boolean to the Configurator constructor. If this
is True, actions registered using the Configurator will be registered
with the introspector. If it is False, they won't. The default is
True. Setting it to False during action processing will prevent
introspection for any following registration statements, and setting it to
True will start them up again. This addition is to service a
requirement that the debug toolbar's own views and methods not show up in
the introspector.

	New API: pyramid.config.Configurator.add_notfound_view. This is a
wrapper for pyramid.Config.configurator.add_view which provides easy
append_slash support and does the right thing about permissions. It should
be preferred over calling add_view directly with
context=HTTPNotFound as was previously recommended.

	New API: pyramid.view.notfound_view_config. This is a decorator
constructor like pyramid.view.view_config that calls
pyramid.config.Configurator.add_notfound_view when scanned. It should
be preferred over using pyramid.view.view_config with
context=HTTPNotFound as was previously recommended.

	New API: pyramid.config.Configurator.add_forbidden_view. This is a
wrapper for pyramid.Config.configurator.add_view which does the right
thing about permissions. It should be preferred over calling add_view
directly with context=HTTPForbidden as was previously recommended.

	New API: pyramid.view.forbidden_view_config. This is a decorator
constructor like pyramid.view.view_config that calls
pyramid.config.Configurator.add_forbidden_view when scanned. It should
be preferred over using pyramid.view.view_config with
context=HTTPForbidden as was previously recommended.

	New APIs: pyramid.response.FileResponse and
pyramid.response.FileIter, for usage in views that must serve files
"manually".

Backwards Incompatibilities

	Remove pyramid.config.Configurator.with_context class method. It was
never an API, it is only used by pyramid_zcml and its functionality has
been moved to that package's latest release. This means that you'll need
to use the 0.9.2 or later release of pyramid_zcml with this release of
Pyramid.

	The introspector argument to the pyramid.config.Configurator
constructor API has been removed. It has been replaced by the boolean
introspection flag.

	The pyramid.registry.noop_introspector API object has been removed.

	The older deprecated set_notfound_view Configurator method is now an
alias for the new add_notfound_view Configurator method. Likewise, the
older deprecated set_forbidden_view is now an alias for the new
add_forbidden_view. This has the following impact: the context sent
to views with a (context, request) call signature registered via the
set_notfound_view or set_forbidden_view will now be an exception
object instead of the actual resource context found. Use
request.context to get the actual resource context. It's also
recommended to disuse set_notfound_view in favor of
add_notfound_view, and disuse set_forbidden_view in favor of
add_forbidden_view despite the aliasing.

Deprecations

	The API documentation for pyramid.view.append_slash_notfound_view and
pyramid.view.AppendSlashNotFoundViewFactory was removed. These names
still exist and are still importable, but they are no longer APIs. Use
pyramid.config.Configurator.add_notfound_view(append_slash=True) or
pyramid.view.notfound_view_config(append_slash=True) to get the same
behavior.

	The set_forbidden_view and set_notfound_view methods of the
Configurator were removed from the documentation. They have been
deprecated since Pyramid 1.1.

Bug Fixes

	The static file response object used by config.add_static_view opened
the static file twice, when it only needed to open it once.

	The AppendSlashNotFoundViewFactory used request.path to match routes. This
was wrong because request.path contains the script name, and this would
cause it to fail in circumstances where the script name was not empty. It
should have used request.path_info, and now does.

Documentation

	Updated the "Creating a Not Found View" section of the "Hooks" chapter,
replacing explanations of registering a view using add_view or
view_config with ones using add_notfound_view or
notfound_view_config.

	Updated the "Creating a Not Forbidden View" section of the "Hooks" chapter,
replacing explanations of registering a view using add_view or
view_config with ones using add_forbidden_view or
forbidden_view_config.

	Updated the "Redirecting to Slash-Appended Routes" section of the "URL
Dispatch" chapter, replacing explanations of registering a view using
add_view or view_config with ones using add_notfound_view or
notfound_view_config

	Updated all tutorials to use pyramid.view.forbidden_view_config rather
than pyramid.view.view_config with an HTTPForbidden context.

1.3a8 (2012-02-19)

Features

	The scan method of a Configurator can be passed an ignore
argument, which can be a string, a callable, or a list consisting of
strings and/or callables. This feature allows submodules, subpackages, and
global objects from being scanned. See
http://readthedocs.org/docs/venusian/en/latest/#ignore-scan-argument for
more information about how to use the ignore argument to scan.

	Better error messages when a view callable returns a value that cannot be
converted to a response (for example, when a view callable returns a
dictionary without a renderer defined, or doesn't return any value at all).
The error message now contains information about the view callable itself
as well as the result of calling it.

	Better error message when a .pyc-only module is config.include -ed.
This is not permitted due to error reporting requirements, and a better
error message is shown when it is attempted. Previously it would fail with
something like "AttributeError: 'NoneType' object has no attribute
'rfind'".

	Add pyramid.config.Configurator.add_traverser API method. See the
Hooks narrative documentation section entitled "Changing the Traverser" for
more information. This is not a new feature, it just provides an API for
adding a traverser without needing to use the ZCA API.

	Add pyramid.config.Configurator.add_resource_url_adapter API method.
See the Hooks narrative documentation section entitled "Changing How
pyramid.request.Request.resource_url Generates a URL" for more information.
This is not a new feature, it just provides an API for adding a resource
url adapter without needing to use the ZCA API.

	The system value req is now supplied to renderers as an alias for
request. This means that you can now, for example, in a template, do
req.route_url(...) instead of request.route_url(...). This is
purely a change to reduce the amount of typing required to use request
methods and attributes from within templates. The value request is
still available too, this is just an alternative.

	A new interface was added: pyramid.interfaces.IResourceURL. An adapter
implementing its interface can be used to override resource URL generation
when request.resource_url is called. This interface replaces the
now-deprecated pyramid.interfaces.IContextURL interface.

	The dictionary passed to a resource's __resource_url__ method (see
"Overriding Resource URL Generation" in the "Resources" chapter) now
contains an app_url key, representing the application URL generated
during request.resource_url. It represents a potentially customized
URL prefix, containing potentially custom scheme, host and port information
passed by the user to request.resource_url. It should be used instead
of request.application_url where necessary.

	The request.resource_url API now accepts these arguments: app_url,
scheme, host, and port. The app_url argument can be used to
replace the URL prefix wholesale during url generation. The scheme,
host, and port arguments can be used to replace the respective
default values of request.application_url partially.

	A new API named request.resource_path now exists. It works like
request.resource_url but produces a relative URL rather than an
absolute one.

	The request.route_url API now accepts these arguments: _app_url,
_scheme, _host, and _port. The _app_url argument can be
used to replace the URL prefix wholesale during url generation. The
_scheme, _host, and _port arguments can be used to replace the
respective default values of request.application_url partially.

Backwards Incompatibilities

	The pyramid.interfaces.IContextURL interface has been deprecated.
People have been instructed to use this to register a resource url adapter
in the "Hooks" chapter to use to influence request.resource_url URL
generation for resources found via custom traversers since Pyramid 1.0.

The interface still exists and registering such an adapter still works, but
this interface will be removed from the software after a few major Pyramid
releases. You should replace it with an equivalent
pyramid.interfaces.IResourceURL adapter, registered using the new
pyramid.config.Configurator.add_resource_url_adapter API. A
deprecation warning is now emitted when a
pyramid.interfaces.IContextURL adapter is found when
request.resource_url is called.

Documentation

	Don't create a session instance in SQLA Wiki tutorial, use raw
DBSession instead (this is more common in real SQLA apps).

Scaffolding

	Put pyramid.includes targets within ini files in scaffolds on separate
lines in order to be able to tell people to comment out only the
pyramid_debugtoolbar line when they want to disable the toolbar.

Dependencies

	Depend on venusian >= 1.0a3 to provide scan ignore support.

Internal

	Create a "MakoRendererFactoryHelper" that provides customizable settings
key prefixes. Allows settings prefixes other than "mako." to be used to
create different factories that don't use the global mako settings. This
will be useful for the debug toolbar, which can currently be sabotaged by
someone using custom mako configuration settings.

1.3a7 (2012-02-07)

Features

	More informative error message when a config.include cannot find an
includeme. See https://github.com/Pylons/pyramid/pull/392.

	Internal: catch unhashable discriminators early (raise an error instead of
allowing them to find their way into resolveConflicts).

	The match_param view predicate now accepts a string or a tuple.
This replaces the broken behavior of accepting a dict. See
https://github.com/Pylons/pyramid/issues/425 for more information.

Bug Fixes

	The process will now restart when pserve is used with the --reload
flag when the development.ini file (or any other .ini file in use) is
changed. See https://github.com/Pylons/pyramid/issues/377 and
https://github.com/Pylons/pyramid/pull/411

	The prequest script would fail when used against URLs which did not
return HTML or text. See https://github.com/Pylons/pyramid/issues/381

Backwards Incompatibilities

	The match_param view predicate no longer accepts a dict. This will
have no negative affect because the implementation was broken for
dict-based arguments.

Documentation

	Add a traversal hello world example to the narrative docs.

1.3a6 (2012-01-20)

Features

	New API: pyramid.config.Configurator.set_request_property. Add lazy
property descriptors to a request without changing the request factory.
This method provides conflict detection and is the suggested way to add
properties to a request.

	Responses generated by Pyramid's static_view now use
a wsgi.file_wrapper (see
http://www.python.org/dev/peps/pep-0333/#optional-platform-specific-file-handling)
when one is provided by the web server.

Bug Fixes

	Views registered with an accept could not be overridden correctly with
a different view that had the same predicate arguments. See
https://github.com/Pylons/pyramid/pull/404 for more information.

	When using a dotted name for a view argument to
Configurator.add_view that pointed to a class with a view_defaults
decorator, the view defaults would not be applied. See
https://github.com/Pylons/pyramid/issues/396 .

	Static URL paths were URL-quoted twice. See
https://github.com/Pylons/pyramid/issues/407 .

1.3a5 (2012-01-09)

Bug Fixes

	The pyramid.view.view_defaults decorator did not work properly when
more than one view relied on the defaults being different for configuration
conflict resolution. See https://github.com/Pylons/pyramid/issues/394.

Backwards Incompatibilities

	The path_info route and view predicates now match against
request.upath_info (Unicode) rather than request.path_info
(indeterminate value based on Python 3 vs. Python 2). This has to be done
to normalize matching on Python 2 and Python 3.

1.3a4 (2012-01-05)

Features

	New API: pyramid.request.Request.set_property. Add lazy property
descriptors to a request without changing the request factory. New
properties may be reified, effectively caching the value for the lifetime
of the instance. Common use-cases for this would be to get a database
connection for the request or identify the current user.

	Use the waitress WSGI server instead of wsgiref in scaffolding.

Bug Fixes

	The documentation of pyramid.events.subscriber indicated that using it
as a decorator with no arguments like this:

@subscriber()
def somefunc(event):
 pass

Would register somefunc to receive all events sent via the registry,
but this was untrue. Instead, it would receive no events at all. This has
now been fixed and the code matches the documentation. See also
https://github.com/Pylons/pyramid/issues/386

	Literal portions of route patterns were not URL-quoted when route_url
or route_path was used to generate a URL or path.

	The result of route_path or route_url might have been unicode
or str depending on the input. It is now guaranteed to always be
str.

	URL matching when the pattern contained non-ASCII characters in literal
parts was indeterminate. Now the pattern supplied to add_route is
assumed to be either: a unicode value, or a str value that contains
only ASCII characters. If you now want to match the path info from a URL
that contains high order characters, you can pass the Unicode
representation of the decoded path portion in the pattern.

	When using a traverse= route predicate, traversal would fail with a
URLDecodeError if there were any high-order characters in the traversal
pattern or in the matched dynamic segments.

	Using a dynamic segment named traverse in a route pattern like this:

config.add_route('trav_route', 'traversal/{traverse:.*}')

Would cause a UnicodeDecodeError when the route was matched and the
matched portion of the URL contained any high-order characters. See
https://github.com/Pylons/pyramid/issues/385 .

	When using a *traverse stararg in a route pattern, a URL that matched
that possessed a @@ in its name (signifying a view name) would be
inappropriately quoted by the traversal machinery during traversal,
resulting in the view not being found properly. See
https://github.com/Pylons/pyramid/issues/382 and
https://github.com/Pylons/pyramid/issues/375 .

Backwards Incompatibilities

	String values passed to route_url or route_path that are meant to
replace "remainder" matches will now be URL-quoted except for embedded
slashes. For example:

config.add_route('remain', '/foo*remainder')
request.route_path('remain', remainder='abc / def')
-> '/foo/abc%20/%20def'

Previously string values passed as remainder replacements were tacked on
untouched, without any URL-quoting. But this doesn't really work logically
if the value passed is Unicode (raw unicode cannot be placed in a URL or in
a path) and it is inconsistent with the rest of the URL generation
machinery if the value is a string (it won't be quoted unless by the
caller).

Some folks will have been relying on the older behavior to tack on query
string elements and anchor portions of the URL; sorry, you'll need to
change your code to use the _query and/or _anchor arguments to
route_path or route_url to do this now.

	If you pass a bytestring that contains non-ASCII characters to
add_route as a pattern, it will now fail at startup time. Use Unicode
instead.

1.3a3 (2011-12-21)

Features

	Added a prequest script (along the lines of paster request). It is
documented in the "Command-Line Pyramid" chapter in the section entitled
"Invoking a Request".

	Add undocumented __discriminator__ API to derived view callables.
e.g. adapters.lookup(...).__discriminator__(context, request). It will
be used by superdynamic systems that require the discriminator to be used
for introspection after manual view lookup.

Bug Fixes

	Normalized exit values and -h output for all p* scripts
(pviews, proutes, etc).

Documentation

	Added a section named "Making Your Script into a Console Script" in the
"Command-Line Pyramid" chapter.

	Removed the "Running Pyramid on Google App Engine" tutorial from the main
docs. It survives on in the Cookbook
(http://docs.pylonsproject.org/projects/pyramid_cookbook/en/latest/deployment/gae.html).
Rationale: it provides the correct info for the Python 2.5 version of GAE
only, and this version of Pyramid does not support Python 2.5.

1.3a2 (2011-12-14)

Features

	New API: pyramid.view.view_defaults. If you use a class as a view, you
can use the new view_defaults class decorator on the class to provide
defaults to the view configuration information used by every
@view_config decorator that decorates a method of that class. It also
works against view configurations involving a class made imperatively.

	Added a backwards compatibility knob to pcreate to emulate paster
create handling for the --list-templates option.

	Changed scaffolding machinery around a bit to make it easier for people who
want to have extension scaffolds that can work across Pyramid 1.0.X, 1.1.X,
1.2.X and 1.3.X. See the new "Creating Pyramid Scaffolds" chapter in the
narrative documentation for more info.

Documentation

	Added documentation to "View Configuration" narrative documentation chapter
about view_defaults class decorator.

	Added API docs for view_defaults class decorator.

	Added an API docs chapter for pyramid.scaffolds.

	Added a narrative docs chapter named "Creating Pyramid Scaffolds".

Backwards Incompatibilities

	The template_renderer method of pyramid.scaffolds.PyramidScaffold
was renamed to render_template. If you were overriding it, you're a
bad person, because it wasn't an API before now. But we're nice so we're
letting you know.

1.3a1 (2011-12-09)

Features

	Python 3.2 compatibility.

	New pyramid.compat module and API documentation which provides Python
2/3 straddling support for Pyramid add-ons and development environments.

	A mako.directories setting is no longer required to use Mako templates
Rationale: Mako template renderers can be specified using an absolute asset
spec. An entire application can be written with such asset specs,
requiring no ordered lookup path.

	bpython interpreter compatibility in pshell. See the "Command-Line
Pyramid" narrative docs chapter for more information.

	Added get_appsettings API function to the pyramid.paster module.
This function returns the settings defined within an [app:...] section
in a PasteDeploy ini file.

	Added setup_logging API function to the pyramid.paster module.
This function sets up Python logging according to the logging configuration
in a PasteDeploy ini file.

	Configuration conflict reporting is reported in a more understandable way
("Line 11 in file..." vs. a repr of a tuple of similar info).

	A configuration introspection system was added; see the narrative
documentation chapter entitled "Pyramid Configuration Introspection" for
more information. New APIs: pyramid.registry.Introspectable,
pyramid.config.Configurator.introspector,
pyramid.config.Configurator.introspectable,
pyramid.registry.Registry.introspector.

	Allow extra keyword arguments to be passed to the
pyramid.config.Configurator.action method.

	New APIs: pyramid.path.AssetResolver and
pyramid.path.DottedNameResolver. The former can be used to resolve
asset specifications, the latter can be used to resolve dotted names to
modules or packages.

Bug Fixes

	Make test suite pass on 32-bit systems; closes #286. closes #306.
See also https://github.com/Pylons/pyramid/issues/286

	The pyramid.view.view_config decorator did not accept a match_params
predicate argument. See https://github.com/Pylons/pyramid/pull/308

	The AuthTktCookieHelper could potentially generate Unicode headers
inappropriately when the tokens argument to remember was used. See
https://github.com/Pylons/pyramid/pull/314.

	The AuthTktAuthenticationPolicy did not use a timing-attack-aware string
comparator. See https://github.com/Pylons/pyramid/pull/320 for more info.

	The DummySession in pyramid.testing now generates a new CSRF token if
one doesn't yet exist.

	request.static_url now generates URL-quoted URLs when fed a path
argument which contains characters that are unsuitable for URLs. See
https://github.com/Pylons/pyramid/issues/349 for more info.

	Prevent a scaffold rendering from being named site (conflicts with
Python internal site.py).

	Support for using instances as targets of the pyramid.wsgi.wsgiapp and
pryramid.wsgi.wsgiapp2 functions.
See https://github.com/Pylons/pyramid/pull/370 for more info.

Backwards Incompatibilities

	Pyramid no longer runs on Python 2.5 (which includes the most recent
release of Jython and the Python 2.5 version of GAE as of this writing).

	The paster command is no longer the documented way to create projects,
start the server, or run debugging commands. To create projects from
scaffolds, paster create is replaced by the pcreate console script.
To serve up a project, paster serve is replaced by the pserve
console script. New console scripts named pshell, pviews,
proutes, and ptweens do what their paster <commandname>
equivalents used to do. Rationale: the Paste and PasteScript packages do
not run under Python 3.

	The default WSGI server run as the result of pserve from newly rendered
scaffolding is now the wsgiref WSGI server instead of the
paste.httpserver server. Rationale: Rationale: the Paste and
PasteScript packages do not run under Python 3.

	The pshell command (see "paster pshell") no longer accepts a
--disable-ipython command-line argument. Instead, it accepts a -p
or --python-shell argument, which can be any of the values python,
ipython or bpython.

	Removed the pyramid.renderers.renderer_from_name function. It has been
deprecated since Pyramid 1.0, and was never an API.

	To use ZCML with versions of Pyramid >= 1.3, you will need pyramid_zcml
version >= 0.8 and zope.configuration version >= 3.8.0. The
pyramid_zcml package version 0.8 is backwards compatible all the way to
Pyramid 1.0, so you won't be warned if you have older versions installed
and upgrade Pyramid "in-place"; it may simply break instead.

Dependencies

	Pyramid no longer depends on the zope.component package, except as a
testing dependency.

	Pyramid now depends on a zope.interface>=3.8.0, WebOb>=1.2dev,
repoze.lru>=0.4, zope.deprecation>=3.5.0, translationstring>=0.4 (for
Python 3 compatibility purposes). It also, as a testing dependency,
depends on WebTest>=1.3.1 for the same reason.

	Pyramid no longer depends on the Paste or PasteScript packages.

Documentation

	The SQLAlchemy Wiki tutorial has been updated. It now uses
@view_config decorators and an explicit database population script.

	Minor updates to the ZODB Wiki tutorial.

	A narrative documentation chapter named "Extending Pyramid Configuration"
was added; it describes how to add a new directive, and how use the
pyramid.config.Configurator.action method within custom directives. It
also describes how to add introspectable objects.

	A narrative documentation chapter named "Pyramid Configuration
Introspection" was added. It describes how to query the introspection
system.

Scaffolds

	Rendered scaffolds have now been changed to be more relocatable (fewer
mentions of the package name within files in the package).

	The routesalchemy scaffold has been renamed alchemy, replacing the
older (traversal-based) alchemy scaffold (which has been retired).

	The starter scaffold now uses URL dispatch by default.

1.2 (2011-09-12)

Features

	Route pattern replacement marker names can now begin with an underscore.
See https://github.com/Pylons/pyramid/issues/276.

1.2b3 (2011-09-11)

Bug Fixes

	The route prefix was not taken into account when a static view was added in
an "include". See https://github.com/Pylons/pyramid/issues/266 .

1.2b2 (2011-09-08)

Bug Fixes

	The 1.2b1 tarball was a brownbag (particularly for Windows users) because
it contained filenames with stray quotation marks in inappropriate places.
We depend on setuptools-git to produce release tarballs, and when it
was run to produce the 1.2b1 tarball, it didn't yet cope well with files
present in git repositories with high-order characters in their filenames.

Documentation

	Minor tweaks to the "Introduction" narrative chapter example app and
wording.

1.2b1 (2011-09-08)

Bug Fixes

	Sometimes falling back from territory translations (de_DE) to language
translations (de) would not work properly when using a localizer. See
https://github.com/Pylons/pyramid/issues/263

	The static file serving machinery could not serve files that started with a
. (dot) character.

	Static files with high-order (super-ASCII) characters in their names could
not be served by a static view. The static file serving machinery
inappropriately URL-quoted path segments in filenames when asking for files
from the filesystem.

	Within pyramid.traversal.traversal_path , canonicalize URL segments
from UTF-8 to Unicode before checking whether a segment matches literally
one of ., the empty string, or .. in case there's some sneaky way
someone might tunnel those strings via UTF-8 that don't match the literals
before decoded.

Documentation

	Added a "What Makes Pyramid Unique" section to the Introduction narrative
chapter.

1.2a6 (2011-09-06)

Bug Fixes

	AuthTktAuthenticationPolicy with a reissue_time interfered with logout.
See https://github.com/Pylons/pyramid/issues/262.

Internal

	Internalize code previously depended upon as imports from the
paste.auth module (futureproof).

	Replaced use of paste.urlparser.StaticURLParser with a derivative of
Chris Rossi's "happy" static file serving code (futureproof).

	Fixed test suite; on some systems tests would fail due to indeterminate
test run ordering and a double-push-single-pop of a shared test variable.

Behavior Differences

	An ETag header is no longer set when serving a static file. A
Last-Modified header is set instead.

	Static file serving no longer supports the wsgi.file_wrapper extension.

	Instead of returning a 403 Forbidden error when a static file is served
that cannot be accessed by the Pyramid process' user due to file
permissions, an IOError (or similar) will be raised.

Scaffolds

	All scaffolds now send the cache_max_age parameter to the
add_static_view method.

1.2a5 (2011-09-04)

Bug Fixes

	The route_prefix of a configurator was not properly taken into account
when registering routes in certain circumstances. See
https://github.com/Pylons/pyramid/issues/260

Dependencies

	The zope.configuration package is no longer a dependency.

1.2a4 (2011-09-02)

Features

	Support an onerror keyword argument to
pyramid.config.Configurator.scan(). This onerror keyword argument is
passed to venusian.Scanner.scan() to influence error behavior when
an exception is raised during scanning.

	The request_method predicate argument to
pyramid.config.Configurator.add_view and
pyramid.config.Configurator.add_route is now permitted to be a tuple of
HTTP method names. Previously it was restricted to being a string
representing a single HTTP method name.

	Undeprecated pyramid.traversal.find_model,
pyramid.traversal.model_path, pyramid.traversal.model_path_tuple,
and pyramid.url.model_url, which were all deprecated in Pyramid 1.0.
There's just not much cost to keeping them around forever as aliases to
their renamed resource_* prefixed functions.

	Undeprecated pyramid.view.bfg_view, which was deprecated in Pyramid
1.0. This is a low-cost alias to pyramid.view.view_config which we'll
just keep around forever.

Dependencies

	Pyramid now requires Venusian 1.0a1 or better to support the onerror
keyword argument to pyramid.config.Configurator.scan.

1.2a3 (2011-08-29)

Bug Fixes

	Pyramid did not properly generate static URLs using
pyramid.url.static_url when passed a caller-package relative path due
to a refactoring done in 1.2a1.

	The settings object emitted a deprecation warning any time
__getattr__ was called upon it. However, there are legitimate
situations in which __getattr__ is called on arbitrary objects
(e.g. hasattr). Now, the settings object only emits the warning
upon successful lookup.

Internal

	Use config.with_package in view_config decorator rather than
manufacturing a new renderer helper (cleanup).

1.2a2 (2011-08-27)

Bug Fixes

	When a renderers= argument is not specified to the Configurator
constructor, eagerly register and commit the default renderer set. This
permits the overriding of the default renderers, which was broken in 1.2a1
without a commit directly after Configurator construction.

	Mako rendering exceptions had the wrong value for an error message.

	An include could not set a root factory successfully because the
Configurator constructor unconditionally registered one that would be
treated as if it were "the word of the user".

Features

	A session factory can now be passed in using the dotted name syntax.

1.2a1 (2011-08-24)

Features

	The [pshell] section in an ini configuration file now treats a
setup key as a dotted name that points to a callable that is passed the
bootstrap environment. It can mutate the environment as necessary for
great justice.

	A new configuration setting named pyramid.includes is now available.
It is described in the "Environment Variables and .ini Files Settings"
narrative documentation chapter.

	Added a route_prefix argument to the
pyramid.config.Configurator.include method. This argument allows you
to compose URL dispatch applications together. See the section entitled
"Using a Route Prefix to Compose Applications" in the "URL Dispatch"
narrative documentation chapter.

	Added a pyramid.security.NO_PERMISSION_REQUIRED constant for use in
permission= statements to view configuration. This constant has a
value of the string __no_permission_required__. This string value was
previously referred to in documentation; now the documentation uses the
constant.

	Added a decorator-based way to configure a response adapter:
pyramid.response.response_adapter. This decorator has the same use as
pyramid.config.Configurator.add_response_adapter but it's declarative.

	The pyramid.events.BeforeRender event now has an attribute named
rendering_val. This can be used to introspect the value returned by a
view in a BeforeRender subscriber.

	New configurator directive: pyramid.config.Configurator.add_tween.
This directive adds a "tween". A "tween" is used to wrap the Pyramid
router's primary request handling function. This is a feature may be used
by Pyramid framework extensions, to provide, for example, view timing
support and as a convenient place to hang bookkeeping code.

Tweens are further described in the narrative docs section in the Hooks
chapter, named "Registering Tweens".

	New paster command paster ptweens, which prints the current "tween"
configuration for an application. See the section entitled "Displaying
Tweens" in the Command-Line Pyramid chapter of the narrative documentation
for more info.

	The Pyramid debug logger now uses the standard logging configuration
(usually set up by Paste as part of startup). This means that output from
e.g. debug_notfound, debug_authorization, etc. will go to the
normal logging channels. The logger name of the debug logger will be the
package name of the caller of the Configurator's constructor.

	A new attribute is available on request objects: exc_info. Its value
will be None until an exception is caught by the Pyramid router, after
which it will be the result of sys.exc_info().

	pyramid.testing.DummyRequest now implements the
add_finished_callback and add_response_callback methods.

	New methods of the pyramid.config.Configurator class:
set_authentication_policy and set_authorization_policy. These are
meant to be consumed mostly by add-on authors.

	New Configurator method: set_root_factory.

	Pyramid no longer eagerly commits some default configuration statements at
Configurator construction time, which permits values passed in as
constructor arguments (e.g. authentication_policy and
authorization_policy) to override the same settings obtained via an
"include".

	Better Mako rendering exceptions via
pyramid.mako_templating.MakoRenderingException

	New request methods: current_route_url, current_route_path, and
static_path.

	New functions in pyramid.url: current_route_path and
static_path.

	The pyramid.request.Request.static_url API (and its brethren
pyramid.request.Request.static_path, pyramid.url.static_url, and
pyramid.url.static_path) now accept an asbolute filename as a "path"
argument. This will generate a URL to an asset as long as the filename is
in a directory which was previously registered as a static view.
Previously, trying to generate a URL to an asset using an absolute file
path would raise a ValueError.

	The RemoteUserAuthenticationPolicy ``, ``AuthTktAuthenticationPolicy,
and SessionAuthenticationPolicy constructors now accept an additional
keyword argument named debug. By default, this keyword argument is
False. When it is True, debug information will be sent to the
Pyramid debug logger (usually on stderr) when the authenticated_userid
or effective_principals method is called on any of these policies. The
output produced can be useful when trying to diagnose
authentication-related problems.

	New view predicate: match_param. Example: a view added via
config.add_view(aview, match_param='action=edit') will be called only
when the request.matchdict has a value inside it named action with
a value of edit.

Internal

	The Pyramid "exception view" machinery is now implemented as a "tween"
(pyramid.tweens.excview_tween_factory).

	WSGIHTTPException (HTTPFound, HTTPNotFound, etc) now has a new API named
"prepare" which renders the body and content type when it is provided with
a WSGI environ. Required for debug toolbar.

	Once __call__ or prepare is called on a WSGIHTTPException, the body
will be set, and subsequent calls to __call__ will always return the
same body. Delete the body attribute to rerender the exception body.

	Previously the pyramid.events.BeforeRender event wrapped a dictionary
(it addressed it as its _system attribute). Now it is a dictionary
(it inherits from dict), and it's the value that is passed to templates
as a top-level dictionary.

	The route_url, route_path, resource_url, static_url, and
current_route_url functions in the pyramid.url package now delegate
to a method on the request they've been passed, instead of the other way
around. The pyramid.request.Request object now inherits from a mixin named
pyramid.url.URLMethodsMixin to make this possible, and all url/path
generation logic is embedded in this mixin.

	Refactor pyramid.config into a package.

	Removed the _set_security_policies method of the Configurator.

	Moved the StaticURLInfo class from pyramid.static to
pyramid.config.views.

	Move the Settings class from pyramid.settings to
pyramid.config.settings.

	Move the OverrideProvider, PackageOverrides, DirectoryOverride,
and FileOverride classes from pyramid.asset to
pyramid.config.assets.

Deprecations

	All Pyramid-related deployment settings (e.g. debug_all,
debug_notfound) are now meant to be prefixed with the prefix
pyramid.. For example: debug_all -> pyramid.debug_all. The
old non-prefixed settings will continue to work indefinitely but supplying
them may eventually print a deprecation warning. All scaffolds and
tutorials have been changed to use prefixed settings.

	The settings dictionary now raises a deprecation warning when you
attempt to access its values via __getattr__ instead of
via __getitem__.

Backwards Incompatibilities

	If a string is passed as the debug_logger parameter to a Configurator,
that string is considered to be the name of a global Python logger rather
than a dotted name to an instance of a logger.

	The pyramid.config.Configurator.include method now accepts only a
single callable argument (a sequence of callables used to be
permitted). If you are passing more than one callable to
pyramid.config.Configurator.include, it will break. You now must now
instead make a separate call to the method for each callable. This change
was introduced to support the route_prefix feature of include.

	It may be necessary to more strictly order configuration route and view
statements when using an "autocommitting" Configurator. In the past, it
was possible to add a view which named a route name before adding a route
with that name when you used an autocommitting configurator. For example:

config = Configurator(autocommit=True)
config.add_view('my.pkg.someview', route_name='foo')
config.add_route('foo', '/foo')

The above will raise an exception when the view attempts to add itself.
Now you must add the route before adding the view:

config = Configurator(autocommit=True)
config.add_route('foo', '/foo')
config.add_view('my.pkg.someview', route_name='foo')

This won't effect "normal" users, only people who have legacy BFG codebases
that used an autommitting configurator and possibly tests that use the
configurator API (the configurator returned by pyramid.testing.setUp is
an autocommitting configurator). The right way to get around this is to
use a non-autocommitting configurator (the default), which does not have
these directive ordering requirements.

	The pyramid.config.Configurator.add_route directive no longer returns a
route object. This change was required to make route vs. view
configuration processing work properly.

Documentation

	Narrative and API documentation which used the route_url,
route_path, resource_url, static_url, and current_route_url
functions in the pyramid.url package have now been changed to use
eponymous methods of the request instead.

	Added a section entitled "Using a Route Prefix to Compose Applications" to
the "URL Dispatch" narrative documentation chapter.

	Added a new module to the API docs: pyramid.tweens.

	Added a "Registering Tweens" section to the "Hooks" narrative chapter.

	Added a "Displaying Tweens" section to the "Command-Line Pyramid" narrative
chapter.

	Added documentation for the pyramid.tweens and pyramid.includes
configuration settings to the "Environment Variables and .ini Files
Settings" chapter.

	Added a Logging chapter to the narrative docs (based on the Pylons logging
docs, thanks Phil).

	Added a Paste chapter to the narrative docs (moved content from the Project
chapter).

	Added the pyramid.interfaces.IDict interface representing the methods
of a dictionary, for documentation purposes only (IMultiDict and
IBeforeRender inherit from it).

	All tutorials now use - The route_url, route_path,
resource_url, static_url, and current_route_url methods of the
request rather than the function variants imported from pyramid.url.

	The ZODB wiki tutorial now uses the pyramid_zodbconn package rather
than the repoze.zodbconn package to provide ZODB integration.

Dependency Changes

	Pyramid now relies on PasteScript >= 1.7.4. This version contains a
feature important for allowing flexible logging configuration.

Scaffolds

	All scaffolds now use the pyramid_tm package rather than the
repoze.tm2 middleware to manage transaction management.

	The ZODB scaffold now uses the pyramid_zodbconn package rather than the
repoze.zodbconn package to provide ZODB integration.

	All scaffolds now use the pyramid_debugtoolbar package rather than the
WebError package to provide interactive debugging features.

	Projects created via a scaffold no longer depend on the WebError
package at all; configuration in the production.ini file which used to
require its error_catcher middleware has been removed. Configuring
error catching / email sending is now the domain of the pyramid_exclog
package (see http://docs.pylonsproject.org/projects/pyramid_exclog/en/latest/).

Bug Fixes

	Fixed an issue with the default renderer not working at certain times. See
https://github.com/Pylons/pyramid/issues/249

1.1 (2011-07-22)

Features

	Added the pyramid.renderers.null_renderer object as an API. The null
renderer is an object that can be used in advanced integration cases as
input to the view configuration renderer= argument. When the null
renderer is used as a view renderer argument, Pyramid avoids converting the
view callable result into a Response object. This is useful if you want to
reuse the view configuration and lookup machinery outside the context of
its use by the Pyramid router. This feature was added for consumption by
the pyramid_rpc package, which uses view configuration and lookup
outside the context of a router in exactly this way. pyramid_rpc has
been broken under 1.1 since 1.1b1; adding it allows us to make it work
again.

	Change all scaffolding templates that point to docs.pylonsproject.org to
use /projects/pyramid/current rather than /projects/pyramid/dev.

Internals

	Remove compat code that served only the purpose of providing backwards
compatibility with Python 2.4.

	Add a deprecation warning for non-API function
pyramid.renderers.renderer_from_name which has seen use in the wild.

	Add a clone method to pyramid.renderers.RendererHelper for use by
the pyramid.view.view_config decorator.

Documentation

	Fixed two typos in wiki2 (SQLA + URL Dispatch) tutorial.

	Reordered chapters in narrative section for better new user friendliness.

	Added more indexing markers to sections in documentation.

1.1b4 (2011-07-18)

Documentation

	Added a section entitled "Writing a Script" to the "Command-Line Pyramid"
chapter.

Backwards Incompatibilities

	We added the pyramid.scripting.make_request API too hastily in 1.1b3.
It has been removed. Sorry for any inconvenience. Use the
pyramid.request.Request.blank API instead.

Features

	The paster pshell, paster pviews, and paster proutes commands
each now under the hood uses pyramid.paster.bootstrap, which makes it
possible to supply an .ini file without naming the "right" section in
the file that points at the actual Pyramid application. Instead, you can
generally just run paster {pshell|proutes|pviews} development.ini and
it will do mostly the right thing.

Bug Fixes

	Omit custom environ variables when rendering a custom exception template in
pyramid.httpexceptions.WSGIHTTPException._set_default_attrs;
stringifying thse may trigger code that should not be executed; see
https://github.com/Pylons/pyramid/issues/239

1.1b3 (2011-07-15)

Features

	Fix corner case to ease semifunctional testing of views: create a new
rendererinfo to clear out old registry on a rescan. See
https://github.com/Pylons/pyramid/pull/234.

	New API class: pyramid.static.static_view. This supersedes the
deprecated pyramid.view.static class. pyramid.static.static_view
by default serves up documents as the result of the request's
path_info, attribute rather than it's subpath attribute (the
inverse was true of pyramid.view.static, and still is).
pyramid.static.static_view exposes a use_subpath flag for use when
you want the static view to behave like the older deprecated version.

	A new API function pyramid.paster.bootstrap has been added to make
writing scripts that bootstrap a Pyramid environment easier, e.g.:

from pyramid.paster import bootstrap
info = bootstrap('/path/to/my/development.ini')
request = info['request']
print request.route_url('myroute')

	A new API function pyramid.scripting.prepare has been added. It is a
lower-level analogue of pyramid.paster.boostrap that accepts a request
and a registry instead of a config file argument, and is used for the same
purpose:

from pyramid.scripting import prepare
info = prepare(registry=myregistry)
request = info['request']
print request.route_url('myroute')

	A new API function pyramid.scripting.make_request has been added. The
resulting request will have a registry attribute. It is meant to be
used in conjunction with pyramid.scripting.prepare and/or
pyramid.paster.bootstrap (both of which accept a request as an
argument):

from pyramid.scripting import make_request
request = make_request('/')

	New API attribute pyramid.config.global_registries is an iterable
object that contains references to every Pyramid registry loaded into the
current process via pyramid.config.Configurator.make_app. It also has
a last attribute containing the last registry loaded. This is used by
the scripting machinery, and is available for introspection.

Deprecations

	The pyramid.view.static class has been deprecated in favor of the newer
pyramid.static.static_view class. A deprecation warning is raised when
it is used. You should replace it with a reference to
pyramid.static.static_view with the use_subpath=True argument.

Bug Fixes

	Without a mo-file loaded for the combination of domain/locale,
pyramid.i18n.Localizer.pluralize run using that domain/locale
combination raised an inscrutable "translations object has no attr
'plural'" error. Now, instead it "works" (it uses a germanic pluralization
by default). It's nonsensical to try to pluralize something without
translations for that locale/domain available, but this behavior matches
the behavior of pyramid.i18n.Localizer.translate so it's at least
consistent; see https://github.com/Pylons/pyramid/issues/235.

1.1b2 (2011-07-13)

Features

	New environment setting PYRAMID_PREVENT_HTTP_CACHE and new
configuration file value prevent_http_cache. These are synomymous and
allow you to prevent HTTP cache headers from being set by Pyramid's
http_cache machinery globally in a process. see the "Influencing HTTP
Caching" section of the "View Configuration" narrative chapter and the
detailed documentation for this setting in the "Environment Variables and
Configuration Settings" narrative chapter.

Behavior Changes

	Previously, If a BeforeRender event subscriber added a value via the
__setitem__ or update methods of the event object with a key that
already existed in the renderer globals dictionary, a KeyError was
raised. With the deprecation of the "add_renderer_globals" feature of the
configurator, there was no way to override an existing value in the
renderer globals dictionary that already existed. Now, the event object
will overwrite an older value that is already in the globals dictionary
when its __setitem__ or update is called (as well as the new
setdefault method), just like a plain old dictionary. As a result, for
maximum interoperability with other third-party subscribers, if you write
an event subscriber meant to be used as a BeforeRender subscriber, your
subscriber code will now need to (using .get or __contains__ of the
event object) ensure no value already exists in the renderer globals
dictionary before setting an overriding value.

Bug Fixes

	The Configurator.add_route method allowed two routes with the same
route to be added without an intermediate config.commit(). If you now
receive a ConfigurationError at startup time that appears to be
add_route related, you'll need to either a) ensure that all of your
route names are unique or b) call config.commit() before adding a
second route with the name of a previously added name or c) use a
Configurator that works in autocommit mode.

	The pyramid_routesalchemy and pyramid_alchemy scaffolds
inappropriately used DBSession.rollback() instead of
transaction.abort() in one place.

	We now clear request.response before we invoke an exception view; an
exception view will be working with a request.response that has not been
touched by any code prior to the exception.

	Views associated with routes with spaces in the route name may not have
been looked up correctly when using Pyramid with zope.interface 3.6.4
and better. See https://github.com/Pylons/pyramid/issues/232.

Documentation

	Wiki2 (SQLAlchemy + URL Dispatch) tutorial models.initialize_sql didn't
match the pyramid_routesalchemy scaffold function of the same name; it
didn't get synchronized when it was changed in the scaffold.

	New documentation section in View Configuration narrative chapter:
"Influencing HTTP Caching".

1.1b1 (2011-07-10)

Features

	It is now possible to invoke paster pshell even if the paste ini file
section name pointed to in its argument is not actually a Pyramid WSGI
application. The shell will work in a degraded mode, and will warn the
user. See "The Interactive Shell" in the "Creating a Pyramid Project"
narrative documentation section.

	paster pshell now offers more built-in global variables by default
(including app and settings). See "The Interactive Shell" in the
"Creating a Pyramid Project" narrative documentation section.

	It is now possible to add a [pshell] section to your application's .ini
configuration file, which influences the global names available to a pshell
session. See "Extending the Shell" in the "Creating a Pyramid Project"
narrative documentation chapter.

	The config.scan method has grown a **kw argument. kw argument
represents a set of keyword arguments to pass to the Venusian Scanner
object created by Pyramid. (See the Venusian documentation for more
information about Scanner).

	New request property: json_body. This property will return the
JSON-decoded variant of the request body. If the request body is not
well-formed JSON, this property will raise an exception.

	A new value http_cache can be used as a view configuration
parameter.

When you supply an http_cache value to a view configuration, the
Expires and Cache-Control headers of a response generated by the
associated view callable are modified. The value for http_cache may be
one of the following:

	A nonzero integer. If it's a nonzero integer, it's treated as a number
of seconds. This number of seconds will be used to compute the
Expires header and the Cache-Control: max-age parameter of
responses to requests which call this view. For example:
http_cache=3600 instructs the requesting browser to 'cache this
response for an hour, please'.

	A datetime.timedelta instance. If it's a datetime.timedelta
instance, it will be converted into a number of seconds, and that number
of seconds will be used to compute the Expires header and the
Cache-Control: max-age parameter of responses to requests which call
this view. For example: http_cache=datetime.timedelta(days=1)
instructs the requesting browser to 'cache this response for a day,
please'.

	Zero (0). If the value is zero, the Cache-Control and
Expires headers present in all responses from this view will be
composed such that client browser cache (and any intermediate caches) are
instructed to never cache the response.

	A two-tuple. If it's a two tuple (e.g. http_cache=(1,
{'public':True})), the first value in the tuple may be a nonzero
integer or a datetime.timedelta instance; in either case this value
will be used as the number of seconds to cache the response. The second
value in the tuple must be a dictionary. The values present in the
dictionary will be used as input to the Cache-Control response
header. For example: http_cache=(3600, {'public':True}) means 'cache
for an hour, and add public to the Cache-Control header of the
response'. All keys and values supported by the
webob.cachecontrol.CacheControl interface may be added to the
dictionary. Supplying {'public':True} is equivalent to calling
response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires(value) within your view's body.

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires(value[0], **value[1]) within your view's body.

If you wish to avoid influencing, the Expires header, and instead wish
to only influence Cache-Control headers, pass a tuple as http_cache
with the first element of None, e.g.: (None, {'public':True}).

Bug Fixes

	Framework wrappers of the original view (such as http_cached and so on)
relied on being able to trust that the response they were receiving was an
IResponse. It wasn't always, because the response was resolved by the
router instead of early in the view wrapping process. This has been fixed.

Documentation

	Added a section in the "Webob" chapter named "Dealing With A JSON-Encoded
Request Body" (usage of request.json_body).

Behavior Changes

	The paster pshell, paster proutes, and paster pviews commands
now take a single argument in the form /path/to/config.ini#sectionname
rather than the previous 2-argument spelling /path/to/config.ini
sectionname. #sectionname may be omitted, in which case #main is
assumed.

1.1a4 (2011-07-01)

Bug Fixes

	pyramid.testing.DummyRequest now raises deprecation warnings when
attributes deprecated for pyramid.request.Request are accessed (like
response_content_type). This is for the benefit of folks running unit
tests which use DummyRequest instead of a "real" request, so they know
things are deprecated without necessarily needing a functional test suite.

	The pyramid.events.subscriber directive behaved contrary to the
documentation when passed more than one interface object to its
constructor. For example, when the following listener was registered:

@subscriber(IFoo, IBar)
def expects_ifoo_events_and_ibar_events(event):
 print event

The Events chapter docs claimed that the listener would be registered and
listening for both IFoo and IBar events. Instead, it registered an
"object event" subscriber which would only be called if an IObjectEvent was
emitted where the object interface was IFoo and the event interface was
IBar.

The behavior now matches the documentation. If you were relying on the
buggy behavior of the 1.0 subscriber directive in order to register an
object event subscriber, you must now pass a sequence to indicate you'd
like to register a subscriber for an object event. e.g.:

@subscriber([IFoo, IBar])
def expects_object_event(object, event):
 print object, event

Features

	Add JSONP renderer (see "JSONP renderer" in the Renderers chapter of the
documentation).

Deprecations

	Deprecated the set_renderer_globals_factory method of the Configurator
and the renderer_globals Configurator constructor parameter.

Documentation

	The Wiki and Wiki2 tutorial "Tests" chapters each had two bugs: neither did
told the user to depend on WebTest, and 2 tests failed in each as the
result of changes to Pyramid itself. These issues have been fixed.

	Move 1.0.X CHANGES.txt entries to HISTORY.txt.

1.1a3 (2011-06-26)

Features

	Added mako.preprocessor config file parameter; allows for a Mako
preprocessor to be specified as a Python callable or Python dotted name.
See https://github.com/Pylons/pyramid/pull/183 for rationale.

Bug fixes

	Pyramid would raise an AttributeError in the Configurator when attempting
to set a __text__ attribute on a custom predicate that was actually a
classmethod. See https://github.com/Pylons/pyramid/pull/217 .

	Accessing or setting deprecated response_* attrs on request
(e.g. response_content_type) now issues a deprecation warning at access
time rather than at rendering time.

1.1a2 (2011-06-22)

Bug Fixes

	1.1a1 broke Akhet by not providing a backwards compatibility import shim
for pyramid.paster.PyramidTemplate. Now one has been added, although a
deprecation warning is emitted when Akhet imports it.

	If multiple specs were provided in a single call to
config.add_translation_dirs, the directories were inserted into the
beginning of the directory list in the wrong order: they were inserted in
the reverse of the order they were provided in the *specs list (items
later in the list were added before ones earlier in the list). This is now
fixed.

Backwards Incompatibilities

	The pyramid Router attempted to set a value into the key
environ['repoze.bfg.message'] when it caught a view-related exception
for backwards compatibility with applications written for repoze.bfg
during error handling. It did this by using code that looked like so:

"why" is an exception object
try:
 msg = why[0]
except:
 msg = ''

environ['repoze.bfg.message'] = msg

Use of the value environ['repoze.bfg.message'] was docs-deprecated in
Pyramid 1.0. Our standing policy is to not remove features after a
deprecation for two full major releases, so this code was originally slated
to be removed in Pyramid 1.2. However, computing the
repoze.bfg.message value was the source of at least one bug found in
the wild (https://github.com/Pylons/pyramid/issues/199), and there isn't a
foolproof way to both preserve backwards compatibility and to fix the bug.
Therefore, the code which sets the value has been removed in this release.
Code in exception views which relies on this value's presence in the
environment should now use the exception attribute of the request
(e.g. request.exception[0]) to retrieve the message instead of relying
on request.environ['repoze.bfg.message'].

1.1a1 (2011-06-20)

Documentation

	The term "template" used to refer to both "paster templates" and "rendered
templates" (templates created by a rendering engine. i.e. Mako, Chameleon,
Jinja, etc.). "Paster templates" will now be refered to as "scaffolds",
whereas the name for "rendered templates" will remain as "templates."

	The wiki (ZODB+Traversal) tutorial was updated slightly.

	The wiki2 (SQLA+URL Dispatch) tutorial was updated slightly.

	Make pyramid.interfaces.IAuthenticationPolicy and
pyramid.interfaces.IAuthorizationPolicy public interfaces, and refer to
them within the pyramid.authentication and pyramid.authorization
API docs.

	Render the function definitions for each exposed interface in
pyramid.interfaces.

	Add missing docs reference to
pyramid.config.Configurator.set_view_mapper and refer to it within
Hooks chapter section named "Using a View Mapper".

	Added section to the "Environment Variables and .ini File Settings"
chapter in the narrative documentation section entitled "Adding a Custom
Setting".

	Added documentation for a "multidict" (e.g. the API of request.POST) as
interface API documentation.

	Added a section to the "URL Dispatch" narrative chapter regarding the new
"static" route feature.

	Added "What's New in Pyramid 1.1" to HTML rendering of documentation.

	Added API docs for pyramid.authentication.SessionAuthenticationPolicy.

	Added API docs for pyramid.httpexceptions.exception_response.

	Added "HTTP Exceptions" section to Views narrative chapter including a
description of pyramid.httpexceptions.exception_response.

Features

	Add support for language fallbacks: when trying to translate for a
specific territory (such as en_GB) fall back to translations
for the language (ie en). This brings the translation behaviour in line
with GNU gettext and fixes partially translated texts when using C
extensions.

	New authentication policy:
pyramid.authentication.SessionAuthenticationPolicy, which uses a session
to store credentials.

	Accessing the response attribute of a pyramid.request.Request
object (e.g. request.response within a view) now produces a new
pyramid.response.Response object. This feature is meant to be used
mainly when a view configured with a renderer needs to set response
attributes: all renderers will use the Response object implied by
request.response as the response object returned to the router.

request.response can also be used by code in a view that does not use a
renderer, however the response object that is produced by
request.response must be returned when a renderer is not in play (it is
not a "global" response).

	Integers and longs passed as elements to pyramid.url.resource_url
or pyramid.request.Request.resource_url e.g. resource_url(context,
request, 1, 2) (1 and 2 are the elements) will now be
converted implicitly to strings in the result. Previously passing integers
or longs as elements would cause a TypeError.

	pyramid_alchemy paster template now uses query.get rather than
query.filter_by to take better advantage of identity map caching.

	pyramid_alchemy paster template now has unit tests.

	Added pyramid.i18n.make_localizer API (broken out from
get_localizer guts).

	An exception raised by a NewRequest event subscriber can now be caught by
an exception view.

	It is now possible to get information about why Pyramid raised a Forbidden
exception from within an exception view. The ACLDenied object returned
by the permits method of each stock authorization policy
(pyramid.interfaces.IAuthorizationPolicy.permits) is now attached to
the Forbidden exception as its result attribute. Therefore, if you've
created a Forbidden exception view, you can see the ACE, ACL, permission,
and principals involved in the request as
eg. context.result.permission, context.result.acl, etc within the
logic of the Forbidden exception view.

	Don't explicitly prevent the timeout from being lower than the
reissue_time when setting up an AuthTktAuthenticationPolicy
(previously such a configuration would raise a ValueError, now it's
allowed, although typically nonsensical). Allowing the nonsensical
configuration made the code more understandable and required fewer tests.

	A new paster command named paster pviews was added. This command
prints a summary of potentially matching views for a given path. See the
section entitled "Displaying Matching Views for a Given URL" in the "View
Configuration" chapter of the narrative documentation for more information.

	The add_route method of the Configurator now accepts a static
argument. If this argument is True, the added route will never be
considered for matching when a request is handled. Instead, it will only
be useful for URL generation via route_url and route_path. See the
section entitled "Static Routes" in the URL Dispatch narrative chapter for
more information.

	A default exception view for the context
pyramid.interfaces.IExceptionResponse is now registered by default.
This means that an instance of any exception response class imported from
pyramid.httpexceptions (such as HTTPFound) can now be raised from
within view code; when raised, this exception view will render the
exception to a response.

	A function named pyramid.httpexceptions.exception_response is a
shortcut that can be used to create HTTP exception response objects using
an HTTP integer status code.

	The Configurator now accepts an additional keyword argument named
exceptionresponse_view. By default, this argument is populated with a
default exception view function that will be used when a response is raised
as an exception. When None is passed for this value, an exception view
for responses will not be registered. Passing None returns the
behavior of raising an HTTP exception to that of Pyramid 1.0 (the exception
will propagate to middleware and to the WSGI server).

	The pyramid.request.Request class now has a ResponseClass interface
which points at pyramid.response.Response.

	The pyramid.response.Response class now has a RequestClass
interface which points at pyramid.request.Request.

	It is now possible to return an arbitrary object from a Pyramid view
callable even if a renderer is not used, as long as a suitable adapter to
pyramid.interfaces.IResponse is registered for the type of the returned
object by using the new
pyramid.config.Configurator.add_response_adapter API. See the section
in the Hooks chapter of the documentation entitled "Changing How Pyramid
Treats View Responses".

	The Pyramid router will now, by default, call the __call__ method of
WebOb response objects when returning a WSGI response. This means that,
among other things, the conditional_response feature of WebOb response
objects will now behave properly.

	New method named pyramid.request.Request.is_response. This method
should be used instead of the pyramid.view.is_response function, which
has been deprecated.

Bug Fixes

	URL pattern markers used in URL dispatch are permitted to specify a custom
regex. For example, the pattern /{foo:\d+} means to match /12345
(foo==12345 in the match dictionary) but not /abc. However, custom
regexes in a pattern marker which used squiggly brackets did not work. For
example, /{foo:\d{4}} would fail to match /1234 and
/{foo:\d{1,2}} would fail to match /1 or /11. One level of
inner squiggly brackets is now recognized so that the prior two patterns
given as examples now work. See also
https://github.com/Pylons/pyramid/issues/#issue/123.

	Don't send port numbers along with domain information in cookies set by
AuthTktCookieHelper (see https://github.com/Pylons/pyramid/issues/131).

	pyramid.url.route_path (and the shortcut
pyramid.request.Request.route_url method) now include the WSGI
SCRIPT_NAME at the front of the path if it is not empty (see
https://github.com/Pylons/pyramid/issues/135).

	pyramid.testing.DummyRequest now has a script_name attribute (the
empty string).

	Don't quote :@&+$, symbols in *elements passed to
pyramid.url.route_url or pyramid.url.resource_url (see
https://github.com/Pylons/pyramid/issues#issue/141).

	Include SCRIPT_NAME in redirects issued by
pyramid.view.append_slash_notfound_view (see
https://github.com/Pylons/pyramid/issues#issue/149).

	Static views registered with config.add_static_view which also included
a permission keyword argument would not work as expected, because
add_static_view also registered a route factory internally. Because a
route factory was registered internally, the context checked by the Pyramid
permission machinery never had an ACL. add_static_view no longer
registers a route with a factory, so the default root factory will be used.

	config.add_static_view now passes extra keyword arguments it receives
to config.add_route (calling add_static_view is mostly logically
equivalent to adding a view of the type pyramid.static.static_view
hooked up to a route with a subpath). This makes it possible to pass e.g.,
factory= to add_static_view to protect a particular static view
with a custom ACL.

	testing.DummyRequest used the wrong registry (the global registry) as
self.registry if a dummy request was created before testing.setUp
was executed (testing.setUp pushes a local registry onto the
threadlocal stack). Fixed by implementing registry as a property for
DummyRequest instead of eagerly assigning an attribute.
See also https://github.com/Pylons/pyramid/issues/165

	When visiting a URL that represented a static view which resolved to a
subdirectory, the index.html of that subdirectory would not be served
properly. Instead, a redirect to /subdir would be issued. This has
been fixed, and now visiting a subdirectory that contains an index.html
within a static view returns the index.html properly. See also
https://github.com/Pylons/pyramid/issues/67.

	Redirects issued by a static view did not take into account any existing
SCRIPT_NAME (such as one set by a url mapping composite). Now they do.

	The pyramid.wsgi.wsgiapp2 decorator did not take into account the
SCRIPT_NAME in the origin request.

	The pyramid.wsgi.wsgiapp2 decorator effectively only worked when it
decorated a view found via traversal; it ignored the PATH_INFO that was
part of a url-dispatch-matched view.

Deprecations

	Deprecated all assignments to request.response_* attributes (for
example request.response_content_type = 'foo' is now deprecated).
Assignments and mutations of assignable request attributes that were
considered by the framework for response influence are now deprecated:
response_content_type, response_headerlist, response_status,
response_charset, and response_cache_for. Instead of assigning
these to the request object for later detection by the rendering machinery,
users should use the appropriate API of the Response object created by
accessing request.response (e.g. code which does
request.response_content_type = 'abc' should be changed to
request.response.content_type = 'abc').

	Passing view-related parameters to
pyramid.config.Configurator.add_route is now deprecated. Previously, a
view was permitted to be connected to a route using a set of view*
parameters passed to the add_route method of the Configurator. This
was a shorthand which replaced the need to perform a subsequent call to
add_view. For example, it was valid (and often recommended) to do:

config.add_route('home', '/', view='mypackage.views.myview',
 view_renderer='some/renderer.pt')

Passing view* arguments to add_route is now deprecated in favor of
connecting a view to a predefined route via Configurator.add_view using
the route's route_name parameter. As a result, the above example
should now be spelled:

config.add_route('home', '/')
config.add_view('mypackage.views.myview', route_name='home')
 renderer='some/renderer.pt')

This deprecation was done to reduce confusion observed in IRC, as well as
to (eventually) reduce documentation burden (see also
https://github.com/Pylons/pyramid/issues/164). A deprecation warning is
now issued when any view-related parameter is passed to
Configurator.add_route.

	Passing an environ dictionary to the __call__ method of a
"traverser" (e.g. an object that implements
pyramid.interfaces.ITraverser such as an instance of
pyramid.traversal.ResourceTreeTraverser) as its request argument
now causes a deprecation warning to be emitted. Consumer code should pass a
request object instead. The fact that passing an environ dict is
permitted has been documentation-deprecated since repoze.bfg 1.1, and
this capability will be removed entirely in a future version.

	The following (undocumented, dictionary-like) methods of the
pyramid.request.Request object have been deprecated: __contains__,
__delitem__, __getitem__, __iter__, __setitem__, get,
has_key, items, iteritems, itervalues, keys, pop,
popitem, setdefault, update, and values. Usage of any of
these methods will cause a deprecation warning to be emitted. These
methods were added for internal compatibility in repoze.bfg 1.1 (code
that currently expects a request object expected an environ object in BFG
1.0 and before). In a future version, these methods will be removed
entirely.

	Deprecated pyramid.view.is_response function in favor of (newly-added)
pyramid.request.Request.is_response method. Determining if an object
is truly a valid response object now requires access to the registry, which
is only easily available as a request attribute. The
pyramid.view.is_response function will still work until it is removed,
but now may return an incorrect answer under some (very uncommon)
circumstances.

Behavior Changes

	The default Mako renderer is now configured to escape all HTML in
expression tags. This is intended to help prevent XSS attacks caused by
rendering unsanitized input from users. To revert this behavior in user's
templates, they need to filter the expression through the 'n' filter.
For example, ${ myhtml | n }.
See https://github.com/Pylons/pyramid/issues/193.

	A custom request factory is now required to return a request object that
has a response attribute (or "reified"/lazy property) if they the
request is meant to be used in a view that uses a renderer. This
response attribute should be an instance of the class
pyramid.response.Response.

	The JSON and string renderer factories now assign to
request.response.content_type rather than
request.response_content_type.

	Each built-in renderer factory now determines whether it should change the
content type of the response by comparing the response's content type
against the response's default content type; if the content type is the
default content type (usually text/html), the renderer changes the
content type (to application/json or text/plain for JSON and string
renderers respectively).

	The pyramid.wsgi.wsgiapp2 now uses a slightly different method of
figuring out how to "fix" SCRIPT_NAME and PATH_INFO for the
downstream application. As a result, those values may differ slightly from
the perspective of the downstream application (for example, SCRIPT_NAME
will now never possess a trailing slash).

	Previously, pyramid.request.Request inherited from
webob.request.Request and implemented __getattr__, __setattr__
and __delattr__ itself in order to overidde "adhoc attr" WebOb behavior
where attributes of the request are stored in the environ. Now,
pyramid.request.Request object inherits from (the more recent)
webob.request.BaseRequest instead of webob.request.Request, which
provides the same behavior. pyramid.request.Request no longer
implements its own __getattr__, __setattr__ or __delattr__ as a
result.

	pyramid.response.Response is now a subclass of
webob.response.Response (in order to directly implement the
pyramid.interfaces.IResponse interface).

	The "exception response" objects importable from pyramid.httpexceptions
(e.g. HTTPNotFound) are no longer just import aliases for classes that
actually live in webob.exc. Instead, we've defined our own exception
classes within the module that mirror and emulate the webob.exc
exception response objects almost entirely. See the "Design Defense" doc
section named "Pyramid Uses its Own HTTP Exception Classes" for more
information.

Backwards Incompatibilities

	Pyramid no longer supports Python 2.4. Python 2.5 or better is required to
run Pyramid 1.1+.

	The Pyramid router now, by default, expects response objects returned from
view callables to implement the pyramid.interfaces.IResponse interface.
Unlike the Pyramid 1.0 version of this interface, objects which implement
IResponse now must define a __call__ method that accepts environ
and start_response, and which returns an app_iter iterable, among
other things. Previously, it was possible to return any object which had
the three WebOb app_iter, headerlist, and status attributes as
a response, so this is a backwards incompatibility. It is possible to get
backwards compatibility back by registering an adapter to IResponse from
the type of object you're now returning from view callables. See the
section in the Hooks chapter of the documentation entitled "Changing How
Pyramid Treats View Responses".

	The pyramid.interfaces.IResponse interface is now much more extensive.
Previously it defined only app_iter, status and headerlist; now
it is basically intended to directly mirror the webob.Response API,
which has many methods and attributes.

	The pyramid.httpexceptions classes named HTTPFound,
HTTPMultipleChoices, HTTPMovedPermanently, HTTPSeeOther,
HTTPUseProxy, and HTTPTemporaryRedirect now accept location as
their first positional argument rather than detail. This means that
you can do, e.g. return pyramid.httpexceptions.HTTPFound('http://foo')
rather than return
pyramid.httpexceptions.HTTPFound(location='http//foo') (the latter will
of course continue to work).

Dependencies

	Pyramid now depends on WebOb >= 1.0.2 as tests depend on the bugfix in that
release: "Fix handling of WSGI environs with missing SCRIPT_NAME".
(Note that in reality, everyone should probably be using 1.0.4 or better
though, as WebOb 1.0.2 and 1.0.3 were effectively brownbag releases.)

1.0 (2011-01-30)

Documentation

	Fixed bug in ZODB Wiki tutorial (missing dependency on docutils in
"models" step within setup.py).

	Removed API documentation for pyramid.testing APIs named
registerDummySecurityPolicy, registerResources, registerModels,
registerEventListener, registerTemplateRenderer,
registerDummyRenderer, registerView, registerUtility,
registerAdapter, registerSubscriber, registerRoute,
and registerSettings.

	Moved "Using ZODB With ZEO" and "Using repoze.catalog Within Pyramid"
tutorials out of core documentation and into the Pyramid Tutorials site
(http://docs.pylonsproject.org/projects/pyramid_tutorials/en/latest/).

	Changed "Cleaning up After a Request" section in the URL Dispatch chapter
to use request.add_finished_callback instead of jamming an object with
a __del__ into the WSGI environment.

	Remove duplication of add_route API documentation from URL Dispatch
narrative chapter.

	Remove duplication of API and narrative documentation in
pyramid.view.view_config API docs by pointing to
pyramid.config.add_view documentation and narrative chapter
documentation.

	Removed some API documentation duplicated in narrative portions of
documentation

	Removed "Overall Flow of Authentication" from SQLAlchemy + URL Dispatch
wiki tutorial due to print space concerns (moved to Pyramid Tutorials
site).

Bug Fixes

	Deprecated-since-BFG-1.2 APIs from pyramid.testing now properly emit
deprecation warnings.

	Added egg:repoze.retry#retry middleware to the WSGI pipeline in ZODB
templates (retry ZODB conflict errors which occur in normal operations).

	Removed duplicate implementations of is_response. Two competing
implementations existed: one in pyramid.config and one in
pyramid.view. Now the one defined in pyramid.view is used
internally by pyramid.config and continues to be advertised as an API.

1.0b3 (2011-01-28)

Bug Fixes

	Use © instead of copyright symbol in paster templates / tutorial
templates for the benefit of folks who cutnpaste and save to a non-UTF8
format.

	pyramid.view.append_slash_notfound_view now preserves GET query
parameters across redirects.

Documentation

	Beef up documentation related to set_default_permission: explicitly
mention that default permissions also protect exception views.

	Paster templates and tutorials now use spaces instead of tabs in their HTML
templates.

1.0b2 (2011-01-24)

Bug Fixes

	The production.ini generated by all paster templates now have an
effective logging level of WARN, which prevents e.g. SQLAlchemy statement
logging and other inappropriate output.

	The production.ini of the pyramid_routesalchemy and
pyramid_alchemy paster templates did not have a sqlalchemy logger
section, preventing paster serve production.ini from working.

	The pyramid_routesalchemy and pyramid_alchemy paster templates used
the {{package}} variable in a place where it should have used the
{{project}} variable, causing applications created with uppercase
letters e.g. paster create -t pyramid_routesalchemy Dibbus to fail to
start when paster serve development.ini was used against the result.
See https://github.com/Pylons/pyramid/issues/#issue/107

	The render_view method of pyramid.renderers.RendererHelper passed
an incorrect value into the renderer for renderer_info. It now passes
an instance of RendererHelper instead of a dictionary, which is
consistent with other usages. See
https://github.com/Pylons/pyramid/issues#issue/106

	A bug existed in the pyramid.authentication.AuthTktCookieHelper which
would break any usage of an AuthTktAuthenticationPolicy when one was
configured to reissue its tokens (reissue_time < timeout /
max_age). Symptom: ValueError: ('Invalid token %r', ''). See
https://github.com/Pylons/pyramid/issues#issue/108.

1.0b1 (2011-01-21)

Features

	The AuthTktAuthenticationPolicy now accepts a tokens parameter via
pyramid.security.remember. The value must be a sequence of strings.
Tokens are placed into the auth_tkt "tokens" field and returned in the
auth_tkt cookie.

	Add wild_domain argument to AuthTktAuthenticationPolicy, which defaults
to True. If it is set to False, the feature of the policy which
sets a cookie with a wildcard domain will be turned off.

	Add a MANIFEST.in file to each paster template. See
https://github.com/Pylons/pyramid/issues#issue/95

Bug Fixes

	testing.setUp now adds a settings attribute to the registry (both
when it's passed a registry without any settings and when it creates one).

	The testing.setUp function now takes a settings argument, which
should be a dictionary. Its values will subsequently be available on the
returned config object as config.registry.settings.

Documentation

	Added "What's New in Pyramid 1.0" chapter to HTML rendering of
documentation.

	Merged caseman-master narrative editing branch, many wording fixes and
extensions.

	Fix deprecated example showing chameleon_zpt API call in testing
narrative chapter.

	Added "Adding Methods to the Configurator via add_directive" section to
Advanced Configuration narrative chapter.

	Add docs for add_finished_callback, add_response_callback,
route_path, route_url, and static_url methods to
pyramid.request.Request API docs.

	Add (minimal) documentation about using I18N within Mako templates to
"Internationalization and Localization" narrative chapter.

	Move content of "Forms" chapter back to "Views" chapter; I can't think of a
better place to put it.

	Slightly improved interface docs for IAuthorizationPolicy.

	Minimally explain usage of custom regular expressions in URL dispatch
replacement markers within URL Dispatch chapter.

Deprecations

	Using the pyramid.view.bfg_view alias for pyramid.view.view_config
(a backwards compatibility shim) now issues a deprecation warning.

Backwards Incompatibilities

	Using testing.setUp now registers an ISettings utility as a side
effect. Some test code which queries for this utility after
testing.setUp via queryAdapter will expect a return value of None.
This code will need to be changed.

	When a pyramid.exceptions.Forbidden error is raised, its status code
now 403 Forbidden. It was previously 401 Unauthorized, for
backwards compatibility purposes with repoze.bfg. This change will
cause problems for users of Pyramid with repoze.who, which intercepts
401 Unauthorized by default, but allows 403 Forbidden to pass
through. Those deployments will need to configure repoze.who to also
react to 403 Forbidden.

	The default value for the cookie_on_exception parameter to
pyramid.session.UnencyrptedCookieSessionFactory is now True. This
means that when view code causes an exception to be raised, and the session
has been mutated, a cookie will be sent back in the response. Previously
its default value was False.

Paster Templates

	The pyramid_zodb, pyramid_routesalchemy and pyramid_alchemy
paster templates now use a default "commit veto" hook when configuring the
repoze.tm2 transaction manager in development.ini. This prevents a
transaction from being committed when the response status code is within
the 400 or 500 ranges. See also
http://docs.repoze.org/tm2/#using-a-commit-veto.

1.0a10 (2011-01-18)

Bug Fixes

	URL dispatch now properly handles a .* or * appearing in a regex
match when used inside brackets. Resolves issue #90.

Backwards Incompatibilities

	The add_handler method of a Configurator has been removed from the
Pyramid core. Handlers are now a feature of the pyramid_handlers
package, which can be downloaded from PyPI. Documentation for the package
should be available via
http://docs.pylonsproject.org/projects/pyramid_handlers/en/latest/,
which describes how
to add a configuration statement to your main block to reobtain this
method. You will also need to add an install_requires dependency upon
pyramid_handlers to your setup.py file.

	The load_zcml method of a Configurator has been removed from the
Pyramid core. Loading ZCML is now a feature of the pyramid_zcml
package, which can be downloaded from PyPI. Documentation for the package
should be available via
http://docs.pylonsproject.org/projects/pyramid_zcml/en/latest/,
which describes how
to add a configuration statement to your main block to reobtain this
method. You will also need to add an install_requires dependency upon
pyramid_zcml to your setup.py file.

	The pyramid.includes subpackage has been removed. ZCML files which use
include the package pyramid.includes (e.g. <include
package="pyramid.includes"/>) now must include the pyramid_zcml
package instead (e.g. <include package="pyramid_zcml"/>).

	The pyramid.view.action decorator has been removed from the Pyramid
core. Handlers are now a feature of the pyramid_handlers package. It
should now be imported from pyramid_handlers e.g. from
pyramid_handlers import action.

	The handler ZCML directive has been removed. It is now a feature of
the pyramid_handlers package.

	The pylons_minimal, pylons_basic and pylons_sqla paster
templates were removed. Use pyramid_sqla (available from PyPI) as a
generic replacement for Pylons-esque development.

	The make_app function has been removed from the pyramid.router
module. It continues life within the pyramid_zcml package. This
leaves the pyramid.router module without any API functions.

	The configure_zcml setting within the deployment settings (within
**settings passed to a Pyramid main function) has ceased to have any
meaning.

Features

	pyramid.testing.setUp and pyramid.testing.tearDown have been
undeprecated. They are now the canonical setup and teardown APIs for test
configuration, replacing "direct" creation of a Configurator. This is a
change designed to provide a facade that will protect against any future
Configurator deprecations.

	Add charset attribute to pyramid.testing.DummyRequest
(unconditionally UTF-8).

	Add add_directive method to configurator, which allows framework
extenders to add methods to the configurator (ala ZCML directives).

	When Configurator.include is passed a module as an argument, it
defaults to attempting to find and use a callable named includeme
within that module. This makes it possible to use
config.include('some.module') rather than
config.include('some.module.somefunc') as long as the include function
within some.module is named includeme.

	The bfg2pyramid script now converts ZCML include tags that have
repoze.bfg.includes as a package attribute to the value
pyramid_zcml. For example, <include package="repoze.bfg.includes">
will be converted to <include package="pyramid_zcml">.

Paster Templates

	All paster templates now use pyramid.testing.setUp and
pyramid.testing.tearDown rather than creating a Configurator "by hand"
within their tests.py module, as per decision in features above.

	The starter_zcml paster template has been moved to the pyramid_zcml
package.

Documentation

	The wiki and wiki2 tutorials now use pyramid.testing.setUp and
pyramid.testing.tearDown rather than creating a Configurator "by hand",
as per decision in features above.

	The "Testing" narrative chapter now explains pyramid.testing.setUp and
pyramid.testing.tearDown instead of Configurator creation and
Configurator.begin() and Configurator.end().

	Document the request.override_renderer attribute within the narrative
"Renderers" chapter in a section named "Overriding A Renderer at Runtime".

	The "Declarative Configuration" narrative chapter has been removed (it was
moved to the pyramid_zcml package).

	Most references to ZCML in narrative chapters have been removed or
redirected to pyramid_zcml locations.

Deprecations

	Deprecation warnings related to import of the following API functions were
added: pyramid.traversal.find_model, pyramid.traversal.model_path,
pyramid.traversal.model_path_tuple, pyramid.url.model_url. The
instructions emitted by the deprecation warnings instruct the developer to
change these method spellings to their resource equivalents. This is a
consequence of the mass concept rename of "model" to "resource" performed
in 1.0a7.

1.0a9 (2011-01-08)

Bug Fixes

	The proutes command tried too hard to resolve the view for printing,
resulting in exceptions when an exceptional root factory was encountered.
Instead of trying to resolve the view, if it cannot, it will now just print
<unknown>.

	The self argument was included in new methods of the ISession interface
signature, causing pyramid_beaker tests to fail.

	Readd pyramid.traversal.model_path_tuple as an alias for
pyramid.traversal.resource_path_tuple for backwards compatibility.

Features

	Add a new API pyramid.url.current_route_url, which computes a URL based
on the "current" route (if any) and its matchdict values.

	config.add_view now accepts a decorator keyword argument, a callable
which will decorate the view callable before it is added to the registry.

	If a handler class provides an __action_decorator__ attribute (usually
a classmethod or staticmethod), use that as the decorator for each view
registration for that handler.

	The pyramid.interfaces.IAuthenticationPolicy interface now specifies an
unauthenticated_userid method. This method supports an important
optimization required by people who are using persistent storages which do
not support object caching and whom want to create a "user object" as a
request attribute.

	A new API has been added to the pyramid.security module named
unauthenticated_userid. This API function calls the
unauthenticated_userid method of the effective security policy.

	An unauthenticated_userid method has been added to the dummy
authentication policy returned by
pyramid.config.Configurator.testing_securitypolicy. It returns the
same thing as that the dummy authentication policy's
authenticated_userid method.

	The class pyramid.authentication.AuthTktCookieHelper is now an API.
This class can be used by third-party authentication policy developers to
help in the mechanics of authentication cookie-setting.

	New constructor argument to Configurator: default_view_mapper. Useful
to create systems that have alternate view calling conventions. A view
mapper allows objects that are meant to be used as view callables to have
an arbitrary argument list and an arbitrary result. The object passed as
default_view_mapper should implement the
pyramid.interfaces.IViewMapperFactory interface.

	add a set_view_mapper API to Configurator. Has
the same result as passing default_view_mapper to the Configurator
constructor.

	config.add_view now accepts a mapper keyword argument, which should
either be None, a string representing a Python dotted name, or an
object which is an IViewMapperFactory. This feature is not useful for
"civilians", only for extension writers.

	Allow static renderer provided during view registration to be overridden at
request time via a request attribute named override_renderer, which
should be the name of a previously registered renderer. Useful to provide
"omnipresent" RPC using existing rendered views.

	Instances of pyramid.testing.DummyRequest now have a session
object, which is mostly a dictionary, but also implements the other session
API methods for flash and CSRF.

Backwards Incompatibilities

	Since the pyramid.interfaces.IAuthenticationPolicy interface now
specifies that a policy implementation must implement an
unauthenticated_userid method, all third-party custom authentication
policies now must implement this method. It, however, will only be called
when the global function named pyramid.security.unauthenticated_userid
is invoked, so if you're not invoking that, you will not notice any issues.

	pyramid.interfaces.ISession.get_csrf_token now mandates that an
implementation should return a new token if one doesn't already exist in
the session (previously it would return None). The internal sessioning
implementation has been changed.

Documentation

	The (weak) "Converting a CMF Application to Pyramid" tutorial has been
removed from the tutorials section. It was moved to the
pyramid_tutorials Github repository.

	The "Resource Location and View Lookup" chapter has been replaced with a
variant of Rob Miller's "Much Ado About Traversal" (originally published at
http://blog.nonsequitarian.org/2010/much-ado-about-traversal/).

	Many minor wording tweaks and refactorings (merged Casey Duncan's docs
fork, in which he is working on general editing).

	Added (weak) description of new view mapper feature to Hooks narrative
chapter.

	Split views chapter into 2: View Callables and View Configuration.

	Reorder Renderers and Templates chapters after View Callables but before
View Configuration.

	Merge Session Objects, Cross-Site Request Forgery, and Flash Messaging
chapter into a single Sessions chapter.

	The Wiki and Wiki2 tutorials now have much nicer CSS and graphics.

Internals

	The "view derivation" code is now factored into a set of classes rather
than a large number of standalone functions (a side effect of the
view mapper refactoring).

	The pyramid.renderer.RendererHelper class has grown a render_view
method, which is used by the default view mapper (a side effect of the
view mapper refactoring).

	The object passed as renderer to the "view deriver" is now an instance
of pyramid.renderers.RendererHelper rather than a dictionary (a side
effect of view mapper refactoring).

	The class used as the "page template" in pyramid.chameleon_text was
removed, in preference to using a Chameleon-inbuilt version.

	A view callable wrapper registered in the registry now contains an
__original_view__ attribute which references the original view callable
(or class).

	The (non-API) method of all internal authentication policy implementations
previously named _get_userid is now named unauthenticated_userid,
promoted to an API method. If you were overriding this method, you'll now
need to override it as unauthenticated_userid instead.

	Remove (non-API) function of config.py named _map_view.

1.0a8 (2010-12-27)

Bug Fixes

	The name registry was not available in the paster pshell
environment under IPython.

Features

	If a resource implements a __resource_url__ method, it will be called
as the result of invoking the pyramid.url.resource_url function to
generate a URL, overriding the default logic. See the new "Generating The
URL Of A Resource" section within the Resources narrative chapter.

	Added flash messaging, as described in the "Flash Messaging" narrative
documentation chapter.

	Added CSRF token generation, as described in the narrative chapter entitled
"Preventing Cross-Site Request Forgery Attacks".

	Prevent misunderstanding of how the view and view_permission
arguments to add_route work by raising an exception during configuration if
view-related arguments exist but no view argument is passed.

	Add paster proute command which displays a summary of the routing
table. See the narrative documentation section within the "URL Dispatch"
chapter entitled "Displaying All Application Routes".

Paster Templates

	The pyramid_zodb Paster template no longer employs ZCML. Instead, it
is based on scanning.

Documentation

	Added "Generating The URL Of A Resource" section to the Resources narrative
chapter (includes information about overriding URL generation using
__resource_url__).

	Added "Generating the Path To a Resource" section to the Resources
narrative chapter.

	Added "Finding a Resource by Path" section to the Resources narrative
chapter.

	Added "Obtaining the Lineage of a Resource" to the Resources narrative
chapter.

	Added "Determining if a Resource is In The Lineage of Another Resource" to
Resources narrative chapter.

	Added "Finding the Root Resource" to Resources narrative chapter.

	Added "Finding a Resource With a Class or Interface in Lineage" to
Resources narrative chapter.

	Added a "Flash Messaging" narrative documentation chapter.

	Added a narrative chapter entitled "Preventing Cross-Site Request Forgery
Attacks".

	Changed the "ZODB + Traversal Wiki Tutorial" based on changes to
pyramid_zodb Paster template.

	Added "Advanced Configuration" narrative chapter which documents how to
deal with configuration conflicts, two-phase configuration, include and
commit.

	Fix API documentation rendering for pyramid.view.static

	Add "Pyramid Provides More Than One Way to Do It" to Design Defense
documentation.

	Changed "Static Assets" narrative chapter: clarify that name represents
a prefix unless it's a URL, added an example of a root-relative static view
fallback for URL dispatch, added an example of creating a simple view that
returns the body of a file.

	Move ZCML usage in Hooks chapter to Declarative Configuration chapter.

	Merge "Static Assets" chapter into the "Assets" chapter.

	Added narrative documentation section within the "URL Dispatch" chapter
entitled "Displaying All Application Routes" (for paster proutes
command).

1.0a7 (2010-12-20)

Terminology Changes

	The Pyramid concept previously known as "model" is now known as "resource".
As a result:

	The following API changes have been made:

pyramid.url.model_url ->
 pyramid.url.resource_url

pyramid.traversal.find_model ->
 pyramid.url.find_resource

pyramid.traversal.model_path ->
 pyramid.traversal.resource_path

pyramid.traversal.model_path_tuple ->
 pyramid.traversal.resource_path_tuple

pyramid.traversal.ModelGraphTraverser ->
 pyramid.traversal.ResourceTreeTraverser

pyramid.config.Configurator.testing_models ->
 pyramid.config.Configurator.testing_resources

pyramid.testing.registerModels ->
 pyramid.testing.registerResources

pyramid.testing.DummyModel ->
 pyramid.testing.DummyResource

	All documentation which previously referred to "model" now refers to
"resource".

	The starter and starter_zcml paster templates now have a
resources.py module instead of a models.py module.

	Positional argument names of various APIs have been changed from
model to resource.

Backwards compatibility shims have been left in place in all cases. They
will continue to work "forever".

	The Pyramid concept previously known as "resource" is now known as "asset".
As a result:

	The (non-API) module previously known as pyramid.resource is now
known as pyramid.asset.

	All docs that previously referred to "resource specification" now refer
to "asset specification".

	The following API changes were made:

pyramid.config.Configurator.absolute_resource_spec ->
 pyramid.config.Configurator.absolute_asset_spec

pyramid.config.Configurator.override_resource ->
 pyramid.config.Configurator.override_asset

	The ZCML directive previously known as resource is now known as
asset.

	The setting previously known as BFG_RELOAD_RESOURCES (envvar) or
reload_resources (config file) is now known, respectively, as
PYRAMID_RELOAD_ASSETS and reload_assets.

Backwards compatibility shims have been left in place in all cases. They
will continue to work "forever".

Bug Fixes

	Make it possible to succesfully run all tests via nosetests command
directly (rather than indirectly via python setup.py nosetests).

	When a configuration conflict is encountered during scanning, the conflict
exception now shows the decorator information that caused the conflict.

Features

	Added debug_routematch configuration setting that logs matched routes
(including the matchdict and predicates).

	The name registry is now available in a pshell environment by
default. It is the application registry object.

Environment

	All environment variables which used to be prefixed with BFG_ are now
prefixed with PYRAMID_ (e.g. BFG_DEBUG_NOTFOUND is now
PYRAMID_DEBUG_NOTFOUND)

Documentation

	Added "Debugging Route Matching" section to the urldispatch narrative
documentation chapter.

	Added reference to PYRAMID_DEBUG_ROUTEMATCH envvar and debug_routematch
config file setting to the Environment narrative docs chapter.

	Changed "Project" chapter slightly to expand on use of paster pshell.

	Direct Jython users to Mako rather than Jinja2 in "Install" narrative
chapter.

	Many changes to support terminological renaming of "model" to "resource"
and "resource" to "asset".

	Added an example of WebTest functional testing to the testing narrative
chapter.

	Rearranged chapter ordering by popular demand (URL dispatch first, then
traversal). Put hybrid chapter after views chapter.

	Split off "Renderers" as its own chapter from "Views" chapter in narrative
documentation.

Paster Templates

	Added debug_routematch = false to all paster templates.

Dependencies

	Depend on Venusian >= 0.5 (for scanning conflict exception decoration).

1.0a6 (2010-12-15)

Bug Fixes

	1.0a5 introduced a bug when pyramid.config.Configurator.scan was used
without a package argument (e.g. config.scan() as opposed to
config.scan('packagename'). The symptoms were: lots of deprecation
warnings printed to the console about imports of deprecated Pyramid
functions and classes and non-detection of view callables decorated with
view_config decorators. This has been fixed.

	Tests now pass on Windows (no bugs found, but a few tests in the test suite
assumed UNIX path segments in filenames).

Documentation

	If you followed it to-the-letter, the ZODB+Traversal Wiki tutorial would
instruct you to run a test which would fail because the view callable
generated by the pyramid_zodb tutorial used a one-arg view callable,
but the test in the sample code used a two-arg call.

	Updated ZODB+Traversal tutorial setup.py of all steps to match what's
generated by pyramid_zodb.

	Fix reference to repoze.bfg.traversalwrapper in "Models" chapter (point
at pyramid_traversalwrapper instead).

1.0a5 (2010-12-14)

Features

	Add a handler ZCML directive. This directive does the same thing as
pyramid.configuration.add_handler.

	A new module named pyramid.config was added. It subsumes the duties of
the older pyramid.configuration module.

	The new pyramid.config.Configurator` class has API methods that the older
``pyramid.configuration.Configurator class did not: with_context (a
classmethod), include, action, and commit. These methods exist
for imperative application extensibility purposes.

	The pyramid.testing.setUp function now accepts an autocommit
keyword argument, which defaults to True. If it is passed False,
the Config object returned by setUp will be a non-autocommiting Config
object.

	Add logging configuration to all paster templates.

	pyramid_alchemy, pyramid_routesalchemy, and pylons_sqla paster
templates now use idiomatic SQLAlchemy configuration in their respective
.ini files and Python code.

	pyramid.testing.DummyRequest now has a class variable,
query_string, which defaults to the empty string.

	Add support for json on GAE by catching NotImplementedError and importing
simplejson from django.utils.

	The Mako renderer now accepts a resource specification for
mako.module_directory.

	New boolean Mako settings variable mako.strict_undefined. See Mako
Context Variables [http://www.makotemplates.org/docs/runtime.html#context-variables] for
its meaning.

Dependencies

	Depend on Mako 0.3.6+ (we now require the strict_undefined feature).

Bug Fixes

	When creating a Configurator from within a paster pshell session, you
were required to pass a package argument although package is not
actually required. If you didn't pass package, you would receive an
error something like KeyError: '__name__' emanating from the
pyramid.path.caller_module function. This has now been fixed.

	The pyramid_routesalchemy paster template's unit tests failed
(AssertionError: 'SomeProject' != 'someproject'). This is fixed.

	Make default renderer work (renderer factory registered with no name, which
is active for every view unless the view names a specific renderer).

	The Mako renderer did not properly turn the mako.imports,
mako.default_filters, and mako.imports settings into lists.

	The Mako renderer did not properly convert the mako.error_handler
setting from a dotted name to a callable.

Documentation

	Merged many wording, readability, and correctness changes to narrative
documentation chapters from https://github.com/caseman/pyramid (up to and
including "Models" narrative chapter).

	"Sample Applications" section of docs changed to note existence of Cluegun,
Shootout and Virginia sample applications, ported from their repoze.bfg
origin packages.

	SQLAlchemy+URLDispatch tutorial updated to integrate changes to
pyramid_routesalchemy template.

	Add pyramid.interfaces.ITemplateRenderer interface to Interfaces API
chapter (has implementation() method, required to be used when getting
at Chameleon macros).

	Add a "Modifying Package Structure" section to the project narrative
documentation chapter (explain turning a module into a package).

	Documentation was added for the new handler ZCML directive in the ZCML
section.

Deprecations

	pyramid.configuration.Configurator is now deprecated. Use
pyramid.config.Configurator, passing its constructor
autocommit=True instead. The pyramid.configuration.Configurator
alias will live for a long time, as every application uses it, but its
import now issues a deprecation warning. The
pyramid.config.Configurator class has the same API as
pyramid.configuration.Configurator class, which it means to replace,
except by default it is a non-autocommitting configurator. The
now-deprecated pyramid.configuration.Configurator will autocommit every
time a configuration method is called.

The pyramid.configuration module remains, but it is deprecated. Use
pyramid.config instead.

1.0a4 (2010-11-21)

Features

	URL Dispatch now allows for replacement markers to be located anywhere
in the pattern, instead of immediately following a /.

	URL Dispatch now uses the form {marker} to denote a replace marker in
the route pattern instead of :marker. The old colon-style marker syntax
is still accepted for backwards compatibility. The new format allows a
regular expression for that marker location to be used instead of the
default [^/]+, for example {marker:\d+} is now valid to require the
marker to be digits.

	Add a pyramid.url.route_path API, allowing folks to generate relative
URLs. Calling route_path is the same as calling
pyramid.url.route_url with the argument _app_url equal to the empty
string.

	Add a pyramid.request.Request.route_path API. This is a convenience
method of the request which calls pyramid.url.route_url.

	Make test suite pass on Jython (requires PasteScript trunk, presumably to
be 1.7.4).

	Make test suite pass on PyPy (Chameleon doesn't work).

	Surrounding application configuration with config.begin() and
config.end() is no longer necessary. All paster templates have been
changed to no longer call these functions.

	Fix configurator to not convert ImportError to ConfigurationError
if the import that failed was unrelated to the import requested via a
dotted name when resolving dotted names (such as view dotted names).

Documentation

	SQLAlchemy+URLDispatch and ZODB+Traversal tutorials have been updated to
not call config.begin() or config.end().

Bug Fixes

	Add deprecation warnings to import of pyramid.chameleon_text and
pyramid.chameleon_zpt of get_renderer, get_template,
render_template, and render_template_to_response.

	Add deprecation warning for import of pyramid.zcml.zcml_configure and
pyramid.zcml.file_configure.

	The pyramid_alchemy paster template had a typo, preventing an import
from working.

	Fix apparent failures when calling pyramid.traversal.find_model(root,
path) or pyramid.traversal.traverse(path) when path is
(erroneously) a Unicode object. The user is meant to pass these APIs a
string object, never a Unicode object. In practice, however, users indeed
pass Unicode. Because the string that is passed must be ASCII encodeable,
now, if they pass a Unicode object, its data is eagerly converted to an
ASCII string rather than being passed along to downstream code as a
convenience to the user and to prevent puzzling second-order failures from
cropping up (all failures will occur within pyramid.traversal.traverse
rather than later down the line as the result of calling e.g.
traversal_path).

Backwards Incompatibilities

	The pyramid.testing.zcml_configure API has been removed. It had been
advertised as removed since repoze.bfg 1.2a1, but hadn't actually been.

Deprecations

	The pyramid.settings.get_settings API is now deprecated. Use
pyramid.threadlocals.get_current_registry().settings instead or use the
settings attribute of the registry available from the request
(request.registry.settings).

Documentation

	Removed zodbsessions tutorial chapter. It's still useful, but we now
have a SessionFactory abstraction which competes with it, and maintaining
documentation on both ways to do it is a distraction.

Internal

	Replace Twill with WebTest in internal integration tests (avoid deprecation
warnings generated by Twill).

1.0a3 (2010-11-16)

Features

	Added Mako TemplateLookup settings for mako.error_handler,
mako.default_filters, and mako.imports.

	Normalized all paster templates: each now uses the name main to
represent the function that returns a WSGI application, each now uses
WebError, each now has roughly the same shape of development.ini style.

	Added class vars matchdict and matched_route to
pyramid.request.Request. Each is set to None.

	New API method: pyramid.settings.asbool.

	New API methods for pyramid.request.Request: model_url,
route_url, and static_url. These are simple passthroughs for their
respective functions in pyramid.url.

	The settings object which used to be available only when
request.settings.get_settings was called is now available as
registry.settings (e.g. request.registry.settings in view code).

Bug Fixes

	The pylons_* paster templates erroneously used the {squiggly} routing
syntax as the pattern supplied to add_route. This style of routing is
not supported. They were replaced with :colon style route patterns.

	The pylons_* paster template used the same string
(your_app_secret_string) for the session.secret setting in the
generated development.ini. This was a security risk if left unchanged
in a project that used one of the templates to produce production
applications. It now uses a randomly generated string.

Documentation

	ZODB+traversal wiki (wiki) tutorial updated due to changes to
pyramid_zodb paster template.

	SQLAlchemy+urldispach wiki (wiki2) tutorial updated due to changes to
pyramid_routesalchemy paster template.

	Documented the matchdict and matched_route attributes of the
request object in the Request API documentation.

Deprecations

	Obtaining the settings object via
registry.{get|query}Utility(ISettings) is now deprecated. Instead,
obtain the settings object via the registry.settings attribute. A
backwards compatibility shim was added to the registry object to register
the settings object as an ISettings utility when setattr(registry,
'settings', foo) is called, but it will be removed in a later release.

	Obtaining the settings object via pyramid.settings.get_settings is
now deprecated. Obtain it as the settings attribute of the registry
now (obtain the registry via pyramid.threadlocal.get_registry or as
request.registry).

Behavior Differences

	Internal: ZCML directives no longer call get_current_registry() if there's
a registry attribute on the ZCML context (kill off use of
threadlocals).

	Internal: Chameleon template renderers now accept two arguments: path
and lookup. Lookup will be an instance of a lookup class which
supplies (late-bound) arguments for debug, reload, and translate. Any
third-party renderers which use (the non-API) function
pyramid.renderers.template_renderer_factory will need to adjust their
implementations to obey the new callback argument list. This change was to
kill off inappropriate use of threadlocals.

1.0a2 (2010-11-09)

Documentation

	All references to events by interface
(e.g. pyramid.interfaces.INewRequest) have been changed to reference
their concrete classes (e.g. pyramid.events.NewRequest) in
documentation about making subscriptions.

	All references to Pyramid-the-application were changed from mod-pyramid
to app-Pyramid. A custom role setting was added to docs/conf.py to
allow for this. (internal)

1.0a1 (2010-11-05)

Features (delta from BFG 1.3)

	Mako templating renderer supports resource specification format for
template lookups and within Mako templates. Absolute filenames must
be used in Pyramid to avoid this lookup process.

	Add pyramid.httpexceptions module, which is a facade for the
webob.exc module.

	Direct built-in support for the Mako templating language.

	A new configurator method exists: add_handler. This method adds
a Pylons-style "view handler" (such a thing used to be called a
"controller" in Pylons 1.0).

	New argument to configurator: session_factory.

	New method on configurator: set_session_factory

	Using request.session now returns a (dictionary-like) session
object if a session factory has been configured.

	The request now has a new attribute: tmpl_context for benefit of
Pylons users.

	The decorator previously known as pyramid.view.bfg_view is now
known most formally as pyramid.view.view_config in docs and
paster templates. An import of pyramid.view.bfg_view, however,
will continue to work "forever".

	New API methods in pyramid.session: signed_serialize and
signed_deserialize.

	New interface: pyramid.interfaces.IRendererInfo. An object of this type
is passed to renderer factory constructors (see "Backwards
Incompatibilities").

	New event type: pyramid.interfaces.IBeforeRender. An object of this type
is sent as an event before a renderer is invoked (but after the
application-level renderer globals factory added via
pyramid.configurator.configuration.set_renderer_globals_factory, if any,
has injected its own keys). Applications may now subscribe to the
IBeforeRender event type in order to introspect the and modify the set of
renderer globals before they are passed to a renderer. The event object
iself has a dictionary-like interface that can be used for this purpose. For
example:

from repoze.events import subscriber
from pyramid.interfaces import IRendererGlobalsEvent

@subscriber(IRendererGlobalsEvent)
def add_global(event):
 event['mykey'] = 'foo'

If a subscriber attempts to add a key that already exist in the renderer
globals dictionary, a KeyError is raised. This limitation is due to the
fact that subscribers cannot be ordered relative to each other. The set of
keys added to the renderer globals dictionary by all subscribers and
app-level globals factories must be unique.

	New class: pyramid.response.Response. This is a pure facade for
webob.Response (old code need not change to use this facade, it's
existence is mostly for vanity and documentation-generation purposes).

	All preexisting paster templates (except zodb) now use "imperative"
configuration (starter, routesalchemy, alchemy).

	A new paster template named pyramid_starter_zcml exists, which uses
declarative configuration.

Documentation (delta from BFG 1.3)

	Added a pyramid.httpexceptions API documentation chapter.

	Added a pyramid.session API documentation chapter.

	Added a Session Objects narrative documentation chapter.

	Added an API chapter for the pyramid.personality module.

	Added an API chapter for the pyramid.response module.

	All documentation which previously referred to webob.Response now uses
pyramid.response.Response instead.

	The documentation has been overhauled to use imperative configuration,
moving declarative configuration (ZCML) explanations to a separate
narrative chapter declarative.rst.

	The ZODB Wiki tutorial was updated to take into account changes to the
pyramid_zodb paster template.

	The SQL Wiki tutorial was updated to take into account changes to the
pyramid_routesalchemy paster template.

Backwards Incompatibilities (with BFG 1.3)

	There is no longer an IDebugLogger registered as a named utility
with the name repoze.bfg.debug.

	The logger which used to have the name of repoze.bfg.debug now
has the name pyramid.debug.

	The deprecated API pyramid.testing.registerViewPermission
has been removed.

	The deprecated API named pyramid.testing.registerRoutesMapper
has been removed.

	The deprecated API named pyramid.request.get_request was removed.

	The deprecated API named pyramid.security.Unauthorized was
removed.

	The deprecated API named pyramid.view.view_execution_permitted
was removed.

	The deprecated API named pyramid.view.NotFound was removed.

	The bfgshell paster command is now named pshell.

	The Venusian "category" for all built-in Venusian decorators
(e.g. subscriber and view_config/bfg_view) is now
pyramid instead of bfg.

	pyramid.renderers.rendered_response function removed; use
render_pyramid.renderers.render_to_response instead.

	Renderer factories now accept a renderer info object rather than an
absolute resource specification or an absolute path. The object has the
following attributes: name (the renderer= value), package (the
'current package' when the renderer configuration statement was found),
type: the renderer type, registry: the current registry, and
settings: the deployment settings dictionary.

Third-party repoze.bfg renderer implementations that must be ported to
Pyramid will need to account for this.

This change was made primarily to support more flexible Mako template
rendering.

	The presence of the key repoze.bfg.message in the WSGI environment when
an exception occurs is now deprecated. Instead, code which relies on this
environ value should use the exception attribute of the request
(e.g. request.exception[0]) to retrieve the message.

	The values bfg_localizer and bfg_locale_name kept on the request
during internationalization for caching purposes were never APIs. These
however have changed to localizer and locale_name, respectively.

	The default cookie_name value of the authtktauthenticationpolicy ZCML
now defaults to auth_tkt (it used to default to repoze.bfg.auth_tkt).

	The default cookie_name value of the
pyramid.authentication.AuthTktAuthenticationPolicy constructor now
defaults to auth_tkt (it used to default to repoze.bfg.auth_tkt).

	The request_type argument to the view ZCML directive, the
pyramid.configuration.Configurator.add_view method, or the
pyramid.view.view_config decorator (nee bfg_view) is no longer
permitted to be one of the strings GET, HEAD, PUT, POST or
DELETE, and now must always be an interface. Accepting the
method-strings as request_type was a backwards compatibility strategy
servicing repoze.bfg 1.0 applications. Use the request_method
parameter instead to specify that a view a string request-method predicate.

repoze.bfg Change History (previous name for Pyramid)

1.3b1 (2010-10-25)

Features

	The paster template named bfg_routesalchemy has been updated
to use SQLAlchemy declarative syntax. Thanks to Ergo^.

Bug Fixes

	When a renderer factory could not be found, a misleading error
message was raised if the renderer name was not a string.

Documentation

	The ""bfgwiki2" (SQLAlchemy + url dispatch) tutorial has been
updated slightly. In particular, the source packages no longer
attempt to use a private index, and the recommended Python version
is now 2.6. It was also updated to take into account the changes to
the bfg_routesalchemy template used to set up an environment.

	The "bfgwiki" (ZODB + traversal) tutorial has been updated slightly.
In particular, the source packages no longer attempt to use a
private index, and the recommended Python version is now 2.6.

1.3a15 (2010-09-30)

Features

	The repoze.bfg.traversal.traversal_path API now eagerly attempts
to encode a Unicode path into ASCII before attempting to split
it and decode its segments. This is for convenience, effectively to
allow a (stored-as-Unicode-in-a-database, or
retrieved-as-Unicode-from-a-request-parameter) Unicode path to be
passed to find_model, which eventually internally uses the
traversal_path function under the hood. In version 1.2 and
prior, if the path was Unicode, that Unicode was split on
slashes and each resulting segment value was Unicode. An
inappropriate call to the decode() method of a resulting Unicode
path segment could cause a UnicodeDecodeError to occur even if
the Unicode representation of the path contained no 'high order'
characters (it effectively did a "double decode"). By converting
the Unicode path argument to ASCII before we attempt to decode and
split, genuine errors will occur in a more obvious place while also
allowing us to handle (for convenience) the case that it's a Unicode
representation formed entirely from ASCII-compatible characters.

1.3a14 (2010-09-14)

Bug Fixes

	If an exception view was registered through the legacy
set_notfound_view or set_forbidden_view APIs, the context
sent to the view was incorrect (could be None inappropriately).

Features

	Compatibility with WebOb 1.0.

Requirements

	Now requires WebOb >= 1.0.

Backwards Incompatibilities

	Due to changes introduced WebOb 1.0, the
repoze.bfg.request.make_request_ascii event subscriber no longer
works, so it has been removed. This subscriber was meant to be used
in a deployment so that code written before BFG 0.7.0 could run
unchanged. At this point, such code will need to be rewritten to
expect Unicode from request.GET, request.POST and
request.params or it will need to be changed to use
request.str_POST, request.str_GET and/or
request.str_params instead of the non-str versions of same,
as the non-str versions of the same APIs always now perform
decoding to Unicode.

Errata

	A prior changelog entry asserted that the INewResponse event was
not sent to listeners if the response was not "valid" (if a view or
renderer returned a response object that did not have a
status/headers/app_iter). This is not true in this release, nor was
it true in 1.3a13.

1.3a13 (2010-09-14)

Bug Fixes

	The traverse route predicate could not successfully generate a
traversal path.

Features

	In support of making it easier to configure applications which are
"secure by default", a default permission feature was added. If
supplied, the default permission is used as the permission string to
all view registrations which don't otherwise name a permission.
These APIs are in support of that:
	A new constructor argument was added to the Configurator:
default_permission.

	A new method was added to the Configurator:
set_default_permission.

	A new ZCML directive was added: default_permission.

	Add a new request API: request.add_finished_callback. Finished
callbacks are called by the router unconditionally near the very end
of request processing. See the "Using Finished Callbacks" section
of the "Hooks" narrative chapter of the documentation for more
information.

	A request.matched_route attribute is now added to the request
when a route has matched. Its value is the "route" object that
matched (see the IRoute interface within
repoze.bfg.interfaces API documentation for the API of a route
object).

	The exception attribute of the request is now set slightly
earlier and in a slightly different set of scenarios, for benefit of
"finished callbacks" and "response callbacks". In previous
versions, the exception attribute of the request was not set at
all if an exception view was not found. In this version, the
request.exception attribute is set immediately when an exception
is caught by the router, even if an exception view could not be
found.

	The add_route method of a Configurator now accepts a
pregenerator argument. The pregenerator for the resulting route
is called by route_url in order to adjust the set of arguments
passed to it by the user for special purposes, such as Pylons
'subdomain' support. It will influence the URL returned by
route_url. See the repoze.bfg.interfaces.IRoutePregenerator
interface for more information.

Backwards Incompatibilities

	The router no longer sets the value wsgiorg.routing_args into
the environ when a route matches. The value used to be something
like ((), matchdict). This functionality was only ever
obliquely referred to in change logs; it was never documented as an
API.

	The exception attribute of the request now defaults to None.
In prior versions, the request.exception attribute did not exist
if an exception was not raised by user code during request
processing; it only began existence once an exception view was
found.

Deprecations

	The repoze.bfg.interfaces.IWSGIApplicationCreatedEvent event
interface was renamed to
repoze.bfg.interfaces.IApplicationCreated. Likewise, the
repoze.bfg.events.WSGIApplicationCreatedEvent class was renamed
to repoze.bfg.events.ApplicationCreated. The older aliases will
continue to work indefinitely.

	The repoze.bfg.interfaces.IAfterTraversal event interface was
renamed to repoze.bfg.interfaces.IContextFound. Likewise, the
repoze.bfg.events.AfterTraversal class was renamed to
repoze.bfg.events.ContextFound. The older aliases will continue
to work indefinitely.

	References to the WSGI environment values bfg.routes.matchdict
and bfg.routes.route were removed from documentation. These
will stick around internally for several more releases, but it is
request.matchdict and request.matched_route are now the
"official" way to obtain the matchdict and the route object which
resulted in the match.

Documentation

	Added documentation for the default_permission ZCML directive.

	Added documentation for the default_permission constructor value
and the set_default_permission method in the Configurator API
documentation.

	Added a new section to the "security" chapter named "Setting a
Default Permission".

	Document renderer_globals_factory and request_factory
arguments to Configurator constructor.

	Added two sections to the "Hooks" chapter of the documentation:
"Using Response Callbacks" and "Using Finished Callbacks".

	Added documentation of the request.exception attribute to the
repoze.bfg.request.Request API documentation.

	Added glossary entries for "response callback" and "finished
callback".

	The "Request Processing" narrative chapter has been updated to note
finished and response callback steps.

	New interface in interfaces API documentation: IRoutePregenerator.

	Added a "The Matched Route" section to the URL Dispatch narrative
docs chapter, detailing the matched_route attribute.

1.3a12 (2010-09-08)

Bug Fixes

	Fix a bug in repoze.bfg.url.static_url URL generation: if two
resource specifications were used to create two separate static
views, but they shared a common prefix, it was possible that
static_url would generate an incorrect URL.

	Fix another bug in repoze.bfg.static_url URL generation: too
many slashes in generated URL.

	Prevent a race condition which could result in a RuntimeError
when rendering a Chameleon template that has not already been
rendered once. This would usually occur directly after a restart,
when more than one person or thread is trying to execute the same
view at the same time: https://bugs.launchpad.net/karl3/+bug/621364

Features

	The argument to repoze.bfg.configuration.Configurator.add_route
which was previously called path is now called pattern for
better explicability. For backwards compatibility purposes, passing
a keyword argument named path to add_route will still work
indefinitely.

	The path attribute to the ZCML route directive is now named
pattern for better explicability. The older path attribute
will continue to work indefinitely.

Documentation

	All narrative, API, and tutorial docs which referred to a route
pattern as a path have now been updated to refer to them as a
pattern.

	The repoze.bfg.interfaces API documentation page is now rendered
via repoze.sphinx.autointerface.

	The URL Dispatch narrative chapter now refers to the interfaces
chapter to explain the API of an IRoute object.

Paster Templates

	The routesalchemy template has been updated to use pattern in
its route declarations rather than path.

Dependencies

	tests_require now includes repoze.sphinx.autointerface as a
dependency.

Internal

	Add an API to the Configurator named get_routes_mapper.
This returns an object implementing the IRoutesMapper interface.

	The repoze.bfg.urldispatch.RoutesMapper object now has a
get_route method which returns a single Route object or
None.

	A new interface repoze.bfg.interfaces.IRoute was added. The
repoze.bfg.urldispatch.Route object implements this interface.

	The canonical attribute for accessing the routing pattern from a
route object is now pattern rather than path.

	Use hash() rather than id() when computing the "phash" of a
custom route/view predicate in order to allow the custom predicate
some control over which predicates are "equal".

	Use response.headerlist.append instead of
response.headers.add in
repoze.bfg.request.add_global_response_headers in case the
response is not a WebOb response.

	The repoze.bfg.urldispatch.Route constructor (not an API) now
accepts a different ordering of arguments. Previously it was
(pattern, name, factory=None, predicates=()). It is now
(name, pattern, factory=None, predicates=()). This is in
support of consistency with configurator.add_route.

	The repoze.bfg.urldispatch.RoutesMapper.connect method (not an
API) now accepts a different ordering of arguments. Previously it
was (pattern, name, factory=None, predicates=()). It is now
(name, pattern, factory=None, predicates=()). This is in
support of consistency with configurator.add_route.

1.3a11 (2010-09-05)

Bug Fixes

	Process the response callbacks and the NewResponse event earlier, to
enable mutations to the response to take effect.

1.3a10 (2010-09-05)

Features

	A new repoze.bfg.request.Request.add_response_callback API has
been added. This method is documented in the new
repoze.bfg.request API chapter. It can be used to influence
response values before a concrete response object has been created.

	The repoze.bfg.interfaces.INewResponse interface now includes a
request attribute; as a result, a handler for INewResponse now
has access to the request which caused the response.

	Each of the follow methods of the Configurator now allow the
below-named arguments to be passed as "dotted name strings"
(e.g. "foo.bar.baz") rather than as actual implementation objects
that must be imported:

	setup_registry

	root_factory, authentication_policy, authorization_policy,
debug_logger, locale_negotiator, request_factory,
renderer_globals_factory

	add_subscriber

	subscriber, iface

	derive_view

	view

	add_view

	view, for_, context, request_type, containment

	add_route()

	view, view_for, factory, for_, view_context

	scan

	package

	add_renderer

	factory

	set_forbidden_view

	view

	set_notfound_view

	view

	set_request_factory

	factory

	set_renderer_globals_factory()

	factory

	set_locale_negotiator

	negotiator

	testing_add_subscriber

	event_iface

Bug Fixes

	The route pattern registered internally for a local "static view"
(either via the static ZCML directive or via the
add_static_view method of the configurator) was incorrect. It
was regsistered for e.g. static*traverse, while it should have
been registered for static/*traverse. Symptom: two static views
could not reliably be added to a system when they both shared the
same path prefix (e.g. /static and /static2).

Backwards Incompatibilities

	The INewResponse event is now not sent to listeners if the response
returned by view code (or a renderer) is not a "real" response
(e.g. if it does not have .status, .headerlist and
.app_iter attribtues).

Documentation

	Add an API chapter for the repoze.bfg.request module, which
includes documentation for the repoze.bfg.request.Request class
(the "request object").

	Modify the "Request and Response" narrative chapter to reference the
new repoze.bfg.request API chapter. Some content was moved from
this chapter into the API documentation itself.

	Various changes to denote that Python dotted names are now allowed
as input to Configurator methods.

Internal

	The (internal) feature which made it possible to attach a
global_response_headers attribute to the request (which was
assumed to contain a sequence of header key/value pairs which would
later be added to the response by the router), has been removed.
The functionality of
repoze.bfg.request.Request.add_response_callback takes its
place.

	The repoze.bfg.events.NewResponse class's construct has changed:
it now must be created with (request, response) rather than
simply (response).

1.3a9 (2010-08-22)

Features

	The Configurator now accepts a dotted name string to a package as
a package constructor argument. The package argument was
previously required to be a package object (not a dotted name
string).

	The repoze.bfg.configuration.Configurator.with_package method
was added. This method returns a new Configurator using the same
application registry as the configurator object it is called
upon. The new configurator is created afresh with its package
constructor argument set to the value passed to with_package.
This feature will make it easier for future BFG versions to allow
dotted names as arguments in places where currently only object
references are allowed (the work to allow dotted names isntead of
object references everywhere has not yet been done, however).

	The new repoze.bfg.configuration.Configurator.maybe_dotted
method resolves a Python dotted name string supplied as its
dotted argument to a global Python object. If the value cannot
be resolved, a repoze.bfg.configuration.ConfigurationError is
raised. If the value supplied as dotted is not a string, the
value is returned unconditionally without any resolution attempted.

	The new
repoze.bfg.configuration.Configurator.absolute_resource_spec
method resolves a potentially relative "resource specification"
string into an absolute version. If the value supplied as
relative_spec is not a string, the value is returned
unconditionally without any resolution attempted.

Backwards Incompatibilities

	The functions in repoze.bfg.renderers named render and
render_to_response introduced in 1.3a6 previously took a set of
**values arguments for the values to be passed to the renderer.
This was wrong, as renderers don't need to accept only dictionaries
(they can accept any type of object). Now, the value sent to the
renderer must be supplied as a positional argument named value.
The request argument is still a keyword argument, however.

	The functions in repoze.bfg.renderers named render and
render_to_response now accept an additonal keyword argument
named package.

	The get_renderer API in repoze.bfg.renderers now accepts a
package argument.

Documentation

	The ZCML include directive docs were incorrect: they specified
filename rather than (the correct) file as an allowable
attribute.

Internal

	The repoze.bfg.resource.resolve_resource_spec function can now
accept a package object as its pname argument instead of just a
package name.

	The _renderer_factory_from_name and _renderer_from_name
methods of the Configurator were removed. These were never APIs.

	The _render, _render_to_response and _make_response
functions with repoze.bfg.render (added in 1.3a6) have been
removed.

	A new helper class repoze.bfg.renderers.RendererHelper was
added.

	The _map_view function of repoze.bfg.configuration now takes
only a renderer_name argument instead of both a renderer and
renderer``_name argument. It also takes a ``package argument
now.

	Use imp.get_suffixes indirection in
repoze.bfg.path.package_name instead of hardcoded .py
.pyc and .pyo to use for comparison when attemtping to
decide if a directory is a package.

	Make tests runnable again under Jython (although they do not all
pass currently).

	The reify decorator now maintains the docstring of the function it
wraps.

1.3a8 (2010-08-08)

Features

	New public interface: repoze.bfg.exceptions.IExceptionResponse.
This interface is provided by all internal exception classes (such
as repoze.bfg.exceptions.NotFound and
repoze.bfg.exceptions.Forbidden), instances of which are both
exception objects and can behave as WSGI response objects. This
interface is made public so that exception classes which are also
valid WSGI response factories can be configured to implement them or
exception instances which are also or response instances can be
configured to provide them.

	New API class: repoze.bfg.view.AppendSlashNotFoundViewFactory.

There can only be one Not Found view in any repoze.bfg
application. Even if you use
repoze.bfg.view.append_slash_notfound_view as the Not Found
view, repoze.bfg still must generate a 404 Not Found
response when it cannot redirect to a slash-appended URL; this not
found response will be visible to site users.

If you don't care what this 404 response looks like, and you only
need redirections to slash-appended route URLs, you may use the
repoze.bfg.view.append_slash_notfound_view object as the Not
Found view. However, if you wish to use a custom notfound view
callable when a URL cannot be redirected to a slash-appended URL,
you may wish to use an instance of the
repoze.bfg.view.AppendSlashNotFoundViewFactory class as the Not
Found view, supplying the notfound view callable as the first
argument to its constructor. For instance:

from repoze.bfg.exceptions import NotFound
from repoze.bfg.view import AppendSlashNotFoundViewFactory

def notfound_view(context, request):
 return HTTPNotFound('It aint there, stop trying!')

custom_append_slash = AppendSlashNotFoundViewFactory(notfound_view)
config.add_view(custom_append_slash, context=NotFound)

The notfound_view supplied must adhere to the two-argument view
callable calling convention of (context, request) (context
will be the exception object).

Documentation

	Expanded the "Cleaning Up After a Request" section of the URL
Dispatch narrative chapter.

	Expanded the "Redirecting to Slash-Appended Routes" section of the
URL Dispatch narrative chapter.

Internal

	Previously, two default view functions were registered at
Configurator setup (one for repoze.bfg.exceptions.NotFound named
default_notfound_view and one for
repoze.bfg.exceptions.Forbidden named
default_forbidden_view) to render internal exception responses.
Those default view functions have been removed, replaced with a
generic default view function which is registered at Configurator
setup for the repoze.bfg.interfaces.IExceptionResponse interface
that simply returns the exception instance; the NotFound and
Forbidden classes are now still exception factories but they are
also response factories which generate instances that implement the
new repoze.bfg.interfaces.IExceptionResponse interface.

1.3a7 (2010-08-01)

Features

	The repoze.bfg.configuration.Configurator.add_route API now
returns the route object that was added.

	A repoze.bfg.events.subscriber decorator was added. This
decorator decorates module-scope functions, which are then treated
as event listeners after a scan() is performed. See the Events
narrative documentation chapter and the repoze.bfg.events module
documentation for more information.

Bug Fixes

	When adding a view for a route which did not yet exist ("did not yet
exist" meaning, temporally, a view was added with a route name for a
route which had not yet been added via add_route), the value of the
custom_predicate argument to add_view was lost. Symptom:
wrong view matches when using URL dispatch and custom view
predicates together.

	Pattern matches for a :segment marker in a URL dispatch route
pattern now always match at least one character. See "Backwards
Incompatibilities" below in this changelog.

Backwards Incompatibilities

	A bug existed in the regular expression to do URL matching. As an
example, the URL matching machinery would cause the pattern
/{foo} to match the root URL / resulting in a match
dictionary of {'foo':u''} or the pattern /{fud}/edit might
match the URL ``//edit resulting in a match dictionary of
{'fud':u''}. It was always the intent that :segment markers
in the pattern would need to match at least one character, and
never match the empty string. This, however, means that in certain
circumstances, a routing match which your application inadvertently
depended upon may no longer happen.

Documentation

	Added description of the repoze.bfg.events.subscriber decorator
to the Events narrative chapter.

	Added repoze.bfg.events.subscriber API documentation to
repoze.bfg.events API docs.

	Added a section named "Zope 3 Enforces 'TTW' Authorization Checks By
Default; BFG Does Not" to the "Design Defense" chapter.

1.3a6 (2010-07-25)

Features

	New argument to repoze.bfg.configuration.Configurator.add_route
and the route ZCML directive: traverse. If you would like
to cause the context to be something other than the root
object when this route matches, you can spell a traversal pattern as
the traverse argument. This traversal pattern will be used as
the traversal path: traversal will begin at the root object implied
by this route (either the global root, or the object returned by the
factory associated with this route).

The syntax of the traverse argument is the same as it is for
path. For example, if the path provided is
articles/:article/edit, and the traverse argument provided
is /:article, when a request comes in that causes the route to
match in such a way that the article match value is '1' (when
the request URI is /articles/1/edit), the traversal path will be
generated as /1. This means that the root object's
__getitem__ will be called with the name 1 during the
traversal phase. If the 1 object exists, it will become the
context of the request. The Traversal narrative has more
information about traversal.

If the traversal path contains segment marker names which are not
present in the path argument, a runtime error will occur. The
traverse pattern should not contain segment markers that do not
exist in the path.

A similar combining of routing and traversal is available when a
route is matched which contains a *traverse remainder marker in
its path. The traverse argument allows you to associate route
patterns with an arbitrary traversal path without using a
*traverse remainder marker; instead you can use other match
information.

Note that the traverse argument is ignored when attached to a
route that has a *traverse remainder marker in its path.

	A new method of the Configurator exists:
set_request_factory. If used, this method will set the factory
used by the repoze.bfg router to create all request objects.

	The Configurator constructor takes an additional argument:
request_factory. If used, this argument will set the factory
used by the repoze.bfg router to create all request objects.

	The Configurator constructor takes an additional argument:
request_factory. If used, this argument will set the factory
used by the repoze.bfg router to create all request objects.

	A new method of the Configurator exists:
set_renderer_globals_factory. If used, this method will set the
factory used by the repoze.bfg router to create renderer
globals.

	A new method of the Configurator exists: get_settings. If
used, this method will return the current settings object (performs
the same job as the repoze.bfg.settings.get_settings API).

	The Configurator constructor takes an additional argument:
renderer_globals_factory. If used, this argument will set the
factory used by the repoze.bfg router to create renderer
globals.

	Add repoze.bfg.renderers.render,
repoze.bfg.renderers.render_to_response and
repoze.bfg.renderers.get_renderer functions. These are
imperative APIs which will use the same rendering machinery used by
view configurations with a renderer= attribute/argument to
produce a rendering or renderer. Because these APIs provide a
central API for all rendering, they now form the preferred way to
perform imperative template rendering. Using functions named
render_* from modules such as repoze.bfg.chameleon_zpt and
repoze.bfg.chameleon_text is now discouraged (although not
deprecated). The code the backing older templating-system-specific
APIs now calls into the newer repoze.bfg.renderer code.

	The repoze.bfg.configuration.Configurator.testing_add_template
has been renamed to testing_add_renderer. A backwards
compatibility alias is present using the old name.

Documentation

	The Hybrid narrative chapter now contains a description of the
traverse route argument.

	The Hooks narrative chapter now contains sections about
changing the request factory and adding a renderer globals factory.

	The API documentation includes a new module:
repoze.bfg.renderers.

	The Templates chapter was updated; all narrative that used
templating-specific APIs within examples to perform rendering (such
as the repoze.bfg.chameleon_zpt.render_template_to_response
method) was changed to use repoze.bfg.renderers.render_*
functions.

Bug Fixes

	The header predicate (when used as either a view predicate or a
route predicate) had a problem when specified with a name/regex
pair. When the header did not exist in the headers dictionary, the
regex match could be fed None, causing it to throw a
TypeError: expected string or buffer exception. Now, the
predicate returns False as intended.

Deprecations

	The repoze.bfg.renderers.rendered_response function was never an
official API, but may have been imported by extensions in the wild.
It is officially deprecated in this release. Use
repoze.bfg.renderers.render_to_response instead.

	The following APIs are documentation deprecated (meaning they are
officially deprecated in documentation but do not raise a
deprecation error upon their usage, and may continue to work for an
indefinite period of time):

In the repoze.bfg.chameleon_zpt module: get_renderer,
get_template, render_template,
render_template_to_response. The suggested alternatives are
documented within the docstrings of those methods (which are still
present in the documentation).

In the repoze.bfg.chameleon_text module: get_renderer,
get_template, render_template,
render_template_to_response. The suggested alternatives are
documented within the docstrings of those methods (which are still
present in the documentation).

In general, to perform template-related functions, one should now
use the various methods in the repoze.bfg.renderers module.

Backwards Incompatibilities

	A new internal exception class (not an API) named
repoze.bfg.exceptions.PredicateMismatch now exists. This
exception is currently raised when no constituent view of a
multiview can be called (due to no predicate match). Previously, in
this situation, a repoze.bfg.exceptions.NotFound was raised. We
provide backwards compatibility for code that expected a
NotFound to be raised when no predicates match by causing
repoze.bfg.exceptions.PredicateMismatch to inherit from
NotFound. This will cause any exception view registered for
NotFound to be called when a predicate mismatch occurs, as was
the previous behavior.

There is however, one perverse case that will expose a backwards
incompatibility. If 1) you had a view that was registered as a
member of a multiview 2) this view explicitly raised a NotFound
exception in order to proceed to the next predicate check in the
multiview, that code will now behave differently: rather than
skipping to the next view match, a NotFound will be raised to the
top-level exception handling machinery instead. For code to be
depending upon the behavior of a view raising NotFound to
proceed to the next predicate match, would be tragic, but not
impossible, given that NotFound is a public interface.
repoze.bfg.exceptions.PredicateMismatch is not a public API and
cannot be depended upon by application code, so you should not
change your view code to raise PredicateMismatch. Instead, move
the logic which raised the NotFound exception in the view out
into a custom view predicate.

	If, when you run your application's unit test suite under BFG 1.3, a
KeyError naming a template or a ValueError indicating that a
'renderer factory' is not registered may is raised
(e.g. ValueError: No factory for renderer named '.pt' when looking
up karl.views:templates/snippets.pt), you may need to perform some
extra setup in your test code.

The best solution is to use the
repoze.bfg.configuration.Configurator.testing_add_renderer (or,
alternately the deprecated
repoze.bfg.testing.registerTemplateRenderer or
registerDummyRenderer) API within the code comprising each
individual unit test suite to register a "dummy" renderer for each
of the templates and renderers used by code under test. For
example:

config = Configurator()
config.testing_add_renderer('karl.views:templates/snippets.pt')

This will register a basic dummy renderer for this particular
missing template. The testing_add_renderer API actually
returns the renderer, but if you don't care about how the render
is used, you don't care about having a reference to it either.

A more rough way to solve the issue exists. It causes the "real"
template implementations to be used while the system is under test,
which is suboptimal, because tests will run slower, and unit tests
won't actually be unit tests, but it is easier. Always ensure you
call the setup_registry() method of the Configurator . Eg:

reg = MyRegistry()
config = Configurator(registry=reg)
config.setup_registry()

Calling setup_registry only has an effect if you're passing in
a registry argument to the Configurator constructor.
setup_registry is called by the course of normal operations
anyway if you do not pass in a registry.

If your test suite isn't using a Configurator yet, and is still
using the older repoze.bfg.testing APIs name setUp or
cleanUp, these will register the renderers on your behalf.

A variant on the symptom for this theme exists: you may already be
dutifully registering a dummy template or renderer for a template
used by the code you're testing using testing_register_renderer
or registerTemplateRenderer, but (perhaps unbeknownst to you)
the code under test expects to be able to use a "real" template
renderer implementation to retrieve or render another template
that you forgot was being rendered as a side effect of calling the
code you're testing. This happened to work because it found the
real template while the system was under test previously, and now
it cannot. The solution is the same.

It may also help reduce confusion to use a resource specification
to specify the template path in the test suite and code rather than
a relative path in either. A resource specification is unambiguous,
while a relative path needs to be relative to "here", where "here"
isn't always well-defined ("here" in a test suite may or may not be
the same as "here" in the code under test).

1.3a5 (2010-07-14)

Features

	New internal exception: repoze.bfg.exceptions.URLDecodeError.
This URL is a subclass of the built-in Python exception named
UnicodeDecodeError.

	When decoding a URL segment to Unicode fails, the exception raised
is now repoze.bfg.exceptions.URLDecodeError instead of
UnicodeDecodeError. This makes it possible to register an
exception view invoked specifically when repoze.bfg cannot
decode a URL.

Bug Fixes

	Fix regression in
repoze.bfg.configuration.Configurator.add_static_view. Before
1.3a4, view names that contained a slash were supported as route
prefixes. 1.3a4 broke this by trying to treat them as full URLs.

Documentation

	The repoze.bfg.exceptions.URLDecodeError exception was added to
the exceptions chapter of the API documentation.

Backwards Incompatibilities

	in previous releases, when a URL could not be decoded from UTF-8
during traversal, a TypeError was raised. Now the error which
is raised is a repoze.bfg.exceptions.URLDecodeError.

1.3a4 (2010-07-03)

Features

	Undocumented hook: make get_app and get_root of the
repoze.bfg.paster.BFGShellCommand hookable in cases where
endware may interfere with the default versions.

	In earlier versions, a custom route predicate associated with a url
dispatch route (each of the predicate functions fed to the
custom_predicates argument of
repoze.bfg.configuration.Configurator.add_route) has always
required a 2-positional argument signature, e.g. (context,
request). Before this release, the context argument was
always None.

As of this release, the first argument passed to a predicate is now
a dictionary conventionally named info consisting of route,
and match. match is a dictionary: it represents the
arguments matched in the URL by the route. route is an object
representing the route which was matched.

This is useful when predicates need access to the route match. For
example:

def any_of(segment_name, *args):
 def predicate(info, request):
 if info['match'][segment_name] in args:
 return True
 return predicate

num_one_two_or_three = any_of('num, 'one', 'two', 'three')

add_route('num', '/:num', custom_predicates=(num_one_two_or_three,))

The route object is an object that has two useful attributes:
name and path. The name attribute is the route name.
The path attribute is the route pattern. An example of using
the route in a set of route predicates:

def twenty_ten(info, request):
 if info['route'].name in ('ymd', 'ym', 'y'):
 return info['match']['year'] == '2010'

add_route('y', '/:year', custom_predicates=(twenty_ten,))
add_route('ym', '/:year/:month', custom_predicates=(twenty_ten,))
add_route('ymd', '/:year/:month:/day', custom_predicates=(twenty_ten,))

	The repoze.bfg.url.route_url API has changed. If a keyword
_app_url is present in the arguments passed to route_url,
this value will be used as the protocol/hostname/port/leading path
prefix of the generated URL. For example, using an _app_url of
http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from this
function if the expansion of the route pattern associated with the
route_name expanded to /fleeb/flub.

	It is now possible to use a URL as the name argument fed to
repoze.bfg.configuration.Configurator.add_static_view. When the
name argument is a URL, the repoze.bfg.url.static_url API will
generate join this URL (as a prefix) to a path including the static
file name. This makes it more possible to put static media on a
separate webserver for production, while keeping static media
package-internal and served by the development webserver during
development.

Documentation

	The authorization chapter of the ZODB Wiki Tutorial
(docs/tutorials/bfgwiki) was changed to demonstrate authorization
via a group rather than via a direct username (thanks to Alex
Marandon).

	The authorization chapter of the SQLAlchemy Wiki Tutorial
(docs/tutorials/bfgwiki2) was changed to demonstrate authorization
via a group rather than via a direct username.

	Redirect requests for tutorial sources to
http://docs.repoze.org/bfgwiki-1.3 and
http://docs.repoze.org/bfgwiki2-1.3/ respectively.

	A section named Custom Route Predicates was added to the URL
Dispatch narrative chapter.

	The Static Resources chapter has been updated to mention using
static_url to generate URLs to external webservers.

Internal

	Removed repoze.bfg.static.StaticURLFactory in favor of a new
abstraction revolving around the (still-internal)
repoze.bfg.static.StaticURLInfo helper class.

1.3a3 (2010-05-01)

Paster Templates

	The bfg_alchemy and bfg_routesalchemy templates no longer
register a handle_teardown event listener which calls
DBSession.remove. This was found by Chris Withers to be
unnecessary.

Documentation

	The "bfgwiki2" (URL dispatch wiki) tutorial code and documentation
was changed to remove the handle_teardown event listener which
calls DBSession.remove.

	Any mention of the handle_teardown event listener as used by the
paster templates was removed from the URL Dispatch narrative chapter.

	A section entitled Detecting Available Languages was added to the
i18n narrative docs chapter.

1.3a2 (2010-04-28)

Features

	A locale negotiator no longer needs to be registered explicitly. The
default locale negotiator at
repoze.bfg.i18n.default_locale_negotiator is now used
unconditionally as... um, the default locale negotiator.

	The default locale negotiator has become more complex.
	First, the negotiator looks for the _LOCALE_ attribute of
the request object (possibly set by a view or an event listener).

	Then it looks for the request.params['_LOCALE_'] value.

	Then it looks for the request.cookies['_LOCALE_'] value.

Backwards Incompatibilities

	The default locale negotiator now looks for the parameter named
LOCALE rather than a parameter named locale in
request.params.

Behavior Changes

	A locale negotiator may now return None, signifying that the
default locale should be used.

Documentation

	Documentation concerning locale negotiation in the
Internationalizationa and Localization chapter was updated.

	Expanded portion of i18n narrative chapter docs which discuss
working with gettext files.

1.3a1 (2010-04-26)

Features

	Added "exception views". When you use an exception (anything that
inherits from the Python Exception builtin) as view context
argument, e.g.:

from repoze.bfg.view import bfg_view
from repoze.bfg.exceptions import NotFound
from webob.exc import HTTPNotFound

@bfg_view(context=NotFound)
def notfound_view(request):
 return HTTPNotFound()

For the above example, when the repoze.bfg.exceptions.NotFound
exception is raised by any view or any root factory, the
notfound_view view callable will be invoked and its response
returned.

Other normal view predicates can also be used in combination with an
exception view registration:

from repoze.bfg.view import bfg_view
from repoze.bfg.exceptions import NotFound
from webob.exc import HTTPNotFound

@bfg_view(context=NotFound, route_name='home')
def notfound_view(request):
 return HTTPNotFound()

The above exception view names the route_name of home,
meaning that it will only be called when the route matched has a
name of home. You can therefore have more than one exception
view for any given exception in the system: the "most specific" one
will be called when the set of request circumstances which match the
view registration. The only predicate that cannot be not be used
successfully is name. The name used to look up an exception
view is always the empty string.

Existing (pre-1.3) normal views registered against objects
inheriting from Exception will continue to work. Exception
views used for user-defined exceptions and system exceptions used as
contexts will also work.

The feature can be used with any view registration mechanism
(@bfg_view decorator, ZCML, or imperative config.add_view
styles).

This feature was kindly contributed by Andrey Popp.

	Use "Venusian" (http://docs.repoze.org/venusian) to perform bfg_view
decorator scanning rather than relying on a BFG-internal decorator
scanner. (Truth be told, Venusian is really just a generalization
of the BFG-internal decorator scanner).

	Internationalization and localization features as documented in the
narrative documentation chapter entitled Internationalization and
Localization.

	A new deployment setting named default_locale_name was added.
If this string is present as a Paster .ini file option, it will
be considered the default locale name. The default locale name is
used during locale-related operations such as language translation.

	It is now possible to turn on Chameleon template "debugging mode"
for all Chameleon BFG templates by setting a BFG-related Paster
.ini file setting named debug_templates. The exceptions
raised by Chameleon templates when a rendering fails are sometimes
less than helpful. debug_templates allows you to configure your
application development environment so that exceptions generated by
Chameleon during template compilation and execution will contain
more helpful debugging information. This mode is on by default in
all new projects.

	Add a new method of the Configurator named derive_view which can
be used to generate a BFG view callable from a user-supplied
function, instance, or class. This useful for external framework and
plugin authors wishing to wrap callables supplied by their users
which follow the same calling conventions and response conventions
as objects that can be supplied directly to BFG as a view callable.
See the derive_view method in the
repoze.bfg.configuration.Configurator docs.

ZCML

	Add a translationdir ZCML directive to support localization.

	Add a localenegotiator ZCML directive to support localization.

Deprecations

	The exception views feature replaces the need for the
set_notfound_view and set_forbidden_view methods of the
Configurator as well as the notfound and forbidden ZCML
directives. Those methods and directives will continue to work for
the foreseeable future, but they are deprecated in the
documentation.

Dependencies

	A new install-time dependency on the venusian distribution was
added.

	A new install-time dependency on the translationstring
distribution was added.

	Chameleon 1.2.3 or better is now required (internationalization and
per-template debug settings).

Internal

	View registrations and lookups are now done with three "requires"
arguments instead of two to accomodate orthogonality of exception
views.

	The repoze.bfg.interfaces.IForbiddenView and
repoze.bfg.interfaces.INotFoundView interfaces were removed;
they weren't APIs and they became vestigial with the addition of
exception views.

	Remove repoze.bfg.compat.pkgutil_26.py and import alias
repoze.bfg.compat.walk_packages. These were only required by
internal scanning machinery; Venusian replaced the internal scanning
machinery, so these are no longer required.

Documentation

	Exception view documentation was added to the Hooks narrative
chapter.

	A new narrative chapter entitled Internationalization and
Localization was added.

	The "Environment Variables and ini File Settings" chapter was
changed: documentation about the default_locale_name setting was
added.

	A new API chapter for the repoze.bfg.i18n module was added.

	Documentation for the new translationdir and
localenegotiator ZCML directives were added.

	A section was added to the Templates chapter entitled "Nicer
Exceptions in Templates" describing the result of setting
debug_templates = true.

Paster Templates

	All paster templates now create a setup.cfg which includes
commands related to nose testing and Babel message catalog
extraction/compilation.

	A default_locale_name = en setting was added to each existing paster
template.

	A debug_templates = true setting was added to each existing
paster template.

Licensing

	The Edgewall (BSD) license was added to the LICENSES.txt file, as
some code in the repoze.bfg.i18n derives from Babel source.

1.2 (2010-02-10)

	No changes from 1.2b6.

1.2b6 (2010-02-06)

Backwards Incompatibilities

	Remove magical feature of repoze.bfg.url.model_url which
prepended a fully-expanded urldispatch route URL before a the
model's path if it was noticed that the request had matched a route.
This feature was ill-conceived, and didn't work in all scenarios.

Bug Fixes

	More correct conversion of provided renderer values to resource
specification values (internal).

1.2b5 (2010-02-04)

Bug Fixes

	1.2b4 introduced a bug whereby views added via a route configuration
that named a view callable and also a view_attr became broken.
Symptom: MyViewClass is not callable or the __call__ of a
class was being called instead of the method named via
view_attr.

	Fix a bug whereby a renderer argument to the @bfg_view
decorator that provided a package-relative template filename might
not have been resolved properly. Symptom: inappropriate Missing
template resource errors.

1.2b4 (2010-02-03)

Documentation

	Update GAE tutorial to use Chameleon instead of Jinja2 (now that
it's possible).

Bug Fixes

	Ensure that secure flag for AuthTktAuthenticationPolicy
constructor does what it's documented to do (merge Daniel Holth's
fancy-cookies-2 branch).

Features

	Add path and http_only options to
AuthTktAuthenticationPolicy constructor (merge Daniel Holth's
fancy-cookies-2 branch).

Backwards Incompatibilities

	Remove view_header, view_accept, view_xhr,
view_path_info, view_request_method, view_request_param,
and view_containment predicate arguments from the
Configurator.add_route argument list. These arguments were
speculative. If you need the features exposed by these arguments,
add a view associated with a route using the route_name argument
to the add_view method instead.

	Remove view_header, view_accept, view_xhr,
view_path_info, view_request_method, view_request_param,
and view_containment predicate arguments from the route ZCML
directive attribute set. These attributes were speculative. If you
need the features exposed by these attributes, add a view associated
with a route using the route_name attribute of the view ZCML
directive instead.

Dependencies

	Remove dependency on sourcecodegen (not depended upon by
Chameleon 1.1.1+).

1.2b3 (2010-01-24)

Bug Fixes

	When "hybrid mode" (both traversal and urldispatch) is in use,
default to finding route-related views even if a non-route-related
view registration has been made with a more specific context. The
default used to be to find views with a more specific context first.
Use the new use_global_views argument to the route definition to
get back the older behavior.

Features

	Add use_global_views argument to add_route method of
Configurator. When this argument is true, views registered for no
route will be found if no more specific view related to the route is
found.

	Add use_global_views attribute to ZCML <route> directive
(see above).

Internal

	When registering a view, register the view adapter with the
"requires" interfaces as (request_type, context_type) rather
than (context_type, request_type). This provides for saner
lookup, because the registration will always be made with a specific
request interface, but registration may not be made with a specific
context interface. In general, when creating multiadapters, you
want to order the requires interfaces so that the elements which
are more likely to be registered using specific interfaces are
ordered before those which are less likely.

1.2b2 (2010-01-21)

Bug Fixes

	When the Configurator is passed an instance of
zope.component.registry.Components as a registry constructor
argument, fix the instance up to have the attributes we expect of an
instance of repoze.bfg.registry.Registry when setup_registry
is called. This makes it possible to use the global Zope component
registry as a BFG application registry.

	When WebOb 0.9.7.1 was used, a deprecation warning was issued for
the class attribute named charset within
repoze.bfg.request.Request. BFG now requires WebOb >= 0.9.7,
and code was added so that this deprecation warning has disappeared.

	Fix a view lookup ordering bug whereby a view with a larger number
of predicates registered first (literally first, not "earlier") for
a triad would lose during view lookup to one registered with fewer.

	Make sure views with exactly N custom predicates are always called
before views with exactly N non-custom predicates given all else is
equal in the view configuration.

Documentation

	Change renderings of ZCML directive documentation.

	Add a narrative documentation chapter: "Using the Zope Component
Architecture in repoze.bfg".

Dependencies

	Require WebOb >= 0.9.7

1.2b1 (2010-01-18)

Bug Fixes

	In bfg_routesalchemy, bfg_alchemy paster templates and the
bfgwiki2 tutorial, clean up the SQLAlchemy connection by
registering a repoze.tm.after_end callback instead of relying on
a __del__ method of a Cleanup class added to the WSGI
environment. The __del__ strategy was fragile and caused
problems in the wild. Thanks to Daniel Holth for testing.

Features

	Read logging configuration from PasteDeploy config file loggers
section (and related) when paster bfgshell is invoked.

Documentation

	Major rework in preparation for book publication.

1.2a11 (2010-01-05)

Bug Fixes

	Make paster bfgshell and paster create -t bfg_xxx work on
Jython (fix minor incompatibility with treatment of __doc__ at
the class level).

	Updated dependency on WebOb to require a version which supports
features now used in tests.

Features

	Jython compatibility (at least when repoze.bfg.jinja2 is used as the
templating engine; Chameleon does not work under Jython).

	Show the derived abspath of template resource specifications in the
traceback when a renderer template cannot be found.

	Show the original traceback when a Chameleon template cannot be
rendered due to a platform incompatibility.

1.2a10 (2010-01-04)

Features

	The Configurator.add_view method now accepts an argument named
context. This is an alias for the older argument named
for_; it is preferred over for_, but for_ will continue
to be supported "forever".

	The view ZCML directive now accepts an attribute named
context. This is an alias for the older attribute named
for; it is preferred over for, but for will continue to
be supported "forever".

	The Configurator.add_route method now accepts an argument named
view_context. This is an alias for the older argument named
view_for; it is preferred over view_for, but view_for
will continue to be supported "forever".

	The route ZCML directive now accepts an attribute named
view_context. This is an alias for the older attribute named
view_for; it is preferred over view_for, but view_for
will continue to be supported "forever".

Documentation and Paster Templates

	LaTeX rendering tweaks.

	All uses of the Configurator.add_view method that used its
for_ argument now use the context argument instead.

	All uses of the Configurator.add_route method that used its
view_for argument now use the view_context argument instead.

	All uses of the view ZCML directive that used its for
attribute now use the context attribute instead.

	All uses of the route ZCML directive that used its view_for
attribute now use the view_context attribute instead.

	Add a (minimal) tutorial dealing with use of repoze.catalog in a
repoze.bfg application.

Documentation Licensing

	Loosen the documentation licensing to allow derivative works: it is
now offered under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 United States License [http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. This is
only a documentation licensing change; the repoze.bfg software
continues to be offered under the Repoze Public License at
http://repoze.org/license.html (BSD-like).

1.2a9 (2009-12-27)

Documentation Licensing

	The documentation (the result of make <html|latex|htmlhelp>
within the docs directory) in this release is now offered under
the Creative Commons Attribution-Noncommercial-No Derivative Works
3.0 United States License as described by
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ . This is only
a licensing change for the documentation; the repoze.bfg
software continues to be offered under the Repoze Public License
at http://repoze.org/license.html (BSD-like).

Documentation

	Added manual index entries to generated index.

	Document the previously existing (but non-API)
repoze.bfg.configuration.Configurator.setup_registry method as
an official API of a Configurator.

	Fix syntax errors in various documentation code blocks.

	Created new top-level documentation section: "ZCML Directives".
This section contains detailed ZCML directive information, some of
which was removed from various narrative chapters.

	The LaTeX rendering of the documentation has been improved.

	Added a "Fore-Matter" section with author, copyright, and licensing
information.

1.2a8 (2009-12-24)

Features

	Add a **kw arg to the Configurator.add_settings API.

	Add hook_zca and unhook_zca methods to the Configurator
API.

	The repoze.bfg.testing.setUp method now returns a
Configurator instance which can be used to do further
configuration during unit tests.

Bug Fixes

	The json renderer failed to set the response content type to
application/json. It now does, by setting
request.response_content_type unless this attribute is already
set.

	The string renderer failed to set the response content type to
text/plain. It now does, by setting
request.response_content_type unless this attribute is already
set.

Documentation

	General documentation improvements by using better Sphinx roles such
as "class", "func", "meth", and so on. This means that there are
many more hyperlinks pointing to API documentation for API
definitions in all narrative, tutorial, and API documentation
elements.

	Added a description of imperative configuration in various places
which only described ZCML configuration.

	A syntactical refreshing of various tutorials.

	Added the repoze.bfg.authentication,
repoze.bfg.authorization, and repoze.bfg.interfaces modules
to API documentation.

Deprecations

	The repoze.bfg.testing.registerRoutesMapper API (added in an
early 1.2 alpha) was deprecated. Its import now generates a
deprecation warning.

1.2a7 (2009-12-20)

Features

	Add four new testing-related APIs to the
repoze.bfg.configuration.Configurator class:
testing_securitypolicy, testing_models,
testing_add_subscriber, and testing_add_template. These
were added in order to provide more direct access to the
functionality of the repoze.bfg.testing APIs named
registerDummySecurityPolicy, registerModels,
registerEventListener, and registerTemplateRenderer when a
configurator is used. The testing APIs named are nominally
deprecated (although they will likely remain around "forever", as
they are in heavy use in the wild).

	Add a new API to the repoze.bfg.configuration.Configurator
class: add_settings. This API can be used to add "settings"
(information returned within via the
repoze.bfg.settings.get_settings API) after the configurator has
been initially set up. This is most useful for testing purposes.

	Add a custom_predicates argument to the Configurator
add_view method, the bfg_view decorator and the attribute
list of the ZCML view directive. If custom_predicates is
specified, it must be a sequence of predicate callables (a predicate
callable accepts two arguments: context and request and
returns True or False). The associated view callable will
only be invoked if all custom predicates return True. Use one
or more custom predicates when no existing predefined predicate is
useful. Predefined and custom predicates can be mixed freely.

	Add a custom_predicates argument to the Configurator
add_route and the attribute list of the ZCML route
directive. If custom_predicates is specified, it must be a
sequence of predicate callables (a predicate callable accepts two
arguments: context and request and returns True or
False). The associated route will match will only be invoked if
all custom predicates return True, else route matching
continues. Note that the value context will always be None
when passed to a custom route predicate. Use one or more custom
predicates when no existing predefined predicate is useful.
Predefined and custom predicates can be mixed freely.

Internal

	Remove the repoze.bfg.testing.registerTraverser function. This
function was never an API.

Documenation

	Doc-deprecated most helper functions in the repoze.bfg.testing
module. These helper functions likely won't be removed any time
soon, nor will they generate a warning any time soon, due to their
heavy use in the wild, but equivalent behavior exists in methods of
a Configurator.

1.2a6 (2009-12-18)

Features

	The Configurator object now has two new methods: begin and
end. The begin method is meant to be called before any
"configuration" begins (e.g. before add_view, et. al are
called). The end method is meant to be called after all
"configuration" is complete.

Previously, before there was imperative configuration at all (1.1
and prior), configuration begin and end was invariably implied by
the process of loading a ZCML file. When a ZCML load happened, the
threadlocal data structure containing the request and registry was
modified before the load, and torn down after the load, making sure
that all framework code that needed get_current_registry for the
duration of the ZCML load was satisfied.

Some API methods called during imperative configuration, (such as
Configurator.add_view when a renderer is involved) end up for
historical reasons calling get_current_registry. However, in
1.2a5 and below, the Configurator supplied no functionality that
allowed people to make sure that get_current_registry returned
the registry implied by the configurator being used. begin now
serves this purpose. Inversely, end pops the thread local
stack, undoing the actions of begin.

We make this boundary explicit to reduce the potential for confusion
when the configurator is used in different circumstances (e.g. in
unit tests and app code vs. just in initial app setup).

Existing code written for 1.2a1-1.2a5 which does not call begin
or end continues to work in the same manner it did before. It
is however suggested that this code be changed to call begin and
end to reduce the potential for confusion in the future.

	All paster templates which generate an application skeleton now
make use of the new begin and end methods of the
Configurator they use in their respective copies of run.py and
tests.py.

Documentation

	All documentation that makes use of a Configurator object to do
application setup and test setup now makes use of the new begin
and end methods of the configurator.

Bug Fixes

	When a repoze.bfg.exceptions.NotFound or
repoze.bfg.exceptions.Forbidden class (as opposed to instance)
was raised as an exception within a root factory (or route root
factory), the exception would not be caught properly by the
repoze.bfg. Router and it would propagate to up the call stack,
as opposed to rendering the not found view or the forbidden view as
would have been expected.

	When Chameleon page or text templates used as renderers were added
imperatively (via Configurator.add_view or some derivative),
they too-eagerly attempted to look up the reload_templates
setting via get_settings, meaning they were always registered in
non-auto-reload-mode (the default). Each now waits until its
respective template attribute is accessed to look up the value.

	When a route with the same name as a previously registered route was
added, the old route was not removed from the mapper's routelist.
Symptom: the old registered route would be used (and possibly
matched) during route lookup when it should not have had a chance to
ever be used.

1.2a5 (2009-12-10)

Features

	When the repoze.bfg.exceptions.NotFound or
repoze.bfg.exceptions.Forbidden error is raised from within a
custom root factory or the factory of a route, the appropriate
response is now sent to the requesting user agent (the result of the
notfound view or the forbidden view, respectively). When these
errors are raised from within a root factory, the context passed
to the notfound or forbidden view will be None. Also, the
request will not be decorated with view_name, subpath,
context, etc. as would normally be the case if traversal had
been allowed to take place.

Internals

	The exception class representing the error raised by various methods
of a Configurator is now importable as
repoze.bfg.exceptions.ConfigurationError.

Documentation

	General documentation freshening which takes imperative
configuration into account in more places and uses glossary
references more liberally.

	Remove explanation of changing the request type in a new request
event subscriber, as other predicates are now usually an easier way
to get this done.

	Added "Thread Locals" narrative chapter to documentation, and added
a API chapter documenting the repoze.bfg.threadlocals module.

	Added a "Special Exceptions" section to the "Views" narrative
documentation chapter explaining the effect of raising
repoze.bfg.exceptions.NotFound and
repoze.bfg.exceptions.Forbidden from within view code.

Dependencies

	A new dependency on the twill package was added to the
setup.py tests_require argument (Twill will only be
downloaded when repoze.bfg setup.py test or setup.py
nosetests is invoked).

1.2a4 (2009-12-07)

Features

	repoze.bfg.testing.DummyModel now accepts a new constructor
keyword argument: __provides__. If this constructor argument is
provided, it should be an interface or a tuple of interfaces. The
resulting model will then provide these interfaces (they will be
attached to the constructed model via
zope.interface.alsoProvides).

Bug Fixes

	Operation on GAE was broken, presumably because the
repoze.bfg.configuration module began to attempt to import the
repoze.bfg.chameleon_zpt and repoze.bfg.chameleon_text
modules, and these cannot be used on non-CPython platforms. It now
tolerates startup time import failures for these modules, and only
raise an import error when a template from one of these packages is
actually used.

1.2a3 (2009-12-02)

Bug Fixes

	The repoze.bfg.url.route_url function inappropriately passed
along _query and/or _anchor arguments to the
mapper.generate function, resulting in blowups.

	When two views were registered with differering for interfaces
or classes, and the for of first view registered was a
superclass of the second, the repoze.bfg view machinery would
incorrectly associate the two views with the same "multiview".
Multiviews are meant to be collections of views that have exactly
the same for/request/viewname values, without taking inheritance
into account. Symptom: wrong view callable found even when you had
correctly specified a for_ interface/class during view
configuration for one or both view configurations.

Backwards Incompatibilities

	The repoze.bfg.templating module has been removed; it had been
deprecated in 1.1 and never actually had any APIs in it.

1.2a2 (2009-11-29)

Bug Fixes

	The long description of this package (as shown on PyPI) was not
valid reStructuredText, and so was not renderable.

	Trying to use an HTTP method name string such as GET as a
request_type predicate argument caused a startup time failure
when it was encountered in imperative configuration or in a
decorator (symptom: Type Error: Required specification must be a
specification). This now works again, although request_method
is now the preferred predicate argument for associating a view
configuration with an HTTP request method.

Documentation

	Fixed "Startup" narrative documentation chapter; it was explaining
"the old way" an application constructor worked.

1.2a1 (2009-11-28)

Features

	An imperative configuration mode.

A repoze.bfg application can now begin its life as a single
Python file. Later, the application might evolve into a set of
Python files in a package. Even later, it might start making use of
other configuration features, such as ZCML. But neither the use
of a package nor the use of non-imperative configuration is required
to create a simple repoze.bfg application any longer.

Imperative configuration makes repoze.bfg competetive with
"microframeworks" such as Bottle [http://bottle.paws.de/] and
Tornado [http://www.tornadoweb.org/]. repoze.bfg has a good
deal of functionality that most microframeworks lack, so this is
hopefully a "best of both worlds" feature.

The simplest possible repoze.bfg application is now:

from webob import Response
from wsgiref import simple_server
from repoze.bfg.configuration import Configurator

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 simple_server.make_server('', 8080, app).serve_forever()

	A new class now exists: repoze.bfg.configuration.Configurator.
This class forms the basis for sharing machinery between
"imperatively" configured applications and traditional
declaratively-configured applications.

	The repoze.bfg.testing.setUp function now accepts three extra
optional keyword arguments: registry, request and
hook_zca.

If the registry argument is not None, the argument will be
treated as the registry that is set as the "current registry" (it
will be returned by repoze.bfg.threadlocal.get_current_registry)
for the duration of the test. If the registry argument is
None (the default), a new registry is created and used for the
duration of the test.

The value of the request argument is used as the "current
request" (it will be returned by
repoze.bfg.threadlocal.get_current_request) for the duration of
the test; it defaults to None.

If hook_zca is True (the default), the
zope.component.getSiteManager function will be hooked with a
function that returns the value of registry (or the
default-created registry if registry is None) instead of the
registry returned by zope.component.getGlobalSiteManager,
causing the Zope Component Architecture API (getSiteManager,
getAdapter, getUtility, and so on) to use the testing
registry instead of the global ZCA registry.

	The repoze.bfg.testing.tearDown function now accepts an
unhook_zca argument. If this argument is True (the
default), zope.component.getSiteManager.reset() will be called.
This will cause the result of the zope.component.getSiteManager
function to be the global ZCA registry (the result of
zope.component.getGlobalSiteManager) once again.

	The run.py module in various repoze.bfg paster templates
now use a repoze.bfg.configuration.Configurator class instead of
the (now-legacy) repoze.bfg.router.make_app function to produce
a WSGI application.

Documentation

	The documentation now uses the "request-only" view calling
convention in most examples (as opposed to the context, request
convention). This is a documentation-only change; the context,
request convention is also supported and documented, and will be
"forever".

	repoze.bfg.configuration API documentation has been added.

	A narrative documentation chapter entitled "Creating Your First
repoze.bfg Application" has been added. This chapter details
usage of the new repoze.bfg.configuration.Configurator class,
and demonstrates a simplified "imperative-mode" configuration; doing
repoze.bfg application configuration imperatively was previously
much more difficult.

	A narrative documentation chapter entitled "Configuration,
Decorations and Code Scanning" explaining ZCML- vs. imperative-
vs. decorator-based configuration equivalence.

	The "ZCML Hooks" chapter has been renamed to "Hooks"; it documents
how to override hooks now via imperative configuration and ZCML.

	The explanation about how to supply an alternate "response factory"
has been removed from the "Hooks" chapter. This feature may be
removed in a later release (it still works now, it's just not
documented).

	Add a section entitled "Test Set Up and Tear Down" to the
unittesting chapter.

Bug Fixes

	The ACL authorization policy debugging output when
debug_authorization console debugging output was turned on
wasn't as clear as it could have been when a view execution was
denied due to an authorization failure resulting from the set of
principals passed never having matched any ACE in any ACL in the
lineage. Now in this case, we report <default deny> as the ACE
value and either the root ACL or <No ACL found on any object in
model lineage> if no ACL was found.

	When two views were registered with the same accept argument,
but were otherwise registered with the same arguments, if a request
entered the application which had an Accept header that accepted
either of the media types defined by the set of views registered
with predicates that otherwise matched, a more or less "random" one
view would "win". Now, we try harder to use the view callable
associated with the view configuration that has the most specific
accept argument. Thanks to Alberto Valverde for an initial
patch.

Internals

	The routes mapper is no longer a root factory wrapper. It is now
consulted directly by the router.

	The repoze.bfg.registry.make_registry callable has been removed.

	The repoze.bfg.view.map_view callable has been removed.

	The repoze.bfg.view.owrap_view callable has been removed.

	The repoze.bfg.view.predicate_wrap callable has been removed.

	The repoze.bfg.view.secure_view callable has been removed.

	The repoze.bfg.view.authdebug_view callable has been removed.

	The repoze.bfg.view.renderer_from_name callable has been
removed. Use repoze.bfg.configuration.Configurator.renderer_from_name
instead (still not an API, however).

	The repoze.bfg.view.derive_view callable has been removed. Use
repoze.bfg.configuration.Configurator.derive_view instead (still
not an API, however).

	The repoze.bfg.settings.get_options callable has been removed.
Its job has been subsumed by the repoze.bfg.settings.Settings
class constructor.

	The repoze.bfg.view.requestonly function has been moved to
repoze.bfg.configuration.requestonly.

	The repoze.bfg.view.rendered_response function has been moved to
repoze.bfg.configuration.rendered_response.

	The repoze.bfg.view.decorate_view function has been moved to
repoze.bfg.configuration.decorate_view.

	The repoze.bfg.view.MultiView class has been moved to
repoze.bfg.configuration.MultiView.

	The repoze.bfg.zcml.Uncacheable class has been removed.

	The repoze.bfg.resource.resource_spec function has been removed.

	All ZCML directives which deal with attributes which are paths now
use the path method of the ZCML context to resolve a relative
name to an absolute one (imperative configuration requirement).

	The repoze.bfg.scripting.get_root API now uses a 'real' WebOb
request rather than a FakeRequest when it sets up the request as a
threadlocal.

	The repoze.bfg.traversal.traverse API now uses a 'real' WebOb
request rather than a FakeRequest when it calls the traverser.

	The repoze.bfg.request.FakeRequest class has been removed.

	Most uses of the ZCA threadlocal API (the getSiteManager,
getUtility, getAdapter, getMultiAdapter threadlocal API)
have been removed from the core. Instead, when a threadlocal is
necessary, the core uses the
repoze.bfg.threadlocal.get_current_registry API to obtain the
registry.

	The internal ILogger utility named repoze.bfg.debug is now just
an IDebugLogger unnamed utility. A named utility with the old name
is registered for b/w compat.

	The repoze.bfg.interfaces.ITemplateRendererFactory interface was
removed; it has become unused.

	Instead of depending on the martian package to do code scanning,
we now just use our own scanning routines.

	We now no longer have a dependency on repoze.zcml package;
instead, the repoze.bfg package includes implementations of the
adapter, subscriber and utility directives.

	Relating to the following functions:

repoze.bfg.view.render_view

repoze.bfg.view.render_view_to_iterable

repoze.bfg.view.render_view_to_response

repoze.bfg.view.append_slash_notfound_view

repoze.bfg.view.default_notfound_view

repoze.bfg.view.default_forbidden_view

repoze.bfg.configuration.rendered_response

repoze.bfg.security.has_permission

repoze.bfg.security.authenticated_userid

repoze.bfg.security.effective_principals

repoze.bfg.security.view_execution_permitted

repoze.bfg.security.remember

repoze.bfg.security.forget

repoze.bfg.url.route_url

repoze.bfg.url.model_url

repoze.bfg.url.static_url

repoze.bfg.traversal.virtual_root

Each of these functions now expects to be called with a request
object that has a registry attribute which represents the
current repoze.bfg registry. They fall back to obtaining the
registry from the threadlocal API.

Backwards Incompatibilites

	Unit tests which use zope.testing.cleanup.cleanUp for the
purpose of isolating tests from one another may now begin to fail
due to lack of isolation between tests.

Here's why: In repoze.bfg 1.1 and prior, the registry returned by
repoze.bfg.threadlocal.get_current_registry when no other
registry had been pushed on to the threadlocal stack was the
zope.component.globalregistry.base global registry (aka the
result of zope.component.getGlobalSiteManager()). In repoze.bfg
1.2+, however, the registry returned in this situation is the new
module-scope repoze.bfg.registry.global_registry object. The
zope.testing.cleanup.cleanUp function clears the
zope.component.globalregistry.base global registry
unconditionally. However, it does not know about the
repoze.bfg.registry.global_registry object, so it does not clear
it.

If you use the zope.testing.cleanup.cleanUp function in the
setUp of test cases in your unit test suite instead of using the
(more correct as of 1.1) repoze.bfg.testing.setUp, you will need
to replace all calls to zope.testing.cleanup.cleanUp with a call
to repoze.bfg.testing.setUp.

If replacing all calls to zope.testing.cleanup.cleanUp with a
call to repoze.bfg.testing.setUp is infeasible, you can put this
bit of code somewhere that is executed exactly once (not for
each test in a test suite; in the `` __init__.py`` of your package
or your package's tests subpackage would be a reasonable
place):

import zope.testing.cleanup
from repoze.bfg.testing import setUp
zope.testing.cleanup.addCleanUp(setUp)

	When there is no "current registry" in the
repoze.bfg.threadlocal.manager threadlocal data structure (this
is the case when there is no "current request" or we're not in the
midst of a r.b.testing.setUp-bounded unit test), the .get
method of the manager returns a data structure containing a global
registry. In previous releases, this function returned the global
Zope "base" registry: the result of
zope.component.getGlobalSiteManager, which is an instance of the
zope.component.registry.Component class. In this release,
however, the global registry returns a globally importable instance
of the repoze.bfg.registry.Registry class. This registry
instance can always be imported as
repoze.bfg.registry.global_registry.

Effectively, this means that when you call
repoze.bfg.threadlocal.get_current_registry when no request or
setUp bounded unit test is in effect, you will always get back
the global registry that lives in
repoze.bfg.registry.global_registry. It also means that
repoze.bfg APIs that call get_current_registry will use
this registry.

This change was made because repoze.bfg now expects the registry
it uses to have a slightly different API than a bare instance of
zope.component.registry.Components.

	View registration no longer registers a
repoze.bfg.interfaces.IViewPermission adapter (it is no longer
checked by the framework; since 1.1, views have been responsible for
providing their own security).

	The repoze.bfg.router.make_app callable no longer accepts the
authentication_policy nor the authorization_policy
arguments. This feature was deprecated in version 1.0 and has been
removed.

	Obscure: the machinery which configured views with a
request_type and a route_name would ignore the request
interface implied by route_name registering a view only for the
interface implied by request_type. In the unlikely event that
you were trying to use these two features together, the symptom
would have been that views that named a request_type but which
were also associated with routes were not found when the route
matched. Now if a view is configured with both a request_type
and a route_name, an error is raised.

	The route ZCML directive now no longer accepts the
request_type or view_request_type attributes. These
attributes didn't actually work in any useful way (see entry above
this one).

	Because the repoze.bfg package now includes implementations of
the adapter, subscriber and utility ZCML directives, it
is now an error to have <include package="repoze.zcml"
file="meta.zcml"/> in the ZCML of a repoze.bfg application. A
ZCML conflict error will be raised if your ZCML does so. This
shouldn't be an issue for "normal" installations; it has always been
the responsibility of the repoze.bfg.includes ZCML to include
this file in the past; it now just doesn't.

	The repoze.bfg.testing.zcml_configure API was removed. Use
the Configurator.load_zcml API instead.

Deprecations

	The repoze.bfg.router.make_app function is now nominally
deprecated. Its import and usage does not throw a warning, nor will
it probably ever disappear. However, using a
repoze.bfg.configuration.Configurator class is now the preferred
way to generate a WSGI application.

Note that make_app calls
zope.component.getSiteManager.sethook(
repoze.bfg.threadlocal.get_current_registry) on the caller's
behalf, hooking ZCA global API lookups, for backwards compatibility
purposes. If you disuse make_app, your calling code will need
to perform this call itself, at least if your application uses the
ZCA global API (getSiteManager, getAdapter, etc).

Dependencies

	A dependency on the martian package has been removed (its
functionality is replaced internally).

	A dependency on the repoze.zcml package has been removed (its
functionality is replaced internally).

1.1.1 (2009-11-21)

Bug Fixes

	"Hybrid mode" applications (applications which explicitly used
traversal after url dispatch via <route> paths containing the
*traverse element) were broken in 1.1-final and all 1.1 alpha
and beta releases. Views registered without a route_name route
shadowed views registered with a route_name inappropriately.

1.1 (2009-11-15)

Internals

	Remove dead IRouteRequirement interface from repoze.bfg.zcml
module.

Documentation

	Improve the "Extending an Existing Application" narrative chapter.

	Add more sections to the "Defending Design" chapter.

1.1b4 (2009-11-12)

Bug Fixes

	Use alsoProvides in the urldispatch module to attach an
interface to the request rather than directlyProvides to avoid
disturbing interfaces set in a NewRequest event handler.

Documentation

	Move 1.0.1 and previous changelog to HISTORY.txt.

	Add examples to repoze.bfg.url.model_url docstring.

	Add "Defending BFG Design" chapter to frontpage docs.

Templates

	Remove ez_setup.py and its import from all paster templates,
samples, and tutorials for distribute compatibility. The
documentation already explains how to install virtualenv (which will
include some setuptools package), so these files, imports and
usages were superfluous.

Deprecations

	The options kw arg to the repoze.bfg.router.make_app
function is deprecated. In its place is the keyword argument
settings. The options keyword continues to work, and a
deprecation warning is not emitted when it is detected. However,
the paster templates, code samples, and documentation now make
reference to settings rather than options. This
change/deprecation was mainly made for purposes of clarity and
symmetry with the get_settings() API and dicussions of
"settings" in various places in the docs: we want to use the same
name to refer to the same thing everywhere.

1.1b3 (2009-11-06)

Features

	repoze.bfg.testing.registerRoutesMapper testing facility added.
This testing function registers a routes "mapper" object in the
registry, for tests which require its presence. This function is
documented in the repoze.bfg.testing API documentation.

Bug Fixes

	Compound statements that used an assignment entered into in an
interactive IPython session invoked via paster bfgshell no
longer fail to mutate the shell namespace correctly. For example,
this set of statements used to fail:

In [2]: def bar(x): return x
 ...:
In [3]: list(bar(x) for x in 'abc')
Out[3]: NameError: 'bar'

In this release, the bar function is found and the correct
output is now sent to the console. Thanks to Daniel Holth for the
patch.

	The bfgshell command did not function properly; it was still
expecting to be able to call the root factory with a bare
environ rather than a request object.

Backwards Incompatibilities

	The repoze.bfg.scripting.get_root function now expects a
request object as its second argument rather than an
environ.

1.1b2 (2009-11-02)

Bug Fixes

	Prevent PyPI installation failure due to easy_install trying way
too hard to guess the best version of Paste. When easy_install
pulls from PyPI it reads links off various pages to determine "more
up to date" versions. It incorrectly picks up a link for an ancient
version of a package named "Paste-Deploy-0.1" (note the dash) when
trying to find the "Paste" distribution and somehow believes it's
the latest version of "Paste". It also somehow "helpfully" decides
to check out a version of this package from SVN. We pin the Paste
dependency version to a version greater than 1.7 to work around
this easy_install bug.

Documentation

	Fix "Hybrid" narrative chapter: stop claiming that <view>
statements that mention a route_name need to come afer (in XML
order) the <route> statement which creates the route. This
hasn't been true since 1.1a1.

	"What's New in repoze.bfg 1.1" document added to narrative
documentation.

Features

	Add a new event type: repoze.bfg.events.AfterTraversal. Events
of this type will be sent after traversal is completed, but before
any view code is invoked. Like repoze.bfg.events.NewRequest,
This event will have a single attribute: request representing
the current request. Unlike the request attribute of
repoze.bfg.events.NewRequest however, during an AfterTraversal
event, the request object will possess attributes set by the
traverser, most notably context, which will be the context used
when a view is found and invoked. The interface
repoze.bfg.events.IAfterTraversal can be used to subscribe to
the event. For example:

<subscriber for="repoze.bfg.interfaces.IAfterTraversal"
 handler="my.app.handle_after_traverse"/>

Like any framework event, a subscriber function should expect one
parameter: event.

Dependencies

	Rather than depending on chameleon.core and chameleon.zpt
distributions individually, depend on Malthe's repackaged
Chameleon distribution (which includes both chameleon.core
and chameleon.zpt).

1.1b1 (2009-11-01)

Bug Fixes

	The routes root factory called route factories and the default route
factory with an environ rather than a request. One of the symptoms
of this bug: applications generated using the bfg_zodb paster
template in 1.1a9 did not work properly.

	Reinstate renderer alias for view_renderer in the
<route> ZCML directive (in-the-wild 1.1a bw compat).

	bfg_routesalchemy paster template: change <route>
declarations: rename renderer attribute to view_renderer.

	Header values returned by the authtktauthenticationpolicy
remember and forget methods would be of type unicode.
This violated the WSGI spec, causing a TypeError to be raised
when these headers were used under mod_wsgi.

	If a BFG app that had a route matching the root URL was mounted
under a path in modwsgi, ala WSGIScriptAlias /myapp
/Users/chrism/projects/modwsgi/env/bfg.wsgi, the home route (a
route with the path of '/' or '') would not match when the
path /myapp was visited (only when the path /myapp/ was
visited). This is now fixed: if the urldispatch root factory notes
that the PATH_INFO is empty, it converts it to a single slash before
trying to do matching.

Documentation

	In <route> declarations in tutorial ZCML, rename renderer
attribute to view_renderer (fwd compat).

	Fix various tutorials broken by 1.1a9 <route> directive changes.

Internal

	Deal with a potential circref in the traversal module.

1.1a9 (2009-10-31)

Bug Fixes

	An incorrect ZCML conflict would be encountered when the
request_param predicate attribute was used on the ZCML view
directive if any two otherwise same-predicated views had the
combination of a predicate value with an = sign and one without
(e.g. a vs. a=123).

Features

	In previous versions of BFG, the "root factory" (the get_root
callable passed to make_app or a function pointed to by the
factory attribute of a route) was called with a "bare" WSGI
environment. In this version, and going forward, it will be called
with a request object. The request object passed to the factory
implements dictionary-like methods in such a way that existing root
factory code which expects to be passed an environ will continue to
work.

	The __call__ of a plugin "traverser" implementation (registered
as an adapter for ITraverser or ITraverserFactory) will now
receive a request as the single argument to its __call__
method. In previous versions it was passed a WSGI environ
object. The request object passed to the factory implements
dictionary-like methods in such a way that existing traverser code
which expects to be passed an environ will continue to work.

	The ZCML route directive's attributes xhr,
request_method, path_info, request_param, header and
accept are now route predicates rather than view predicates.
If one or more of these predicates is specified in the route
configuration, all of the predicates must return true for the route
to match a request. If one or more of the route predicates
associated with a route returns False when checked during a
request, the route match fails, and the next match in the routelist
is tried. This differs from the previous behavior, where no route
predicates existed and all predicates were considered view
predicates, because in that scenario, the next route was not tried.

Documentation

	Various changes were made to narrative and API documentation
supporting the change from passing a request rather than an environ
to root factories and traversers.

Internal

	The request implements dictionary-like methods that mutate and query
the WSGI environ. This is only for the purpose of backwards
compatibility with root factories which expect an environ rather
than a request.

	The repoze.bfg.request.create_route_request_factory function,
which returned a request factory was removed in favor of a
repoze.bfg.request.route_request_interface function, which
returns an interface.

	The repoze.bfg.request.Request class, which is a subclass of
webob.Request now defines its own __setattr__,
__getattr__ and __delattr__ methods, which override the
default WebOb behavior. The default WebOb behavior stores
attributes of the request in self.environ['webob.adhoc_attrs'],
and retrieves them from that dictionary during a __getattr__.
This behavior was undesirable for speed and "expectation" reasons.
Now attributes of the request are stored in request.__dict__
(as you otherwise might expect from an object that did not override
these methods).

	The router no longer calls repoze.bfg.traversal._traverse and
does its work "inline" (speed).

	Reverse the order in which the router calls the request factory and
the root factory. The request factory is now called first; the
resulting request is passed to the root factory.

	The repoze.bfg.request.request_factory function has been
removed. Its functionality is no longer required.

	The "routes root factory" that wraps the default root factory when
there are routes mentioned in the configuration now attaches an
interface to the request via zope.interface.directlyProvides.
This replaces logic in the (now-gone)
repoze.bfg.request.request_factory function.

	The route and view ZCML directives now register an interface
as a named utility (retrieved from
repoze.bfg.request.route_request_interface) rather than a
request factory (the previous return value of the now-missing
repoze.bfg.request.create_route_request_factory.

	The repoze.bfg.functional module was renamed to
repoze.bfg.compat.

Backwards Incompatibilities

	Explicitly revert the feature introduced in 1.1a8: where the name
root is available as an attribute of the request before a
NewRequest event is emitted. This makes some potential future
features impossible, or at least awkward (such as grouping traversal
and view lookup into a single adapter lookup).

	The containment, attr and renderer attributes of the
route ZCML directive were removed.

1.1a8 (2009-10-27)

Features

	Add path_info view configuration predicate.

	paster bfgshell now supports IPython if it's available for
import. Thanks to Daniel Holth for the initial patch.

	Add repoze.bfg.testing.registerSettings API, which is documented
in the "repoze.bfg.testing" API chapter. This allows for
registration of "settings" values obtained via
repoze.bfg.settings.get_settings() for use in unit tests.

	The name root is available as an attribute of the request
slightly earlier now (before a NewRequest event is emitted).
root is the result of the application "root factory".

	Added max_age parameter to authtktauthenticationpolicy ZCML
directive. If this value is set, it must be an integer representing
the number of seconds which the auth tkt cookie will survive.
Mainly, its existence allows the auth_tkt cookie to survive across
browser sessions.

Bug Fixes

	Fix bug encountered during "scan" (when <scan ..> directive is
used in ZCML) introduced in 1.1a7. Symptom: AttributeError:
object has no attribute __provides__ raised at startup time.

	The reissue_time argument to the authtktauthenticationpolicy
ZCML directive now actually works. When it is set to an integer
value, an authticket set-cookie header is appended to the response
whenever a request requires authentication and 'now' minus the
authticket's timestamp is greater than reissue_time seconds.

Documentation

	Add a chapter titled "Request and Response" to the narrative
documentation, content cribbed from the WebOb documentation.

	Call out predicate attributes of ZCML directive within "Views"
chapter.

	Fix route_url documentation (_query argument documented as
query and _anchor argument documented as anchor).

Backwards Incompatibilities

	The authtkt authentication policy remember method now no
longer honors token or userdata keyword arguments.

Internal

	Change how bfg_view decorator works when used as a class method
decorator. In 1.1a7, the``scan``directive actually tried to grope
every class in scanned package at startup time, calling dir
against each found class, and subsequently invoking getattr
against each thing found by dir to see if it was a method. This
led to some strange symptoms (e.g. AttributeError: object has no
attribute __provides__), and was generally just a bad idea. Now,
instead of groping classes for methods at startup time, we just
cause the bfg_view decorator itself to populate the method's
class' __dict__ when it is used as a method decorator. This
also requires a nasty _getframe thing but it's slightly less nasty
than the startup time groping behavior. This is essentially a
reversion back to 1.1a6 "grokking" behavior plus some special magic
for using the bfg_view decorator as method decorator inside the
bfg_view class itself.

	The router now checks for a global_response_headers attribute of
the request object before returning a response. If this value
exists, it is presumed to be a sequence of two-tuples, representing
a set of headers to append to the 'normal' response headers. This
feature is internal, rather than exposed externally, because it's
unclear whether it will stay around in the long term. It was added
to support the reissue_time feature of the authtkt
authentication policy.

	The interface ITraverserFactory is now just an alias for ITraverser.

1.1a7 (2009-10-18)

Features

	More than one @bfg_view decorator may now be stacked on top of
any number of others. Each invocation of the decorator registers a
single view configuration. For instance, the following combination
of decorators and a function will register two view configurations
for the same view callable:

from repoze.bfg.view import bfg_view

@bfg_view(name='edit')
@bfg_view(name='change')
def edit(context, request):
 pass

This makes it possible to associate more than one view configuration
with a single callable without requiring any ZCML.

	The @bfg_view decorator can now be used against a class method:

from webob import Response
from repoze.bfg.view import bfg_view

class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 @bfg_view(name='hello')
 def amethod(self):
 return Response('hello from %s!' % self.context)

When the bfg_view decorator is used against a class method, a view
is registered for the class (it's a "class view" where the "attr"
happens to be the name of the method it is attached to), so the
class it's defined within must have a suitable constructor: one that
accepts context, request or just request.

Documentation

	Added Changing the Traverser and Changing How
:mod:`repoze.bfg.url.model_url` Generates a URL to the "Hooks"
narrative chapter of the docs.

Internal

	Remove ez_setup.py and imports of it within setup.py. In
the new world, and as per virtualenv setup instructions, people will
already have either setuptools or distribute.

1.1a6 (2009-10-15)

Features

	Add xhr, accept, and header view configuration
predicates to ZCML view declaration, ZCML route declaration, and
bfg_view decorator. See the Views narrative documentation
chapter for more information about these predicates.

	Add setUp and tearDown functions to the
repoze.bfg.testing module. Using setUp in a test setup and
tearDown in a test teardown is now the recommended way to do
component registry setup and teardown. Previously, it was
recommended that a single function named
repoze.bfg.testing.cleanUp be called in both the test setup and
tear down. repoze.bfg.testing.cleanUp still exists (and will
exist "forever" due to its widespread use); it is now just an alias
for repoze.bfg.testing.setUp and is nominally deprecated.

	The BFG component registry is now available in view and event
subscriber code as an attribute of the request
ie. request.registry. This fact is currently undocumented
except for this note, because BFG developers never need to interact
with the registry directly anywhere else.

	The BFG component registry now inherits from dict, meaning that
it can optionally be used as a simple dictionary. Component
registrations performed against it via e.g. registerUtility,
registerAdapter, and similar API methods are kept in a
completely separate namespace than its dict members, so using the
its component API methods won't effect the keys and values in the
dictionary namespace. Likewise, though the component registry
"happens to be" a dictionary, use of mutating dictionary methods
such as __setitem__ will have no influence on any component
registrations made against it. In other words, the registry object
you obtain via e.g. repoze.bfg.threadlocal.get_current_registry
or request.registry happens to be both a component registry and
a dictionary, but using its component-registry API won't impact data
added to it via its dictionary API and vice versa. This is a
forward compatibility move based on the goals of "marco".

	Expose and document repoze.bfg.testing.zcml_configure API. This
function populates a component registry from a ZCML file for testing
purposes. It is documented in the "Unit and Integration Testing"
chapter.

Documentation

	Virtual hosting narrative docs chapter updated with info about
mod_wsgi.

	Point all index URLs at the literal 1.1 index (this alpha cycle may
go on a while).

	Various tutorial test modules updated to use
repoze.bfg.testing.setUp and repoze.bfg.testing.tearDown
methods in order to encourage this as best practice going forward.

	Added "Creating Integration Tests" section to unit testing narrative
documentation chapter. As a result, the name of the unittesting
chapter is now "Unit and Integration Testing".

Backwards Incompatibilities

	Importing getSiteManager and get_registry from
repoze.bfg.registry is no longer supported. These imports were
deprecated in repoze.bfg 1.0. Import of getSiteManager should
be done as from zope.component import getSiteManager. Import of
get_registry should be done as from repoze.bfg.threadlocal
import get_current_registry. This was done to prevent a circular
import dependency.

	Code bases which alternately invoke both
zope.testing.cleanup.cleanUp and repoze.bfg.testing.cleanUp
(treating them equivalently, using them interchangeably) in the
setUp/tearDown of unit tests will begin to experience test failures
due to lack of test isolation. The "right" mechanism is
repoze.bfg.testing.cleanUp (or the combination of
repoze.bfg.testing.setUp and
repoze.bfg.testing.tearDown). but a good number of legacy
codebases will use zope.testing.cleanup.cleanUp instead. We
support zope.testing.cleanup.cleanUp but not in combination with
repoze.bfg.testing.cleanUp in the same codebase. You should use
one or the other test cleanup function in a single codebase, but not
both.

Internal

	Created new repoze.bfg.configuration module which assumes
responsibilities previously held by the repoze.bfg.registry and
repoze.bfg.router modules (avoid a circular import dependency).

	The result of the zope.component.getSiteManager function in unit
tests set up with repoze.bfg.testing.cleanUp or
repoze.bfg.testing.setUp will be an instance of
repoze.bfg.registry.Registry instead of the global
zope.component.globalregistry.base registry. This also means
that the threadlocal ZCA API functions such as getAdapter and
getUtility as well as internal BFG machinery (such as
model_url and route_url) will consult this registry within
unit tests. This is a forward compatibility move based on the goals
of "marco".

	Removed repoze.bfg.testing.addCleanUp function and associated
module-scope globals. This was never an API.

1.1a5 (2009-10-10)

Documentation

	Change "Traversal + ZODB" and "URL Dispatch + SQLAlchemy" Wiki
tutorials to make use of the new-to-1.1 "renderer" feature (return
dictionaries from all views).

	Add tests to the "URL Dispatch + SQLAlchemy" tutorial after the
"view" step.

	Added a diagram of model graph traversal to the "Traversal"
narrative chapter of the documentation.

	An exceptions API chapter was added, documenting the new
repoze.bfg.exceptions module.

	Describe "request-only" view calling conventions inside the
urldispatch narrative chapter, where it's most helpful.

	Add a diagram which explains the operation of the BFG router to the
"Router" narrative chapter.

Features

	Add a new repoze.bfg.testing API: registerRoute, for
registering routes to satisfy calls to
e.g. repoze.bfg.url.route_url in unit tests.

	The notfound and forbidden ZCML directives now accept the
following addtional attributes: attr, renderer, and
wrapper. These have the same meaning as they do in the context
of a ZCML view directive.

	For behavior like Django's APPEND_SLASH=True, use the
repoze.bfg.view.append_slash_notfound_view view as the Not Found
view in your application. When this view is the Not Found view
(indicating that no view was found), and any routes have been
defined in the configuration of your application, if the value of
PATH_INFO does not already end in a slash, and if the value of
PATH_INFO plus a slash matches any route's path, do an HTTP
redirect to the slash-appended PATH_INFO. Note that this will
lose POST data information (turning it into a GET), so you
shouldn't rely on this to redirect POST requests.

	Speed up repoze.bfg.location.lineage slightly.

	Speed up repoze.bfg.encode.urlencode (nee'
repoze.bfg.url.urlencode) slightly.

	Speed up repoze.bfg.traversal.model_path.

	Speed up repoze.bfg.traversal.model_path_tuple slightly.

	Speed up repoze.bfg.traversal.traverse slightly.

	Speed up repoze.bfg.url.model_url slightly.

	Speed up repoze.bfg.url.route_url slightly.

	Sped up repoze.bfg.traversal.ModelGraphTraverser:__call__
slightly.

	Minor speedup of repoze.bfg.router.Router.__call__.

	New repoze.bfg.exceptions module was created to house exceptions
that were previously sprinkled through various modules.

Internal

	Move repoze.bfg.traversal._url_quote into repoze.bfg.encode
as url_quote.

Deprecations

	The import of repoze.bfg.view.NotFound is deprecated in favor of
repoze.bfg.exceptions.NotFound. The old location still
functions, but emits a deprecation warning.

	The import of repoze.bfg.security.Unauthorized is deprecated in
favor of repoze.bfg.exceptions.Forbidden. The old location
still functions but emits a deprecation warning. The rename from
Unauthorized to Forbidden brings parity to the name of
the exception and the system view it invokes when raised.

Backwards Incompatibilities

	We previously had a Unicode-aware wrapper for the
urllib.urlencode function named repoze.bfg.url.urlencode
which delegated to the stdlib function, but which marshalled all
unicode values to utf-8 strings before calling the stdlib version.
A newer replacement now lives in repoze.bfg.encode The
replacement does not delegate to the stdlib.

The replacement diverges from the stdlib implementation and the
previous repoze.bfg.url url implementation inasmuch as its
doseq argument is now a decoy: it always behaves in the
doseq=True way (which is the only sane behavior) for speed
purposes.

The old import location (repoze.bfg.url.urlencode) still
functions and has not been deprecated.

	In 0.8a7, the return value expected from an object implementing
ITraverserFactory was changed from a sequence of values to a
dictionary containing the keys context, view_name,
subpath, traversed, virtual_root, virtual_root_path,
and root. Until now, old-style traversers which returned a
sequence have continued to work but have generated a deprecation
warning. In this release, traversers which return a sequence
instead of a dictionary will no longer work.

1.1a4 (2009-09-23)

Bug Fixes

	On 64-bit Linux systems, views that were members of a multiview
(orderings of views with predicates) were not evaluated in the
proper order. Symptom: in a configuration that had two views with
the same name but one with a request_method=POST predicate and
one without, the one without the predicate would be called
unconditionally (even if the request was a POST request). Thanks
much to Sebastien Douche for providing the buildbots that pointed
this out.

Documentation

	Added a tutorial which explains how to use repoze.session
(ZODB-based sessions) in a ZODB-based repoze.bfg app.

	Added a tutorial which explains how to add ZEO to a ZODB-based
repoze.bfg application.

	Added a tutorial which explains how to run a repoze.bfg
application under mod_wsgi [http://code.google.com/p/modwsgi/].
See "Running a repoze.bfg Application under mod_wsgi" in the
tutorials section of the documentation.

Features

	Add a repoze.bfg.url.static_url API which is capable of
generating URLs to static resources defined by the <static> ZCML
directive. See the "Views" narrative chapter's section titled
"Generating Static Resource URLs" for more information.

	Add a string renderer. This renderer converts a non-Response
return value of any view callble into a string. It is documented in
the "Views" narrative chapter.

	Give the route ZCML directive the view_attr and
view_renderer parameters (bring up to speed with 1.1a3
features). These can also be spelled as attr and renderer.

Backwards Incompatibilities

	An object implementing the IRenderer interface (and
ITemplateRenderer`, which is a subclass of ``IRenderer) must now
accept an extra system argument in its __call__ method
implementation. Values computed by the system (as opposed to by the
view) are passed by the system in the system parameter, which
will always be a dictionary. Keys in the dictionary include:
view (the view object that returned the value),
renderer_name (the template name or simple name of the
renderer), context (the context object passed to the view), and
request (the request object passed to the view). Previously
only ITemplateRenderers received system arguments as elements inside
the main value dictionary.

Internal

	The way bfg_view declarations are scanned for has been modified.
This should have no external effects.

	Speed: do not register an ITraverserFactory in configure.zcml;
instead rely on queryAdapter and a manual default to
ModelGraphTraverser.

	Speed: do not register an IContextURL in configure.zcml; instead
rely on queryAdapter and a manual default to TraversalContextURL.

	General speed microimprovements for helloworld benchmark: replace
try/excepts with statements which use 'in' keyword.

1.1a3 (2009-09-16)

Documentation

	The "Views" narrative chapter in the documentation has been updated
extensively to discuss "renderers".

Features

	A renderer attribute has been added to view configurations,
replacing the previous (1.1a2) version's template attribute. A
"renderer" is an object which accepts the return value of a view and
converts it to a string. This includes, but is not limited to,
templating systems.

	A new interface named IRenderer was added. The existing
interface, ITemplateRenderer now derives from this new
interface. This interface is internal.

	A new interface named IRendererFactory was added. An existing
interface named ITemplateRendererFactory now derives from this
interface. This interface is internal.

	The view attribute of the view ZCML directive is no longer
required if the ZCML directive also has a renderer attribute.
This is useful when the renderer is a template renderer and no names
need be passed to the template at render time.

	A new zcml directive renderer has been added. It is documented
in the "Views" narrative chapter of the documentation.

	A ZCML view directive (and the associated bfg_view
decorator) can now accept a "wrapper" value. If a "wrapper" value
is supplied, it is the value of a separate view's name attribute.
When a view with a wrapper attribute is rendered, the "inner"
view is first rendered normally. Its body is then attached to the
request as "wrapped_body", and then a wrapper view name is looked up
and rendered (using repoze.bfg.render_view_to_response), passed
the request and the context. The wrapper view is assumed to do
something sensible with request.wrapped_body, usually inserting
its structure into some other rendered template. This feature makes
it possible to specify (potentially nested) "owrap" relationships
between views using only ZCML or decorators (as opposed always using
ZPT METAL and analogues to wrap view renderings in outer wrappers).

Dependencies

	When used under Python < 2.6, BFG now has an installation time
dependency on the simplejson package.

Deprecations

	The repoze.bfg.testing.registerDummyRenderer API has been
deprecated in favor of
repoze.bfg.testing.registerTemplateRenderer. A deprecation
warning is not issued at import time for the former name; it will
exist "forever"; its existence has been removed from the
documentation, however.

	The repoze.bfg.templating.renderer_from_cache function has been
moved to repoze.bfg.renderer.template_renderer_factory. This
was never an API, but code in the wild was spotted that used it. A
deprecation warning is issued at import time for the former.

Backwards Incompatibilities

	The ITemplateRenderer interface has been changed. Previously
its __call__ method accepted **kw. It now accepts a single
positional parameter named kw (REVISED: it accepts two
positional parameters as of 1.1a4: value and system). This
is mostly an internal change, but it was exposed in APIs in one
place: if you've used the
repoze.bfg.testing.registerDummyRenderer API in your tests with
a custom "renderer" argument with your own renderer implementation,
you will need to change that renderer implementation to accept
kw instead of **kw in its __call__ method (REVISED: make
it accept value and system positional arguments as of 1.1a4).

	The ITemplateRendererFactory interface has been changed.
Previously its __call__ method accepted an auto_reload
keyword parameter. Now its __call__ method accepts no keyword
parameters. Renderers are now themselves responsible for
determining details of auto-reload. This is purely an internal
change. This interface was never external.

	The template_renderer ZCML directive introduced in 1.1a2 has
been removed. It has been replaced by the renderer directive.

	The previous release (1.1a2) added a view configuration attribute
named template. In this release, the attribute has been renamed
to renderer. This signifies that the attribute is more generic:
it can now be not just a template name but any renderer name (ala
json).

	In the previous release (1.1a2), the Chameleon text template
renderer was used if the system didn't associate the template
view configuration value with a filename with a "known" extension.
In this release, you must use a renderer attribute which is a
path that ends with a .txt extension
(e.g. templates/foo.txt) to use the Chameleon text renderer.

1.1a2 (2009-09-14)

Features

	A ZCML view directive (and the associated bfg_view
decorator) can now accept an "attr" value. If an "attr" value is
supplied, it is considered a method named of the view object to be
called when the response is required. This is typically only good
for views that are classes or instances (not so useful for
functions, as functions typically have no methods other than
__call__).

	A ZCML view directive (and the associated bfg_view
decorator) can now accept a "template" value. If a "template" value
is supplied, and the view callable returns a dictionary, the
associated template is rendered with the dictionary as keyword
arguments. See the section named "Views That Have a template"
in the "Views" narrative documentation chapter for more information.

1.1a1 (2009-09-06)

Bug Fixes

	"tests" module removed from the bfg_alchemy paster template; these
tests didn't work.

	Bugfix: the discriminator for the ZCML "route" directive was
incorrect. It was possible to register two routes that collided
without the system spitting out a ConfigurationConflictError at
startup time.

Features

	Feature addition: view predicates. These are exposed as the
request_method, request_param, and containment
attributes of a ZCML view declaration, or the respective
arguments to a @bfg_view decorator. View predicates can be used
to register a view for a more precise set of environment parameters
than was previously possible. For example, you can register two
views with the same name with different request_param
attributes. If the request.params dict contains 'foo'
(request_param="foo"), one view might be called; if it contains
'bar' (request_param="bar"), another view might be called.
request_param can also name a key/value pair ala foo=123.
This will match only when the foo key is in the request.params
dict and it has the value '123'. This particular example makes it
possible to write separate view functions for different form
submissions. The other predicates, containment and
request_method work similarly. containment is a view
predicate that will match only when the context's graph lineage has
an object possessing a particular class or interface, for example.
request_method is a view predicate that will match when the HTTP
REQUEST_METHOD equals some string (eg. 'POST').

	The @bfg_view decorator now accepts three additional arguments:
request_method, request_param, and containment.
request_method is used when you'd like the view to match only a
request with a particular HTTP REQUEST_METHOD; a string naming
the REQUEST_METHOD can also be supplied as request_type for
backwards compatibility. request_param is used when you'd like
a view to match only a request that contains a particular
request.params key (with or without a value). containment
is used when you'd like to match a request that has a context that
has some class or interface in its graph lineage. These are
collectively known as "view predicates".

	The route ZCML directive now honors view_request_method,
view_request_param and view_containment attributes, which
pass along these values to the associated view if any is provided.
Additionally, the request_type attribute can now be spelled as
view_request_type, and permission can be spelled as
view_permission. Any attribute which starts with view_ can
now be spelled without the view_ prefix, so view_for can be
spelled as for now, etc. Both forms are documented in the
urldispatch narraitve documentation chapter.

	The request_param ZCML view directive attribute (and its
bfg_view decorator cousin) can now specify both a key and a
value. For example, request_param="foo=123" means that the foo
key must have a value of 123 for the view to "match".

	Allow repoze.bfg.traversal.find_interface API to use a class
object as the argument to compare against the model passed in.
This means you can now do find_interface(model, SomeClass) and
the first object which is found in the lineage which has
SomeClass as its class (or the first object found which has
SomeClass as any of its superclasses) will be returned.

	Added static ZCML directive which registers a route for a view
that serves up files in a directory. See the "Views" narrative
documentation chapter's "Serving Static Resources Using a ZCML
Directive" section for more information.

	The repoze.bfg.view.static class now accepts a string as its
first argument ("root_dir") that represents a package-relative name
e.g. somepackage:foo/bar/static. This is now the preferred
mechanism for spelling package-relative static paths using this
class. A package_name keyword argument has been left around for
backwards compatibility. If it is supplied, it will be honored.

	The API repoze.bfg.testing.registerView now takes a
permission argument. Use this instead of using
repoze.bfg.testing.registerViewPermission.

	The ordering of route declarations vs. the ordering of view
declarations that use a "route_name" in ZCML no longer matters.
Previously it had been impossible to use a route_name from a route
that had not yet been defined in ZCML (order-wise) within a "view"
declaration.

	The repoze.bfg router now catches both
repoze.bfg.security.Unauthorized and
repoze.bfg.view.NotFound exceptions while rendering a view.
When the router catches an Unauthorized, it returns the
registered forbidden view. When the router catches a NotFound,
it returns the registered notfound view.

Internal

	Change urldispatch internals: Route object is now constructed using
a path, a name, and a factory instead of a name, a matcher, a
generator, and a factory.

	Move (non-API) default_view, default_forbidden_view, and
default_notfound_view functions into the repoze.bfg.view module
(moved from repoze.bfg.router).

	Removed ViewPermissionFactory from repoze.bfg.security. View
permission checking is now done by registering and looking up an
ISecuredView.

	The static ZCML directive now uses a custom root factory when
constructing a route.

	The interface IRequestFactories was removed from the
repoze.bfg.interfaces module. This interface was never an API.

	The function named named_request_factories and the data
structure named DEFAULT_REQUEST_FACTORIES have been removed from
the repoze.bfg.request module. These were never APIs.

	The IViewPermissionFactory interface has been removed. This was
never an API.

Documentation

	Request-only-convention examples in the "Views" narrative
documentation were broken.

	Fixed documentation bugs related to forget and remember in security API
docs.

	Fixed documentation for repoze.bfg.view.static (in narrative
Views chapter).

Deprecations

	The API repoze.bfg.testing.registerViewPermission has been
deprecated.

Backwards Incompatibilities

	The interfaces IPOSTRequest, IGETRequest, IPUTRequest,
IDELETERequest, and IHEADRequest have been removed from the
repoze.bfg.interfaces module. These were not documented as APIs
post-1.0. Instead of using one of these, use a request_method
ZCML attribute or request_method bfg_view decorator parameter
containing an HTTP method name (one of GET, POST, HEAD,
PUT, DELETE) instead of one of these interfaces if you were
using one explicitly. Passing a string in the set (GET,
HEAD, PUT, POST, DELETE) as a request_type
argument will work too. Rationale: instead of relying on interfaces
attached to the request object, BFG now uses a "view predicate" to
determine the request type.

	Views registered without the help of the ZCML view directive are
now responsible for performing their own authorization checking.

	The registry_manager backwards compatibility alias importable
from "repoze.bfg.registry", deprecated since repoze.bfg 0.9 has been
removed. If you are tring to use the registry manager within a
debug script of your own, use a combination of the
"repoze.bfg.paster.get_app" and "repoze.bfg.scripting.get_root" APIs
instead.

	The INotFoundAppFactory interface has been removed; it has
been deprecated since repoze.bfg 0.9. If you have something like
the following in your configure.zcml:

<utility provides="repoze.bfg.interfaces.INotFoundAppFactory"
 component="helloworld.factories.notfound_app_factory"/>

Replace it with something like:

<notfound
 view="helloworld.views.notfound_view"/>

See "Changing the Not Found View" in the "Hooks" chapter of the
documentation for more information.

	The IUnauthorizedAppFactory interface has been removed; it has
been deprecated since repoze.bfg 0.9. If you have something like
the following in your configure.zcml:

<utility provides="repoze.bfg.interfaces.IUnauthorizedAppFactory"
 component="helloworld.factories.unauthorized_app_factory"/>

Replace it with something like:

<forbidden
 view="helloworld.views.forbidden_view"/>

See "Changing the Forbidden View" in the "Hooks" chapter of the
documentation for more information.

	ISecurityPolicy-based security policies, deprecated since
repoze.bfg 0.9, have been removed. If you have something like this
in your configure.zcml, it will no longer work:

<utility
 provides="repoze.bfg.interfaces.ISecurityPolicy"
 factory="repoze.bfg.security.RemoteUserInheritingACLSecurityPolicy"
 />

If ZCML like the above exists in your application, you will receive
an error at startup time. Instead of the above, you'll need
something like:

<remoteuserauthenticationpolicy/>
<aclauthorizationpolicy/>

This is just an example. See the "Security" chapter of the
repoze.bfg documentation for more information about configuring
security policies.

	Custom ZCML directives which register an authentication or
authorization policy (ala "authtktauthenticationpolicy" or
"aclauthorizationpolicy") should register the policy "eagerly" in
the ZCML directive instead of from within a ZCML action. If an
authentication or authorization policy is not found in the component
registry by the view machinery during deferred ZCML processing, view
security will not work as expected.

1.0.1 (2009-07-22)

	Added support for has_resource, resource_isdir, and
resource_listdir to the resource "OverrideProvider"; this fixes
a bug with a symptom that a file could not be overridden in a
resource directory unless a file with the same name existed in the
original directory being overridden.

	Fixed documentation bug showing invalid test for values from the
matchdict: they are stored as attributes of the Article, rather
than subitems.

	Fixed documentation bug showing wrong environment key for the matchdict
produced by the matching route.

	Added a workaround for a bug in Python 2.6, 2.6.1, and 2.6.2 having
to do with a recursion error in the mimetypes module when trying to
serve static files from Paste's FileApp:
http://bugs.python.org/issue5853. Symptom: File
"/usr/lib/python2.6/mimetypes.py", line 244, in guess_type return
guess_type(url, strict) RuntimeError: maximum recursion depth
exceeded. Thanks to Armin Ronacher for identifying the symptom and
pointing out a fix.

	Minor edits to tutorials for accuracy based on feedback.

	Declared Paste and PasteDeploy dependencies.

1.0 (2009-07-05)

	Retested and added some content to GAE tutorial.

	Edited "Extending" narrative docs chapter.

	Added "Deleting the Database" section to the "Defining Models"
chapter of the traversal wiki tutorial.

	Spell checking of narratives and tutorials.

1.0b2 (2009-07-03)

	remoteuserauthenticationpolicy ZCML directive didn't work
without an environ_key directive (didn't match docs).

	Fix configure_zcml filespec check on Windows. Previously if an
absolute filesystem path including a drive letter was passed as
filename (or as configure_zcml in the options dict) to
repoze.bfg.router.make_app, it would be treated as a
package:resource_name specification.

	Fix inaccuracies and import errors in bfgwiki (traversal+ZODB) and
bfgwiki2 (urldispatch+SA) tutorials.

	Use bfgsite index for all tutorial setup.cfg files.

	Full documentation grammar/style/spelling audit.

1.0b1 (2009-07-02)

Features

	Allow a Paste config file (configure_zcml) value or an
environment variable (BFG_CONFIGURE_ZCML) to name a ZCML file
(optionally package-relative) that will be used to bootstrap the
application. Previously, the integrator could not influence which
ZCML file was used to do the boostrapping (only the original
application developer could do so).

Documentation

	Added a "Resources" chapter to the narrative documentation which
explains how to override resources within one package from another
package.

	Added an "Extending" chapter to the narrative documentation which
explains how to extend or modify an existing BFG application using
another Python package and ZCML.

1.0a9 (2009-07-01)

Features

	Make it possible to pass strings in the form
"package_name:relative/path" to APIs like render_template,
render_template_to_response, and get_template. Sometimes
the package in which a caller lives is a direct namespace package,
so the module which is returned is semi-useless for navigating from.
In this way, the caller can control the horizontal and vertical of
where things get looked up from.

1.0a8 (2009-07-01)

Deprecations

	Deprecate the authentication_policy and authorization_policy
arguments to repoze.bfg.router.make_app. Instead, developers
should use the various authentication policy ZCML directives
(repozewho1authenticationpolicy,
remoteuserauthenticationpolicy and
authtktauthenticationpolicy) and the aclauthorizationpolicy`
authorization policy directive as described in the changes to the
"Security" narrative documenation chapter and the wiki tutorials.

Features

	Add three new ZCML directives which configure authentication
policies:
	repozewho1authenticationpolicy

	remoteuserauthenticationpolicy

	authtktauthenticationpolicy

	Add a new ZCML directive which configures an ACL authorization
policy named aclauthorizationpolicy.

Bug Fixes

	Bug fix: when a repoze.bfg.resource.PackageOverrides class was
instantiated, and the package it was overriding already had a
__loader__ attribute, it would fail at startup time, even if the
__loader__ attribute was another PackageOverrides instance. We
now replace any __loader__ that is also a PackageOverrides
instance. Symptom: ConfigurationExecutionError: <type
'exceptions.TypeError'>: Package <module 'karl.views' from
'/Users/chrism/projects/osi/bfgenv/src/karl/karl/views/__init__.pyc'>
already has a __loader__ (probably a module in a zipped egg).

1.0a7 (2009-06-30)

Features

	Add a reload_resources configuration file setting (aka the
BFG_RELOAD_RESOURCES environment variable). When this is set to
true, the server never needs to be restarted when moving files
between directory resource overrides (esp. for templates currently).

	Add a reload_all configuration file setting (aka the
BFG_RELOAD_ALL environment variable) that implies both
reload_resources and reload_templates.

	The static helper view class now uses a PackageURLParser in
order to allow for the overriding of static resources (CSS / logo
files, etc) using the resource ZCML directive. The
PackageURLParser class was added to a (new) static module in
BFG; it is a subclass of the StaticURLParser class in
paste.urlparser.

	The repoze.bfg.templating.renderer_from_cache function now
checks for the reload_resources setting; if it's true, it does
not register a template renderer (it won't use the registry as a
template renderer cache).

Documentation

	Add pkg_resources to the glossary.

	Update the "Environment" docs to note the existence of
reload_resources and reload_all.

	Updated the bfg_alchemy paster template to include two views:
the view on the root shows a list of links to records; the view on
a record shows the details for that object.

Internal

	Use a colon instead of a tab as the separator between package name
and relpath to form the "spec" when register a ITemplateRenderer.

	Register a repoze.bfg.resource.OverrideProvider as a
pkg_resources provider only for modules which are known to have
overrides, instead of globally, when a <resource> directive is used
(performance).

1.0a6 (2009-06-29)

Bug Fixes

	Use caller_package function instead of caller_module
function within templating to avoid needing to name the caller
module in resource overrides (actually match docs).

	Make it possible to override templates stored directly in a module
with templates in a subdirectory of the same module, stored directly
within another module, or stored in a subdirectory of another module
(actually match docs).

1.0a5 (2009-06-28)

Features

	A new ZCML directive exists named "resource". This ZCML directive
allows you to override Chameleon templates within a package (both
directories full of templates and individual template files) with
other templates in the same package or within another package. This
allows you to "fake out" a view's use of a template, causing it to
retrieve a different template than the one actually named by a
relative path to a call like
render_template_to_response('templates/mytemplate.pt'). For
example, you can override a template file by doing:

<resource
 to_override="some.package:templates/mytemplate.pt"
 override_with="another.package:othertemplates/anothertemplate.pt"
 />

The string passed to "to_override" and "override_with" is named a
"specification". The colon separator in a specification separates
the package name from a package-relative directory name. The colon
and the following relative path are optional. If they are not
specified, the override attempts to resolve every lookup into a
package from the directory of another package. For example:

<resource
 to_override="some.package"
 override_with="another.package"
 />

Individual subdirectories within a package can also be overridden:

<resource
 to_override="some.package:templates/"
 override_with="another.package:othertemplates/"
 />

If you wish to override a directory with another directory, you must
make sure to attach the slash to the end of both the to_override
specification and the override_with specification. If you fail
to attach a slash to the end of a specification that points a
directory, you will get unexpected results. You cannot override a
directory specification with a file specification, and vice versa (a
startup error will occur if you try).

You cannot override a resource with itself (a startup error will
occur if you try).

Only individual package resources may be overridden. Overrides
will not traverse through subpackages within an overridden package.
This means that if you want to override resources for both
some.package:templates, and some.package.views:templates,
you will need to register two overrides.

The package name in a specification may start with a dot, meaning
that the package is relative to the package in which the ZCML file
resides. For example:

<resource
 to_override=".subpackage:templates/"
 override_with="another.package:templates/"
 />

Overrides for the same to_overrides specification can be named
multiple times within ZCML. Each override_with path will be
consulted in the order defined within ZCML, forming an override
search path.

Resource overrides can actually override resources other than
templates. Any software which uses the pkg_resources
get_resource_filename, get_resource_stream or
get_resource_string APIs will obtain an overridden file when an
override is used. However, the only built-in facility which uses
the pkg_resources API within BFG is the templating stuff, so we
only call out template overrides here.

	Use the pkg_resources API to locate template filenames instead
of dead-reckoning using the os.path module.

	The repoze.bfg.templating module now uses pkg_resources to
locate and register template files instead of using an absolute
path name.

1.0a4 (2009-06-25)

Features

	Cause :segment matches in route paths to put a Unicode-decoded
and URL-dequoted value in the matchdict for the value matched.
Previously a non-decoded non-URL-dequoted string was placed in the
matchdict as the value.

	Cause *remainder matches in route paths to put a tuple in the
matchdict dictionary in order to be able to present Unicode-decoded
and URL-dequoted values for the traversal path. Previously a
non-decoded non-URL-dequoted string was placed in the matchdict as
the value.

	Add optional max_age keyword value to the remember method of
repoze.bfg.authentication.AuthTktAuthenticationPolicy; if this
value is passed to remember, the generated cookie will have a
corresponding Max-Age value.

Documentation

	Add information to the URL Dispatch narrative documentation about
path pattern matching syntax.

Bug Fixes

	Make route_url URL-quote segment replacements during generation.
Remainder segments are not quoted.

1.0a3 (2009-06-24)

Implementation Changes

	repoze.bfg no longer relies on the Routes package to interpret
URL paths. All known existing path patterns will continue to
work with the reimplemented logic, which lives in
repoze.bfg.urldispatch. <route> ZCML directives which use
certain attributes (uncommon ones) may not work (see "Backwards
Incompatibilities" below).

Bug Fixes

	model_url when passed a request that was generated as a result
of a route match would fail in a call to route.generate.

	BFG-on-GAE didn't work due to a corner case bug in the fallback
Python implementation of threading.local (symptom:
"Initialization arguments are not supported"). Thanks to Michael
Bernstein for the bug report.

Documentation

	Added a "corner case" explanation to the "Hybrid Apps" chapter
explaining what to do when "the wrong" view is matched.

	Use repoze.bfg.url.route_url API in tutorials rather than Routes
url_for API.

Features

	Added the repoze.bfg.url.route_url API. This API allows you to
generate URLs based on <route> declarations. See the URL
Dispatch narrative chapter and the "repoze.bfg.url" module API
documentation for more information.

Backwards Incompatibilities

	As a result of disusing Routes, using the Routes url_for API
inside a BFG application (as was suggested by previous iterations of
tutorials) will no longer work. Use the
repoze.bfg.url.route_url method instead.

	The following attributes on the <route> ZCML directive no longer
work: encoding, static, filter, condition_method,
condition_subdomain, condition_function, explicit, or
subdomains. These were all Routes features.

	The <route> ZCML directive no longer supports the
<requirement> subdirective. This was a Routes feature.

1.0a2 (2009-06-23)

Bug Fixes

	The bfg_routesalchemy paster template app tests failed due to a
mismatch between test and view signatures.

Features

	Add a view_for attribute to the route ZCML directive. This
attribute should refer to an interface or a class (ala the for
attribute of the view ZCML directive).

Documentation

	Conditional documentation in installation section ("how to install a
Python interpreter").

Backwards Incompatibilities

	The callback argument of the repoze.bfg.authentication
authentication policies named RepozeWho1AuthenticationPolicy,
RemoteUserAuthenticationPolicy, and
AuthTktAuthenticationPolicy now must accept two positional
arguments: the orginal argument accepted by each (userid or
identity) plus a second argument, which will be the current request.
Apologies, this is required to service finding groups when there is
no "global" database connection.

1.0a1 (2009-06-22)

Features

	A new ZCML directive was added named notfound. This ZCML
directive can be used to name a view that should be invoked when the
request can't otherwise be resolved to a view callable. For example:

<notfound
 view="helloworld.views.notfound_view"/>

	A new ZCML directive was added named forbidden. This ZCML
directive can be used to name a view that should be invoked when a
view callable for a request is found, but cannot be invoked due to
an authorization failure. For example:

<forbidden
 view="helloworld.views.forbidden_view"/>

	Allow views to be optionally defined as callables that accept only
a request object, instead of both a context and a request (which
still works, and always will). The following types work as views in
this style:

	functions that accept a single argument request, e.g.:

def aview(request):
 pass

	new and old-style classes that have an __init__ method that
accepts self, request, e.g.:

def View(object):
 __init__(self, request):
 pass

	Arbitrary callables that have a __call__ method that accepts
self, request, e.g.:

def AView(object):
 def __call__(self, request):
 pass
view = AView()

This likely should have been the calling convention all along, as
the request has context as an attribute already, and with views
called as a result of URL dispatch, having the context in the
arguments is not very useful. C'est la vie.

	Cache the absolute path in the caller's package globals within
repoze.bfg.path to get rid of repeated (expensive) calls to
os.path.abspath.

	Add reissue_time and timeout parameters to
repoze.bfg.authentication.AuthTktAuthenticationPolicy
constructor. If these are passed, cookies will be reset every so
often (cadged from the same change to repoze.who lately).

	The matchdict related to the matching of a Routes route is available
on the request as the matchdict attribute:
request.matchdict. If no route matched, this attribute will be
None.

	Make 404 responses slightly cheaper by showing
environ["PATH_INFO"] on the notfound result page rather than the
fullly computed URL.

	Move LRU cache implementation into a separate package
(repoze.lru).

	The concepts of traversal and URL dispatch have been unified. It is
now possible to use the same sort of factory as both a traversal
"root factory" and what used to be referred to as a urldispatch
"context factory".

	When the root factory argument (as a first argument) passed to
repoze.bfg.router.make_app is None, a default root factory
is used. This is in support of using routes as "root finders"; it
supplants the idea that there is a default
IRoutesContextFactory.

	The view` ZCML statement and the repoze.bfg.view.bfg_view
decorator now accept an extra argument: route_name. If a
route_name is specified, it must match the name of a previously
defined route statement. When it is specified, the view will
only be called when that route matches during a request.

	It is now possible to perfom traversal after a route has matched.
Use the pattern *traverse in a <route> path attribute
within ZCML, and the path remainder which it matches will be used as
a traversal path.

	When any route defined matches, the WSGI environment will now
contain a key bfg.routes.route (the Route object which matched),
and a key bfg.routes.matchdict (the result of calling route.match).

Deprecations

	Utility registrations against
repoze.bfg.interfaces.INotFoundView and
repoze.bfg.interfaces.IForbiddenView are now deprecated. Use
the notfound and forbidden ZCML directives instead (see the
"Hooks" chapter for more information). Such registrations will
continue to work, but the notfound and forbidden directives do
"extra work" to ensure that the callable named by the directive can
be called by the router even if it's a class or
request-argument-only view.

Removals

	The IRoutesContext, IRoutesContextFactory, and
IContextNotFound interfaces were removed from
repoze.bfg.interfaces. These were never APIs.

	The repoze.bfg.urldispatch.RoutesContextNotFound,
repoze.bfg.urldispatch.RoutesModelTraverser and
repoze.bfg.urldispatch.RoutesContextURL classes were removed.
These were also never APIs.

Backwards Incompatibilities

	Moved the repoze.bfg.push module, which implemented the pushpage
decorator, into a separate distribution, repoze.bfg.pushpage.
Applications which used this decorator should continue to work after
adding that distribution to their installation requirements.

	Changing the default request factory via an IRequestFactory utility
registration (as used to be documented in the "Hooks" chapter's
"Changing the request factory" section) is no longer supported. The
dance to manufacture a request is complicated as a result of
unifying traversal and url dispatch, making it highly unlikely for
anyone to be able to override it properly. For those who just want
to decorate or modify a request, use a NewRequestEvent subscriber
(see the Events chapter in the documentation).

	The repoze.bfg.IRequestFactory interface was removed. See the
bullet above for why.

	Routes "context factories" (spelled as the factory argument to a
route statement in ZCML) must now expect the WSGI environ as a
single argument rather than a set of keyword arguments. They can
obtain the match dictionary by asking for
environ['bfg.routes.matchdict']. This is the same set of keywords
that used to be passed to urldispatch "context factories" in BFG 0.9
and below.

	Using the @zope.component.adapter decorator on a bfg view
function no longer works. Use the @repoze.bfg.view.bfg_view
decorator instead to mark a function (or a class) as a view.

	The name under which the matching route object is found in the
environ was changed from bfg.route to bfg.routes.route.

	Finding the root is now done before manufacturing a request object
(and sending a new request event) within the router (it used to be
performed afterwards).

	Adding *path_info to a route no longer changes the PATH_INFO for
a request that matches using URL dispatch. This feature was only
there to service the repoze.bfg.wsgi.wsgiapp2 decorator and it
did it wrong; use *subpath instead now.

	The values of subpath, traversed, and virtual_root_path
attached to the request object are always now tuples instead of
lists (performance).

Bug Fixes

	The bfg_alchemy Paster template named "repoze.tm" in its
pipeline rather than "repoze.tm2", causing the startup to fail.

	Move BBB logic for registering an
IAuthenticationPolicy/IForbiddenView/INotFoundView based on older
concepts from the router module's make_app function into the
repoze.bfg.zcml.zcml_configure callable, to service
compatibility with scripts that use "zope.configuration.xmlconfig"
(replace with repoze.bfg.zml.zcml_configure as necessary to get
BBB logic)

Documentation

	Add interface docs related to how to create authentication policies
and authorization policies to the "Security" narrative chapter.

	Added a (fairly sad) "Combining Traversal and URL Dispatch" chapter
to the narrative documentation. This explains the usage of
*traverse and *subpath in routes URL patters.

	A "router" chapter explaining the request/response lifecycle at a
high level was added.

	Replaced all mentions and explanations of a routes "context factory"
with equivalent explanations of a "root factory" (context factories
have been disused).

	Updated Routes bfgwiki2 tutorial to reflect the fact that context
factories are now no longer used.

0.9.1 (2009-06-02)

Features

	Add API named repoze.bfg.settings.get_settings which retrieves a
derivation of values passed as the options value of
repoze.bfg.router.make_app. This API should be preferred
instead of using getUtility(ISettings). I added a new
repoze.bfg.settings API document as well.

Bug Fixes

	Restored missing entry point declaration for bfg_alchemy paster
template, which was accidentally removed in 0.9.

Documentation

	Fix a reference to wsgiapp in the wsgiapp2 API documentation
within the repoze.bfg.wsgi module.

API Removals

	The repoze.bfg.location.locate API was removed: it didn't do
enough to be very helpful and had a misleading name.

0.9 (2009-06-01)

Bug Fixes

	It was not possible to register a custom IRoutesContextFactory
for use as a default context factory as documented in the "Hooks"
chapter.

Features

	The request_type argument of ZCML view declarations and
bfg_view decorators can now be one of the strings GET,
POST, PUT, DELETE, or HEAD instead of a reference to
the respective interface type imported from
repoze.bfg.interfaces.

	The route ZCML directive now accepts request_type as an
alias for its condition_method argument for symmetry with the
view directive.

	The bfg_routesalchemy paster template now provides a unit test
and actually uses the database during a view rendering.

Removals

	Remove repoze.bfg.threadlocal.setManager. It was only used in
unit tests.

	Remove repoze.bfg.wsgi.HTTPException,
repoze.bfg.wsgi.NotFound, and repoze.bfg.wsgi.Unauthorized.
These classes were disused with the introduction of the
IUnauthorizedView and INotFoundView machinery.

Documentation

	Add description to narrative templating chapter about how to use
Chameleon text templates.

	Changed Views narrative chapter to use method strings rather than
interface types, and moved advanced interface type usage to Events
narrative chapter.

	Added a Routes+SQLAlchemy wiki tutorial.

0.9a8 (2009-05-31)

Features

	It is now possible to register a custom
repoze.bfg.interfaces.INotFoundView for a given application.
This feature replaces the
repoze.bfg.interfaces.INotFoundAppFactory feature previously
described in the Hooks chapter. The INotFoundView will be called
when the framework detects that a view lookup done as a result of a
request fails; it should accept a context object and a request
object; it should return an IResponse object (a webob response,
basically). See the Hooks narrative chapter of the BFG docs for
more info.

	The error presented when a view invoked by the router returns a
non-response object now includes the view's name for troubleshooting
purposes.

Bug Fixes

	A "new response" event is emitted for forbidden and notfound views.

Deprecations

	The repoze.bfg.interfaces.INotFoundAppFactory interface has been
deprecated in favor of using the new
repoze.bfg.interfaces.INotFoundView mechanism.

Renames

	Renamed repoze.bfg.interfaces.IForbiddenResponseFactory to
repoze.bfg.interfaces.IForbiddenView.

0.9a7 (2009-05-30)

Features

	Remove "context" argument from effective_principals and
authenticated_userid function APIs in repoze.bfg.security,
effectively a doing reversion to 0.8 and before behavior. Both
functions now again accept only the request parameter.

0.9a6 (2009-05-29)

Documentation

	Changed "BFG Wiki" tutorial to use AuthTktAuthenticationPolicy
rather than repoze.who.

Features

	Add an AuthTktAuthenticationPolicy. This policy retrieves
credentials from an auth_tkt cookie managed by the application
itself (instead of relying on an upstream data source for
authentication data). See the Security API chapter of the
documentation for more info.

	Allow RemoteUserAuthenticationPolicy and
RepozeWho1AuthenticationPolicy to accept various constructor
arguments. See the Security API chapter of the documentation for
more info.

0.9a5 (2009-05-28)

Features

	Add a get_app API functions to the paster module. This
obtains a WSGI application from a config file given a config file
name and a section name. See the repoze.bfg.paster API docs for
more information.

	Add a new module named scripting. It contains a get_root
API function, which, provided a Router instance, returns a traversal
root object and a "closer". See the repoze.bfg.scripting API
docs for more info.

0.9a4 (2009-05-27)

Bug Fixes

	Try checking for an "old style" security policy after we parse
ZCML (thinko).

0.9a3 (2009-05-27)

Features

	Allow IAuthenticationPolicy and IAuthorizationPolicy to be
overridden via ZCML registrations (do ZCML parsing after
registering these in router.py).

Documentation

	Added "BFG Wiki" tutorial to documentation; it describes
step-by-step how to create a traversal-based ZODB application with
authentication.

Deprecations

	Added deprecations for imports of ACLSecurityPolicy,
InheritingACLSecurityPolicy, RemoteUserACLSecurityPolicy,
RemoteUserInheritingACLSecurityPolicy, WhoACLSecurityPolicy,
and WhoInheritingACLSecurityPolicy from the
repoze.bfg.security module; for the meantime (for backwards
compatibility purposes) these live in the repoze.bfg.secpols
module. Note however, that the entire concept of a "security
policy" is deprecated in BFG in favor of separate authentication and
authorization policies, so any use of a security policy will
generate additional deprecation warnings even if you do start using
repoze.bfg.secpols. repoze.bfg.secpols will disappear in a
future release of repoze.bfg.

Deprecated Import Alias Removals

	Remove repoze.bfg.template module. All imports from this
package have been deprecated since 0.3.8. Instead, import
get_template, render_template, and
render_template_to_response from the
repoze.bfg.chameleon_zpt module.

	Remove backwards compatibility import alias for
repoze.bfg.traversal.split_path (deprecated since 0.6.5). This
must now be imported as repoze.bfg.traversal.traversal_path).

	Remove backwards compatibility import alias for
repoze.bfg.urldispatch.RoutesContext (deprecated since 0.6.5).
This must now be imported as
repoze.bfg.urldispatch.DefaultRoutesContext.

	Removed backwards compatibility import aliases for
repoze.bfg.router.get_options and repoze.bfg.router.Settings
(deprecated since 0.6.2). These both must now be imported from
repoze.bfg.settings.

	Removed backwards compatibility import alias for
repoze.bfg.interfaces.IRootPolicy (deprecated since 0.6.2). It
must be imported as repoze.bfg.interfaces.IRootFactory now.

	Removed backwards compatibility import alias for
repoze.bfg.interfaces.ITemplate (deprecated since 0.4.4). It
must be imported as repoze.bfg.interfaces.ITemplateRenderer now.

	Removed backwards compatibility import alias for
repoze.bfg.interfaces.ITemplateFactory (deprecated since 0.4.4).
It must be imported as
repoze.bfg.interfaces.ITemplateRendererFactory now.

	Removed backwards compatibility import alias for
repoze.bfg.chameleon_zpt.ZPTTemplateFactory (deprecated since
0.4.4). This must be imported as repoze.bfg.ZPTTemplateRenderer
now.

0.9a2 (2009-05-27)

Features

	A paster command has been added named "bfgshell". This command can
be used to get an interactive prompt with your BFG root object in
the global namespace. E.g.:

bin/paster bfgshell /path/to/myapp.ini myapp

See the Project chapter in the BFG documentation for more
information.

Deprecations

	The name repoze.bfg.registry.registry_manager was never an API,
but scripts in the wild were using it to set up an environment for
use under a debug shell. A backwards compatibility shim has been
added for this purpose, but the feature is deprecated.

0.9a1 (2009-5-27)

Features

	New API functions named forget and remember are available in
the security module. The forget function returns headers
which will cause the currently authenticated user to be logged out
when set in a response. The remember function (when passed the
proper arguments) will return headers which will cause a principal
to be "logged in" when set in a response. See the Security API
chapter of the docs for more info.

	New keyword arguments to the repoze.bfg.router.make_app call
have been added: authentication_policy and
authorization_policy. These should, respectively, be an
implementation of an authentication policy (an object implementing
the repoze.bfg.interfaces.IAuthenticationPolicy interface) and
an implementation of an authorization policy (an object implementing
repoze.bfg.interfaces.IAuthorizationPolicy). Concrete
implementations of authentication policies exist in
repoze.bfg.authentication. Concrete implementations of
authorization policies exist in repoze.bfg.authorization.

Both authentication_policy and authorization_policy default
to None.

If authentication_policy is None, but
authorization_policy is not None, then
authorization_policy is ignored (the ability to do authorization
depends on authentication).

If the authentication_policy argument is not None, and the
authorization_policy argument is None, the authorization
policy defaults to an authorization implementation that uses ACLs
(repoze.bfg.authorization.ACLAuthorizationPolicy).

We no longer encourage configuration of "security policies" using
ZCML, as previously we did for ISecurityPolicy. This is because
it's not uncommon to need to configure settings for concrete
authorization or authentication policies using paste .ini
parameters; the app entry point for your application is the natural
place to do this.

	Two new abstractions have been added in the way of adapters used by
the system: an IAuthorizationPolicy and an
IAuthenticationPolicy. A combination of these (as registered by
the securitypolicy ZCML directive) take the place of the
ISecurityPolicy abstraction in previous releases of repoze.who.
The API functions in repoze.who.security (such as
authentication_userid, effective_principals,
has_permission, and so on) have been changed to try to make use
of these new adapters. If you're using an older ISecurityPolicy
adapter, the system will still work, but it will print deprecation
warnings when such a policy is used.

	The way the (internal) IViewPermission utilities registered via ZCML
are invoked has changed. They are purely adapters now, returning a
boolean result, rather than returning a callable. You shouldn't have
been using these anyway. ;-)

	New concrete implementations of IAuthenticationPolicy have been
added to the repoze.bfg.authentication module:
RepozeWho1AuthenticationPolicy which uses repoze.who
identity to retrieve authentication data from and
RemoteUserAuthenticationPolicy, which uses the REMOTE_USER
value in the WSGI environment to retrieve authentication data.

	A new concrete implementation of IAuthorizationPolicy has been added
to the repoze.bfg.authorization module:
ACLAuthorizationPolicy which uses ACL inheritance to do
authorization.

	It is now possible to register a custom
repoze.bfg.interfaces.IForbiddenResponseFactory for a given
application. This feature replaces the
repoze.bfg.interfaces.IUnauthorizedAppFactory feature previously
described in the Hooks chapter. The IForbiddenResponseFactory will
be called when the framework detects an authorization failure; it
should accept a context object and a request object; it should
return an IResponse object (a webob response, basically). Read the
below point for more info and see the Hooks narrative chapter of the
BFG docs for more info.

Backwards Incompatibilities

	Custom NotFound and Forbidden (nee' Unauthorized) WSGI applications
(registered as a utility for INotFoundAppFactory and
IUnauthorizedAppFactory) could rely on an environment key named
message describing the circumstance of the response. This key
has been renamed to repoze.bfg.message (as per the WSGI spec,
which requires environment extensions to contain dots).

Deprecations

	The repoze.bfg.interfaces.IUnauthorizedAppFactory interface has
been deprecated in favor of using the new
repoze.bfg.interfaces.IForbiddenResponseFactory mechanism.

	The view_execution_permitted API should now be imported from the
repoze.bfg.security module instead of the repoze.bfg.view
module.

	The authenticated_userid and effective_principals APIs in
repoze.bfg.security used to only take a single argument
(request). They now accept two arguments (context and
request). Calling them with a single argument is still
supported but issues a deprecation warning. (NOTE: this change was
reverted in 0.9a7; meaning the 0.9 versions of these functions
again accept request only, just like 0.8 and before).

	Use of "old-style" security policies (those base on ISecurityPolicy)
is now deprecated. See the "Security" chapter of the docs for info
about activating an authorization policy and an authentication poicy.

0.8.1 (2009-05-21)

Features

	Class objects may now be used as view callables (both via ZCML and
via use of the bfg_view decorator in Python 2.6 as a class
decorator). The calling semantics when using a class as a view
callable is similar to that of using a class as a Zope "browser
view": the class' __init__ must accept two positional parameters
(conventionally named context, and request). The resulting
instance must be callable (it must have a __call__ method).
When called, the instance should return a response. For example:

 from webob import Response

 class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 def __call__(self):
 return Response('hello from %s!' % self.context)

See the "Views" chapter in the documentation and the
``repoze.bfg.view`` API documentation for more information.

	Removed the pickling of ZCML actions (the code that wrote
configure.zcml.cache next to configure.zcml files in
projects). The code which managed writing and reading of the cache
file was a source of subtle bugs when users switched between
imperative (e.g. @bfg_view) registrations and declarative
registrations (e.g. the view directive in ZCML) on the same
project. On a moderately-sized project (535 ZCML actions and 15 ZCML
files), executing actions read from the pickle was saving us only
about 200ms (2.5 sec vs 2.7 sec average). On very small projects (1
ZCML file and 4 actions), startup time was comparable, and sometimes
even slower when reading from the pickle, and both ways were so fast
that it really just didn't matter anyway.

0.8 (2009-05-18)

Features

	Added a traverse function to the repoze.bfg.traversal
module. This function may be used to retrieve certain values
computed during path resolution. See the Traversal API chapter of
the documentation for more information about this function.

Deprecations

	Internal: ITraverser callables should now return a dictionary
rather than a tuple. Up until 0.7.0, all ITraversers were assumed
to return a 3-tuple. In 0.7.1, ITraversers were assumed to return a
6-tuple. As (by evidence) it's likely we'll need to add further
information to the return value of an ITraverser callable, 0.8
assumes that an ITraverser return a dictionary with certain elements
in it. See the repoze.bfg.interfaces.ITraverser interface for
the list of keys that should be present in the dictionary.
ITraversers which return tuples will still work, although a
deprecation warning will be issued.

Backwards Incompatibilities

	If your code used the ITraverser interface directly (not via an API
function such as find_model) via an adapter lookup, you'll need
to change your code to expect a dictionary rather than a 3- or
6-tuple if your code ever gets return values from the default
ModelGraphTraverser or RoutesModelTraverser adapters.

0.8a7 (2009-05-16)

Backwards Incompatibilities

	The RoutesMapper class in repoze.bfg.urldispatch has been
removed, as well as its documentation. It had been deprecated since
0.6.3. Code in repoze.bfg.urldispatch.RoutesModelTraverser
which catered to it has also been removed.

	The semantics of the route ZCML directive have been simplified.
Previously, it was assumed that to use a route, you wanted to map a
route to an externally registered view. The new route directive
instead has a view attribute which is required, specifying the
dotted path to a view callable. When a route directive is
processed, a view is registered using the name attribute of the
route directive as its name and the callable as its value. The
view_name and provides attributes of the route directive
are therefore no longer used. Effectively, if you were previously
using the route directive, it means you must change a pair of
ZCML directives that look like this:

<route
 name="home"
 path=""
 view_name="login"
 factory=".models.root.Root"
 />

<view
 for=".models.root.Root"
 name="login"
 view=".views.login_view"
 />

To a ZCML directive that looks like this:

<route
 name="home"
 path=""
 view=".views.login_view"
 factory=".models.root.Root"
 />

In other words, to make old code work, remove the view
directives that were only there to serve the purpose of backing
route directives, and move their view= attribute into the
route directive itself.

This change also necessitated that the name attribute of the
route directive is now required. If you were previously using
route directives without a name attribute, you'll need to
add one (the name is arbitrary, but must be unique among all
route and view statements).

The provides attribute of the route directive has also been
removed. This directive specified a sequence of interface types
that the generated context would be decorated with. Since route
views are always generated now for a single interface
(repoze.bfg.IRoutesContext) as opposed to being looked up
arbitrarily, there is no need to decorate any context to ensure a
view is found.

Documentation

	Added API docs for the repoze.bfg.testing methods
registerAdapter, registerUtiity, registerSubscriber, and
cleanUp.

	Added glossary entry for "root factory".

	Noted existence of repoze.bfg.pagetemplate template bindings in
"Available Add On Template System Bindings" in Templates chapter in
narrative docs.

	Update "Templates" narrative chapter in docs (expand to show a
sample template and correct macro example).

Features

	Courtesty Carlos de la Guardia, added an alchemy Paster
template. This paster template sets up a BFG project that uses
SQAlchemy (with SQLite) and uses traversal to resolve URLs. (no
Routes areused). This template can be used via paster create -t
bfg_alchemy.

	The Routes Route object used to resolve the match is now put
into the environment as bfg.route when URL dispatch is used.

	You can now change the default Routes "context factory" globally.
See the "ZCML Hooks" chapter of the documentation (in the "Changing
the Default Routes Context Factory" section).

0.8a6 (2009-05-11)

Features

	Added a routesalchemy Paster template. This paster template
sets up a BFG project that uses SQAlchemy (with SQLite) and uses
Routes exclusively to resolve URLs (no traversal root factory is
used). This template can be used via paster create -t
bfg_routesalchemy.

Documentation

	Added documentation to the URL Dispatch chapter about how to catch
the root URL using a ZCML route directive.

	Added documentation to the URL Dispatch chapter about how to perform
a cleanup function at the end of a request (e.g. close the SQL
connection).

Bug Fixes

	In version 0.6.3, passing a get_root callback (a "root factory")
to repoze.bfg.router.make_app became optional if any route
declaration was made in ZCML. The intent was to make it possible to
disuse traversal entirely, instead relying entirely on URL dispatch
(Routes) to resolve all contexts. However a compound set of bugs
prevented usage of a Routes-based root view (a view which responds
to "/"). One bug existed in repoze.bfg.urldispatch`, another
existed in Routes itself.

To resolve this issue, the urldispatch module was fixed, and a fork
of the Routes trunk was put into the "dev" index named
Routes-1.11dev-chrism-home. The source for the fork exists at
http://bitbucket.org/chrism/routes-home/ (broken link);
its contents have been merged into the Routes trunk
(what will be Routes 1.11).

0.8a5 (2009-05-08)

Features

	Two new security policies were added:
RemoteUserInheritingACLSecurityPolicy and
WhoInheritingACLSecurityPolicy. These are security policies which
take into account all ACLs defined in the lineage of a context
rather than stopping at the first ACL found in a lineage. See the
"Security" chapter of the API documentation for more information.

	The API and narrative documentation dealing with security was
changed to introduce the new "inheriting" security policy variants.

	Added glossary entry for "lineage".

Deprecations

	The security policy previously named
RepozeWhoIdentityACLSecurityPolicy now has the slightly saner
name of WhoACLSecurityPolicy. A deprecation warning is emitted
when this policy is imported under the "old" name; usually this is
due to its use in ZCML within your application. If you're getting
this deprecation warning, change your ZCML to use the new name,
e.g. change:

<utility
 provides="repoze.bfg.interfaces.ISecurityPolicy"
 factory="repoze.bfg.security.RepozeWhoIdentityACLSecurityPolicy"
 />

To:

<utility
 provides="repoze.bfg.interfaces.ISecurityPolicy"
 factory="repoze.bfg.security.WhoACLSecurityPolicy"
 />

0.8a4 (2009-05-04)

Features

	zope.testing is no longer a direct dependency, although our
dependencies (such as zope.interface, repoze.zcml, etc)
still depend on it.

	Tested on Google App Engine. Added a tutorial to the documentation
explaining how to deploy a BFG app to GAE.

Backwards Incompatibilities

	Applications which rely on zope.testing.cleanup.cleanUp in unit
tests can still use that function indefinitely. However, for
maximum forward compatibility, they should import cleanUp from
repoze.bfg.testing instead of from zope.testing.cleanup.
The BFG paster templates and docs have been changed to use this
function instead of the zope.testing.cleanup version.

0.8a3 (2009-05-03)

Features

	Don't require a successful import of zope.testing at BFG
application runtime. This allows us to get rid of zope.testing
on platforms like GAE which have file limits.

0.8a2 (2009-05-02)

Features

	We no longer include the configure.zcml of the chameleon.zpt
package within the configure.zcml of the "repoze.bfg.includes"
package. This has been a no-op for some time now.

	The repoze.bfg.chameleon_zpt package no longer imports from
chameleon.zpt at module scope, deferring the import until later
within a method call. The chameleon.zpt package can't be
imported on platforms like GAE.

0.8a1 (2009-05-02)

Deprecation Warning and Import Alias Removals

	Since version 0.6.1, a deprecation warning has been emitted when the
name model_url is imported from the repoze.bfg.traversal
module. This import alias (and the deprecation warning) has been
removed. Any import of the model_url function will now need to
be done from repoze.bfg.url; any import of the name
model_url from repoze.bfg.traversal will now fail. This was
done to remove a dependency on zope.deferredimport.

	Since version 0.6.5, a deprecation warning has been emitted when the
name RoutesModelTraverser is imported from the
repoze.bfg.traversal module. This import alias (and the
deprecation warning) has been removed. Any import of the
RoutesModelTraverser class will now need to be done from
repoze.bfg.urldispatch; any import of the name
RoutesModelTraverser from repoze.bfg.traversal will now
fail. This was done to remove a dependency on zope.deferredimport.

Features

	This release of repoze.bfg is "C-free". This means it has no
hard dependencies on any software that must be compiled from C
source at installation time. In particular, repoze.bfg no
longer depends on the lxml package.

This change has introduced some backwards incompatibilities,
described in the "Backwards Incompatibilities" section below.

	This release was tested on Windows XP. It appears to work fine and
all the tests pass.

Backwards Incompatibilities

Incompatibilities related to making repoze.bfg "C-free":

	Removed the repoze.bfg.chameleon_genshi module, and thus support
for Genshi-style chameleon templates. Genshi-style Chameleon
templates depend upon lxml, which is implemented in C (as
opposed to pure Python) and the repoze.bfg core is "C-free" as
of this release. You may get Genshi-style Chameleon support back by
installing the repoze.bfg.chameleon_genshi package availalable
from http://svn.repoze.org/repoze.bfg.chameleon_genshi (also
available in the index at http://dist.repoze.org/bfg/0.8/simple).
All existing code that depended on the chameleon_genshi module
prior to this release of repoze.bfg should work without change
after this addon is installed.

	Removed the repoze.bfg.xslt module and thus support for XSL
templates. The repoze.bfg.xslt module depended upon lxml,
which is implemented in C, and the repoze.bfg core is "C-free"
as of this release. You bay get XSL templating back by installing
the repoze.bfg.xslt package available from
http://svn.repoze.org/repoze.bfg.xslt/ (also available in the index
at http://dist.repoze.org/bfg/0.8/simple). All existing code that
depended upon the xslt module prior to this release of
repoze.bfg should work without modification after this addon is
installed.

	Removed the repoze.bfg.interfaces.INodeTemplateRenderer
interface and the an old b/w compat aliases from that interface to
repoze.bfg.interfaces.INodeTemplate. This interface must now be
imported from the repoze.bfg.xslt.interfaces package after
installation of the repoze.bfg.xslt addon package described
above as repoze.bfg.interfaces.INodeTemplateRenderer. This
interface was never part of any public API.

Other backwards incompatibilities:

	The render_template function in repoze.bfg.chameleon_zpt
returns Unicode instead of a string. Likewise, the individual
values returned by the iterable created by the
render_template_to_iterable function are also each Unicode.
This is actually a backwards incompatibility inherited from our new
use of the combination of chameleon.core 1.0b32 (the
non-lxml-depending version) and chameleon.zpt 1.0b16+ ; the
chameleon.zpt PageTemplateFile implementation used to return a
string, but now returns Unicode.

0.7.1 (2009-05-01)

Index-Related

	The canonical package index location for repoze.bfg has changed.
The "old" index (http://dist.repoze.org/lemonade/dev/simple) has
been superseded by a new index location
(http://dist.repoze.org/bfg/current/simple). The installation
documentation has been updated as well as the setup.cfg file in
this package. The "lemonade" index still exists, but it is not
guaranteed to have the latest BFG software in it, nor will it be
maintained in the future.

Features

	The "paster create" templates have been modified to use links to the
new "bfg.repoze.org" and "docs.repoze.org" websites.

	Added better documentation for virtual hosting at a URL prefix
within the virtual hosting docs chapter.

	The interface for repoze.bfg.interfaces.ITraverser and the
built-in implementations that implement the interface
(repoze.bfg.traversal.ModelGraphTraverser, and
repoze.bfg.urldispatch.RoutesModelTraverser) now expect the
__call__ method of an ITraverser to return 3 additional
arguments: traversed, virtual_root, and
virtual_root_path (the old contract was that the __call__
method of an ITraverser returned; three arguments, the contract new
is that it returns six). traversed will be a sequence of
Unicode names that were traversed (including the virtual root path,
if any) or None if no traversal was performed, virtual_root
will be a model object representing the virtual root (or the
physical root if traversal was not performed), and
virtual_root_path will be a sequence representing the virtual
root path (a sequence of Unicode names) or None if traversal was
not performed.

Six arguments are now returned from BFG ITraversers. They are
returned in this order: context, view_name, subpath,
traversed, virtual_root, and virtual_root_path.

Places in the BFG code which called an ITraverser continue to accept
a 3-argument return value, although BFG will generate and log a
warning when one is encountered.

	The request object now has the following attributes: traversed
(the sequence of names traversed or None if traversal was not
performed), virtual_root (the model object representing the
virtual root, including the virtual root path if any), and
virtual_root_path (the seuquence of names representing the
virtual root path or None if traversal was not performed).

	A new decorator named wsgiapp2 was added to the
repoze.bfg.wsgi module. This decorator performs the same
function as repoze.bfg.wsgi.wsgiapp except it fixes up the
SCRIPT_NAME, and PATH_INFO environment values before
invoking the WSGI subapplication.

	The repoze.bfg.testing.DummyRequest object now has default
attributes for traversed, virtual_root, and
virtual_root_path.

	The RoutesModelTraverser now behaves more like the Routes
"RoutesMiddleware" object when an element in the match dict is named
path_info (usually when there's a pattern like
http://foo/*path_info). When this is the case, the
PATH_INFO environment variable is set to the value in the match
dict, and the SCRIPT_NAME is appended to with the prefix of the
original PATH_INFO not including the value of the new variable.

	The notfound debug now shows the traversed path, the virtual root,
and the virtual root path too.

	Speed up / clarify 'traversal' module's 'model_path', 'model_path_tuple',
and '_model_path_list' functions.

Backwards Incompatibilities

	In previous releases, the repoze.bfg.url.model_url,
repoze.bfg.traversal.model_path and
repoze.bfg.traversal.model_path_tuple functions always ignored
the __name__ argument of the root object in a model graph (
effectively replacing it with a leading / in the returned value)
when a path or URL was generated. The code required to perform this
operation was not efficient. As of this release, the root object in
a model graph must have a __name__ attribute that is either
None or the empty string ('') for URLs and paths to be
generated properly from these APIs. If your root model object has a
__name__ argument that is not one of these values, you will need
to change your code for URLs and paths to be generated properly. If
your model graph has a root node with a string __name__ that is
not null, the value of __name__ will be prepended to every path
and URL generated.

	The repoze.bfg.location.LocationProxy class and the
repoze.bfg.location.ClassAndInstanceDescr class have both been
removed in order to be able to eventually shed a dependency on
zope.proxy. Neither of these classes was ever an API.

	In all previous releases, the repoze.bfg.location.locate
function worked like so: if a model did not explicitly provide the
repoze.bfg.interfaces.ILocation interface, locate returned a
LocationProxy object representing model with its
__parent__ attribute assigned to parent and a __name__
attribute assigned to __name__. In this release, the
repoze.bfg.location.locate function simply jams the __name__
and __parent__ attributes on to the supplied model
unconditionally, no matter if the object implements ILocation or
not, and it never returns a proxy. This was done because the
LocationProxy behavior has now moved into an add-on package
(repoze.bfg.traversalwrapper), in order to eventually be able to
shed a dependency on zope.proxy.

	In all previous releases, by default, if traversal was used (as
opposed to URL-dispatch), and the root object supplied
the``repoze.bfg.interfaces.ILocation`` interface, but the children
returned via its __getitem__ returned an object that did not
implement the same interface, repoze.bfg provided some
implicit help during traversal. This traversal feature wrapped
subobjects from the root (and thereafter) that did not implement
ILocation in proxies which automatically provided them with a
__name__ and __parent__ attribute based on the name being
traversed and the previous object traversed. This feature has now
been removed from the base repoze.bfg package for purposes of
eventually shedding a dependency on zope.proxy.

In order to re-enable the wrapper behavior for older applications
which cannot be changed, register the "traversalwrapper"
ModelGraphTraverser as the traversal policy, rather than the
default ModelGraphTraverser. To use this feature, you will need
to install the repoze.bfg.traversalwrapper package (an add-on
package, available at
http://svn.repoze.org/repoze.bfg.traversalwrapper) Then change your
application's configure.zcml to include the following stanza:

	<adapter

	factory="repoze.bfg.traversalwrapper.ModelGraphTraverser"
provides="repoze.bfg.interfaces.ITraverserFactory"
for="*"
/>

When this ITraverserFactory is used instead of the default, no
object in the graph (even the root object) must supply a
__name__ or __parent__ attribute. Even if subobjects
returned from the root do implement the ILocation interface,
these will still be wrapped in proxies that override the object's
"real" __parent__ and __name__ attributes.

See also changes to the "Models" chapter of the documentation (in
the "Location-Aware Model Instances") section.

0.7.0 (2009-04-11)

Bug Fixes

	Fix a bug in repoze.bfg.wsgi.HTTPException: the content length
was returned as an int rather than as a string.

	Add explicit dependencies on zope.deferredimport,
zope.deprecation, and zope.proxy for forward compatibility
reasons (zope.component will stop relying on
zope.deferredimport soon and although we use it directly, it's
only a transitive dependency, and ''zope.deprecation`` and
zope.proxy are used directly even though they're only transitive
dependencies as well).

	Using model_url or model_path against a broken model graph
(one with models that had a non-root model with a __name__ of
None) caused an inscrutable error to be thrown: (if not
_must_quote[cachekey].search(s): TypeError: expected string or
buffer). Now URLs and paths generated against graphs that have
None names in intermediate nodes will replace the None with the
empty string, and, as a result, the error won't be raised. Of
course the URL or path will still be bogus.

Features

	Make it possible to have testing.DummyTemplateRenderer return
some nondefault string representation.

	Added a new anchor keyword argument to model_url. If
anchor is present, its string representation will be used
as a named anchor in the generated URL (e.g. if anchor is
passed as foo and the model URL is
http://example.com/model/url, the generated URL will be
http://example.com/model/url#foo).

Backwards Incompatibilities

	The default request charset encoding is now utf-8. As a result,
the request machinery will attempt to decode values from the utf-8
encoding to Unicode automatically when they are obtained via
request.params, request.GET, and request.POST. The
previous behavior of BFG was to return a bytestring when a value was
accessed in this manner. This change will break form handling code
in apps that rely on values from those APIs being considered
bytestrings. If you are manually decoding values from form
submissions in your application, you'll either need to change the
code that does that to expect Unicode values from
request.params, request.GET and request.POST, or you'll
need to explicitly reenable the previous behavior. To reenable the
previous behavior, add the following to your application's
configure.zcml:

<subscriber for="repoze.bfg.interfaces.INewRequest"
 handler="repoze.bfg.request.make_request_ascii"/>

See also the documentation in the "Views" chapter of the BFG docs
entitled "Using Views to Handle Form Submissions (Unicode and
Character Set Issues)".

Documentation

	Add a section to the narrative Views chapter entitled "Using Views
to Handle Form Submissions (Unicode and Character Set Issues)"
explaining implicit decoding of form data values.

0.6.9 (2009-02-16)

Bug Fixes

	lru cache was unstable under concurrency (big surprise!) when it
tried to redelete a key in the cache that had already been deleted.
Symptom: line 64 in put:del data[oldkey]:KeyError: '/some/path'.
Now we just ignore the key error if we can't delete the key (it has
already been deleted).

	Empty location names in model paths when generating a URL using
repoze.bfg.model_url based on a model obtained via traversal are
no longer ignored in the generated URL. This means that if a
non-root model object has a __name__ of '', the URL will
reflect it (e.g. model_url will generate http://foo/bar//baz
if an object with the __name__ of '' is a child of bar and
the parent of baz). URLs generated with empty path segments are,
however, still irresolveable by the model graph traverser on request
ingress (the traverser strips empty path segment names).

Features

	Microspeedups of repoze.bfg.traversal.model_path,
repoze.bfg.traversal.model_path_tuple,
repoze.bfg.traversal.quote_path_segment, and
repoze.bfg.url.urlencode.

	add zip_safe = false to setup.cfg.

Documentation

	Add a note to the repoze.bfg.traversal.quote_path_segment API
docs about caching of computed values.

Implementation Changes

	Simplification of
repoze.bfg.traversal.TraversalContextURL.__call__ (it now uses
repoze.bfg.traversal.model_path instead of rolling its own
path-generation).

0.6.8 (2009-02-05)

Backwards Incompatibilities

	The repoze.bfg.traversal.model_path API now returns a quoted
string rather than a string represented by series of unquoted
elements joined via / characters. Previously it returned a
string or unicode object representing the model path, with each
segment name in the path joined together via / characters,
e.g. /foo /bar. Now it returns a string, where each segment is
a UTF-8 encoded and URL-quoted element e.g. /foo%20/bar. This
change was (as discussed briefly on the repoze-dev maillist)
necessary to accomodate model objects which themselves have
__name__ attributes that contain the / character.

For people that have no models that have high-order Unicode
__name__ attributes or __name__ attributes with values that
require URL-quoting with in their model graphs, this won't cause any
issue. However, if you have code that currently expects
model_path to return an unquoted string, or you have an existing
application with data generated via the old method, and you're too
lazy to change anything, you may wish replace the BFG-imported
model_path in your code with this function (this is the code of
the "old" model_path implementation):

from repoze.bfg.location import lineage

def i_am_too_lazy_to_move_to_the_new_model_path(model, *elements):
 rpath = []
 for location in lineage(model):
 if location.__name__:
 rpath.append(location.__name__)
 path = '/' + '/'.join(reversed(rpath))
 if elements:
 suffix = '/'.join(elements)
 path = '/'.join([path, suffix])
 return path

	The repoze.bfg.traversal.find_model API no longer implicitly
converts unicode representations of a full path passed to it as a
Unicode object into a UTF-8 string. Callers should either use
prequoted path strings returned by
repoze.bfg.traversal.model_path, or tuple values returned by the
result of repoze.bfg.traversal.model_path_tuple or they should
use the guidelines about passing a string path argument
described in the find_model API documentation.

Bugfixes

	Each argument contained in elements passed to
repoze.bfg.traversal.model_path will now have any /
characters contained within quoted to %2F in the returned
string. Previously, / characters in elements were left unquoted
(a bug).

Features

	A repoze.bfg.traversal.model_path_tuple API was added. This API
is an alternative to model_path (which returns a string);
model_path_tuple returns a model path as a tuple (much like
Zope's getPhysicalPath).

	A repoze.bfg.traversal.quote_path_segment API was added. This
API will quote an individual path segment (string or unicode
object). See the repoze.bfg.traversal API documentation for
more information.

	The repoze.bfg.traversal.find_model API now accepts "path
tuples" (see the above note regarding model_path_tuple) as well
as string path representations (from
repoze.bfg.traversal.model_path) as a path argument.

	Add ` renderer` argument (defaulting to None) to
repoze.bfg.testing.registerDummyRenderer. This makes it
possible, for instance, to register a custom renderer that raises an
exception in a unit test.

Implementation Changes

	Moved _url_quote function back to repoze.bfg.traversal from
repoze.bfg.url. This is not an API.

0.6.7 (2009-01-27)

Features

	The repoze.bfg.url.model_url API now works against contexts
derived from Routes URL dispatch (Routes.util.url_for is called
under the hood).

	"Virtual root" support for traversal-based applications has been
added. Virtual root support is useful when you'd like to host some
model in a repoze.bfg model graph as an application under a
URL pathname that does not include the model path itself. For more
information, see the (new) "Virtual Hosting" chapter in the
documentation.

	A repoze.bfg.traversal.virtual_root API has been added. When
called, it returns the virtual root object (or the physical root
object if no virtual root has been specified).

Implementation Changes

	repoze.bfg.traversal.RoutesModelTraverser has been moved to
repoze.bfg.urldispatch.

	model_url URL generation is now performed via an adapter lookup
based on the context and the request.

	ZCML which registers two adapters for the IContextURL interface
has been added to the configure.zcml in repoze.bfg.includes.

0.6.6 (2009-01-26)

Implementation Changes

	There is an indirection in repoze.bfg.url.model_url now that
consults a utility to generate the base model url (without extra
elements or a query string). Eventually this will service virtual
hosting; for now it's undocumented and should not be hooked.

0.6.5 (2009-01-26)

Features

	You can now override the NotFound and Unauthorized responses that
repoze.bfg generates when a view cannot be found or cannot be
invoked due to lack of permission. See the "ZCML Hooks" chapter in
the docs for more information.

	Added Routes ZCML directive attribute explanations in documentation.

	Added a traversal_path API to the traversal module; see the
"traversal" API chapter in the docs. This was a function previously
known as split_path that was not an API but people were using it
anyway. Unlike split_path, it now returns a tuple instead of a
list (as its values are cached).

Behavior Changes

	The repoze.bfg.view.render_view_to_response API will no longer
raise a ValueError if an object returned by a view function it calls
does not possess certain attributes (headerlist, app_iter,
status). This API used to attempt to perform a check using the
is_response function in repoze.bfg.view, and raised a
ValueError if the is_response check failed. The
responsibility is now the caller's to ensure that the return value
from a view function is a "real" response.

	WSGI environ dicts passed to repoze.bfg 's Router must now
contain a REQUEST_METHOD key/value; if they do not, a KeyError will
be raised (speed).

	It is no longer permissible to pass a "nested" list of principals to
repoze.bfg.ACLAuthorizer.permits (e.g. ['fred', ['larry',
'bob']]). The principals list must be fully expanded. This
feature was never documented, and was never an API, so it's not a
backwards incompatibility.

	It is no longer permissible for a security ACE to contain a "nested"
list of permissions (e.g. (Allow, Everyone, ['read', ['view',
['write', 'manage']]])`)`. The list must instead be fully expanded
(e.g. ``(Allow, Everyone, ['read', 'view', 'write', 'manage])). This
feature was never documented, and was never an API, so it's not a
backwards incompatibility.

	The repoze.bfg.urldispatch.RoutesRootFactory now injects the
wsgiorg.routing_args environment variable into the environ when
a route matches. This is a tuple of ((), routing_args) where
routing_args is the value that comes back from the routes mapper
match (the "match dict").

	The repoze.bfg.traversal.RoutesModelTraverser class now wants to
obtain the view_name and subpath from the
wsgiorgs.routing_args environment variable. It falls back to
obtaining these from the context for backwards compatibility.

Implementation Changes

	Get rid of repoze.bfg.security.ACLAuthorizer: the
ACLSecurityPolicy now does what it did inline.

	Get rid of repoze.bfg.interfaces.NoAuthorizationInformation
exception: it was used only by ACLAuthorizer.

	Use a homegrown NotFound error instead of webob.exc.HTTPNotFound
(the latter is slow).

	Use a homegrown Unauthorized error instead of
webob.exc.Unauthorized (the latter is slow).

	the repoze.bfg.lru.lru_cached decorator now uses functools.wraps
in order to make documentation of LRU-cached functions possible.

	Various speed micro-tweaks.

Bug Fixes

	repoze.bfg.testing.DummyModel did not have a get method;
it now does.

0.6.4 (2009-01-23)

Backwards Incompatibilities

	The unicode_path_segments configuration variable and the
BFG_UNICODE_PATH_SEGMENTS configuration variable have been
removed. Path segments are now always passed to model
__getitem__ methods as unicode. "True" has been the default for
this setting since 0.5.4, but changing this configuration setting to
false allowed you to go back to passing raw path element strings to
model __getitem__ methods. Removal of this knob services a
speed goal (we get about +80 req/s by removing the check), and it's
clearer just to always expect unicode path segments in model
__getitem__ methods.

Implementation Changes

	repoze.bfg.traversal.split_path now also handles decoding
path segments to unicode (for speed, because its results are
cached).

	
	repoze.bfg.traversal.step was made a method of the

	ModelGraphTraverser.

	Use "precooked" Request subclasses
(e.g. repoze.bfg.request.GETRequest) that correspond to HTTP
request methods within router.py when constructing a request
object rather than using alsoProvides to attach the proper
interface to an unsubclassed webob.Request. This pattern is
purely an optimization (e.g. preventing calls to alsoProvides
means the difference between 590 r/s and 690 r/s on a MacBook 2GHz).

	Tease out an extra 4% performance boost by changing the Router;
instead of using imported ZCA APIs, use the same APIs directly
against the registry that is an attribute of the Router.

	The registry used by BFG is now a subclass of
zope.component.registry.Components (defined as
repoze.bfg.registry.Registry); it has a notify method, a
registerSubscriptionAdapter and a registerHandler method.
If no subscribers are registered via registerHandler or
registerSubscriptionAdapter, notify is a noop for speed.

	The Allowed and Denied classes in repoze.bfg.security now are
lazier about constructing the representation of a reason message for
speed; repoze.bfg.view_execution_permitted takes advantage of
this.

	The is_response check was sped up by about half at the expense
of making its code slightly uglier.

New Modules

	repoze.bfg.lru implements an LRU cache class and a decorator for
internal use.

0.6.3 (2009-01-19)

Bug Fixes

	Readd root_policy attribute on Router object (as a property
which returns the IRootFactory utility). It was inadvertently
removed in 0.6.2. Code in the wild depended upon its presence
(esp. scripts and "debug" helpers).

Features

	URL-dispatch has been overhauled: it is no longer necessary to
manually create a RoutesMapper in your application's entry point
callable in order to use URL-dispatch (aka Routes [http://routes.groovie.org]). A new route directive has been
added to the available list of ZCML directives. Each route
directive inserted into your application's configure.zcml
establishes a Routes mapper connection. If any route
declarations are made via ZCML within a particular application, the
get_root callable passed in to repoze.bfg.router.make_app
will automatically be wrapped in the equivalent of a RoutesMapper.
Additionally, the new route directive allows the specification
of a context_interfaces attribute for a route, this will be used
to tag the manufactured routes context with specific interfaces when
a route specifying a context_interfaces attribute is matched.

	A new interface repoze.bfg.interfaces.IContextNotFound was
added. This interface is attached to a "dummy" context generated
when Routes cannot find a match and there is no "fallback" get_root
callable that uses traversal.

	The bfg_starter and bfg_zodb "paster create" templates now
contain images and CSS which are displayed when the default page is
displayed after initial project generation.

	Allow the repoze.bfg.view.static helper to be passed a relative
root_path name; it will be considered relative to the file in
which it was called.

	The functionality of repoze.bfg.convention has been merged into
the core. Applications which make use of repoze.bfg.convention
will continue to work indefinitely, but it is recommended that apps
stop depending upon it. To do so, substitute imports of
repoze.bfg.convention.bfg_view with imports of
repoze.bfg.view.bfg_view, and change the stanza in ZCML from
<convention package="."> to <scan package=".">. As a result
of the merge, bfg has grown a new dependency: martian.

	View functions which use the pushpage decorator are now pickleable
(meaning their use won't prevent a configure.zcml.cache file
from being written to disk).

	Instead of invariably using webob.Request as the "request
factory" (e.g. in the Router class) and webob.Response and
the "response factory" (e.g. in render_template_to_response),
allow both to be overridden via a ZCML utility hook. See the "Using
ZCML Hooks" chapter of the documentation for more information.

Deprecations

	The class repoze.bfg.urldispatch.RoutesContext has been renamed
to repoze.bfg.urldispatch.DefaultRoutesContext. The class
should be imported by the new name as necessary (although in reality
it probably shouldn't be imported from anywhere except internally
within BFG, as it's not part of the API).

Implementation Changes

	The repoze.bfg.wsgi.wsgiapp decorator now uses
webob.Request.get_response to do its work rather than relying on
homegrown WSGI code.

	The repoze.bfg.view.static helper now uses
webob.Request.get_response to do its work rather than relying on
homegrown WSGI code.

	The repoze.bfg.urldispatch.RoutesModelTraverser class has been
moved to repoze.bfg.traversal.RoutesModelTraverser.

	The repoze.bfg.registry.makeRegistry function was renamed to
repoze.bfg.registry.populateRegistry and now accepts a
registry argument (which should be an instance of
zope.component.registry.Components).

Documentation Additions

	Updated narrative urldispatch chapter with changes required by
<route..> ZCML directive.

	Add a section on "Using BFG Security With URL Dispatch" into the
urldispatch chapter of the documentation.

	Better documentation of security policy implementations that ship
with repoze.bfg.

	Added a "Using ZPT Macros in repoze.bfg" section to the narrative
templating chapter.

0.6.2 (2009-01-13)

Features

	Tests can be run with coverage output if you've got nose
installed in the interpreter which you use to run tests. Using an
interpreter with nose installed, do python setup.py
nosetests within a checkout of the repoze.bfg package to see
test coverage output.

	Added a post argument to the repoze.bfg.testing:DummyRequest
constructor.

	Added __len__ and __nonzero__ to repoze.bfg.testing:DummyModel.

	The repoze.bfg.registry.get_options callable (now renamed to
repoze.bfg.setings.get_options) used to return only
framework-specific keys and values in the dictionary it returned.
It now returns all the keys and values in the dictionary it is
passed plus any framework-specific settings culled from the
environment. As a side effect, all PasteDeploy application-specific
config file settings are made available as attributes of the
ISettings utility from within BFG.

	Renamed the existing BFG paster template to bfg_starter. Added
another template (bfg_zodb) showing default ZODB setup using
repoze.zodbconn.

	Add a method named assert_ to the DummyTemplateRenderer. This
method accepts keyword arguments. Each key/value pair in the
keyword arguments causes an assertion to be made that the renderer
received this key with a value equal to the asserted value.

	Projects generated by the paster templates now use the
DummyTemplateRenderer.assert_ method in their view tests.

	Make the (internal) thread local registry manager maintain a stack
of registries in order to make it possible to call one BFG
application from inside another.

	An interface specific to the HTTP verb (GET/PUT/POST/DELETE/HEAD) is
attached to each request object on ingress. The HTTP-verb-related
interfaces are defined in repoze.bfg.interfaces and are
IGETRequest, IPOSTRequest, IPUTRequest,
IDELETERequest and IHEADRequest. These interfaces can be
specified as the request_type attribute of a bfg view
declaration. A view naming a specific HTTP-verb-matching interface
will be found only if the view is defined with a request_type that
matches the HTTP verb in the incoming request. The more general
IRequest interface can be used as the request_type to catch all
requests (and this is indeed the default). All requests implement
IRequest. The HTTP-verb-matching idea was pioneered by
repoze.bfg.restrequest [http://pypi.python.org/pypi/repoze.bfg.restrequest/1.0.1] . That
package is no longer required, but still functions fine.

Bug Fixes

	Fix a bug where the Paste configuration's unicode_path_segments
(and os.environ's BFG_UNICODE_PATH_SEGMENTS) may have been
defaulting to false in some circumstances. It now always defaults
to true, matching the documentation and intent.

	The repoze.bfg.traversal.find_model API did not work properly
when passed a path argument which was unicode and contained
high-order bytes when the unicode_path_segments or
BFG_UNICODE_PATH_SEGMENTS configuration variables were "true".

	A new module was added: repoze.bfg.settings. This contains
deployment-settings-related code.

Implementation Changes

	The make_app callable within repoze.bfg.router now registers
the root_policy argument as a utility (unnamed, using the new
repoze.bfg.interfaces.IRootFactory as a provides interface)
rather than passing it as the first argument to the
repoze.bfg.router.Router class. As a result, the
repoze.bfg.router.Router router class only accepts a single
argument: registry. The repoze.bfg.router.Router class
retrieves the root policy via a utility lookup now. The
repoze.bfg.router.make_app API also now performs some important
application registrations that were previously handled inside
repoze.bfg.registry.makeRegistry.

New Modules

	A repoze.bfg.settings module was added. It contains code
related to deployment settings. Most of the code it contains was
moved to it from the repoze.bfg.registry module.

Behavior Changes

	The repoze.bfg.settings.Settings class (an instance of which is
registered as a utility providing
repoze.bfg.interfaces.ISettings when any application is started)
now automatically calls repoze.bfg.settings.get_options on the
options passed to its constructor. This means that usage of
get_options within an application's make_app function is no
longer required (the "raw" options dict or None may be passed).

	Remove old cold which attempts to recover from trying to unpickle a
z3c.pt template; Chameleon has been the templating engine for a
good long time now. Running repoze.bfg against a sandbox that has
pickled z3c.pt templates it will now just fail with an
unpickling error, but can be fixed by deleting the template cache
files.

Deprecations

	Moved the repoze.bfg.registry.Settings class. This has been
moved to repoze.bfg.settings.Settings. A deprecation warning is
issued when it is imported from the older location.

	Moved the repoze.bfg.registry.get_options function This has been
moved to repoze.bfg.settings.get_options. A deprecation warning
is issued when it is imported from the older location.

	The repoze.bfg.interfaces.IRootPolicy interface was renamed
within the interfaces package. It has been renamed to
IRootFactory. A deprecation warning is issued when it is
imported from the older location.

0.6.1 (2009-01-06)

New Modules

	A new module repoze.bfg.url has been added. It contains the
model_url API (moved from repoze.bfg.traversal) and an
implementation of urlencode (like Python's
urllib.urlencode) which can handle Unicode keys and values in
parameters to the query argument.

Deprecations

	The model_url function has been moved from
repoze.bfg.traversal into repoze.bfg.url. It can still
be imported from repoze.bfg.traversal but an import from
repoze.bfg.traversal will emit a DeprecationWarning.

Features

	A static helper class was added to the repoze.bfg.views
module. Instances of this class are willing to act as BFG views
which return static resources using files on disk. See the
repoze.bfg.view docs for more info.

	The repoze.bfg.url.model_url API (nee'
repoze.bfg.traversal.model_url) now accepts and honors a
keyword argument named query. The value of this argument
will be used to compose a query string, which will be attached to
the generated URL before it is returned. See the API docs (in
the docs directory or on the web [http://static.repoze.org/bfgdocs]) for more information.

0.6 (2008-12-26)

Backwards Incompatibilities

	Rather than prepare the "stock" implementations of the ZCML directives
from the zope.configuration package for use under repoze.bfg,
repoze.bfg now makes available the implementations of directives
from the repoze.zcml package (see http://static.repoze.org/zcmldocs).
As a result, the repoze.bfg package now depends on the
repoze.zcml package, and no longer depends directly on the
zope.component, zope.configuration, zope.interface, or
zope.proxy packages.

The primary reason for this change is to enable us to eventually reduce
the number of inappropriate repoze.bfg Zope package dependencies,
as well as to shed features of dependent package directives that don't
make sense for repoze.bfg.

Note that currently the set of requirements necessary to use bfg has not
changed. This is due to inappropriate Zope package requirements in
chameleon.zpt, which will hopefully be remedied soon. NOTE: in
lemonade index a 1.0b8-repozezcml0 package exists which does away with
these requirements.

	BFG applications written prior to this release which expect the "stock"
zope.component ZCML directive implementations (e.g. adapter,
subscriber, or utility) to function now must either 1) include
the meta.zcml file from zope.component manually (e.g. <include
package="zope.component" file="meta.zcml">) and include the
zope.security package as an install_requires dependency or 2)
change the ZCML in their applications to use the declarations from
repoze.zcml [http://static.repoze.org/zcmldocs/] instead of the stock
declarations. repoze.zcml only makes available the adapter,
subscriber and utility directives.

In short, if you've got an existing BFG application, after this
update, if your application won't start due to an import error for
"zope.security", the fastest way to get it working again is to add
zope.security to the "install_requires" of your BFG
application's setup.py, then add the following ZCML anywhere
in your application's configure.zcml:

<include package="zope.component" file="meta.zcml">

Then re-setup.py develop or reinstall your application.

	The http://namespaces.repoze.org/bfg XML namespace is now the default
XML namespace in ZCML for paster-generated applications. The docs have
been updated to reflect this.

	The copies of BFG's meta.zcml and configure.zcml were removed
from the root of the repoze.bfg package. In 0.3.6, a new package
named repoze.bfg.includes was added, which contains the "correct"
copies of these ZCML files; the ones that were removed were for backwards
compatibility purposes.

	The BFG view ZCML directive no longer calls
zope.component.interface.provideInterface for the for interface.
We don't support provideInterface in BFG because it mutates the
global registry.

Other

	The minimum requirement for chameleon.core is now 1.0b13. The
minimum requirement for chameleon.zpt is now 1.0b8. The minimum
requirement for chameleon.genshi is now 1.0b2.

	Updated paster template "ez_setup.py" to one that requires setuptools
0.6c9.

	Turn view_execution_permitted from the repoze.bfg.view module
into a documented API.

	Doc cleanups.

	Documented how to create a view capable of serving static resources.

0.5.6 (2008-12-18)

	Speed up traversal.model_url execution by using a custom url quoting
function instead of Python's urllib.quote, by caching URL path
segment quoting and encoding results, by disusing Python's
urlparse.urljoin in favor of a simple string concatenation, and by
using ob.__class__ is unicode rather than isinstance(ob, unicode)
in one strategic place.

0.5.5 (2008-12-17)

Backwards Incompatibilities

	In the past, during traversal, the ModelGraphTraverser (the default
traverser) always passed each URL path segment to any __getitem__
method of a model object as a byte string (a str object). Now, by
default the ModelGraphTraverser attempts to decode the path segment to
Unicode (a unicode object) using the UTF-8 encoding before passing it
to the __getitem__ method of a model object. This makes it possible
for model objects to be dumber in __getitem__ when trying to resolve
a subobject, as model objects themselves no longer need to try to divine
whether or not to try to decode the path segment passed by the
traverser.

Note that since 0.5.4, URLs generated by repoze.bfg's model_url API
will contain UTF-8 encoded path segments as necessary, so any URL
generated by BFG itself will be decodeable by the traverser. If another
application generates URLs to a BFG application, to be resolved
successully, it should generate the URL with UTF-8 encoded path segments
to be successfully resolved. The decoder is not at all magical: if a
non-UTF-8-decodeable path segment (e.g. one encoded using UTF-16 or some
other insanity) is passed in the URL, BFG will raise a TypeError with
a message indicating it could not decode the path segment.

To turn on the older behavior, where path segments were not decoded to
Unicode before being passed to model object __getitem__ by the
traverser, and were passed as a raw byte string, set the
unicode_path_segments configuration setting to a false value in your
BFG application's section of the paste .ini file, for example:

unicode_path_segments = False

Or start the application using the BFG_UNICODE_PATH_SEGMENT envvar
set to a false value:

BFG_UNICODE_PATH_SEGMENTS=0

0.5.4 (2008-12-13)

Backwards Incompatibilities

	URL-quote "extra" element names passed in as **elements to the
traversal.model_url API. If any of these names is a Unicode string,
encode it to UTF-8 before URL-quoting. This is a slight backwards
incompatibility that will impact you if you were already UTF-8 encoding
or URL-quoting the values you passed in as elements to this API.

Bugfixes

	UTF-8 encode each segment in the model path used to generate a URL before
url-quoting it within the traversal.model_url API. This is a bugfix,
as Unicode cannot always be successfully URL-quoted.

Features

	Make it possible to run unit tests using a buildout-generated Python
"interpreter".

	Add request.root to router.Router in order to have easy access to
the application root.

0.5.3 (2008-12-07)

	Remove the ITestingTemplateRenderer interface. When
testing.registerDummyRenderer is used, it instead registers a dummy
implementation using ITemplateRenderer interface, which is checked
for when the built-in templating facilities do rendering. This change
also allows developers to make explcit named utility registrations in
the ZCML registry against ITemplateRenderer; these will be found
before any on-disk template is looked up.

0.5.2 (2008-12-05)

	The component registration handler for views (functions or class
instances) now observes component adaptation annotations (see
zope.component.adaptedBy) and uses them before the fallback values
for for_ and request_type. This change does not affect existing
code insomuch as the code does not rely on these defaults when an
annotation is set on the view (unlikely). This means that for a
new-style class you can do zope.component.adapts(ISomeContext,
ISomeRequest) at class scope or at module scope as a decorator to a
bfg view function you can do @zope.component.adapter(ISomeContext,
ISomeRequest). This differs from r.bfg.convention inasmuch as you
still need to put something in ZCML for the registrations to get done;
it's only the defaults that will change if these declarations exist.

	Strip all slashes from end and beginning of path in clean_path within
traversal machinery.

0.5.1 (2008-11-25)

	Add keys, items, and values methods to
testing.DummyModel.

	Add __delitem__ method to testing.DummyModel.

0.5.0 (2008-11-18)

	Fix ModelGraphTraverser; don't try to change the __name__ or
__parent__ of an object that claims it implements ILocation during
traversal even if the __name__ or __parent__ of the object
traversed does not match the name used in the traversal step or the or
the traversal parent . Rationale: it was insane to do so. This bug was
only found due to a misconfiguration in an application that mistakenly
had intermediate persistent non-ILocation objects; traversal was causing
a persistent write on every request under this setup.

	repoze.bfg.location.locate now unconditionally sets __name__ and
__parent__ on objects which provide ILocation (it previously only set
them conditionally if they didn't match attributes already present on the
object via equality).

0.4.9 (2008-11-17)

	Add chameleon text template API (chameleon ${name} renderings where the
template does not need to be wrapped in any containing XML).

	Change docs to explain install in terms of a virtualenv
(unconditionally).

	Make pushpage decorator compatible with repoze.bfg.convention's
bfg_view decorator when they're stacked.

	Add content_length attribute to testing.DummyRequest.

	Change paster template tests.py to include a true unit test. Retain
old test as an integration test. Update documentation.

	Document view registrations against classes and repoze.bfg.convention
in context.

	Change the default paster template to register its single view against a
class rather than an interface.

	Document adding a request type interface to the request via a subscriber
function in the events narrative documentation.

0.4.8 (2008-11-12)

Backwards Incompatibilities

	repoze.bfg.traversal.model_url now always appends a slash to all
generated URLs unless further elements are passed in as the third and
following arguments. Rationale: views often use model_url without
the third-and-following arguments in order to generate a URL for a model
in order to point at the default view of a model. The URL that points to
the default view of the root model is technically http://mysite/ as
opposed to http://mysite (browsers happen to ask for '/' implicitly
in the GET request). Because URLs are never automatically generated for
anything except models by model_url, and because the root model is
not really special, we continue this pattern. The impact of this change
is minimal (at most you will have too many slashes in your URL, which BFG
deals with gracefully anyway).

0.4.7 (2008-11-11)

Features

	Allow testing.registerEventListener to be used with Zope 3 style
"object events" (subscribers accept more than a single event argument).
We extend the list with the arguments, rather than append.

0.4.6 (2008-11-10)

Bug Fixes

	The model_path and model_url traversal APIs returned the wrong
value for the root object (e.g. model_path returned '' for the
root object, while it should have been returning '/').

0.4.5 (2008-11-09)

Features

	Added a clone method and a __contains__ method to the DummyModel
testing object.

	Allow DummyModel objects to receive extra keyword arguments, which will
be attached as attributes.

	The DummyTemplateRenderer now returns self as its implementation.

0.4.4 (2008-11-08)

Features

	Added a repoze.bfg.testing module to attempt to make it slightly
easier to write unittest-based automated tests of BFG applications.
Information about this module is in the documentation.

	The default template renderer now supports testing better by looking for
ITestingTemplateRenderer using a relative pathname. This is exposed
indirectly through the API named registerTemplateRenderer in
repoze.bfg.testing.

Deprecations

	The names repoze.bfg.interfaces.ITemplate ,
repoze.bfg.interfaces.ITemplateFactory and
repoze.bfg.interfaces.INodeTemplate have been deprecated. These
should now be imported as repoze.bfg.interfaces.ITemplateRenderer and
repoze.bfg.interfaces.ITemplateRendererFactory, and
INodeTemplateRenderer respectively.

	The name repoze.bfg.chameleon_zpt.ZPTTemplateFactory is deprecated.
Use repoze.bfg.chameleon_zpt.ZPTTemplateRenderer.

	The name repoze.bfg.chameleon_genshi.GenshiTemplateFactory is
deprecated. Use repoze.bfg.chameleon_genshi.GenshiTemplateRenderer.

	The name repoze.bfg.xslt.XSLTemplateFactory is deprecated. Use
repoze.bfg.xslt.XSLTemplateRenderer.

0.4.3 (2008-11-02)

Bug Fixes

	Not passing the result of "get_options" as the second argument of
make_app could cause attribute errors when attempting to look up settings
against the ISettings object (internal). Fixed by giving the Settings
objects defaults for debug_authorization and debug_notfound.

	Return an instance of Allowed (rather than True) from
has_permission when no security policy is in use.

	Fix bug where default deny in authorization check would throw a TypeError
(use ACLDenied instead of Denied).

0.4.2 (2008-11-02)

Features

	Expose a single ILogger named "repoze.bfg.debug" as a utility; this
logger is registered unconditionally and is used by the authorization
debug machinery. Applications may also make use of it as necessary
rather than inventing their own logger, for convenience.

	The BFG_DEBUG_AUTHORIZATION envvar and the debug_authorization
config file value now only imply debugging of view-invoked security
checks. Previously, information was printed for every call to
has_permission as well, which made output confusing. To debug
has_permission checks and other manual permission checks, use the
debugger and print statements in your own code.

	Authorization debugging info is now only present in the HTTP response
body oif debug_authorization is true.

	The format of authorization debug messages was improved.

	A new BFG_DEBUG_NOTFOUND envvar was added and a symmetric
debug_notfound config file value was added. When either is true, and
a NotFound response is returned by the BFG router (because a view could
not be found), debugging information is printed to stderr. When this
value is set true, the body of HTTPNotFound responses will also contain
the same debugging information.

	Allowed and Denied responses from the security machinery are now
specialized into two types: ACL types, and non-ACL types. The
ACL-related responses are instances of repoze.bfg.security.ACLAllowed
and repoze.bfg.security.ACLDenied. The non-ACL-related responses are
repoze.bfg.security.Allowed and repoze.bfg.security.Denied. The
allowed-type responses continue to evaluate equal to things that
themselves evaluate equal to the True boolean, while the denied-type
responses continue to evaluate equal to things that themselves evaluate
equal to the False boolean. The only difference between the two
types is the information attached to them for debugging purposes.

	Added a new BFG_DEBUG_ALL envvar and a symmetric debug_all config
file value. When either is true, all other debug-related flags are set
true unconditionally (e.g. debug_notfound and
debug_authorization).

Documentation

	Added info about debug flag changes.

	Added a section to the security chapter named "Debugging Imperative
Authorization Failures" (for e.g. has_permssion).

Bug Fixes

	Change default paster template generator to use Paste#http server
rather than PasteScript#cherrpy server. The cherrypy server has a
security risk in it when REMOTE_USER is trusted by the downstream
application.

0.4.1 (2008-10-28)

Bug Fixes

	If the render_view_to_response function was called, if the view was
found and called, but it returned something that did not implement
IResponse, the error would pass by unflagged. This was noticed when I
created a view function that essentially returned None, but received a
NotFound error rather than a ValueError when the view was rendered. This
was fixed.

0.4.0 (2008-10-03)

Docs

	An "Environment and Configuration" chapter was added to the narrative
portion of the documentation.

Features

	Ensure bfg doesn't generate warnings when running under Python
2.6.

	The environment variable BFG_RELOAD_TEMPLATES is now available
(serves the same purpose as reload_templates in the config file).

	A new configuration file option debug_authorization was added.
This turns on printing of security authorization debug statements
to sys.stderr. The BFG_DEBUG_AUTHORIZATION environment
variable was also added; this performs the same duty.

Bug Fixes

	The environment variable BFG_SECURITY_DEBUG did not always work.
It has been renamed to BFG_DEBUG_AUTHORIZATION and fixed.

Deprecations

	A deprecation warning is now issued when old API names from the
repoze.bfg.templates module are imported.

Backwards incompatibilities

	The BFG_SECURITY_DEBUG environment variable was renamed to
BFG_DEBUG_AUTHORIZATION.

0.3.9 (2008-08-27)

Features

	A repoze.bfg.location API module was added.

Backwards incompatibilities

	Applications must now use the repoze.bfg.interfaces.ILocation
interface rather than zope.location.interfaces.ILocation to
represent that a model object is "location-aware". We've removed
a dependency on zope.location for cleanliness purposes: as
new versions of zope libraries are released which have improved
dependency information, getting rid of our dependence on
zope.location will prevent a newly installed repoze.bfg
application from requiring the zope.security, egg, which not
truly used at all in a "stock" repoze.bfg setup. These
dependencies are still required by the stack at this time; this
is purely a futureproofing move.

The security and model documentation for previous versions of
repoze.bfg recommended using the
zope.location.interfaces.ILocation interface to represent
that a model object is "location-aware". This documentation has
been changed to reflect that this interface should now be
imported from repoze.bfg.interfaces.ILocation instead.

0.3.8 (2008-08-26)

Docs

	Documented URL dispatch better in narrative form.

Bug fixes

	Routes URL dispatch did not have access to the WSGI environment,
so conditions such as method=GET did not work.

Features

	Add principals_allowed_by_permission API to security module.

	Replace z3c.pt support with support for chameleon.zpt.
Chameleon is the new name for the package that used to be named
z3c.pt. NOTE: If you update a repoze.bfg SVN checkout
that you're using for development, you will need to run "setup.py
install" or "setup.py develop" again in order to obtain the
proper Chameleon packages. z3c.pt is no longer supported by
repoze.bfg. All API functions that used to render z3c.pt
templates will work fine with the new packages, and your
templates should render almost identically.

	Add a repoze.bfg.chameleon_zpt module. This module provides
Chameleon ZPT support.

	Add a repoze.bfg.xslt module. This module provides XSLT
support.

	Add a repoze.bfg.chameleon_genshi module. This provides
direct Genshi support, which did not exist previously.

Deprecations

	Importing API functions directly from repoze.bfg.template is
now deprecated. The get_template, render_template,
render_template_to_response functions should now be imported
from repoze.chameleon_zpt. The render_transform, and
render_transform_to_response functions should now be imported
from repoze.bfg.xslt. The repoze.bfg.template module
will remain around "forever" to support backwards compatibility.

0.3.7 (2008-09-09)

Features

	Add compatibility with z3c.pt 1.0a7+ (z3c.pt became a namespace package).

Bug fixes

	repoze.bfg.traversal.find_model function did not function properly.

0.3.6 (2008-09-04)

Features

	Add startup process docs.

	Allow configuration cache to be bypassed by actions which include special
"uncacheable" discriminators (for actions that have variable results).

Bug Fixes

	Move core repoze.bfg ZCML into a repoze.bfg.includes package so we
can use repoze.bfg better as a namespace package. Adjust the code
generator to use it. We've left around the configure.zcml in the
repoze.bfg package directly so as not to break older apps.

	When a zcml application registry cache was unpickled, and it contained a
reference to an object that no longer existed (such as a view), bfg would
not start properly.

0.3.5 (2008-09-01)

Features

	Event notification is issued after application is created and configured
(IWSGIApplicationCreatedEvent).

	New API module: repoze.bfg.view. This module contains the functions
named render_view_to_response, render_view_to_iterable,
render_view and is_response, which are documented in the API
docs. These features aid programmatic (non-server-driven) view
execution.

0.3.4 (2008-08-28)

Backwards incompatibilities

	Make repoze.bfg a namespace package so we can allow folks to create
subpackages (e.g. repoze.bfg.otherthing) within separate eggs. This
is a backwards incompatible change which makes it impossible to import
"make_app" and "get_options" from the repoze.bfg module directly.
This change will break all existing apps generated by the paster code
generator. Instead, you need to import these functions as
repoze.bfg.router:make_app and repoze.bfg.registry:get_options,
respectively. Sorry folks, it has to be done now or never, and
definitely better now.

Features

	Add model_path API function to traversal module.

Bugfixes

	Normalize path returned by repoze.bfg.caller_path.

0.3.3 (2008-08-23)

	Fix generated test.py module to use project name rather than package
name.

0.3.2 (2008-08-23)

	Remove sampleapp sample application from bfg package itself.

	Remove dependency on FormEncode (only needed by sampleapp).

	Fix paster template generation so that case-sensitivity is preserved for
project vs. package name.

	Depend on z3c.pt version 1.0a1 (which requires the [lxml] extra
currently).

	Read and write a pickled ZCML actions list, stored as
configure.zcml.cache next to the applications's "normal"
configuration file. A given bfg app will usually start faster if it's
able to read the pickle data. It fails gracefully to reading the real
ZCML file if it cannot read the pickle.

0.3.1 (2008-08-20)

	Generated application differences: make_app entry point renamed to
app in order to have a different name than the bfg function of the
same name, to prevent confusion.

	Add "options" processing to bfg's make_app to support runtime
options. A new API function named get_options was added to the
registry module. This function is typically used in an application's
app entry point. The Paste config file section for the app can now
supply the reload_templates option, which, if true, will prevent the
need to restart the appserver in order for z3c.pt or XSLT template
changes to be detected.

	Use only the module name in generated project's "test_suite" (run all
tests found in the package).

	Default port for generated apps changed from 5432 to 6543 (Postgres
default port is 6543).

0.3.0 (2008-08-16)

	Add get_template API to template module.

0.2.9 (2008-08-11)

	0.2.8 was "brown bag" release. It didn't work at all. Symptom:
ComponentLookupError when trying to render a page.

0.2.8 (2008-08-11)

	Add find_model and find_root traversal APIs. In the process,
make ITraverser a uni-adapter (on context) rather than a multiadapter (on
context and request).

0.2.7 (2008-08-05)

	Add a request_type attribute to the available attributes of a
bfg:view configure.zcml element. This attribute will have a value
which is a dotted Python path, pointing at an interface. If the request
object implements this interface when the view lookup is performed, the
appropriate view will be called. This is meant to allow for simple
"skinning" of sites based on request type. An event subscriber should
attach the interface to the request on ingress to support skins.

	Remove "template only" views. These were just confusing and were never
documented.

	Small url dispatch overhaul: the connect method of the
urldispatch.RoutesMapper object now accepts a keyword parameter named
context_factory. If this parameter is supplied, it must be a
callable which returns an instance. This instance is used as the context
for the request when a route is matched.

	The registration of a RoutesModelTraverser no longer needs to be
performed by the application; it's in the bfg ZCML now.

0.2.6 (2008-07-31)

	Add event sends for INewRequest and INewResponse. See the events.rst
chapter in the documentation's api directory.

0.2.5 (2008-07-28)

	Add model_url API.

0.2.4 (2008-07-27)

	Added url-based dispatch.

0.2.3 (2008-07-20)

	Add API functions for authenticated_userid and effective_principals.

0.2.2 (2008-07-20)

	Add authenticated_userid and effective_principals API to security
policy.

0.2.1 (2008-07-20)

	Add find_interface API.

0.2 (2008-07-19)

	Add wsgiapp decorator.

	The concept of "view factories" was removed in favor of always calling a
view, which is a callable that returns a response directly (as opposed to
returning a view). As a result, the factory attribute in the
bfg:view ZCML statement has been renamed to view. Various interface
names were changed also.

	render_template and render_transform no longer return a Response
object. Instead, these return strings. The old behavior can be obtained
by using render_template_to_response and
render_transform_to_response.

	Added 'repoze.bfg.push:pushpage' decorator, which creates BFG views from
callables which take (context, request) and return a mapping of top-level
names.

	Added ACL-based security.

	Support for XSLT templates via a render_transform method

0.1 (2008-07-08)

	Initial release.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Defending Pyramid's Design

From time to time, challenges to various aspects of Pyramid design are
lodged. To give context to discussions that follow, we detail some of the
design decisions and trade-offs here. In some cases, we acknowledge that the
framework can be made better and we describe future steps which will be taken
to improve it; in some cases we just file the challenge as noted, as
obviously you can't please everyone all of the time.

Pyramid Provides More Than One Way to Do It

A canon of Python popular culture is "TIOOWTDI" ("there is only one way to do
it", a slighting, tongue-in-cheek reference to Perl's "TIMTOWTDI", which is
an acronym for "there is more than one way to do it").

Pyramid is, for better or worse, a "TIMTOWTDI" system. For example,
it includes more than one way to resolve a URL to a view callable:
via url dispatch or traversal. Multiple methods of
configuration exist: imperative configuration, configuration
decoration, and ZCML (optionally via pyramid_zcml). It works
with multiple different kinds of persistence and templating systems. And so
on. However, the existence of most of these overlapping ways to do things
are not without reason and purpose: we have a number of audiences to serve,
and we believe that TIMTOWTI at the web framework level actually prevents a
much more insidious and harmful set of duplication at higher levels in the
Python web community.

Pyramid began its life as repoze.bfg, written by a team of
people with many years of prior Zope experience. The idea of
traversal and the way view lookup works was stolen entirely
from Zope. The authorization subsystem provided by Pyramid is a
derivative of Zope's. The idea that an application can be extended without
forking is also a Zope derivative.

Implementations of these features were required to allow the Pyramid
authors to build the bread-and-butter CMS-type systems for customers in the
way in which they were accustomed. No other system, save for Zope itself,
had such features, and Zope itself was beginning to show signs of its age.
We were becoming hampered by consequences of its early design mistakes.
Zope's lack of documentation was also difficult to work around: it was hard
to hire smart people to work on Zope applications, because there was no
comprehensive documentation set to point them at which explained "it all" in
one consumable place, and it was too large and self-inconsistent to document
properly. Before repoze.bfg went under development, its authors
obviously looked around for other frameworks that fit the bill. But no
non-Zope framework did. So we embarked on building repoze.bfg.

As the result of our research, however, it became apparent that, despite the
fact that no one framework had all the features we required, lots of
existing frameworks had good, and sometimes very compelling ideas. In
particular, URL dispatch is a more direct mechanism to map URLs to
code.

So, although we couldn't find a framework, save for Zope, that fit our needs,
and while we incorporated a lot of Zope ideas into BFG, we also emulated the
features we found compelling in other frameworks (such as url
dispatch). After the initial public release of BFG, as time went on,
features were added to support people allergic to various Zope-isms in the
system, such as the ability to configure the application using
imperative configuration and configuration decoration rather
than solely using ZCML, and the elimination of the required use of
interface objects. It soon became clear that we had a system that
was very generic, and was beginning to appeal to non-Zope users as well as
ex-Zope users.

As the result of this generalization, it became obvious BFG shared 90% of its
featureset with the featureset of Pylons 1, and thus had a very similar
target market. Because they were so similar, choosing between the two
systems was an exercise in frustration for an otherwise non-partisan
developer. It was also strange for the Pylons and BFG development
communities to be in competition for the same set of users, given how similar
the two frameworks were. So the Pylons and BFG teams began to work together
to form a plan to merge. The features missing from BFG (notably view
handler classes, flash messaging, and other minor missing bits), were added,
to provide familiarity to ex-Pylons users. The result is Pyramid.

The Python web framework space is currently notoriously balkanized. We're
truly hoping that the amalgamation of components in Pyramid will
appeal to at least two currently very distinct sets of users: Pylons and BFG
users. By unifying the best concepts from Pylons and BFG into a single
codebase and leaving the bad concepts from their ancestors behind, we'll be
able to consolidate our efforts better, share more code, and promote our
efforts as a unit rather than competing pointlessly. We hope to be able to
shortcut the pack mentality which results in a much larger duplication of
effort, represented by competing but incredibly similar applications and
libraries, each built upon a specific low level stack that is incompatible
with the other. We'll also shrink the choice of credible Python web
frameworks down by at least one. We're also hoping to attract users from
other communities (such as Zope's and TurboGears') by providing the features
they require, while allowing enough flexibility to do things in a familiar
fashion. Some overlap of functionality to achieve these goals is expected
and unavoidable, at least if we aim to prevent pointless duplication at
higher levels. If we've done our job well enough, the various audiences will
be able to coexist and cooperate rather than firing at each other across some
imaginary web framework DMZ.

Pyramid Uses A Zope Component Architecture ("ZCA") Registry

Pyramid uses a Zope Component Architecture (ZCA) "component
registry" as its application registry under the hood. This is a
point of some contention. Pyramid is of a Zope pedigree, so
it was natural for its developers to use a ZCA registry at its inception.
However, we understand that using a ZCA registry has issues and consequences,
which we've attempted to address as best we can. Here's an introspection
about Pyramid use of a ZCA registry, and the trade-offs its usage
involves.

Problems

The global API that may be used to access data in a ZCA component registry
is not particularly pretty or intuitive, and sometimes it's just plain
obtuse. Likewise, the conceptual load on a casual source code reader of code
that uses the ZCA global API is somewhat high. Consider a ZCA neophyte
reading the code that performs a typical "unnamed utility" lookup using the
zope.component.getUtility() [http://docs.zope.org/zope.component/api/utility.html#zope.component.getUtility] global API:

	1
2
3

	from pyramid.interfaces import ISettings
from zope.component import getUtility
settings = getUtility(ISettings)

After this code runs, settings will be a Python dictionary. But it's
unlikely that any civilian would know that just by reading the code. There
are a number of comprehension issues with the bit of code above that are
obvious.

First, what's a "utility"? Well, for the purposes of this discussion, and
for the purpose of the code above, it's just not very important. If you
really want to know, you can read this [http://www.muthukadan.net/docs/zca.html#utility]. However, still, readers
of such code need to understand the concept in order to parse it. This is
problem number one.

Second, what's this ISettings thing? It's an interface. Is that
important here? Not really, we're just using it as a key for some lookup
based on its identity as a marker: it represents an object that has the
dictionary API, but that's not very important in this context. That's
problem number two.

Third of all, what does the getUtility function do? It's performing a
lookup for the ISettings "utility" that should return... well, a utility.
Note how we've already built up a dependency on the understanding of an
interface and the concept of "utility" to answer this question: a bad
sign so far. Note also that the answer is circular, a really bad sign.

Fourth, where does getUtility look to get the data? Well, the "component
registry" of course. What's a component registry? Problem number four.

Fifth, assuming you buy that there's some magical registry hanging around,
where is this registry? Homina homina... "around"? That's sort of the
best answer in this context (a more specific answer would require knowledge of
internals). Can there be more than one registry? Yes. So in which registry
does it find the registration? Well, the "current" registry of course. In
terms of Pyramid, the current registry is a thread local variable.
Using an API that consults a thread local makes understanding how it works
non-local.

You've now bought in to the fact that there's a registry that is just hanging
around. But how does the registry get populated? Why, via code that calls
directives like config.add_view. In this particular case, however, the
registration of ISettings is made by the framework itself under the hood:
it's not present in any user configuration. This is extremely hard to
comprehend. Problem number six.

Clearly there's some amount of cognitive load here that needs to be borne by a
reader of code that extends the Pyramid framework due to its use of the
ZCA, even if they are already an expert Python programmer and an expert in the
domain of web applications. This is suboptimal.

Ameliorations

First, the primary amelioration: Pyramid does not expect application
developers to understand ZCA concepts or any of its APIs. If an application
developer needs to understand a ZCA concept or API during the creation of a
Pyramid application, we've failed on some axis.

Instead the framework hides the presence of the ZCA registry behind
special-purpose API functions that do use ZCA APIs. Take for example the
pyramid.security.authenticated_userid function, which returns the userid
present in the current request or None if no userid is present in the
current request. The application developer calls it like so:

	1
2

	from pyramid.security import authenticated_userid
userid = authenticated_userid(request)

They now have the current user id.

Under its hood however, the implementation of authenticated_userid is this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	def authenticated_userid(request):
 """ Return the userid of the currently authenticated user or
 ``None`` if there is no authentication policy in effect or there
 is no currently authenticated user. """

 registry = request.registry # the ZCA component registry
 policy = registry.queryUtility(IAuthenticationPolicy)
 if policy is None:
 return None
 return policy.authenticated_userid(request)

Using such wrappers, we strive to always hide the ZCA API from application
developers. Application developers should just never know about the ZCA API;
they should call a Python function with some object germane to the domain as an
argument, and it should return a result. A corollary that follows is that any
reader of an application that has been written using Pyramid needn't
understand the ZCA API either.

Hiding the ZCA API from application developers and code readers is a form of
enhancing domain specificity. No application developer wants to need to
understand the small, detailed mechanics of how a web framework does its thing.
People want to deal in concepts that are closer to the domain they're working
in. For example, web developers want to know about users, not utilities.
Pyramid uses the ZCA as an implementation detail, not as a feature which
is exposed to end users.

However, unlike application developers, framework developers, including
people who want to override Pyramid functionality via preordained
framework plugpoints like traversal or view lookup, must understand the ZCA
registry API.

Pyramid framework developers were so concerned about conceptual load
issues of the ZCA registry API that a replacement registry implementation [https://github.com/repoze/repoze.component] named repoze.component
was actually developed. Though this package has a registry implementation
which is fully functional and well-tested, and its API is much nicer than the
ZCA registry API, work on it was largely abandoned, and it is not used in
Pyramid. We continued to use a ZCA registry within Pyramid
because it ultimately proved a better fit.

Note

We continued using ZCA registry rather than disusing it in favor of using
the registry implementation in repoze.component largely because the
ZCA concept of interfaces provides for use of an interface hierarchy, which
is useful in a lot of scenarios (such as context type inheritance). Coming
up with a marker type that was something like an interface that allowed for
this functionality seemed like it was just reinventing the wheel.

Making framework developers and extenders understand the ZCA registry API is a
trade-off. We (the Pyramid developers) like the features that the ZCA
registry gives us, and we have long-ago borne the weight of understanding what
it does and how it works. The authors of Pyramid understand the ZCA
deeply and can read code that uses it as easily as any other code.

But we recognize that developers who might want to extend the framework are not
as comfortable with the ZCA registry API as the original developers. So for
the purpose of being kind to third-party Pyramid framework developers,
we've drawn some lines in the sand.

In all core code, we've made use of ZCA global API functions, such as
zope.component.getUtility and zope.component.getAdapter, the exception
instead of the rule. So instead of:

	1
2
3

	from pyramid.interfaces import IAuthenticationPolicy
from zope.component import getUtility
policy = getUtility(IAuthenticationPolicy)

Pyramid code will usually do:

	1
2
3
4

	from pyramid.interfaces import IAuthenticationPolicy
from pyramid.threadlocal import get_current_registry
registry = get_current_registry()
policy = registry.getUtility(IAuthenticationPolicy)

While the latter is more verbose, it also arguably makes it more obvious what's
going on. All of the Pyramid core code uses this pattern rather than
the ZCA global API.

Rationale

Here are the main rationales involved in the Pyramid decision to use
the ZCA registry:

	History. A nontrivial part of the answer to this question is "history".
Much of the design of Pyramid is stolen directly from Zope.
Zope uses the ZCA registry to do a number of tricks. Pyramid mimics
these tricks, and, because the ZCA registry works well for that set of
tricks, Pyramid uses it for the same purposes. For example, the way
that Pyramid maps a request to a view callable using
traversal is lifted almost entirely from Zope. The ZCA registry
plays an important role in the particulars of how this request to view
mapping is done.

	Features. The ZCA component registry essentially provides what can be
considered something like a superdictionary, which allows for more complex
lookups than retrieving a value based on a single key. Some of this lookup
capability is very useful for end users, such as being able to register a
view that is only found when the context is some class of object, or when
the context implements some interface.

	Singularity. There's only one place where "application configuration" lives
in a Pyramid application: in a component registry. The component
registry answers questions made to it by the framework at runtime based on
the configuration of an application. Note: "an application" is not the
same as "a process"; multiple independently configured copies of the same
Pyramid application are capable of running in the same process space.

	Composability. A ZCA component registry can be populated imperatively, or
there's an existing mechanism to populate a registry via the use of a
configuration file (ZCML, via the optional pyramid_zcml package).
We didn't need to write a frontend from scratch to make use of
configuration-file-driven registry population.

	Pluggability. Use of the ZCA registry allows for framework extensibility
via a well-defined and widely understood plugin architecture. As long as
framework developers and extenders understand the ZCA registry, it's
possible to extend Pyramid almost arbitrarily. For example, it's
relatively easy to build a directive that registers several views all at
once, allowing app developers to use that directive as a "macro" in code
that they write. This is somewhat of a differentiating feature from other
(non-Zope) frameworks.

	Testability. Judicious use of the ZCA registry in framework code makes
testing that code slightly easier. Instead of using monkeypatching or other
facilities to register mock objects for testing, we inject dependencies via
ZCA registrations, then use lookups in the code to find our mock objects.

	Speed. The ZCA registry is very fast for a specific set of complex lookup
scenarios that Pyramid uses, having been optimized through the years
for just these purposes. The ZCA registry contains optional C code for
this purpose which demonstrably has no (or very few) bugs.

	Ecosystem. Many existing Zope packages can be used in Pyramid with
few (or no) changes due to our use of the ZCA registry.

Conclusion

If you only develop applications using Pyramid, there's not much to
complain about here. You just should never need to understand the ZCA registry
API; use documented Pyramid APIs instead. However, you may be an
application developer who doesn't read API documentation. Instead you
read the raw source code, and because you haven't read the API documentation,
you don't know what functions, classes, and methods even form the
Pyramid API. As a result, you've now written code that uses internals,
and you've painted yourself into a conceptual corner, needing to wrestle with
some ZCA-using implementation detail. If this is you, it's extremely hard to
have a lot of sympathy for you. You'll either need to get familiar with how
we're using the ZCA registry or you'll need to use only the documented APIs;
that's why we document them as APIs.

If you extend or develop Pyramid (create new directives, use some
of the more obscure hooks as described in Using Hooks, or work on
the Pyramid core code), you will be faced with needing to understand
at least some ZCA concepts. In some places it's used unabashedly, and will
be forever. We know it's quirky, but it's also useful and fundamentally
understandable if you take the time to do some reading about it.

Pyramid "Encourages Use of ZCML"

ZCML is a configuration language that can be used to configure the
Zope Component Architecture registry that Pyramid uses for
application configuration. Often people claim that Pyramid "needs ZCML".

It doesn't. In Pyramid 1.0, ZCML doesn't ship as part of the core;
instead it ships in the pyramid_zcml add-on package, which is
completely optional. No ZCML is required at all to use Pyramid, nor
any other sort of frameworky declarative frontend to application
configuration.

Pyramid Does Traversal, and I Don't Like Traversal

In Pyramid, traversal is the act of resolving a URL path to a
resource object in a resource tree. Some people are uncomfortable with
this notion, and believe it is wrong. Thankfully if you use Pyramid and
you don't want to model your application in terms of a resource tree, you
needn't use it at all. Instead use URL dispatch to map URL paths to
views.

The idea that some folks believe traversal is unilaterally wrong is
understandable. The people who believe it is wrong almost invariably have
all of their data in a relational database. Relational databases aren't
naturally hierarchical, so traversing one like a tree is not possible.

However, folks who deem traversal unilaterally wrong are neglecting to take
into account that many persistence mechanisms are hierarchical. Examples
include a filesystem, an LDAP database, a ZODB (or another type of
graph) database, an XML document, and the Python module namespace. It is
often convenient to model the frontend to a hierarchical data store as a
graph, using traversal to apply views to objects that either are the
resources in the tree being traversed (such as in the case of ZODB) or at
least ones which stand in for them (such as in the case of wrappers for files
from the filesystem).

Also, many website structures are naturally hierarchical, even if the data
which drives them isn't. For example, newspaper websites are often extremely
hierarchical: sections within sections within sections, ad infinitum. If you
want your URLs to indicate this structure, and the structure is indefinite
(the number of nested sections can be "N" instead of some fixed number), a
resource tree is an excellent way to model this, even if the backend is a
relational database. In this situation, the resource tree is just a site
structure.

Traversal also offers better composability of applications than URL dispatch,
because it doesn't rely on a fixed ordering of URL matching. You can compose
a set of disparate functionality (and add to it later) around a mapping of
view to resource more predictably than trying to get the right ordering of
URL pattern matching.

But the point is ultimately moot. If you don't want to use traversal, you
needn't. Use URL dispatch instead.

Pyramid Does URL Dispatch, and I Don't Like URL Dispatch

In Pyramid, url dispatch is the act of resolving a URL path to
a view callable by performing pattern matching against some set of
ordered route definitions. The route definitions are examined in order: the
first pattern which matches is used to associate the URL with a view
callable.

Some people are uncomfortable with this notion, and believe it is wrong.
These are usually people who are steeped deeply in Zope. Zope does
not provide any mechanism except traversal to map code to URLs. This
is mainly because Zope effectively requires use of ZODB, which is a
hierarchical object store. Zope also supports relational databases, but
typically the code that calls into the database lives somewhere in the ZODB
object graph (or at least is a view related to a node in the object
graph), and traversal is required to reach this code.

I'll argue that URL dispatch is ultimately useful, even if you want to use
traversal as well. You can actually combine URL dispatch and traversal in
Pyramid (see Combining Traversal and URL Dispatch). One example of such a usage: if
you want to emulate something like Zope 2's "Zope Management Interface" UI on
top of your object graph (or any administrative interface), you can register a
route like config.add_route('manage', '/manage/*traverse') and then
associate "management" views in your code by using the route_name argument
to a view configuration, e.g., config.add_view('.some.callable',
context=".some.Resource", route_name='manage'). If you wire things up this
way, someone then walks up to, for example, /manage/ob1/ob2, they might be
presented with a management interface, but walking up to /ob1/ob2 would
present them with the default object view. There are other tricks you can pull
in these hybrid configurations if you're clever (and maybe masochistic) too.

Also, if you are a URL dispatch hater, if you should ever be asked to write an
application that must use some legacy relational database structure, you might
find that using URL dispatch comes in handy for one-off associations between
views and URL paths. Sometimes it's just pointless to add a node to the object
graph that effectively represents the entry point for some bit of code. You
can just use a route and be done with it. If a route matches, a view
associated with the route will be called. If no route matches, Pyramid
falls back to using traversal.

But the point is ultimately moot. If you use Pyramid, and you really
don't want to use URL dispatch, you needn't use it at all. Instead, use
traversal exclusively to map URL paths to views, just like you do in
Zope.

Pyramid Views Do Not Accept Arbitrary Keyword Arguments

Many web frameworks (Zope, TurboGears, Pylons 1.X, Django) allow for their
variant of a view callable to accept arbitrary keyword or positional
arguments, which are filled in using values present in the request.POST,
request.GET, or route match dictionaries. For example, a Django view will
accept positional arguments which match information in an associated "urlconf"
such as r'^polls/(?P<poll_id>\d+)/$:

	1
2

	def aview(request, poll_id):
 return HttpResponse(poll_id)

Zope likewise allows you to add arbitrary keyword and positional arguments to
any method of a resource object found via traversal:

	1
2
3
4
5

	from persistent import Persistent

class MyZopeObject(Persistent):
 def aview(self, a, b, c=None):
 return '%s %s %c' % (a, b, c)

When this method is called as the result of being the published callable, the
Zope request object's GET and POST namespaces are searched for keys which
match the names of the positional and keyword arguments in the request, and
the method is called (if possible) with its argument list filled with values
mentioned therein. TurboGears and Pylons 1.X operate similarly.

Out of the box, Pyramid is configured to have none of these features. By
default Pyramid view callables always accept only request and no
other arguments. The rationale is, this argument specification matching when
done aggressively can be costly, and Pyramid has performance as one of
its main goals. Therefore we've decided to make people, by default, obtain
information by interrogating the request object within the view callable body
instead of providing magic to do unpacking into the view argument list.

However, as of Pyramid 1.0a9, user code can influence the way view
callables are expected to be called, making it possible to compose a system
out of view callables which are called with arbitrary arguments. See
Using a View Mapper.

Pyramid Provides Too Few "Rails"

By design, Pyramid is not a particularly opinionated web framework.
It has a relatively parsimonious feature set. It contains no built in ORM
nor any particular database bindings. It contains no form generation
framework. It has no administrative web user interface. It has no built in
text indexing. It does not dictate how you arrange your code.

Such opinionated functionality exists in applications and frameworks built
on top of Pyramid. It's intended that higher-level systems emerge
built using Pyramid as a base.

See also

See also Pyramid Applications Are Extensible; I Don't Believe in Application Extensibility.

Pyramid Provides Too Many "Rails"

Pyramid provides some features that other web frameworks do not.
These are features meant for use cases that might not make sense to you if
you're building a simple bespoke web application:

	An optional way to map URLs to code using traversal which implies a
walk of a resource tree.

	The ability to aggregate Pyramid application configuration from multiple
sources using pyramid.config.Configurator.include().

	View and subscriber registrations made using interface objects
instead of class objects (e.g., Using Resource Interfaces in View Configuration).

	A declarative authorization system.

	Multiple separate I18N translation string factories, each of which
can name its own domain.

These features are important to the authors of Pyramid. The
Pyramid authors are often commissioned to build CMS-style
applications. Such applications are often frameworky because they have more
than one deployment. Each deployment requires a slightly different
composition of sub-applications, and the framework and sub-applications often
need to be extensible. Because the application has more than one
deployment, pluggability and extensibility is important, as maintaining
multiple forks of the application, one per deployment, is extremely
undesirable. Because it's easier to extend a system that uses
traversal from the outside than it is to do the same in a system that
uses URL dispatch, each deployment uses a resource tree
composed of a persistent tree of domain model objects, and uses
traversal to map view callable code to resources in the tree.
The resource tree contains very granular security declarations, as resources
are owned and accessible by different sets of users. Interfaces are used to
make unit testing and implementation substitutability easier.

In a bespoke web application, usually there's a single canonical deployment,
and therefore no possibility of multiple code forks. Extensibility is not
required; the code is just changed in place. Security requirements are often
less granular. Using the features listed above will often be overkill for such
an application.

If you don't like these features, it doesn't mean you can't or shouldn't use
Pyramid. They are all optional, and a lot of time has been spent making
sure you don't need to know about them up front. You can build "Pylons 1.X
style" applications using Pyramid that are purely bespoke by ignoring
the features above. You may find these features handy later after building a
bespoke web application that suddenly becomes popular and requires
extensibility because it must be deployed in multiple locations.

Pyramid Is Too Big

"The Pyramid compressed tarball is larger than 2MB. It must beenormous!"

No. We just ship it with docs, test code, and scaffolding. Here's a breakdown
of what's included in subdirectories of the package tree:

docs/

3.6MB

pyramid/tests/

1.3MB

pyramid/scaffolds/

133KB

pyramid/ (except for pyramd/tests and pyramid/scaffolds)

812KB

Of the approximately 34K lines of Python code in the package, the code
that actually has a chance of executing during normal operation, excluding
tests and scaffolding Python files, accounts for approximately 10K lines.

Pyramid Has Too Many Dependencies

Over time, we've made lots of progress on reducing the number of packaging
dependencies Pyramid has had. Pyramid 1.2 had 15 of them. Pyramid 1.3 and 1.4
had 12 of them. The current release as of this writing, Pyramid 1.5, has
only 7. This number is unlikely to become any smaller.

A port to Python 3 completed in Pyramid 1.3 helped us shed a good number of
dependencies by forcing us to make better packaging decisions. Removing
Chameleon and Mako templating system dependencies in the Pyramid core in 1.5
let us shed most of the remainder of them.

Pyramid "Cheats" to Obtain Speed

Complaints have been lodged by other web framework authors at various times
that Pyramid "cheats" to gain performance. One claimed cheating
mechanism is our use (transitively) of the C extensions provided by
zope.interface to do fast lookups. Another claimed cheating mechanism
is the religious avoidance of extraneous function calls.

If there's such a thing as cheating to get better performance, we want to cheat
as much as possible. We optimize Pyramid aggressively. This comes at a
cost. The core code has sections that could be expressed with more readability.
As an amelioration, we've commented these sections liberally.

Pyramid Gets Its Terminology Wrong ("MVC")

"I'm a MVC web framework user, and I'm confused. Pyramid calls the
controller a view! And it doesn't have any controllers."

If you are in this camp, you might have come to expect things about how your
existing "MVC" framework uses its terminology. For example, you probably
expect that models are ORM models, controllers are classes that have methods
that map to URLs, and views are templates. Pyramid indeed has each of
these concepts, and each probably works almost exactly like your existing
"MVC" web framework. We just don't use the MVC terminology, as we can't square
its usage in the web framework space with historical reality.

People very much want to give web applications the same properties as common
desktop GUI platforms by using similar terminology, and to provide some frame
of reference for how various components in the common web framework might
hang together. But in the opinion of the author, "MVC" doesn't match the web
very well in general. Quoting from the Model-View-Controller Wikipedia entry [http://en.wikipedia.org/wiki/Model–view–controller]:

Though MVC comes in different flavors, control flow is generally as
follows:

The user interacts with the user interface in some way (for example,
presses a mouse button).

The controller handles the input event from the user interface, often via
a registered handler or callback and converts the event into appropriate
user action, understandable for the model.

The controller notifies the model of the user action, possibly resulting
in a change in the model's state. (For example, the controller updates the
user's shopping cart.)[5]

A view queries the model in order to generate an appropriate user
interface (for example, the view lists the shopping cart's contents). Note
that the view gets its own data from the model.

The controller may (in some implementations) issue a general instruction
to the view to render itself. In others, the view is automatically
notified by the model of changes in state (Observer) which require a
screen update.

The user interface waits for further user interactions, which restarts the
cycle.

To the author, it seems as if someone edited this Wikipedia definition,
tortuously couching concepts in the most generic terms possible in order to
account for the use of the term "MVC" by current web frameworks. I doubt such
a broad definition would ever be agreed to by the original authors of the MVC
pattern. But even so, it seems most MVC web frameworks fail to meet even
this falsely generic definition.

For example, do your templates (views) always query models directly as is
claimed in "note that the view gets its own data from the model"? Probably not.
My "controllers" tend to do this, massaging the data for easier use by the
"view" (template). What do you do when your "controller" returns JSON? Do your
controllers use a template to generate JSON? If not, what's the "view" then?
Most MVC-style GUI web frameworks have some sort of event system hooked up that
lets the view detect when the model changes. The web just has no such facility
in its current form; it's effectively pull-only.

So, in the interest of not mistaking desire with reality, and instead of trying
to jam the square peg that is the web into the round hole of "MVC", we just
punt and say there are two things: resources and views. The resource tree
represents a site structure, the view presents a resource. The templates are
really just an implementation detail of any given view. A view doesn't need a
template to return a response. There's no "controller"; it just doesn't exist.
The "model" is either represented by the resource tree or by a "domain model"
(like an SQLAlchemy model) that is separate from the framework entirely. This
seems to us like more reasonable terminology, given the current constraints of
the web.

Pyramid Applications Are Extensible; I Don't Believe in Application Extensibility

Any Pyramid application written obeying certain constraints is
extensible. This feature is discussed in the Pyramid documentation
chapters named Extending an Existing Pyramid Application and Advanced Configuration. It is made
possible by the use of the Zope Component Architecture within
Pyramid.

"Extensible" in this context means:

	The behavior of an application can be overridden or extended in a particular
deployment of the application without requiring that the deployer modify
the source of the original application.

	The original developer is not required to anticipate any extensibility
plug points at application creation time to allow fundamental application
behavior to be overridden or extended.

	The original developer may optionally choose to anticipate an
application-specific set of plug points, which may be hooked by a deployer.
If they choose to use the facilities provided by the ZCA, the original
developer does not need to think terribly hard about the mechanics of
introducing such a plug point.

Many developers seem to believe that creating extensible applications is not
worth it. They instead suggest that modifying the source of a given application
for each deployment to override behavior is more reasonable. Much discussion
about version control branching and merging typically ensues.

It's clear that making every application extensible isn't required. The
majority of web applications only have a single deployment, and thus needn't be
extensible at all. However some web applications have multiple deployments, and
others have many deployments. For example, a generic content management
system (CMS) may have basic functionality that needs to be extended for a
particular deployment. That CMS may be deployed for many organizations at many
places. Some number of deployments of this CMS may be deployed centrally by a
third party and managed as a group. It's easier to be able to extend such a
system for each deployment via preordained plug points than it is to
continually keep each software branch of the system in sync with some upstream
source. The upstream developers may change code in such a way that your changes
to the same codebase conflict with theirs in fiddly, trivial ways. Merging such
changes repeatedly over the lifetime of a deployment can be difficult and time
consuming, and it's often useful to be able to modify an application for a
particular deployment in a less invasive way.

If you don't want to think about Pyramid application extensibility at
all, you needn't. You can ignore extensibility entirely. However if you follow
the set of rules defined in Extending an Existing Pyramid Application, you don't need to make
your application extensible. Any application you write in the framework just
is automatically extensible at a basic level. The mechanisms that deployers
use to extend it will be necessarily coarse. Typically views, routes, and
resources will be capable of being overridden. But for most minor (and even
some major) customizations, these are often the only override plug points
necessary. If the application doesn't do exactly what the deployment requires,
it's often possible for a deployer to override a view, route, or resource, and
quickly make it do what they want it to do in ways not necessarily anticipated
by the original developer. Here are some example scenarios demonstrating the
benefits of such a feature.

	If a deployment needs a different styling, the deployer may override the main
template and the CSS in a separate Python package which defines overrides.

	If a deployment needs an application page to do something differently, or to
expose more or different information, the deployer may override the view that
renders the page within a separate Python package.

	If a deployment needs an additional feature, the deployer may add a view to
the override package.

As long as the fundamental design of the upstream package doesn't change, these
types of modifications often survive across many releases of the upstream
package without needing to be revisited.

Extending an application externally is not a panacea, and carries a set of
risks similar to branching and merging. Sometimes major changes upstream will
cause you to revisit and update some of your modifications. But you won't
regularly need to deal with meaningless textual merge conflicts that trivial
changes to upstream packages often entail when it comes time to update the
upstream package, because if you extend an application externally, there just
is no textual merge done. Your modifications will also, for whatever it's
worth, be contained in one, canonical, well-defined place.

Branching an application and continually merging in order to get new features
and bug fixes is clearly useful. You can do that with a Pyramid
application just as usefully as you can do it with any application. But
deployment of an application written in Pyramid makes it possible to
avoid the need for this even if the application doesn't define any plug points
ahead of time. It's possible that promoters of competing web frameworks dismiss
this feature in favor of branching and merging because applications written in
their framework of choice aren't extensible out of the box in a comparably
fundamental way.

While Pyramid applications are fundamentally extensible even if you
don't write them with specific extensibility in mind, if you're moderately
adventurous, you can also take it a step further. If you learn more about the
Zope Component Architecture, you can optionally use it to expose other
more domain-specific configuration plug points while developing an application.
The plug points you expose needn't be as coarse as the ones provided
automatically by Pyramid itself. For example, you might compose your own
directive that configures a set of views for a pre-baked purpose (e.g.,
restview or somesuch), allowing other people to refer to that directive
when they make declarations in the includeme of their customization
package. There is a cost for this: the developer of an application that defines
custom plug points for its deployers will need to understand the ZCA or they
will need to develop their own similar extensibility system.

Ultimately any argument about whether the extensibility features lent to
applications by Pyramid are good or bad is mostly pointless. You needn't
take advantage of the extensibility features provided by a particular
Pyramid application in order to affect a modification for a particular
set of its deployments. You can ignore the application's extensibility plug
points entirely, and use version control branching and merging to manage
application deployment modifications instead, as if you were deploying an
application written using any other web framework.

Zope 3 Enforces "TTW" Authorization Checks by Default; Pyramid Does Not

Challenge

Pyramid performs automatic authorization checks only at view
execution time. Zope 3 wraps context objects with a security proxy [http://wiki.zope.org/zope3/WhatAreSecurityProxies], which causes Zope 3 also
to do security checks during attribute access. I like this, because it means:

	When I use the security proxy machinery, I can have a view that
conditionally displays certain HTML elements (like form fields) or
prevents certain attributes from being modified depending on the
permissions that the accessing user possesses with respect to a context
object.

	I want to also expose my resources via a REST API using Twisted Web. If
Pyramid performed authorization based on attribute access via Zope3's
security proxies, I could enforce my authorization policy in both
Pyramid and in the Twisted-based system the same way.

Defense

Pyramid was developed by folks familiar with Zope 2, which has a
"through the web" security model. This TTW security model was the precursor
to Zope 3's security proxies. Over time, as the Pyramid developers
(working in Zope 2) created such sites, we found authorization checks during
code interpretation extremely useful in a minority of projects. But much of
the time, TTW authorization checks usually slowed down the development
velocity of projects that had no delegation requirements. In particular, if
we weren't allowing untrusted users to write arbitrary Python code to be
executed by our application, the burden of through the web security checks
proved too costly to justify. We (collectively) haven't written an
application on top of which untrusted developers are allowed to write code in
many years, so it seemed to make sense to drop this model by default in a new
web framework.

And since we tend to use the same toolkit for all web applications, it's just
never been a concern to be able to use the same set of restricted-execution
code under two different web frameworks.

Justifications for disabling security proxies by default notwithstanding,
given that Zope 3 security proxies are viral by nature, the only requirement
to use one is to make sure you wrap a single object in a security proxy and
make sure to access that object normally when you want proxy security checks
to happen. It is possible to override the Pyramid traverser for a
given application (see Changing the Traverser). To get Zope3-like
behavior, it is possible to plug in a different traverser which returns
Zope3-security-proxy-wrapped objects for each traversed object (including the
context and the root). This would have the effect of
creating a more Zope3-like environment without much effort.

Pyramid uses its own HTTP exception class hierarchy rather than webob.exc [http://docs.webob.org/en/latest/api/exceptions.html#module-webob.exc]

New in version 1.1.

The HTTP exception classes defined in pyramid.httpexceptions are very
much like the ones defined in webob.exc [http://docs.webob.org/en/latest/api/exceptions.html#module-webob.exc], (e.g.,
HTTPNotFound or
HTTPForbidden). They have the same names and
largely the same behavior, and all have a very similar implementation, but not
the same identity. Here's why they have a separate identity.

	Making them separate allows the HTTP exception classes to subclass
pyramid.response.Response. This speeds up response generation
slightly due to the way the Pyramid router works. The same speed up could be
gained by monkeypatching webob.response.Response [http://docs.webob.org/en/latest/api/response.html#webob.response.Response], but it's usually
the case that monkeypatching turns out to be evil and wrong.

	Making them separate allows them to provide alternate __call__ logic,
which also speeds up response generation.

	Making them separate allows the exception classes to provide for the proper
value of RequestClass (pyramid.request.Request).

	Making them separate gives us freedom from thinking about backwards
compatibility code present in webob.exc [http://docs.webob.org/en/latest/api/exceptions.html#module-webob.exc] related to Python 2.4, which
we no longer support in Pyramid 1.1+.

	We change the behavior of two classes
(HTTPNotFound and
HTTPForbidden) in the module so that they
can be used by Pyramid internally for notfound and forbidden
exceptions.

	Making them separate allows us to influence the docstrings of the exception
classes to provide Pyramid-specific documentation.

	Making them separate allows us to silence a stupid deprecation warning under
Python 2.6 when the response objects are used as exceptions (related to
self.message).

Pyramid has simpler traversal machinery than does Zope

Zope's default traverser:

	Allows developers to mutate the traversal name stack while traversing (they
can add and remove path elements).

	Attempts to use an adaptation to obtain the next element in the path from
the currently traversed object, falling back to __bobo_traverse__,
__getitem__, and eventually __getattr__.

Zope's default traverser allows developers to mutate the traversal name stack
during traversal by mutating REQUEST['TraversalNameStack']. Pyramid's
default traverser (pyramid.traversal.ResourceTreeTraverser) does not offer
a way to do this. It does not maintain a stack as a request attribute and, even
if it did, it does not pass the request to resource objects while it's
traversing. While it was handy at times, this feature was abused in frameworks
built atop Zope (like CMF and Plone), often making it difficult to tell exactly
what was happening when a traversal didn't match a view. I felt it was better
for folks that wanted the feature to make them replace the traverser rather
than build that particular honey pot in to the default traverser.

Zope uses multiple mechanisms to attempt to obtain the next element in the
resource tree based on a name. It first tries an adaptation of the current
resource to ITraversable, and if that fails, it falls back to attempting a
number of magic methods on the resource (__bobo_traverse__,
__getitem__, and __getattr__). My experience while both using Zope and
attempting to reimplement its publisher in repoze.zope2 led me to believe
the following:

	The default traverser should be as simple as possible. Zope's publisher
is somewhat difficult to follow and replicate due to the fallbacks it tried
when one traversal method failed. It is also slow.

	The entire traverser should be replaceable, not just elements of the
traversal machinery. Pyramid has a few big components rather than a
plethora of small ones. If the entire traverser is replaceable, it's an
antipattern to make portions of the default traverser replaceable. Doing
so is a "knobs on knobs" pattern, which is unfortunately somewhat endemic
in Zope. In a "knobs on knobs" pattern, a replaceable subcomponent of a
larger component is made configurable using the same configuration
mechanism that can be used to replace the larger component. For example,
in Zope, you can replace the default traverser by registering an adapter.
But you can also (or alternately) control how the default traverser
traverses by registering one or more adapters. As a result of being able
to either replace the larger component entirely or turn knobs on the
default implementation of the larger component, no one understands when (or
whether) they should ever override the larger component entrirely. This
results, over time, in a rusting together of the larger "replaceable"
component and the framework itself because people come to depend on the
availability of the default component in order just to turn its knobs. The
default component effectively becomes part of the framework, which entirely
subverts the goal of making it replaceable. In Pyramid, typically if a
component is replaceable, it will itself have no knobs (it will be solid
state). If you want to influence behavior controlled by that component,
you will replace the component instead of turning knobs attached to the
component.

Microframeworks have smaller Hello World programs

Self-described "microframeworks" exist. Bottle [http://bottle.paws.de] and
Flask [http://flask.pocoo.org/] are two that are becoming popular. Bobo [http://bobo.digicool.com/] doesn't describe itself as a microframework, but
its intended user base is much the same. Many others exist. We've even (only as
a teaching tool, not as any sort of official project) created one using
Pyramid [http://static.repoze.org/casts/videotags.html]. The videos use BFG,
a precursor to Pyramid, but the resulting code is available for Pyramid too [https://github.com/Pylons/groundhog]). Microframeworks are small frameworks
with one common feature: each allows its users to create a fully functional
application that lives in a single Python file.

Some developers and microframework authors point out that Pyramid's "hello
world" single-file program is longer (by about five lines) than the equivalent
program in their favorite microframework. Guilty as charged.

This loss isn't for lack of trying. Pyramid is useful in the same circumstance
in which microframeworks claim dominance: single-file applications. But Pyramid
doesn't sacrifice its ability to credibly support larger applications in order
to achieve "hello world" lines of code parity with the current crop of
microframeworks. Pyramid's design instead tries to avoid some common pitfalls
associated with naive declarative configuration schemes. The subsections which
follow explain the rationale.

Application programmers don't control the module-scope codepath (import-time side-effects are evil)

Imagine a directory structure with a set of Python files in it:

.
|-- app.py
|-- app2.py
`-- config.py

The contents of app.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from config import decorator
from config import L
import pprint

@decorator
def foo():
 pass

if __name__ == '__main__':
 import app2
 pprint.pprint(L)

The contents of app2.py:

	1
2
3
4
5

	import app

@app.decorator
def bar():
 pass

The contents of config.py:

	1
2
3
4
5

	L = []

def decorator(func):
 L.append(func)
 return func

If we cd to the directory that holds these files, and we run
python app.py, given the directory structure and code above, what happens?
Presumably, our decorator decorator will be used twice, once by the
decorated function foo in app.py, and once by the decorated function
bar in app2.py. Since each time the decorator is used, the list L
in config.py is appended to, we'd expect a list with two elements to be
printed, right? Sadly, no:

[chrism@thinko]$ python app.py
[<function foo at 0x7f4ea41ab1b8>,
 <function foo at 0x7f4ea41ab230>,
 <function bar at 0x7f4ea41ab2a8>]

By visual inspection, that outcome (three different functions in the list)
seems impossible. We defined only two functions, and we decorated each of those
functions only once, so we believe that the decorator decorator will run
only twice. However, what we believe is in fact wrong, because the code at
module scope in our app.py module was executed twice. The code is
executed once when the script is run as __main__ (via python app.py),
and then it is executed again when app2.py imports the same file as
app.

What does this have to do with our comparison to microframeworks? Many
microframeworks in the current crop (e.g., Bottle and Flask) encourage you to
attach configuration decorators to objects defined at module scope. These
decorators execute arbitrarily complex registration code, which populates a
singleton registry that is a global which is in turn defined in external Python
module. This is analogous to the above example: the "global registry" in the
above example is the list L.

Let's see what happens when we use the same pattern with the Groundhog [https://github.com/Pylons/groundhog] microframework. Replace the contents
of app.py above with this:

	1
2
3
4
5
6
7
8
9

	from config import gh

@gh.route('/foo/')
def foo():
 return 'foo'

if __name__ == '__main__':
 import app2
 pprint.pprint(L)

Replace the contents of app2.py above with this:

	1
2
3
4
5

	import app

@app.gh.route('/bar/')
def bar():
 'return bar'

Replace the contents of config.py above with this:

	1
2

	from groundhog import Groundhog
gh = Groundhog('myapp', 'seekrit')

How many routes will be registered within the routing table of the "gh"
Groundhog application? If you answered three, you are correct. How many
would a casual reader (and any sane developer) expect to be registered? If
you answered two, you are correct. Will the double registration be a
problem? With our Groundhog framework's route method backing this
application, not really. It will slow the application down a little bit,
because it will need to miss twice for a route when it does not match. Will
it be a problem with another framework, another application, or another
decorator? Who knows. You need to understand the application in its
totality, the framework in its totality, and the chronology of execution to
be able to predict what the impact of unintentional code double-execution
will be.

The encouragement to use decorators which perform population of an external
registry has an unintended consequence: the application developer now must
assert ownership of every code path that executes Python module scope code.
Module-scope code is presumed by the current crop of decorator-based
microframeworks to execute once and only once. If it executes more than once,
weird things will start to happen. It is up to the application developer to
maintain this invariant. Unfortunately, in reality this is an impossible task,
because Python programmers do not own the module scope code path, and never
will. Anyone who tries to sell you on the idea that they do so is simply
mistaken. Test runners that you may want to use to run your code's tests often
perform imports of arbitrary code in strange orders that manifest bugs like the
one demonstrated above. API documentation generation tools do the same. Some
people even think it's safe to use the Python reload command, or delete
objects from sys.modules, each of which has hilarious effects when used
against code that has import-time side effects.

Global registry-mutating microframework programmers therefore will at some
point need to start reading the tea leaves about what might happen if module
scope code gets executed more than once, like we do in the previous paragraph.
When Python programmers assume they can use the module-scope code path to run
arbitrary code (especially code which populates an external registry), and this
assumption is challenged by reality, the application developer is often
required to undergo a painful, meticulous debugging process to find the root
cause of an inevitably obscure symptom. The solution is often to rearrange
application import ordering, or move an import statement from module-scope into
a function body. The rationale for doing so can never be expressed adequately
in the commit message which accompanies the fix, and can't be documented
succinctly enough for the benefit of the rest of the development team so that
the problem never happens again. It will happen again, especially if you are
working on a project with other people who haven't yet internalized the lessons
you learned while you stepped through module-scope code using pdb. This is
a very poor situation in which to find yourself as an application developer:
you probably didn't even know you or your team signed up for the job, because
the documentation offered by decorator-based microframeworks don't warn you
about it.

Folks who have a large investment in eager decorator-based configuration that
populates an external data structure (such as microframework authors) may
argue that the set of circumstances I outlined above is anomalous and
contrived. They will argue that it just will never happen. If you never
intend your application to grow beyond one or two or three modules, that's
probably true. However, as your codebase grows, and becomes spread across a
greater number of modules, the circumstances in which module-scope code will
be executed multiple times will become more and more likely to occur and less
and less predictable. It's not responsible to claim that double-execution of
module-scope code will never happen. It will; it's just a matter of luck,
time, and application complexity.

If microframework authors do admit that the circumstance isn't contrived,
they might then argue that real damage will never happen as the result of the
double-execution (or triple-execution, etc.) of module scope code. You would
be wise to disbelieve this assertion. The potential outcomes of multiple
execution are too numerous to predict because they involve delicate
relationships between application and framework code as well as chronology of
code execution. It's literally impossible for a framework author to know
what will happen in all circumstances. But even if given the gift of
omniscience for some limited set of circumstances, the framework author
almost certainly does not have the double-execution anomaly in mind when
coding new features. They're thinking of adding a feature, not protecting
against problems that might be caused by the 1% multiple execution case.
However, any 1% case may cause 50% of your pain on a project, so it'd be nice
if it never occurred.

Responsible microframeworks actually offer a back-door way around the problem.
They allow you to disuse decorator-based configuration entirely. Instead of
requiring you to do the following:

	1
2
3
4
5
6
7
8

	gh = Groundhog('myapp', 'seekrit')

@gh.route('/foo/')
def foo():
 return 'foo'

if __name__ == '__main__':
 gh.run()

They allow you to disuse the decorator syntax and go almost all-imperative:

	1
2
3
4
5
6
7
8

	def foo():
 return 'foo'

gh = Groundhog('myapp', 'seekrit')

if __name__ == '__main__':
 gh.add_route(foo, '/foo/')
 gh.run()

This is a generic mode of operation that is encouraged in the Pyramid
documentation. Some existing microframeworks (Flask, in particular) allow for
it as well. None (other than Pyramid) encourage it. If you never expect
your application to grow beyond two or three or four or ten modules, it
probably doesn't matter very much which mode you use. If your application
grows large, however, imperative configuration can provide better
predictability.

Note

Astute readers may notice that Pyramid has configuration decorators too. Aha!
Don't these decorators have the same problems? No. These decorators do not
populate an external Python module when they are executed. They only mutate
the functions (and classes and methods) to which they're attached. These
mutations must later be found during a scan process that has a predictable
and structured import phase. Module-localized mutation is actually the
best-case circumstance for double-imports. If a module only mutates itself
and its contents at import time, if it is imported twice, that's OK, because
each decorator invocation will always be mutating an independent copy of the
object to which it's attached, not a shared resource like a registry in
another module. This has the effect that double-registrations will never be
performed.

Routes need relative ordering

Consider the following simple Groundhog [https://github.com/Pylons/groundhog] application:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from groundhog import Groundhog
app = Groundhog('myapp', 'seekrit')

app.route('/admin')
def admin():
 return '<html>admin page</html>'

app.route('/:action')
def action():
 if action == 'add':
 return '<html>add</html>'
 if action == 'delete':
 return '<html>delete</html>'
 return app.abort(404)

if __name__ == '__main__':
 app.run()

If you run this application and visit the URL /admin, you will see the
"admin" page. This is the intended result. However, what if you rearrange the
order of the function definitions in the file?

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from groundhog import Groundhog
app = Groundhog('myapp', 'seekrit')

app.route('/:action')
def action():
 if action == 'add':
 return '<html>add</html>'
 if action == 'delete':
 return '<html>delete</html>'
 return app.abort(404)

app.route('/admin')
def admin():
 return '<html>admin page</html>'

if __name__ == '__main__':
 app.run()

If you run this application and visit the URL /admin, your app will now
return a 404 error. This is probably not what you intended. The reason you see
a 404 error when you rearrange function definition ordering is that routing
declarations expressed via our microframework's routing decorators have an
ordering, and that ordering matters.

In the first case, where we achieved the expected result, we first added a
route with the pattern /admin, then we added a route with the pattern
/:action by virtue of adding routing patterns via decorators at module
scope. When a request with a PATH_INFO of /admin enters our
application, the web framework loops over each of our application's route
patterns in the order in which they were defined in our module. As a result,
the view associated with the /admin routing pattern will be invoked because
it matches first. All is right with the world.

In the second case, where we did not achieve the expected result, we first
added a route with the pattern /:action, then we added a route with the
pattern /admin. When a request with a PATH_INFO of /admin enters
our application, the web framework loops over each of our application's route
patterns in the order in which they were defined in our module. As a result,
the view associated with the /:action routing pattern will be invoked
because it matches first. A 404 error is raised. This is not what we wanted; it
just happened due to the order in which we defined our view functions.

This is because Groundhog routes are added to the routing map in import order,
and matched in the same order when a request comes in. Bottle, like Groundhog,
as of this writing, matches routes in the order in which they're defined at
Python execution time. Flask, on the other hand, does not order route matching
based on import order. Instead it reorders the routes you add to your
application based on their "complexity". Other microframeworks have varying
strategies to do route ordering.

Your application may be small enough where route ordering will never cause an
issue. If your application becomes large enough, however, being able to specify
or predict that ordering as your application grows larger will be difficult.
At some point, you will likely need to start controlling route ordering more
explicitly, especially in applications that require extensibility.

If your microframework orders route matching based on complexity, you'll need
to understand what is meant by "complexity", and you'll need to attempt to
inject a "less complex" route to have it get matched before any "more complex"
one to ensure that it's tried first.

If your microframework orders its route matching based on relative
import/execution of function decorator definitions, you will need to ensure
that you execute all of these statements in the "right" order, and you'll need
to be cognizant of this import/execution ordering as you grow your application
or try to extend it. This is a difficult invariant to maintain for all but the
smallest applications.

In either case, your application must import the non-__main__ modules which
contain configuration decorations somehow for their configuration to be
executed. Does that make you a little uncomfortable? It should, because
Application programmers don't control the module-scope codepath (import-time side-effects are evil).

Pyramid uses neither decorator import time ordering nor does it attempt to
divine the relative complexity of one route to another as a means to define a
route match ordering. In Pyramid, you have to maintain relative route ordering
imperatively via the chronology of multiple executions of the
pyramid.config.Configurator.add_route() method. The order in which you
repeatedly call add_route becomes the order of route matching.

If needing to maintain this imperative ordering truly bugs you, you can use
traversal instead of route matching, which is a completely declarative
(and completely predictable) mechanism to map code to URLs. While URL dispatch
is easier to understand for small non-extensible applications, traversal is a
great fit for very large applications and applications that need to be
arbitrarily extensible.

"Stacked object proxies" are too clever / thread locals are a nuisance

Some microframeworks use the import statement to get a handle to an
object which is not logically global:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from flask import request

@app.route('/login', methods=['POST', 'GET'])
def login():
 error = None
 if request.method == 'POST':
 if valid_login(request.form['username'],
 request.form['password']):
 return log_the_user_in(request.form['username'])
 else:
 error = 'Invalid username/password'
 # this is executed if the request method was GET or the
 # credentials were invalid

The Pylons 1.X [http://pylonsproject.org] web framework uses a similar
strategy. It calls these things "Stacked Object Proxies", so, for purposes
of this discussion, I'll do so as well.

Import statements in Python (import foo, from bar import baz) are
most frequently performed to obtain a reference to an object defined globally
within an external Python module. However, in normal programs, they are
never used to obtain a reference to an object that has a lifetime measured by
the scope of the body of a function. It would be absurd to try to import,
for example, a variable named i representing a loop counter defined in
the body of a function. For example, we'd never try to import i from the
code below:

	1
2
3

	def afunc():
 for i in range(10):
 print(i)

By its nature, the request object that is created as the result of a WSGI
server's call into a long-lived web framework cannot be global, because the
lifetime of a single request will be much shorter than the lifetime of the
process running the framework. A request object created by a web framework
actually has more similarity to the i loop counter in our example above
than it has to any comparable importable object defined in the Python standard
library or in normal library code.

However, systems which use stacked object proxies promote locally scoped
objects, such as request, out to module scope, for the purpose of being
able to offer users a nice spelling involving import. They, for what I
consider dubious reasons, would rather present to their users the canonical way
of getting at a request as from framework import request instead of a
saner from myframework.threadlocals import get_request; request =
get_request(), even though the latter is more explicit.

It would be most explicit if the microframeworks did not use thread local
variables at all. Pyramid view functions are passed a request object. Many of
Pyramid's APIs require that an explicit request object be passed to them. It is
possible to retrieve the current Pyramid request as a threadlocal variable,
but it is an "in case of emergency, break glass" type of activity. This
explicitness makes Pyramid view functions more easily unit testable, as you
don't need to rely on the framework to manufacture suitable "dummy" request
(and other similarly-scoped) objects during test setup. It also makes them
more likely to work on arbitrary systems, such as async servers, that do no
monkeypatching.

Explicitly WSGI

Some microframeworks offer a run() method of an application object that
executes a default server configuration for easy execution.

Pyramid doesn't currently try to hide the fact that its router is a WSGI
application behind a convenience run() API. It just tells people to
import a WSGI server and use it to serve up their Pyramid application as per
the documentation of that WSGI server.

The extra lines saved by abstracting away the serving step behind run()
seems to have driven dubious second-order decisions related to its API in some
microframeworks. For example, Bottle contains a ServerAdapter subclass for
each type of WSGI server it supports via its app.run() mechanism. This
means that there exists code in bottle.py that depends on the following
modules: wsgiref, flup, paste, cherrypy, fapws,
tornado, google.appengine, twisted.web, diesel, gevent,
gunicorn, eventlet, and rocket. You choose the kind of server you
want to run by passing its name into the run method. In theory, this sounds
great: I can try out Bottle on gunicorn just by passing in a name! However,
to fully test Bottle, all of these third-party systems must be installed and
functional. The Bottle developers must monitor changes to each of these
packages and make sure their code still interfaces properly with them. This
increases the number of packages required for testing greatly; this is a lot
of requirements. It is likely difficult to fully automate these tests due to
requirements conflicts and build issues.

As a result, for single-file apps, we currently don't bother to offer a
run() shortcut. We tell folks to import their WSGI server of choice and run
it by hand. For the people who want a server abstraction layer, we suggest that
they use PasteDeploy. In PasteDeploy-based systems, the onus for making sure
that the server can interface with a WSGI application is placed on the server
developer, not the web framework developer, making it more likely to be timely
and correct.

Wrapping up

Here's a diagrammed version of the simplest pyramid application, where the
inlined comments take into account what we've discussed in the
Microframeworks have smaller Hello World programs section.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyramid.response import Response # explicit response, no thread local
from wsgiref.simple_server import make_server # explicitly WSGI

def hello_world(request): # accepts a request; no request thread local reqd
 # explicit response object means no response threadlocal
 return Response('Hello world!')

if __name__ == '__main__':
 from pyramid.config import Configurator
 config = Configurator() # no global application object
 config.add_view(hello_world) # explicit non-decorator registration
 app = config.make_wsgi_app() # explicitly WSGI
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever() # explicitly WSGI

Pyramid doesn't offer pluggable apps

It is "Pyramidic" to compose multiple external sources into the same
configuration using include(). Any
number of includes can be done to compose an application; includes can even
be done from within other includes. Any directive can be used within an
include that can be used outside of one (such as
add_view()).

Pyramid has a conflict detection system that will throw an error if two
included externals try to add the same configuration in a conflicting way
(such as both externals trying to add a route using the same name, or both
externals trying to add a view with the same set of predicates). It's awful
tempting to call this set of features something that can be used to compose a
system out of "pluggable applications". But in reality, there are a number
of problems with claiming this:

	The terminology is strained. Pyramid really has no notion of a
plurality of "applications", just a way to compose configuration
from multiple sources to create a single WSGI application. That
WSGI application may gain behavior by including or disincluding
configuration, but once it's all composed together, Pyramid
doesn't really provide any machinery which can be used to demarcate
the boundaries of one "application" (in the sense of configuration
from an external that adds routes, views, etc) from another.

	Pyramid doesn't provide enough "rails" to make it possible to integrate
truly honest-to-god, download-an-app-from-a-random-place
and-plug-it-in-to-create-a-system "pluggable" applications. Because
Pyramid itself isn't opinionated (it doesn't mandate a particular kind of
database, it offers multiple ways to map URLs to code, etc), it's unlikely
that someone who creates something application-like will be able to
casually redistribute it to J. Random Pyramid User and have it just work by
asking him to config.include a function from the package. This is
particularly true of very high level components such as blogs, wikis,
twitter clones, commenting systems, etc. The integrator (the Pyramid
developer who has downloaded a package advertised as a "pluggable app")
will almost certainly have made different choices about e.g. what type of
persistence system he's using, and for the integrator to appease the
requirements of the "pluggable application", he may be required to set up a
different database, make changes to his own code to prevent his application
from shadowing the pluggable app (or vice versa), and any other number of
arbitrary changes.

For this reason, we claim that Pyramid has "extensible" applications,
not pluggable applications. Any Pyramid application can be extended
without forking it as long as its configuration statements have been
composed into things that can be pulled in via config.include.

It's also perfectly reasonable for a single developer or team to create a set
of interoperating components which can be enabled or disabled by using
config.include. That developer or team will be able to provide the "rails"
(by way of making high-level choices about the technology used to create the
project, so there won't be any issues with plugging all of the components
together. The problem only rears its head when the components need to be
distributed to arbitrary users. Note that Django has a similar problem
with "pluggable applications" that need to work for arbitrary third parties,
even though they provide many, many more rails than does Pyramid. Even the
rails they provide are not enough to make the "pluggable application" story
really work without local modification.

Truly pluggable applications need to be created at a much higher level than a
web framework, as no web framework can offer enough constraints to really
make them work out of the box. They really need to plug into an application,
instead. It would be a noble goal to build an application with Pyramid that
provides these constraints and which truly does offer a way to plug in
applications (Joomla, Plone, Drupal come to mind).

Pyramid Has Zope Things In It, So It's Too Complex

On occasion, someone will feel compelled to post a mailing list message that
reads something like this:

had a quick look at pyramid ... too complex to me and not really
understand for which benefits.. I feel should consider whether it's time
for me to step back to django .. I always hated zope (useless ?)
complexity and I love simple way of thinking

(Paraphrased from a real email, actually.)

Let's take this criticism point-by-point.

Too Complex

If you can understand this hello world program, you can use Pyramid:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

Pyramid has ~ 700 pages of documentation (printed), covering topics from the
very basic to the most advanced. Nothing is left undocumented, quite
literally. It also has an awesome, very helpful community. Visit the
#pyramid IRC channel on freenode.net (irc://freenode.net#pyramid) and see.

Hate Zope

I'm sorry you feel that way. The Zope brand has certainly taken its share of
lumps over the years, and has a reputation for being insular and mysterious.
But the word "Zope" is literally quite meaningless without qualification.
What part of Zope do you hate? "Zope" is a brand, not a technology.

If it's Zope2-the-web-framework, Pyramid is not that. The primary designers
and developers of Pyramid, if anyone, should know. We wrote Pyramid's
predecessor (repoze.bfg), in part, because we knew that Zope 2 had
usability issues and limitations. repoze.bfg (and now Pyramid)
was written to address these issues.

If it's Zope3-the-web-framework, Pyramid is definitely not that. Making
use of lots of Zope 3 technologies is territory already staked out by the
Grok project. Save for the obvious fact that they're both web
frameworks, Pyramid is very, very different than Grok. Grok exposes
lots of Zope technologies to end users. On the other hand, if you need to
understand a Zope-only concept while using Pyramid, then we've failed on some
very basic axis.

If it's just the word Zope: this can only be guilt by association. Because a
piece of software internally uses some package named zope.foo, it doesn't
turn the piece of software that uses it into "Zope". There is a lot of
great software written that has the word Zope in its name. Zope is not
some sort of monolithic thing, and a lot of its software is usable
externally. And while it's not really the job of this document to defend it,
Zope has been around for over 10 years and has an incredibly large, active
community. If you don't believe this,
http://pypi-ranking.info/author is an eye-opening reality
check.

Love Simplicity

Years of effort have gone into honing this package and its documentation to
make it as simple as humanly possible for developers to use. Everything is a
tradeoff, of course, and people have their own ideas about what "simple" is.
You may have a style difference if you believe Pyramid is complex. Its
developers obviously disagree.

Other Challenges

Other challenges are encouraged to be sent to the Pylons-devel [http://groups.google.com/group/pylons-devel] maillist. We'll try to address
them by considering a design change, or at very least via exposition here.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Copyright, Trademarks, and Attributions

The Pyramid Web Framework, Version 1.1

by Chris McDonough

Copyright © 2008-2011, Agendaless Consulting.

ISBN-10: 0615445675

ISBN-13: 978-0615445670

First print publishing: February, 2011

All rights reserved. This material may be copied or distributed only
subject to the terms and conditions set forth in the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 United States License [http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. You must
give the original author credit. You may not use this work for
commercial purposes. If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same or
similar license to this one.

Note

While the Pyramid documentation is offered under the
Creative Commons Attribution-Nonconmmercial-Share Alike 3.0 United
States License, the Pyramid software is offered under a
less restrictive (BSD-like) license [http://repoze.org/license.html] .

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. However, use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an "as-is" basis. The author and the
publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the
information contained in this book. No patent liability is assumed
with respect to the use of the information contained herein.

Attributions

	Editor:

	Casey Duncan

	Contributors:

	Ben Bangert, Blaise Laflamme, Rob Miller, Mike Orr, Carlos de la Guardia,
Paul Everitt, Tres Seaver, John Shipman, Marius Gedminas, Chris Rossi,
Joachim Krebs, Xavier Spriet, Reed O'Brien, William Chambers, Charlie
Choiniere, Jamaludin Ahmad, Graham Higgins, Patricio Paez, Michael
Merickel, Eric Ongerth, Niall O'Higgins, Christoph Zwerschke, John
Anderson, Atsushi Odagiri, Kirk Strauser, JD Navarro, Joe Dallago,
Savoir-Faire Linux, Łukasz Fidosz, Christopher Lambacher, Claus Conrad,
Chris Beelby, Phil Jenvey and a number of people with only pseudonyms on
GitHub.

	Cover Designer:

	Hugues Laflamme of Kemeneur [http://www.kemeneur.com/].

Used with permission:

The Request and Response Objects chapter is adapted, with permission, from
documentation originally written by Ian Bicking.

The Much Ado About Traversal chapter is adapted,
with permission, from an article written by Rob Miller.

The Logging is adapted, with permission, from the Pylons
documentation logging chapter, originally written by Phil Jenvey.

Print Production

The print version of this book was produced using the Sphinx [http://sphinx.pocoo.org/] documentation generation system and the
LaTeX [http://www.latex-project.org/] typesetting system.

Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries,
and other business communications to Agendaless Consulting. Please send software and other
technical queries to the Pylons-devel mailing list [http://groups.google.com/group/pylons-devel].

HTML Version and Source Code

An HTML version of this book is freely available via
http://docs.pylonsproject.org/projects/pyramid/en/latest/

The source code for the examples used in this book are available
within the Pyramid software distribution, always available
via https://github.com/Pylons/pyramid

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Typographical Conventions

Literals, filenames, and function arguments are presented using the
following style:

argument1

Warnings which represent limitations and need-to-know information
related to a topic or concept are presented in the following style:

Warning

This is a warning.

Notes which represent additional information related to a topic or
concept are presented in the following style:

Note

This is a note.

We present Python method names using the following style:

pyramid.config.Configurator.add_view()

We present Python class names, module names, attributes, and global
variables using the following style:

pyramid.config.Configurator.registry

References to glossary terms are presented using the following style:

Pylons

URLs are presented using the following style:

Pylons [http://pylonsproject.org]

References to sections and chapters are presented using the following
style:

Traversal

Code and configuration file blocks are presented in the following style:

	1
2

	def foo(abc):
 pass

Example blocks representing UNIX shell commands are prefixed with a $
character, e.g.:

$ $VENV/bin/nosetests

(See virtualenv for the meaning of $VENV)

Example blocks representing Windows cmd.exe commands are prefixed with a
drive letter and/or a directory name, e.g.:

c:\examples> %VENV%\Scripts\nosetests

(See virtualenv for the meaning of %VENV%)

Sometimes, when it's unknown which directory is current, Windows cmd.exe
example block commands are prefixed only with a > character, e.g.:

> %VENV%\Scripts\nosetests

When a command that should be typed on one line is too long to fit on a page,
the backslash \ is used to indicate that the following printed line
should actually be part of the command:

c:\bigfntut\tutorial> %VENV%\Scripts\nosetests --cover-package=tutorial \
 --cover-erase --with-coverage

A sidebar, which presents a concept tangentially related to content
discussed on a page, is rendered like so:

This is a sidebar

Sidebar information.

When multiple objects are imported from the same package,
the following convention is used:

from foo import (
 bar,
 baz,
)

It may look unusual, but it has advantages:

	It allows one to swap out the higher-level package foo for something
else that provides the similar API. An example would be swapping out
one database for another (e.g., graduating from SQLite to PostgreSQL).

	Looks more neat in cases where a large number of objects get imported from
that package.

	Adding or removing imported objects from the package is quicker and results
in simpler diffs.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	The Pyramid Web Framework v1.5.8

Glossary

	ACE

	An access control entry. An access control entry is one element
in an ACL. An access control entry is a three-tuple that
describes three things: an action (one of either Allow or
Deny), a principal (a string describing a user or
group), and a permission. For example the ACE, (Allow,
'bob', 'read') is a member of an ACL that indicates that the
principal bob is allowed the permission read against the
resource the ACL is attached to.

	ACL

	An access control list. An ACL is a sequence of ACE tuples.
An ACL is attached to a resource instance. An example of an ACL is [
(Allow, 'bob', 'read'), (Deny, 'fred', 'write')]. If an ACL is
attached to a resource instance, and that resource is findable via the
context resource, it will be consulted any active security policy to
determine whether a particular request can be fulfilled given the
authentication information in the request.

	action

	Represents a pending configuration statement generated by a call to a
configuration directive. The set of pending configuration
actions are processed when pyramid.config.Configurator.commit() is
called.

	add-on

	A Python distribution that uses Pyramid's extensibility
to plug into a Pyramid application and provide extra,
configurable services.

	Agendaless Consulting

	A consulting organization formed by Paul Everitt, Tres Seaver,
and Chris McDonough.

See also

See also Agendaless Consulting [http://agendaless.com].

	Akhet

	Akhet [http://docs.pylonsproject.org/projects/akhet/en/latest/] is a
Pyramid library and demo application with a Pylons-like feel.
It's most known for its former application scaffold, which helped
users transition from Pylons and those preferring a more Pylons-like API.
The scaffold has been retired but the demo plays a similar role.

	application registry

	A registry of configuration information consulted by
Pyramid while servicing an application. An application
registry maps resource types to views, as well as housing other
application-specific component registrations. Every
Pyramid application has one (and only one) application
registry.

	asset

	Any file contained within a Python package which is not
a Python source code file.

	asset descriptor

	An instance representing an asset specification provided by the
pyramid.path.AssetResolver.resolve() method. It supports the
methods and attributes documented in
pyramid.interfaces.IAssetDescriptor.

	asset specification

	A colon-delimited identifier for an asset. The colon
separates a Python package name from a package subpath.
For example, the asset specification
my.package:static/baz.css identifies the file named
baz.css in the static subdirectory of the my.package
Python package. See Understanding Asset Specifications for more
info.

	authentication

	The act of determining that the credentials a user presents
during a particular request are "good". Authentication in
Pyramid is performed via an authentication
policy.

	authentication policy

	An authentication policy in Pyramid terms is a bit of
code which has an API which determines the current
principal (or principals) associated with a request.

	authorization

	The act of determining whether a user can perform a specific action. In
pyramid terms, this means determining whether, for a given resource, any
principal (or principals) associated with the request have the
requisite permission to allow the request to continue.
Authorization in Pyramid is performed via its
authorization policy.

	authorization policy

	An authorization policy in Pyramid terms is a bit of
code which has an API which determines whether or not the
principals associated with the request can perform an action
associated with a permission, based on the information found on the
context resource.

	Babel

	A collection of tools [http://babel.pocoo.org/en/latest/] for
internationalizing Python applications. Pyramid does not depend on
Babel to operate, but if Babel is installed, additional locale
functionality becomes available to your application.

	Chameleon

	chameleon [https://chameleon.readthedocs.org/en/latest/] is an
attribute language template compiler which supports the ZPT
templating specification. It is written and maintained by Malthe Borch. It
has several extensions, such as the ability to use bracketed (Mako-style)
${name} syntax. It is also much faster than the reference
implementation of ZPT. Pyramid offers Chameleon templating out of
the box in ZPT and text flavors.

	configuration declaration

	An individual method call made to a configuration directive,
such as registering a view configuration (via the
add_view() method of the
configurator) or route configuration (via the
add_route() method of the
configurator). A set of configuration declarations is also implied by
the configuration decoration detected by a scan of code
in a package.

	configuration decoration

	Metadata implying one or more configuration declaration
invocations. Often set by configuration Python decorator
attributes, such as pyramid.view.view_config, aka
@view_config.

	configuration directive

	A method of the Configurator which causes a configuration action
to occur. The method pyramid.config.Configurator.add_view() is a
configuration directive, and application developers can add their own
directives as necessary (see Adding Methods to the Configurator via add_directive).

	configurator

	An object used to do configuration declaration within an
application. The most common configurator is an instance of the
pyramid.config.Configurator class.

	conflict resolution

	Pyramid attempts to resolve ambiguous configuration statements made by
application developers via automatic conflict resolution. Automatic
conflict resolution is described in
Automatic Conflict Resolution. If Pyramid cannot resolve
ambiguous configuration statements, it is possible to manually resolve
them as described in Manually Resolving Conflicts.

	console script

	A script written to the bin (on UNIX, or Scripts on Windows)
directory of a Python installation or virtualenv as the result of
running setup.py install or setup.py develop.

	context

	A resource in the resource tree that is found during traversal
or URL dispatch based on URL data; if it's found via traversal,
it's usually a resource object that is part of a resource tree;
if it's found via URL dispatch, it's an object manufactured on
behalf of the route's "factory". A context resource becomes the subject
of a view, and often has security information attached to
it. See the Traversal chapter and the
URL Dispatch chapter for more information about how a URL
is resolved to a context resource.

	CPython

	The C implementation of the Python language. This is the
reference implementation that most people refer to as simply
"Python"; Jython, Google's App Engine, and PyPy [http://doc.pypy.org/en/latest/] are examples of
non-C based Python implementations.

	declarative configuration

	The configuration mode in which you use the combination of
configuration decoration and a scan to configure your
Pyramid application.

	decorator

	A wrapper around a Python function or class which accepts the
function or class as its first argument and which returns an
arbitrary object. Pyramid provides several decorators,
used for configuration and return value modification purposes.

See also

See also PEP 318 [http://www.python.org/dev/peps/pep-0318/].

	Default Locale Name

	The locale name used by an application when no explicit
locale name is set. See Localization-Related Deployment Settings.

	default permission

	A permission which is registered as the default for an
entire application. When a default permission is in effect,
every view configuration registered with the system will
be effectively amended with a permission argument that will
require that the executing user possess the default permission in
order to successfully execute the associated view
callable.

See also

See also Setting a Default Permission.

	default root factory

	If an application does not register a root factory at Pyramid
configuration time, a default root factory is used to created the
default root object. Use of the default root object is useful in
application which use URL dispatch for all URL-to-view code
mappings, and does not (knowingly) use traversal otherwise.

	Default view

	The default view of a resource is the view invoked when the
view name is the empty string (''). This is the case when
traversal exhausts the path elements in the PATH_INFO of a
request before it returns a context resource.

	Deployment settings

	Deployment settings are settings passed to the Configurator as a
settings argument. These are later accessible via a
request.registry.settings dictionary in views or as
config.registry.settings in configuration code. Deployment settings
can be used as global application values.

	discriminator

	The unique identifier of an action.

	distribute

	Distribute [http://packages.python.org/distribute/] is a fork of
setuptools which runs on both Python 2 and Python 3.

	distribution

	(Setuptools/distutils terminology). A file representing an
installable library or application. Distributions are usually
files that have the suffix of .egg, .tar.gz, or .zip.
Distributions are the target of Setuptools-related commands such as
easy_install.

	distutils

	The standard system for packaging and distributing Python packages. See
http://docs.python.org/distutils/index.html for more information.
setuptools is actually an extension of the Distutils.

	Django

	A full-featured Python web framework [http://djangoproject.com].

	domain model

	Persistent data related to your application. For example, data stored
in a relational database. In some applications, the resource
tree acts as the domain model.

	dotted Python name

	A reference to a Python object by name using a string, in the form
path.to.modulename:attributename. Often used in Pyramid and
setuptools configurations. A variant is used in dotted names within
configurator method arguments that name objects (such as the "add_view"
method's "view" and "context" attributes): the colon (:) is not
used; in its place is a dot.

	entry point

	A setuptools indirection, defined within a setuptools
distribution setup.py. It is usually a name which refers
to a function somewhere in a package which is held by the
distribution.

	event

	An object broadcast to zero or more subscriber callables
during normal Pyramid system operations during the
lifetime of an application. Application code can subscribe to
these events by using the subscriber functionality described in
Using Events.

	exception response

	A response that is generated as the result of a raised exception
being caught by an exception view.

	Exception view

	An exception view is a view callable which may be
invoked by Pyramid when an exception is raised during
request processing. See Custom Exception Views for more
information.

	finished callback

	A user-defined callback executed by the router
unconditionally at the very end of request processing . See
Using Finished Callbacks.

	Forbidden view

	An exception view invoked by Pyramid when the developer
explicitly raises a pyramid.httpexceptions.HTTPForbidden
exception from within view code or root factory code,
or when the view configuration and authorization policy
found for a request disallows a particular view invocation.
Pyramid provides a default implementation of a forbidden view;
it can be overridden. See Changing the Forbidden View.

	Genshi

	An XML templating language [http://pypi.python.org/pypi/Genshi/]
by Christopher Lenz.

	Gettext

	The GNU gettext [http://www.gnu.org/software/gettext/]
library, used by the Pyramid translation machinery.

	Google App Engine

	Google App Engine [http://code.google.com/appengine/] (aka
"GAE") is a Python application hosting service offered by Google.
Pyramid runs on GAE.

	Green Unicorn

	Aka gunicorn, a fast WSGI server that runs on UNIX under
Python 2.6+ or Python 3.1+. See http://gunicorn.org/ for detailed
information.

	Grok

	A web framework based on Zope 3 [http://grok.zope.org].

	HTTP Exception

	The set of exception classes defined in pyramid.httpexceptions.
These can be used to generate responses with various status codes when
raised or returned from a view callable.

See also

See also HTTP Exceptions.

	imperative configuration

	The configuration mode in which you use Python to call methods on
a Configurator in order to add each configuration
declaration required by your application.

	interface

	A Zope interface [http://pypi.python.org/pypi/zope.interface]
object. In Pyramid, an interface may be attached to a
resource object or a request object in order to
identify that the object is "of a type". Interfaces are used
internally by Pyramid to perform view lookups and other
policy lookups. The ability to make use of an interface is
exposed to an application programmers during view
configuration via the context argument, the request_type
argument and the containment argument. Interfaces are also
exposed to application developers when they make use of the
event system. Fundamentally, Pyramid
programmers can think of an interface as something that they can
attach to an object that stamps it with a "type" unrelated to its
underlying Python type. Interfaces can also be used to describe
the behavior of an object (its methods and attributes), but
unless they choose to, Pyramid programmers do not need
to understand or use this feature of interfaces.

	Internationalization

	The act of creating software with a user interface that can
potentially be displayed in more than one language or cultural
context. Often shortened to "i18n" (because the word
"internationalization" is I, 18 letters, then N).

See also

See also Localization.

	introspectable

	An object which implements the attributes and methods described in
pyramid.interfaces.IIntrospectable. Introspectables are used
by the introspector to display configuration information about
a running Pyramid application. An introspectable is associated with a
action by virtue of the
pyramid.config.Configurator.action() method.

	introspector

	An object with the methods described by
pyramid.interfaces.IIntrospector that is available in both
configuration code (for registration) and at runtime (for querying) that
allows a developer to introspect configuration statements and
relationships between those statements.

	Jinja2

	A text templating language [http://jinja.pocoo.org/2/] by Armin
Ronacher.

	jQuery

	A popular Javascript library [http://jquery.org].

	JSON

	JavaScript Object Notation [http://www.json.org/] is a data
serialization format.

	Jython

	A Python implementation [http://www.jython.org/] written for
the Java Virtual Machine.

	lineage

	An ordered sequence of objects based on a "location -aware"
resource. The lineage of any given resource is composed of
itself, its parent, its parent's parent, and so on. The order of the
sequence is resource-first, then the parent of the resource, then its
parent's parent, and so on. The parent of a resource in a lineage is
available as its __parent__ attribute.

	Lingua

	A package by Wichert Akkerman which provides the pot-create
command to extract translateable messages from Python sources
and Chameleon ZPT template files.

	Locale Name

	A string like en, en_US, de, or de_AT which
uniquely identifies a particular locale.

	Locale Negotiator

	An object supplying a policy determining which locale
name best represents a given request. It is used by the
pyramid.i18n.get_locale_name(), and
pyramid.i18n.negotiate_locale_name() functions, and
indirectly by pyramid.i18n.get_localizer(). The
pyramid.i18n.default_locale_negotiator() function
is an example of a locale negotiator.

	Localization

	The process of displaying the user interface of an
internationalized application in a particular language or
cultural context. Often shortened to "l10" (because the word
"localization" is L, 10 letters, then N).

See also

See also Internationalization.

	Localizer

	An instance of the class pyramid.i18n.Localizer which
provides translation and pluralization services to an
application. It is retrieved via the
pyramid.i18n.get_localizer() function.

	location

	The path to an object in a resource tree. See
Location-Aware Resources for more information about how to make a resource
object location-aware.

	Mako

	Mako [http://www.makotemplates.org/] is a template language
which refines the familiar ideas of componentized layout and inheritance
using Python with Python scoping and calling semantics.

	matchdict

	The dictionary attached to the request object as
request.matchdict when a URL dispatch route has been matched.
Its keys are names as identified within the route pattern; its values are
the values matched by each pattern name.

	Message Catalog

	A gettext .mo file containing translations.

	Message Identifier

	A string used as a translation lookup key during localization.
The msgid argument to a translation string is a
message identifier. Message identifiers are also present in a
message catalog.

	METAL

	Macro Expansion for TAL [http://wiki.zope.org/ZPT/METAL], a
part of ZPT which makes it possible to share common look
and feel between templates.

	middleware

	Middleware is a WSGI concept. It is a WSGI component
that acts both as a server and an application. Interesting uses
for middleware exist, such as caching, content-transport
encoding, and other functions. See WSGI.org [http://www.wsgi.org]
or PyPI [http://python.org/pypi] to find middleware for your
application.

	mod_wsgi

	mod_wsgi [http://code.google.com/p/modwsgi/] is an Apache
module developed by Graham Dumpleton. It allows WSGI
applications (such as applications developed using
Pyramid) to be served using the Apache web server.

	module

	A Python source file; a file on the filesystem that typically ends with
the extension .py or .pyc. Modules often live in a
package.

	multidict

	An ordered dictionary that can have multiple values for each key. Adds
the methods getall, getone, mixed, add and
dict_of_lists to the normal dictionary interface. See
Multidict and pyramid.interfaces.IMultiDict.

	Not Found View

	An exception view invoked by Pyramid when the developer
explicitly raises a pyramid.httpexceptions.HTTPNotFound
exception from within view code or root factory code,
or when the current request doesn't match any view
configuration. Pyramid provides a default implementation of a
Not Found View; it can be overridden. See
Changing the Not Found View.

	package

	A directory on disk which contains an __init__.py file, making
it recognizable to Python as a location which can be import -ed.
A package exists to contain module files.

	PasteDeploy

	PasteDeploy [http://pythonpaste.org/deploy/] is a library used by
Pyramid which makes it possible to configure
WSGI components together declaratively within an .ini
file. It was developed by Ian Bicking.

	permission

	A string or Unicode object that represents an action being taken against
a context resource. A permission is associated with a view name
and a resource type by the developer. Resources are decorated with
security declarations (e.g. an ACL), which reference these
tokens also. Permissions are used by the active security policy to
match the view permission against the resources's statements about which
permissions are granted to which principal in a context in order to
answer the question "is this user allowed to do this". Examples of
permissions: read, or view_blog_entries.

	physical path

	The path required by a traversal which resolve a resource starting
from the physical root. For example, the physical path of the
abc subobject of the physical root object is /abc. Physical paths
can also be specified as tuples where the first element is the empty
string (representing the root), and every other element is a Unicode
object, e.g. ('', 'abc'). Physical paths are also sometimes called
"traversal paths".

	physical root

	The object returned by the application root factory.
Unlike the virtual root of a request, it is not impacted by
Virtual Hosting: it will always be the actual object returned by
the root factory, never a subobject.

	pipeline

	The PasteDeploy term for a single configuration of a WSGI
server, a WSGI application, with a set of middleware in-between.

	pkg_resources

	A module which ships with setuptools and distribute that
provides an API for addressing "asset files" within a Python
package. Asset files are static files, template files, etc;
basically anything non-Python-source that lives in a Python package can
be considered a asset file.

See also

See also PkgResources [http://peak.telecommunity.com/DevCenter/PkgResources].

	predicate

	A test which returns True or False. Two different types
of predicates exist in Pyramid: a view predicate
and a route predicate. View predicates are attached to
view configuration and route predicates are attached to
route configuration.

	predicate factory

	A callable which is used by a third party during the registration of a
route, view, or subscriber predicates to extend the configuration
system. See Adding a Third Party View, Route, or Subscriber Predicate for more
information.

	pregenerator

	A pregenerator is a function associated by a developer with a
route. It is called by
route_url() in order to adjust the set
of arguments passed to it by the user for special purposes. It will
influence the URL returned by
route_url(). See
pyramid.interfaces.IRoutePregenerator for more information.

	principal

	A principal is a string or Unicode object representing an entity,
typically a user or group. Principals are provided by an
authentication policy. For example, if a user has the
userid bob, and is a member of two groups named group foo and
group bar, then the request might have information attached to it
indicating that Bob was represented by three principals: bob, group
foo and group bar.

	project

	(Setuptools/distutils terminology). A directory on disk which
contains a setup.py file and one or more Python packages. The
setup.py file contains code that allows the package(s) to be
installed, distributed, and tested.

	Pylons

	A lightweight Python web framework [http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/]
and a predecessor of Pyramid.

	PyPI

	The Python Package Index [http://pypi.python.org/pypi], a
collection of software available for Python.

	PyPy

	PyPy is an "alternative implementation of the Python
language": http://pypy.org/

	Pyramid Community Cookbook

	Additional, community-based documentation for Pyramid which presents
topical, practical uses of Pyramid:
Pyramid Community Cookbook [http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/index.html#pyramid-cookbook]

	pyramid_debugtoolbar

	A Pyramid add-on which displays a helpful debug toolbar "on top of" HTML
pages rendered by your application, displaying request, routing, and
database information. pyramid_debugtoolbar [http://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/api.html#module-pyramid_debugtoolbar] is configured into
the development.ini of all applications which use a Pyramid
scaffold. For more information, see
http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/.

	pyramid_exclog

	A package which logs Pyramid application exception (error) information
to a standard Python logger. This add-on is most useful when
used in production applications, because the logger can be configured to
log to a file, to UNIX syslog, to the Windows Event Log, or even to
email. See its documentation [http://docs.pylonsproject.org/projects/pyramid_exclog/dev/].

	pyramid_handlers

	An add-on package which allows Pyramid users to create classes
that are analogues of Pylons 1 "controllers". See
http://docs.pylonsproject.org/projects/pyramid_handlers/dev/ .

	pyramid_jinja2

	Jinja2 templating system bindings for Pyramid, documented at
http://docs.pylonsproject.org/projects/pyramid_jinja2/dev/ . This
package also includes a scaffold named
pyramid_jinja2_starter, which creates an application package based
on the Jinja2 templating system.

	pyramid_redis_sessions

	A package by Eric Rasmussen which allows you to store Pyramid session
data in a Redis database. See
https://pypi.python.org/pypi/pyramid_redis_sessions for more information.

	pyramid_zcml

	An add-on package to Pyramid which allows applications to be
configured via ZCML. It is available on PyPI. If you
use pyramid_zcml [http://docs.pylonsproject.org/projects/pyramid-zcml/en/latest/api.html#module-pyramid_zcml], you can use ZCML as an alternative to
imperative configuration or configuration decoration.

	Python

	The programming language [http://python.org] in which
Pyramid is written.

	renderer

	A serializer which converts non-Response return values from a
view into a string, and ultimately into a response, usually
through view configuration. Using a renderer can make writing
views that require templating or other serialization, like JSON, less
tedious. See Writing View Callables Which Use a Renderer for more information.

	renderer factory

	A factory which creates a renderer. See
Adding and Changing Renderers for more information.

	renderer globals

	Values injected as names into a renderer by a
pyramid.event.BeforeRender event.

	Repoze

	"Repoze" is essentially a "brand" of software developed by Agendaless
Consulting [http://agendaless.com] and a set of contributors. The
term has no special intrinsic meaning. The project's website [http://repoze.org] has more information. The software developed
"under the brand" is available in a Subversion repository [http://svn.repoze.org]. Pyramid was originally known as
repoze.bfg.

	repoze.catalog

	An indexing and search facility (fielded and full-text) based on
zope.index [http://pypi.python.org/pypi/zope.index]. See the
documentation [http://docs.repoze.org/catalog] for more
information.

	repoze.lemonade

	Zope2 CMF-like data structures and helper facilities [http://docs.repoze.org/lemonade] for CA-and-ZODB-based
applications useful within Pyramid applications.

	repoze.who

	Authentication middleware [http://docs.repoze.org/who] for
WSGI applications. It can be used by Pyramid to
provide authentication information.

	repoze.workflow

	Barebones workflow for Python apps [http://docs.repoze.org/workflow] . It can be used by
Pyramid to form a workflow system.

	request

	An object that represents an HTTP request, usually an instance of the
pyramid.request.Request class. See Request and Response Objects
(narrative) and pyramid.request (API documentation) for
information about request objects.

	request factory

	An object which, provided a WSGI environment as a single
positional argument, returns a Pyramid-compatible request.

	request type

	An attribute of a request that allows for specialization
of view invocation based on arbitrary categorization. The every
request object that Pyramid generates and
manipulates has one or more interface objects attached to
it. The default interface attached to a request object is
pyramid.interfaces.IRequest.

	resource

	An object representing a node in the resource tree of an
application. If traversal is used, a resource is an element in
the resource tree traversed by the system. When traversal is used, a
resource becomes the context of a view. If url
dispatch is used, a single resource is generated for each request and
is used as the context resource of a view.

	Resource Location

	The act of locating a context resource given a request.
Traversal and URL dispatch are the resource location
subsystems used by Pyramid.

	resource tree

	A nested set of dictionary-like objects, each of which is a
resource. The act of traversal uses the resource tree
to find a context resource.

	response

	An object returned by a view callable that represents response
data returned to the requesting user agent. It must implement the
pyramid.interfaces.IResponse interface. A response object is
typically an instance of the pyramid.response.Response class or
a subclass such as pyramid.httpexceptions.HTTPFound. See
Request and Response Objects for information about response objects.

	response adapter

	A callable which accepts an arbitrary object and "converts" it to a
pyramid.response.Response object. See Changing How Pyramid Treats View Responses
for more information.

	response callback

	A user-defined callback executed by the router at a
point after a response object is successfully created.

See also

See also Using Response Callbacks.

	reStructuredText

	A plain text markup format [http://docutils.sourceforge.net/rst.html]
that is the defacto standard for documenting Python projects.
The Pyramid documentation is written in reStructuredText.

	root

	The object at which traversal begins when Pyramid
searches for a context resource (for URL Dispatch, the
root is always the context resource unless the traverse= argument
is used in route configuration).

	root factory

	The "root factory" of a Pyramid application is called on every
request sent to the application. The root factory returns the traversal
root of an application. It is conventionally named get_root. An
application may supply a root factory to Pyramid during the
construction of a Configurator. If a root factory is not
supplied, the application creates a default root object using the
default root factory.

	route

	A single pattern matched by the url dispatch subsystem,
which generally resolves to a root factory (and then
ultimately a view).

See also

See also url dispatch.

	route configuration

	Route configuration is the act of associating request parameters with a
particular route using pattern matching and route
predicate statements. See URL Dispatch for more
information about route configuration.

	route predicate

	An argument to a route configuration which implies a value
that evaluates to True or False for a given
request. All predicates attached to a route
configuration must evaluate to True for the associated route
to "match" the current request. If a route does not match the
current request, the next route (in definition order) is
attempted.

	router

	The WSGI application created when you start a
Pyramid application. The router intercepts requests,
invokes traversal and/or URL dispatch, calls view functions, and
returns responses to the WSGI server on behalf of your
Pyramid application.

	Routes

	A system by Ben Bangert [http://routes.groovie.org/] which
parses URLs and compares them against a number of user defined
mappings. The URL pattern matching syntax in Pyramid is
inspired by the Routes syntax (which was inspired by Ruby On
Rails pattern syntax).

	routes mapper

	An object which compares path information from a request to an
ordered set of route patterns. See URL Dispatch.

	scaffold

	A project template that generates some of the major parts of a Pyramid
application and helps users to quickly get started writing larger
applications. Scaffolds are usually used via the pcreate command.

	scan

	The term used by Pyramid to define the process of
importing and examining all code in a Python package or module for
configuration decoration.

	session

	A namespace that is valid for some period of continual activity
that can be used to represent a user's interaction with a web
application.

	session factory

	A callable, which, when called with a single argument named request
(a request object), returns a session object. See
Using the Default Session Factory,
Using Alternate Session Factories and
pyramid.config.Configurator.set_session_factory() for more
information.

	setuptools

	Setuptools [http://peak.telecommunity.com/DevCenter/setuptools]
builds on Python's distutils to provide easier building,
distribution, and installation of libraries and applications. As of
this writing, setuptools runs under Python 2, but not under Python 3.
You can use distribute under Python 3 instead.

	SQLAlchemy

	SQLAlchemy [http://www.sqlalchemy.org/] is an object
relational mapper used in tutorials within this documentation.

	subpath

	A list of element "left over" after the router has
performed a successful traversal to a view. The subpath is a
sequence of strings, e.g. ['left', 'over', 'names']. Within
Pyramid applications that use URL dispatch rather than traversal, you
can use *subpath in the route pattern to influence the
subpath. See Using *subpath in a Route Pattern for more information.

	subscriber

	A callable which receives an event. A callable becomes a
subscriber via imperative configuration or via
configuration decoration. See Using Events for more
information.

	template

	A file with replaceable parts that is capable of representing some
text, XML, or HTML when rendered.

	thread local

	A thread-local variable is one which is essentially a global variable
in terms of how it is accessed and treated, however, each thread [http://en.wikipedia.org/wiki/Thread_(computer_science)] used by the
application may have a different value for this same "global" variable.
Pyramid uses a small number of thread local variables, as
described in Thread Locals.

See also

See also the stdlib documentation [http://docs.python.org/3/library/threading.html#threading.local]
for more information.

	Translation Context

	A string representing the "context" in which a translation was
made within a given translation domain. See the gettext
documentation, 11.2.5 Using contexts for solving ambiguities [https://www.gnu.org/software/gettext/manual/gettext.html#Contexts]
for more information.

	Translation Directory

	A translation directory is a gettext translation
directory. It contains language folders, which themselves
contain LC_MESSAGES folders, which contain .mo files.
Each .mo file represents a set of translations for a language
in a translation domain. The name of the .mo file
(minus the .mo extension) is the translation domain name.

	Translation Domain

	A string representing the "context" in which a translation was
made. For example the word "java" might be translated
differently if the translation domain is "programming-languages"
than would be if the translation domain was "coffee". A
translation domain is represented by a collection of .mo files
within one or more translation directory directories.

	Translation String

	An instance of pyramid.i18n.TranslationString, which
is a class that behaves like a Unicode string, but has several
extra attributes such as domain, msgid, and mapping
for use during translation. Translation strings are usually
created by hand within software, but are sometimes created on the
behalf of the system for automatic template translation. For
more information, see Internationalization and Localization.

	Translator

	A callable which receives a translation string and returns a
translated Unicode object for the purposes of internationalization. A
localizer supplies a translator to a Pyramid application
accessible via its translate method.

	traversal

	The act of descending "up" a tree of resource objects from a root
resource in order to find a context resource. The
Pyramid router performs traversal of resource objects
when a root factory is specified. See the
Traversal chapter for more information. Traversal can be
performed instead of URL dispatch or can be combined with
URL dispatch. See Combining Traversal and URL Dispatch for more information about
combining traversal and URL dispatch (advanced).

	tween

	A bit of code that sits between the Pyramid router's main request
handling function and the upstream WSGI component that uses
Pyramid as its 'app'. The word "tween" is a contraction of
"between". A tween may be used by Pyramid framework extensions, to
provide, for example, Pyramid-specific view timing support, bookkeeping
code that examines exceptions before they are returned to the upstream
WSGI application, or a variety of other features. Tweens behave a bit
like WSGI middleware but they have the benefit of running in a
context in which they have access to the Pyramid application
registry as well as the Pyramid rendering machinery. See
Registering Tweens.

	URL dispatch

	An alternative to traversal as a mechanism for locating a
context resource for a view. When you use a
route in your Pyramid application via a route
configuration, you are using URL dispatch. See the
URL Dispatch for more information.

	userid

	A userid is a string or Unicode object used to identify and authenticate
a real-world user or client. A userid is supplied to an
authentication policy in order to discover the user's
principals. In the authentication policies which
Pyramid provides, the default behavior returns the user's userid as
a principal, but this is not strictly necessary in custom policies that
define their principals differently.

	Venusian

	Venusian [http://docs.pylonsproject.org/projects/venusian/en/latest/index.html#venusian] is a library which
allows framework authors to defer decorator actions. Instead of
taking actions when a function (or class) decorator is executed
at import time, the action usually taken by the decorator is
deferred until a separate "scan" phase. Pyramid relies
on Venusian to provide a basis for its scan feature.

	view

	Common vernacular for a view callable.

	view callable

	A "view callable" is a callable Python object which is associated
with a view configuration; it returns a response
object . A view callable accepts a single argument: request,
which will be an instance of a request object. An
alternate calling convention allows a view to be defined as a
callable which accepts a pair of arguments: context and
request: this calling convention is useful for
traversal-based applications in which a context is always
very important. A view callable is the primary mechanism by
which a developer writes user interface code within
Pyramid. See Views for more information
about Pyramid view callables.

	view configuration

	View configuration is the act of associating a view callable
with configuration information. This configuration information helps
map a given request to a particular view callable and it can
influence the response of a view callable. Pyramid views can be
configured via imperative configuration, or by a special
@view_config decorator coupled with a scan. See
View Configuration for more information about view
configuration.

	View handler

	A view handler ties together
pyramid.config.Configurator.add_route() and
pyramid.config.Configurator.add_view() to make it more convenient
to register a collection of views as a single class when using
url dispatch. View handlers ship as part of the
pyramid_handlers add-on package.

	View Lookup

	The act of finding and invoking the "best" view callable,
given a request and a context resource.

	view mapper

	A view mapper is a class which implements the
pyramid.interfaces.IViewMapperFactory interface, which performs
view argument and return value mapping. This is a plug point for
extension builders, not normally used by "civilians".

	view name

	The "URL name" of a view, e.g index.html. If a view is
configured without a name, its name is considered to be the empty
string (which implies the default view).

	view predicate

	An argument to a view configuration which evaluates to
True or False for a given request. All predicates
attached to a view configuration must evaluate to true for the
associated view to be considered as a possible callable for a
given request.

	virtual root

	A resource object representing the "virtual" root of a request; this is
typically the physical root object unless Virtual Hosting
is in use.

	virtualenv

	A term referring both to an isolated Python environment,
or the leading tool [http://www.virtualenv.org] that allows one to
create such environments.

Note: whenever you encounter commands prefixed with $VENV (Unix)
or %VENV (Windows), know that that is the environment variable whose
value is the root of the virtual environment in question.

	Waitress

	A WSGI server that runs on UNIX and Windows under Python 2.6+
and Python 3.2+. Projects generated via Pyramid scaffolding use
Waitress as a WGSI server. See
http://docs.pylonsproject.org/projects/waitress/en/latest/ for detailed
information.

	WebOb

	WebOb [http://webob.org] is a WSGI request/response
library created by Ian Bicking.

	WebTest

	WebTest [http://pythonpaste.org/webtest/] is a package which can help
you write functional tests for your WSGI application.

	WSGI

	Web Server Gateway Interface [http://www.wsgi.org/]. This is a
Python standard for connecting web applications to web servers,
similar to the concept of Java Servlets. Pyramid requires
that your application be served as a WSGI application.

	ZCML

	Zope Configuration Markup Language [http://www.muthukadan.net/docs/zca.html#zcml], an XML dialect
used by Zope and pyramid_zcml for configuration tasks.

	ZODB

	Zope Object Database [http://zodb.org], a
persistent Python object store.

	Zope

	The Z Object Publishing Framework [http://zope.org], a
full-featured Python web framework.

	Zope Component Architecture

	The Zope Component Architecture [http://www.muthukadan.net/docs/zca.html] (aka ZCA) is a system
which allows for application pluggability and complex dispatching
based on objects which implement an interface.
Pyramid uses the ZCA "under the hood" to perform view
dispatching and other application configuration tasks.

	ZPT

	The Zope Page Template [http://wiki.zope.org/ZPT/FrontPage]
templating language.

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	The Pyramid Web Framework v1.5.8

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyramid	

 	
 	
 pyramid.authentication	

 	
 	
 pyramid.authorization	

 	
 	
 pyramid.compat	

 	
 	
 pyramid.config	

 	
 	
 pyramid.decorator	

 	
 	
 pyramid.events	

 	
 	
 pyramid.exceptions	

 	
 	
 pyramid.httpexceptions	

 	
 	
 pyramid.i18n	

 	
 	
 pyramid.interfaces	

 	
 	
 pyramid.location	

 	
 	
 pyramid.paster	

 	
 	
 pyramid.path	

 	
 	
 pyramid.registry	

 	
 	
 pyramid.renderers	

 	
 	
 pyramid.request	

 	
 	
 pyramid.response	

 	
 	
 pyramid.scaffolds	

 	
 	
 pyramid.scripting	

 	
 	
 pyramid.security	

 	
 	
 pyramid.session	

 	
 	
 pyramid.settings	

 	
 	
 pyramid.static	

 	
 	
 pyramid.testing	

 	
 	
 pyramid.threadlocal	

 	
 	
 pyramid.traversal	

 	
 	
 pyramid.tweens	

 	
 	
 pyramid.url	

 	
 	
 pyramid.view	

 	
 	
 pyramid.wsgi	

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	The Pyramid Web Framework v1.5.8

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	

 	
 *subpath

 	

 	hybrid applications

 	
 *traverse route pattern

 	

 	hybrid applications

 	

 	
 .ini

 	

 	middleware

 	settings

_

 	

 	__call__() (IRenderer method)

 	

 	(IRendererFactory method)

 	(IResponse method)

 	(IRoutePregenerator method)

 	(ISessionFactory method)

 	(IViewMapper method)

 	(IViewMapperFactory method)

 	__contains__() (IDict method)

 	__delitem__() (IDict method)

 	__getitem__() (IDict method)

 	__hash__() (IIntrospectable method)

 	

 	__init__.py

 	__iter__() (IDict method)

 	__setitem__() (IDict method)

 	__str__() (IActionInfo method)

A

 	

 	absolute_asset_spec() (Configurator method)

 	abspath() (IAssetDescriptor method)

 	absspec() (IAssetDescriptor method)

 	accept (Request attribute)

 	accept_charset (Request attribute)

 	accept_encoding (Request attribute)

 	accept_language (Request attribute)

 	accept_ranges (IResponse attribute)

 	

 	(Response attribute)

 	access control entry

 	access control list

 	ACE, [1]

 	

 	(special)

 	ACL, [1]

 	

 	resource

 	ACL inheritance

 	ACLAllowed (class in pyramid.security)

 	ACLAuthorizationPolicy (class in pyramid.authorization)

 	ACLDenied (class in pyramid.security)

 	action

 	action() (Configurator method)

 	action_info (IIntrospectable attribute)

 	
 activating

 	

 	translation, [1]

 	add() (IIntrospector method)

 	

 	(IMultiDict method)

 	add-on

 	add_adapter() (JSON method)

 	

 	(JSONP method)

 	add_directive

 	add_directive() (Configurator method)

 	add_finished_callback() (Request method)

 	add_forbidden_view() (Configurator method)

 	add_notfound_view() (Configurator method)

 	add_permission() (Configurator method)

 	add_renderer() (Configurator method)

 	add_request_method() (Configurator method)

 	add_resource_url_adapter() (Configurator method)

 	add_response_adapter() (Configurator method)

 	add_response_callback() (Request method)

 	add_route

 	add_route() (Configurator method)

 	add_route_predicate() (Configurator method)

 	add_settings() (Configurator method)

 	add_static_view

 	add_static_view() (Configurator method)

 	add_subscriber() (Configurator method)

 	add_translation_dirs() (Configurator method)

 	add_traverser() (Configurator method)

 	add_tween() (Configurator method)

 	add_view

 	

 	add_view() (Configurator method)

 	add_view_predicate() (Configurator method)

 	
 adding

 	

 	renderer

 	translation directory

 	
 adding directives

 	

 	configurator

 	adding renderer globals

 	
 advanced

 	

 	configuration

 	age (IResponse attribute)

 	

 	(Response attribute)

 	Agendaless Consulting, [1]

 	Akhet

 	Akkerman, Wichert

 	alchemy scaffold

 	ALL_PERMISSIONS (in module pyramid.security)

 	Allow (in module pyramid.security)

 	allow (IResponse attribute)

 	

 	(Response attribute)

 	Allowed (class in pyramid.security)

 	app (IApplicationCreated attribute)

 	app_iter (IResponse attribute)

 	

 	(Response attribute)

 	app_iter_range() (IResponse method)

 	

 	(Response method)

 	application configuration

 	application registry, [1]

 	application_url (Request attribute)

 	ApplicationCreated (class in pyramid.events)

 	as_bytes() (Request method)

 	asbool() (in module pyramid.settings)

 	ascii_native_() (in module pyramid.compat)

 	aslist() (in module pyramid.settings)

 	assert_() (DummyTemplateRenderer method)

 	asset

 	asset descriptor

 	asset specification

 	asset specifications

 	AssetResolver (class in pyramid.path)

 	assets

 	

 	generating urls

 	overriding, [1]

 	serving

 	Authenticated (in module pyramid.security)

 	authenticated_userid (Request attribute)

 	authenticated_userid() (AuthTktAuthenticationPolicy method)

 	

 	(BasicAuthAuthenticationPolicy method)

 	(IAuthenticationPolicy method)

 	(RemoteUserAuthenticationPolicy method)

 	(RepozeWho1AuthenticationPolicy method)

 	(SessionAuthenticationPolicy method)

 	(in module pyramid.security)

 	authentication

 	authentication policy

 	

 	(creating)

 	(extending)

 	authorization

 	

 	(Request attribute)

 	authorization policy, [1]

 	

 	(creating)

 	AuthTktAuthenticationPolicy (class in pyramid.authentication)

 	AuthTktCookieHelper (class in pyramid.authentication)

 	AuthTktCookieHelper.AuthTicket (class in pyramid.authentication)

 	AuthTktCookieHelper.BadTicket

 	automatic reloading of templates

B

 	

 	Babel, [1]

 	BadCSRFToken

 	Bangert, Ben

 	BaseCookieSessionFactory() (in module pyramid.session)

 	BasicAuthAuthenticationPolicy (class in pyramid.authentication)

 	Beelby, Chris

 	before render event

 	BeforeRender (class in pyramid.events)

 	begin() (Configurator method)

 	Bicking, Ian, [1]

 	binary_type (in module pyramid.compat)

 	blank() (Request method)

 	

 	body (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	body_file (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	body_file_raw (Request attribute)

 	body_file_seekable (Request attribute)

 	book audience

 	book content overview

 	bootstrap() (in module pyramid.paster)

 	Borch, Malthe

 	bpython

 	Brandl, Georg

 	built-in renderers

 	bytes_() (in module pyramid.compat)

C

 	

 	cache_control (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	cache_expires (IResponse attribute)

 	call_application() (Request method)

 	CALLER_PACKAGE (in module pyramid.path)

 	categories() (IIntrospector method)

 	categorized() (IIntrospector method)

 	category_name (IIntrospectable attribute)

 	Chameleon, [1]

 	

 	translation strings

 	changed() (ISession method)

 	
 changing

 	

 	renderer

 	charset (IResponse attribute)

 	

 	(Response attribute)

 	check_csrf_token() (in module pyramid.session)

 	class_types (in module pyramid.compat)

 	cleaning up after request

 	cleanUp() (in module pyramid.testing)

 	clear() (BeforeRender method)

 	

 	(IDict method)

 	client_addr (Request attribute)

 	clone() (DummyResource method)

 	code scanning

 	commit() (Configurator method)

 	
 compiling

 	

 	message catalog

 	conditional_response_app() (IResponse method)

 	

 	(Response method)

 	configparser (in module pyramid.compat)

 	
 configuration

 	

 	advanced

 	conflict detection

 	including from external sources

 	middleware

 	configuration declaration

 	configuration decoration, [1]

 	configuration decorator

 	configuration directive

 	ConfigurationError

 	

 	Configurator

 	configurator

 	

 	(class in pyramid.config)

 	adding directives

 	Configurator testing API

 	
 conflict detection

 	

 	configuration

 	conflict resolution

 	console script, [1]

 	container resources

 	content_disposition (IResponse attribute)

 	

 	(Response attribute)

 	content_encoding (IResponse attribute)

 	

 	(Response attribute)

 	content_language (IResponse attribute)

 	

 	(Response attribute)

 	content_length (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	content_location (IResponse attribute)

 	

 	(Response attribute)

 	content_md5 (IResponse attribute)

 	

 	(Response attribute)

 	content_range (IResponse attribute)

 	

 	(Response attribute)

 	content_type (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	content_type_params (IResponse attribute)

 	

 	(Response attribute)

 	context, [1]

 	

 	(Request attribute)

 	ContextFound (class in pyramid.events)

 	cookies (Request attribute)

 	copy() (BeforeRender method)

 	

 	(IResponse method)

 	(Request method)

 	(Response method)

 	copy_body() (Request method)

 	copy_get() (Request method)

 	CPython

 	created (ISession attribute)

 	creating a project

 	cross-site request forgery attacks, prevention

 	current_route_path() (in module pyramid.url)

 	

 	(Request method)

 	current_route_url() (in module pyramid.url)

 	

 	(Request method)

 	custom settings

D

 	

 	date (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	date and currency formatting (i18n)

 	de la Guardia, Carlos

 	debug settings

 	debug toolbar

 	debug_all

 	debug_authorization

 	debug_notfound

 	debug_routematch

 	
 debugging

 	

 	route matching

 	templates

 	view configuration

 	debugging authorization failures

 	debugging not found errors

 	declarative configuration

 	decorator

 	
 default

 	

 	permission

 	Default Locale Name

 	default permission

 	default root factory

 	Default view

 	default view

 	default_locale_name, [1]

 	default_locale_negotiator() (in module pyramid.i18n)

 	Deferred (class in pyramid.registry)

 	delete_cookie() (IResponse method)

 	

 	(Response method)

 	Denied (class in pyramid.security)

 	

 	Deny (in module pyramid.security)

 	DENY_ALL (in module pyramid.security)

 	
 deployment

 	

 	settings

 	Deployment settings

 	derive_view() (Configurator method)

 	detecting languages

 	development install

 	dict_of_lists() (IMultiDict method)

 	discriminator

 	

 	(IIntrospectable attribute)

 	discriminator_hash (IIntrospectable attribute)

 	distribute

 	distribution

 	distributions, showing installed

 	distutils

 	Django, [1], [2]

 	
 domain

 	

 	translation

 	domain (Request attribute)

 	domain model

 	dotted Python name

 	DottedNameResolver (class in pyramid.path)

 	DummyRequest (class in pyramid.testing)

 	DummyResource (class in pyramid.testing)

 	DummyTemplateRenderer (class in pyramid.testing)

 	Duncan, Casey

E

 	

 	effective_principals (Request attribute)

 	effective_principals() (AuthTktAuthenticationPolicy method)

 	

 	(BasicAuthAuthenticationPolicy method)

 	(IAuthenticationPolicy method)

 	(RemoteUserAuthenticationPolicy method)

 	(RepozeWho1AuthenticationPolicy method)

 	(SessionAuthenticationPolicy method)

 	(in module pyramid.security)

 	encode_content() (IResponse method)

 	

 	(Response method)

 	end() (Configurator method)

 	entry point

 	environ (IResponse attribute)

 	environment variables, [1]

 	escape() (in module pyramid.compat)

 	etag (IResponse attribute)

 	

 	(Response attribute)

 	event, [1]

 	Everitt, Paul

 	Everyone (in module pyramid.security)

 	exc_info (Request attribute)

 	exception (Request attribute)

 	exception response

 	exception responses

 	

 	Exception view

 	exception views

 	exception_response() (in module pyramid.httpexceptions)

 	EXCVIEW (in module pyramid.tweens)

 	excview_tween_factory() (in module pyramid.tweens)

 	exec_() (in module pyramid.compat)

 	exists() (IAssetDescriptor method)

 	expires (IResponse attribute)

 	

 	(Response attribute)

 	
 explicitly calling

 	

 	renderer

 	
 explictly calling

 	

 	view renderer

 	extend() (IMultiDict method)

 	
 extending

 	

 	pshell

 	extending an existing application

 	extending configuration

 	extensible application

 	
 extracting

 	

 	messages

F

 	

 	factory (IRoute attribute)

 	file (IActionInfo attribute)

 	FileIter (class in pyramid.response)

 	FileResponse (class in pyramid.response)

 	find_interface() (in module pyramid.traversal)

 	find_resource() (in module pyramid.traversal)

 	find_root() (in module pyramid.traversal)

 	
 finding by interface or class

 	

 	resource

 	
 finding by path

 	

 	resource

 	
 finding root

 	

 	resource

 	finished callback, [1]

 	flash messages

 	flash()

 	

 	(ISession method)

 	Forbidden (in module pyramid.exceptions)

 	

 	Forbidden view

 	forbidden view, [1]

 	forbidden_view_config (class in pyramid.view)

 	forget() (AuthTktAuthenticationPolicy method)

 	

 	(AuthTktCookieHelper method)

 	(BasicAuthAuthenticationPolicy method)

 	(IAuthenticationPolicy method)

 	(RemoteUserAuthenticationPolicy method)

 	(RepozeWho1AuthenticationPolicy method)

 	(SessionAuthenticationPolicy method)

 	(in module pyramid.security)

 	forms, views, and unicode

 	framework

 	frameworks vs. libraries

 	from_bytes() (Request method)

 	from_file() (Request method)

 	

 	(Response method)

 	fromkeys() (BeforeRender method)

 	Fulton, Jim

 	functional testing

 	functional tests

G

 	

 	generate() (IRoute method)

 	
 generating

 	

 	hybrid URLs

 	resource url

 	generating route URLs

 	generating static asset urls

 	
 generating urls

 	

 	assets

 	Genshi

 	GET (Request attribute)

 	get() (BeforeRender method)

 	

 	(IDict method)

 	(IIntrospector method)

 	get_app() (in module pyramid.paster)

 	get_appsettings() (in module pyramid.paster)

 	get_category() (IIntrospector method)

 	get_csrf_token() (ISession method)

 	get_current_registry, [1], [2]

 	get_current_registry() (in module pyramid.threadlocal)

 	get_current_request

 	get_current_request() (in module pyramid.threadlocal)

 	get_locale_name() (in module pyramid.i18n)

 	

 	get_localizer() (in module pyramid.i18n)

 	get_renderer() (in module pyramid.renderers)

 	get_response() (Request method)

 	get_root() (in module pyramid.scripting)

 	get_settings() (Configurator method)

 	getall() (IMultiDict method)

 	getGlobalSiteManager

 	getone() (IMultiDict method)

 	getSiteManager, [1]

 	Gettext, [1]

 	gettext

 	getUtility, [1]

 	
 global views

 	

 	hybrid applications

 	global_registries (in module pyramid.config)

 	Google App Engine

 	Green Unicorn

 	Grok

H

 	

 	Hardwick, Nat

 	has_permission() (in module pyramid.security)

 	

 	(Request method)

 	Hathaway, Shane

 	headerlist (IResponse attribute)

 	

 	(Response attribute)

 	headers (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	hello world program

 	helloworld (imperative)

 	Holth, Daniel

 	hook_zca (configurator method)

 	hook_zca() (Configurator method)

 	host (Request attribute)

 	host_port (Request attribute)

 	host_url (Request attribute)

 	hosting an app under a prefix

 	HTTP caching

 	HTTP Exception

 	HTTP exceptions

 	http redirect (from a view)

 	http_version (Request attribute)

 	HTTPAccepted

 	HTTPBadGateway

 	HTTPBadRequest

 	HTTPClientError

 	HTTPConflict

 	HTTPCreated

 	HTTPError

 	HTTPException

 	HTTPExpectationFailed

 	HTTPFailedDependency

 	HTTPForbidden

 	HTTPFound

 	HTTPGatewayTimeout

 	HTTPGone

 	HTTPInsufficientStorage

 	

 	HTTPInternalServerError

 	HTTPLengthRequired

 	HTTPLocked

 	HTTPMethodNotAllowed

 	HTTPMovedPermanently

 	HTTPMultipleChoices

 	HTTPNoContent

 	HTTPNonAuthoritativeInformation

 	HTTPNotAcceptable

 	HTTPNotFound

 	HTTPNotImplemented

 	HTTPNotModified

 	HTTPOk

 	HTTPPartialContent

 	HTTPPaymentRequired

 	HTTPPreconditionFailed

 	HTTPProxyAuthenticationRequired

 	HTTPRedirection

 	HTTPRequestEntityTooLarge

 	HTTPRequestRangeNotSatisfiable

 	HTTPRequestTimeout

 	HTTPRequestURITooLong

 	HTTPResetContent

 	HTTPSeeOther

 	HTTPServerError

 	HTTPServiceUnavailable

 	HTTPTemporaryRedirect

 	HTTPUnauthorized

 	HTTPUnprocessableEntity

 	HTTPUnsupportedMediaType

 	HTTPUseProxy

 	HTTPVersionNotSupported

 	hybrid applications

 	

 	*subpath

 	*traverse route pattern

 	global views

 	
 hybrid URLs

 	

 	generating

I

 	

 	i18n

 	IActionInfo (interface in pyramid.interfaces)

 	IApplicationCreated (interface in pyramid.interfaces)

 	IAssetDescriptor (interface in pyramid.interfaces)

 	IAuthenticationPolicy (interface in pyramid.interfaces)

 	IAuthorizationPolicy (interface in pyramid.interfaces)

 	IBeforeRender (interface in pyramid.interfaces)

 	IContextFound (interface in pyramid.interfaces)

 	identify() (AuthTktCookieHelper method)

 	IDict (interface in pyramid.interfaces)

 	IExceptionResponse (interface in pyramid.interfaces)

 	if_match (Request attribute)

 	if_modified_since (Request attribute)

 	if_none_match (Request attribute)

 	if_range (Request attribute)

 	if_unmodified_since (Request attribute)

 	IIntrospectable (interface in pyramid.interfaces)

 	IIntrospector (interface in pyramid.interfaces)

 	im_func (in module pyramid.compat)

 	imperative configuration, [1], [2]

 	IMultiDict (interface in pyramid.interfaces)

 	include() (Configurator method)

 	
 including from external sources

 	

 	configuration

 	INewRequest

 	

 	(interface in pyramid.interfaces)

 	INewResponse

 	

 	(interface in pyramid.interfaces)

 	INGRESS (in module pyramid.tweens)

 	ini file

 	ini file settings

 	
 initializing

 	

 	message catalog

 	input_() (in module pyramid.compat)

 	inside() (in module pyramid.location)

 	
 install

 	

 	Python (from package, UNIX)

 	Python (from package, Windows)

 	Python (from source, UNIX)

 	virtualenv

 	install preparation

 	installing on UNIX

 	installing on Windows

 	integer_types (in module pyramid.compat)

 	

 	integration testing

 	integration tests

 	interactive shell

 	interface

 	Internationalization

 	internationalization

 	introspectable

 	Introspectable (class in pyramid.registry)

 	introspectable (Configurator attribute)

 	introspection

 	introspector, [1]

 	

 	(Configurator attribute)

 	(Registry attribute)

 	invalidate() (ISession method)

 	invoke_subrequest() (Request method)

 	invoking a request

 	IPython

 	IRenderer (interface in pyramid.interfaces)

 	IRendererFactory (interface in pyramid.interfaces)

 	IRendererInfo (interface in pyramid.interfaces)

 	IResourceURL (interface in pyramid.interfaces)

 	IResponse

 	

 	(interface in pyramid.interfaces)

 	IRoute (interface in pyramid.interfaces)

 	IRoutePregenerator (interface in pyramid.interfaces)

 	is_body_readable (Request attribute)

 	is_body_seekable (Request attribute)

 	is_nonstr_iter() (in module pyramid.compat)

 	is_response() (Request method)

 	is_xhr (Request attribute)

 	isdir() (IAssetDescriptor method)

 	ISession (interface in pyramid.interfaces)

 	ISessionFactory (interface in pyramid.interfaces)

 	items() (BeforeRender method)

 	

 	(DummyResource method)

 	(IDict method)

 	iteritems_() (in module pyramid.compat)

 	iterkeys_() (in module pyramid.compat)

 	itervalues_() (in module pyramid.compat)

 	IViewMapper (interface in pyramid.interfaces)

 	IViewMapperFactory (interface in pyramid.interfaces)

J

 	

 	Jinja2, [1]

 	Jinja2 i18n

 	jQuery

 	JSON

 	

 	renderer

 	JSON (class in pyramid.renderers)

 	json (Request attribute)

 	

 	(Response attribute)

 	

 	
 json_body

 	

 	request

 	json_body (Request attribute)

 	

 	(Response attribute)

 	
 JSONP

 	

 	renderer

 	JSONP (class in pyramid.renderers)

 	Jython

K

 	

 	keys() (BeforeRender method)

 	

 	(DummyResource method)

 	(IDict method)

 	

 	Koym, Todd

L

 	

 	l10n

 	Laflamme, Blaise

 	Laflamme, Hugues

 	last_modified (IResponse attribute)

 	

 	(Response attribute)

 	leaf resources

 	line (IActionInfo attribute)

 	lineage

 	

 	resource

 	lineage() (in module pyramid.location)

 	Lingua, [1]

 	listdir() (IAssetDescriptor method)

 	
 locale

 	

 	negotiator

 	setting

 	Locale Name

 	locale name

 	

 	Locale Negotiator

 	locale negotiator

 	locale_name (Localizer attribute)

 	

 	(Request attribute)

 	Localization

 	localization

 	localization deployment settings

 	Localizer

 	localizer

 	Localizer (class in pyramid.i18n)

 	localizer (Request attribute), [1]

 	location

 	

 	(IResponse attribute)

 	(Response attribute)

 	
 location-aware

 	

 	resource

 	security

 	long (in module pyramid.compat)

M

 	

 	MAIN (in module pyramid.tweens)

 	make_body_seekable() (Request method)

 	make_localizer() (in module pyramid.i18n)

 	make_tempfile() (Request method)

 	make_wsgi_app

 	make_wsgi_app() (Configurator method)

 	Mako, [1]

 	Mako i18n

 	MANIFEST.in

 	map_() (in module pyramid.compat)

 	
 mapping to view callable

 	

 	URL pattern

 	resource

 	match() (IRoute method)

 	matchdict, [1]

 	

 	(Request attribute)

 	matched_route

 	

 	(Request attribute)

 	
 matching

 	

 	root URL

 	matching the root URL

 	
 matching views

 	

 	printing

 	max_forwards (Request attribute)

 	maybe_dotted() (Configurator method)

 	maybe_resolve() (DottedNameResolver method)

 	

 	md5_etag() (IResponse method)

 	

 	(Response method)

 	merge_cookies() (IResponse method)

 	

 	(Response method)

 	Merickel, Michael

 	Message Catalog

 	
 message catalog

 	

 	compiling

 	initializing

 	updating

 	Message Identifier

 	message identifier

 	
 messages

 	

 	extracting

 	METAL

 	method (Request attribute)

 	middleware

 	

 	.ini

 	TransLogger

 	configuration

 	mixed() (IMultiDict method)

 	mod_wsgi

 	
 modifying

 	

 	package structure

 	module

 	Moroz, Tom

 	
 msgid

 	

 	translation

 	multidict

 	

 	(WebOb)

 	MVC

N

 	

 	name (IRendererInfo attribute)

 	

 	(IRoute attribute)

 	native_() (in module pyramid.compat)

 	negotiate_locale_name

 	negotiate_locale_name() (in module pyramid.i18n)

 	
 negotiator

 	

 	locale

 	new (ISession attribute)

 	new_csrf_token() (ISession method)

 	NewRequest

 	

 	(class in pyramid.events)

 	NewResponse

 	

 	(class in pyramid.events)

 	

 	NO_PERMISSION_REQUIRED (in module pyramid.security)

 	not found error (debugging)

 	Not Found View

 	not found view

 	not_ (class in pyramid.config)

 	NotFound (in module pyramid.exceptions)

 	notfound_view_config (class in pyramid.view)

 	notify() (Registry method)

 	null_renderer (in module pyramid.renderers)

O

 	

 	object tree, [1]

 	Oram, Simon

 	order (IIntrospectable attribute)

 	Orr, Mike

 	

 	override_asset

 	override_asset() (Configurator method)

 	
 overriding

 	

 	assets, [1]

 	resource URL generation

 	routes

 	views

 	
 overriding at runtime

 	

 	renderer

P

 	

 	package, [1]

 	

 	(IRendererInfo attribute)

 	
 package structure

 	

 	modifying

 	Paez, Patricio

 	
 par: settings

 	

 	adding custom

 	params (Request attribute)

 	parse_ticket() (AuthTktCookieHelper static method)

 	Passing in configuration variables

 	PasteDeploy, [1]

 	PasteDeploy settings

 	path (Request attribute)

 	path_info (Request attribute)

 	path_info_peek() (Request method)

 	path_info_pop() (Request method)

 	path_qs (Request attribute)

 	path_url (Request attribute)

 	pattern (IRoute attribute)

 	pcreate

 	

 	--help

 	pdistreport

 	

 	--help

 	peek_flash()

 	

 	(ISession method)

 	permission

 	

 	default

 	permission names

 	permissions

 	permits() (IAuthorizationPolicy method)

 	Peters, Tim

 	physical path

 	physical root

 	physical_path (IResourceURL attribute)

 	physical_path_tuple (IResourceURL attribute)

 	pickle (in module pyramid.compat)

 	pipeline

 	pkg_resources

 	pluralization

 	pluralize() (Localizer method)

 	pluralizing (i18n)

 	pop() (BeforeRender method)

 	

 	(IDict method)

 	pop_flash()

 	

 	(ISession method)

 	popitem() (BeforeRender method)

 	

 	(IDict method)

 	POST (Request attribute)

 	post() (PyramidTemplate method)

 	

 	(Template method)

 	pragma (IResponse attribute)

 	

 	(Request attribute)

 	(Response attribute)

 	pre() (PyramidTemplate method)

 	

 	(Template method)

 	predicate

 	predicate factory

 	PredicateMismatch

 	predicates (IRoute attribute)

 	predvalseq (class in pyramid.registry)

 	pregenerator

 	

 	(IRoute attribute)

 	prepare() (IExceptionResponse method)

 	

 	(in module pyramid.scripting)

 	prequest

 	

 	--help

 	prevent_http_cache

 	preventing cross-site request forgery attacks

 	principal, [1]

 	principal names

 	principals_allowed_by_permission() (IAuthorizationPolicy method)

 	

 	(in module pyramid.security)

 	
 printing

 	

 	matching views

 	routes

 	tweens

 	production.ini

 	project, [1]

 	project structure

 	

 	protecting views

 	proutes

 	

 	--help

 	pserve

 	

 	--help

 	pshell

 	

 	--help

 	extending

 	ptweens

 	

 	--help

 	pviews

 	

 	--help

 	PY3 (in module pyramid.compat)

 	Pylons, [1], [2]

 	Pylons Project

 	Pylons-style controller dispatch

 	PyPI

 	PyPy

 	PYPY (in module pyramid.compat)

 	pyramid and other frameworks

 	Pyramid Community Cookbook

 	pyramid genesis

 	pyramid.authentication (module)

 	pyramid.authorization (module)

 	pyramid.compat (module)

 	pyramid.config (module)

 	pyramid.decorator (module)

 	pyramid.events (module)

 	pyramid.exceptions (module)

 	pyramid.httpexceptions (module)

 	pyramid.i18n (module)

 	pyramid.interfaces (module)

 	pyramid.location (module)

 	pyramid.paster (module)

 	pyramid.path (module)

 	pyramid.registry (module)

 	pyramid.renderers (module)

 	pyramid.request (module)

 	pyramid.response (module)

 	pyramid.scaffolds (module)

 	pyramid.scripting (module)

 	pyramid.security (module)

 	pyramid.session (module)

 	pyramid.settings (module)

 	pyramid.static (module)

 	pyramid.testing

 	

 	(module)

 	pyramid.threadlocal (module)

 	pyramid.traversal (module)

 	pyramid.tweens (module)

 	pyramid.url (module)

 	pyramid.view (module)

 	pyramid.wsgi (module)

 	pyramid_debugtoolbar

 	pyramid_exclog

 	pyramid_handlers

 	pyramid_jinja2

 	pyramid_redis_sessions, [1]

 	pyramid_zcml

 	PyramidTemplate (class in pyramid.scaffolds)

 	Python

 	

 	virtual environment

 	
 Python (from package, UNIX)

 	

 	install

 	
 Python (from package, Windows)

 	

 	install

 	
 Python (from source, UNIX)

 	

 	install

Q

 	

 	query_string (Request attribute)

 	

 	quote_path_segment() (in module pyramid.traversal)

R

 	

 	range (Request attribute)

 	redirecting to slash-appended routes

 	referer (Request attribute)

 	referrer (Request attribute)

 	register() (IIntrospectable method)

 	Registry (class in pyramid.registry)

 	registry (Configurator attribute)

 	

 	(IRendererInfo attribute)

 	(Request attribute)

 	reify() (in module pyramid.decorator)

 	relate() (IIntrospectable method)

 	

 	(IIntrospector method)

 	related() (IIntrospector method)

 	relative_url() (Request method)

 	reload, [1]

 	reload settings

 	reload_all

 	reload_assets, [1]

 	reload_templates

 	remember() (AuthTktAuthenticationPolicy method)

 	

 	(AuthTktCookieHelper method)

 	(BasicAuthAuthenticationPolicy method)

 	(IAuthenticationPolicy method)

 	(RemoteUserAuthenticationPolicy method)

 	(RepozeWho1AuthenticationPolicy method)

 	(SessionAuthenticationPolicy method)

 	(in module pyramid.security)

 	remote_addr (Request attribute)

 	remote_user (Request attribute)

 	RemoteUserAuthenticationPolicy (class in pyramid.authentication)

 	remove() (IIntrospector method)

 	remove_conditional_headers() (Request method)

 	render() (in module pyramid.renderers)

 	render_template() (Template method)

 	render_to_response() (in module pyramid.renderers)

 	render_view() (in module pyramid.view)

 	render_view_to_iterable() (in module pyramid.view)

 	render_view_to_response() (in module pyramid.view)

 	renderer, [1]

 	

 	JSON

 	JSONP

 	adding

 	changing

 	explicitly calling

 	overriding at runtime

 	string

 	system values

 	templates

 	renderer (template)

 	renderer factory

 	renderer globals

 	renderer response headers

 	renderers (built-in)

 	rendering_val (IBeforeRender attribute)

 	Repoze

 	repoze.bfg genesis

 	repoze.catalog

 	repoze.lemonade

 	repoze.who

 	repoze.workflow

 	repoze.zope2

 	RepozeWho1AuthenticationPolicy (class in pyramid.authentication)

 	request, [1]

 	

 	json_body

 	request (and text/unicode)

 	Request (class in pyramid.request)

 	request (IContextFound attribute)

 	

 	(INewRequest attribute)

 	(INewResponse attribute)

 	(IResponse attribute)

 	request attributes

 	

 	(special)

 	request factory, [1]

 	request lifecycle

 	request method

 	request methods

 	request object

 	request processing

 	

 	request type

 	request URLs

 	request.registry

 	RequestClass (IResponse attribute)

 	reraise() (in module pyramid.compat)

 	resolve() (AssetResolver method)

 	

 	(DottedNameResolver method)

 	resource, [1]

 	

 	ACL

 	finding by interface or class

 	finding by path

 	finding root

 	lineage

 	location-aware

 	mapping to view callable

 	resource API functions

 	resource interfaces, [1]

 	Resource Location

 	resource path generation

 	resource tree, [1], [2]

 	
 resource url

 	

 	generating

 	
 resource URL generation

 	

 	overriding

 	resource_path() (in module pyramid.traversal)

 	

 	(Request method)

 	resource_path_tuple() (in module pyramid.traversal)

 	resource_url

 	resource_url() (in module pyramid.url)

 	

 	(Request method)

 	response, [1]

 	Response (class in pyramid.response)

 	response (creating)

 	

 	(INewResponse attribute)

 	(Request attribute), [1]

 	response adapter

 	response callback, [1]

 	response headers

 	

 	(from a renderer)

 	response object

 	response_adapter() (in module pyramid.response)

 	reStructuredText

 	retry_after (IResponse attribute)

 	

 	(Response attribute)

 	
 RFC

 	

 	RFC 2068

 	RFC 2616

 	RFC 3986#section-3.5

 	root

 	

 	(Request attribute)

 	root factory, [1]

 	
 root URL

 	

 	matching

 	root url (matching)

 	Rossi, Chris

 	route

 	

 	view callable lookup details

 	route configuration, [1]

 	route configuration arguments

 	route factory

 	route matching

 	

 	debugging

 	route ordering

 	route path pattern syntax

 	route predicate

 	route predicates (custom)

 	route subpath

 	route URLs

 	route_path() (in module pyramid.url)

 	

 	(Request method)

 	route_url() (in module pyramid.url)

 	

 	(Request method)

 	router, [1]

 	Routes

 	
 routes

 	

 	overriding

 	printing

 	routes mapper

 	running an application

 	running tests

S

 	

 	Sawyers, Andrew

 	scaffold

 	scaffolds

 	scan

 	scan() (Configurator method)

 	scheme (Request attribute)

 	script_name (Request attribute)

 	Seaver, Tres

 	security

 	

 	URL dispatch

 	location-aware

 	view

 	send() (Request method)

 	server (IResponse attribute)

 	

 	(Response attribute)

 	server_name (Request attribute)

 	server_port (Request attribute)

 	
 serving

 	

 	assets

 	session, [1]

 	

 	(Request attribute), [1]

 	session factory

 	

 	(alternates)

 	(custom)

 	(default)

 	session object

 	session.flash

 	session.get_csrf_token

 	session.new_csrf_token

 	session.peek_flash

 	session.pop_flash

 	SessionAuthenticationPolicy (class in pyramid.authentication)

 	set_authentication_policy() (Configurator method)

 	set_authorization_policy() (Configurator method)

 	set_cookie() (IResponse method)

 	

 	(Response method)

 	set_default_permission() (Configurator method)

 	set_locale_negotiator() (Configurator method)

 	set_property() (Request method)

 	set_request_factory() (Configurator method)

 	set_request_property() (Configurator method)

 	set_root_factory() (Configurator method)

 	set_session_factory() (Configurator method)

 	set_view_mapper() (Configurator method)

 	setdefault() (BeforeRender method)

 	

 	(IDict method)

 	
 setting

 	

 	locale

 	settings

 	

 	.ini

 	deployment

 	middleware

 	settings (IRendererInfo attribute)

 	

 	(Registry attribute)

 	setUp() (in module pyramid.testing)

 	

 	setup.py

 	setup.py develop

 	setup_logging() (in module pyramid.paster)

 	setup_registry() (Configurator method)

 	setuptools

 	Shipman, John

 	showing installed distributions

 	signed_deserialize() (in module pyramid.session)

 	signed_serialize() (in module pyramid.session)

 	SignedCookieSessionFactory() (in module pyramid.session)

 	SimpleCookie (in module pyramid.compat)

 	special ACE

 	special permission names

 	special view responses

 	SQLAlchemy

 	starter scaffold

 	startup

 	startup process

 	static asset urls

 	static assets view

 	static asssets

 	static directory

 	static routes

 	static_path() (in module pyramid.url)

 	

 	(Request method)

 	static_url() (in module pyramid.url)

 	

 	(Request method)

 	static_view (class in pyramid.static)

 	status (IResponse attribute)

 	

 	(Response attribute)

 	status_code (Response attribute)

 	status_int (IResponse attribute)

 	

 	(Response attribute)

 	status_map (in module pyramid.httpexceptions)

 	stream() (IAssetDescriptor method)

 	
 string

 	

 	renderer

 	string_types (in module pyramid.compat)

 	subpath, [1]

 	

 	(Request attribute)

 	(route)

 	subrequest

 	

 	use_tweens

 	subscriber, [1]

 	subscriber() (in module pyramid.events)

 	
 system values

 	

 	renderer

T

 	

 	tearDown() (in module pyramid.testing)

 	template

 	Template (class in pyramid.scaffolds)

 	template automatic reload

 	template renderers

 	template system bindings

 	template_dir() (Template method)

 	
 templates

 	

 	debugging

 	renderer

 	templates used as renderers

 	templates used directly

 	test setup

 	test tear down

 	testConfig() (in module pyramid.testing)

 	testing_add_renderer() (Configurator method)

 	testing_add_subscriber() (Configurator method)

 	testing_resources() (Configurator method)

 	testing_securitypolicy() (Configurator method)

 	tests (running)

 	tests.py

 	text (Request attribute)

 	

 	(Response attribute)

 	text_() (in module pyramid.compat)

 	text_type (in module pyramid.compat)

 	thread local

 	thread locals

 	title (IIntrospectable attribute)

 	translate() (Localizer method)

 	translating (i18n)

 	translation

 	

 	activating, [1]

 	domain

 	msgid

 	

 	Translation Context

 	translation directories

 	Translation Directory

 	translation directory

 	

 	adding

 	Translation Domain

 	Translation String

 	translation string

 	translation string factory

 	
 translation strings

 	

 	Chameleon

 	TranslationString (class in pyramid.i18n)

 	TranslationStringFactory() (in module pyramid.i18n)

 	Translator

 	TransLogger

 	traversal, [1]

 	traversal algorithm

 	traversal details

 	traversal examples

 	traversal quick example

 	traversal tree, [1]

 	traversal_path() (in module pyramid.traversal)

 	traverse() (in module pyramid.traversal)

 	traversed (Request attribute)

 	traverser

 	tween

 	
 tweens

 	

 	printing

 	type (IRendererInfo attribute)

 	type_name (IIntrospectable attribute)

U

 	

 	ubody (Response attribute)

 	unauthenticated_userid (Request attribute)

 	unauthenticated_userid() (AuthTktAuthenticationPolicy method)

 	

 	(BasicAuthAuthenticationPolicy method)

 	(IAuthenticationPolicy method)

 	(RemoteUserAuthenticationPolicy method)

 	(RepozeWho1AuthenticationPolicy method)

 	(in module pyramid.security)

 	undefer() (in module pyramid.registry)

 	UnencryptedCookieSessionFactoryConfig() (in module pyramid.session)

 	unhook_zca() (Configurator method)

 	unicode and text (and the request)

 	unicode, views, and forms

 	unicode_body (IResponse attribute)

 	

 	(Response attribute)

 	unit testing

 	unittest

 	unrelate() (IIntrospectable method)

 	

 	(IIntrospector method)

 	unset_cookie() (IResponse method)

 	

 	(Response method)

 	upath_info (Request attribute)

 	update() (BeforeRender method)

 	

 	(IDict method)

 	
 updating

 	

 	message catalog

 	url (Request attribute)

 	URL dispatch, [1], [2]

 	

 	security

 	url generation (traversal)

 	

 	URL generator

 	
 URL pattern

 	

 	mapping to view callable

 	url_encode (in module pyramid.compat)

 	url_encoding (Request attribute)

 	url_open (in module pyramid.compat)

 	url_quote (in module pyramid.compat)

 	url_quote_plus (in module pyramid.compat)

 	url_unquote (in module pyramid.compat)

 	url_unquote_native() (in module pyramid.compat)

 	url_unquote_text() (in module pyramid.compat)

 	urlargs (Request attribute)

 	URLDecodeError

 	urlencode() (in module pyramid.url)

 	urlparse (in module pyramid.compat)

 	urlvars (Request attribute)

 	uscript_name (Request attribute)

 	
 use_tweens

 	

 	subrequest

 	user_agent (Request attribute)

 	userid

V

 	

 	values() (BeforeRender method)

 	

 	(DummyResource method)

 	(IDict method)

 	van Rossum, Guido

 	vary (IResponse attribute)

 	

 	(Response attribute)

 	Venusian

 	view

 	

 	security

 	view callable

 	
 view callable lookup details

 	

 	route

 	view callables

 	view calling convention, [1], [2]

 	view class

 	view configuration

 	

 	debugging

 	view configuration parameters

 	view exceptions

 	view function

 	View handler

 	view http redirect

 	View Lookup

 	view lookup, [1], [2]

 	view mapper, [1]

 	view name, [1]

 	view predicate

 	view renderer

 	

 	explictly calling

 	

 	view response

 	view security

 	view_config

 	

 	(class in pyramid.view)

 	view_config decorator

 	view_config placement

 	view_defaults (class in pyramid.view)

 	view_defaults class decorator

 	view_execution_permitted() (in module pyramid.security)

 	view_name (Request attribute)

 	
 views

 	

 	overriding

 	views, forms, and unicode

 	views.py

 	
 virtual environment

 	

 	Python

 	virtual hosting

 	virtual root, [1]

 	virtual_path (IResourceURL attribute)

 	virtual_path_tuple (IResourceURL attribute)

 	virtual_root (Request attribute)

 	virtual_root() (in module pyramid.traversal)

 	virtual_root_path (Request attribute)

 	virtualenv, [1]

 	

 	install

W

 	

 	Waitress

 	WebOb, [1]

 	WebTest

 	with_package() (Configurator method)

 	WSGI, [1]

 	

 	WSGI application

 	wsgiapp() (in module pyramid.wsgi)

 	wsgiapp2() (in module pyramid.wsgi)

 	www_authenticate (IResponse attribute)

 	

 	(Response attribute)

Z

 	

 	ZCA

 	ZCA global API

 	ZCA global registry

 	ZCML

 	ZODB

 	zodb scaffold

 	

 	Zope, [1], [2]

 	Zope 2

 	Zope 3

 	Zope Component Architecture, [1]

 	zope.component

 	ZPT

 Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

 _modules/html.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for html

"""
General functions for HTML manipulation.
"""

import re as _re
from html.entities import html5 as _html5

__all__ = ['escape', 'unescape']

[docs]def escape(s, quote=True):
 """
 Replace special characters "&", "<" and ">" to HTML-safe sequences.
 If the optional flag quote is true (the default), the quotation mark
 characters, both double quote (") and single quote (') characters are also
 translated.
 """
 s = s.replace("&", "&") # Must be done first!
 s = s.replace("<", "<")
 s = s.replace(">", ">")
 if quote:
 s = s.replace('"', """)
 s = s.replace('\'', "'")
 return s

see http://www.w3.org/TR/html5/syntax.html#tokenizing-character-references

_invalid_charrefs = {
 0x00: '\ufffd', # REPLACEMENT CHARACTER
 0x0d: '\r', # CARRIAGE RETURN
 0x80: '\u20ac', # EURO SIGN
 0x81: '\x81', # <control>
 0x82: '\u201a', # SINGLE LOW-9 QUOTATION MARK
 0x83: '\u0192', # LATIN SMALL LETTER F WITH HOOK
 0x84: '\u201e', # DOUBLE LOW-9 QUOTATION MARK
 0x85: '\u2026', # HORIZONTAL ELLIPSIS
 0x86: '\u2020', # DAGGER
 0x87: '\u2021', # DOUBLE DAGGER
 0x88: '\u02c6', # MODIFIER LETTER CIRCUMFLEX ACCENT
 0x89: '\u2030', # PER MILLE SIGN
 0x8a: '\u0160', # LATIN CAPITAL LETTER S WITH CARON
 0x8b: '\u2039', # SINGLE LEFT-POINTING ANGLE QUOTATION MARK
 0x8c: '\u0152', # LATIN CAPITAL LIGATURE OE
 0x8d: '\x8d', # <control>
 0x8e: '\u017d', # LATIN CAPITAL LETTER Z WITH CARON
 0x8f: '\x8f', # <control>
 0x90: '\x90', # <control>
 0x91: '\u2018', # LEFT SINGLE QUOTATION MARK
 0x92: '\u2019', # RIGHT SINGLE QUOTATION MARK
 0x93: '\u201c', # LEFT DOUBLE QUOTATION MARK
 0x94: '\u201d', # RIGHT DOUBLE QUOTATION MARK
 0x95: '\u2022', # BULLET
 0x96: '\u2013', # EN DASH
 0x97: '\u2014', # EM DASH
 0x98: '\u02dc', # SMALL TILDE
 0x99: '\u2122', # TRADE MARK SIGN
 0x9a: '\u0161', # LATIN SMALL LETTER S WITH CARON
 0x9b: '\u203a', # SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
 0x9c: '\u0153', # LATIN SMALL LIGATURE OE
 0x9d: '\x9d', # <control>
 0x9e: '\u017e', # LATIN SMALL LETTER Z WITH CARON
 0x9f: '\u0178', # LATIN CAPITAL LETTER Y WITH DIAERESIS
}

_invalid_codepoints = {
 # 0x0001 to 0x0008
 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8,
 # 0x000E to 0x001F
 0xe, 0xf, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19,
 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 # 0x007F to 0x009F
 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a,
 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96,
 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 # 0xFDD0 to 0xFDEF
 0xfdd0, 0xfdd1, 0xfdd2, 0xfdd3, 0xfdd4, 0xfdd5, 0xfdd6, 0xfdd7, 0xfdd8,
 0xfdd9, 0xfdda, 0xfddb, 0xfddc, 0xfddd, 0xfdde, 0xfddf, 0xfde0, 0xfde1,
 0xfde2, 0xfde3, 0xfde4, 0xfde5, 0xfde6, 0xfde7, 0xfde8, 0xfde9, 0xfdea,
 0xfdeb, 0xfdec, 0xfded, 0xfdee, 0xfdef,
 # others
 0xb, 0xfffe, 0xffff, 0x1fffe, 0x1ffff, 0x2fffe, 0x2ffff, 0x3fffe, 0x3ffff,
 0x4fffe, 0x4ffff, 0x5fffe, 0x5ffff, 0x6fffe, 0x6ffff, 0x7fffe, 0x7ffff,
 0x8fffe, 0x8ffff, 0x9fffe, 0x9ffff, 0xafffe, 0xaffff, 0xbfffe, 0xbffff,
 0xcfffe, 0xcffff, 0xdfffe, 0xdffff, 0xefffe, 0xeffff, 0xffffe, 0xfffff,
 0x10fffe, 0x10ffff
}

def _replace_charref(s):
 s = s.group(1)
 if s[0] == '#':
 # numeric charref
 if s[1] in 'xX':
 num = int(s[2:].rstrip(';'), 16)
 else:
 num = int(s[1:].rstrip(';'))
 if num in _invalid_charrefs:
 return _invalid_charrefs[num]
 if 0xD800 <= num <= 0xDFFF or num > 0x10FFFF:
 return '\uFFFD'
 if num in _invalid_codepoints:
 return ''
 return chr(num)
 else:
 # named charref
 if s in _html5:
 return _html5[s]
 # find the longest matching name (as defined by the standard)
 for x in range(len(s)-1, 1, -1):
 if s[:x] in _html5:
 return _html5[s[:x]] + s[x:]
 else:
 return '&' + s

_charref = _re.compile(r'&(#[0-9]+;?'
 r'|#[xX][0-9a-fA-F]+;?'
 r'|[^\t\n\f <&#;]{1,32};?)')

def unescape(s):
 """
 Convert all named and numeric character references (e.g. >, >,
 &x3e;) in the string s to the corresponding unicode characters.
 This function uses the rules defined by the HTML 5 standard
 for both valid and invalid character references, and the list of
 HTML 5 named character references defined in html.entities.html5.
 """
 if '&' not in s:
 return s
 return _charref.sub(_replace_charref, s)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 All modules for which code is available

		builtins

		html

		http.cookies

		pyramid.authentication

		pyramid.authorization

		pyramid.compat

		pyramid.config

		pyramid.config.adapters

		pyramid.config.assets

		pyramid.config.factories

		pyramid.config.i18n

		pyramid.config.rendering

		pyramid.config.routes

		pyramid.config.security

		pyramid.config.settings

		pyramid.config.testing

		pyramid.config.tweens

		pyramid.config.util

		pyramid.config.views

		pyramid.config.zca

		pyramid.decorator

		pyramid.encode

		pyramid.events

		pyramid.exceptions

		pyramid.httpexceptions

		pyramid.i18n

		pyramid.interfaces

		pyramid.location

		pyramid.paster

		pyramid.path

		pyramid.registry

		pyramid.renderers

		pyramid.request

		pyramid.response

		pyramid.scaffolds

		pyramid.scaffolds.template

		pyramid.scripting

		pyramid.security

		pyramid.session

		pyramid.settings

		pyramid.static

		pyramid.testing

		pyramid.threadlocal

		pyramid.traversal

		pyramid.tweens

		pyramid.url

		pyramid.util

		pyramid.view

		pyramid.wsgi

		translationstring

		urllib.parse

		urllib.request

		webob.request

		webob.response

		zope.deprecation.deprecation

		zope.interface.interface

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/builtins.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for builtins

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/webob/request.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for webob.request

import binascii
import io
import os
import re
import sys
import tempfile
import mimetypes
try:
 import simplejson as json
except ImportError:
 import json
import warnings

from webob.acceptparse import (
 AcceptLanguage,
 AcceptCharset,
 MIMEAccept,
 MIMENilAccept,
 NoAccept,
 accept_property,
)

from webob.cachecontrol import (
 CacheControl,
 serialize_cache_control,
)

from webob.compat import (
 PY3,
 bytes_,
 integer_types,
 native_,
 parse_qsl_text,
 reraise,
 text_type,
 url_encode,
 url_quote,
 url_unquote,
 quote_plus,
 urlparse,
 cgi_FieldStorage
)

from webob.cookies import RequestCookies

from webob.descriptors import (
 CHARSET_RE,
 SCHEME_RE,
 converter,
 converter_date,
 environ_getter,
 environ_decoder,
 parse_auth,
 parse_int,
 parse_int_safe,
 parse_range,
 serialize_auth,
 serialize_if_range,
 serialize_int,
 serialize_range,
 upath_property,
)

from webob.etag import (
 IfRange,
 AnyETag,
 NoETag,
 etag_property,
)

from webob.headers import EnvironHeaders

from webob.multidict import (
 NestedMultiDict,
 MultiDict,
 NoVars,
 GetDict,
)

from webob.util import warn_deprecation

__all__ = ['BaseRequest', 'Request', 'LegacyRequest']

class _NoDefault:
 def __repr__(self):
 return '(No Default)'
NoDefault = _NoDefault()

PATH_SAFE = '/:@&+$,'

http_method_probably_has_body = dict.fromkeys(
 ('GET', 'HEAD', 'DELETE', 'TRACE'), False)
http_method_probably_has_body.update(
 dict.fromkeys(('POST', 'PUT', 'PATCH'), True))

_LATIN_ENCODINGS = (
 'ascii', 'latin-1', 'latin', 'latin_1', 'l1', 'latin1',
 'iso-8859-1', 'iso8859_1', 'iso_8859_1', 'iso8859', '8859',
)

class BaseRequest(object):
 ## The limit after which request bodies should be stored on disk
 ## if they are read in (under this, and the request body is stored
 ## in memory):
 request_body_tempfile_limit = 10*1024

 _charset = None

 def __init__(self, environ, charset=None, unicode_errors=None,
 decode_param_names=None, **kw):

 if type(environ) is not dict:
 raise TypeError(
 "WSGI environ must be a dict; you passed %r" % (environ,))
 if unicode_errors is not None:
 warnings.warn(
 "You unicode_errors=%r to the Request constructor. Passing a "
 "``unicode_errors`` value to the Request is no longer "
 "supported in WebOb 1.2+. This value has been ignored " % (
 unicode_errors,),
 DeprecationWarning
)
 if decode_param_names is not None:
 warnings.warn(
 "You passed decode_param_names=%r to the Request constructor. "
 "Passing a ``decode_param_names`` value to the Request "
 "is no longer supported in WebOb 1.2+. This value has "
 "been ignored " % (decode_param_names,),
 DeprecationWarning
)
 if not _is_utf8(charset):
 raise DeprecationWarning(
 "You passed charset=%r to the Request constructor. As of "
 "WebOb 1.2, if your application needs a non-UTF-8 request "
 "charset, please construct the request without a charset or "
 "with a charset of 'None', then use ``req = "
 "req.decode(charset)``" % charset

)
 d = self.__dict__
 d['environ'] = environ
 if kw:
 cls = self.__class__
 if 'method' in kw:
 # set method first, because .body setters
 # depend on it for checks
 self.method = kw.pop('method')
 for name, value in kw.items():
 if not hasattr(cls, name):
 raise TypeError(
 "Unexpected keyword: %s=%r" % (name, value))
 setattr(self, name, value)

 if PY3: # pragma: no cover
 def encget(self, key, default=NoDefault, encattr=None):
 val = self.environ.get(key, default)
 if val is NoDefault:
 raise KeyError(key)
 if val is default:
 return default
 if not encattr:
 return val
 encoding = getattr(self, encattr)
 if encoding in _LATIN_ENCODINGS: # shortcut
 return val
 return bytes_(val, 'latin-1').decode(encoding)
 else:
 def encget(self, key, default=NoDefault, encattr=None):
 val = self.environ.get(key, default)
 if val is NoDefault:
 raise KeyError(key)
 if val is default:
 return default
 if encattr is None:
 return val
 encoding = getattr(self, encattr)
 return val.decode(encoding)

 def encset(self, key, val, encattr=None):
 if encattr:
 encoding = getattr(self, encattr)
 else:
 encoding = 'ascii'
 if PY3: # pragma: no cover
 self.environ[key] = bytes_(val, encoding).decode('latin-1')
 else:
 self.environ[key] = bytes_(val, encoding)

 @property
 def charset(self):
 if self._charset is None:
 charset = detect_charset(self._content_type_raw)
 if _is_utf8(charset):
 charset = 'UTF-8'
 self._charset = charset
 return self._charset

 @charset.setter
 def charset(self, charset):
 if _is_utf8(charset):
 charset = 'UTF-8'
 if charset != self.charset:
 raise DeprecationWarning("Use req = req.decode(%r)" % charset)

 def decode(self, charset=None, errors='strict'):
 charset = charset or self.charset
 if charset == 'UTF-8':
 return self
 # cookies and path are always utf-8
 t = Transcoder(charset, errors)

 new_content_type = CHARSET_RE.sub('; charset="UTF-8"',
 self._content_type_raw)
 content_type = self.content_type
 r = self.__class__(
 self.environ.copy(),
 query_string=t.transcode_query(self.query_string),
 content_type=new_content_type,
)

 if content_type == 'application/x-www-form-urlencoded':
 r.body = bytes_(t.transcode_query(native_(self.body)))
 return r
 elif content_type != 'multipart/form-data':
 return r

 fs_environ = self.environ.copy()
 fs_environ.setdefault('CONTENT_LENGTH', '0')
 fs_environ['QUERY_STRING'] = ''
 if PY3: # pragma: no cover
 fs = cgi_FieldStorage(fp=self.body_file,
 environ=fs_environ,
 keep_blank_values=True,
 encoding=charset,
 errors=errors)
 else:
 fs = cgi_FieldStorage(fp=self.body_file,
 environ=fs_environ,
 keep_blank_values=True)

 fout = t.transcode_fs(fs, r._content_type_raw)

 # this order is important, because setting body_file
 # resets content_length
 r.body_file = fout
 r.content_length = fout.tell()
 fout.seek(0)
 return r

 # this is necessary for correct warnings depth for both
 # BaseRequest and Request (due to AdhocAttrMixin.__setattr__)
 _setattr_stacklevel = 2

 def _body_file__get(self):
 """
 Input stream of the request (wsgi.input).
 Setting this property resets the content_length and seekable flag
 (unlike setting req.body_file_raw).
 """
 if not self.is_body_readable:
 return io.BytesIO()
 r = self.body_file_raw
 clen = self.content_length
 if not self.is_body_seekable and clen is not None:
 # we need to wrap input in LimitedLengthFile
 # but we have to cache the instance as well
 # otherwise this would stop working
 # (.remaining counter would reset between calls):
 # req.body_file.read(100)
 # req.body_file.read(100)
 env = self.environ
 wrapped, raw = env.get('webob._body_file', (0,0))
 if raw is not r:
 wrapped = LimitedLengthFile(r, clen)
 wrapped = io.BufferedReader(wrapped)
 env['webob._body_file'] = wrapped, r
 r = wrapped
 return r

 def _body_file__set(self, value):
 if isinstance(value, bytes):
 warn_deprecation(
 "Please use req.body = b'bytes' or req.body_file = fileobj",
 '1.2',
 self._setattr_stacklevel
)
 self.content_length = None
 self.body_file_raw = value
 self.is_body_seekable = False
 self.is_body_readable = True
 def _body_file__del(self):
 self.body = b''
 body_file = property(_body_file__get,
 _body_file__set,
 _body_file__del,
 doc=_body_file__get.__doc__)
 body_file_raw = environ_getter('wsgi.input')
 @property
 def body_file_seekable(self):
 """
 Get the body of the request (wsgi.input) as a seekable file-like
 object. Middleware and routing applications should use this
 attribute over .body_file.

 If you access this value, CONTENT_LENGTH will also be updated.
 """
 if not self.is_body_seekable:
 self.make_body_seekable()
 return self.body_file_raw

 url_encoding = environ_getter('webob.url_encoding', 'UTF-8')
 scheme = environ_getter('wsgi.url_scheme')
 method = environ_getter('REQUEST_METHOD', 'GET')
 http_version = environ_getter('SERVER_PROTOCOL')
 content_length = converter(
 environ_getter('CONTENT_LENGTH', None, '14.13'),
 parse_int_safe, serialize_int, 'int')
 remote_user = environ_getter('REMOTE_USER', None)
 remote_addr = environ_getter('REMOTE_ADDR', None)
 query_string = environ_getter('QUERY_STRING', '')
 server_name = environ_getter('SERVER_NAME')
 server_port = converter(
 environ_getter('SERVER_PORT'),
 parse_int, serialize_int, 'int')

 script_name = environ_decoder('SCRIPT_NAME', '', encattr='url_encoding')
 path_info = environ_decoder('PATH_INFO', encattr='url_encoding')

 # bw compat
 uscript_name = script_name
 upath_info = path_info

 _content_type_raw = environ_getter('CONTENT_TYPE', '')

 def _content_type__get(self):
 """Return the content type, but leaving off any parameters (like
 charset, but also things like the type in ``application/atom+xml;
 type=entry``)

 If you set this property, you can include parameters, or if
 you don't include any parameters in the value then existing
 parameters will be preserved.
 """
 return self._content_type_raw.split(';', 1)[0]
 def _content_type__set(self, value=None):
 if value is not None:
 value = str(value)
 if ';' not in value:
 content_type = self._content_type_raw
 if ';' in content_type:
 value += ';' + content_type.split(';', 1)[1]
 self._content_type_raw = value

 content_type = property(_content_type__get,
 _content_type__set,
 _content_type__set,
 _content_type__get.__doc__)

 _headers = None

 def _headers__get(self):
 """
 All the request headers as a case-insensitive dictionary-like
 object.
 """
 if self._headers is None:
 self._headers = EnvironHeaders(self.environ)
 return self._headers

 def _headers__set(self, value):
 self.headers.clear()
 self.headers.update(value)

 headers = property(_headers__get, _headers__set, doc=_headers__get.__doc__)

 @property
 def client_addr(self):
 """
 The effective client IP address as a string. If the
 ``HTTP_X_FORWARDED_FOR`` header exists in the WSGI environ, this
 attribute returns the client IP address present in that header
 (e.g. if the header value is ``192.168.1.1, 192.168.1.2``, the value
 will be ``192.168.1.1``). If no ``HTTP_X_FORWARDED_FOR`` header is
 present in the environ at all, this attribute will return the value
 of the ``REMOTE_ADDR`` header. If the ``REMOTE_ADDR`` header is
 unset, this attribute will return the value ``None``.

 .. warning::

 It is possible for user agents to put someone else's IP or just
 any string in ``HTTP_X_FORWARDED_FOR`` as it is a normal HTTP
 header. Forward proxies can also provide incorrect values (private
 IP addresses etc). You cannot "blindly" trust the result of this
 method to provide you with valid data unless you're certain that
 ``HTTP_X_FORWARDED_FOR`` has the correct values. The WSGI server
 must be behind a trusted proxy for this to be true.
 """
 e = self.environ
 xff = e.get('HTTP_X_FORWARDED_FOR')
 if xff is not None:
 addr = xff.split(',')[0].strip()
 else:
 addr = e.get('REMOTE_ADDR')
 return addr

 @property
 def host_port(self):
 """
 The effective server port number as a string. If the ``HTTP_HOST``
 header exists in the WSGI environ, this attribute returns the port
 number present in that header. If the ``HTTP_HOST`` header exists but
 contains no explicit port number: if the WSGI url scheme is "https" ,
 this attribute returns "443", if the WSGI url scheme is "http", this
 attribute returns "80" . If no ``HTTP_HOST`` header is present in
 the environ at all, this attribute will return the value of the
 ``SERVER_PORT`` header (which is guaranteed to be present).
 """
 e = self.environ
 host = e.get('HTTP_HOST')
 if host is not None:
 if ':' in host:
 host, port = host.split(':', 1)
 else:
 url_scheme = e['wsgi.url_scheme']
 if url_scheme == 'https':
 port = '443'
 else:
 port = '80'
 else:
 port = e['SERVER_PORT']
 return port

 @property
 def host_url(self):
 """
 The URL through the host (no path)
 """
 e = self.environ
 scheme = e.get('wsgi.url_scheme')
 url = scheme + '://'
 host = e.get('HTTP_HOST')
 if host is not None:
 if ':' in host:
 host, port = host.split(':', 1)
 else:
 port = None
 else:
 host = e.get('SERVER_NAME')
 port = e.get('SERVER_PORT')
 if scheme == 'https':
 if port == '443':
 port = None
 elif scheme == 'http':
 if port == '80':
 port = None
 url += host
 if port:
 url += ':%s' % port
 return url

 @property
 def application_url(self):
 """
 The URL including SCRIPT_NAME (no PATH_INFO or query string)
 """
 bscript_name = bytes_(self.script_name, self.url_encoding)
 return self.host_url + url_quote(bscript_name, PATH_SAFE)

 @property
 def path_url(self):
 """
 The URL including SCRIPT_NAME and PATH_INFO, but not QUERY_STRING
 """
 bpath_info = bytes_(self.path_info, self.url_encoding)
 return self.application_url + url_quote(bpath_info, PATH_SAFE)

 @property
 def path(self):
 """
 The path of the request, without host or query string
 """
 bscript = bytes_(self.script_name, self.url_encoding)
 bpath = bytes_(self.path_info, self.url_encoding)
 return url_quote(bscript, PATH_SAFE) + url_quote(bpath, PATH_SAFE)

 @property
 def path_qs(self):
 """
 The path of the request, without host but with query string
 """
 path = self.path
 qs = self.environ.get('QUERY_STRING')
 if qs:
 path += '?' + qs
 return path

 @property
 def url(self):
 """
 The full request URL, including QUERY_STRING
 """
 url = self.path_url
 qs = self.environ.get('QUERY_STRING')
 if qs:
 url += '?' + qs
 return url

 def relative_url(self, other_url, to_application=False):
 """
 Resolve other_url relative to the request URL.

 If ``to_application`` is True, then resolve it relative to the
 URL with only SCRIPT_NAME
 """
 if to_application:
 url = self.application_url
 if not url.endswith('/'):
 url += '/'
 else:
 url = self.path_url
 return urlparse.urljoin(url, other_url)

 def path_info_pop(self, pattern=None):
 """
 'Pops' off the next segment of PATH_INFO, pushing it onto
 SCRIPT_NAME, and returning the popped segment. Returns None if
 there is nothing left on PATH_INFO.

 Does not return ``''`` when there's an empty segment (like
 ``/path//path``); these segments are just ignored.

 Optional ``pattern`` argument is a regexp to match the return value
 before returning. If there is no match, no changes are made to the
 request and None is returned.
 """
 path = self.path_info
 if not path:
 return None
 slashes = ''
 while path.startswith('/'):
 slashes += '/'
 path = path[1:]
 idx = path.find('/')
 if idx == -1:
 idx = len(path)
 r = path[:idx]
 if pattern is None or re.match(pattern, r):
 self.script_name += slashes + r
 self.path_info = path[idx:]
 return r

 def path_info_peek(self):
 """
 Returns the next segment on PATH_INFO, or None if there is no
 next segment. Doesn't modify the environment.
 """
 path = self.path_info
 if not path:
 return None
 path = path.lstrip('/')
 return path.split('/', 1)[0]

 def _urlvars__get(self):
 """
 Return any *named* variables matched in the URL.

 Takes values from ``environ['wsgiorg.routing_args']``.
 Systems like ``routes`` set this value.
 """
 if 'paste.urlvars' in self.environ:
 return self.environ['paste.urlvars']
 elif 'wsgiorg.routing_args' in self.environ:
 return self.environ['wsgiorg.routing_args'][1]
 else:
 result = {}
 self.environ['wsgiorg.routing_args'] = ((), result)
 return result

 def _urlvars__set(self, value):
 environ = self.environ
 if 'wsgiorg.routing_args' in environ:
 environ['wsgiorg.routing_args'] = (
 environ['wsgiorg.routing_args'][0], value)
 if 'paste.urlvars' in environ:
 del environ['paste.urlvars']
 elif 'paste.urlvars' in environ:
 environ['paste.urlvars'] = value
 else:
 environ['wsgiorg.routing_args'] = ((), value)

 def _urlvars__del(self):
 if 'paste.urlvars' in self.environ:
 del self.environ['paste.urlvars']
 if 'wsgiorg.routing_args' in self.environ:
 if not self.environ['wsgiorg.routing_args'][0]:
 del self.environ['wsgiorg.routing_args']
 else:
 self.environ['wsgiorg.routing_args'] = (
 self.environ['wsgiorg.routing_args'][0], {})

 urlvars = property(_urlvars__get,
 _urlvars__set,
 _urlvars__del,
 doc=_urlvars__get.__doc__)

 def _urlargs__get(self):
 """
 Return any *positional* variables matched in the URL.

 Takes values from ``environ['wsgiorg.routing_args']``.
 Systems like ``routes`` set this value.
 """
 if 'wsgiorg.routing_args' in self.environ:
 return self.environ['wsgiorg.routing_args'][0]
 else:
 # Since you can't update this value in-place, we don't need
 # to set the key in the environment
 return ()

 def _urlargs__set(self, value):
 environ = self.environ
 if 'paste.urlvars' in environ:
 # Some overlap between this and wsgiorg.routing_args; we need
 # wsgiorg.routing_args to make this work
 routing_args = (value, environ.pop('paste.urlvars'))
 elif 'wsgiorg.routing_args' in environ:
 routing_args = (value, environ['wsgiorg.routing_args'][1])
 else:
 routing_args = (value, {})
 environ['wsgiorg.routing_args'] = routing_args

 def _urlargs__del(self):
 if 'wsgiorg.routing_args' in self.environ:
 if not self.environ['wsgiorg.routing_args'][1]:
 del self.environ['wsgiorg.routing_args']
 else:
 self.environ['wsgiorg.routing_args'] = (
 (), self.environ['wsgiorg.routing_args'][1])

 urlargs = property(_urlargs__get,
 _urlargs__set,
 _urlargs__del,
 _urlargs__get.__doc__)

 @property
 def is_xhr(self):
 """Is X-Requested-With header present and equal to ``XMLHttpRequest``?

 Note: this isn't set by every XMLHttpRequest request, it is
 only set if you are using a Javascript library that sets it
 (or you set the header yourself manually). Currently
 Prototype and jQuery are known to set this header."""
 return self.environ.get('HTTP_X_REQUESTED_WITH', '') == 'XMLHttpRequest'

 def _host__get(self):
 """Host name provided in HTTP_HOST, with fall-back to SERVER_NAME"""
 if 'HTTP_HOST' in self.environ:
 return self.environ['HTTP_HOST']
 else:
 return '%(SERVER_NAME)s:%(SERVER_PORT)s' % self.environ
 def _host__set(self, value):
 self.environ['HTTP_HOST'] = value
 def _host__del(self):
 if 'HTTP_HOST' in self.environ:
 del self.environ['HTTP_HOST']
 host = property(_host__get, _host__set, _host__del, doc=_host__get.__doc__)

 @property
 def domain(self):
 """ Returns the domain portion of the host value. Equivalent to:

 .. code-block:: python

 domain = request.host
 if ':' in domain:
 domain = domain.split(':', 1)[0]

 This will be equivalent to the domain portion of the ``HTTP_HOST``
 value in the environment if it exists, or the ``SERVER_NAME`` value in
 the environment if it doesn't. For example, if the environment
 contains an ``HTTP_HOST`` value of ``foo.example.com:8000``,
 ``request.domain`` will return ``foo.example.com``.

 Note that this value cannot be *set* on the request. To set the host
 value use :meth:`webob.request.Request.host` instead.
 """
 domain = self.host
 if ':' in domain:
 domain = domain.split(':', 1)[0]
 return domain

 def _body__get(self):
 """
 Return the content of the request body.
 """
 if not self.is_body_readable:
 return b''
 self.make_body_seekable() # we need this to have content_length
 r = self.body_file.read(self.content_length)
 self.body_file_raw.seek(0)
 return r
 def _body__set(self, value):
 if value is None:
 value = b''
 if not isinstance(value, bytes):
 raise TypeError("You can only set Request.body to bytes (not %r)"
 % type(value))
 if not http_method_probably_has_body.get(self.method, True):
 if not value:
 self.content_length = None
 self.body_file_raw = io.BytesIO()
 return
 self.content_length = len(value)
 self.body_file_raw = io.BytesIO(value)
 self.is_body_seekable = True
 def _body__del(self):
 self.body = b''
 body = property(_body__get, _body__set, _body__del, doc=_body__get.__doc__)

 def _json_body__get(self):
 """Access the body of the request as JSON"""
 return json.loads(self.body.decode(self.charset))

 def _json_body__set(self, value):
 self.body = json.dumps(value, separators=(',', ':')).encode(self.charset)

 def _json_body__del(self):
 del self.body

 json = json_body = property(_json_body__get, _json_body__set, _json_body__del)

 def _text__get(self):
 """
 Get/set the text value of the body
 """
 if not self.charset:
 raise AttributeError(
 "You cannot access Request.text unless charset is set")
 body = self.body
 return body.decode(self.charset)

 def _text__set(self, value):
 if not self.charset:
 raise AttributeError(
 "You cannot access Response.text unless charset is set")
 if not isinstance(value, text_type):
 raise TypeError(
 "You can only set Request.text to a unicode string "
 "(not %s)" % type(value))
 self.body = value.encode(self.charset)

 def _text__del(self):
 del self.body

 text = property(_text__get, _text__set, _text__del, doc=_text__get.__doc__)

 @property
 def POST(self):
 """
 Return a MultiDict containing all the variables from a form
 request. Returns an empty dict-like object for non-form requests.

 Form requests are typically POST requests, however PUT & PATCH requests
 with an appropriate Content-Type are also supported.
 """
 env = self.environ
 if self.method not in ('POST', 'PUT', 'PATCH'):
 return NoVars('Not a form request')
 if 'webob._parsed_post_vars' in env:
 vars, body_file = env['webob._parsed_post_vars']
 if body_file is self.body_file_raw:
 return vars
 content_type = self.content_type
 if ((self.method != 'POST' and not content_type)
 or content_type not in
 ('',
 'application/x-www-form-urlencoded',
 'multipart/form-data')
):
 # Not an HTML form submission
 return NoVars('Not an HTML form submission (Content-Type: %s)'
 % content_type)
 self._check_charset()

 self.make_body_seekable()
 self.body_file_raw.seek(0)

 fs_environ = env.copy()
 # FieldStorage assumes a missing CONTENT_LENGTH, but a
 # default of 0 is better:
 fs_environ.setdefault('CONTENT_LENGTH', '0')
 fs_environ['QUERY_STRING'] = ''
 if PY3: # pragma: no cover
 fs = cgi_FieldStorage(
 fp=self.body_file,
 environ=fs_environ,
 keep_blank_values=True,
 encoding='utf8')
 vars = MultiDict.from_fieldstorage(fs)
 else:
 fs = cgi_FieldStorage(
 fp=self.body_file,
 environ=fs_environ,
 keep_blank_values=True)
 vars = MultiDict.from_fieldstorage(fs)

 env['webob._parsed_post_vars'] = (vars, self.body_file_raw)
 return vars

 @property
 def GET(self):
 """
 Return a MultiDict containing all the variables from the
 QUERY_STRING.
 """
 env = self.environ
 source = env.get('QUERY_STRING', '')
 if 'webob._parsed_query_vars' in env:
 vars, qs = env['webob._parsed_query_vars']
 if qs == source:
 return vars

 data = []
 if source:
 # this is disabled because we want to access req.GET
 # for text/plain; charset=ascii uploads for example
 #self._check_charset()
 data = parse_qsl_text(source)
 #d = lambda b: b.decode('utf8')
 #data = [(d(k), d(v)) for k,v in data]
 vars = GetDict(data, env)
 env['webob._parsed_query_vars'] = (vars, source)
 return vars

 def _check_charset(self):
 if self.charset != 'UTF-8':
 raise DeprecationWarning(
 "Requests are expected to be submitted in UTF-8, not %s. "
 "You can fix this by doing req = req.decode('%s')" % (
 self.charset, self.charset)
)

 @property
 def params(self):
 """
 A dictionary-like object containing both the parameters from
 the query string and request body.
 """
 params = NestedMultiDict(self.GET, self.POST)
 return params

 @property
 def cookies(self):
 """
 Return a dictionary of cookies as found in the request.
 """
 return RequestCookies(self.environ)

 @cookies.setter
 def cookies(self, val):
 self.environ.pop('HTTP_COOKIE', None)
 r = RequestCookies(self.environ)
 r.update(val)

 def copy(self):
 """
 Copy the request and environment object.

 This only does a shallow copy, except of wsgi.input
 """
 self.make_body_seekable()
 env = self.environ.copy()
 new_req = self.__class__(env)
 new_req.copy_body()
 return new_req

 def copy_get(self):
 """
 Copies the request and environment object, but turning this request
 into a GET along the way. If this was a POST request (or any other
 verb) then it becomes GET, and the request body is thrown away.
 """
 env = self.environ.copy()
 return self.__class__(env, method='GET', content_type=None,
 body=b'')

 # webob.is_body_seekable marks input streams that are seekable
 # this way we can have seekable input without testing the .seek() method
 is_body_seekable = environ_getter('webob.is_body_seekable', False)

 #is_body_readable = environ_getter('webob.is_body_readable', False)

 def _is_body_readable__get(self):
 """
 webob.is_body_readable is a flag that tells us
 that we can read the input stream even though
 CONTENT_LENGTH is missing. This allows FakeCGIBody
 to work and can be used by servers to support
 chunked encoding in requests.
 For background see https://bitbucket.org/ianb/webob/issue/6
 """
 if http_method_probably_has_body.get(self.method):
 # known HTTP method with body
 return True
 elif self.content_length is not None:
 # unknown HTTP method, but the Content-Length
 # header is present
 return True
 else:
 # last resort -- rely on the special flag
 return self.environ.get('webob.is_body_readable', False)

 def _is_body_readable__set(self, flag):
 self.environ['webob.is_body_readable'] = bool(flag)

 is_body_readable = property(_is_body_readable__get, _is_body_readable__set,
 doc=_is_body_readable__get.__doc__
)

 def make_body_seekable(self):
 """
 This forces ``environ['wsgi.input']`` to be seekable.
 That means that, the content is copied into a BytesIO or temporary
 file and flagged as seekable, so that it will not be unnecessarily
 copied again.

 After calling this method the .body_file is always seeked to the
 start of file and .content_length is not None.

 The choice to copy to BytesIO is made from
 ``self.request_body_tempfile_limit``
 """
 if self.is_body_seekable:
 self.body_file_raw.seek(0)
 else:
 self.copy_body()

 def copy_body(self):
 """
 Copies the body, in cases where it might be shared with
 another request object and that is not desired.

 This copies the body in-place, either into a BytesIO object
 or a temporary file.
 """
 if not self.is_body_readable:
 # there's no body to copy
 self.body = b''
 elif self.content_length is None:
 # chunked body or FakeCGIBody
 self.body = self.body_file_raw.read()
 self._copy_body_tempfile()
 else:
 # try to read body into tempfile
 did_copy = self._copy_body_tempfile()
 if not did_copy:
 # it wasn't necessary, so just read it into memory
 self.body = self.body_file.read(self.content_length)

 def _copy_body_tempfile(self):
 """
 Copy wsgi.input to tempfile if necessary. Returns True if it did.
 """
 tempfile_limit = self.request_body_tempfile_limit
 todo = self.content_length
 assert isinstance(todo, integer_types), todo
 if not tempfile_limit or todo <= tempfile_limit:
 return False
 fileobj = self.make_tempfile()
 input = self.body_file
 while todo > 0:
 data = input.read(min(todo, 65536))
 if not data:
 # Normally this should not happen, because LimitedLengthFile
 # should have raised an exception by now.
 # It can happen if the is_body_seekable flag is incorrect.
 raise DisconnectionError(
 "Client disconnected (%s more bytes were expected)"
 % todo
)
 fileobj.write(data)
 todo -= len(data)
 fileobj.seek(0)
 self.body_file_raw = fileobj
 self.is_body_seekable = True
 return True

 def make_tempfile(self):
 """
 Create a tempfile to store big request body.
 This API is not stable yet. A 'size' argument might be added.
 """
 return tempfile.TemporaryFile()

 def remove_conditional_headers(self,
 remove_encoding=True,
 remove_range=True,
 remove_match=True,
 remove_modified=True):
 """
 Remove headers that make the request conditional.

 These headers can cause the response to be 304 Not Modified,
 which in some cases you may not want to be possible.

 This does not remove headers like If-Match, which are used for
 conflict detection.
 """
 check_keys = []
 if remove_range:
 check_keys += ['HTTP_IF_RANGE', 'HTTP_RANGE']
 if remove_match:
 check_keys.append('HTTP_IF_NONE_MATCH')
 if remove_modified:
 check_keys.append('HTTP_IF_MODIFIED_SINCE')
 if remove_encoding:
 check_keys.append('HTTP_ACCEPT_ENCODING')

 for key in check_keys:
 if key in self.environ:
 del self.environ[key]

 accept = accept_property('Accept', '14.1', MIMEAccept, MIMENilAccept)
 accept_charset = accept_property('Accept-Charset', '14.2', AcceptCharset)
 accept_encoding = accept_property('Accept-Encoding', '14.3',
 NilClass=NoAccept)
 accept_language = accept_property('Accept-Language', '14.4', AcceptLanguage)

 authorization = converter(
 environ_getter('HTTP_AUTHORIZATION', None, '14.8'),
 parse_auth, serialize_auth,
)

 def _cache_control__get(self):
 """
 Get/set/modify the Cache-Control header (`HTTP spec section 14.9
 <http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9>`_)
 """
 env = self.environ
 value = env.get('HTTP_CACHE_CONTROL', '')
 cache_header, cache_obj = env.get('webob._cache_control', (None, None))
 if cache_obj is not None and cache_header == value:
 return cache_obj
 cache_obj = CacheControl.parse(value,
 updates_to=self._update_cache_control,
 type='request')
 env['webob._cache_control'] = (value, cache_obj)
 return cache_obj

 def _cache_control__set(self, value):
 env = self.environ
 value = value or ''
 if isinstance(value, dict):
 value = CacheControl(value, type='request')
 if isinstance(value, CacheControl):
 str_value = str(value)
 env['HTTP_CACHE_CONTROL'] = str_value
 env['webob._cache_control'] = (str_value, value)
 else:
 env['HTTP_CACHE_CONTROL'] = str(value)
 env['webob._cache_control'] = (None, None)

 def _cache_control__del(self):
 env = self.environ
 if 'HTTP_CACHE_CONTROL' in env:
 del env['HTTP_CACHE_CONTROL']
 if 'webob._cache_control' in env:
 del env['webob._cache_control']

 def _update_cache_control(self, prop_dict):
 self.environ['HTTP_CACHE_CONTROL'] = serialize_cache_control(prop_dict)

 cache_control = property(_cache_control__get,
 _cache_control__set,
 _cache_control__del,
 doc=_cache_control__get.__doc__)

 if_match = etag_property('HTTP_IF_MATCH', AnyETag, '14.24')
 if_none_match = etag_property('HTTP_IF_NONE_MATCH', NoETag, '14.26',
 strong=False)

 date = converter_date(environ_getter('HTTP_DATE', None, '14.8'))
 if_modified_since = converter_date(
 environ_getter('HTTP_IF_MODIFIED_SINCE', None, '14.25'))
 if_unmodified_since = converter_date(
 environ_getter('HTTP_IF_UNMODIFIED_SINCE', None, '14.28'))
 if_range = converter(
 environ_getter('HTTP_IF_RANGE', None, '14.27'),
 IfRange.parse, serialize_if_range, 'IfRange object')

 max_forwards = converter(
 environ_getter('HTTP_MAX_FORWARDS', None, '14.31'),
 parse_int, serialize_int, 'int')

 pragma = environ_getter('HTTP_PRAGMA', None, '14.32')

 range = converter(
 environ_getter('HTTP_RANGE', None, '14.35'),
 parse_range, serialize_range, 'Range object')

 referer = environ_getter('HTTP_REFERER', None, '14.36')
 referrer = referer

 user_agent = environ_getter('HTTP_USER_AGENT', None, '14.43')

 def __repr__(self):
 try:
 name = '%s %s' % (self.method, self.url)
 except KeyError:
 name = '(invalid WSGI environ)'
 msg = '<%s at 0x%x %s>' % (
 self.__class__.__name__,
 abs(id(self)), name)
 return msg

 def as_bytes(self, skip_body=False):
 """
 Return HTTP bytes representing this request.
 If skip_body is True, exclude the body.
 If skip_body is an integer larger than one, skip body
 only if its length is bigger than that number.
 """
 url = self.url
 host = self.host_url
 assert url.startswith(host)
 url = url[len(host):]
 parts = [bytes_('%s %s %s' % (self.method, url, self.http_version))]
 #self.headers.setdefault('Host', self.host)

 # acquire body before we handle headers so that
 # content-length will be set
 body = None
 if http_method_probably_has_body.get(self.method):
 if skip_body > 1:
 if len(self.body) > skip_body:
 body = bytes_('<body skipped (len=%s)>' % len(self.body))
 else:
 skip_body = False
 if not skip_body:
 body = self.body

 for k, v in sorted(self.headers.items()):
 header = bytes_('%s: %s' % (k, v))
 parts.append(header)

 if body:
 parts.extend([b'', body])
 # HTTP clearly specifies CRLF
 return b'\r\n'.join(parts)

 def as_text(self):
 bytes = self.as_bytes()
 return bytes.decode(self.charset)

 __str__ = as_text

 @classmethod
 def from_bytes(cls, b):
 """
 Create a request from HTTP bytes data. If the bytes contain
 extra data after the request, raise a ValueError.
 """
 f = io.BytesIO(b)
 r = cls.from_file(f)
 if f.tell() != len(b):
 raise ValueError("The string contains more data than expected")
 return r

 @classmethod
 def from_text(cls, s):
 b = bytes_(s, 'utf-8')
 return cls.from_bytes(b)

 @classmethod
 def from_file(cls, fp):
 """Read a request from a file-like object (it must implement
 ``.read(size)`` and ``.readline()``).

 It will read up to the end of the request, not the end of the
 file (unless the request is a POST or PUT and has no
 Content-Length, in that case, the entire file is read).

 This reads the request as represented by ``str(req)``; it may
 not read every valid HTTP request properly.
 """
 start_line = fp.readline()
 is_text = isinstance(start_line, text_type)
 if is_text:
 crlf = '\r\n'
 colon = ':'
 else:
 crlf = b'\r\n'
 colon = b':'
 try:
 header = start_line.rstrip(crlf)
 method, resource, http_version = header.split(None, 2)
 method = native_(method, 'utf-8')
 resource = native_(resource, 'utf-8')
 http_version = native_(http_version, 'utf-8')
 except ValueError:
 raise ValueError('Bad HTTP request line: %r' % start_line)
 r = cls(environ_from_url(resource),
 http_version=http_version,
 method=method.upper()
)
 del r.environ['HTTP_HOST']
 while 1:
 line = fp.readline()
 if not line.strip():
 # end of headers
 break
 hname, hval = line.split(colon, 1)
 hname = native_(hname, 'utf-8')
 hval = native_(hval, 'utf-8').strip()
 if hname in r.headers:
 hval = r.headers[hname] + ', ' + hval
 r.headers[hname] = hval
 if http_method_probably_has_body.get(r.method):
 clen = r.content_length
 if clen is None:
 body = fp.read()
 else:
 body = fp.read(clen)
 if is_text:
 body = bytes_(body, 'utf-8')
 r.body = body
 return r

 def call_application(self, application, catch_exc_info=False):
 """
 Call the given WSGI application, returning ``(status_string,
 headerlist, app_iter)``

 Be sure to call ``app_iter.close()`` if it's there.

 If catch_exc_info is true, then returns ``(status_string,
 headerlist, app_iter, exc_info)``, where the fourth item may
 be None, but won't be if there was an exception. If you don't
 do this and there was an exception, the exception will be
 raised directly.
 """
 if self.is_body_seekable:
 self.body_file_raw.seek(0)
 captured = []
 output = []
 def start_response(status, headers, exc_info=None):
 if exc_info is not None and not catch_exc_info:
 reraise(exc_info)
 captured[:] = [status, headers, exc_info]
 return output.append
 app_iter = application(self.environ, start_response)
 if output or not captured:
 try:
 output.extend(app_iter)
 finally:
 if hasattr(app_iter, 'close'):
 app_iter.close()
 app_iter = output
 if catch_exc_info:
 return (captured[0], captured[1], app_iter, captured[2])
 else:
 return (captured[0], captured[1], app_iter)

 # Will be filled in later:
 ResponseClass = None

 def send(self, application=None, catch_exc_info=False):
 """
 Like ``.call_application(application)``, except returns a
 response object with ``.status``, ``.headers``, and ``.body``
 attributes.

 This will use ``self.ResponseClass`` to figure out the class
 of the response object to return.

 If ``application`` is not given, this will send the request to
 ``self.make_default_send_app()``
 """
 if application is None:
 application = self.make_default_send_app()
 if catch_exc_info:
 status, headers, app_iter, exc_info = self.call_application(
 application, catch_exc_info=True)
 del exc_info
 else:
 status, headers, app_iter = self.call_application(
 application, catch_exc_info=False)
 return self.ResponseClass(
 status=status, headerlist=list(headers), app_iter=app_iter)

 get_response = send

 def make_default_send_app(self):
 global _client
 try:
 client = _client
 except NameError:
 from webob import client
 _client = client
 return client.send_request_app

 @classmethod
 def blank(cls, path, environ=None, base_url=None,
 headers=None, POST=None, **kw):
 """
 Create a blank request environ (and Request wrapper) with the
 given path (path should be urlencoded), and any keys from
 environ.

 The path will become path_info, with any query string split
 off and used.

 All necessary keys will be added to the environ, but the
 values you pass in will take precedence. If you pass in
 base_url then wsgi.url_scheme, HTTP_HOST, and SCRIPT_NAME will
 be filled in from that value.

 Any extra keyword will be passed to ``__init__``.
 """
 env = environ_from_url(path)
 if base_url:
 scheme, netloc, path, query, fragment = urlparse.urlsplit(base_url)
 if query or fragment:
 raise ValueError(
 "base_url (%r) cannot have a query or fragment"
 % base_url)
 if scheme:
 env['wsgi.url_scheme'] = scheme
 if netloc:
 if ':' not in netloc:
 if scheme == 'http':
 netloc += ':80'
 elif scheme == 'https':
 netloc += ':443'
 else:
 raise ValueError(
 "Unknown scheme: %r" % scheme)
 host, port = netloc.split(':', 1)
 env['SERVER_PORT'] = port
 env['SERVER_NAME'] = host
 env['HTTP_HOST'] = netloc
 if path:
 env['SCRIPT_NAME'] = url_unquote(path)
 if environ:
 env.update(environ)
 content_type = kw.get('content_type', env.get('CONTENT_TYPE'))
 if headers and 'Content-Type' in headers:
 content_type = headers['Content-Type']
 if content_type is not None:
 kw['content_type'] = content_type
 environ_add_POST(env, POST, content_type=content_type)
 obj = cls(env, **kw)
 if headers is not None:
 obj.headers.update(headers)
 return obj

class LegacyRequest(BaseRequest):
 uscript_name = upath_property('SCRIPT_NAME')
 upath_info = upath_property('PATH_INFO')

 def encget(self, key, default=NoDefault, encattr=None):
 val = self.environ.get(key, default)
 if val is NoDefault:
 raise KeyError(key)
 if val is default:
 return default
 return val

class AdhocAttrMixin(object):
 _setattr_stacklevel = 3

 def __setattr__(self, attr, value, DEFAULT=object()):
 if (getattr(self.__class__, attr, DEFAULT) is not DEFAULT or
 attr.startswith('_')):
 object.__setattr__(self, attr, value)
 else:
 self.environ.setdefault('webob.adhoc_attrs', {})[attr] = value

 def __getattr__(self, attr, DEFAULT=object()):
 try:
 return self.environ['webob.adhoc_attrs'][attr]
 except KeyError:
 raise AttributeError(attr)

 def __delattr__(self, attr, DEFAULT=object()):
 if getattr(self.__class__, attr, DEFAULT) is not DEFAULT:
 return object.__delattr__(self, attr)
 try:
 del self.environ['webob.adhoc_attrs'][attr]
 except KeyError:
 raise AttributeError(attr)

class Request(AdhocAttrMixin, BaseRequest):
 """ The default request implementation """

def environ_from_url(path):
 if SCHEME_RE.search(path):
 scheme, netloc, path, qs, fragment = urlparse.urlsplit(path)
 if fragment:
 raise TypeError("Path cannot contain a fragment (%r)" % fragment)
 if qs:
 path += '?' + qs
 if ':' not in netloc:
 if scheme == 'http':
 netloc += ':80'
 elif scheme == 'https':
 netloc += ':443'
 else:
 raise TypeError("Unknown scheme: %r" % scheme)
 else:
 scheme = 'http'
 netloc = 'localhost:80'
 if path and '?' in path:
 path_info, query_string = path.split('?', 1)
 path_info = url_unquote(path_info)
 else:
 path_info = url_unquote(path)
 query_string = ''
 env = {
 'REQUEST_METHOD': 'GET',
 'SCRIPT_NAME': '',
 'PATH_INFO': path_info or '',
 'QUERY_STRING': query_string,
 'SERVER_NAME': netloc.split(':')[0],
 'SERVER_PORT': netloc.split(':')[1],
 'HTTP_HOST': netloc,
 'SERVER_PROTOCOL': 'HTTP/1.0',
 'wsgi.version': (1, 0),
 'wsgi.url_scheme': scheme,
 'wsgi.input': io.BytesIO(),
 'wsgi.errors': sys.stderr,
 'wsgi.multithread': False,
 'wsgi.multiprocess': False,
 'wsgi.run_once': False,
 #'webob.is_body_seekable': True,
 }
 return env

def environ_add_POST(env, data, content_type=None):
 if data is None:
 return
 elif isinstance(data, text_type): # pragma: no cover
 data = data.encode('ascii')
 if env['REQUEST_METHOD'] not in ('POST', 'PUT'):
 env['REQUEST_METHOD'] = 'POST'
 has_files = False
 if hasattr(data, 'items'):
 data = list(data.items())
 for k, v in data:
 if isinstance(v, (tuple, list)):
 has_files = True
 break
 if content_type is None:
 if has_files:
 content_type = 'multipart/form-data'
 else:
 content_type = 'application/x-www-form-urlencoded'
 if content_type.startswith('multipart/form-data'):
 if not isinstance(data, bytes):
 content_type, data = _encode_multipart(data, content_type)
 elif content_type.startswith('application/x-www-form-urlencoded'):
 if has_files:
 raise ValueError('Submiting files is not allowed for'
 ' content type `%s`' % content_type)
 if not isinstance(data, bytes):
 data = url_encode(data)
 else:
 if not isinstance(data, bytes):
 raise ValueError('Please provide `POST` data as string'
 ' for content type `%s`' % content_type)
 data = bytes_(data, 'utf8')
 env['wsgi.input'] = io.BytesIO(data)
 env['webob.is_body_seekable'] = True
 env['CONTENT_LENGTH'] = str(len(data))
 env['CONTENT_TYPE'] = content_type

#########################
Helper classes and monkeypatching
#########################

class DisconnectionError(IOError):
 pass

class LimitedLengthFile(io.RawIOBase):
 def __init__(self, file, maxlen):
 self.file = file
 self.maxlen = maxlen
 self.remaining = maxlen

 def __repr__(self):
 return '<%s(%r, maxlen=%s)>' % (
 self.__class__.__name__,
 self.file,
 self.maxlen
)

 def fileno(self):
 return self.file.fileno()

 @staticmethod
 def readable():
 return True

 def readinto(self, buff):
 if not self.remaining:
 return 0
 sz0 = min(len(buff), self.remaining)
 data = self.file.read(sz0)
 sz = len(data)
 self.remaining -= sz
 #if not data:
 if sz < sz0 and self.remaining:
 raise DisconnectionError(
 "The client disconnected while sending the POST/PUT body "
 + "(%d more bytes were expected)" % self.remaining
)
 buff[:sz] = data
 return sz

def _cgi_FieldStorage__repr__patch(self):
 """ monkey patch for FieldStorage.__repr__

 Unbelievably, the default __repr__ on FieldStorage reads
 the entire file content instead of being sane about it.
 This is a simple replacement that doesn't do that
 """
 if self.file:
 return "FieldStorage(%r, %r)" % (self.name, self.filename)
 return "FieldStorage(%r, %r, %r)" % (self.name, self.filename, self.value)

cgi_FieldStorage.__repr__ = _cgi_FieldStorage__repr__patch

class FakeCGIBody(io.RawIOBase):
 def __init__(self, vars, content_type):
 if content_type.startswith('multipart/form-data'):
 if not _get_multipart_boundary(content_type):
 raise ValueError('Content-type: %r does not contain boundary'
 % content_type)
 self.vars = vars
 self.content_type = content_type
 self.file = None

 def __repr__(self):
 inner = repr(self.vars)
 if len(inner) > 20:
 inner = inner[:15] + '...' + inner[-5:]
 return '<%s at 0x%x viewing %s>' % (
 self.__class__.__name__,
 abs(id(self)), inner)

 def fileno(self):
 return None

 @staticmethod
 def readable():
 return True

 def readinto(self, buff):
 if self.file is None:
 if self.content_type.startswith(
 'application/x-www-form-urlencoded'):
 data = '&'.join(
 '%s=%s' % (quote_plus(bytes_(k, 'utf8')), quote_plus(bytes_(v, 'utf8')))
 for k,v in self.vars.items()
)
 self.file = io.BytesIO(bytes_(data))
 elif self.content_type.startswith('multipart/form-data'):
 self.file = _encode_multipart(
 self.vars.items(),
 self.content_type,
 fout=io.BytesIO()
)[1]
 self.file.seek(0)
 else:
 assert 0, ('Bad content type: %r' % self.content_type)
 return self.file.readinto(buff)

def _get_multipart_boundary(ctype):
 m = re.search(r'boundary=([^]+)', ctype, re.I)
 if m:
 return native_(m.group(1).strip('"'))

def _encode_multipart(vars, content_type, fout=None):
 """Encode a multipart request body into a string"""
 f = fout or io.BytesIO()
 w = f.write
 wt = lambda t: f.write(t.encode('utf8'))
 CRLF = b'\r\n'
 boundary = _get_multipart_boundary(content_type)
 if not boundary:
 boundary = native_(binascii.hexlify(os.urandom(10)))
 content_type += ('; boundary=%s' % boundary)
 for name, value in vars:
 w(b'--')
 wt(boundary)
 w(CRLF)
 assert name is not None, 'Value associated with no name: %r' % value
 wt('Content-Disposition: form-data; name="%s"' % name)
 filename = None
 if getattr(value, 'filename', None):
 filename = value.filename
 elif isinstance(value, (list, tuple)):
 filename, value = value
 if hasattr(value, 'read'):
 value = value.read()

 if filename is not None:
 wt('; filename="%s"' % filename)
 mime_type = mimetypes.guess_type(filename)[0]
 else:
 mime_type = None

 w(CRLF)

 # TODO: should handle value.disposition_options
 if getattr(value, 'type', None):
 wt('Content-type: %s' % value.type)
 if value.type_options:
 for ct_name, ct_value in sorted(value.type_options.items()):
 wt('; %s="%s"' % (ct_name, ct_value))
 w(CRLF)
 elif mime_type:
 wt('Content-type: %s' % mime_type)
 w(CRLF)
 w(CRLF)
 if hasattr(value, 'value'):
 value = value.value
 if isinstance(value, bytes):
 w(value)
 else:
 wt(value)
 w(CRLF)
 wt('--%s--' % boundary)
 if fout:
 return content_type, fout
 else:
 return content_type, f.getvalue()

def detect_charset(ctype):
 m = CHARSET_RE.search(ctype)
 if m:
 return m.group(1).strip('"').strip()

def _is_utf8(charset):
 if not charset:
 return True
 else:
 return charset.lower().replace('-', '') == 'utf8'

class Transcoder(object):
 def __init__(self, charset, errors='strict'):
 self.charset = charset # source charset
 self.errors = errors # unicode errors
 self._trans = lambda b: b.decode(charset, errors).encode('utf8')

 def transcode_query(self, q):
 if PY3: # pragma: no cover
 q_orig = q
 if '=' not in q:
 # this doesn't look like a form submission
 return q_orig
 q = list(parse_qsl_text(q, self.charset))
 return url_encode(q)
 else:
 q_orig = q
 if '=' not in q:
 # this doesn't look like a form submission
 return q_orig
 q = urlparse.parse_qsl(q, self.charset)
 t = self._trans
 q = [(t(k), t(v)) for k,v in q]
 return url_encode(q)

 def transcode_fs(self, fs, content_type):
 # transcode FieldStorage
 if PY3: # pragma: no cover
 decode = lambda b: b
 else:
 decode = lambda b: b.decode(self.charset, self.errors)
 data = []
 for field in fs.list or ():
 field.name = decode(field.name)
 if field.filename:
 field.filename = decode(field.filename)
 data.append((field.name, field))
 else:
 data.append((field.name, decode(field.value)))

 # TODO: transcode big requests to temp file
 content_type, fout = _encode_multipart(
 data,
 content_type,
 fout=io.BytesIO()
)
 return fout

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/translationstring.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for translationstring

import re
from gettext import NullTranslations
from translationstring.compat import text_type
from translationstring.compat import string_types
from translationstring.compat import PY3

NAME_RE = r"[a-zA-Z][-a-zA-Z0-9_]*"

_interp_regex = re.compile(r'(?<!\$)(\$(?:(%(n)s)|{(%(n)s)}))'
 % ({'n': NAME_RE}))

CONTEXT_MASK = text_type('%s\x04%s')

[docs]class TranslationString(text_type):
 """
 The constructor for a :term:`translation string`. A translation
 string is a Unicode-like object that has some extra metadata.

 This constructor accepts one required argument named ``msgid``.
 ``msgid`` must be the :term:`message identifier` for the
 translation string. It must be a ``unicode`` object or a ``str``
 object encoded in the default system encoding.

 Optional keyword arguments to this object's constructor include
 ``domain``, ``default``, and ``mapping``.

 ``domain`` represents the :term:`translation domain`. By default,
 the translation domain is ``None``, indicating that this
 translation string is associated with the default translation
 domain (usually ``messages``).

 ``default`` represents an explicit *default text* for this
 translation string. Default text appears when the translation
 string cannot be translated. Usually, the ``msgid`` of a
 translation string serves double duty as its default text.
 However, using this option you can provide a different default
 text for this translation string. This feature is useful when the
 default of a translation string is too complicated or too long to
 be used as a message identifier. If ``default`` is provided, it
 must be a ``unicode`` object or a ``str`` object encoded in the
 default system encoding (usually means ASCII). If ``default`` is
 ``None`` (its default value), the ``msgid`` value used by this
 translation string will be assumed to be the value of ``default``.

 ``mapping``, if supplied, must be a dictionary-like object which
 represents the replacement values for any :term:`translation
 string` *replacement marker* instances found within the ``msgid``
 (or ``default``) value of this translation string.

 ``context`` represents the :term:`translation context`. By default,
 the translation context is ``None``.

 After a translation string is constructed, it behaves like most
 other ``unicode`` objects; its ``msgid`` value will be displayed
 when it is treated like a ``unicode`` object. Only when its
 ``ugettext`` method is called will it be translated.

 Its default value is available as the ``default`` attribute of the
 object, its :term:`translation domain` is available as the
 ``domain`` attribute, and the ``mapping`` is available as the
 ``mapping`` attribute. The object otherwise behaves much like a
 Unicode string.
 """
 __slots__ = ('domain', 'context', 'default', 'mapping')

 def __new__(self, msgid, domain=None, default=None, mapping=None, context=None):

 # NB: this function should never never lose the *original
 # identity* of a non-``None`` but empty ``default`` value
 # provided to it. See the comment in ChameleonTranslate.

 self = text_type.__new__(self, msgid)
 if isinstance(msgid, self.__class__):
 domain = domain or msgid.domain and msgid.domain[:]
 context = context or msgid.context and msgid.context[:]
 default = default or msgid.default and msgid.default[:]
 mapping = mapping or msgid.mapping and msgid.mapping.copy()
 msgid = text_type(msgid)
 self.domain = domain
 self.context = context
 if default is None:
 default = text_type(msgid)
 self.default = default
 self.mapping = mapping
 return self

 def __mod__(self, options):
 """Create a new TranslationString instance with an updated mapping.
 This makes it possible to use the standard python %-style string
 formatting with translatable strings. Only dictionary
 arguments are supported.
 """
 if not isinstance(options, dict):
 raise ValueError(
 'Can only interpolate translationstring '
 'with dictionaries.')
 if self.mapping:
 mapping = self.mapping.copy()
 mapping.update(options)
 else:
 mapping = options.copy()
 return TranslationString(self, mapping=mapping)

 def interpolate(self, translated=None):
 """ Interpolate the value ``translated`` which is assumed to
 be a Unicode object containing zero or more *replacement
 markers* (``$foo`` or ``${bar}``) using the ``mapping``
 dictionary attached to this instance. If the ``mapping``
 dictionary is empty or ``None``, no interpolation is
 performed.

 If ``translated`` is ``None``, interpolation will be performed
 against the ``default`` value.
 """
 if translated is None:
 translated = self.default

 # NB: this function should never never lose the *original
 # identity* of a non-``None`` but empty ``default`` value it
 # is provided. If (translated == default) , it should return the
 # *original* default, not a derivation. See the comment below in
 # ChameleonTranslate.

 if self.mapping and translated:
 def replace(match):
 whole, param1, param2 = match.groups()
 return text_type(self.mapping.get(param1 or param2, whole))
 translated = _interp_regex.sub(replace, translated)

 return translated

 def __reduce__(self):
 return self.__class__, self.__getstate__()

 def __getstate__(self):
 return text_type(self), self.domain, self.default, self.mapping, self.context

[docs]def TranslationStringFactory(factory_domain):
 """ Create a factory which will generate translation strings
 without requiring that each call to the factory be passed a
 ``domain`` value. A single argument is passed to this class'
 constructor: ``domain``. This value will be used as the
 ``domain`` values of :class:`translationstring.TranslationString`
 objects generated by the ``__call__`` of this class. The
 ``msgid``, ``mapping``, and ``default`` values provided to the
 ``__call__`` method of an instance of this class have the meaning
 as described by the constructor of the
 :class:`translationstring.TranslationString`"""
 def create(msgid, mapping=None, default=None, context=None):
 """ Provided a msgid (Unicode object or :term:`translation
 string`) and optionally a mapping object, and a *default
 value*, return a :term:`translation string` object."""

 # if we are passing in a TranslationString as the msgid, then
 # use its domain
 if isinstance(msgid, TranslationString):
 domain = msgid.domain or factory_domain
 else:
 domain = factory_domain

 return TranslationString(msgid, domain=domain, default=default,
 mapping=mapping, context=context)
 return create

def ChameleonTranslate(translator):
 """
 When necessary, use the result of calling this function as a
 Chameleon template 'translate' function (e.g. the ``translate``
 argument to the ``chameleon.zpt.template.PageTemplate``
 constructor) to allow our translation machinery to drive template
 translation. A single required argument ``translator`` is
 passsed. The ``translator`` provided should be a callable which
 accepts a single argument ``translation_string`` (a
 :class:`translationstring.TranslationString` instance) which
 returns a ``unicode`` object as a translation. ``translator`` may
 also optionally be ``None``, in which case no translation is
 performed (the ``msgid`` or ``default`` value is returned
 untranslated).
 """
 def translate(msgid, domain=None, mapping=None, context=None,
 target_language=None, default=None):

 # NB: note that both TranslationString._init__ and
 # TranslationString.interpolate are careful to never lose the
 # *identity* of an empty but non-``None`` ``default`` value we
 # provide to them. For example, neither of those functions
 # are permitted to run an empty but non-``None`` ``default``
 # through ``unicode`` and throw the original default value
 # away afterwards.

 # This has a dubious cause: for Chameleon API reasons we must
 # ensure that, after translation, if ((translated == msgid)
 # and (not default) and (default is not None)) that we return
 # the ``default`` value provided to us *unmodified*, because
 # Chameleon uses it as a sentinel (it compares the return
 # value of this function by identity to what it passed in as
 # ``default``; this marker is a
 # chameleon.core.i18n.StringMarker instance, a subclass of str
 # that == ''). This is, of course, totally absurd, because
 # Chameleon *also* wants us to use ``default`` as the input to
 # a translation string in some cases, and maintaining the
 # identity of this object through translation operations isn't
 # a contract it spells out in its docs.

 # Chameleon's use of ``default`` to represent both a sentinel
 # and input to a translation string is a Chameleon i18n
 # extensibility design bug. Until we overhaul its hook point
 # for translation extensibility, we need to appease it by
 # preserving ``default`` in the aforementioned case. So we
 # spray these indignant comments all over this module. ;-)

 if not isinstance(msgid, string_types):
 if msgid is not None:
 msgid = text_type(msgid)
 return msgid

 tstring = msgid

 if not hasattr(tstring, 'interpolate'):
 tstring = TranslationString(msgid, domain, default, mapping, context)
 if translator is None:
 result = tstring.interpolate()
 else:
 result = translator(tstring)

 return result

 return translate

def ugettext_policy(translations, tstring, domain, context):
 """ A translator policy function which unconditionally uses the
 ``ugettext`` API on the translations object."""

 if PY3: # pragma: no cover
 _gettext = translations.gettext
 else: # pragma: no cover
 _gettext = translations.ugettext

 if context:
	# Workaround for http://bugs.python.org/issue2504?
 msgid = CONTEXT_MASK % (context, tstring)
 else:
 msgid = tstring

 translated = _gettext(msgid)
 return tstring if translated == msgid else translated

def dugettext_policy(translations, tstring, domain, context):
 """ A translator policy function which assumes the use of a
 :class:`babel.support.Translations` translations object, which
 supports the dugettext API; fall back to ugettext."""
 if domain is None:
 default_domain = getattr(translations, 'domain', None) or 'messages'
 domain = getattr(tstring, 'domain', None) or default_domain
 context = context or getattr(tstring, 'context', None)
 if context:
	# Workaround for http://bugs.python.org/issue2504?
 msgid = CONTEXT_MASK % (context, tstring)
 else:
 msgid = tstring

 if getattr(translations, 'dugettext', None) is not None:
 translated = translations.dugettext(domain, msgid)
 else:
 if PY3: # pragma: no cover
 _gettext = translations.gettext
 else: # pragma: no cover
 _gettext = translations.ugettext

 translated = _gettext(msgid)
 return tstring if translated == msgid else translated

def Translator(translations=None, policy=None):
 """
 Return a translator object based on the ``translations`` and
 ``policy`` provided. ``translations`` should be an object
 supporting *at least* the Python :class:`gettext.NullTranslations`
 API but ideally the :class:`babel.support.Translations` API, which
 has support for domain lookups like dugettext.

 ``policy`` should be a callable which accepts three arguments:
 ``translations``, ``tstring`` and ``domain``. It must perform the
 actual translation lookup. If ``policy`` is ``None``, the
 :func:`translationstring.dugettext_policy` policy will be used.

 The callable returned accepts three arguments: ``tstring``
 (required), ``domain`` (optional) and ``mapping`` (optional).
 When called, it will translate the ``tstring`` translation string
 to a ``unicode`` object using the ``translations`` provided. If
 ``translations`` is ``None``, the result of interpolation of the
 default value is returned. The optional ``domain`` argument can
 be used to specify or override the domain of the ``tstring``
 (useful when ``tstring`` is a normal string rather than a
 translation string). The optional ``mapping`` argument can
 specify or override the ``tstring`` interpolation mapping, useful
 when the ``tstring`` argument is a simple string instead of a
 translation string.
 """
 if policy is None:
 policy = dugettext_policy
 def translator(tstring, domain=None, mapping=None, context=None):
 if not hasattr(tstring, 'interpolate'):
 tstring = TranslationString(tstring, domain=domain, mapping=mapping, context=context)
 elif mapping:
 if tstring.mapping:
 new_mapping = tstring.mapping.copy()
 new_mapping.update(mapping)
 else:
 new_mapping = mapping
 tstring = TranslationString(tstring, domain=domain, mapping=new_mapping, context=context)
 translated = tstring
 domain = domain or tstring.domain
 context = context or tstring.context
 if translations is not None:
 translated = policy(translations, tstring, domain, context)
 if translated == tstring:
 translated = tstring.default
 if translated and '$' in translated and tstring.mapping:
 translated = tstring.interpolate(translated)
 return translated
 return translator

def ungettext_policy(translations, singular, plural, n, domain, context):
 """ A pluralizer policy function which unconditionally uses the
 ``ungettext`` API on the translations object."""

 if PY3: # pragma: no cover
 _gettext = translations.ngettext
 else: # pragma: no cover
 _gettext = translations.ungettext

 if context:
	# Workaround for http://bugs.python.org/issue2504?
 msgid = CONTEXT_MASK % (context, singular)
 else:
 msgid = singular

 translated = _gettext(msgid, plural, n)
 return singular if translated == msgid else translated

def dungettext_policy(translations, singular, plural, n, domain, context):
 """ A pluralizer policy function which assumes the use of the
 :class:`babel.support.Translations` class, which supports the
 dungettext API; falls back to ungettext."""

 default_domain = getattr(translations, 'domain', None) or 'messages'
 domain = domain or default_domain
 if context:
	# Workaround for http://bugs.python.org/issue2504?
 msgid = CONTEXT_MASK % (context, singular)
 else:
 msgid = singular
 if getattr(translations, 'dungettext', None) is not None:
 translated = translations.dungettext(domain, msgid, plural, n)
 else:
 if PY3: # pragma: no cover
 _gettext = translations.ngettext
 else: # pragma: no cover
 _gettext = translations.ungettext

 translated = _gettext(msgid, plural, n)
 return singular if translated == msgid else translated

def Pluralizer(translations=None, policy=None):
 """
 Return a pluralizer object based on the ``translations`` and
 ``policy`` provided. ``translations`` should be an object
 supporting *at least* the Python :class:`gettext.NullTranslations`
 API but ideally the :class:`babel.support.Translations` API, which
 has support for domain lookups like dugettext.

 ``policy`` should be a callable which accepts five arguments:
 ``translations``, ``singular`` and ``plural``, ``n`` and
 ``domain``. It must perform the actual pluralization lookup. If
 ``policy`` is ``None``, the
 :func:`translationstring.dungettext_policy` policy will be used.

 The object returned will be a callable which has the following
 signature::

 def pluralizer(singular, plural, n, domain=None, mapping=None):
 ...

 The ``singular`` and ``plural`` objects passed may be translation
 strings or unicode strings. ``n`` represents the number of
 elements. ``domain`` is the translation domain to use to do the
 pluralization, and ``mapping`` is the interpolation mapping that
 should be used on the result. Note that if the objects passed are
 translation strings, their domains and mappings are ignored. The
 domain and mapping arguments must be used instead. If the ``domain`` is
 not supplied, a default domain is used (usually ``messages``).
 """

 if policy is None:
 policy = dungettext_policy
 if translations is None:
 translations = NullTranslations()
 def pluralizer(singular, plural, n, domain=None, mapping=None, context=None):
 """ Pluralize this object """
 translated = text_type(
 policy(translations, singular, plural, n, domain, context))
 if translated and '$' in translated and mapping:
 return TranslationString(translated, mapping=mapping).interpolate()
 return translated
 return pluralizer

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/urllib/request.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for urllib.request

"""An extensible library for opening URLs using a variety of protocols

The simplest way to use this module is to call the urlopen function,
which accepts a string containing a URL or a Request object (described
below). It opens the URL and returns the results as file-like
object; the returned object has some extra methods described below.

The OpenerDirector manages a collection of Handler objects that do
all the actual work. Each Handler implements a particular protocol or
option. The OpenerDirector is a composite object that invokes the
Handlers needed to open the requested URL. For example, the
HTTPHandler performs HTTP GET and POST requests and deals with
non-error returns. The HTTPRedirectHandler automatically deals with
HTTP 301, 302, 303 and 307 redirect errors, and the HTTPDigestAuthHandler
deals with digest authentication.

urlopen(url, data=None) -- Basic usage is the same as original
urllib. pass the url and optionally data to post to an HTTP URL, and
get a file-like object back. One difference is that you can also pass
a Request instance instead of URL. Raises a URLError (subclass of
OSError); for HTTP errors, raises an HTTPError, which can also be
treated as a valid response.

build_opener -- Function that creates a new OpenerDirector instance.
Will install the default handlers. Accepts one or more Handlers as
arguments, either instances or Handler classes that it will
instantiate. If one of the argument is a subclass of the default
handler, the argument will be installed instead of the default.

install_opener -- Installs a new opener as the default opener.

objects of interest:

OpenerDirector -- Sets up the User Agent as the Python-urllib client and manages
the Handler classes, while dealing with requests and responses.

Request -- An object that encapsulates the state of a request. The
state can be as simple as the URL. It can also include extra HTTP
headers, e.g. a User-Agent.

BaseHandler --

internals:
BaseHandler and parent
_call_chain conventions

Example usage:

import urllib.request

set up authentication info
authinfo = urllib.request.HTTPBasicAuthHandler()
authinfo.add_password(realm='PDQ Application',
 uri='https://mahler:8092/site-updates.py',
 user='klem',
 passwd='geheim$parole')

proxy_support = urllib.request.ProxyHandler({"http" : "http://ahad-haam:3128"})

build a new opener that adds authentication and caching FTP handlers
opener = urllib.request.build_opener(proxy_support, authinfo,
 urllib.request.CacheFTPHandler)

install it
urllib.request.install_opener(opener)

f = urllib.request.urlopen('http://www.python.org/')
"""

XXX issues:
If an authentication error handler that tries to perform
authentication for some reason but fails, how should the error be
signalled? The client needs to know the HTTP error code. But if
the handler knows that the problem was, e.g., that it didn't know
that hash algo that requested in the challenge, it would be good to
pass that information along to the client, too.
ftp errors aren't handled cleanly
check digest against correct (i.e. non-apache) implementation

Possible extensions:
complex proxies XXX not sure what exactly was meant by this
abstract factory for opener

import base64
import bisect
import email
import hashlib
import http.client
import io
import os
import posixpath
import re
import socket
import sys
import time
import collections
import tempfile
import contextlib
import warnings

from urllib.error import URLError, HTTPError, ContentTooShortError
from urllib.parse import (
 urlparse, urlsplit, urljoin, unwrap, quote, unquote,
 splittype, splithost, splitport, splituser, splitpasswd,
 splitattr, splitquery, splitvalue, splittag, to_bytes,
 unquote_to_bytes, urlunparse)
from urllib.response import addinfourl, addclosehook

check for SSL
try:
 import ssl
except ImportError:
 _have_ssl = False
else:
 _have_ssl = True

__all__ = [
 # Classes
 'Request', 'OpenerDirector', 'BaseHandler', 'HTTPDefaultErrorHandler',
 'HTTPRedirectHandler', 'HTTPCookieProcessor', 'ProxyHandler',
 'HTTPPasswordMgr', 'HTTPPasswordMgrWithDefaultRealm',
 'AbstractBasicAuthHandler', 'HTTPBasicAuthHandler', 'ProxyBasicAuthHandler',
 'AbstractDigestAuthHandler', 'HTTPDigestAuthHandler', 'ProxyDigestAuthHandler',
 'HTTPHandler', 'FileHandler', 'FTPHandler', 'CacheFTPHandler', 'DataHandler',
 'UnknownHandler', 'HTTPErrorProcessor',
 # Functions
 'urlopen', 'install_opener', 'build_opener',
 'pathname2url', 'url2pathname', 'getproxies',
 # Legacy interface
 'urlretrieve', 'urlcleanup', 'URLopener', 'FancyURLopener',
]

used in User-Agent header sent
__version__ = sys.version[:3]

_opener = None
def urlopen(url, data=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT,
 *, cafile=None, capath=None, cadefault=False, context=None):
 global _opener
 if cafile or capath or cadefault:
 if context is not None:
 raise ValueError(
 "You can't pass both context and any of cafile, capath, and "
 "cadefault"
)
 if not _have_ssl:
 raise ValueError('SSL support not available')
 context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH,
 cafile=cafile,
 capath=capath)
 https_handler = HTTPSHandler(context=context)
 opener = build_opener(https_handler)
 elif context:
 https_handler = HTTPSHandler(context=context)
 opener = build_opener(https_handler)
 elif _opener is None:
 _opener = opener = build_opener()
 else:
 opener = _opener
 return opener.open(url, data, timeout)

def install_opener(opener):
 global _opener
 _opener = opener

_url_tempfiles = []
def urlretrieve(url, filename=None, reporthook=None, data=None):
 """
 Retrieve a URL into a temporary location on disk.

 Requires a URL argument. If a filename is passed, it is used as
 the temporary file location. The reporthook argument should be
 a callable that accepts a block number, a read size, and the
 total file size of the URL target. The data argument should be
 valid URL encoded data.

 If a filename is passed and the URL points to a local resource,
 the result is a copy from local file to new file.

 Returns a tuple containing the path to the newly created
 data file as well as the resulting HTTPMessage object.
 """
 url_type, path = splittype(url)

 with contextlib.closing(urlopen(url, data)) as fp:
 headers = fp.info()

 # Just return the local path and the "headers" for file://
 # URLs. No sense in performing a copy unless requested.
 if url_type == "file" and not filename:
 return os.path.normpath(path), headers

 # Handle temporary file setup.
 if filename:
 tfp = open(filename, 'wb')
 else:
 tfp = tempfile.NamedTemporaryFile(delete=False)
 filename = tfp.name
 _url_tempfiles.append(filename)

 with tfp:
 result = filename, headers
 bs = 1024*8
 size = -1
 read = 0
 blocknum = 0
 if "content-length" in headers:
 size = int(headers["Content-Length"])

 if reporthook:
 reporthook(blocknum, bs, size)

 while True:
 block = fp.read(bs)
 if not block:
 break
 read += len(block)
 tfp.write(block)
 blocknum += 1
 if reporthook:
 reporthook(blocknum, bs, size)

 if size >= 0 and read < size:
 raise ContentTooShortError(
 "retrieval incomplete: got only %i out of %i bytes"
 % (read, size), result)

 return result

def urlcleanup():
 for temp_file in _url_tempfiles:
 try:
 os.unlink(temp_file)
 except OSError:
 pass

 del _url_tempfiles[:]
 global _opener
 if _opener:
 _opener = None

copied from cookielib.py
_cut_port_re = re.compile(r":\d+$", re.ASCII)
def request_host(request):
 """Return request-host, as defined by RFC 2965.

 Variation from RFC: returned value is lowercased, for convenient
 comparison.

 """
 url = request.full_url
 host = urlparse(url)[1]
 if host == "":
 host = request.get_header("Host", "")

 # remove port, if present
 host = _cut_port_re.sub("", host, 1)
 return host.lower()

class Request:

 def __init__(self, url, data=None, headers={},
 origin_req_host=None, unverifiable=False,
 method=None):
 self.full_url = url
 self.headers = {}
 self.unredirected_hdrs = {}
 self._data = None
 self.data = data
 self._tunnel_host = None
 for key, value in headers.items():
 self.add_header(key, value)
 if origin_req_host is None:
 origin_req_host = request_host(self)
 self.origin_req_host = origin_req_host
 self.unverifiable = unverifiable
 if method:
 self.method = method

 @property
 def full_url(self):
 if self.fragment:
 return '{}#{}'.format(self._full_url, self.fragment)
 return self._full_url

 @full_url.setter
 def full_url(self, url):
 # unwrap('<URL:type://host/path>') --> 'type://host/path'
 self._full_url = unwrap(url)
 self._full_url, self.fragment = splittag(self._full_url)
 self._parse()

 @full_url.deleter
 def full_url(self):
 self._full_url = None
 self.fragment = None
 self.selector = ''

 @property
 def data(self):
 return self._data

 @data.setter
 def data(self, data):
 if data != self._data:
 self._data = data
 # issue 16464
 # if we change data we need to remove content-length header
 # (cause it's most probably calculated for previous value)
 if self.has_header("Content-length"):
 self.remove_header("Content-length")

 @data.deleter
 def data(self):
 self.data = None

 def _parse(self):
 self.type, rest = splittype(self._full_url)
 if self.type is None:
 raise ValueError("unknown url type: %r" % self.full_url)
 self.host, self.selector = splithost(rest)
 if self.host:
 self.host = unquote(self.host)

 def get_method(self):
 """Return a string indicating the HTTP request method."""
 default_method = "POST" if self.data is not None else "GET"
 return getattr(self, 'method', default_method)

 def get_full_url(self):
 return self.full_url

 def set_proxy(self, host, type):
 if self.type == 'https' and not self._tunnel_host:
 self._tunnel_host = self.host
 else:
 self.type= type
 self.selector = self.full_url
 self.host = host

 def has_proxy(self):
 return self.selector == self.full_url

 def add_header(self, key, val):
 # useful for something like authentication
 self.headers[key.capitalize()] = val

 def add_unredirected_header(self, key, val):
 # will not be added to a redirected request
 self.unredirected_hdrs[key.capitalize()] = val

 def has_header(self, header_name):
 return (header_name in self.headers or
 header_name in self.unredirected_hdrs)

 def get_header(self, header_name, default=None):
 return self.headers.get(
 header_name,
 self.unredirected_hdrs.get(header_name, default))

 def remove_header(self, header_name):
 self.headers.pop(header_name, None)
 self.unredirected_hdrs.pop(header_name, None)

 def header_items(self):
 hdrs = self.unredirected_hdrs.copy()
 hdrs.update(self.headers)
 return list(hdrs.items())

class OpenerDirector:
 def __init__(self):
 client_version = "Python-urllib/%s" % __version__
 self.addheaders = [('User-agent', client_version)]
 # self.handlers is retained only for backward compatibility
 self.handlers = []
 # manage the individual handlers
 self.handle_open = {}
 self.handle_error = {}
 self.process_response = {}
 self.process_request = {}

 def add_handler(self, handler):
 if not hasattr(handler, "add_parent"):
 raise TypeError("expected BaseHandler instance, got %r" %
 type(handler))

 added = False
 for meth in dir(handler):
 if meth in ["redirect_request", "do_open", "proxy_open"]:
 # oops, coincidental match
 continue

 i = meth.find("_")
 protocol = meth[:i]
 condition = meth[i+1:]

 if condition.startswith("error"):
 j = condition.find("_") + i + 1
 kind = meth[j+1:]
 try:
 kind = int(kind)
 except ValueError:
 pass
 lookup = self.handle_error.get(protocol, {})
 self.handle_error[protocol] = lookup
 elif condition == "open":
 kind = protocol
 lookup = self.handle_open
 elif condition == "response":
 kind = protocol
 lookup = self.process_response
 elif condition == "request":
 kind = protocol
 lookup = self.process_request
 else:
 continue

 handlers = lookup.setdefault(kind, [])
 if handlers:
 bisect.insort(handlers, handler)
 else:
 handlers.append(handler)
 added = True

 if added:
 bisect.insort(self.handlers, handler)
 handler.add_parent(self)

 def close(self):
 # Only exists for backwards compatibility.
 pass

 def _call_chain(self, chain, kind, meth_name, *args):
 # Handlers raise an exception if no one else should try to handle
 # the request, or return None if they can't but another handler
 # could. Otherwise, they return the response.
 handlers = chain.get(kind, ())
 for handler in handlers:
 func = getattr(handler, meth_name)
 result = func(*args)
 if result is not None:
 return result

 def open(self, fullurl, data=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT):
 # accept a URL or a Request object
 if isinstance(fullurl, str):
 req = Request(fullurl, data)
 else:
 req = fullurl
 if data is not None:
 req.data = data

 req.timeout = timeout
 protocol = req.type

 # pre-process request
 meth_name = protocol+"_request"
 for processor in self.process_request.get(protocol, []):
 meth = getattr(processor, meth_name)
 req = meth(req)

 response = self._open(req, data)

 # post-process response
 meth_name = protocol+"_response"
 for processor in self.process_response.get(protocol, []):
 meth = getattr(processor, meth_name)
 response = meth(req, response)

 return response

 def _open(self, req, data=None):
 result = self._call_chain(self.handle_open, 'default',
 'default_open', req)
 if result:
 return result

 protocol = req.type
 result = self._call_chain(self.handle_open, protocol, protocol +
 '_open', req)
 if result:
 return result

 return self._call_chain(self.handle_open, 'unknown',
 'unknown_open', req)

 def error(self, proto, *args):
 if proto in ('http', 'https'):
 # XXX http[s] protocols are special-cased
 dict = self.handle_error['http'] # https is not different than http
 proto = args[2] # YUCK!
 meth_name = 'http_error_%s' % proto
 http_err = 1
 orig_args = args
 else:
 dict = self.handle_error
 meth_name = proto + '_error'
 http_err = 0
 args = (dict, proto, meth_name) + args
 result = self._call_chain(*args)
 if result:
 return result

 if http_err:
 args = (dict, 'default', 'http_error_default') + orig_args
 return self._call_chain(*args)

XXX probably also want an abstract factory that knows when it makes
sense to skip a superclass in favor of a subclass and when it might
make sense to include both

def build_opener(*handlers):
 """Create an opener object from a list of handlers.

 The opener will use several default handlers, including support
 for HTTP, FTP and when applicable HTTPS.

 If any of the handlers passed as arguments are subclasses of the
 default handlers, the default handlers will not be used.
 """
 opener = OpenerDirector()
 default_classes = [ProxyHandler, UnknownHandler, HTTPHandler,
 HTTPDefaultErrorHandler, HTTPRedirectHandler,
 FTPHandler, FileHandler, HTTPErrorProcessor,
 DataHandler]
 if hasattr(http.client, "HTTPSConnection"):
 default_classes.append(HTTPSHandler)
 skip = set()
 for klass in default_classes:
 for check in handlers:
 if isinstance(check, type):
 if issubclass(check, klass):
 skip.add(klass)
 elif isinstance(check, klass):
 skip.add(klass)
 for klass in skip:
 default_classes.remove(klass)

 for klass in default_classes:
 opener.add_handler(klass())

 for h in handlers:
 if isinstance(h, type):
 h = h()
 opener.add_handler(h)
 return opener

class BaseHandler:
 handler_order = 500

 def add_parent(self, parent):
 self.parent = parent

 def close(self):
 # Only exists for backwards compatibility
 pass

 def __lt__(self, other):
 if not hasattr(other, "handler_order"):
 # Try to preserve the old behavior of having custom classes
 # inserted after default ones (works only for custom user
 # classes which are not aware of handler_order).
 return True
 return self.handler_order < other.handler_order

class HTTPErrorProcessor(BaseHandler):
 """Process HTTP error responses."""
 handler_order = 1000 # after all other processing

 def http_response(self, request, response):
 code, msg, hdrs = response.code, response.msg, response.info()

 # According to RFC 2616, "2xx" code indicates that the client's
 # request was successfully received, understood, and accepted.
 if not (200 <= code < 300):
 response = self.parent.error(
 'http', request, response, code, msg, hdrs)

 return response

 https_response = http_response

class HTTPDefaultErrorHandler(BaseHandler):
 def http_error_default(self, req, fp, code, msg, hdrs):
 raise HTTPError(req.full_url, code, msg, hdrs, fp)

class HTTPRedirectHandler(BaseHandler):
 # maximum number of redirections to any single URL
 # this is needed because of the state that cookies introduce
 max_repeats = 4
 # maximum total number of redirections (regardless of URL) before
 # assuming we're in a loop
 max_redirections = 10

 def redirect_request(self, req, fp, code, msg, headers, newurl):
 """Return a Request or None in response to a redirect.

 This is called by the http_error_30x methods when a
 redirection response is received. If a redirection should
 take place, return a new Request to allow http_error_30x to
 perform the redirect. Otherwise, raise HTTPError if no-one
 else should try to handle this url. Return None if you can't
 but another Handler might.
 """
 m = req.get_method()
 if (not (code in (301, 302, 303, 307) and m in ("GET", "HEAD")
 or code in (301, 302, 303) and m == "POST")):
 raise HTTPError(req.full_url, code, msg, headers, fp)

 # Strictly (according to RFC 2616), 301 or 302 in response to
 # a POST MUST NOT cause a redirection without confirmation
 # from the user (of urllib.request, in this case). In practice,
 # essentially all clients do redirect in this case, so we do
 # the same.
 # be conciliant with URIs containing a space
 newurl = newurl.replace(' ', '%20')
 CONTENT_HEADERS = ("content-length", "content-type")
 newheaders = dict((k, v) for k, v in req.headers.items()
 if k.lower() not in CONTENT_HEADERS)
 return Request(newurl,
 headers=newheaders,
 origin_req_host=req.origin_req_host,
 unverifiable=True)

 # Implementation note: To avoid the server sending us into an
 # infinite loop, the request object needs to track what URLs we
 # have already seen. Do this by adding a handler-specific
 # attribute to the Request object.
 def http_error_302(self, req, fp, code, msg, headers):
 # Some servers (incorrectly) return multiple Location headers
 # (so probably same goes for URI). Use first header.
 if "location" in headers:
 newurl = headers["location"]
 elif "uri" in headers:
 newurl = headers["uri"]
 else:
 return

 # fix a possible malformed URL
 urlparts = urlparse(newurl)

 # For security reasons we don't allow redirection to anything other
 # than http, https or ftp.

 if urlparts.scheme not in ('http', 'https', 'ftp', ''):
 raise HTTPError(
 newurl, code,
 "%s - Redirection to url '%s' is not allowed" % (msg, newurl),
 headers, fp)

 if not urlparts.path:
 urlparts = list(urlparts)
 urlparts[2] = "/"
 newurl = urlunparse(urlparts)

 newurl = urljoin(req.full_url, newurl)

 # XXX Probably want to forget about the state of the current
 # request, although that might interact poorly with other
 # handlers that also use handler-specific request attributes
 new = self.redirect_request(req, fp, code, msg, headers, newurl)
 if new is None:
 return

 # loop detection
 # .redirect_dict has a key url if url was previously visited.
 if hasattr(req, 'redirect_dict'):
 visited = new.redirect_dict = req.redirect_dict
 if (visited.get(newurl, 0) >= self.max_repeats or
 len(visited) >= self.max_redirections):
 raise HTTPError(req.full_url, code,
 self.inf_msg + msg, headers, fp)
 else:
 visited = new.redirect_dict = req.redirect_dict = {}
 visited[newurl] = visited.get(newurl, 0) + 1

 # Don't close the fp until we are sure that we won't use it
 # with HTTPError.
 fp.read()
 fp.close()

 return self.parent.open(new, timeout=req.timeout)

 http_error_301 = http_error_303 = http_error_307 = http_error_302

 inf_msg = "The HTTP server returned a redirect error that would " \
 "lead to an infinite loop.\n" \
 "The last 30x error message was:\n"

def _parse_proxy(proxy):
 """Return (scheme, user, password, host/port) given a URL or an authority.

 If a URL is supplied, it must have an authority (host:port) component.
 According to RFC 3986, having an authority component means the URL must
 have two slashes after the scheme.
 """
 scheme, r_scheme = splittype(proxy)
 if not r_scheme.startswith("/"):
 # authority
 scheme = None
 authority = proxy
 else:
 # URL
 if not r_scheme.startswith("//"):
 raise ValueError("proxy URL with no authority: %r" % proxy)
 # We have an authority, so for RFC 3986-compliant URLs (by ss 3.
 # and 3.3.), path is empty or starts with '/'
 end = r_scheme.find("/", 2)
 if end == -1:
 end = None
 authority = r_scheme[2:end]
 userinfo, hostport = splituser(authority)
 if userinfo is not None:
 user, password = splitpasswd(userinfo)
 else:
 user = password = None
 return scheme, user, password, hostport

class ProxyHandler(BaseHandler):
 # Proxies must be in front
 handler_order = 100

 def __init__(self, proxies=None):
 if proxies is None:
 proxies = getproxies()
 assert hasattr(proxies, 'keys'), "proxies must be a mapping"
 self.proxies = proxies
 for type, url in proxies.items():
 setattr(self, '%s_open' % type,
 lambda r, proxy=url, type=type, meth=self.proxy_open:
 meth(r, proxy, type))

 def proxy_open(self, req, proxy, type):
 orig_type = req.type
 proxy_type, user, password, hostport = _parse_proxy(proxy)
 if proxy_type is None:
 proxy_type = orig_type

 if req.host and proxy_bypass(req.host):
 return None

 if user and password:
 user_pass = '%s:%s' % (unquote(user),
 unquote(password))
 creds = base64.b64encode(user_pass.encode()).decode("ascii")
 req.add_header('Proxy-authorization', 'Basic ' + creds)
 hostport = unquote(hostport)
 req.set_proxy(hostport, proxy_type)
 if orig_type == proxy_type or orig_type == 'https':
 # let other handlers take care of it
 return None
 else:
 # need to start over, because the other handlers don't
 # grok the proxy's URL type
 # e.g. if we have a constructor arg proxies like so:
 # {'http': 'ftp://proxy.example.com'}, we may end up turning
 # a request for http://acme.example.com/a into one for
 # ftp://proxy.example.com/a
 return self.parent.open(req, timeout=req.timeout)

class HTTPPasswordMgr:

 def __init__(self):
 self.passwd = {}

 def add_password(self, realm, uri, user, passwd):
 # uri could be a single URI or a sequence
 if isinstance(uri, str):
 uri = [uri]
 if realm not in self.passwd:
 self.passwd[realm] = {}
 for default_port in True, False:
 reduced_uri = tuple(
 [self.reduce_uri(u, default_port) for u in uri])
 self.passwd[realm][reduced_uri] = (user, passwd)

 def find_user_password(self, realm, authuri):
 domains = self.passwd.get(realm, {})
 for default_port in True, False:
 reduced_authuri = self.reduce_uri(authuri, default_port)
 for uris, authinfo in domains.items():
 for uri in uris:
 if self.is_suburi(uri, reduced_authuri):
 return authinfo
 return None, None

 def reduce_uri(self, uri, default_port=True):
 """Accept authority or URI and extract only the authority and path."""
 # note HTTP URLs do not have a userinfo component
 parts = urlsplit(uri)
 if parts[1]:
 # URI
 scheme = parts[0]
 authority = parts[1]
 path = parts[2] or '/'
 else:
 # host or host:port
 scheme = None
 authority = uri
 path = '/'
 host, port = splitport(authority)
 if default_port and port is None and scheme is not None:
 dport = {"http": 80,
 "https": 443,
 }.get(scheme)
 if dport is not None:
 authority = "%s:%d" % (host, dport)
 return authority, path

 def is_suburi(self, base, test):
 """Check if test is below base in a URI tree

 Both args must be URIs in reduced form.
 """
 if base == test:
 return True
 if base[0] != test[0]:
 return False
 common = posixpath.commonprefix((base[1], test[1]))
 if len(common) == len(base[1]):
 return True
 return False

class HTTPPasswordMgrWithDefaultRealm(HTTPPasswordMgr):

 def find_user_password(self, realm, authuri):
 user, password = HTTPPasswordMgr.find_user_password(self, realm,
 authuri)
 if user is not None:
 return user, password
 return HTTPPasswordMgr.find_user_password(self, None, authuri)

class AbstractBasicAuthHandler:

 # XXX this allows for multiple auth-schemes, but will stupidly pick
 # the last one with a realm specified.

 # allow for double- and single-quoted realm values
 # (single quotes are a violation of the RFC, but appear in the wild)
 rx = re.compile('(?:.*,)*[\t]*([^ \t]+)[\t]+'
 'realm=(["\']?)([^"\']*)\\2', re.I)

 # XXX could pre-emptively send auth info already accepted (RFC 2617,
 # end of section 2, and section 1.2 immediately after "credentials"
 # production).

 def __init__(self, password_mgr=None):
 if password_mgr is None:
 password_mgr = HTTPPasswordMgr()
 self.passwd = password_mgr
 self.add_password = self.passwd.add_password

 def http_error_auth_reqed(self, authreq, host, req, headers):
 # host may be an authority (without userinfo) or a URL with an
 # authority
 # XXX could be multiple headers
 authreq = headers.get(authreq, None)

 if authreq:
 scheme = authreq.split()[0]
 if scheme.lower() != 'basic':
 raise ValueError("AbstractBasicAuthHandler does not"
 " support the following scheme: '%s'" %
 scheme)
 else:
 mo = AbstractBasicAuthHandler.rx.search(authreq)
 if mo:
 scheme, quote, realm = mo.groups()
 if quote not in ['"',"'"]:
 warnings.warn("Basic Auth Realm was unquoted",
 UserWarning, 2)
 if scheme.lower() == 'basic':
 return self.retry_http_basic_auth(host, req, realm)

 def retry_http_basic_auth(self, host, req, realm):
 user, pw = self.passwd.find_user_password(realm, host)
 if pw is not None:
 raw = "%s:%s" % (user, pw)
 auth = "Basic " + base64.b64encode(raw.encode()).decode("ascii")
 if req.get_header(self.auth_header, None) == auth:
 return None
 req.add_unredirected_header(self.auth_header, auth)
 return self.parent.open(req, timeout=req.timeout)
 else:
 return None

class HTTPBasicAuthHandler(AbstractBasicAuthHandler, BaseHandler):

 auth_header = 'Authorization'

 def http_error_401(self, req, fp, code, msg, headers):
 url = req.full_url
 response = self.http_error_auth_reqed('www-authenticate',
 url, req, headers)
 return response

class ProxyBasicAuthHandler(AbstractBasicAuthHandler, BaseHandler):

 auth_header = 'Proxy-authorization'

 def http_error_407(self, req, fp, code, msg, headers):
 # http_error_auth_reqed requires that there is no userinfo component in
 # authority. Assume there isn't one, since urllib.request does not (and
 # should not, RFC 3986 s. 3.2.1) support requests for URLs containing
 # userinfo.
 authority = req.host
 response = self.http_error_auth_reqed('proxy-authenticate',
 authority, req, headers)
 return response

Return n random bytes.
_randombytes = os.urandom

class AbstractDigestAuthHandler:
 # Digest authentication is specified in RFC 2617.

 # XXX The client does not inspect the Authentication-Info header
 # in a successful response.

 # XXX It should be possible to test this implementation against
 # a mock server that just generates a static set of challenges.

 # XXX qop="auth-int" supports is shaky

 def __init__(self, passwd=None):
 if passwd is None:
 passwd = HTTPPasswordMgr()
 self.passwd = passwd
 self.add_password = self.passwd.add_password
 self.retried = 0
 self.nonce_count = 0
 self.last_nonce = None

 def reset_retry_count(self):
 self.retried = 0

 def http_error_auth_reqed(self, auth_header, host, req, headers):
 authreq = headers.get(auth_header, None)
 if self.retried > 5:
 # Don't fail endlessly - if we failed once, we'll probably
 # fail a second time. Hm. Unless the Password Manager is
 # prompting for the information. Crap. This isn't great
 # but it's better than the current 'repeat until recursion
 # depth exceeded' approach <wink>
 raise HTTPError(req.full_url, 401, "digest auth failed",
 headers, None)
 else:
 self.retried += 1
 if authreq:
 scheme = authreq.split()[0]
 if scheme.lower() == 'digest':
 return self.retry_http_digest_auth(req, authreq)
 elif scheme.lower() != 'basic':
 raise ValueError("AbstractDigestAuthHandler does not support"
 " the following scheme: '%s'" % scheme)

 def retry_http_digest_auth(self, req, auth):
 token, challenge = auth.split(' ', 1)
 chal = parse_keqv_list(filter(None, parse_http_list(challenge)))
 auth = self.get_authorization(req, chal)
 if auth:
 auth_val = 'Digest %s' % auth
 if req.headers.get(self.auth_header, None) == auth_val:
 return None
 req.add_unredirected_header(self.auth_header, auth_val)
 resp = self.parent.open(req, timeout=req.timeout)
 return resp

 def get_cnonce(self, nonce):
 # The cnonce-value is an opaque
 # quoted string value provided by the client and used by both client
 # and server to avoid chosen plaintext attacks, to provide mutual
 # authentication, and to provide some message integrity protection.
 # This isn't a fabulous effort, but it's probably Good Enough.
 s = "%s:%s:%s:" % (self.nonce_count, nonce, time.ctime())
 b = s.encode("ascii") + _randombytes(8)
 dig = hashlib.sha1(b).hexdigest()
 return dig[:16]

 def get_authorization(self, req, chal):
 try:
 realm = chal['realm']
 nonce = chal['nonce']
 qop = chal.get('qop')
 algorithm = chal.get('algorithm', 'MD5')
 # mod_digest doesn't send an opaque, even though it isn't
 # supposed to be optional
 opaque = chal.get('opaque', None)
 except KeyError:
 return None

 H, KD = self.get_algorithm_impls(algorithm)
 if H is None:
 return None

 user, pw = self.passwd.find_user_password(realm, req.full_url)
 if user is None:
 return None

 # XXX not implemented yet
 if req.data is not None:
 entdig = self.get_entity_digest(req.data, chal)
 else:
 entdig = None

 A1 = "%s:%s:%s" % (user, realm, pw)
 A2 = "%s:%s" % (req.get_method(),
 # XXX selector: what about proxies and full urls
 req.selector)
 if qop == 'auth':
 if nonce == self.last_nonce:
 self.nonce_count += 1
 else:
 self.nonce_count = 1
 self.last_nonce = nonce
 ncvalue = '%08x' % self.nonce_count
 cnonce = self.get_cnonce(nonce)
 noncebit = "%s:%s:%s:%s:%s" % (nonce, ncvalue, cnonce, qop, H(A2))
 respdig = KD(H(A1), noncebit)
 elif qop is None:
 respdig = KD(H(A1), "%s:%s" % (nonce, H(A2)))
 else:
 # XXX handle auth-int.
 raise URLError("qop '%s' is not supported." % qop)

 # XXX should the partial digests be encoded too?

 base = 'username="%s", realm="%s", nonce="%s", uri="%s", ' \
 'response="%s"' % (user, realm, nonce, req.selector,
 respdig)
 if opaque:
 base += ', opaque="%s"' % opaque
 if entdig:
 base += ', digest="%s"' % entdig
 base += ', algorithm="%s"' % algorithm
 if qop:
 base += ', qop=auth, nc=%s, cnonce="%s"' % (ncvalue, cnonce)
 return base

 def get_algorithm_impls(self, algorithm):
 # lambdas assume digest modules are imported at the top level
 if algorithm == 'MD5':
 H = lambda x: hashlib.md5(x.encode("ascii")).hexdigest()
 elif algorithm == 'SHA':
 H = lambda x: hashlib.sha1(x.encode("ascii")).hexdigest()
 # XXX MD5-sess
 KD = lambda s, d: H("%s:%s" % (s, d))
 return H, KD

 def get_entity_digest(self, data, chal):
 # XXX not implemented yet
 return None

class HTTPDigestAuthHandler(BaseHandler, AbstractDigestAuthHandler):
 """An authentication protocol defined by RFC 2069

 Digest authentication improves on basic authentication because it
 does not transmit passwords in the clear.
 """

 auth_header = 'Authorization'
 handler_order = 490 # before Basic auth

 def http_error_401(self, req, fp, code, msg, headers):
 host = urlparse(req.full_url)[1]
 retry = self.http_error_auth_reqed('www-authenticate',
 host, req, headers)
 self.reset_retry_count()
 return retry

class ProxyDigestAuthHandler(BaseHandler, AbstractDigestAuthHandler):

 auth_header = 'Proxy-Authorization'
 handler_order = 490 # before Basic auth

 def http_error_407(self, req, fp, code, msg, headers):
 host = req.host
 retry = self.http_error_auth_reqed('proxy-authenticate',
 host, req, headers)
 self.reset_retry_count()
 return retry

class AbstractHTTPHandler(BaseHandler):

 def __init__(self, debuglevel=0):
 self._debuglevel = debuglevel

 def set_http_debuglevel(self, level):
 self._debuglevel = level

 def do_request_(self, request):
 host = request.host
 if not host:
 raise URLError('no host given')

 if request.data is not None: # POST
 data = request.data
 if isinstance(data, str):
 msg = "POST data should be bytes or an iterable of bytes. " \
 "It cannot be of type str."
 raise TypeError(msg)
 if not request.has_header('Content-type'):
 request.add_unredirected_header(
 'Content-type',
 'application/x-www-form-urlencoded')
 if not request.has_header('Content-length'):
 try:
 mv = memoryview(data)
 except TypeError:
 if isinstance(data, collections.Iterable):
 raise ValueError("Content-Length should be specified "
 "for iterable data of type %r %r" % (type(data),
 data))
 else:
 request.add_unredirected_header(
 'Content-length', '%d' % (len(mv) * mv.itemsize))

 sel_host = host
 if request.has_proxy():
 scheme, sel = splittype(request.selector)
 sel_host, sel_path = splithost(sel)
 if not request.has_header('Host'):
 request.add_unredirected_header('Host', sel_host)
 for name, value in self.parent.addheaders:
 name = name.capitalize()
 if not request.has_header(name):
 request.add_unredirected_header(name, value)

 return request

 def do_open(self, http_class, req, **http_conn_args):
 """Return an HTTPResponse object for the request, using http_class.

 http_class must implement the HTTPConnection API from http.client.
 """
 host = req.host
 if not host:
 raise URLError('no host given')

 # will parse host:port
 h = http_class(host, timeout=req.timeout, **http_conn_args)

 headers = dict(req.unredirected_hdrs)
 headers.update(dict((k, v) for k, v in req.headers.items()
 if k not in headers))

 # TODO(jhylton): Should this be redesigned to handle
 # persistent connections?

 # We want to make an HTTP/1.1 request, but the addinfourl
 # class isn't prepared to deal with a persistent connection.
 # It will try to read all remaining data from the socket,
 # which will block while the server waits for the next request.
 # So make sure the connection gets closed after the (only)
 # request.
 headers["Connection"] = "close"
 headers = dict((name.title(), val) for name, val in headers.items())

 if req._tunnel_host:
 tunnel_headers = {}
 proxy_auth_hdr = "Proxy-Authorization"
 if proxy_auth_hdr in headers:
 tunnel_headers[proxy_auth_hdr] = headers[proxy_auth_hdr]
 # Proxy-Authorization should not be sent to origin
 # server.
 del headers[proxy_auth_hdr]
 h.set_tunnel(req._tunnel_host, headers=tunnel_headers)

 try:
 try:
 h.request(req.get_method(), req.selector, req.data, headers)
 except OSError as err: # timeout error
 raise URLError(err)
 r = h.getresponse()
 except:
 h.close()
 raise

 # If the server does not send us a 'Connection: close' header,
 # HTTPConnection assumes the socket should be left open. Manually
 # mark the socket to be closed when this response object goes away.
 if h.sock:
 h.sock.close()
 h.sock = None

 r.url = req.get_full_url()
 # This line replaces the .msg attribute of the HTTPResponse
 # with .headers, because urllib clients expect the response to
 # have the reason in .msg. It would be good to mark this
 # attribute is deprecated and get then to use info() or
 # .headers.
 r.msg = r.reason
 return r

class HTTPHandler(AbstractHTTPHandler):

 def http_open(self, req):
 return self.do_open(http.client.HTTPConnection, req)

 http_request = AbstractHTTPHandler.do_request_

if hasattr(http.client, 'HTTPSConnection'):

 class HTTPSHandler(AbstractHTTPHandler):

 def __init__(self, debuglevel=0, context=None, check_hostname=None):
 AbstractHTTPHandler.__init__(self, debuglevel)
 self._context = context
 self._check_hostname = check_hostname

 def https_open(self, req):
 return self.do_open(http.client.HTTPSConnection, req,
 context=self._context, check_hostname=self._check_hostname)

 https_request = AbstractHTTPHandler.do_request_

 __all__.append('HTTPSHandler')

class HTTPCookieProcessor(BaseHandler):
 def __init__(self, cookiejar=None):
 import http.cookiejar
 if cookiejar is None:
 cookiejar = http.cookiejar.CookieJar()
 self.cookiejar = cookiejar

 def http_request(self, request):
 self.cookiejar.add_cookie_header(request)
 return request

 def http_response(self, request, response):
 self.cookiejar.extract_cookies(response, request)
 return response

 https_request = http_request
 https_response = http_response

class UnknownHandler(BaseHandler):
 def unknown_open(self, req):
 type = req.type
 raise URLError('unknown url type: %s' % type)

def parse_keqv_list(l):
 """Parse list of key=value strings where keys are not duplicated."""
 parsed = {}
 for elt in l:
 k, v = elt.split('=', 1)
 if v[0] == '"' and v[-1] == '"':
 v = v[1:-1]
 parsed[k] = v
 return parsed

def parse_http_list(s):
 """Parse lists as described by RFC 2068 Section 2.

 In particular, parse comma-separated lists where the elements of
 the list may include quoted-strings. A quoted-string could
 contain a comma. A non-quoted string could have quotes in the
 middle. Neither commas nor quotes count if they are escaped.
 Only double-quotes count, not single-quotes.
 """
 res = []
 part = ''

 escape = quote = False
 for cur in s:
 if escape:
 part += cur
 escape = False
 continue
 if quote:
 if cur == '\\':
 escape = True
 continue
 elif cur == '"':
 quote = False
 part += cur
 continue

 if cur == ',':
 res.append(part)
 part = ''
 continue

 if cur == '"':
 quote = True

 part += cur

 # append last part
 if part:
 res.append(part)

 return [part.strip() for part in res]

class FileHandler(BaseHandler):
 # Use local file or FTP depending on form of URL
 def file_open(self, req):
 url = req.selector
 if url[:2] == '//' and url[2:3] != '/' and (req.host and
 req.host != 'localhost'):
 if not req.host in self.get_names():
 raise URLError("file:// scheme is supported only on localhost")
 else:
 return self.open_local_file(req)

 # names for the localhost
 names = None
 def get_names(self):
 if FileHandler.names is None:
 try:
 FileHandler.names = tuple(
 socket.gethostbyname_ex('localhost')[2] +
 socket.gethostbyname_ex(socket.gethostname())[2])
 except socket.gaierror:
 FileHandler.names = (socket.gethostbyname('localhost'),)
 return FileHandler.names

 # not entirely sure what the rules are here
 def open_local_file(self, req):
 import email.utils
 import mimetypes
 host = req.host
 filename = req.selector
 localfile = url2pathname(filename)
 try:
 stats = os.stat(localfile)
 size = stats.st_size
 modified = email.utils.formatdate(stats.st_mtime, usegmt=True)
 mtype = mimetypes.guess_type(filename)[0]
 headers = email.message_from_string(
 'Content-type: %s\nContent-length: %d\nLast-modified: %s\n' %
 (mtype or 'text/plain', size, modified))
 if host:
 host, port = splitport(host)
 if not host or \
 (not port and _safe_gethostbyname(host) in self.get_names()):
 if host:
 origurl = 'file://' + host + filename
 else:
 origurl = 'file://' + filename
 return addinfourl(open(localfile, 'rb'), headers, origurl)
 except OSError as exp:
 # users shouldn't expect OSErrors coming from urlopen()
 raise URLError(exp)
 raise URLError('file not on local host')

def _safe_gethostbyname(host):
 try:
 return socket.gethostbyname(host)
 except socket.gaierror:
 return None

class FTPHandler(BaseHandler):
 def ftp_open(self, req):
 import ftplib
 import mimetypes
 host = req.host
 if not host:
 raise URLError('ftp error: no host given')
 host, port = splitport(host)
 if port is None:
 port = ftplib.FTP_PORT
 else:
 port = int(port)

 # username/password handling
 user, host = splituser(host)
 if user:
 user, passwd = splitpasswd(user)
 else:
 passwd = None
 host = unquote(host)
 user = user or ''
 passwd = passwd or ''

 try:
 host = socket.gethostbyname(host)
 except OSError as msg:
 raise URLError(msg)
 path, attrs = splitattr(req.selector)
 dirs = path.split('/')
 dirs = list(map(unquote, dirs))
 dirs, file = dirs[:-1], dirs[-1]
 if dirs and not dirs[0]:
 dirs = dirs[1:]
 try:
 fw = self.connect_ftp(user, passwd, host, port, dirs, req.timeout)
 type = file and 'I' or 'D'
 for attr in attrs:
 attr, value = splitvalue(attr)
 if attr.lower() == 'type' and \
 value in ('a', 'A', 'i', 'I', 'd', 'D'):
 type = value.upper()
 fp, retrlen = fw.retrfile(file, type)
 headers = ""
 mtype = mimetypes.guess_type(req.full_url)[0]
 if mtype:
 headers += "Content-type: %s\n" % mtype
 if retrlen is not None and retrlen >= 0:
 headers += "Content-length: %d\n" % retrlen
 headers = email.message_from_string(headers)
 return addinfourl(fp, headers, req.full_url)
 except ftplib.all_errors as exp:
 exc = URLError('ftp error: %r' % exp)
 raise exc.with_traceback(sys.exc_info()[2])

 def connect_ftp(self, user, passwd, host, port, dirs, timeout):
 return ftpwrapper(user, passwd, host, port, dirs, timeout,
 persistent=False)

class CacheFTPHandler(FTPHandler):
 # XXX would be nice to have pluggable cache strategies
 # XXX this stuff is definitely not thread safe
 def __init__(self):
 self.cache = {}
 self.timeout = {}
 self.soonest = 0
 self.delay = 60
 self.max_conns = 16

 def setTimeout(self, t):
 self.delay = t

 def setMaxConns(self, m):
 self.max_conns = m

 def connect_ftp(self, user, passwd, host, port, dirs, timeout):
 key = user, host, port, '/'.join(dirs), timeout
 if key in self.cache:
 self.timeout[key] = time.time() + self.delay
 else:
 self.cache[key] = ftpwrapper(user, passwd, host, port,
 dirs, timeout)
 self.timeout[key] = time.time() + self.delay
 self.check_cache()
 return self.cache[key]

 def check_cache(self):
 # first check for old ones
 t = time.time()
 if self.soonest <= t:
 for k, v in list(self.timeout.items()):
 if v < t:
 self.cache[k].close()
 del self.cache[k]
 del self.timeout[k]
 self.soonest = min(list(self.timeout.values()))

 # then check the size
 if len(self.cache) == self.max_conns:
 for k, v in list(self.timeout.items()):
 if v == self.soonest:
 del self.cache[k]
 del self.timeout[k]
 break
 self.soonest = min(list(self.timeout.values()))

 def clear_cache(self):
 for conn in self.cache.values():
 conn.close()
 self.cache.clear()
 self.timeout.clear()

class DataHandler(BaseHandler):
 def data_open(self, req):
 # data URLs as specified in RFC 2397.
 #
 # ignores POSTed data
 #
 # syntax:
 # dataurl := "data:" [mediatype] [";base64"] "," data
 # mediatype := [type "/" subtype] *(";" parameter)
 # data := *urlchar
 # parameter := attribute "=" value
 url = req.full_url

 scheme, data = url.split(":",1)
 mediatype, data = data.split(",",1)

 # even base64 encoded data URLs might be quoted so unquote in any case:
 data = unquote_to_bytes(data)
 if mediatype.endswith(";base64"):
 data = base64.decodebytes(data)
 mediatype = mediatype[:-7]

 if not mediatype:
 mediatype = "text/plain;charset=US-ASCII"

 headers = email.message_from_string("Content-type: %s\nContent-length: %d\n" %
 (mediatype, len(data)))

 return addinfourl(io.BytesIO(data), headers, url)

Code move from the old urllib module

MAXFTPCACHE = 10 # Trim the ftp cache beyond this size

Helper for non-unix systems
if os.name == 'nt':
 from nturl2path import url2pathname, pathname2url
else:
 def url2pathname(pathname):
 """OS-specific conversion from a relative URL of the 'file' scheme
 to a file system path; not recommended for general use."""
 return unquote(pathname)

 def pathname2url(pathname):
 """OS-specific conversion from a file system path to a relative URL
 of the 'file' scheme; not recommended for general use."""
 return quote(pathname)

This really consists of two pieces:
(1) a class which handles opening of all sorts of URLs
(plus assorted utilities etc.)
(2) a set of functions for parsing URLs
XXX Should these be separated out into different modules?

ftpcache = {}
class URLopener:
 """Class to open URLs.
 This is a class rather than just a subroutine because we may need
 more than one set of global protocol-specific options.
 Note -- this is a base class for those who don't want the
 automatic handling of errors type 302 (relocated) and 401
 (authorization needed)."""

 __tempfiles = None

 version = "Python-urllib/%s" % __version__

 # Constructor
 def __init__(self, proxies=None, **x509):
 msg = "%(class)s style of invoking requests is deprecated. " \
 "Use newer urlopen functions/methods" % {'class': self.__class__.__name__}
 warnings.warn(msg, DeprecationWarning, stacklevel=3)
 if proxies is None:
 proxies = getproxies()
 assert hasattr(proxies, 'keys'), "proxies must be a mapping"
 self.proxies = proxies
 self.key_file = x509.get('key_file')
 self.cert_file = x509.get('cert_file')
 self.addheaders = [('User-Agent', self.version)]
 self.__tempfiles = []
 self.__unlink = os.unlink # See cleanup()
 self.tempcache = None
 # Undocumented feature: if you assign {} to tempcache,
 # it is used to cache files retrieved with
 # self.retrieve(). This is not enabled by default
 # since it does not work for changing documents (and I
 # haven't got the logic to check expiration headers
 # yet).
 self.ftpcache = ftpcache
 # Undocumented feature: you can use a different
 # ftp cache by assigning to the .ftpcache member;
 # in case you want logically independent URL openers
 # XXX This is not threadsafe. Bah.

 def __del__(self):
 self.close()

 def close(self):
 self.cleanup()

 def cleanup(self):
 # This code sometimes runs when the rest of this module
 # has already been deleted, so it can't use any globals
 # or import anything.
 if self.__tempfiles:
 for file in self.__tempfiles:
 try:
 self.__unlink(file)
 except OSError:
 pass
 del self.__tempfiles[:]
 if self.tempcache:
 self.tempcache.clear()

 def addheader(self, *args):
 """Add a header to be used by the HTTP interface only
 e.g. u.addheader('Accept', 'sound/basic')"""
 self.addheaders.append(args)

 # External interface
 def open(self, fullurl, data=None):
 """Use URLopener().open(file) instead of open(file, 'r')."""
 fullurl = unwrap(to_bytes(fullurl))
 fullurl = quote(fullurl, safe="%/:=&?~#+!$,;'@()*[]|")
 if self.tempcache and fullurl in self.tempcache:
 filename, headers = self.tempcache[fullurl]
 fp = open(filename, 'rb')
 return addinfourl(fp, headers, fullurl)
 urltype, url = splittype(fullurl)
 if not urltype:
 urltype = 'file'
 if urltype in self.proxies:
 proxy = self.proxies[urltype]
 urltype, proxyhost = splittype(proxy)
 host, selector = splithost(proxyhost)
 url = (host, fullurl) # Signal special case to open_*()
 else:
 proxy = None
 name = 'open_' + urltype
 self.type = urltype
 name = name.replace('-', '_')
 if not hasattr(self, name):
 if proxy:
 return self.open_unknown_proxy(proxy, fullurl, data)
 else:
 return self.open_unknown(fullurl, data)
 try:
 if data is None:
 return getattr(self, name)(url)
 else:
 return getattr(self, name)(url, data)
 except (HTTPError, URLError):
 raise
 except OSError as msg:
 raise OSError('socket error', msg).with_traceback(sys.exc_info()[2])

 def open_unknown(self, fullurl, data=None):
 """Overridable interface to open unknown URL type."""
 type, url = splittype(fullurl)
 raise OSError('url error', 'unknown url type', type)

 def open_unknown_proxy(self, proxy, fullurl, data=None):
 """Overridable interface to open unknown URL type."""
 type, url = splittype(fullurl)
 raise OSError('url error', 'invalid proxy for %s' % type, proxy)

 # External interface
 def retrieve(self, url, filename=None, reporthook=None, data=None):
 """retrieve(url) returns (filename, headers) for a local object
 or (tempfilename, headers) for a remote object."""
 url = unwrap(to_bytes(url))
 if self.tempcache and url in self.tempcache:
 return self.tempcache[url]
 type, url1 = splittype(url)
 if filename is None and (not type or type == 'file'):
 try:
 fp = self.open_local_file(url1)
 hdrs = fp.info()
 fp.close()
 return url2pathname(splithost(url1)[1]), hdrs
 except OSError as msg:
 pass
 fp = self.open(url, data)
 try:
 headers = fp.info()
 if filename:
 tfp = open(filename, 'wb')
 else:
 import tempfile
 garbage, path = splittype(url)
 garbage, path = splithost(path or "")
 path, garbage = splitquery(path or "")
 path, garbage = splitattr(path or "")
 suffix = os.path.splitext(path)[1]
 (fd, filename) = tempfile.mkstemp(suffix)
 self.__tempfiles.append(filename)
 tfp = os.fdopen(fd, 'wb')
 try:
 result = filename, headers
 if self.tempcache is not None:
 self.tempcache[url] = result
 bs = 1024*8
 size = -1
 read = 0
 blocknum = 0
 if "content-length" in headers:
 size = int(headers["Content-Length"])
 if reporthook:
 reporthook(blocknum, bs, size)
 while 1:
 block = fp.read(bs)
 if not block:
 break
 read += len(block)
 tfp.write(block)
 blocknum += 1
 if reporthook:
 reporthook(blocknum, bs, size)
 finally:
 tfp.close()
 finally:
 fp.close()

 # raise exception if actual size does not match content-length header
 if size >= 0 and read < size:
 raise ContentTooShortError(
 "retrieval incomplete: got only %i out of %i bytes"
 % (read, size), result)

 return result

 # Each method named open_<type> knows how to open that type of URL

 def _open_generic_http(self, connection_factory, url, data):
 """Make an HTTP connection using connection_class.

 This is an internal method that should be called from
 open_http() or open_https().

 Arguments:
 - connection_factory should take a host name and return an
 HTTPConnection instance.
 - url is the url to retrieval or a host, relative-path pair.
 - data is payload for a POST request or None.
 """

 user_passwd = None
 proxy_passwd= None
 if isinstance(url, str):
 host, selector = splithost(url)
 if host:
 user_passwd, host = splituser(host)
 host = unquote(host)
 realhost = host
 else:
 host, selector = url
 # check whether the proxy contains authorization information
 proxy_passwd, host = splituser(host)
 # now we proceed with the url we want to obtain
 urltype, rest = splittype(selector)
 url = rest
 user_passwd = None
 if urltype.lower() != 'http':
 realhost = None
 else:
 realhost, rest = splithost(rest)
 if realhost:
 user_passwd, realhost = splituser(realhost)
 if user_passwd:
 selector = "%s://%s%s" % (urltype, realhost, rest)
 if proxy_bypass(realhost):
 host = realhost

 if not host: raise OSError('http error', 'no host given')

 if proxy_passwd:
 proxy_passwd = unquote(proxy_passwd)
 proxy_auth = base64.b64encode(proxy_passwd.encode()).decode('ascii')
 else:
 proxy_auth = None

 if user_passwd:
 user_passwd = unquote(user_passwd)
 auth = base64.b64encode(user_passwd.encode()).decode('ascii')
 else:
 auth = None
 http_conn = connection_factory(host)
 headers = {}
 if proxy_auth:
 headers["Proxy-Authorization"] = "Basic %s" % proxy_auth
 if auth:
 headers["Authorization"] = "Basic %s" % auth
 if realhost:
 headers["Host"] = realhost

 # Add Connection:close as we don't support persistent connections yet.
 # This helps in closing the socket and avoiding ResourceWarning

 headers["Connection"] = "close"

 for header, value in self.addheaders:
 headers[header] = value

 if data is not None:
 headers["Content-Type"] = "application/x-www-form-urlencoded"
 http_conn.request("POST", selector, data, headers)
 else:
 http_conn.request("GET", selector, headers=headers)

 try:
 response = http_conn.getresponse()
 except http.client.BadStatusLine:
 # something went wrong with the HTTP status line
 raise URLError("http protocol error: bad status line")

 # According to RFC 2616, "2xx" code indicates that the client's
 # request was successfully received, understood, and accepted.
 if 200 <= response.status < 300:
 return addinfourl(response, response.msg, "http:" + url,
 response.status)
 else:
 return self.http_error(
 url, response.fp,
 response.status, response.reason, response.msg, data)

 def open_http(self, url, data=None):
 """Use HTTP protocol."""
 return self._open_generic_http(http.client.HTTPConnection, url, data)

 def http_error(self, url, fp, errcode, errmsg, headers, data=None):
 """Handle http errors.

 Derived class can override this, or provide specific handlers
 named http_error_DDD where DDD is the 3-digit error code."""
 # First check if there's a specific handler for this error
 name = 'http_error_%d' % errcode
 if hasattr(self, name):
 method = getattr(self, name)
 if data is None:
 result = method(url, fp, errcode, errmsg, headers)
 else:
 result = method(url, fp, errcode, errmsg, headers, data)
 if result: return result
 return self.http_error_default(url, fp, errcode, errmsg, headers)

 def http_error_default(self, url, fp, errcode, errmsg, headers):
 """Default error handler: close the connection and raise OSError."""
 fp.close()
 raise HTTPError(url, errcode, errmsg, headers, None)

 if _have_ssl:
 def _https_connection(self, host):
 return http.client.HTTPSConnection(host,
 key_file=self.key_file,
 cert_file=self.cert_file)

 def open_https(self, url, data=None):
 """Use HTTPS protocol."""
 return self._open_generic_http(self._https_connection, url, data)

 def open_file(self, url):
 """Use local file or FTP depending on form of URL."""
 if not isinstance(url, str):
 raise URLError('file error: proxy support for file protocol currently not implemented')
 if url[:2] == '//' and url[2:3] != '/' and url[2:12].lower() != 'localhost/':
 raise ValueError("file:// scheme is supported only on localhost")
 else:
 return self.open_local_file(url)

 def open_local_file(self, url):
 """Use local file."""
 import email.utils
 import mimetypes
 host, file = splithost(url)
 localname = url2pathname(file)
 try:
 stats = os.stat(localname)
 except OSError as e:
 raise URLError(e.strerror, e.filename)
 size = stats.st_size
 modified = email.utils.formatdate(stats.st_mtime, usegmt=True)
 mtype = mimetypes.guess_type(url)[0]
 headers = email.message_from_string(
 'Content-Type: %s\nContent-Length: %d\nLast-modified: %s\n' %
 (mtype or 'text/plain', size, modified))
 if not host:
 urlfile = file
 if file[:1] == '/':
 urlfile = 'file://' + file
 return addinfourl(open(localname, 'rb'), headers, urlfile)
 host, port = splitport(host)
 if (not port
 and socket.gethostbyname(host) in ((localhost(),) + thishost())):
 urlfile = file
 if file[:1] == '/':
 urlfile = 'file://' + file
 elif file[:2] == './':
 raise ValueError("local file url may start with / or file:. Unknown url of type: %s" % url)
 return addinfourl(open(localname, 'rb'), headers, urlfile)
 raise URLError('local file error: not on local host')

 def open_ftp(self, url):
 """Use FTP protocol."""
 if not isinstance(url, str):
 raise URLError('ftp error: proxy support for ftp protocol currently not implemented')
 import mimetypes
 host, path = splithost(url)
 if not host: raise URLError('ftp error: no host given')
 host, port = splitport(host)
 user, host = splituser(host)
 if user: user, passwd = splitpasswd(user)
 else: passwd = None
 host = unquote(host)
 user = unquote(user or '')
 passwd = unquote(passwd or '')
 host = socket.gethostbyname(host)
 if not port:
 import ftplib
 port = ftplib.FTP_PORT
 else:
 port = int(port)
 path, attrs = splitattr(path)
 path = unquote(path)
 dirs = path.split('/')
 dirs, file = dirs[:-1], dirs[-1]
 if dirs and not dirs[0]: dirs = dirs[1:]
 if dirs and not dirs[0]: dirs[0] = '/'
 key = user, host, port, '/'.join(dirs)
 # XXX thread unsafe!
 if len(self.ftpcache) > MAXFTPCACHE:
 # Prune the cache, rather arbitrarily
 for k in list(self.ftpcache):
 if k != key:
 v = self.ftpcache[k]
 del self.ftpcache[k]
 v.close()
 try:
 if key not in self.ftpcache:
 self.ftpcache[key] = \
 ftpwrapper(user, passwd, host, port, dirs)
 if not file: type = 'D'
 else: type = 'I'
 for attr in attrs:
 attr, value = splitvalue(attr)
 if attr.lower() == 'type' and \
 value in ('a', 'A', 'i', 'I', 'd', 'D'):
 type = value.upper()
 (fp, retrlen) = self.ftpcache[key].retrfile(file, type)
 mtype = mimetypes.guess_type("ftp:" + url)[0]
 headers = ""
 if mtype:
 headers += "Content-Type: %s\n" % mtype
 if retrlen is not None and retrlen >= 0:
 headers += "Content-Length: %d\n" % retrlen
 headers = email.message_from_string(headers)
 return addinfourl(fp, headers, "ftp:" + url)
 except ftperrors() as exp:
 raise URLError('ftp error %r' % exp).with_traceback(sys.exc_info()[2])

 def open_data(self, url, data=None):
 """Use "data" URL."""
 if not isinstance(url, str):
 raise URLError('data error: proxy support for data protocol currently not implemented')
 # ignore POSTed data
 #
 # syntax of data URLs:
 # dataurl := "data:" [mediatype] [";base64"] "," data
 # mediatype := [type "/" subtype] *(";" parameter)
 # data := *urlchar
 # parameter := attribute "=" value
 try:
 [type, data] = url.split(',', 1)
 except ValueError:
 raise OSError('data error', 'bad data URL')
 if not type:
 type = 'text/plain;charset=US-ASCII'
 semi = type.rfind(';')
 if semi >= 0 and '=' not in type[semi:]:
 encoding = type[semi+1:]
 type = type[:semi]
 else:
 encoding = ''
 msg = []
 msg.append('Date: %s'%time.strftime('%a, %d %b %Y %H:%M:%S GMT',
 time.gmtime(time.time())))
 msg.append('Content-type: %s' % type)
 if encoding == 'base64':
 # XXX is this encoding/decoding ok?
 data = base64.decodebytes(data.encode('ascii')).decode('latin-1')
 else:
 data = unquote(data)
 msg.append('Content-Length: %d' % len(data))
 msg.append('')
 msg.append(data)
 msg = '\n'.join(msg)
 headers = email.message_from_string(msg)
 f = io.StringIO(msg)
 #f.fileno = None # needed for addinfourl
 return addinfourl(f, headers, url)

class FancyURLopener(URLopener):
 """Derived class with handlers for errors we can handle (perhaps)."""

 def __init__(self, *args, **kwargs):
 URLopener.__init__(self, *args, **kwargs)
 self.auth_cache = {}
 self.tries = 0
 self.maxtries = 10

 def http_error_default(self, url, fp, errcode, errmsg, headers):
 """Default error handling -- don't raise an exception."""
 return addinfourl(fp, headers, "http:" + url, errcode)

 def http_error_302(self, url, fp, errcode, errmsg, headers, data=None):
 """Error 302 -- relocated (temporarily)."""
 self.tries += 1
 if self.maxtries and self.tries >= self.maxtries:
 if hasattr(self, "http_error_500"):
 meth = self.http_error_500
 else:
 meth = self.http_error_default
 self.tries = 0
 return meth(url, fp, 500,
 "Internal Server Error: Redirect Recursion", headers)
 result = self.redirect_internal(url, fp, errcode, errmsg, headers,
 data)
 self.tries = 0
 return result

 def redirect_internal(self, url, fp, errcode, errmsg, headers, data):
 if 'location' in headers:
 newurl = headers['location']
 elif 'uri' in headers:
 newurl = headers['uri']
 else:
 return
 fp.close()

 # In case the server sent a relative URL, join with original:
 newurl = urljoin(self.type + ":" + url, newurl)

 urlparts = urlparse(newurl)

 # For security reasons, we don't allow redirection to anything other
 # than http, https and ftp.

 # We are using newer HTTPError with older redirect_internal method
 # This older method will get deprecated in 3.3

 if urlparts.scheme not in ('http', 'https', 'ftp', ''):
 raise HTTPError(newurl, errcode,
 errmsg +
 " Redirection to url '%s' is not allowed." % newurl,
 headers, fp)

 return self.open(newurl)

 def http_error_301(self, url, fp, errcode, errmsg, headers, data=None):
 """Error 301 -- also relocated (permanently)."""
 return self.http_error_302(url, fp, errcode, errmsg, headers, data)

 def http_error_303(self, url, fp, errcode, errmsg, headers, data=None):
 """Error 303 -- also relocated (essentially identical to 302)."""
 return self.http_error_302(url, fp, errcode, errmsg, headers, data)

 def http_error_307(self, url, fp, errcode, errmsg, headers, data=None):
 """Error 307 -- relocated, but turn POST into error."""
 if data is None:
 return self.http_error_302(url, fp, errcode, errmsg, headers, data)
 else:
 return self.http_error_default(url, fp, errcode, errmsg, headers)

 def http_error_401(self, url, fp, errcode, errmsg, headers, data=None,
 retry=False):
 """Error 401 -- authentication required.
 This function supports Basic authentication only."""
 if 'www-authenticate' not in headers:
 URLopener.http_error_default(self, url, fp,
 errcode, errmsg, headers)
 stuff = headers['www-authenticate']
 match = re.match('[\t]*([^ \t]+)[\t]+realm="([^"]*)"', stuff)
 if not match:
 URLopener.http_error_default(self, url, fp,
 errcode, errmsg, headers)
 scheme, realm = match.groups()
 if scheme.lower() != 'basic':
 URLopener.http_error_default(self, url, fp,
 errcode, errmsg, headers)
 if not retry:
 URLopener.http_error_default(self, url, fp, errcode, errmsg,
 headers)
 name = 'retry_' + self.type + '_basic_auth'
 if data is None:
 return getattr(self,name)(url, realm)
 else:
 return getattr(self,name)(url, realm, data)

 def http_error_407(self, url, fp, errcode, errmsg, headers, data=None,
 retry=False):
 """Error 407 -- proxy authentication required.
 This function supports Basic authentication only."""
 if 'proxy-authenticate' not in headers:
 URLopener.http_error_default(self, url, fp,
 errcode, errmsg, headers)
 stuff = headers['proxy-authenticate']
 match = re.match('[\t]*([^ \t]+)[\t]+realm="([^"]*)"', stuff)
 if not match:
 URLopener.http_error_default(self, url, fp,
 errcode, errmsg, headers)
 scheme, realm = match.groups()
 if scheme.lower() != 'basic':
 URLopener.http_error_default(self, url, fp,
 errcode, errmsg, headers)
 if not retry:
 URLopener.http_error_default(self, url, fp, errcode, errmsg,
 headers)
 name = 'retry_proxy_' + self.type + '_basic_auth'
 if data is None:
 return getattr(self,name)(url, realm)
 else:
 return getattr(self,name)(url, realm, data)

 def retry_proxy_http_basic_auth(self, url, realm, data=None):
 host, selector = splithost(url)
 newurl = 'http://' + host + selector
 proxy = self.proxies['http']
 urltype, proxyhost = splittype(proxy)
 proxyhost, proxyselector = splithost(proxyhost)
 i = proxyhost.find('@') + 1
 proxyhost = proxyhost[i:]
 user, passwd = self.get_user_passwd(proxyhost, realm, i)
 if not (user or passwd): return None
 proxyhost = "%s:%s@%s" % (quote(user, safe=''),
 quote(passwd, safe=''), proxyhost)
 self.proxies['http'] = 'http://' + proxyhost + proxyselector
 if data is None:
 return self.open(newurl)
 else:
 return self.open(newurl, data)

 def retry_proxy_https_basic_auth(self, url, realm, data=None):
 host, selector = splithost(url)
 newurl = 'https://' + host + selector
 proxy = self.proxies['https']
 urltype, proxyhost = splittype(proxy)
 proxyhost, proxyselector = splithost(proxyhost)
 i = proxyhost.find('@') + 1
 proxyhost = proxyhost[i:]
 user, passwd = self.get_user_passwd(proxyhost, realm, i)
 if not (user or passwd): return None
 proxyhost = "%s:%s@%s" % (quote(user, safe=''),
 quote(passwd, safe=''), proxyhost)
 self.proxies['https'] = 'https://' + proxyhost + proxyselector
 if data is None:
 return self.open(newurl)
 else:
 return self.open(newurl, data)

 def retry_http_basic_auth(self, url, realm, data=None):
 host, selector = splithost(url)
 i = host.find('@') + 1
 host = host[i:]
 user, passwd = self.get_user_passwd(host, realm, i)
 if not (user or passwd): return None
 host = "%s:%s@%s" % (quote(user, safe=''),
 quote(passwd, safe=''), host)
 newurl = 'http://' + host + selector
 if data is None:
 return self.open(newurl)
 else:
 return self.open(newurl, data)

 def retry_https_basic_auth(self, url, realm, data=None):
 host, selector = splithost(url)
 i = host.find('@') + 1
 host = host[i:]
 user, passwd = self.get_user_passwd(host, realm, i)
 if not (user or passwd): return None
 host = "%s:%s@%s" % (quote(user, safe=''),
 quote(passwd, safe=''), host)
 newurl = 'https://' + host + selector
 if data is None:
 return self.open(newurl)
 else:
 return self.open(newurl, data)

 def get_user_passwd(self, host, realm, clear_cache=0):
 key = realm + '@' + host.lower()
 if key in self.auth_cache:
 if clear_cache:
 del self.auth_cache[key]
 else:
 return self.auth_cache[key]
 user, passwd = self.prompt_user_passwd(host, realm)
 if user or passwd: self.auth_cache[key] = (user, passwd)
 return user, passwd

 def prompt_user_passwd(self, host, realm):
 """Override this in a GUI environment!"""
 import getpass
 try:
 user = input("Enter username for %s at %s: " % (realm, host))
 passwd = getpass.getpass("Enter password for %s in %s at %s: " %
 (user, realm, host))
 return user, passwd
 except KeyboardInterrupt:
 print()
 return None, None

Utility functions

_localhost = None
def localhost():
 """Return the IP address of the magic hostname 'localhost'."""
 global _localhost
 if _localhost is None:
 _localhost = socket.gethostbyname('localhost')
 return _localhost

_thishost = None
def thishost():
 """Return the IP addresses of the current host."""
 global _thishost
 if _thishost is None:
 try:
 _thishost = tuple(socket.gethostbyname_ex(socket.gethostname())[2])
 except socket.gaierror:
 _thishost = tuple(socket.gethostbyname_ex('localhost')[2])
 return _thishost

_ftperrors = None
def ftperrors():
 """Return the set of errors raised by the FTP class."""
 global _ftperrors
 if _ftperrors is None:
 import ftplib
 _ftperrors = ftplib.all_errors
 return _ftperrors

_noheaders = None
def noheaders():
 """Return an empty email Message object."""
 global _noheaders
 if _noheaders is None:
 _noheaders = email.message_from_string("")
 return _noheaders

Utility classes

class ftpwrapper:
 """Class used by open_ftp() for cache of open FTP connections."""

 def __init__(self, user, passwd, host, port, dirs, timeout=None,
 persistent=True):
 self.user = user
 self.passwd = passwd
 self.host = host
 self.port = port
 self.dirs = dirs
 self.timeout = timeout
 self.refcount = 0
 self.keepalive = persistent
 self.init()

 def init(self):
 import ftplib
 self.busy = 0
 self.ftp = ftplib.FTP()
 self.ftp.connect(self.host, self.port, self.timeout)
 self.ftp.login(self.user, self.passwd)
 _target = '/'.join(self.dirs)
 self.ftp.cwd(_target)

 def retrfile(self, file, type):
 import ftplib
 self.endtransfer()
 if type in ('d', 'D'): cmd = 'TYPE A'; isdir = 1
 else: cmd = 'TYPE ' + type; isdir = 0
 try:
 self.ftp.voidcmd(cmd)
 except ftplib.all_errors:
 self.init()
 self.ftp.voidcmd(cmd)
 conn = None
 if file and not isdir:
 # Try to retrieve as a file
 try:
 cmd = 'RETR ' + file
 conn, retrlen = self.ftp.ntransfercmd(cmd)
 except ftplib.error_perm as reason:
 if str(reason)[:3] != '550':
 raise URLError('ftp error: %r' % reason).with_traceback(
 sys.exc_info()[2])
 if not conn:
 # Set transfer mode to ASCII!
 self.ftp.voidcmd('TYPE A')
 # Try a directory listing. Verify that directory exists.
 if file:
 pwd = self.ftp.pwd()
 try:
 try:
 self.ftp.cwd(file)
 except ftplib.error_perm as reason:
 raise URLError('ftp error: %r' % reason) from reason
 finally:
 self.ftp.cwd(pwd)
 cmd = 'LIST ' + file
 else:
 cmd = 'LIST'
 conn, retrlen = self.ftp.ntransfercmd(cmd)
 self.busy = 1

 ftpobj = addclosehook(conn.makefile('rb'), self.file_close)
 self.refcount += 1
 conn.close()
 # Pass back both a suitably decorated object and a retrieval length
 return (ftpobj, retrlen)

 def endtransfer(self):
 self.busy = 0

 def close(self):
 self.keepalive = False
 if self.refcount <= 0:
 self.real_close()

 def file_close(self):
 self.endtransfer()
 self.refcount -= 1
 if self.refcount <= 0 and not self.keepalive:
 self.real_close()

 def real_close(self):
 self.endtransfer()
 try:
 self.ftp.close()
 except ftperrors():
 pass

Proxy handling
def getproxies_environment():
 """Return a dictionary of scheme -> proxy server URL mappings.

 Scan the environment for variables named <scheme>_proxy;
 this seems to be the standard convention. If you need a
 different way, you can pass a proxies dictionary to the
 [Fancy]URLopener constructor.

 """
 proxies = {}
 for name, value in os.environ.items():
 name = name.lower()
 if value and name[-6:] == '_proxy':
 proxies[name[:-6]] = value
 return proxies

def proxy_bypass_environment(host):
 """Test if proxies should not be used for a particular host.

 Checks the environment for a variable named no_proxy, which should
 be a list of DNS suffixes separated by commas, or '*' for all hosts.
 """
 no_proxy = os.environ.get('no_proxy', '') or os.environ.get('NO_PROXY', '')
 # '*' is special case for always bypass
 if no_proxy == '*':
 return 1
 # strip port off host
 hostonly, port = splitport(host)
 # check if the host ends with any of the DNS suffixes
 no_proxy_list = [proxy.strip() for proxy in no_proxy.split(',')]
 for name in no_proxy_list:
 if name and (hostonly.endswith(name) or host.endswith(name)):
 return 1
 # otherwise, don't bypass
 return 0

This code tests an OSX specific data structure but is testable on all
platforms
def _proxy_bypass_macosx_sysconf(host, proxy_settings):
 """
 Return True iff this host shouldn't be accessed using a proxy

 This function uses the MacOSX framework SystemConfiguration
 to fetch the proxy information.

 proxy_settings come from _scproxy._get_proxy_settings or get mocked ie:
 { 'exclude_simple': bool,
 'exceptions': ['foo.bar', '*.bar.com', '127.0.0.1', '10.1', '10.0/16']
 }
 """
 from fnmatch import fnmatch

 hostonly, port = splitport(host)

 def ip2num(ipAddr):
 parts = ipAddr.split('.')
 parts = list(map(int, parts))
 if len(parts) != 4:
 parts = (parts + [0, 0, 0, 0])[:4]
 return (parts[0] << 24) | (parts[1] << 16) | (parts[2] << 8) | parts[3]

 # Check for simple host names:
 if '.' not in host:
 if proxy_settings['exclude_simple']:
 return True

 hostIP = None

 for value in proxy_settings.get('exceptions', ()):
 # Items in the list are strings like these: *.local, 169.254/16
 if not value: continue

 m = re.match(r"(\d+(?:\.\d+)*)(/\d+)?", value)
 if m is not None:
 if hostIP is None:
 try:
 hostIP = socket.gethostbyname(hostonly)
 hostIP = ip2num(hostIP)
 except OSError:
 continue

 base = ip2num(m.group(1))
 mask = m.group(2)
 if mask is None:
 mask = 8 * (m.group(1).count('.') + 1)
 else:
 mask = int(mask[1:])
 mask = 32 - mask

 if (hostIP >> mask) == (base >> mask):
 return True

 elif fnmatch(host, value):
 return True

 return False

if sys.platform == 'darwin':
 from _scproxy import _get_proxy_settings, _get_proxies

 def proxy_bypass_macosx_sysconf(host):
 proxy_settings = _get_proxy_settings()
 return _proxy_bypass_macosx_sysconf(host, proxy_settings)

 def getproxies_macosx_sysconf():
 """Return a dictionary of scheme -> proxy server URL mappings.

 This function uses the MacOSX framework SystemConfiguration
 to fetch the proxy information.
 """
 return _get_proxies()

 def proxy_bypass(host):
 if getproxies_environment():
 return proxy_bypass_environment(host)
 else:
 return proxy_bypass_macosx_sysconf(host)

 def getproxies():
 return getproxies_environment() or getproxies_macosx_sysconf()

elif os.name == 'nt':
 def getproxies_registry():
 """Return a dictionary of scheme -> proxy server URL mappings.

 Win32 uses the registry to store proxies.

 """
 proxies = {}
 try:
 import winreg
 except ImportError:
 # Std module, so should be around - but you never know!
 return proxies
 try:
 internetSettings = winreg.OpenKey(winreg.HKEY_CURRENT_USER,
 r'Software\Microsoft\Windows\CurrentVersion\Internet Settings')
 proxyEnable = winreg.QueryValueEx(internetSettings,
 'ProxyEnable')[0]
 if proxyEnable:
 # Returned as Unicode but problems if not converted to ASCII
 proxyServer = str(winreg.QueryValueEx(internetSettings,
 'ProxyServer')[0])
 if '=' in proxyServer:
 # Per-protocol settings
 for p in proxyServer.split(';'):
 protocol, address = p.split('=', 1)
 # See if address has a type:// prefix
 if not re.match('^([^/:]+)://', address):
 address = '%s://%s' % (protocol, address)
 proxies[protocol] = address
 else:
 # Use one setting for all protocols
 if proxyServer[:5] == 'http:':
 proxies['http'] = proxyServer
 else:
 proxies['http'] = 'http://%s' % proxyServer
 proxies['https'] = 'https://%s' % proxyServer
 proxies['ftp'] = 'ftp://%s' % proxyServer
 internetSettings.Close()
 except (OSError, ValueError, TypeError):
 # Either registry key not found etc, or the value in an
 # unexpected format.
 # proxies already set up to be empty so nothing to do
 pass
 return proxies

 def getproxies():
 """Return a dictionary of scheme -> proxy server URL mappings.

 Returns settings gathered from the environment, if specified,
 or the registry.

 """
 return getproxies_environment() or getproxies_registry()

 def proxy_bypass_registry(host):
 try:
 import winreg
 except ImportError:
 # Std modules, so should be around - but you never know!
 return 0
 try:
 internetSettings = winreg.OpenKey(winreg.HKEY_CURRENT_USER,
 r'Software\Microsoft\Windows\CurrentVersion\Internet Settings')
 proxyEnable = winreg.QueryValueEx(internetSettings,
 'ProxyEnable')[0]
 proxyOverride = str(winreg.QueryValueEx(internetSettings,
 'ProxyOverride')[0])
 # ^^^^ Returned as Unicode but problems if not converted to ASCII
 except OSError:
 return 0
 if not proxyEnable or not proxyOverride:
 return 0
 # try to make a host list from name and IP address.
 rawHost, port = splitport(host)
 host = [rawHost]
 try:
 addr = socket.gethostbyname(rawHost)
 if addr != rawHost:
 host.append(addr)
 except OSError:
 pass
 try:
 fqdn = socket.getfqdn(rawHost)
 if fqdn != rawHost:
 host.append(fqdn)
 except OSError:
 pass
 # make a check value list from the registry entry: replace the
 # '<local>' string by the localhost entry and the corresponding
 # canonical entry.
 proxyOverride = proxyOverride.split(';')
 # now check if we match one of the registry values.
 for test in proxyOverride:
 if test == '<local>':
 if '.' not in rawHost:
 return 1
 test = test.replace(".", r"\.") # mask dots
 test = test.replace("*", r".*") # change glob sequence
 test = test.replace("?", r".") # change glob char
 for val in host:
 if re.match(test, val, re.I):
 return 1
 return 0

 def proxy_bypass(host):
 """Return a dictionary of scheme -> proxy server URL mappings.

 Returns settings gathered from the environment, if specified,
 or the registry.

 """
 if getproxies_environment():
 return proxy_bypass_environment(host)
 else:
 return proxy_bypass_registry(host)

else:
 # By default use environment variables
 getproxies = getproxies_environment
 proxy_bypass = proxy_bypass_environment

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/webob/response.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for webob.response

from base64 import b64encode
from datetime import (
 datetime,
 timedelta,
)
from hashlib import md5
import re
import struct
import zlib
try:
 import simplejson as json
except ImportError:
 import json

from webob.byterange import ContentRange

from webob.cachecontrol import (
 CacheControl,
 serialize_cache_control,
)

from webob.compat import (
 PY3,
 bytes_,
 native_,
 text_type,
 url_quote,
 urlparse,
)

from webob.cookies import (
 Cookie,
 make_cookie,
)

from webob.datetime_utils import (
 parse_date_delta,
 serialize_date_delta,
 timedelta_to_seconds,
)

from webob.descriptors import (
 CHARSET_RE,
 SCHEME_RE,
 converter,
 date_header,
 header_getter,
 list_header,
 parse_auth,
 parse_content_range,
 parse_etag_response,
 parse_int,
 parse_int_safe,
 serialize_auth,
 serialize_content_range,
 serialize_etag_response,
 serialize_int,
)

from webob.headers import ResponseHeaders
from webob.request import BaseRequest
from webob.util import status_reasons, status_generic_reasons, warn_deprecation

__all__ = ['Response']

_PARAM_RE = re.compile(r'([a-z0-9]+)=(?:"([^"]*)"|([a-z0-9_.-]*))', re.I)
_OK_PARAM_RE = re.compile(r'^[a-z0-9_.-]+$', re.I)

_gzip_header = b'\x1f\x8b\x08\x00\x00\x00\x00\x00\x02\xff'

class Response(object):
 """
 Represents a WSGI response
 """

 default_content_type = 'text/html'
 default_charset = 'UTF-8' # TODO: deprecate
 unicode_errors = 'strict' # TODO: deprecate (why would response body have errors?)
 default_conditional_response = False
 request = None
 environ = None

 #
 # __init__, from_file, copy
 #

 def __init__(self, body=None, status=None, headerlist=None, app_iter=None,
 content_type=None, conditional_response=None,
 **kw):
 if app_iter is None and body is None and ('json_body' in kw or 'json' in kw):
 if 'json_body' in kw:
 json_body = kw.pop('json_body')
 else:
 json_body = kw.pop('json')
 body = json.dumps(json_body, separators=(',', ':'))
 if content_type is None:
 content_type = 'application/json'
 if app_iter is None:
 if body is None:
 body = b''
 elif body is not None:
 raise TypeError(
 "You may only give one of the body and app_iter arguments")
 if status is None:
 self._status = '200 OK'
 else:
 self.status = status
 if headerlist is None:
 self._headerlist = []
 else:
 self._headerlist = headerlist
 self._headers = None
 if content_type is None:
 content_type = self.default_content_type
 charset = None
 if 'charset' in kw:
 charset = kw.pop('charset')
 elif self.default_charset:
 if content_type and 'charset=' not in content_type:
 if (content_type == 'text/html'
 or content_type.startswith('text/')
 or _is_xml(content_type)
 or _is_json(content_type)):
 charset = self.default_charset
 if content_type and charset and not _is_json(content_type):
 content_type += '; charset=' + charset
 elif self._headerlist and charset:
 self.charset = charset
 if not self._headerlist and content_type:
 self._headerlist.append(('Content-Type', content_type))
 if conditional_response is None:
 self.conditional_response = self.default_conditional_response
 else:
 self.conditional_response = bool(conditional_response)
 if app_iter is None:
 if isinstance(body, text_type):
 if charset is None:
 raise TypeError(
 "You cannot set the body to a text value without a "
 "charset")
 body = body.encode(charset)
 app_iter = [body]
 if headerlist is None:
 self._headerlist.append(('Content-Length', str(len(body))))
 else:
 self.headers['Content-Length'] = str(len(body))
 self._app_iter = app_iter
 for name, value in kw.items():
 if not hasattr(self.__class__, name):
 # Not a basic attribute
 raise TypeError(
 "Unexpected keyword: %s=%r" % (name, value))
 setattr(self, name, value)

 @classmethod
[docs] def from_file(cls, fp):
 """Reads a response from a file-like object (it must implement
 ``.read(size)`` and ``.readline()``).

 It will read up to the end of the response, not the end of the
 file.

 This reads the response as represented by ``str(resp)``; it
 may not read every valid HTTP response properly. Responses
 must have a ``Content-Length``"""
 headerlist = []
 status = fp.readline().strip()
 is_text = isinstance(status, text_type)

 if is_text:
 _colon = ':'
 _http = 'HTTP/'
 else:
 _colon = b':'
 _http = b'HTTP/'

 if status.startswith(_http):
 (http_ver, status_num, status_text) = status.split()
 status = '%s %s' % (native_(status_num), native_(status_text))

 while 1:
 line = fp.readline().strip()
 if not line:
 # end of headers
 break
 try:
 header_name, value = line.split(_colon, 1)
 except ValueError:
 raise ValueError('Bad header line: %r' % line)
 value = value.strip()
 headerlist.append((
 native_(header_name, 'latin-1'),
 native_(value, 'latin-1')
))
 r = cls(
 status=status,
 headerlist=headerlist,
 app_iter=(),
)
 body = fp.read(r.content_length or 0)
 if is_text:
 r.text = body
 else:
 r.body = body
 return r

[docs] def copy(self):
 """Makes a copy of the response"""
 # we need to do this for app_iter to be reusable
 app_iter = list(self._app_iter)
 iter_close(self._app_iter)
 # and this to make sure app_iter instances are different
 self._app_iter = list(app_iter)
 return self.__class__(
 content_type=False,
 status=self._status,
 headerlist=self._headerlist[:],
 app_iter=app_iter,
 conditional_response=self.conditional_response)

 #
 # __repr__, __str__
 #

 def __repr__(self):
 return '<%s at 0x%x %s>' % (self.__class__.__name__, abs(id(self)),
 self.status)

 def __str__(self, skip_body=False):
 parts = [self.status]
 if not skip_body:
 # Force enumeration of the body (to set content-length)
 self.body
 parts += map('%s: %s'.__mod__, self.headerlist)
 if not skip_body and self.body:
 parts += ['', self.text if PY3 else self.body]
 return '\r\n'.join(parts)

 #
 # status, status_code/status_int
 #

 def _status__get(self):
 """
 The status string
 """
 return self._status

 def _status__set(self, value):
 try:
 code = int(value)
 except (ValueError, TypeError):
 pass
 else:
 self.status_code = code
 return
 if PY3: # pragma: no cover
 if isinstance(value, bytes):
 value = value.decode('ascii')
 elif isinstance(value, text_type):
 value = value.encode('ascii')
 if not isinstance(value, str):
 raise TypeError(
 "You must set status to a string or integer (not %s)"
 % type(value))

 # Attempt to get the status code itself, if this fails we should fail
 try:
 status_code = int(value.split()[0])
 except ValueError:
 raise ValueError('Invalid status code, integer required.')
 self._status = value

 status = property(_status__get, _status__set, doc=_status__get.__doc__)

 def _status_code__get(self):
 """
 The status as an integer
 """
 return int(self._status.split()[0])

 def _status_code__set(self, code):
 try:
 self._status = '%d %s' % (code, status_reasons[code])
 except KeyError:
 self._status = '%d %s' % (code, status_generic_reasons[code // 100])

 status_code = status_int = property(_status_code__get, _status_code__set,
 doc=_status_code__get.__doc__)

 #
 # headerslist, headers
 #

 def _headerlist__get(self):
 """
 The list of response headers
 """
 return self._headerlist

 def _headerlist__set(self, value):
 self._headers = None
 if not isinstance(value, list):
 if hasattr(value, 'items'):
 value = value.items()
 value = list(value)
 self._headerlist = value

 def _headerlist__del(self):
 self.headerlist = []

 headerlist = property(_headerlist__get, _headerlist__set,
 _headerlist__del, doc=_headerlist__get.__doc__)

 def _headers__get(self):
 """
 The headers in a dictionary-like object
 """
 if self._headers is None:
 self._headers = ResponseHeaders.view_list(self.headerlist)
 return self._headers

 def _headers__set(self, value):
 if hasattr(value, 'items'):
 value = value.items()
 self.headerlist = value
 self._headers = None

 headers = property(_headers__get, _headers__set, doc=_headers__get.__doc__)

 #
 # body
 #

 def _body__get(self):
 """
 The body of the response, as a ``str``. This will read in the
 entire app_iter if necessary.
 """
 app_iter = self._app_iter
try:
if len(app_iter) == 1:
return app_iter[0]
except:
pass
 if isinstance(app_iter, list) and len(app_iter) == 1:
 return app_iter[0]
 if app_iter is None:
 raise AttributeError("No body has been set")
 try:
 body = b''.join(app_iter)
 finally:
 iter_close(app_iter)
 if isinstance(body, text_type):
 raise _error_unicode_in_app_iter(app_iter, body)
 self._app_iter = [body]
 if len(body) == 0:
 # if body-length is zero, we assume it's a HEAD response and
 # leave content_length alone
 pass # pragma: no cover (no idea why necessary, it's hit)
 elif self.content_length is None:
 self.content_length = len(body)
 elif self.content_length != len(body):
 raise AssertionError(
 "Content-Length is different from actual app_iter length "
 "(%r!=%r)"
 % (self.content_length, len(body))
)
 return body

 def _body__set(self, value=b''):
 if not isinstance(value, bytes):
 if isinstance(value, text_type):
 msg = ("You cannot set Response.body to a text object "
 "(use Response.text)")
 else:
 msg = ("You can only set the body to a binary type (not %s)" %
 type(value))
 raise TypeError(msg)
 if self._app_iter is not None:
 self.content_md5 = None
 self._app_iter = [value]
 self.content_length = len(value)

def _body__del(self):
self.body = ''
#self.content_length = None

 body = property(_body__get, _body__set, _body__set)

 def _json_body__get(self):
 """Access the body of the response as JSON"""
 # Note: UTF-8 is a content-type specific default for JSON:
 return json.loads(self.body.decode(self.charset or 'UTF-8'))

 def _json_body__set(self, value):
 self.body = json.dumps(value, separators=(',', ':')).encode(self.charset or 'UTF-8')

 def _json_body__del(self):
 del self.body

 json = json_body = property(_json_body__get, _json_body__set, _json_body__del)

 #
 # text, unicode_body, ubody
 #

 def _text__get(self):
 """
 Get/set the text value of the body (using the charset of the
 Content-Type)
 """
 if not self.charset:
 raise AttributeError(
 "You cannot access Response.text unless charset is set")
 body = self.body
 return body.decode(self.charset, self.unicode_errors)

 def _text__set(self, value):
 if not self.charset:
 raise AttributeError(
 "You cannot access Response.text unless charset is set")
 if not isinstance(value, text_type):
 raise TypeError(
 "You can only set Response.text to a unicode string "
 "(not %s)" % type(value))
 self.body = value.encode(self.charset)

 def _text__del(self):
 del self.body

 text = property(_text__get, _text__set, _text__del, doc=_text__get.__doc__)

 unicode_body = ubody = property(_text__get, _text__set, _text__del,
 "Deprecated alias for .text")

 #
 # body_file, write(text)
 #

 def _body_file__get(self):
 """
 A file-like object that can be used to write to the
 body. If you passed in a list app_iter, that app_iter will be
 modified by writes.
 """
 return ResponseBodyFile(self)

 def _body_file__set(self, file):
 self.app_iter = iter_file(file)

 def _body_file__del(self):
 del self.body

 body_file = property(_body_file__get, _body_file__set, _body_file__del,
 doc=_body_file__get.__doc__)

 def write(self, text):
 if not isinstance(text, bytes):
 if not isinstance(text, text_type):
 msg = "You can only write str to a Response.body_file, not %s"
 raise TypeError(msg % type(text))
 if not self.charset:
 msg = ("You can only write text to Response if charset has "
 "been set")
 raise TypeError(msg)
 text = text.encode(self.charset)
 app_iter = self._app_iter
 if not isinstance(app_iter, list):
 try:
 new_app_iter = self._app_iter = list(app_iter)
 finally:
 iter_close(app_iter)
 app_iter = new_app_iter
 self.content_length = sum(len(chunk) for chunk in app_iter)
 app_iter.append(text)
 if self.content_length is not None:
 self.content_length += len(text)

 #
 # app_iter
 #

 def _app_iter__get(self):
 """
 Returns the app_iter of the response.

 If body was set, this will create an app_iter from that body
 (a single-item list)
 """
 return self._app_iter

 def _app_iter__set(self, value):
 if self._app_iter is not None:
 # Undo the automatically-set content-length
 self.content_length = None
 self.content_md5 = None
 self._app_iter = value

 def _app_iter__del(self):
 self._app_iter = []
 self.content_length = None

 app_iter = property(_app_iter__get, _app_iter__set, _app_iter__del,
 doc=_app_iter__get.__doc__)

 #
 # headers attrs
 #

 allow = list_header('Allow', '14.7')
 # TODO: (maybe) support response.vary += 'something'
 # TODO: same thing for all listy headers
 vary = list_header('Vary', '14.44')

 content_length = converter(
 header_getter('Content-Length', '14.17'),
 parse_int, serialize_int, 'int')

 content_encoding = header_getter('Content-Encoding', '14.11')
 content_language = list_header('Content-Language', '14.12')
 content_location = header_getter('Content-Location', '14.14')
 content_md5 = header_getter('Content-MD5', '14.14')
 content_disposition = header_getter('Content-Disposition', '19.5.1')

 accept_ranges = header_getter('Accept-Ranges', '14.5')
 content_range = converter(
 header_getter('Content-Range', '14.16'),
 parse_content_range, serialize_content_range, 'ContentRange object')

 date = date_header('Date', '14.18')
 expires = date_header('Expires', '14.21')
 last_modified = date_header('Last-Modified', '14.29')

 _etag_raw = header_getter('ETag', '14.19')
 etag = converter(_etag_raw,
 parse_etag_response, serialize_etag_response,
 'Entity tag'
)
 @property
 def etag_strong(self):
 return parse_etag_response(self._etag_raw, strong=True)

 location = header_getter('Location', '14.30')
 pragma = header_getter('Pragma', '14.32')
 age = converter(
 header_getter('Age', '14.6'),
 parse_int_safe, serialize_int, 'int')

 retry_after = converter(
 header_getter('Retry-After', '14.37'),
 parse_date_delta, serialize_date_delta, 'HTTP date or delta seconds')

 server = header_getter('Server', '14.38')

 # TODO: the standard allows this to be a list of challenges
 www_authenticate = converter(
 header_getter('WWW-Authenticate', '14.47'),
 parse_auth, serialize_auth,
)

 #
 # charset
 #

 def _charset__get(self):
 """
 Get/set the charset (in the Content-Type)
 """
 header = self.headers.get('Content-Type')
 if not header:
 return None
 match = CHARSET_RE.search(header)
 if match:
 return match.group(1)
 return None

 def _charset__set(self, charset):
 if charset is None:
 del self.charset
 return
 header = self.headers.pop('Content-Type', None)
 if header is None:
 raise AttributeError("You cannot set the charset when no "
 "content-type is defined")
 match = CHARSET_RE.search(header)
 if match:
 header = header[:match.start()] + header[match.end():]
 header += '; charset=%s' % charset
 self.headers['Content-Type'] = header

 def _charset__del(self):
 header = self.headers.pop('Content-Type', None)
 if header is None:
 # Don't need to remove anything
 return
 match = CHARSET_RE.search(header)
 if match:
 header = header[:match.start()] + header[match.end():]
 self.headers['Content-Type'] = header

 charset = property(_charset__get, _charset__set, _charset__del,
 doc=_charset__get.__doc__)

 #
 # content_type
 #

 def _content_type__get(self):
 """
 Get/set the Content-Type header (or None), *without* the
 charset or any parameters.

 If you include parameters (or ``;`` at all) when setting the
 content_type, any existing parameters will be deleted;
 otherwise they will be preserved.
 """
 header = self.headers.get('Content-Type')
 if not header:
 return None
 return header.split(';', 1)[0]

 def _content_type__set(self, value):
 if not value:
 self._content_type__del()
 return
 if ';' not in value:
 header = self.headers.get('Content-Type', '')
 if ';' in header:
 params = header.split(';', 1)[1]
 value += ';' + params
 self.headers['Content-Type'] = value

 def _content_type__del(self):
 self.headers.pop('Content-Type', None)

 content_type = property(_content_type__get, _content_type__set,
 _content_type__del, doc=_content_type__get.__doc__)

 #
 # content_type_params
 #

 def _content_type_params__get(self):
 """
 A dictionary of all the parameters in the content type.

 (This is not a view, set to change, modifications of the dict would not
 be applied otherwise)
 """
 params = self.headers.get('Content-Type', '')
 if ';' not in params:
 return {}
 params = params.split(';', 1)[1]
 result = {}
 for match in _PARAM_RE.finditer(params):
 result[match.group(1)] = match.group(2) or match.group(3) or ''
 return result

 def _content_type_params__set(self, value_dict):
 if not value_dict:
 del self.content_type_params
 return
 params = []
 for k, v in sorted(value_dict.items()):
 if not _OK_PARAM_RE.search(v):
 v = '"%s"' % v.replace('"', '\\"')
 params.append('; %s=%s' % (k, v))
 ct = self.headers.pop('Content-Type', '').split(';', 1)[0]
 ct += ''.join(params)
 self.headers['Content-Type'] = ct

 def _content_type_params__del(self):
 self.headers['Content-Type'] = self.headers.get(
 'Content-Type', '').split(';', 1)[0]

 content_type_params = property(
 _content_type_params__get,
 _content_type_params__set,
 _content_type_params__del,
 _content_type_params__get.__doc__
)

 #
 # set_cookie, unset_cookie, delete_cookie, merge_cookies
 #

[docs] def set_cookie(self, name=None, value='', max_age=None,
 path='/', domain=None, secure=False, httponly=False,
 comment=None, expires=None, overwrite=False, key=None):
 """
 Set (add) a cookie for the response.

 Arguments are:

 ``name``

 The cookie name.

 ``value``

 The cookie value, which should be a string or ``None``. If
 ``value`` is ``None``, it's equivalent to calling the
 :meth:`webob.response.Response.unset_cookie` method for this
 cookie key (it effectively deletes the cookie on the client).

 ``max_age``

 An integer representing a number of seconds, ``datetime.timedelta``,
 or ``None``. This value is used as the ``Max-Age`` of the generated
 cookie. If ``expires`` is not passed and this value is not
 ``None``, the ``max_age`` value will also influence the ``Expires``
 value of the cookie (``Expires`` will be set to now + max_age). If
 this value is ``None``, the cookie will not have a ``Max-Age`` value
 (unless ``expires`` is set). If both ``max_age`` and ``expires`` are
 set, this value takes precedence.

 ``path``

 A string representing the cookie ``Path`` value. It defaults to
 ``/``.

 ``domain``

 A string representing the cookie ``Domain``, or ``None``. If
 domain is ``None``, no ``Domain`` value will be sent in the
 cookie.

 ``secure``

 A boolean. If it's ``True``, the ``secure`` flag will be sent in
 the cookie, if it's ``False``, the ``secure`` flag will not be
 sent in the cookie.

 ``httponly``

 A boolean. If it's ``True``, the ``HttpOnly`` flag will be sent
 in the cookie, if it's ``False``, the ``HttpOnly`` flag will not
 be sent in the cookie.

 ``comment``

 A string representing the cookie ``Comment`` value, or ``None``.
 If ``comment`` is ``None``, no ``Comment`` value will be sent in
 the cookie.

 ``expires``

 A ``datetime.timedelta`` object representing an amount of time,
 ``datetime.datetime`` or ``None``. A non-``None`` value is used to
 generate the ``Expires`` value of the generated cookie. If
 ``max_age`` is not passed, but this value is not ``None``, it will
 influence the ``Max-Age`` header. If this value is ``None``, the
 ``Expires`` cookie value will be unset (unless ``max_age`` is set).
 If ``max_age`` is set, it will be used to generate the ``expires``
 and this value is ignored.

 ``overwrite``

 If this key is ``True``, before setting the cookie, unset any
 existing cookie.

 """

 # Backwards compatibility for the old name "key", remove this in 1.7
 if name is None and key is not None:
 warn_deprecation('Argument "key" was renamed to "name".', 1.7, 1)
 name = key

 if name is None:
 raise TypeError('set_cookie() takes at least 1 argument')

 if overwrite:
 self.unset_cookie(name, strict=False)

 # If expires is set, but not max_age we set max_age to expires
 if not max_age and isinstance(expires, timedelta):
 max_age = expires

 # expires can also be a datetime
 if not max_age and isinstance(expires, datetime):
 max_age = expires - datetime.utcnow()

 value = bytes_(value, 'utf-8')

 cookie = make_cookie(name, value, max_age=max_age, path=path,
 domain=domain, secure=secure, httponly=httponly,
 comment=comment)

 self.headerlist.append(('Set-Cookie', cookie))

[docs] def delete_cookie(self, name, path='/', domain=None):
 """
 Delete a cookie from the client. Note that path and domain must match
 how the cookie was originally set.

 This sets the cookie to the empty string, and max_age=0 so
 that it should expire immediately.
 """
 self.set_cookie(name, None, path=path, domain=domain)

[docs] def unset_cookie(self, name, strict=True):
 """
 Unset a cookie with the given name (remove it from the
 response).
 """
 existing = self.headers.getall('Set-Cookie')
 if not existing and not strict:
 return
 cookies = Cookie()
 for header in existing:
 cookies.load(header)
 if isinstance(name, text_type):
 name = name.encode('utf8')
 if name in cookies:
 del cookies[name]
 del self.headers['Set-Cookie']
 for m in cookies.values():
 self.headerlist.append(('Set-Cookie', m.serialize()))
 elif strict:
 raise KeyError("No cookie has been set with the name %r" % name)

[docs] def merge_cookies(self, resp):
 """Merge the cookies that were set on this response with the
 given `resp` object (which can be any WSGI application).

 If the `resp` is a :class:`webob.Response` object, then the
 other object will be modified in-place.
 """
 if not self.headers.get('Set-Cookie'):
 return resp
 if isinstance(resp, Response):
 for header in self.headers.getall('Set-Cookie'):
 resp.headers.add('Set-Cookie', header)
 return resp
 else:
 c_headers = [h for h in self.headerlist if
 h[0].lower() == 'set-cookie']
 def repl_app(environ, start_response):
 def repl_start_response(status, headers, exc_info=None):
 return start_response(status, headers+c_headers,
 exc_info=exc_info)
 return resp(environ, repl_start_response)
 return repl_app

 #
 # cache_control
 #

 _cache_control_obj = None

 def _cache_control__get(self):
 """
 Get/set/modify the Cache-Control header (`HTTP spec section 14.9
 <http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9>`_)
 """
 value = self.headers.get('cache-control', '')
 if self._cache_control_obj is None:
 self._cache_control_obj = CacheControl.parse(
 value, updates_to=self._update_cache_control, type='response')
 self._cache_control_obj.header_value = value
 if self._cache_control_obj.header_value != value:
 new_obj = CacheControl.parse(value, type='response')
 self._cache_control_obj.properties.clear()
 self._cache_control_obj.properties.update(new_obj.properties)
 self._cache_control_obj.header_value = value
 return self._cache_control_obj

 def _cache_control__set(self, value):
 # This actually becomes a copy
 if not value:
 value = ""
 if isinstance(value, dict):
 value = CacheControl(value, 'response')
 if isinstance(value, text_type):
 value = str(value)
 if isinstance(value, str):
 if self._cache_control_obj is None:
 self.headers['Cache-Control'] = value
 return
 value = CacheControl.parse(value, 'response')
 cache = self.cache_control
 cache.properties.clear()
 cache.properties.update(value.properties)

 def _cache_control__del(self):
 self.cache_control = {}

 def _update_cache_control(self, prop_dict):
 value = serialize_cache_control(prop_dict)
 if not value:
 if 'Cache-Control' in self.headers:
 del self.headers['Cache-Control']
 else:
 self.headers['Cache-Control'] = value

 cache_control = property(
 _cache_control__get, _cache_control__set,
 _cache_control__del, doc=_cache_control__get.__doc__)

 #
 # cache_expires
 #

 def _cache_expires(self, seconds=0, **kw):
 """
 Set expiration on this request. This sets the response to
 expire in the given seconds, and any other attributes are used
 for cache_control (e.g., private=True, etc).
 """
 if seconds is True:
 seconds = 0
 elif isinstance(seconds, timedelta):
 seconds = timedelta_to_seconds(seconds)
 cache_control = self.cache_control
 if seconds is None:
 pass
 elif not seconds:
 # To really expire something, you have to force a
 # bunch of these cache control attributes, and IE may
 # not pay attention to those still so we also set
 # Expires.
 cache_control.no_store = True
 cache_control.no_cache = True
 cache_control.must_revalidate = True
 cache_control.max_age = 0
 cache_control.post_check = 0
 cache_control.pre_check = 0
 self.expires = datetime.utcnow()
 if 'last-modified' not in self.headers:
 self.last_modified = datetime.utcnow()
 self.pragma = 'no-cache'
 else:
 cache_control.properties.clear()
 cache_control.max_age = seconds
 self.expires = datetime.utcnow() + timedelta(seconds=seconds)
 self.pragma = None
 for name, value in kw.items():
 setattr(cache_control, name, value)

 cache_expires = property(lambda self: self._cache_expires, _cache_expires)

 #
 # encode_content, decode_content, md5_etag
 #

[docs] def encode_content(self, encoding='gzip', lazy=False):
 """
 Encode the content with the given encoding (only gzip and
 identity are supported).
 """
 assert encoding in ('identity', 'gzip'), \
 "Unknown encoding: %r" % encoding
 if encoding == 'identity':
 self.decode_content()
 return
 if self.content_encoding == 'gzip':
 return
 if lazy:
 self.app_iter = gzip_app_iter(self._app_iter)
 self.content_length = None
 else:
 self.app_iter = list(gzip_app_iter(self._app_iter))
 self.content_length = sum(map(len, self._app_iter))
 self.content_encoding = 'gzip'

 def decode_content(self):
 content_encoding = self.content_encoding or 'identity'
 if content_encoding == 'identity':
 return
 if content_encoding not in ('gzip', 'deflate'):
 raise ValueError(
 "I don't know how to decode the content %s" % content_encoding)
 if content_encoding == 'gzip':
 from gzip import GzipFile
 from io import BytesIO
 gzip_f = GzipFile(filename='', mode='r', fileobj=BytesIO(self.body))
 self.body = gzip_f.read()
 self.content_encoding = None
 gzip_f.close()
 else:
 # Weird feature: http://bugs.python.org/issue5784
 self.body = zlib.decompress(self.body, -15)
 self.content_encoding = None

[docs] def md5_etag(self, body=None, set_content_md5=False):
 """
 Generate an etag for the response object using an MD5 hash of
 the body (the body parameter, or ``self.body`` if not given)

 Sets ``self.etag``
 If ``set_content_md5`` is True sets ``self.content_md5`` as well
 """
 if body is None:
 body = self.body
 md5_digest = md5(body).digest()
 md5_digest = b64encode(md5_digest)
 md5_digest = md5_digest.replace(b'\n', b'')
 md5_digest = native_(md5_digest)
 self.etag = md5_digest.strip('=')
 if set_content_md5:
 self.content_md5 = md5_digest

 #
 # __call__, conditional_response_app
 #

 def __call__(self, environ, start_response):
 """
 WSGI application interface
 """
 if self.conditional_response:
 return self.conditional_response_app(environ, start_response)
 headerlist = self._abs_headerlist(environ)
 start_response(self.status, headerlist)
 if environ['REQUEST_METHOD'] == 'HEAD':
 # Special case here...
 return EmptyResponse(self._app_iter)
 return self._app_iter

 def _abs_headerlist(self, environ):
 """Returns a headerlist, with the Location header possibly
 made absolute given the request environ.
 """
 headerlist = list(self.headerlist)
 for i, (name, value) in enumerate(headerlist):
 if name.lower() == 'location':
 if SCHEME_RE.search(value):
 break
 new_location = urlparse.urljoin(_request_uri(environ), value)
 headerlist[i] = (name, new_location)
 break
 return headerlist

 _safe_methods = ('GET', 'HEAD')

[docs] def conditional_response_app(self, environ, start_response):
 """
 Like the normal __call__ interface, but checks conditional headers:

 * If-Modified-Since (304 Not Modified; only on GET, HEAD)
 * If-None-Match (304 Not Modified; only on GET, HEAD)
 * Range (406 Partial Content; only on GET, HEAD)
 """
 req = BaseRequest(environ)
 headerlist = self._abs_headerlist(environ)
 method = environ.get('REQUEST_METHOD', 'GET')
 if method in self._safe_methods:
 status304 = False
 if req.if_none_match and self.etag:
 status304 = self.etag in req.if_none_match
 elif req.if_modified_since and self.last_modified:
 status304 = self.last_modified <= req.if_modified_since
 if status304:
 start_response('304 Not Modified', filter_headers(headerlist))
 return EmptyResponse(self._app_iter)
 if (req.range and self in req.if_range
 and self.content_range is None
 and method in ('HEAD', 'GET')
 and self.status_code == 200
 and self.content_length is not None
):
 content_range = req.range.content_range(self.content_length)
 if content_range is None:
 iter_close(self._app_iter)
 body = bytes_("Requested range not satisfiable: %s" % req.range)
 headerlist = [
 ('Content-Length', str(len(body))),
 ('Content-Range', str(ContentRange(None, None,
 self.content_length))),
 ('Content-Type', 'text/plain'),
] + filter_headers(headerlist)
 start_response('416 Requested Range Not Satisfiable',
 headerlist)
 if method == 'HEAD':
 return ()
 return [body]
 else:
 app_iter = self.app_iter_range(content_range.start,
 content_range.stop)
 if app_iter is not None:
 # the following should be guaranteed by
 # Range.range_for_length(length)
 assert content_range.start is not None
 headerlist = [
 ('Content-Length',
 str(content_range.stop - content_range.start)),
 ('Content-Range', str(content_range)),
] + filter_headers(headerlist, ('content-length',))
 start_response('206 Partial Content', headerlist)
 if method == 'HEAD':
 return EmptyResponse(app_iter)
 return app_iter

 start_response(self.status, headerlist)
 if method == 'HEAD':
 return EmptyResponse(self._app_iter)
 return self._app_iter

[docs] def app_iter_range(self, start, stop):
 """
 Return a new app_iter built from the response app_iter, that
 serves up only the given ``start:stop`` range.
 """
 app_iter = self._app_iter
 if hasattr(app_iter, 'app_iter_range'):
 return app_iter.app_iter_range(start, stop)
 return AppIterRange(app_iter, start, stop)

def filter_headers(hlist, remove_headers=('content-length', 'content-type')):
 return [h for h in hlist if (h[0].lower() not in remove_headers)]

def iter_file(file, block_size=1<<18): # 256Kb
 while True:
 data = file.read(block_size)
 if not data:
 break
 yield data

class ResponseBodyFile(object):
 mode = 'wb'
 closed = False

 def __init__(self, response):
 self.response = response
 self.write = response.write

 def __repr__(self):
 return '<body_file for %r>' % self.response

 encoding = property(
 lambda self: self.response.charset,
 doc="The encoding of the file (inherited from response.charset)"
)

 def writelines(self, seq):
 for item in seq:
 self.write(item)

 def close(self):
 raise NotImplementedError("Response bodies cannot be closed")

 def flush(self):
 pass

class AppIterRange(object):
 """
 Wraps an app_iter, returning just a range of bytes
 """

 def __init__(self, app_iter, start, stop):
 assert start >= 0, "Bad start: %r" % start
 assert stop is None or (stop >= 0 and stop >= start), (
 "Bad stop: %r" % stop)
 self.app_iter = iter(app_iter)
 self._pos = 0 # position in app_iter
 self.start = start
 self.stop = stop

 def __iter__(self):
 return self

 def _skip_start(self):
 start, stop = self.start, self.stop
 for chunk in self.app_iter:
 self._pos += len(chunk)
 if self._pos < start:
 continue
 elif self._pos == start:
 return b''
 else:
 chunk = chunk[start-self._pos:]
 if stop is not None and self._pos > stop:
 chunk = chunk[:stop-self._pos]
 assert len(chunk) == stop - start
 return chunk
 else:
 raise StopIteration()

 def next(self):
 if self._pos < self.start:
 # need to skip some leading bytes
 return self._skip_start()
 stop = self.stop
 if stop is not None and self._pos >= stop:
 raise StopIteration

 chunk = next(self.app_iter)
 self._pos += len(chunk)

 if stop is None or self._pos <= stop:
 return chunk
 else:
 return chunk[:stop-self._pos]

 __next__ = next # py3

 def close(self):
 iter_close(self.app_iter)

class EmptyResponse(object):
 """An empty WSGI response.

 An iterator that immediately stops. Optionally provides a close
 method to close an underlying app_iter it replaces.
 """

 def __init__(self, app_iter=None):
 if app_iter is not None and hasattr(app_iter, 'close'):
 self.close = app_iter.close

 def __iter__(self):
 return self

 def __len__(self):
 return 0

 def next(self):
 raise StopIteration()

 __next__ = next # py3

def _is_json(content_type):
 return (content_type.startswith('application/json')
 or (content_type.startswith('application/')
 and content_type.endswith('+json')))

def _is_xml(content_type):
 return (content_type.startswith('application/xml')
 or (content_type.startswith('application/')
 and content_type.endswith('+xml')))

def _request_uri(environ):
 """Like wsgiref.url.request_uri, except eliminates :80 ports

 Return the full request URI"""
 url = environ['wsgi.url_scheme']+'://'

 if environ.get('HTTP_HOST'):
 url += environ['HTTP_HOST']
 else:
 url += environ['SERVER_NAME'] + ':' + environ['SERVER_PORT']
 if url.endswith(':80') and environ['wsgi.url_scheme'] == 'http':
 url = url[:-3]
 elif url.endswith(':443') and environ['wsgi.url_scheme'] == 'https':
 url = url[:-4]

 if PY3: # pragma: no cover
 script_name = bytes_(environ.get('SCRIPT_NAME', '/'), 'latin-1')
 path_info = bytes_(environ.get('PATH_INFO', ''), 'latin-1')
 else:
 script_name = environ.get('SCRIPT_NAME', '/')
 path_info = environ.get('PATH_INFO', '')

 url += url_quote(script_name)
 qpath_info = url_quote(path_info)
 if not 'SCRIPT_NAME' in environ:
 url += qpath_info[1:]
 else:
 url += qpath_info
 return url

def iter_close(iter):
 if hasattr(iter, 'close'):
 iter.close()

def gzip_app_iter(app_iter):
 size = 0
 crc = zlib.crc32(b"") & 0xffffffff
 compress = zlib.compressobj(9, zlib.DEFLATED, -zlib.MAX_WBITS,
 zlib.DEF_MEM_LEVEL, 0)

 yield _gzip_header
 for item in app_iter:
 size += len(item)
 crc = zlib.crc32(item, crc) & 0xffffffff

 # The compress function may return zero length bytes if the input is
 # small enough; it buffers the input for the next iteration or for a
 # flush.
 result = compress.compress(item)
 if result:
 yield result

 # Similarly, flush may also not yield a value.
 result = compress.flush()
 if result:
 yield result
 yield struct.pack("<2L", crc, size & 0xffffffff)

def _error_unicode_in_app_iter(app_iter, body):
 app_iter_repr = repr(app_iter)
 if len(app_iter_repr) > 50:
 app_iter_repr = (
 app_iter_repr[:30] + '...' + app_iter_repr[-10:])
 raise TypeError(
 'An item of the app_iter (%s) was text, causing a '
 'text body: %r' % (app_iter_repr, body))

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/http/cookies.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for http.cookies

####
Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
#
All Rights Reserved
#
Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.
#
Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
#
####
#
Id: Cookie.py,v 2.29 2000/08/23 05:28:49 timo Exp
by Timothy O'Malley <timo@alum.mit.edu>
#
Cookie.py is a Python module for the handling of HTTP
cookies as a Python dictionary. See RFC 2109 for more
information on cookies.
#
The original idea to treat Cookies as a dictionary came from
Dave Mitchell (davem@magnet.com) in 1995, when he released the
first version of nscookie.py.
#
####

r"""
Here's a sample session to show how to use this module.
At the moment, this is the only documentation.

The Basics

Importing is easy...

 >>> from http import cookies

Most of the time you start by creating a cookie.

 >>> C = cookies.SimpleCookie()

Once you've created your Cookie, you can add values just as if it were
a dictionary.

 >>> C = cookies.SimpleCookie()
 >>> C["fig"] = "newton"
 >>> C["sugar"] = "wafer"
 >>> C.output()
 'Set-Cookie: fig=newton\r\nSet-Cookie: sugar=wafer'

Notice that the printable representation of a Cookie is the
appropriate format for a Set-Cookie: header. This is the
default behavior. You can change the header and printed
attributes by using the .output() function

 >>> C = cookies.SimpleCookie()
 >>> C["rocky"] = "road"
 >>> C["rocky"]["path"] = "/cookie"
 >>> print(C.output(header="Cookie:"))
 Cookie: rocky=road; Path=/cookie
 >>> print(C.output(attrs=[], header="Cookie:"))
 Cookie: rocky=road

The load() method of a Cookie extracts cookies from a string. In a
CGI script, you would use this method to extract the cookies from the
HTTP_COOKIE environment variable.

 >>> C = cookies.SimpleCookie()
 >>> C.load("chips=ahoy; vienna=finger")
 >>> C.output()
 'Set-Cookie: chips=ahoy\r\nSet-Cookie: vienna=finger'

The load() method is darn-tootin smart about identifying cookies
within a string. Escaped quotation marks, nested semicolons, and other
such trickeries do not confuse it.

 >>> C = cookies.SimpleCookie()
 >>> C.load('keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";')
 >>> print(C)
 Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"

Each element of the Cookie also supports all of the RFC 2109
Cookie attributes. Here's an example which sets the Path
attribute.

 >>> C = cookies.SimpleCookie()
 >>> C["oreo"] = "doublestuff"
 >>> C["oreo"]["path"] = "/"
 >>> print(C)
 Set-Cookie: oreo=doublestuff; Path=/

Each dictionary element has a 'value' attribute, which gives you
back the value associated with the key.

 >>> C = cookies.SimpleCookie()
 >>> C["twix"] = "none for you"
 >>> C["twix"].value
 'none for you'

The SimpleCookie expects that all values should be standard strings.
Just to be sure, SimpleCookie invokes the str() builtin to convert
the value to a string, when the values are set dictionary-style.

 >>> C = cookies.SimpleCookie()
 >>> C["number"] = 7
 >>> C["string"] = "seven"
 >>> C["number"].value
 '7'
 >>> C["string"].value
 'seven'
 >>> C.output()
 'Set-Cookie: number=7\r\nSet-Cookie: string=seven'

Finis.
"""

#
Import our required modules
#
import re
import string

__all__ = ["CookieError", "BaseCookie", "SimpleCookie"]

_nulljoin = ''.join
_semispacejoin = '; '.join
_spacejoin = ' '.join

#
Define an exception visible to External modules
#
class CookieError(Exception):
 pass

These quoting routines conform to the RFC2109 specification, which in
turn references the character definitions from RFC2068. They provide
a two-way quoting algorithm. Any non-text character is translated
into a 4 character sequence: a forward-slash followed by the
three-digit octal equivalent of the character. Any '\' or '"' is
quoted with a preceeding '\' slash.
#
These are taken from RFC2068 and RFC2109.
_LegalChars is the list of chars which don't require "'s
_Translator hash-table for fast quoting
#
_LegalChars = string.ascii_letters + string.digits + "!#$%&'*+-.^_`|~:"
_Translator = {
 '\000' : '\\000', '\001' : '\\001', '\002' : '\\002',
 '\003' : '\\003', '\004' : '\\004', '\005' : '\\005',
 '\006' : '\\006', '\007' : '\\007', '\010' : '\\010',
 '\011' : '\\011', '\012' : '\\012', '\013' : '\\013',
 '\014' : '\\014', '\015' : '\\015', '\016' : '\\016',
 '\017' : '\\017', '\020' : '\\020', '\021' : '\\021',
 '\022' : '\\022', '\023' : '\\023', '\024' : '\\024',
 '\025' : '\\025', '\026' : '\\026', '\027' : '\\027',
 '\030' : '\\030', '\031' : '\\031', '\032' : '\\032',
 '\033' : '\\033', '\034' : '\\034', '\035' : '\\035',
 '\036' : '\\036', '\037' : '\\037',

 # Because of the way browsers really handle cookies (as opposed
 # to what the RFC says) we also encode , and ;

 ',' : '\\054', ';' : '\\073',

 '"' : '\\"', '\\' : '\\\\',

 '\177' : '\\177', '\200' : '\\200', '\201' : '\\201',
 '\202' : '\\202', '\203' : '\\203', '\204' : '\\204',
 '\205' : '\\205', '\206' : '\\206', '\207' : '\\207',
 '\210' : '\\210', '\211' : '\\211', '\212' : '\\212',
 '\213' : '\\213', '\214' : '\\214', '\215' : '\\215',
 '\216' : '\\216', '\217' : '\\217', '\220' : '\\220',
 '\221' : '\\221', '\222' : '\\222', '\223' : '\\223',
 '\224' : '\\224', '\225' : '\\225', '\226' : '\\226',
 '\227' : '\\227', '\230' : '\\230', '\231' : '\\231',
 '\232' : '\\232', '\233' : '\\233', '\234' : '\\234',
 '\235' : '\\235', '\236' : '\\236', '\237' : '\\237',
 '\240' : '\\240', '\241' : '\\241', '\242' : '\\242',
 '\243' : '\\243', '\244' : '\\244', '\245' : '\\245',
 '\246' : '\\246', '\247' : '\\247', '\250' : '\\250',
 '\251' : '\\251', '\252' : '\\252', '\253' : '\\253',
 '\254' : '\\254', '\255' : '\\255', '\256' : '\\256',
 '\257' : '\\257', '\260' : '\\260', '\261' : '\\261',
 '\262' : '\\262', '\263' : '\\263', '\264' : '\\264',
 '\265' : '\\265', '\266' : '\\266', '\267' : '\\267',
 '\270' : '\\270', '\271' : '\\271', '\272' : '\\272',
 '\273' : '\\273', '\274' : '\\274', '\275' : '\\275',
 '\276' : '\\276', '\277' : '\\277', '\300' : '\\300',
 '\301' : '\\301', '\302' : '\\302', '\303' : '\\303',
 '\304' : '\\304', '\305' : '\\305', '\306' : '\\306',
 '\307' : '\\307', '\310' : '\\310', '\311' : '\\311',
 '\312' : '\\312', '\313' : '\\313', '\314' : '\\314',
 '\315' : '\\315', '\316' : '\\316', '\317' : '\\317',
 '\320' : '\\320', '\321' : '\\321', '\322' : '\\322',
 '\323' : '\\323', '\324' : '\\324', '\325' : '\\325',
 '\326' : '\\326', '\327' : '\\327', '\330' : '\\330',
 '\331' : '\\331', '\332' : '\\332', '\333' : '\\333',
 '\334' : '\\334', '\335' : '\\335', '\336' : '\\336',
 '\337' : '\\337', '\340' : '\\340', '\341' : '\\341',
 '\342' : '\\342', '\343' : '\\343', '\344' : '\\344',
 '\345' : '\\345', '\346' : '\\346', '\347' : '\\347',
 '\350' : '\\350', '\351' : '\\351', '\352' : '\\352',
 '\353' : '\\353', '\354' : '\\354', '\355' : '\\355',
 '\356' : '\\356', '\357' : '\\357', '\360' : '\\360',
 '\361' : '\\361', '\362' : '\\362', '\363' : '\\363',
 '\364' : '\\364', '\365' : '\\365', '\366' : '\\366',
 '\367' : '\\367', '\370' : '\\370', '\371' : '\\371',
 '\372' : '\\372', '\373' : '\\373', '\374' : '\\374',
 '\375' : '\\375', '\376' : '\\376', '\377' : '\\377'
 }

def _quote(str, LegalChars=_LegalChars):
 r"""Quote a string for use in a cookie header.

 If the string does not need to be double-quoted, then just return the
 string. Otherwise, surround the string in doublequotes and quote
 (with a \) special characters.
 """
 if all(c in LegalChars for c in str):
 return str
 else:
 return '"' + _nulljoin(_Translator.get(s, s) for s in str) + '"'

_OctalPatt = re.compile(r"\\[0-3][0-7][0-7]")
_QuotePatt = re.compile(r"[\\].")

def _unquote(str):
 # If there aren't any doublequotes,
 # then there can't be any special characters. See RFC 2109.
 if len(str) < 2:
 return str
 if str[0] != '"' or str[-1] != '"':
 return str

 # We have to assume that we must decode this string.
 # Down to work.

 # Remove the "s
 str = str[1:-1]

 # Check for special sequences. Examples:
 # \012 --> \n
 # \" --> "
 #
 i = 0
 n = len(str)
 res = []
 while 0 <= i < n:
 o_match = _OctalPatt.search(str, i)
 q_match = _QuotePatt.search(str, i)
 if not o_match and not q_match: # Neither matched
 res.append(str[i:])
 break
 # else:
 j = k = -1
 if o_match:
 j = o_match.start(0)
 if q_match:
 k = q_match.start(0)
 if q_match and (not o_match or k < j): # QuotePatt matched
 res.append(str[i:k])
 res.append(str[k+1])
 i = k + 2
 else: # OctalPatt matched
 res.append(str[i:j])
 res.append(chr(int(str[j+1:j+4], 8)))
 i = j + 4
 return _nulljoin(res)

The _getdate() routine is used to set the expiration time in the cookie's HTTP
header. By default, _getdate() returns the current time in the appropriate
"expires" format for a Set-Cookie header. The one optional argument is an
offset from now, in seconds. For example, an offset of -3600 means "one hour
ago". The offset may be a floating point number.
#

_weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

_monthname = [None,
 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

def _getdate(future=0, weekdayname=_weekdayname, monthname=_monthname):
 from time import gmtime, time
 now = time()
 year, month, day, hh, mm, ss, wd, y, z = gmtime(now + future)
 return "%s, %02d %3s %4d %02d:%02d:%02d GMT" % \
 (weekdayname[wd], day, monthname[month], year, hh, mm, ss)

class Morsel(dict):
 """A class to hold ONE (key, value) pair.

 In a cookie, each such pair may have several attributes, so this class is
 used to keep the attributes associated with the appropriate key,value pair.
 This class also includes a coded_value attribute, which is used to hold
 the network representation of the value. This is most useful when Python
 objects are pickled for network transit.
 """
 # RFC 2109 lists these attributes as reserved:
 # path comment domain
 # max-age secure version
 #
 # For historical reasons, these attributes are also reserved:
 # expires
 #
 # This is an extension from Microsoft:
 # httponly
 #
 # This dictionary provides a mapping from the lowercase
 # variant on the left to the appropriate traditional
 # formatting on the right.
 _reserved = {
 "expires" : "expires",
 "path" : "Path",
 "comment" : "Comment",
 "domain" : "Domain",
 "max-age" : "Max-Age",
 "secure" : "Secure",
 "httponly" : "HttpOnly",
 "version" : "Version",
 }

 _flags = {'secure', 'httponly'}

 def __init__(self):
 # Set defaults
 self.key = self.value = self.coded_value = None

 # Set default attributes
 for key in self._reserved:
 dict.__setitem__(self, key, "")

 def __setitem__(self, K, V):
 K = K.lower()
 if not K in self._reserved:
 raise CookieError("Invalid Attribute %s" % K)
 dict.__setitem__(self, K, V)

 def isReservedKey(self, K):
 return K.lower() in self._reserved

 def set(self, key, val, coded_val, LegalChars=_LegalChars):
 # First we verify that the key isn't a reserved word
 # Second we make sure it only contains legal characters
 if key.lower() in self._reserved:
 raise CookieError("Attempt to set a reserved key: %s" % key)
 if any(c not in LegalChars for c in key):
 raise CookieError("Illegal key value: %s" % key)

 # It's a good key, so save it.
 self.key = key
 self.value = val
 self.coded_value = coded_val

 def output(self, attrs=None, header="Set-Cookie:"):
 return "%s %s" % (header, self.OutputString(attrs))

 __str__ = output

 def __repr__(self):
 return '<%s: %s=%s>' % (self.__class__.__name__,
 self.key, repr(self.value))

 def js_output(self, attrs=None):
 # Print javascript
 return """
 <script type="text/javascript">
 <!-- begin hiding
 document.cookie = \"%s\";
 // end hiding -->
 </script>
 """ % (self.OutputString(attrs).replace('"', r'\"'))

 def OutputString(self, attrs=None):
 # Build up our result
 #
 result = []
 append = result.append

 # First, the key=value pair
 append("%s=%s" % (self.key, self.coded_value))

 # Now add any defined attributes
 if attrs is None:
 attrs = self._reserved
 items = sorted(self.items())
 for key, value in items:
 if value == "":
 continue
 if key not in attrs:
 continue
 if key == "expires" and isinstance(value, int):
 append("%s=%s" % (self._reserved[key], _getdate(value)))
 elif key == "max-age" and isinstance(value, int):
 append("%s=%d" % (self._reserved[key], value))
 elif key == "secure":
 append(str(self._reserved[key]))
 elif key == "httponly":
 append(str(self._reserved[key]))
 else:
 append("%s=%s" % (self._reserved[key], value))

 # Return the result
 return _semispacejoin(result)

#
Pattern for finding cookie
#
This used to be strict parsing based on the RFC2109 and RFC2068
specifications. I have since discovered that MSIE 3.0x doesn't
follow the character rules outlined in those specs. As a
result, the parsing rules here are less strict.
#

LegalCharsPatt = r"[\w\d!#%&'~`><@,:/\$*\+\-\.\^\|\)\(\?\}\{\=]"
_CookiePattern = re.compile(r"""
 (?x) # This is a verbose pattern
 \s* # Optional whitespace at start of cookie
 (?P<key> # Start of group 'key'
 """ + _LegalCharsPatt + r"""+? # Any word of at least one letter
) # End of group 'key'
 (# Optional group: there may not be a value.
 \s*=\s* # Equal Sign
 (?P<val> # Start of group 'val'
 "(?:[^\\"]|\\.)*" # Any doublequoted string
 | # or
 \w{3},\s[\w\d\s-]{9,11}\s[\d:]{8}\sGMT # Special case for "expires" attr
 | # or
 """ + _LegalCharsPatt + r"""* # Any word or empty string
) # End of group 'val'
)? # End of optional value group
 \s* # Any number of spaces.
 (\s+|;|$) # Ending either at space, semicolon, or EOS.
 """, re.ASCII) # May be removed if safe.

At long last, here is the cookie class. Using this class is almost just like
using a dictionary. See this module's docstring for example usage.
#
class BaseCookie(dict):
 """A container class for a set of Morsels."""

 def value_decode(self, val):
 """real_value, coded_value = value_decode(STRING)
 Called prior to setting a cookie's value from the network
 representation. The VALUE is the value read from HTTP
 header.
 Override this function to modify the behavior of cookies.
 """
 return val, val

 def value_encode(self, val):
 """real_value, coded_value = value_encode(VALUE)
 Called prior to setting a cookie's value from the dictionary
 representation. The VALUE is the value being assigned.
 Override this function to modify the behavior of cookies.
 """
 strval = str(val)
 return strval, strval

 def __init__(self, input=None):
 if input:
 self.load(input)

 def __set(self, key, real_value, coded_value):
 """Private method for setting a cookie's value"""
 M = self.get(key, Morsel())
 M.set(key, real_value, coded_value)
 dict.__setitem__(self, key, M)

 def __setitem__(self, key, value):
 """Dictionary style assignment."""
 if isinstance(value, Morsel):
 # allow assignment of constructed Morsels (e.g. for pickling)
 dict.__setitem__(self, key, value)
 else:
 rval, cval = self.value_encode(value)
 self.__set(key, rval, cval)

 def output(self, attrs=None, header="Set-Cookie:", sep="\015\012"):
 """Return a string suitable for HTTP."""
 result = []
 items = sorted(self.items())
 for key, value in items:
 result.append(value.output(attrs, header))
 return sep.join(result)

 __str__ = output

 def __repr__(self):
 l = []
 items = sorted(self.items())
 for key, value in items:
 l.append('%s=%s' % (key, repr(value.value)))
 return '<%s: %s>' % (self.__class__.__name__, _spacejoin(l))

 def js_output(self, attrs=None):
 """Return a string suitable for JavaScript."""
 result = []
 items = sorted(self.items())
 for key, value in items:
 result.append(value.js_output(attrs))
 return _nulljoin(result)

 def load(self, rawdata):
 """Load cookies from a string (presumably HTTP_COOKIE) or
 from a dictionary. Loading cookies from a dictionary 'd'
 is equivalent to calling:
 map(Cookie.__setitem__, d.keys(), d.values())
 """
 if isinstance(rawdata, str):
 self.__parse_string(rawdata)
 else:
 # self.update() wouldn't call our custom __setitem__
 for key, value in rawdata.items():
 self[key] = value
 return

 def __parse_string(self, str, patt=_CookiePattern):
 i = 0 # Our starting point
 n = len(str) # Length of string
 M = None # current morsel

 while 0 <= i < n:
 # Start looking for a cookie
 match = patt.match(str, i)
 if not match:
 # No more cookies
 break

 key, value = match.group("key"), match.group("val")
 i = match.end(0)

 # Parse the key, value in case it's metainfo
 if key[0] == "$":
 # We ignore attributes which pertain to the cookie
 # mechanism as a whole. See RFC 2109.
 # (Does anyone care?)
 if M:
 M[key[1:]] = value
 elif key.lower() in Morsel._reserved:
 if M:
 if value is None:
 if key.lower() in Morsel._flags:
 M[key] = True
 else:
 M[key] = _unquote(value)
 elif value is not None:
 rval, cval = self.value_decode(value)
 self.__set(key, rval, cval)
 M = self[key]

[docs]class SimpleCookie(BaseCookie):
 """
 SimpleCookie supports strings as cookie values. When setting
 the value using the dictionary assignment notation, SimpleCookie
 calls the builtin str() to convert the value to a string. Values
 received from HTTP are kept as strings.
 """
 def value_decode(self, val):
 return _unquote(val), val

 def value_encode(self, val):
 strval = str(val)
 return strval, _quote(strval)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/urllib/parse.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for urllib.parse

"""Parse (absolute and relative) URLs.

urlparse module is based upon the following RFC specifications.

RFC 3986 (STD66): "Uniform Resource Identifiers" by T. Berners-Lee, R. Fielding
and L. Masinter, January 2005.

RFC 2732 : "Format for Literal IPv6 Addresses in URL's by R.Hinden, B.Carpenter
and L.Masinter, December 1999.

RFC 2396: "Uniform Resource Identifiers (URI)": Generic Syntax by T.
Berners-Lee, R. Fielding, and L. Masinter, August 1998.

RFC 2368: "The mailto URL scheme", by P.Hoffman , L Masinter, J. Zawinski, July 1998.

RFC 1808: "Relative Uniform Resource Locators", by R. Fielding, UC Irvine, June
1995.

RFC 1738: "Uniform Resource Locators (URL)" by T. Berners-Lee, L. Masinter, M.
McCahill, December 1994

RFC 3986 is considered the current standard and any future changes to
urlparse module should conform with it. The urlparse module is
currently not entirely compliant with this RFC due to defacto
scenarios for parsing, and for backward compatibility purposes, some
parsing quirks from older RFCs are retained. The testcases in
test_urlparse.py provides a good indicator of parsing behavior.
"""

import re
import sys
import collections

__all__ = ["urlparse", "urlunparse", "urljoin", "urldefrag",
 "urlsplit", "urlunsplit", "urlencode", "parse_qs",
 "parse_qsl", "quote", "quote_plus", "quote_from_bytes",
 "unquote", "unquote_plus", "unquote_to_bytes"]

A classification of schemes ('' means apply by default)
uses_relative = ['ftp', 'http', 'gopher', 'nntp', 'imap',
 'wais', 'file', 'https', 'shttp', 'mms',
 'prospero', 'rtsp', 'rtspu', '', 'sftp',
 'svn', 'svn+ssh']
uses_netloc = ['ftp', 'http', 'gopher', 'nntp', 'telnet',
 'imap', 'wais', 'file', 'mms', 'https', 'shttp',
 'snews', 'prospero', 'rtsp', 'rtspu', 'rsync', '',
 'svn', 'svn+ssh', 'sftp', 'nfs', 'git', 'git+ssh']
uses_params = ['ftp', 'hdl', 'prospero', 'http', 'imap',
 'https', 'shttp', 'rtsp', 'rtspu', 'sip', 'sips',
 'mms', '', 'sftp', 'tel']

These are not actually used anymore, but should stay for backwards
compatibility. (They are undocumented, but have a public-looking name.)
non_hierarchical = ['gopher', 'hdl', 'mailto', 'news',
 'telnet', 'wais', 'imap', 'snews', 'sip', 'sips']
uses_query = ['http', 'wais', 'imap', 'https', 'shttp', 'mms',
 'gopher', 'rtsp', 'rtspu', 'sip', 'sips', '']
uses_fragment = ['ftp', 'hdl', 'http', 'gopher', 'news',
 'nntp', 'wais', 'https', 'shttp', 'snews',
 'file', 'prospero', '']

Characters valid in scheme names
scheme_chars = ('abcdefghijklmnopqrstuvwxyz'
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 '0123456789'
 '+-.')

XXX: Consider replacing with functools.lru_cache
MAX_CACHE_SIZE = 20
_parse_cache = {}

def clear_cache():
 """Clear the parse cache and the quoters cache."""
 _parse_cache.clear()
 _safe_quoters.clear()

Helpers for bytes handling
For 3.2, we deliberately require applications that
handle improperly quoted URLs to do their own
decoding and encoding. If valid use cases are
presented, we may relax this by using latin-1
decoding internally for 3.3
_implicit_encoding = 'ascii'
_implicit_errors = 'strict'

def _noop(obj):
 return obj

def _encode_result(obj, encoding=_implicit_encoding,
 errors=_implicit_errors):
 return obj.encode(encoding, errors)

def _decode_args(args, encoding=_implicit_encoding,
 errors=_implicit_errors):
 return tuple(x.decode(encoding, errors) if x else '' for x in args)

def _coerce_args(*args):
 # Invokes decode if necessary to create str args
 # and returns the coerced inputs along with
 # an appropriate result coercion function
 # - noop for str inputs
 # - encoding function otherwise
 str_input = isinstance(args[0], str)
 for arg in args[1:]:
 # We special-case the empty string to support the
 # "scheme=''" default argument to some functions
 if arg and isinstance(arg, str) != str_input:
 raise TypeError("Cannot mix str and non-str arguments")
 if str_input:
 return args + (_noop,)
 return _decode_args(args) + (_encode_result,)

Result objects are more helpful than simple tuples
class _ResultMixinStr(object):
 """Standard approach to encoding parsed results from str to bytes"""
 __slots__ = ()

 def encode(self, encoding='ascii', errors='strict'):
 return self._encoded_counterpart(*(x.encode(encoding, errors) for x in self))

class _ResultMixinBytes(object):
 """Standard approach to decoding parsed results from bytes to str"""
 __slots__ = ()

 def decode(self, encoding='ascii', errors='strict'):
 return self._decoded_counterpart(*(x.decode(encoding, errors) for x in self))

class _NetlocResultMixinBase(object):
 """Shared methods for the parsed result objects containing a netloc element"""
 __slots__ = ()

 @property
 def username(self):
 return self._userinfo[0]

 @property
 def password(self):
 return self._userinfo[1]

 @property
 def hostname(self):
 hostname = self._hostinfo[0]
 if not hostname:
 hostname = None
 elif hostname is not None:
 hostname = hostname.lower()
 return hostname

 @property
 def port(self):
 port = self._hostinfo[1]
 if port is not None:
 port = int(port, 10)
 # Return None on an illegal port
 if not (0 <= port <= 65535):
 return None
 return port

class _NetlocResultMixinStr(_NetlocResultMixinBase, _ResultMixinStr):
 __slots__ = ()

 @property
 def _userinfo(self):
 netloc = self.netloc
 userinfo, have_info, hostinfo = netloc.rpartition('@')
 if have_info:
 username, have_password, password = userinfo.partition(':')
 if not have_password:
 password = None
 else:
 username = password = None
 return username, password

 @property
 def _hostinfo(self):
 netloc = self.netloc
 _, _, hostinfo = netloc.rpartition('@')
 _, have_open_br, bracketed = hostinfo.partition('[')
 if have_open_br:
 hostname, _, port = bracketed.partition(']')
 _, _, port = port.partition(':')
 else:
 hostname, _, port = hostinfo.partition(':')
 if not port:
 port = None
 return hostname, port

class _NetlocResultMixinBytes(_NetlocResultMixinBase, _ResultMixinBytes):
 __slots__ = ()

 @property
 def _userinfo(self):
 netloc = self.netloc
 userinfo, have_info, hostinfo = netloc.rpartition(b'@')
 if have_info:
 username, have_password, password = userinfo.partition(b':')
 if not have_password:
 password = None
 else:
 username = password = None
 return username, password

 @property
 def _hostinfo(self):
 netloc = self.netloc
 _, _, hostinfo = netloc.rpartition(b'@')
 _, have_open_br, bracketed = hostinfo.partition(b'[')
 if have_open_br:
 hostname, _, port = bracketed.partition(b']')
 _, _, port = port.partition(b':')
 else:
 hostname, _, port = hostinfo.partition(b':')
 if not port:
 port = None
 return hostname, port

from collections import namedtuple

_DefragResultBase = namedtuple('DefragResult', 'url fragment')
_SplitResultBase = namedtuple('SplitResult', 'scheme netloc path query fragment')
_ParseResultBase = namedtuple('ParseResult', 'scheme netloc path params query fragment')

For backwards compatibility, alias _NetlocResultMixinStr
ResultBase is no longer part of the documented API, but it is
retained since deprecating it isn't worth the hassle
ResultBase = _NetlocResultMixinStr

Structured result objects for string data
class DefragResult(_DefragResultBase, _ResultMixinStr):
 __slots__ = ()
 def geturl(self):
 if self.fragment:
 return self.url + '#' + self.fragment
 else:
 return self.url

class SplitResult(_SplitResultBase, _NetlocResultMixinStr):
 __slots__ = ()
 def geturl(self):
 return urlunsplit(self)

class ParseResult(_ParseResultBase, _NetlocResultMixinStr):
 __slots__ = ()
 def geturl(self):
 return urlunparse(self)

Structured result objects for bytes data
class DefragResultBytes(_DefragResultBase, _ResultMixinBytes):
 __slots__ = ()
 def geturl(self):
 if self.fragment:
 return self.url + b'#' + self.fragment
 else:
 return self.url

class SplitResultBytes(_SplitResultBase, _NetlocResultMixinBytes):
 __slots__ = ()
 def geturl(self):
 return urlunsplit(self)

class ParseResultBytes(_ParseResultBase, _NetlocResultMixinBytes):
 __slots__ = ()
 def geturl(self):
 return urlunparse(self)

Set up the encode/decode result pairs
def _fix_result_transcoding():
 _result_pairs = (
 (DefragResult, DefragResultBytes),
 (SplitResult, SplitResultBytes),
 (ParseResult, ParseResultBytes),
)
 for _decoded, _encoded in _result_pairs:
 _decoded._encoded_counterpart = _encoded
 _encoded._decoded_counterpart = _decoded

_fix_result_transcoding()
del _fix_result_transcoding

def urlparse(url, scheme='', allow_fragments=True):
 """Parse a URL into 6 components:
 <scheme>://<netloc>/<path>;<params>?<query>#<fragment>
 Return a 6-tuple: (scheme, netloc, path, params, query, fragment).
 Note that we don't break the components up in smaller bits
 (e.g. netloc is a single string) and we don't expand % escapes."""
 url, scheme, _coerce_result = _coerce_args(url, scheme)
 splitresult = urlsplit(url, scheme, allow_fragments)
 scheme, netloc, url, query, fragment = splitresult
 if scheme in uses_params and ';' in url:
 url, params = _splitparams(url)
 else:
 params = ''
 result = ParseResult(scheme, netloc, url, params, query, fragment)
 return _coerce_result(result)

def _splitparams(url):
 if '/' in url:
 i = url.find(';', url.rfind('/'))
 if i < 0:
 return url, ''
 else:
 i = url.find(';')
 return url[:i], url[i+1:]

def _splitnetloc(url, start=0):
 delim = len(url) # position of end of domain part of url, default is end
 for c in '/?#': # look for delimiters; the order is NOT important
 wdelim = url.find(c, start) # find first of this delim
 if wdelim >= 0: # if found
 delim = min(delim, wdelim) # use earliest delim position
 return url[start:delim], url[delim:] # return (domain, rest)

def urlsplit(url, scheme='', allow_fragments=True):
 """Parse a URL into 5 components:
 <scheme>://<netloc>/<path>?<query>#<fragment>
 Return a 5-tuple: (scheme, netloc, path, query, fragment).
 Note that we don't break the components up in smaller bits
 (e.g. netloc is a single string) and we don't expand % escapes."""
 url, scheme, _coerce_result = _coerce_args(url, scheme)
 allow_fragments = bool(allow_fragments)
 key = url, scheme, allow_fragments, type(url), type(scheme)
 cached = _parse_cache.get(key, None)
 if cached:
 return _coerce_result(cached)
 if len(_parse_cache) >= MAX_CACHE_SIZE: # avoid runaway growth
 clear_cache()
 netloc = query = fragment = ''
 i = url.find(':')
 if i > 0:
 if url[:i] == 'http': # optimize the common case
 scheme = url[:i].lower()
 url = url[i+1:]
 if url[:2] == '//':
 netloc, url = _splitnetloc(url, 2)
 if (('[' in netloc and ']' not in netloc) or
 (']' in netloc and '[' not in netloc)):
 raise ValueError("Invalid IPv6 URL")
 if allow_fragments and '#' in url:
 url, fragment = url.split('#', 1)
 if '?' in url:
 url, query = url.split('?', 1)
 v = SplitResult(scheme, netloc, url, query, fragment)
 _parse_cache[key] = v
 return _coerce_result(v)
 for c in url[:i]:
 if c not in scheme_chars:
 break
 else:
 # make sure "url" is not actually a port number (in which case
 # "scheme" is really part of the path)
 rest = url[i+1:]
 if not rest or any(c not in '0123456789' for c in rest):
 # not a port number
 scheme, url = url[:i].lower(), rest

 if url[:2] == '//':
 netloc, url = _splitnetloc(url, 2)
 if (('[' in netloc and ']' not in netloc) or
 (']' in netloc and '[' not in netloc)):
 raise ValueError("Invalid IPv6 URL")
 if allow_fragments and '#' in url:
 url, fragment = url.split('#', 1)
 if '?' in url:
 url, query = url.split('?', 1)
 v = SplitResult(scheme, netloc, url, query, fragment)
 _parse_cache[key] = v
 return _coerce_result(v)

def urlunparse(components):
 """Put a parsed URL back together again. This may result in a
 slightly different, but equivalent URL, if the URL that was parsed
 originally had redundant delimiters, e.g. a ? with an empty query
 (the draft states that these are equivalent)."""
 scheme, netloc, url, params, query, fragment, _coerce_result = (
 _coerce_args(*components))
 if params:
 url = "%s;%s" % (url, params)
 return _coerce_result(urlunsplit((scheme, netloc, url, query, fragment)))

def urlunsplit(components):
 """Combine the elements of a tuple as returned by urlsplit() into a
 complete URL as a string. The data argument can be any five-item iterable.
 This may result in a slightly different, but equivalent URL, if the URL that
 was parsed originally had unnecessary delimiters (for example, a ? with an
 empty query; the RFC states that these are equivalent)."""
 scheme, netloc, url, query, fragment, _coerce_result = (
 _coerce_args(*components))
 if netloc or (scheme and scheme in uses_netloc and url[:2] != '//'):
 if url and url[:1] != '/': url = '/' + url
 url = '//' + (netloc or '') + url
 if scheme:
 url = scheme + ':' + url
 if query:
 url = url + '?' + query
 if fragment:
 url = url + '#' + fragment
 return _coerce_result(url)

def urljoin(base, url, allow_fragments=True):
 """Join a base URL and a possibly relative URL to form an absolute
 interpretation of the latter."""
 if not base:
 return url
 if not url:
 return base
 base, url, _coerce_result = _coerce_args(base, url)
 bscheme, bnetloc, bpath, bparams, bquery, bfragment = \
 urlparse(base, '', allow_fragments)
 scheme, netloc, path, params, query, fragment = \
 urlparse(url, bscheme, allow_fragments)
 if scheme != bscheme or scheme not in uses_relative:
 return _coerce_result(url)
 if scheme in uses_netloc:
 if netloc:
 return _coerce_result(urlunparse((scheme, netloc, path,
 params, query, fragment)))
 netloc = bnetloc
 if path[:1] == '/':
 return _coerce_result(urlunparse((scheme, netloc, path,
 params, query, fragment)))
 if not path and not params:
 path = bpath
 params = bparams
 if not query:
 query = bquery
 return _coerce_result(urlunparse((scheme, netloc, path,
 params, query, fragment)))
 segments = bpath.split('/')[:-1] + path.split('/')
 # XXX The stuff below is bogus in various ways...
 if segments[-1] == '.':
 segments[-1] = ''
 while '.' in segments:
 segments.remove('.')
 while 1:
 i = 1
 n = len(segments) - 1
 while i < n:
 if (segments[i] == '..'
 and segments[i-1] not in ('', '..')):
 del segments[i-1:i+1]
 break
 i = i+1
 else:
 break
 if segments == ['', '..']:
 segments[-1] = ''
 elif len(segments) >= 2 and segments[-1] == '..':
 segments[-2:] = ['']
 return _coerce_result(urlunparse((scheme, netloc, '/'.join(segments),
 params, query, fragment)))

def urldefrag(url):
 """Removes any existing fragment from URL.

 Returns a tuple of the defragmented URL and the fragment. If
 the URL contained no fragments, the second element is the
 empty string.
 """
 url, _coerce_result = _coerce_args(url)
 if '#' in url:
 s, n, p, a, q, frag = urlparse(url)
 defrag = urlunparse((s, n, p, a, q, ''))
 else:
 frag = ''
 defrag = url
 return _coerce_result(DefragResult(defrag, frag))

_hexdig = '0123456789ABCDEFabcdef'
_hextobyte = None

def unquote_to_bytes(string):
 """unquote_to_bytes('abc%20def') -> b'abc def'."""
 # Note: strings are encoded as UTF-8. This is only an issue if it contains
 # unescaped non-ASCII characters, which URIs should not.
 if not string:
 # Is it a string-like object?
 string.split
 return b''
 if isinstance(string, str):
 string = string.encode('utf-8')
 bits = string.split(b'%')
 if len(bits) == 1:
 return string
 res = [bits[0]]
 append = res.append
 # Delay the initialization of the table to not waste memory
 # if the function is never called
 global _hextobyte
 if _hextobyte is None:
 _hextobyte = {(a + b).encode(): bytes([int(a + b, 16)])
 for a in _hexdig for b in _hexdig}
 for item in bits[1:]:
 try:
 append(_hextobyte[item[:2]])
 append(item[2:])
 except KeyError:
 append(b'%')
 append(item)
 return b''.join(res)

_asciire = re.compile('([\x00-\x7f]+)')

def unquote(string, encoding='utf-8', errors='replace'):
 """Replace %xx escapes by their single-character equivalent. The optional
 encoding and errors parameters specify how to decode percent-encoded
 sequences into Unicode characters, as accepted by the bytes.decode()
 method.
 By default, percent-encoded sequences are decoded with UTF-8, and invalid
 sequences are replaced by a placeholder character.

 unquote('abc%20def') -> 'abc def'.
 """
 if '%' not in string:
 string.split
 return string
 if encoding is None:
 encoding = 'utf-8'
 if errors is None:
 errors = 'replace'
 bits = _asciire.split(string)
 res = [bits[0]]
 append = res.append
 for i in range(1, len(bits), 2):
 append(unquote_to_bytes(bits[i]).decode(encoding, errors))
 append(bits[i + 1])
 return ''.join(res)

def parse_qs(qs, keep_blank_values=False, strict_parsing=False,
 encoding='utf-8', errors='replace'):
 """Parse a query given as a string argument.

 Arguments:

 qs: percent-encoded query string to be parsed

 keep_blank_values: flag indicating whether blank values in
 percent-encoded queries should be treated as blank strings.
 A true value indicates that blanks should be retained as
 blank strings. The default false value indicates that
 blank values are to be ignored and treated as if they were
 not included.

 strict_parsing: flag indicating what to do with parsing errors.
 If false (the default), errors are silently ignored.
 If true, errors raise a ValueError exception.

 encoding and errors: specify how to decode percent-encoded sequences
 into Unicode characters, as accepted by the bytes.decode() method.
 """
 parsed_result = {}
 pairs = parse_qsl(qs, keep_blank_values, strict_parsing,
 encoding=encoding, errors=errors)
 for name, value in pairs:
 if name in parsed_result:
 parsed_result[name].append(value)
 else:
 parsed_result[name] = [value]
 return parsed_result

def parse_qsl(qs, keep_blank_values=False, strict_parsing=False,
 encoding='utf-8', errors='replace'):
 """Parse a query given as a string argument.

 Arguments:

 qs: percent-encoded query string to be parsed

 keep_blank_values: flag indicating whether blank values in
 percent-encoded queries should be treated as blank strings. A
 true value indicates that blanks should be retained as blank
 strings. The default false value indicates that blank values
 are to be ignored and treated as if they were not included.

 strict_parsing: flag indicating what to do with parsing errors. If
 false (the default), errors are silently ignored. If true,
 errors raise a ValueError exception.

 encoding and errors: specify how to decode percent-encoded sequences
 into Unicode characters, as accepted by the bytes.decode() method.

 Returns a list, as G-d intended.
 """
 qs, _coerce_result = _coerce_args(qs)
 pairs = [s2 for s1 in qs.split('&') for s2 in s1.split(';')]
 r = []
 for name_value in pairs:
 if not name_value and not strict_parsing:
 continue
 nv = name_value.split('=', 1)
 if len(nv) != 2:
 if strict_parsing:
 raise ValueError("bad query field: %r" % (name_value,))
 # Handle case of a control-name with no equal sign
 if keep_blank_values:
 nv.append('')
 else:
 continue
 if len(nv[1]) or keep_blank_values:
 name = nv[0].replace('+', ' ')
 name = unquote(name, encoding=encoding, errors=errors)
 name = _coerce_result(name)
 value = nv[1].replace('+', ' ')
 value = unquote(value, encoding=encoding, errors=errors)
 value = _coerce_result(value)
 r.append((name, value))
 return r

def unquote_plus(string, encoding='utf-8', errors='replace'):
 """Like unquote(), but also replace plus signs by spaces, as required for
 unquoting HTML form values.

 unquote_plus('%7e/abc+def') -> '~/abc def'
 """
 string = string.replace('+', ' ')
 return unquote(string, encoding, errors)

_ALWAYS_SAFE = frozenset(b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 b'abcdefghijklmnopqrstuvwxyz'
 b'0123456789'
 b'_.-')
_ALWAYS_SAFE_BYTES = bytes(_ALWAYS_SAFE)
_safe_quoters = {}

class Quoter(collections.defaultdict):
 """A mapping from bytes (in range(0,256)) to strings.

 String values are percent-encoded byte values, unless the key < 128, and
 in the "safe" set (either the specified safe set, or default set).
 """
 # Keeps a cache internally, using defaultdict, for efficiency (lookups
 # of cached keys don't call Python code at all).
 def __init__(self, safe):
 """safe: bytes object."""
 self.safe = _ALWAYS_SAFE.union(safe)

 def __repr__(self):
 # Without this, will just display as a defaultdict
 return "<Quoter %r>" % dict(self)

 def __missing__(self, b):
 # Handle a cache miss. Store quoted string in cache and return.
 res = chr(b) if b in self.safe else '%{:02X}'.format(b)
 self[b] = res
 return res

def quote(string, safe='/', encoding=None, errors=None):
 """quote('abc def') -> 'abc%20def'

 Each part of a URL, e.g. the path info, the query, etc., has a
 different set of reserved characters that must be quoted.

 RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax lists
 the following reserved characters.

 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
 "$" | ","

 Each of these characters is reserved in some component of a URL,
 but not necessarily in all of them.

 By default, the quote function is intended for quoting the path
 section of a URL. Thus, it will not encode '/'. This character
 is reserved, but in typical usage the quote function is being
 called on a path where the existing slash characters are used as
 reserved characters.

 string and safe may be either str or bytes objects. encoding and errors
 must not be specified if string is a bytes object.

 The optional encoding and errors parameters specify how to deal with
 non-ASCII characters, as accepted by the str.encode method.
 By default, encoding='utf-8' (characters are encoded with UTF-8), and
 errors='strict' (unsupported characters raise a UnicodeEncodeError).
 """
 if isinstance(string, str):
 if not string:
 return string
 if encoding is None:
 encoding = 'utf-8'
 if errors is None:
 errors = 'strict'
 string = string.encode(encoding, errors)
 else:
 if encoding is not None:
 raise TypeError("quote() doesn't support 'encoding' for bytes")
 if errors is not None:
 raise TypeError("quote() doesn't support 'errors' for bytes")
 return quote_from_bytes(string, safe)

def quote_plus(string, safe='', encoding=None, errors=None):
 """Like quote(), but also replace ' ' with '+', as required for quoting
 HTML form values. Plus signs in the original string are escaped unless
 they are included in safe. It also does not have safe default to '/'.
 """
 # Check if ' ' in string, where string may either be a str or bytes. If
 # there are no spaces, the regular quote will produce the right answer.
 if ((isinstance(string, str) and ' ' not in string) or
 (isinstance(string, bytes) and b' ' not in string)):
 return quote(string, safe, encoding, errors)
 if isinstance(safe, str):
 space = ' '
 else:
 space = b' '
 string = quote(string, safe + space, encoding, errors)
 return string.replace(' ', '+')

def quote_from_bytes(bs, safe='/'):
 """Like quote(), but accepts a bytes object rather than a str, and does
 not perform string-to-bytes encoding. It always returns an ASCII string.
 quote_from_bytes(b'abc def\x3f') -> 'abc%20def%3f'
 """
 if not isinstance(bs, (bytes, bytearray)):
 raise TypeError("quote_from_bytes() expected bytes")
 if not bs:
 return ''
 if isinstance(safe, str):
 # Normalize 'safe' by converting to bytes and removing non-ASCII chars
 safe = safe.encode('ascii', 'ignore')
 else:
 safe = bytes([c for c in safe if c < 128])
 if not bs.rstrip(_ALWAYS_SAFE_BYTES + safe):
 return bs.decode()
 try:
 quoter = _safe_quoters[safe]
 except KeyError:
 _safe_quoters[safe] = quoter = Quoter(safe).__getitem__
 return ''.join([quoter(char) for char in bs])

def urlencode(query, doseq=False, safe='', encoding=None, errors=None):
 """Encode a dict or sequence of two-element tuples into a URL query string.

 If any values in the query arg are sequences and doseq is true, each
 sequence element is converted to a separate parameter.

 If the query arg is a sequence of two-element tuples, the order of the
 parameters in the output will match the order of parameters in the
 input.

 The components of a query arg may each be either a string or a bytes type.

 The safe, encoding, and errors parameters are passed down to quote_plus()
 (encoding and errors only if a component is a str).
 """

 if hasattr(query, "items"):
 query = query.items()
 else:
 # It's a bother at times that strings and string-like objects are
 # sequences.
 try:
 # non-sequence items should not work with len()
 # non-empty strings will fail this
 if len(query) and not isinstance(query[0], tuple):
 raise TypeError
 # Zero-length sequences of all types will get here and succeed,
 # but that's a minor nit. Since the original implementation
 # allowed empty dicts that type of behavior probably should be
 # preserved for consistency
 except TypeError:
 ty, va, tb = sys.exc_info()
 raise TypeError("not a valid non-string sequence "
 "or mapping object").with_traceback(tb)

 l = []
 if not doseq:
 for k, v in query:
 if isinstance(k, bytes):
 k = quote_plus(k, safe)
 else:
 k = quote_plus(str(k), safe, encoding, errors)

 if isinstance(v, bytes):
 v = quote_plus(v, safe)
 else:
 v = quote_plus(str(v), safe, encoding, errors)
 l.append(k + '=' + v)
 else:
 for k, v in query:
 if isinstance(k, bytes):
 k = quote_plus(k, safe)
 else:
 k = quote_plus(str(k), safe, encoding, errors)

 if isinstance(v, bytes):
 v = quote_plus(v, safe)
 l.append(k + '=' + v)
 elif isinstance(v, str):
 v = quote_plus(v, safe, encoding, errors)
 l.append(k + '=' + v)
 else:
 try:
 # Is this a sufficient test for sequence-ness?
 x = len(v)
 except TypeError:
 # not a sequence
 v = quote_plus(str(v), safe, encoding, errors)
 l.append(k + '=' + v)
 else:
 # loop over the sequence
 for elt in v:
 if isinstance(elt, bytes):
 elt = quote_plus(elt, safe)
 else:
 elt = quote_plus(str(elt), safe, encoding, errors)
 l.append(k + '=' + elt)
 return '&'.join(l)

Utilities to parse URLs (most of these return None for missing parts):
unwrap('<URL:type://host/path>') --> 'type://host/path'
splittype('type:opaquestring') --> 'type', 'opaquestring'
splithost('//host[:port]/path') --> 'host[:port]', '/path'
splituser('user[:passwd]@host[:port]') --> 'user[:passwd]', 'host[:port]'
splitpasswd('user:passwd') -> 'user', 'passwd'
splitport('host:port') --> 'host', 'port'
splitquery('/path?query') --> '/path', 'query'
splittag('/path#tag') --> '/path', 'tag'
splitattr('/path;attr1=value1;attr2=value2;...') ->
'/path', ['attr1=value1', 'attr2=value2', ...]
splitvalue('attr=value') --> 'attr', 'value'
urllib.parse.unquote('abc%20def') -> 'abc def'
quote('abc def') -> 'abc%20def')

def to_bytes(url):
 """to_bytes(u"URL") --> 'URL'."""
 # Most URL schemes require ASCII. If that changes, the conversion
 # can be relaxed.
 # XXX get rid of to_bytes()
 if isinstance(url, str):
 try:
 url = url.encode("ASCII").decode()
 except UnicodeError:
 raise UnicodeError("URL " + repr(url) +
 " contains non-ASCII characters")
 return url

def unwrap(url):
 """unwrap('<URL:type://host/path>') --> 'type://host/path'."""
 url = str(url).strip()
 if url[:1] == '<' and url[-1:] == '>':
 url = url[1:-1].strip()
 if url[:4] == 'URL:': url = url[4:].strip()
 return url

_typeprog = None
def splittype(url):
 """splittype('type:opaquestring') --> 'type', 'opaquestring'."""
 global _typeprog
 if _typeprog is None:
 _typeprog = re.compile('^([^/:]+):')

 match = _typeprog.match(url)
 if match:
 scheme = match.group(1)
 return scheme.lower(), url[len(scheme) + 1:]
 return None, url

_hostprog = None
def splithost(url):
 """splithost('//host[:port]/path') --> 'host[:port]', '/path'."""
 global _hostprog
 if _hostprog is None:
 _hostprog = re.compile('^//([^/?]*)(.*)$')

 match = _hostprog.match(url)
 if match:
 host_port = match.group(1)
 path = match.group(2)
 if path and not path.startswith('/'):
 path = '/' + path
 return host_port, path
 return None, url

_userprog = None
def splituser(host):
 """splituser('user[:passwd]@host[:port]') --> 'user[:passwd]', 'host[:port]'."""
 global _userprog
 if _userprog is None:
 _userprog = re.compile('^(.*)@(.*)$')

 match = _userprog.match(host)
 if match: return match.group(1, 2)
 return None, host

_passwdprog = None
def splitpasswd(user):
 """splitpasswd('user:passwd') -> 'user', 'passwd'."""
 global _passwdprog
 if _passwdprog is None:
 _passwdprog = re.compile('^([^:]*):(.*)$',re.S)

 match = _passwdprog.match(user)
 if match: return match.group(1, 2)
 return user, None

splittag('/path#tag') --> '/path', 'tag'
_portprog = None
def splitport(host):
 """splitport('host:port') --> 'host', 'port'."""
 global _portprog
 if _portprog is None:
 _portprog = re.compile('^(.*):([0-9]*)$')

 match = _portprog.match(host)
 if match:
 host, port = match.groups()
 if port:
 return host, port
 return host, None

_nportprog = None
def splitnport(host, defport=-1):
 """Split host and port, returning numeric port.
 Return given default port if no ':' found; defaults to -1.
 Return numerical port if a valid number are found after ':'.
 Return None if ':' but not a valid number."""
 global _nportprog
 if _nportprog is None:
 _nportprog = re.compile('^(.*):(.*)$')

 match = _nportprog.match(host)
 if match:
 host, port = match.group(1, 2)
 if port:
 try:
 nport = int(port)
 except ValueError:
 nport = None
 return host, nport
 return host, defport

_queryprog = None
def splitquery(url):
 """splitquery('/path?query') --> '/path', 'query'."""
 global _queryprog
 if _queryprog is None:
 _queryprog = re.compile('^(.*)\?([^?]*)$')

 match = _queryprog.match(url)
 if match: return match.group(1, 2)
 return url, None

_tagprog = None
def splittag(url):
 """splittag('/path#tag') --> '/path', 'tag'."""
 global _tagprog
 if _tagprog is None:
 _tagprog = re.compile('^(.*)#([^#]*)$')

 match = _tagprog.match(url)
 if match: return match.group(1, 2)
 return url, None

def splitattr(url):
 """splitattr('/path;attr1=value1;attr2=value2;...') ->
 '/path', ['attr1=value1', 'attr2=value2', ...]."""
 words = url.split(';')
 return words[0], words[1:]

_valueprog = None
def splitvalue(attr):
 """splitvalue('attr=value') --> 'attr', 'value'."""
 global _valueprog
 if _valueprog is None:
 _valueprog = re.compile('^([^=]*)=(.*)$')

 match = _valueprog.match(attr)
 if match: return match.group(1, 2)
 return attr, None

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/zope/interface/interface.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for zope.interface.interface

##
#
Copyright (c) 2001, 2002 Zope Foundation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
"""Interface object implementation
"""
from __future__ import generators

import sys
from types import MethodType
from types import FunctionType
import warnings
import weakref

from zope.interface.exceptions import Invalid
from zope.interface.ro import ro

CO_VARARGS = 4
CO_VARKEYWORDS = 8
TAGGED_DATA = '__interface_tagged_values__'

_decorator_non_return = object()

def invariant(call):
 f_locals = sys._getframe(1).f_locals
 tags = f_locals.setdefault(TAGGED_DATA, {})
 invariants = tags.setdefault('invariants', [])
 invariants.append(call)
 return _decorator_non_return

def taggedValue(key, value):
 """Attaches a tagged value to an interface at definition time."""
 f_locals = sys._getframe(1).f_locals
 tagged_values = f_locals.setdefault(TAGGED_DATA, {})
 tagged_values[key] = value
 return _decorator_non_return

class Element(object):

 # We can't say this yet because we don't have enough
 # infrastructure in place.
 #
 #implements(IElement)

 def __init__(self, __name__, __doc__=''):
 """Create an 'attribute' description
 """
 if not __doc__ and __name__.find(' ') >= 0:
 __doc__ = __name__
 __name__ = None

 self.__name__=__name__
 self.__doc__=__doc__
 self.__tagged_values = {}

 def getName(self):
 """ Returns the name of the object. """
 return self.__name__

 def getDoc(self):
 """ Returns the documentation for the object. """
 return self.__doc__

 def getTaggedValue(self, tag):
 """ Returns the value associated with 'tag'. """
 return self.__tagged_values[tag]

 def queryTaggedValue(self, tag, default=None):
 """ Returns the value associated with 'tag'. """
 return self.__tagged_values.get(tag, default)

 def getTaggedValueTags(self):
 """ Returns a list of all tags. """
 return self.__tagged_values.keys()

 def setTaggedValue(self, tag, value):
 """ Associates 'value' with 'key'. """
 self.__tagged_values[tag] = value

class SpecificationBasePy(object):

 def providedBy(self, ob):
 """Is the interface implemented by an object
 """
 spec = providedBy(ob)
 return self in spec._implied

 def implementedBy(self, cls):
 """Test whether the specification is implemented by a class or factory.

 Raise TypeError if argument is neither a class nor a callable.
 """
 spec = implementedBy(cls)
 return self in spec._implied

 def isOrExtends(self, interface):
 """Is the interface the same as or extend the given interface
 """
 return interface in self._implied

 __call__ = isOrExtends

SpecificationBase = SpecificationBasePy
try:
 from _zope_interface_coptimizations import SpecificationBase
except ImportError: #pragma NO COVER
 pass

_marker = object()
class InterfaceBasePy(object):
 """Base class that wants to be replaced with a C base :)
 """

 def __call__(self, obj, alternate=_marker):
 """Adapt an object to the interface
 """
 conform = getattr(obj, '__conform__', None)
 if conform is not None:
 adapter = self._call_conform(conform)
 if adapter is not None:
 return adapter

 adapter = self.__adapt__(obj)

 if adapter is not None:
 return adapter
 elif alternate is not _marker:
 return alternate
 else:
 raise TypeError("Could not adapt", obj, self)

 def __adapt__(self, obj):
 """Adapt an object to the reciever
 """
 if self.providedBy(obj):
 return obj

 for hook in adapter_hooks:
 adapter = hook(self, obj)
 if adapter is not None:
 return adapter

InterfaceBase = InterfaceBasePy
try:
 from _zope_interface_coptimizations import InterfaceBase
except ImportError: #pragma NO COVER
 pass

adapter_hooks = []
try:
 from _zope_interface_coptimizations import adapter_hooks
except ImportError: #pragma NO COVER
 pass

class Specification(SpecificationBase):
 """Specifications

 An interface specification is used to track interface declarations
 and component registrations.

 This class is a base class for both interfaces themselves and for
 interface specifications (declarations).

 Specifications are mutable. If you reassign their bases, their
 relations with other specifications are adjusted accordingly.
 """

 # Copy some base class methods for speed
 isOrExtends = SpecificationBase.isOrExtends
 providedBy = SpecificationBase.providedBy

 def __init__(self, bases=()):
 self._implied = {}
 self.dependents = weakref.WeakKeyDictionary()
 self.__bases__ = tuple(bases)

 def subscribe(self, dependent):
 self.dependents[dependent] = self.dependents.get(dependent, 0) + 1

 def unsubscribe(self, dependent):
 n = self.dependents.get(dependent, 0) - 1
 if not n:
 del self.dependents[dependent]
 elif n > 0:
 self.dependents[dependent] = n
 else:
 raise KeyError(dependent)

 def __setBases(self, bases):
 # Register ourselves as a dependent of our old bases
 for b in self.__bases__:
 b.unsubscribe(self)

 # Register ourselves as a dependent of our bases
 self.__dict__['__bases__'] = bases
 for b in bases:
 b.subscribe(self)

 self.changed(self)

 __bases__ = property(

 lambda self: self.__dict__.get('__bases__', ()),
 __setBases,
)

 def changed(self, originally_changed):
 """We, or something we depend on, have changed
 """
 try:
 del self._v_attrs
 except AttributeError:
 pass

 implied = self._implied
 implied.clear()

 ancestors = ro(self)

 try:
 if Interface not in ancestors:
 ancestors.append(Interface)
 except NameError:
 pass # defining Interface itself

 self.__sro__ = tuple(ancestors)
 self.__iro__ = tuple([ancestor for ancestor in ancestors
 if isinstance(ancestor, InterfaceClass)
])

 for ancestor in ancestors:
 # We directly imply our ancestors:
 implied[ancestor] = ()

 # Now, advise our dependents of change:
 for dependent in tuple(self.dependents.keys()):
 dependent.changed(originally_changed)

 def interfaces(self):
 """Return an iterator for the interfaces in the specification.
 """
 seen = {}
 for base in self.__bases__:
 for interface in base.interfaces():
 if interface not in seen:
 seen[interface] = 1
 yield interface

 def extends(self, interface, strict=True):
 """Does the specification extend the given interface?

 Test whether an interface in the specification extends the
 given interface
 """
 return ((interface in self._implied)
 and
 ((not strict) or (self != interface))
)

 def weakref(self, callback=None):
 return weakref.ref(self, callback)

 def get(self, name, default=None):
 """Query for an attribute description
 """
 try:
 attrs = self._v_attrs
 except AttributeError:
 attrs = self._v_attrs = {}
 attr = attrs.get(name)
 if attr is None:
 for iface in self.__iro__:
 attr = iface.direct(name)
 if attr is not None:
 attrs[name] = attr
 break

 if attr is None:
 return default
 else:
 return attr

class InterfaceClass(Element, InterfaceBase, Specification):
 """Prototype (scarecrow) Interfaces Implementation."""

 # We can't say this yet because we don't have enough
 # infrastructure in place.
 #
 #implements(IInterface)

 def __init__(self, name, bases=(), attrs=None, __doc__=None,
 __module__=None):

 if attrs is None:
 attrs = {}

 if __module__ is None:
 __module__ = attrs.get('__module__')
 if isinstance(__module__, str):
 del attrs['__module__']
 else:
 try:
 # Figure out what module defined the interface.
 # This is how cPython figures out the module of
 # a class, but of course it does it in C. :-/
 __module__ = sys._getframe(1).f_globals['__name__']
 except (AttributeError, KeyError): #pragma NO COVERAGE
 pass

 self.__module__ = __module__

 d = attrs.get('__doc__')
 if d is not None:
 if not isinstance(d, Attribute):
 if __doc__ is None:
 __doc__ = d
 del attrs['__doc__']

 if __doc__ is None:
 __doc__ = ''

 Element.__init__(self, name, __doc__)

 tagged_data = attrs.pop(TAGGED_DATA, None)
 if tagged_data is not None:
 for key, val in tagged_data.items():
 self.setTaggedValue(key, val)

 for base in bases:
 if not isinstance(base, InterfaceClass):
 raise TypeError('Expected base interfaces')

 Specification.__init__(self, bases)

 # Make sure that all recorded attributes (and methods) are of type
 # `Attribute` and `Method`
 for name, attr in list(attrs.items()):
 if name in ('__locals__', '__qualname__'):
 # __locals__: Python 3 sometimes adds this.
 # __qualname__: PEP 3155 (Python 3.3+)
 del attrs[name]
 continue
 if isinstance(attr, Attribute):
 attr.interface = self
 if not attr.__name__:
 attr.__name__ = name
 elif isinstance(attr, FunctionType):
 attrs[name] = fromFunction(attr, self, name=name)
 elif attr is _decorator_non_return:
 del attrs[name]
 else:
 raise InvalidInterface("Concrete attribute, " + name)

 self.__attrs = attrs

 self.__identifier__ = "%s.%s" % (self.__module__, self.__name__)

 def interfaces(self):
 """Return an iterator for the interfaces in the specification.
 """
 yield self

 def getBases(self):
 return self.__bases__

 def isEqualOrExtendedBy(self, other):
 """Same interface or extends?"""
 return self == other or other.extends(self)

 def names(self, all=False):
 """Return the attribute names defined by the interface."""
 if not all:
 return self.__attrs.keys()

 r = self.__attrs.copy()

 for base in self.__bases__:
 r.update(dict.fromkeys(base.names(all)))

 return r.keys()

 def __iter__(self):
 return iter(self.names(all=True))

 def namesAndDescriptions(self, all=False):
 """Return attribute names and descriptions defined by interface."""
 if not all:
 return self.__attrs.items()

 r = {}
 for base in self.__bases__[::-1]:
 r.update(dict(base.namesAndDescriptions(all)))

 r.update(self.__attrs)

 return r.items()

 def getDescriptionFor(self, name):
 """Return the attribute description for the given name."""
 r = self.get(name)
 if r is not None:
 return r

 raise KeyError(name)

 __getitem__ = getDescriptionFor

 def __contains__(self, name):
 return self.get(name) is not None

 def direct(self, name):
 return self.__attrs.get(name)

 def queryDescriptionFor(self, name, default=None):
 return self.get(name, default)

 def validateInvariants(self, obj, errors=None):
 """validate object to defined invariants."""
 for call in self.queryTaggedValue('invariants', []):
 try:
 call(obj)
 except Invalid as e:
 if errors is None:
 raise
 else:
 errors.append(e)
 for base in self.__bases__:
 try:
 base.validateInvariants(obj, errors)
 except Invalid:
 if errors is None:
 raise
 if errors:
 raise Invalid(errors)

 def __repr__(self): # pragma: no cover
 try:
 return self._v_repr
 except AttributeError:
 name = self.__name__
 m = self.__module__
 if m:
 name = '%s.%s' % (m, name)
 r = "<%s %s>" % (self.__class__.__name__, name)
 self._v_repr = r
 return r

 def _call_conform(self, conform):
 try:
 return conform(self)
 except TypeError: #pragma NO COVER
 # We got a TypeError. It might be an error raised by
 # the __conform__ implementation, or *we* may have
 # made the TypeError by calling an unbound method
 # (object is a class). In the later case, we behave
 # as though there is no __conform__ method. We can
 # detect this case by checking whether there is more
 # than one traceback object in the traceback chain:
 if sys.exc_info()[2].tb_next is not None:
 # There is more than one entry in the chain, so
 # reraise the error:
 raise
 # This clever trick is from Phillip Eby

 return None #pragma NO COVER

 def __reduce__(self):
 return self.__name__

 def __cmp(self, other):
 # Yes, I did mean to name this __cmp, rather than __cmp__.
 # It is a private method used by __lt__ and __gt__.
 # I don't want to override __eq__ because I want the default
 # __eq__, which is really fast.
 """Make interfaces sortable

 TODO: It would ne nice if:

 More specific interfaces should sort before less specific ones.
 Otherwise, sort on name and module.

 But this is too complicated, and we're going to punt on it
 for now.

 For now, sort on interface and module name.

 None is treated as a pseudo interface that implies the loosest
 contact possible, no contract. For that reason, all interfaces
 sort before None.

 """
 if other is None:
 return -1

 n1 = (getattr(self, '__name__', ''), getattr(self, '__module__', ''))
 n2 = (getattr(other, '__name__', ''), getattr(other, '__module__', ''))

 # This spelling works under Python3, which doesn't have cmp().
 return (n1 > n2) - (n1 < n2)

 def __hash__(self):
 d = self.__dict__
 if '__module__' not in d or '__name__' not in d: #pragma NO COVER
 warnings.warn('Hashing uninitialized InterfaceClass instance')
 return 1
 return hash((self.__name__, self.__module__))

 def __eq__(self, other):
 c = self.__cmp(other)
 return c == 0

 def __ne__(self, other):
 c = self.__cmp(other)
 return c != 0

 def __lt__(self, other):
 c = self.__cmp(other)
 return c < 0

 def __le__(self, other):
 c = self.__cmp(other)
 return c <= 0

 def __gt__(self, other):
 c = self.__cmp(other)
 return c > 0

 def __ge__(self, other):
 c = self.__cmp(other)
 return c >= 0

Interface = InterfaceClass("Interface", __module__ = 'zope.interface')

class Attribute(Element):
 """Attribute descriptions
 """

 # We can't say this yet because we don't have enough
 # infrastructure in place.
 #
 # implements(IAttribute)

 interface = None

class Method(Attribute):
 """Method interfaces

 The idea here is that you have objects that describe methods.
 This provides an opportunity for rich meta-data.
 """

 # We can't say this yet because we don't have enough
 # infrastructure in place.
 #
 # implements(IMethod)

 positional = required = ()
 _optional = varargs = kwargs = None
 def _get_optional(self):
 if self._optional is None:
 return {}
 return self._optional
 def _set_optional(self, opt):
 self._optional = opt
 def _del_optional(self):
 self._optional = None
 optional = property(_get_optional, _set_optional, _del_optional)

 def __call__(self, *args, **kw):
 raise BrokenImplementation(self.interface, self.__name__)

 def getSignatureInfo(self):
 return {'positional': self.positional,
 'required': self.required,
 'optional': self.optional,
 'varargs': self.varargs,
 'kwargs': self.kwargs,
 }

 def getSignatureString(self):
 sig = []
 for v in self.positional:
 sig.append(v)
 if v in self.optional.keys():
 sig[-1] += "=" + repr(self.optional[v])
 if self.varargs:
 sig.append("*" + self.varargs)
 if self.kwargs:
 sig.append("**" + self.kwargs)

 return "(%s)" % ", ".join(sig)

def fromFunction(func, interface=None, imlevel=0, name=None):
 name = name or func.__name__
 method = Method(name, func.__doc__)
 defaults = getattr(func, '__defaults__', None) or ()
 code = func.__code__
 # Number of positional arguments
 na = code.co_argcount-imlevel
 names = code.co_varnames[imlevel:]
 opt = {}
 # Number of required arguments
 nr = na-len(defaults)
 if nr < 0:
 defaults=defaults[-nr:]
 nr = 0

 # Determine the optional arguments.
 opt.update(dict(zip(names[nr:], defaults)))

 method.positional = names[:na]
 method.required = names[:nr]
 method.optional = opt

 argno = na

 # Determine the function's variable argument's name (i.e. *args)
 if code.co_flags & CO_VARARGS:
 method.varargs = names[argno]
 argno = argno + 1
 else:
 method.varargs = None

 # Determine the function's keyword argument's name (i.e. **kw)
 if code.co_flags & CO_VARKEYWORDS:
 method.kwargs = names[argno]
 else:
 method.kwargs = None

 method.interface = interface

 for key, value in func.__dict__.items():
 method.setTaggedValue(key, value)

 return method

def fromMethod(meth, interface=None, name=None):
 if isinstance(meth, MethodType):
 func = meth.__func__
 else:
 func = meth
 return fromFunction(func, interface, imlevel=1, name=name)

Now we can create the interesting interfaces and wire them up:
def _wire():
 from zope.interface.declarations import classImplements

 from zope.interface.interfaces import IAttribute
 classImplements(Attribute, IAttribute)

 from zope.interface.interfaces import IMethod
 classImplements(Method, IMethod)

 from zope.interface.interfaces import IInterface
 classImplements(InterfaceClass, IInterface)

 from zope.interface.interfaces import ISpecification
 classImplements(Specification, ISpecification)

We import this here to deal with module dependencies.
from zope.interface.declarations import implementedBy
from zope.interface.declarations import providedBy
from zope.interface.exceptions import InvalidInterface
from zope.interface.exceptions import BrokenImplementation

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/up.png

_images/project-show-toolbar.png

_static/latex-warning.png

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/pyramid_router.png
Pyramid Router

Obtain a root object from the root factory

'

Traverse the model graph
from the root using the path

'

Traversal locates
the context and view name

y

Look up a view callable in the registry
using the context and view name

Return the Not Found View

Return the Forbidden View

No
Yes
No
Yes

_modules/pyramid/scaffolds/template.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.scaffolds »

 Source code for pyramid.scaffolds.template

(c) 2005 Ian Bicking and contributors; written for Paste
(http://pythonpaste.org) Licensed under the MIT license:
http://www.opensource.org/licenses/mit-license.php

import re
import sys
import os

from pyramid.compat import (
 native_,
 bytes_,
)

from pyramid.scaffolds import copydir

fsenc = sys.getfilesystemencoding()

[docs]class Template(object):
 """ Inherit from this base class and override methods to use the Pyramid
 scaffolding system."""
 copydir = copydir # for testing
 _template_dir = None

 def __init__(self, name):
 self.name = name

[docs] def render_template(self, content, vars, filename=None):
 """ Return a bytestring representing a templated file based on the
 input (content) and the variable names defined (vars). ``filename``
 is used for exception reporting."""
 # this method must not be named "template_renderer" fbo of extension
 # scaffolds that need to work under pyramid 1.2 and 1.3, and which
 # need to do "template_renderer =
 # staticmethod(paste_script_template_renderer)"
 content = native_(content, fsenc)
 try:
 return bytes_(
 substitute_escaped_double_braces(
 substitute_double_braces(content, TypeMapper(vars))), fsenc)
 except Exception as e:
 _add_except(e, ' in file %s' % filename)
 raise

 def module_dir(self):
 mod = sys.modules[self.__class__.__module__]
 return os.path.dirname(mod.__file__)

[docs] def template_dir(self):
 """ Return the template directory of the scaffold. By default, it
 returns the value of ``os.path.join(self.module_dir(),
 self._template_dir)`` (``self.module_dir()`` returns the module in
 which your subclass has been defined). If ``self._template_dir`` is
 a tuple this method just returns the value instead of trying to
 construct a path. If _template_dir is a tuple, it should be a
 2-element tuple: ``(package_name, package_relative_path)``."""
 assert self._template_dir is not None, (
 "Template %r didn't set _template_dir" % self)
 if isinstance(self._template_dir, tuple):
 return self._template_dir
 else:
 return os.path.join(self.module_dir(), self._template_dir)

 def run(self, command, output_dir, vars):
 self.pre(command, output_dir, vars)
 self.write_files(command, output_dir, vars)
 self.post(command, output_dir, vars)

[docs] def pre(self, command, output_dir, vars): # pragma: no cover
 """
 Called before template is applied.
 """
 pass

[docs] def post(self, command, output_dir, vars): # pragma: no cover
 """
 Called after template is applied.
 """
 pass

 def write_files(self, command, output_dir, vars):
 template_dir = self.template_dir()
 if not self.exists(output_dir):
 self.out("Creating directory %s" % output_dir)
 if not command.options.simulate:
 # Don't let copydir create this top-level directory,
 # since copydir will svn add it sometimes:
 self.makedirs(output_dir)
 self.copydir.copy_dir(
 template_dir,
 output_dir,
 vars,
 verbosity=command.verbosity,
 simulate=command.options.simulate,
 interactive=command.options.interactive,
 overwrite=command.options.overwrite,
 indent=1,
 template_renderer=self.render_template,
)

 def makedirs(self, dir): # pragma: no cover
 return os.makedirs(dir)

 def exists(self, path): # pragma: no cover
 return os.path.exists(path)

 def out(self, msg): # pragma: no cover
 print(msg)

 # hair for exit with usage when paster create is used under 1.3 instead
 # of pcreate for extension scaffolds which need to support multiple
 # versions of pyramid; the check_vars method is called by pastescript
 # only as the result of "paster create"; pyramid doesn't use it. the
 # required_templates tuple is required to allow it to get as far as
 # calling check_vars.
 required_templates = ()
 def check_vars(self, vars, other):
 raise RuntimeError(
 'Under Pyramid 1.3, you should use the "pcreate" command rather '
 'than "paster create"')

class TypeMapper(dict):

 def __getitem__(self, item):
 options = item.split('|')
 for op in options[:-1]:
 try:
 value = eval_with_catch(op, dict(self.items()))
 break
 except (NameError, KeyError):
 pass
 else:
 value = eval(options[-1], dict(self.items()))
 if value is None:
 return ''
 else:
 return str(value)

def eval_with_catch(expr, vars):
 try:
 return eval(expr, vars)
 except Exception as e:
 _add_except(e, 'in expression %r' % expr)
 raise

double_brace_pattern = re.compile(r'{{(?P<braced>.*?)}}')

def substitute_double_braces(content, values):
 def double_bracerepl(match):
 value = match.group('braced').strip()
 return values[value]
 return double_brace_pattern.sub(double_bracerepl, content)

escaped_double_brace_pattern = re.compile(r'\\{\\{(?P<escape_braced>[^\\]*?)\\}\\}')

def substitute_escaped_double_braces(content):
 def escaped_double_bracerepl(match):
 value = match.group('escape_braced').strip()
 return "{{%(value)s}}" % locals()
 return escaped_double_brace_pattern.sub(escaped_double_bracerepl, content)

def _add_except(exc, info): # pragma: no cover
 if not hasattr(exc, 'args') or exc.args is None:
 return
 args = list(exc.args)
 if args:
 args[0] += ' ' + info
 else:
 args = [info]
 exc.args = tuple(args)
 return

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/util.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.util

from hashlib import md5
import inspect

from pyramid.compat import (
 bytes_,
 getargspec,
 is_nonstr_iter,
)

from pyramid.compat import im_func
from pyramid.exceptions import ConfigurationError
from pyramid.registry import predvalseq

from pyramid.util import (
 TopologicalSorter,
 action_method,
 ActionInfo,
)

action_method = action_method # support bw compat imports
ActionInfo = ActionInfo # support bw compat imports

MAX_ORDER = 1 << 30
DEFAULT_PHASH = md5().hexdigest()

def as_sorted_tuple(val):
 if not is_nonstr_iter(val):
 val = (val,)
 val = tuple(sorted(val))
 return val

[docs]class not_(object):
 """

 You can invert the meaning of any predicate value by wrapping it in a call
 to :class:`pyramid.config.not_`.

 .. code-block:: python
 :linenos:

 from pyramid.config import not_

 config.add_view(
 'mypackage.views.my_view',
 route_name='ok',
 request_method=not_('POST')
)

 The above example will ensure that the view is called if the request method
 is *not* ``POST``, at least if no other view is more specific.

 This technique of wrapping a predicate value in ``not_`` can be used
 anywhere predicate values are accepted:

 - :meth:`pyramid.config.Configurator.add_view`

 - :meth:`pyramid.config.Configurator.add_route`

 - :meth:`pyramid.config.Configurator.add_subscriber`

 - :meth:`pyramid.view.view_config`

 - :meth:`pyramid.events.subscriber`

 .. versionadded:: 1.5
 """
 def __init__(self, value):
 self.value = value

class Notted(object):
 def __init__(self, predicate):
 self.predicate = predicate

 def _notted_text(self, val):
 # if the underlying predicate doesnt return a value, it's not really
 # a predicate, it's just something pretending to be a predicate,
 # so dont update the hash
 if val:
 val = '!' + val
 return val

 def text(self):
 return self._notted_text(self.predicate.text())

 def phash(self):
 return self._notted_text(self.predicate.phash())

 def __call__(self, context, request):
 result = self.predicate(context, request)
 phash = self.phash()
 if phash:
 result = not result
 return result

under = after
over = before

class PredicateList(object):

 def __init__(self):
 self.sorter = TopologicalSorter()
 self.last_added = None

 def add(self, name, factory, weighs_more_than=None, weighs_less_than=None):
 # Predicates should be added to a predicate list in (presumed)
 # computation expense order.
 ## if weighs_more_than is None and weighs_less_than is None:
 ## weighs_more_than = self.last_added or FIRST
 ## weighs_less_than = LAST
 self.last_added = name
 self.sorter.add(
 name,
 factory,
 after=weighs_more_than,
 before=weighs_less_than,
)

 def make(self, config, **kw):
 # Given a configurator and a list of keywords, a predicate list is
 # computed. Elsewhere in the code, we evaluate predicates using a
 # generator expression. All predicates associated with a view or
 # route must evaluate true for the view or route to "match" during a
 # request. The fastest predicate should be evaluated first, then the
 # next fastest, and so on, as if one returns false, the remainder of
 # the predicates won't need to be evaluated.
 #
 # While we compute predicates, we also compute a predicate hash (aka
 # phash) that can be used by a caller to identify identical predicate
 # lists.
 ordered = self.sorter.sorted()
 phash = md5()
 weights = []
 preds = []
 for n, (name, predicate_factory) in enumerate(ordered):
 vals = kw.pop(name, None)
 if vals is None: # XXX should this be a sentinel other than None?
 continue
 if not isinstance(vals, predvalseq):
 vals = (vals,)
 for val in vals:
 realval = val
 notted = False
 if isinstance(val, not_):
 realval = val.value
 notted = True
 pred = predicate_factory(realval, config)
 if notted:
 pred = Notted(pred)
 hashes = pred.phash()
 if not is_nonstr_iter(hashes):
 hashes = [hashes]
 for h in hashes:
 phash.update(bytes_(h))
 weights.append(1 << n+1)
 preds.append(pred)
 if kw:
 raise ConfigurationError('Unknown predicate values: %r' % (kw,))
 # A "order" is computed for the predicate list. An order is
 # a scoring.
 #
 # Each predicate is associated with a weight value. The weight of a
 # predicate symbolizes the relative potential "importance" of the
 # predicate to all other predicates. A larger weight indicates
 # greater importance.
 #
 # All weights for a given predicate list are bitwise ORed together
 # to create a "score"; this score is then subtracted from
 # MAX_ORDER and divided by an integer representing the number of
 # predicates+1 to determine the order.
 #
 # For views, the order represents the ordering in which a "multiview"
 # (a collection of views that share the same context/request/name
 # triad but differ in other ways via predicates) will attempt to call
 # its set of views. Views with lower orders will be tried first.
 # The intent is to a) ensure that views with more predicates are
 # always evaluated before views with fewer predicates and b) to
 # ensure a stable call ordering of views that share the same number
 # of predicates. Views which do not have any predicates get an order
 # of MAX_ORDER, meaning that they will be tried very last.
 score = 0
 for bit in weights:
 score = score | bit
 order = (MAX_ORDER - score) / (len(preds) + 1)
 return order, preds, phash.hexdigest()

def takes_one_arg(callee, attr=None, argname=None):
 ismethod = False
 if attr is None:
 attr = '__call__'
 if inspect.isroutine(callee):
 fn = callee
 elif inspect.isclass(callee):
 try:
 fn = callee.__init__
 except AttributeError:
 return False
 ismethod = hasattr(fn, '__call__')
 else:
 try:
 fn = getattr(callee, attr)
 except AttributeError:
 return False

 try:
 argspec = getargspec(fn)
 except TypeError:
 return False

 args = argspec[0]

 if hasattr(fn, im_func) or ismethod:
 # it's an instance method (or unbound method on py2)
 if not args:
 return False
 args = args[1:]

 if not args:
 return False

 if len(args) == 1:
 return True

 if argname:

 defaults = argspec[3]
 if defaults is None:
 defaults = ()

 if args[0] == argname:
 if len(args) - len(defaults) == 1:
 return True

 return False

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

authorintro.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

Author Introduction

Welcome to "The Pyramid Web Framework". In this
introduction, I'll describe the audience for this book, I'll describe
the book content, I'll provide some context regarding the genesis of
Pyramid, and I'll thank some important people.

I hope you enjoy both this book and the software it documents. I've
had a blast writing both.

Audience

This book is aimed primarily at a reader that has the following
attributes:

		At least a moderate amount of Python experience.

		A familiarity with web protocols such as HTTP and CGI.

If you fit into both of these categories, you're in the direct target
audience for this book. But don't worry, even if you have no
experience with Python or the web, both are easy to pick up "on the
fly".

Python is an excellent language in which to write applications;
becoming productive in Python is almost mind-blowingly easy. If you
already have experience in another language such as Java, Visual
Basic, Perl, Ruby, or even C/C++, learning Python will be a snap; it
should take you no longer than a couple of days to become modestly
productive. If you don't have previous programming experience, it
will be slightly harder, and it will take a little longer, but you'd
be hard-pressed to find a better "first language."

Web technology familiarity is assumed in various places within the
book. For example, the book doesn't try to define common web-related
concepts like "URL" or "query string." Likewise, the book describes
various interactions in terms of the HTTP protocol, but it does not
describe how the HTTP protocol works in detail. Like any good web
framework, though, Pyramid shields you from needing to know
most of the gory details of web protocols and low-level data
structures. As a result, you can usually avoid becoming "blocked"
while you read this book even if you don't yet deeply understand web
technologies.

Book Content

This book is divided into three major parts:

Narrative Documentation

This is documentation which describes Pyramid concepts in
narrative form, written in a largely conversational tone. Each
narrative documentation chapter describes an isolated
Pyramid concept. You should be able to get useful
information out of the narrative chapters if you read them
out-of-order, or when you need only a reminder about a particular
topic while you're developing an application.

Tutorials

Each tutorial builds a sample application or implements a set of
concepts with a sample; it then describes the application or
concepts in terms of the sample. You should read the tutorials if
you want a guided tour of Pyramid.

API Documentation

Comprehensive reference material for every public API exposed by
Pyramid. The API documentation is organized
alphabetically by module name.

The Genesis of repoze.bfg

Before the end of 2010, Pyramid was known as repoze.bfg.

I wrote repoze.bfg after many years of writing applications
using Zope. Zope provided me with a lot of mileage: it wasn't
until almost a decade of successfully creating applications using it
that I decided to write a different web framework. Although
repoze.bfg takes inspiration from a variety of web frameworks,
it owes more of its core design to Zope than any other.

The Repoze "brand" existed before repoze.bfg was created. One
of the first packages developed as part of the Repoze brand was a
package named repoze.zope2. This was a package that allowed
Zope 2 applications to run under a WSGI server without
modification. Zope 2 did not have reasonable WSGI support at the
time.

During the development of the repoze.zope2 package, I found
that replicating the Zope 2 "publisher" -- the machinery that maps
URLs to code -- was time-consuming and fiddly. Zope 2 had evolved
over many years, and emulating all of its edge cases was extremely
difficult. I finished the repoze.zope2 package, and it
emulates the normal Zope 2 publisher pretty well. But during its
development, it became clear that Zope 2 had simply begun to exceed my
tolerance for complexity, and I began to look around for simpler
options.

I considered using the Zope 3 application server machinery, but it
turned out that it had become more indirect than the Zope 2 machinery
it aimed to replace, which didn't fulfill the goal of simplification.
I also considered using Django and Pylons, but neither of those
frameworks offer much along the axes of traversal, contextual
declarative security, or application extensibility; these were
features I had become accustomed to as a Zope developer.

I decided that in the long term, creating a simpler framework that
retained features I had become accustomed to when developing Zope
applications was a more reasonable idea than continuing to use any
Zope publisher or living with the limitations and unfamiliarities of a
different framework. The result is what is now Pyramid.

The Genesis of Pyramid

What was repoze.bfg has become Pyramid as the result of
a coalition built between the Repoze and Pylons
community throughout the year 2010. By merging technology, we're able
to reduce duplication of effort, and take advantage of more of each
others' technology.

Thanks

This book is dedicated to my grandmother, who gave me my first
typewriter (a Royal), and my mother, who bought me my first computer
(a VIC-20).

Thanks to the following people for providing expertise, resources, and
software. Without the help of these folks, neither this book nor the
software which it details would exist: Paul Everitt, Tres Seaver, Andrew
Sawyers, Malthe Borch, Carlos de la Guardia, Chris Rossi, Shane Hathaway,
Daniel Holth, Wichert Akkerman, Georg Brandl, Blaise Laflamme, Ben Bangert,
Casey Duncan, Hugues Laflamme, Mike Orr, John Shipman, Chris Beelby, Patricio
Paez, Simon Oram, Nat Hardwick, Ian Bicking, Jim Fulton, Michael Merickel,
Tom Moroz of the Open Society Institute, and Todd Koym of Environmental
Health Sciences.

Thanks to Guido van Rossum and Tim Peters for Python.

Special thanks to Tricia for putting up with me.

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/latex-note.png

_static/comment.png

_static/down.png

_modules/pyramid/config/settings.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.settings

import os
import warnings

from zope.interface import implementer

from pyramid.interfaces import ISettings

from pyramid.settings import asbool

class SettingsConfiguratorMixin(object):
 def _set_settings(self, mapping):
 if not mapping:
 mapping = {}
 settings = Settings(mapping)
 self.registry.settings = settings
 return settings

 def add_settings(self, settings=None, **kw):
 """Augment the :term:`deployment settings` with one or more
 key/value pairs.

 You may pass a dictionary::

 config.add_settings({'external_uri':'http://example.com'})

 Or a set of key/value pairs::

 config.add_settings(external_uri='http://example.com')

 This function is useful when you need to test code that accesses the
 :attr:`pyramid.registry.Registry.settings` API (or the
 :meth:`pyramid.config.Configurator.get_settings` API) and
 which uses values from that API.
 """
 if settings is None:
 settings = {}
 utility = self.registry.settings
 if utility is None:
 utility = self._set_settings(settings)
 utility.update(settings)
 utility.update(kw)

 def get_settings(self):
 """
 Return a :term:`deployment settings` object for the current
 application. A deployment settings object is a dictionary-like
 object that contains key/value pairs based on the dictionary passed
 as the ``settings`` argument to the
 :class:`pyramid.config.Configurator` constructor.

 .. note:: the :attr:`pyramid.registry.Registry.settings` API
 performs the same duty.
 """
 return self.registry.settings

@implementer(ISettings)
class Settings(dict):
 """ Deployment settings. Update application settings (usually
 from PasteDeploy keywords) with framework-specific key/value pairs
 (e.g. find ``PYRAMID_DEBUG_AUTHORIZATION`` in os.environ and jam into
 keyword args)."""
 # _environ_ is dep inj for testing
 def __init__(self, d=None, _environ_=os.environ, **kw):
 if d is None:
 d = {}
 dict.__init__(self, d, **kw)
 eget = _environ_.get
 config_debug_all = self.get('debug_all', '')
 config_debug_all = self.get('pyramid.debug_all', config_debug_all)
 eff_debug_all = asbool(eget('PYRAMID_DEBUG_ALL', config_debug_all))
 config_reload_all = self.get('reload_all', '')
 config_reload_all = self.get('pyramid.reload_all', config_reload_all)
 eff_reload_all = asbool(eget('PYRAMID_RELOAD_ALL', config_reload_all))
 config_debug_auth = self.get('debug_authorization', '')
 config_debug_auth = self.get('pyramid.debug_authorization',
 config_debug_auth)
 eff_debug_auth = asbool(eget('PYRAMID_DEBUG_AUTHORIZATION',
 config_debug_auth))
 config_debug_notfound = self.get('debug_notfound', '')
 config_debug_notfound = self.get('pyramid.debug_notfound',
 config_debug_notfound)
 eff_debug_notfound = asbool(eget('PYRAMID_DEBUG_NOTFOUND',
 config_debug_notfound))
 config_debug_routematch = self.get('debug_routematch', '')
 config_debug_routematch = self.get('pyramid.debug_routematch',
 config_debug_routematch)
 eff_debug_routematch = asbool(eget('PYRAMID_DEBUG_ROUTEMATCH',
 config_debug_routematch))
 config_debug_templates = self.get('debug_templates', '')
 config_debug_templates = self.get('pyramid.debug_templates',
 config_debug_templates)
 eff_debug_templates = asbool(eget('PYRAMID_DEBUG_TEMPLATES',
 config_debug_templates))
 config_reload_templates = self.get('reload_templates', '')
 config_reload_templates = self.get('pyramid.reload_templates',
 config_reload_templates)
 eff_reload_templates = asbool(eget('PYRAMID_RELOAD_TEMPLATES',
 config_reload_templates))
 config_reload_assets = self.get('reload_assets', '')
 config_reload_assets = self.get('pyramid.reload_assets',
 config_reload_assets)
 reload_assets = asbool(eget('PYRAMID_RELOAD_ASSETS',
 config_reload_assets))
 config_reload_resources = self.get('reload_resources', '')
 config_reload_resources = self.get('pyramid.reload_resources',
 config_reload_resources)
 reload_resources = asbool(eget('PYRAMID_RELOAD_RESOURCES',
 config_reload_resources))
 # reload_resources is an older alias for reload_assets
 eff_reload_assets = reload_assets or reload_resources
 locale_name = self.get('default_locale_name', 'en')
 locale_name = self.get('pyramid.default_locale_name', locale_name)
 eff_locale_name = eget('PYRAMID_DEFAULT_LOCALE_NAME', locale_name)
 config_prevent_http_cache = self.get('prevent_http_cache', '')
 config_prevent_http_cache = self.get('pyramid.prevent_http_cache',
 config_prevent_http_cache)
 eff_prevent_http_cache = asbool(eget('PYRAMID_PREVENT_HTTP_CACHE',
 config_prevent_http_cache))

 update = {
 'debug_authorization': eff_debug_all or eff_debug_auth,
 'debug_notfound': eff_debug_all or eff_debug_notfound,
 'debug_routematch': eff_debug_all or eff_debug_routematch,
 'debug_templates': eff_debug_all or eff_debug_templates,
 'reload_templates': eff_reload_all or eff_reload_templates,
 'reload_resources':eff_reload_all or eff_reload_assets,
 'reload_assets':eff_reload_all or eff_reload_assets,
 'default_locale_name':eff_locale_name,
 'prevent_http_cache':eff_prevent_http_cache,

 'pyramid.debug_authorization': eff_debug_all or eff_debug_auth,
 'pyramid.debug_notfound': eff_debug_all or eff_debug_notfound,
 'pyramid.debug_routematch': eff_debug_all or eff_debug_routematch,
 'pyramid.debug_templates': eff_debug_all or eff_debug_templates,
 'pyramid.reload_templates': eff_reload_all or eff_reload_templates,
 'pyramid.reload_resources':eff_reload_all or eff_reload_assets,
 'pyramid.reload_assets':eff_reload_all or eff_reload_assets,
 'pyramid.default_locale_name':eff_locale_name,
 'pyramid.prevent_http_cache':eff_prevent_http_cache,
 }

 self.update(update)

 def __getattr__(self, name):
 try:
 val = self[name]
 # only deprecate on success; a probing getattr/hasattr should not
 # print this warning
 warnings.warn(
 'Obtaining settings via attributes of the settings dictionary '
 'is deprecated as of Pyramid 1.2; use settings["foo"] instead '
 'of settings.foo',
 DeprecationWarning,
 2
)
 return val
 except KeyError:
 raise AttributeError(name)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/tweens.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.tweens

from zope.interface import implementer

from pyramid.interfaces import ITweens

from pyramid.compat import (
 string_types,
 is_nonstr_iter,
)

from pyramid.exceptions import ConfigurationError

from pyramid.tweens import (
 excview_tween_factory,
 MAIN,
 INGRESS,
 EXCVIEW,
)

from pyramid.config.util import (
 action_method,
 TopologicalSorter,
)

class TweensConfiguratorMixin(object):
 def add_tween(self, tween_factory, under=None, over=None):
 """
 .. versionadded:: 1.2

 Add a 'tween factory'. A :term:`tween` (a contraction of 'between')
 is a bit of code that sits between the Pyramid router's main request
 handling function and the upstream WSGI component that uses
 :app:`Pyramid` as its 'app'. Tweens are a feature that may be used
 by Pyramid framework extensions, to provide, for example,
 Pyramid-specific view timing support, bookkeeping code that examines
 exceptions before they are returned to the upstream WSGI application,
 or a variety of other features. Tweens behave a bit like
 :term:`WSGI` 'middleware' but they have the benefit of running in a
 context in which they have access to the Pyramid :term:`application
 registry` as well as the Pyramid rendering machinery.

 .. note:: You can view the tween ordering configured into a given
 Pyramid application by using the ``ptweens``
 command. See :ref:`displaying_tweens`.

 The ``tween_factory`` argument must be a :term:`dotted Python name`
 to a global object representing the tween factory.

 The ``under`` and ``over`` arguments allow the caller of
 ``add_tween`` to provide a hint about where in the tween chain this
 tween factory should be placed when an implicit tween chain is used.
 These hints are only used when an explicit tween chain is not used
 (when the ``pyramid.tweens`` configuration value is not set).
 Allowable values for ``under`` or ``over`` (or both) are:

 - ``None`` (the default).

 - A :term:`dotted Python name` to a tween factory: a string
 representing the dotted name of a tween factory added in a call to
 ``add_tween`` in the same configuration session.

 - One of the constants :attr:`pyramid.tweens.MAIN`,
 :attr:`pyramid.tweens.INGRESS`, or :attr:`pyramid.tweens.EXCVIEW`.

 - An iterable of any combination of the above. This allows the user
 to specify fallbacks if the desired tween is not included, as well
 as compatibility with multiple other tweens.

 ``under`` means 'closer to the main Pyramid application than',
 ``over`` means 'closer to the request ingress than'.

 For example, calling ``add_tween('myapp.tfactory',
 over=pyramid.tweens.MAIN)`` will attempt to place the tween factory
 represented by the dotted name ``myapp.tfactory`` directly 'above'
 (in ``ptweens`` order) the main Pyramid request handler.
 Likewise, calling ``add_tween('myapp.tfactory',
 over=pyramid.tweens.MAIN, under='mypkg.someothertween')`` will
 attempt to place this tween factory 'above' the main handler but
 'below' (a fictional) 'mypkg.someothertween' tween factory.

 If all options for ``under`` (or ``over``) cannot be found in the
 current configuration, it is an error. If some options are specified
 purely for compatibilty with other tweens, just add a fallback of
 MAIN or INGRESS. For example, ``under=('mypkg.someothertween',
 'mypkg.someothertween2', INGRESS)``. This constraint will require
 the tween to be located under both the 'mypkg.someothertween' tween,
 the 'mypkg.someothertween2' tween, and INGRESS. If any of these is
 not in the current configuration, this constraint will only organize
 itself based on the tweens that are present.

 Specifying neither ``over`` nor ``under`` is equivalent to specifying
 ``under=INGRESS``.

 Implicit tween ordering is obviously only best-effort. Pyramid will
 attempt to present an implicit order of tweens as best it can, but
 the only surefire way to get any particular ordering is to use an
 explicit tween order. A user may always override the implicit tween
 ordering by using an explicit ``pyramid.tweens`` configuration value
 setting.

 ``under``, and ``over`` arguments are ignored when an explicit tween
 chain is specified using the ``pyramid.tweens`` configuration value.

 For more information, see :ref:`registering_tweens`.

 """
 return self._add_tween(tween_factory, under=under, over=over,
 explicit=False)

 @action_method
 def _add_tween(self, tween_factory, under=None, over=None, explicit=False):

 if not isinstance(tween_factory, string_types):
 raise ConfigurationError(
 'The "tween_factory" argument to add_tween must be a '
 'dotted name to a globally importable object, not %r' %
 tween_factory)

 name = tween_factory

 if name in (MAIN, INGRESS):
 raise ConfigurationError('%s is a reserved tween name' % name)

 tween_factory = self.maybe_dotted(tween_factory)

 def is_string_or_iterable(v):
 if isinstance(v, string_types):
 return True
 if hasattr(v, '__iter__'):
 return True

 for t, p in [('over', over), ('under', under)]:
 if p is not None:
 if not is_string_or_iterable(p):
 raise ConfigurationError(
 '"%s" must be a string or iterable, not %s' % (t, p))

 if over is INGRESS or is_nonstr_iter(over) and INGRESS in over:
 raise ConfigurationError('%s cannot be over INGRESS' % name)

 if under is MAIN or is_nonstr_iter(under) and MAIN in under:
 raise ConfigurationError('%s cannot be under MAIN' % name)

 registry = self.registry
 introspectables = []

 tweens = registry.queryUtility(ITweens)
 if tweens is None:
 tweens = Tweens()
 registry.registerUtility(tweens, ITweens)
 ex_intr = self.introspectable('tweens',
 ('tween', EXCVIEW, False),
 EXCVIEW,
 'implicit tween')
 ex_intr['name'] = EXCVIEW
 ex_intr['factory'] = excview_tween_factory
 ex_intr['type'] = 'implicit'
 ex_intr['under'] = None
 ex_intr['over'] = MAIN
 introspectables.append(ex_intr)
 tweens.add_implicit(EXCVIEW, excview_tween_factory, over=MAIN)

 def register():
 if explicit:
 tweens.add_explicit(name, tween_factory)
 else:
 tweens.add_implicit(name, tween_factory, under=under, over=over)

 discriminator = ('tween', name, explicit)
 tween_type = explicit and 'explicit' or 'implicit'

 intr = self.introspectable('tweens',
 discriminator,
 name,
 '%s tween' % tween_type)
 intr['name'] = name
 intr['factory'] = tween_factory
 intr['type'] = tween_type
 intr['under'] = under
 intr['over'] = over
 introspectables.append(intr)
 self.action(discriminator, register, introspectables=introspectables)

@implementer(ITweens)
class Tweens(object):
 def __init__(self):
 self.sorter = TopologicalSorter(
 default_before=None,
 default_after=INGRESS,
 first=INGRESS,
 last=MAIN)
 self.explicit = []

 def add_explicit(self, name, factory):
 self.explicit.append((name, factory))

 def add_implicit(self, name, factory, under=None, over=None):
 self.sorter.add(name, factory, after=under, before=over)

 def implicit(self):
 return self.sorter.sorted()

 def __call__(self, handler, registry):
 if self.explicit:
 use = self.explicit
 else:
 use = self.implicit()
 for name, factory in use[::-1]:
 handler = factory(handler, registry)
 return handler

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/testing.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.testing

from zope.interface import Interface

from pyramid.interfaces import (
 ITraverser,
 IAuthorizationPolicy,
 IAuthenticationPolicy,
 IRendererFactory,
)

from pyramid.renderers import RendererHelper

from pyramid.traversal import (
 decode_path_info,
 split_path_info,
)

from pyramid.util import action_method

class TestingConfiguratorMixin(object):
 # testing API
 def testing_securitypolicy(self, userid=None, groupids=(),
 permissive=True, remember_result=None,
 forget_result=None):
 """Unit/integration testing helper: Registers a pair of faux
 :app:`Pyramid` security policies: a :term:`authentication
 policy` and a :term:`authorization policy`.

 The behavior of the registered :term:`authorization policy`
 depends on the ``permissive`` argument. If ``permissive`` is
 true, a permissive :term:`authorization policy` is registered;
 this policy allows all access. If ``permissive`` is false, a
 nonpermissive :term:`authorization policy` is registered; this
 policy denies all access.

 ``remember_result``, if provided, should be the result returned by
 the ``remember`` method of the faux authentication policy. If it is
 not provided (or it is provided, and is ``None``), the default value
 ``[]`` (the empty list) will be returned by ``remember``.

 ``forget_result``, if provided, should be the result returned by
 the ``forget`` method of the faux authentication policy. If it is
 not provided (or it is provided, and is ``None``), the default value
 ``[]`` (the empty list) will be returned by ``forget``.

 The behavior of the registered :term:`authentication policy`
 depends on the values provided for the ``userid`` and
 ``groupids`` argument. The authentication policy will return
 the userid identifier implied by the ``userid`` argument and
 the group ids implied by the ``groupids`` argument when the
 :attr:`pyramid.request.Request.authenticated_userid` or
 :attr:`pyramid.request.Request.effective_principals` APIs are
 used.

 This function is most useful when testing code that uses
 the APIs named :meth:`pyramid.request.Request.has_permission`,
 :attr:`pyramid.request.Request.authenticated_userid`,
 :attr:`pyramid.request.Request.effective_principals`, and
 :func:`pyramid.security.principals_allowed_by_permission`.

 .. versionadded:: 1.4
 The ``remember_result`` argument.

 .. versionadded:: 1.4
 The ``forget_result`` argument.
 """
 from pyramid.testing import DummySecurityPolicy
 policy = DummySecurityPolicy(
 userid, groupids, permissive, remember_result, forget_result
)
 self.registry.registerUtility(policy, IAuthorizationPolicy)
 self.registry.registerUtility(policy, IAuthenticationPolicy)
 return policy

 def testing_resources(self, resources):
 """Unit/integration testing helper: registers a dictionary of
 :term:`resource` objects that can be resolved via the
 :func:`pyramid.traversal.find_resource` API.

 The :func:`pyramid.traversal.find_resource` API is called with
 a path as one of its arguments. If the dictionary you
 register when calling this method contains that path as a
 string key (e.g. ``/foo/bar`` or ``foo/bar``), the
 corresponding value will be returned to ``find_resource`` (and
 thus to your code) when
 :func:`pyramid.traversal.find_resource` is called with an
 equivalent path string or tuple.
 """
 class DummyTraverserFactory:
 def __init__(self, context):
 self.context = context

 def __call__(self, request):
 path = decode_path_info(request.environ['PATH_INFO'])
 ob = resources[path]
 traversed = split_path_info(path)
 return {'context':ob, 'view_name':'','subpath':(),
 'traversed':traversed, 'virtual_root':ob,
 'virtual_root_path':(), 'root':ob}
 self.registry.registerAdapter(DummyTraverserFactory, (Interface,),
 ITraverser)
 return resources

 testing_models = testing_resources # b/w compat

 @action_method
 def testing_add_subscriber(self, event_iface=None):
 """Unit/integration testing helper: Registers a
 :term:`subscriber` which listens for events of the type
 ``event_iface``. This method returns a list object which is
 appended to by the subscriber whenever an event is captured.

 When an event is dispatched that matches the value implied by
 the ``event_iface`` argument, that event will be appended to
 the list. You can then compare the values in the list to
 expected event notifications. This method is useful when
 testing code that wants to call
 :meth:`pyramid.registry.Registry.notify`,
 or :func:`zope.component.event.dispatch`.

 The default value of ``event_iface`` (``None``) implies a
 subscriber registered for *any* kind of event.
 """
 event_iface = self.maybe_dotted(event_iface)
 L = []
 def subscriber(*event):
 L.extend(event)
 self.add_subscriber(subscriber, event_iface)
 return L

 def testing_add_renderer(self, path, renderer=None):
 """Unit/integration testing helper: register a renderer at
 ``path`` (usually a relative filename ala ``templates/foo.pt``
 or an asset specification) and return the renderer object.
 If the ``renderer`` argument is None, a 'dummy' renderer will
 be used. This function is useful when testing code that calls
 the :func:`pyramid.renderers.render` function or
 :func:`pyramid.renderers.render_to_response` function or
 any other ``render_*`` or ``get_*`` API of the
 :mod:`pyramid.renderers` module.

 Note that calling this method for with a ``path`` argument
 representing a renderer factory type (e.g. for ``foo.pt``
 usually implies the ``chameleon_zpt`` renderer factory)
 clobbers any existing renderer factory registered for that
 type.

 .. note:: This method is also available under the alias
 ``testing_add_template`` (an older name for it).

 """
 from pyramid.testing import DummyRendererFactory
 helper = RendererHelper(name=path, registry=self.registry)
 factory = self.registry.queryUtility(IRendererFactory, name=helper.type)
 if not isinstance(factory, DummyRendererFactory):
 factory = DummyRendererFactory(helper.type, factory)
 self.registry.registerUtility(factory, IRendererFactory,
 name=helper.type)

 from pyramid.testing import DummyTemplateRenderer
 if renderer is None:
 renderer = DummyTemplateRenderer()
 factory.add(path, renderer)
 return renderer

 testing_add_template = testing_add_renderer

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/routes.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.routes

import warnings

from pyramid.compat import urlparse
from pyramid.interfaces import (
 IRequest,
 IRouteRequest,
 IRoutesMapper,
 PHASE2_CONFIG,
)

from pyramid.exceptions import ConfigurationError
from pyramid.registry import predvalseq
from pyramid.request import route_request_iface
from pyramid.urldispatch import RoutesMapper

from pyramid.config.util import (
 action_method,
 as_sorted_tuple,
)

import pyramid.config.predicates

class RoutesConfiguratorMixin(object):
 @action_method
 def add_route(self,
 name,
 pattern=None,
 permission=None,
 factory=None,
 for_=None,
 header=None,
 xhr=None,
 accept=None,
 path_info=None,
 request_method=None,
 request_param=None,
 traverse=None,
 custom_predicates=(),
 use_global_views=False,
 path=None,
 pregenerator=None,
 static=False,
 **predicates):
 """ Add a :term:`route configuration` to the current
 configuration state, as well as possibly a :term:`view
 configuration` to be used to specify a :term:`view callable`
 that will be invoked when this route matches. The arguments
 to this method are divided into *predicate*, *non-predicate*,
 and *view-related* types. :term:`Route predicate` arguments
 narrow the circumstances in which a route will be match a
 request; non-predicate arguments are informational.

 Non-Predicate Arguments

 name

 The name of the route, e.g. ``myroute``. This attribute is
 required. It must be unique among all defined routes in a given
 application.

 factory

 A Python object (often a function or a class) or a :term:`dotted
 Python name` which refers to the same object that will generate a
 :app:`Pyramid` root resource object when this route matches. For
 example, ``mypackage.resources.MyFactory``. If this argument is
 not specified, a default root factory will be used. See
 :ref:`the_resource_tree` for more information about root factories.

 traverse

 If you would like to cause the :term:`context` to be
 something other than the :term:`root` object when this route
 matches, you can spell a traversal pattern as the
 ``traverse`` argument. This traversal pattern will be used
 as the traversal path: traversal will begin at the root
 object implied by this route (either the global root, or the
 object returned by the ``factory`` associated with this
 route).

 The syntax of the ``traverse`` argument is the same as it is
 for ``pattern``. For example, if the ``pattern`` provided to
 ``add_route`` is ``articles/{article}/edit``, and the
 ``traverse`` argument provided to ``add_route`` is
 ``/{article}``, when a request comes in that causes the route
 to match in such a way that the ``article`` match value is
 ``'1'`` (when the request URI is ``/articles/1/edit``), the
 traversal path will be generated as ``/1``. This means that
 the root object's ``__getitem__`` will be called with the
 name ``'1'`` during the traversal phase. If the ``'1'`` object
 exists, it will become the :term:`context` of the request.
 :ref:`traversal_chapter` has more information about
 traversal.

 If the traversal path contains segment marker names which
 are not present in the ``pattern`` argument, a runtime error
 will occur. The ``traverse`` pattern should not contain
 segment markers that do not exist in the ``pattern``
 argument.

 A similar combining of routing and traversal is available
 when a route is matched which contains a ``*traverse``
 remainder marker in its pattern (see
 :ref:`using_traverse_in_a_route_pattern`). The ``traverse``
 argument to add_route allows you to associate route patterns
 with an arbitrary traversal path without using a
 ``*traverse`` remainder marker; instead you can use other
 match information.

 Note that the ``traverse`` argument to ``add_route`` is
 ignored when attached to a route that has a ``*traverse``
 remainder marker in its pattern.

 pregenerator

 This option should be a callable object that implements the
 :class:`pyramid.interfaces.IRoutePregenerator` interface. A
 :term:`pregenerator` is a callable called by the
 :meth:`pyramid.request.Request.route_url` function to augment or
 replace the arguments it is passed when generating a URL for the
 route. This is a feature not often used directly by applications,
 it is meant to be hooked by frameworks that use :app:`Pyramid` as
 a base.

 use_global_views

 When a request matches this route, and view lookup cannot
 find a view which has a ``route_name`` predicate argument
 that matches the route, try to fall back to using a view
 that otherwise matches the context, request, and view name
 (but which does not match the route_name predicate).

 static

 If ``static`` is ``True``, this route will never match an incoming
 request; it will only be useful for URL generation. By default,
 ``static`` is ``False``. See :ref:`static_route_narr`.

 .. versionadded:: 1.1

 Predicate Arguments

 pattern

 The pattern of the route e.g. ``ideas/{idea}``. This
 argument is required. See :ref:`route_pattern_syntax`
 for information about the syntax of route patterns. If the
 pattern doesn't match the current URL, route matching
 continues.

 .. note::

 For backwards compatibility purposes (as of :app:`Pyramid` 1.0), a
 ``path`` keyword argument passed to this function will be used to
 represent the pattern value if the ``pattern`` argument is
 ``None``. If both ``path`` and ``pattern`` are passed, ``pattern``
 wins.

 xhr

 This value should be either ``True`` or ``False``. If this
 value is specified and is ``True``, the :term:`request` must
 possess an ``HTTP_X_REQUESTED_WITH`` (aka
 ``X-Requested-With``) header for this route to match. This
 is useful for detecting AJAX requests issued from jQuery,
 Prototype and other Javascript libraries. If this predicate
 returns ``False``, route matching continues.

 request_method

 A string representing an HTTP method name, e.g. ``GET``, ``POST``,
 ``HEAD``, ``DELETE``, ``PUT`` or a tuple of elements containing
 HTTP method names. If this argument is not specified, this route
 will match if the request has *any* request method. If this
 predicate returns ``False``, route matching continues.

 .. versionchanged:: 1.2
 The ability to pass a tuple of items as ``request_method``.
 Previous versions allowed only a string.

 path_info

 This value represents a regular expression pattern that will
 be tested against the ``PATH_INFO`` WSGI environment
 variable. If the regex matches, this predicate will return
 ``True``. If this predicate returns ``False``, route
 matching continues.

 request_param

 This value can be any string. A view declaration with this
 argument ensures that the associated route will only match
 when the request has a key in the ``request.params``
 dictionary (an HTTP ``GET`` or ``POST`` variable) that has a
 name which matches the supplied value. If the value
 supplied as the argument has a ``=`` sign in it,
 e.g. ``request_param="foo=123"``, then the key
 (``foo``) must both exist in the ``request.params`` dictionary, and
 the value must match the right hand side of the expression (``123``)
 for the route to "match" the current request. If this predicate
 returns ``False``, route matching continues.

 header

 This argument represents an HTTP header name or a header
 name/value pair. If the argument contains a ``:`` (colon),
 it will be considered a name/value pair
 (e.g. ``User-Agent:Mozilla/.*`` or ``Host:localhost``). If
 the value contains a colon, the value portion should be a
 regular expression. If the value does not contain a colon,
 the entire value will be considered to be the header name
 (e.g. ``If-Modified-Since``). If the value evaluates to a
 header name only without a value, the header specified by
 the name must be present in the request for this predicate
 to be true. If the value evaluates to a header name/value
 pair, the header specified by the name must be present in
 the request *and* the regular expression specified as the
 value must match the header value. Whether or not the value
 represents a header name or a header name/value pair, the
 case of the header name is not significant. If this
 predicate returns ``False``, route matching continues.

 accept

 This value represents a match query for one or more
 mimetypes in the ``Accept`` HTTP request header. If this
 value is specified, it must be in one of the following
 forms: a mimetype match token in the form ``text/plain``, a
 wildcard mimetype match token in the form ``text/*`` or a
 match-all wildcard mimetype match token in the form ``*/*``.
 If any of the forms matches the ``Accept`` header of the
 request, or if the ``Accept`` header isn't set at all in the
 request, this predicate will be true. If this predicate
 returns ``False``, route matching continues.

 effective_principals

 If specified, this value should be a :term:`principal` identifier or
 a sequence of principal identifiers. If the
 :attr:`pyramid.request.Request.effective_principals` property
 indicates that every principal named in the argument list is present
 in the current request, this predicate will return True; otherwise it
 will return False. For example:
 ``effective_principals=pyramid.security.Authenticated`` or
 ``effective_principals=('fred', 'group:admins')``.

 .. versionadded:: 1.4a4

 custom_predicates

 .. deprecated:: 1.5
 This value should be a sequence of references to custom
 predicate callables. Use custom predicates when no set of
 predefined predicates does what you need. Custom predicates
 can be combined with predefined predicates as necessary.
 Each custom predicate callable should accept two arguments:
 ``info`` and ``request`` and should return either ``True``
 or ``False`` after doing arbitrary evaluation of the info
 and/or the request. If all custom and non-custom predicate
 callables return ``True`` the associated route will be
 considered viable for a given request. If any predicate
 callable returns ``False``, route matching continues. Note
 that the value ``info`` passed to a custom route predicate
 is a dictionary containing matching information; see
 :ref:`custom_route_predicates` for more information about
 ``info``.

 predicates

 Pass a key/value pair here to use a third-party predicate
 registered via
 :meth:`pyramid.config.Configurator.add_route_predicate`. More than
 one key/value pair can be used at the same time. See
 :ref:`view_and_route_predicates` for more information about
 third-party predicates.

 .. versionadded:: 1.4

 """
 if custom_predicates:
 warnings.warn(
 ('The "custom_predicates" argument to Configurator.add_route '
 'is deprecated as of Pyramid 1.5. Use '
 '"config.add_route_predicate" and use the registered '
 'route predicate as a predicate argument to add_route '
 'instead. See "Adding A Third Party View, Route, or '
 'Subscriber Predicate" in the "Hooks" chapter of the '
 'documentation for more information.'),
 DeprecationWarning,
 stacklevel=3
)
 # these are route predicates; if they do not match, the next route
 # in the routelist will be tried
 if request_method is not None:
 request_method = as_sorted_tuple(request_method)

 factory = self.maybe_dotted(factory)
 if pattern is None:
 pattern = path
 if pattern is None:
 raise ConfigurationError('"pattern" argument may not be None')

 # check for an external route; an external route is one which is
 # is a full url (e.g. 'http://example.com/{id}')
 parsed = urlparse.urlparse(pattern)
 external_url = pattern

 if parsed.hostname:
 pattern = parsed.path

 original_pregenerator = pregenerator
 def external_url_pregenerator(request, elements, kw):
 if '_app_url' in kw:
 raise ValueError(
 'You cannot generate a path to an external route '
 'pattern via request.route_path nor pass an _app_url '
 'to request.route_url when generating a URL for an '
 'external route pattern (pattern was "%s") ' %
 (pattern,)
)
 if '_scheme' in kw:
 scheme = kw['_scheme']
 elif parsed.scheme:
 scheme = parsed.scheme
 else:
 scheme = request.scheme
 kw['_app_url'] = '{0}://{1}'.format(scheme, parsed.netloc)

 if original_pregenerator:
 elements, kw = original_pregenerator(
 request, elements, kw)
 return elements, kw

 pregenerator = external_url_pregenerator
 static = True

 elif self.route_prefix:
 pattern = self.route_prefix.rstrip('/') + '/' + pattern.lstrip('/')

 mapper = self.get_routes_mapper()

 introspectables = []

 intr = self.introspectable('routes',
 name,
 '%s (pattern: %r)' % (name, pattern),
 'route')
 intr['name'] = name
 intr['pattern'] = pattern
 intr['factory'] = factory
 intr['xhr'] = xhr
 intr['request_methods'] = request_method
 intr['path_info'] = path_info
 intr['request_param'] = request_param
 intr['header'] = header
 intr['accept'] = accept
 intr['traverse'] = traverse
 intr['custom_predicates'] = custom_predicates
 intr['pregenerator'] = pregenerator
 intr['static'] = static
 intr['use_global_views'] = use_global_views

 if static is True:
 intr['external_url'] = external_url

 introspectables.append(intr)

 if factory:
 factory_intr = self.introspectable('root factories',
 name,
 self.object_description(factory),
 'root factory')
 factory_intr['factory'] = factory
 factory_intr['route_name'] = name
 factory_intr.relate('routes', name)
 introspectables.append(factory_intr)

 def register_route_request_iface():
 request_iface = self.registry.queryUtility(IRouteRequest, name=name)
 if request_iface is None:
 if use_global_views:
 bases = (IRequest,)
 else:
 bases = ()
 request_iface = route_request_iface(name, bases)
 self.registry.registerUtility(
 request_iface, IRouteRequest, name=name)

 def register_connect():
 pvals = predicates.copy()
 pvals.update(
 dict(
 xhr=xhr,
 request_method=request_method,
 path_info=path_info,
 request_param=request_param,
 header=header,
 accept=accept,
 traverse=traverse,
 custom=predvalseq(custom_predicates),
)
)

 predlist = self.get_predlist('route')
 _, preds, _ = predlist.make(self, **pvals)
 route = mapper.connect(
 name, pattern, factory, predicates=preds,
 pregenerator=pregenerator, static=static
)
 intr['object'] = route
 return route

 # We have to connect routes in the order they were provided;
 # we can't use a phase to do that, because when the actions are
 # sorted, actions in the same phase lose relative ordering
 self.action(('route-connect', name), register_connect)

 # But IRouteRequest interfaces must be registered before we begin to
 # process view registrations (in phase 3)
 self.action(('route', name), register_route_request_iface,
 order=PHASE2_CONFIG, introspectables=introspectables)

 @action_method
 def add_route_predicate(self, name, factory, weighs_more_than=None,
 weighs_less_than=None):
 """ Adds a route predicate factory. The view predicate can later be
 named as a keyword argument to
 :meth:`pyramid.config.Configurator.add_route`.

 ``name`` should be the name of the predicate. It must be a valid
 Python identifier (it will be used as a keyword argument to
 ``add_route``).

 ``factory`` should be a :term:`predicate factory` or :term:`dotted
 Python name` which refers to a predicate factory.

 See :ref:`view_and_route_predicates` for more information.

 .. versionadded:: 1.4
 """
 self._add_predicate(
 'route',
 name,
 factory,
 weighs_more_than=weighs_more_than,
 weighs_less_than=weighs_less_than
)

 def add_default_route_predicates(self):
 p = pyramid.config.predicates
 for (name, factory) in (
 ('xhr', p.XHRPredicate),
 ('request_method', p.RequestMethodPredicate),
 ('path_info', p.PathInfoPredicate),
 ('request_param', p.RequestParamPredicate),
 ('header', p.HeaderPredicate),
 ('accept', p.AcceptPredicate),
 ('effective_principals', p.EffectivePrincipalsPredicate),
 ('custom', p.CustomPredicate),
 ('traverse', p.TraversePredicate),
):
 self.add_route_predicate(name, factory)

 def get_routes_mapper(self):
 """ Return the :term:`routes mapper` object associated with
 this configurator's :term:`registry`."""
 mapper = self.registry.queryUtility(IRoutesMapper)
 if mapper is None:
 mapper = RoutesMapper()
 self.registry.registerUtility(mapper, IRoutesMapper)
 return mapper

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/zca.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.zca

from pyramid.threadlocal import get_current_registry

class ZCAConfiguratorMixin(object):
 def hook_zca(self):
 """ Call :func:`zope.component.getSiteManager.sethook` with the
 argument :data:`pyramid.threadlocal.get_current_registry`, causing
 the :term:`Zope Component Architecture` 'global' APIs such as
 :func:`zope.component.getSiteManager`,
 :func:`zope.component.getAdapter` and others to use the
 :app:`Pyramid` :term:`application registry` rather than the Zope
 'global' registry."""
 from zope.component import getSiteManager
 getSiteManager.sethook(get_current_registry)

 def unhook_zca(self):
 """ Call :func:`zope.component.getSiteManager.reset` to undo the
 action of :meth:`pyramid.config.Configurator.hook_zca`."""
 from zope.component import getSiteManager
 getSiteManager.reset()

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/assets.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.assets

import pkg_resources
import sys

from zope.interface import implementer

from pyramid.interfaces import IPackageOverrides

from pyramid.exceptions import ConfigurationError
from pyramid.threadlocal import get_current_registry

from pyramid.util import action_method

class OverrideProvider(pkg_resources.DefaultProvider):
 def __init__(self, module):
 pkg_resources.DefaultProvider.__init__(self, module)
 self.module_name = module.__name__

 def _get_overrides(self):
 reg = get_current_registry()
 overrides = reg.queryUtility(IPackageOverrides, self.module_name)
 return overrides

 def get_resource_filename(self, manager, resource_name):
 """ Return a true filesystem path for resource_name,
 co-ordinating the extraction with manager, if the resource
 must be unpacked to the filesystem.
 """
 overrides = self._get_overrides()
 if overrides is not None:
 filename = overrides.get_filename(resource_name)
 if filename is not None:
 return filename
 return pkg_resources.DefaultProvider.get_resource_filename(
 self, manager, resource_name)

 def get_resource_stream(self, manager, resource_name):
 """ Return a readable file-like object for resource_name."""
 overrides = self._get_overrides()
 if overrides is not None:
 stream = overrides.get_stream(resource_name)
 if stream is not None:
 return stream
 return pkg_resources.DefaultProvider.get_resource_stream(
 self, manager, resource_name)

 def get_resource_string(self, manager, resource_name):
 """ Return a string containing the contents of resource_name."""
 overrides = self._get_overrides()
 if overrides is not None:
 string = overrides.get_string(resource_name)
 if string is not None:
 return string
 return pkg_resources.DefaultProvider.get_resource_string(
 self, manager, resource_name)

 def has_resource(self, resource_name):
 overrides = self._get_overrides()
 if overrides is not None:
 result = overrides.has_resource(resource_name)
 if result is not None:
 return result
 return pkg_resources.DefaultProvider.has_resource(
 self, resource_name)

 def resource_isdir(self, resource_name):
 overrides = self._get_overrides()
 if overrides is not None:
 result = overrides.isdir(resource_name)
 if result is not None:
 return result
 return pkg_resources.DefaultProvider.resource_isdir(
 self, resource_name)

 def resource_listdir(self, resource_name):
 overrides = self._get_overrides()
 if overrides is not None:
 result = overrides.listdir(resource_name)
 if result is not None:
 return result
 return pkg_resources.DefaultProvider.resource_listdir(
 self, resource_name)

@implementer(IPackageOverrides)
class PackageOverrides(object):
 # pkg_resources arg in kw args below for testing
 def __init__(self, package, pkg_resources=pkg_resources):
 loader = self._real_loader = getattr(package, '__loader__', None)
 if isinstance(loader, self.__class__):
 self._real_loader = None
 # We register ourselves as a __loader__ *only* to support the
 # setuptools _find_adapter adapter lookup; this class doesn't
 # actually support the PEP 302 loader "API". This is
 # excusable due to the following statement in the spec:
 # ... Loader objects are not
 # required to offer any useful functionality (any such functionality,
 # such as the zipimport get_data() method mentioned above, is
 # optional)...
 # A __loader__ attribute is basically metadata, and setuptools
 # uses it as such.
 package.__loader__ = self
 # we call register_loader_type for every instantiation of this
 # class; that's OK, it's idempotent to do it more than once.
 pkg_resources.register_loader_type(self.__class__, OverrideProvider)
 self.overrides = []
 self.overridden_package_name = package.__name__

 def insert(self, path, package, prefix):
 if not path or path.endswith('/'):
 override = DirectoryOverride(path, package, prefix)
 else:
 override = FileOverride(path, package, prefix)
 self.overrides.insert(0, override)
 return override

 def search_path(self, resource_name):
 for override in self.overrides:
 o = override(resource_name)
 if o is not None:
 package, name = o
 yield package, name

 def get_filename(self, resource_name):
 for package, rname in self.search_path(resource_name):
 if pkg_resources.resource_exists(package, rname):
 return pkg_resources.resource_filename(package, rname)

 def get_stream(self, resource_name):
 for package, rname in self.search_path(resource_name):
 if pkg_resources.resource_exists(package, rname):
 return pkg_resources.resource_stream(package, rname)

 def get_string(self, resource_name):
 for package, rname in self.search_path(resource_name):
 if pkg_resources.resource_exists(package, rname):
 return pkg_resources.resource_string(package, rname)

 def has_resource(self, resource_name):
 for package, rname in self.search_path(resource_name):
 if pkg_resources.resource_exists(package, rname):
 return True

 def isdir(self, resource_name):
 for package, rname in self.search_path(resource_name):
 if pkg_resources.resource_exists(package, rname):
 return pkg_resources.resource_isdir(package, rname)

 def listdir(self, resource_name):
 for package, rname in self.search_path(resource_name):
 if pkg_resources.resource_exists(package, rname):
 return pkg_resources.resource_listdir(package, rname)

 @property
 def real_loader(self):
 if self._real_loader is None:
 raise NotImplementedError()
 return self._real_loader

 def get_data(self, path):
 """ See IPEP302Loader.
 """
 return self.real_loader.get_data(path)

 def is_package(self, fullname):
 """ See IPEP302Loader.
 """
 return self.real_loader.is_package(fullname)

 def get_code(self, fullname):
 """ See IPEP302Loader.
 """
 return self.real_loader.get_code(fullname)

 def get_source(self, fullname):
 """ See IPEP302Loader.
 """
 return self.real_loader.get_source(fullname)

class DirectoryOverride:
 def __init__(self, path, package, prefix):
 self.path = path
 self.package = package
 self.prefix = prefix
 self.pathlen = len(self.path)

 def __call__(self, resource_name):
 if resource_name.startswith(self.path):
 name = '%s%s' % (self.prefix, resource_name[self.pathlen:])
 return self.package, name

class FileOverride:
 def __init__(self, path, package, prefix):
 self.path = path
 self.package = package
 self.prefix = prefix

 def __call__(self, resource_name):
 if resource_name == self.path:
 return self.package, self.prefix

class AssetsConfiguratorMixin(object):
 def _override(self, package, path, override_package, override_prefix,
 PackageOverrides=PackageOverrides):
 pkg_name = package.__name__
 override_pkg_name = override_package.__name__
 override = self.registry.queryUtility(IPackageOverrides, name=pkg_name)
 if override is None:
 override = PackageOverrides(package)
 self.registry.registerUtility(override, IPackageOverrides,
 name=pkg_name)
 override.insert(path, override_pkg_name, override_prefix)

 @action_method
 def override_asset(self, to_override, override_with, _override=None):
 """ Add a :app:`Pyramid` asset override to the current
 configuration state.

 ``to_override`` is a :term:`asset specification` to the
 asset being overridden.

 ``override_with`` is a :term:`asset specification` to the
 asset that is performing the override.

 See :ref:`assets_chapter` for more
 information about asset overrides."""
 if to_override == override_with:
 raise ConfigurationError('You cannot override an asset with itself')

 package = to_override
 path = ''
 if ':' in to_override:
 package, path = to_override.split(':', 1)

 override_package = override_with
 override_prefix = ''
 if ':' in override_with:
 override_package, override_prefix = override_with.split(':', 1)

 # *_isdir = override is package or directory
 overridden_isdir = path=='' or path.endswith('/')
 override_isdir = override_prefix=='' or override_prefix.endswith('/')

 if overridden_isdir and (not override_isdir):
 raise ConfigurationError(
 'A directory cannot be overridden with a file (put a '
 'slash at the end of override_with if necessary)')

 if (not overridden_isdir) and override_isdir:
 raise ConfigurationError(
 'A file cannot be overridden with a directory (put a '
 'slash at the end of to_override if necessary)')

 override = _override or self._override # test jig

 def register():
 __import__(package)
 __import__(override_package)
 from_package = sys.modules[package]
 to_package = sys.modules[override_package]
 override(from_package, path, to_package, override_prefix)

 intr = self.introspectable(
 'asset overrides',
 (package, override_package, path, override_prefix),
 '%s -> %s' % (to_override, override_with),
 'asset override',
)
 intr['to_override'] = to_override
 intr['override_with'] = override_with
 self.action(None, register, introspectables=(intr,))

 override_resource = override_asset # bw compat

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/i18n.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.i18n

import os
import sys

from pyramid.interfaces import (
 ILocaleNegotiator,
 ITranslationDirectories,
)

from pyramid.exceptions import ConfigurationError
from pyramid.path import package_path
from pyramid.util import action_method

class I18NConfiguratorMixin(object):
 @action_method
 def set_locale_negotiator(self, negotiator):
 """
 Set the :term:`locale negotiator` for this application. The
 :term:`locale negotiator` is a callable which accepts a
 :term:`request` object and which returns a :term:`locale
 name`. The ``negotiator`` argument should be the locale
 negotiator implementation or a :term:`dotted Python name`
 which refers to such an implementation.

 Later calls to this method override earlier calls; there can
 be only one locale negotiator active at a time within an
 application. See :ref:`activating_translation` for more
 information.

 .. note::

 Using the ``locale_negotiator`` argument to the
 :class:`pyramid.config.Configurator` constructor can be used to
 achieve the same purpose.
 """
 def register():
 self._set_locale_negotiator(negotiator)
 intr = self.introspectable('locale negotiator', None,
 self.object_description(negotiator),
 'locale negotiator')
 intr['negotiator'] = negotiator
 self.action(ILocaleNegotiator, register, introspectables=(intr,))

 def _set_locale_negotiator(self, negotiator):
 locale_negotiator = self.maybe_dotted(negotiator)
 self.registry.registerUtility(locale_negotiator, ILocaleNegotiator)

 @action_method
 def add_translation_dirs(self, *specs):
 """ Add one or more :term:`translation directory` paths to the
 current configuration state. The ``specs`` argument is a
 sequence that may contain absolute directory paths
 (e.g. ``/usr/share/locale``) or :term:`asset specification`
 names naming a directory path (e.g. ``some.package:locale``)
 or a combination of the two.

 Example:

 .. code-block:: python

 config.add_translation_dirs('/usr/share/locale',
 'some.package:locale')

 Later calls to ``add_translation_dir`` insert directories into the
 beginning of the list of translation directories created by earlier
 calls. This means that the same translation found in a directory
 added later in the configuration process will be found before one
 added earlier in the configuration process. However, if multiple
 specs are provided in a single call to ``add_translation_dirs``, the
 directories will be inserted into the beginning of the directory list
 in the order they're provided in the ``*specs`` list argument (items
 earlier in the list trump ones later in the list).
 """
 directories = []
 introspectables = []

 for spec in specs[::-1]: # reversed
 package_name, filename = self._split_spec(spec)
 if package_name is None: # absolute filename
 directory = filename
 else:
 __import__(package_name)
 package = sys.modules[package_name]
 directory = os.path.join(package_path(package), filename)

 if not os.path.isdir(os.path.realpath(directory)):
 raise ConfigurationError('"%s" is not a directory' %
 directory)
 intr = self.introspectable('translation directories', directory,
 spec, 'translation directory')
 intr['directory'] = directory
 intr['spec'] = spec
 introspectables.append(intr)
 directories.append(directory)

 def register():
 for directory in directories:

 tdirs = self.registry.queryUtility(ITranslationDirectories)
 if tdirs is None:
 tdirs = []
 self.registry.registerUtility(tdirs,
 ITranslationDirectories)

 tdirs.insert(0, directory)

 self.action(None, register, introspectables=introspectables)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/factories.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.factories

from zope.deprecation import deprecate
from zope.interface import implementer

from pyramid.interfaces import (
 IDefaultRootFactory,
 IRequestFactory,
 IRequestExtensions,
 IRootFactory,
 ISessionFactory,
)

from pyramid.traversal import DefaultRootFactory

from pyramid.util import (
 action_method,
 InstancePropertyMixin,
)

class FactoriesConfiguratorMixin(object):
 @action_method
 def set_root_factory(self, factory):
 """ Add a :term:`root factory` to the current configuration
 state. If the ``factory`` argument is ``None`` a default root
 factory will be registered.

 .. note::

 Using the ``root_factory`` argument to the
 :class:`pyramid.config.Configurator` constructor can be used to
 achieve the same purpose.
 """
 factory = self.maybe_dotted(factory)
 if factory is None:
 factory = DefaultRootFactory
 def register():
 self.registry.registerUtility(factory, IRootFactory)
 self.registry.registerUtility(factory, IDefaultRootFactory) # b/c

 intr = self.introspectable('root factories',
 None,
 self.object_description(factory),
 'root factory')
 intr['factory'] = factory
 self.action(IRootFactory, register, introspectables=(intr,))

 _set_root_factory = set_root_factory # bw compat

 @action_method
 def set_session_factory(self, factory):
 """
 Configure the application with a :term:`session factory`. If this
 method is called, the ``factory`` argument must be a session
 factory callable or a :term:`dotted Python name` to that factory.

 .. note::

 Using the ``session_factory`` argument to the
 :class:`pyramid.config.Configurator` constructor can be used to
 achieve the same purpose.
 """
 factory = self.maybe_dotted(factory)
 def register():
 self.registry.registerUtility(factory, ISessionFactory)
 intr = self.introspectable('session factory', None,
 self.object_description(factory),
 'session factory')
 intr['factory'] = factory
 self.action(ISessionFactory, register, introspectables=(intr,))

 @action_method
 def set_request_factory(self, factory):
 """ The object passed as ``factory`` should be an object (or a
 :term:`dotted Python name` which refers to an object) which
 will be used by the :app:`Pyramid` router to create all
 request objects. This factory object must have the same
 methods and attributes as the
 :class:`pyramid.request.Request` class (particularly
 ``__call__``, and ``blank``).

 See :meth:`pyramid.config.Configurator.add_request_method`
 for a less intrusive way to extend the request objects with
 custom methods and properties.

 .. note::

 Using the ``request_factory`` argument to the
 :class:`pyramid.config.Configurator` constructor
 can be used to achieve the same purpose.
 """
 factory = self.maybe_dotted(factory)
 def register():
 self.registry.registerUtility(factory, IRequestFactory)
 intr = self.introspectable('request factory', None,
 self.object_description(factory),
 'request factory')
 intr['factory'] = factory
 self.action(IRequestFactory, register, introspectables=(intr,))

 @action_method
 def add_request_method(self,
 callable=None,
 name=None,
 property=False,
 reify=False):
 """ Add a property or method to the request object.

 When adding a method to the request, ``callable`` may be any
 function that receives the request object as the first
 parameter. If ``name`` is ``None`` then it will be computed
 from the name of the ``callable``.

 When adding a property to the request, ``callable`` can either
 be a callable that accepts the request as its single positional
 parameter, or it can be a property descriptor. If ``name`` is
 ``None``, the name of the property will be computed from the
 name of the ``callable``.

 If the ``callable`` is a property descriptor a ``ValueError``
 will be raised if ``name`` is ``None`` or ``reify`` is ``True``.

 See :meth:`pyramid.request.Request.set_property` for more
 details on ``property`` vs ``reify``. When ``reify`` is
 ``True``, the value of ``property`` is assumed to also be
 ``True``.

 In all cases, ``callable`` may also be a
 :term:`dotted Python name` which refers to either a callable or
 a property descriptor.

 If ``callable`` is ``None`` then the method is only used to
 assist in conflict detection between different addons requesting
 the same attribute on the request object.

 This is the recommended method for extending the request object
 and should be used in favor of providing a custom request
 factory via
 :meth:`pyramid.config.Configurator.set_request_factory`.

 .. versionadded:: 1.4
 """
 if callable is not None:
 callable = self.maybe_dotted(callable)

 property = property or reify
 if property:
 name, callable = InstancePropertyMixin._make_property(
 callable, name=name, reify=reify)
 elif name is None:
 name = callable.__name__

 def register():
 exts = self.registry.queryUtility(IRequestExtensions)

 if exts is None:
 exts = _RequestExtensions()
 self.registry.registerUtility(exts, IRequestExtensions)

 plist = exts.descriptors if property else exts.methods
 plist[name] = callable

 if callable is None:
 self.action(('request extensions', name), None)
 elif property:
 intr = self.introspectable('request extensions', name,
 self.object_description(callable),
 'request property')
 intr['callable'] = callable
 intr['property'] = True
 intr['reify'] = reify
 self.action(('request extensions', name), register,
 introspectables=(intr,))
 else:
 intr = self.introspectable('request extensions', name,
 self.object_description(callable),
 'request method')
 intr['callable'] = callable
 intr['property'] = False
 intr['reify'] = False
 self.action(('request extensions', name), register,
 introspectables=(intr,))

 @action_method
 @deprecate('set_request_propery() is deprecated as of Pyramid 1.5; use '
 'add_request_method() with the property=True argument instead')
 def set_request_property(self, callable, name=None, reify=False):
 """ Add a property to the request object.

 .. deprecated:: 1.5
 :meth:`pyramid.config.Configurator.add_request_method` should be
 used instead. (This method was docs-deprecated in 1.4 and
 issues a real deprecation warning in 1.5).

 .. versionadded:: 1.3
 """
 self.add_request_method(
 callable, name=name, property=not reify, reify=reify)

@implementer(IRequestExtensions)
class _RequestExtensions(object):
 def __init__(self):
 self.descriptors = {}
 self.methods = {}

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/views.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.views

import inspect
import operator
import os
import warnings

from zope.interface import (
 Interface,
 implementedBy,
 implementer,
 provider,
)

from zope.interface.interfaces import IInterface

from pyramid.interfaces import (
 IAuthenticationPolicy,
 IAuthorizationPolicy,
 IDebugLogger,
 IDefaultPermission,
 IException,
 IExceptionViewClassifier,
 IMultiView,
 IRendererFactory,
 IRequest,
 IResponse,
 IRouteRequest,
 ISecuredView,
 IStaticURLInfo,
 IView,
 IViewClassifier,
 IViewMapper,
 IViewMapperFactory,
 PHASE1_CONFIG,
)

from pyramid import renderers

from pyramid.compat import (
 string_types,
 urlparse,
 url_quote,
 WIN,
 is_bound_method,
 is_nonstr_iter
)

from pyramid.encode import (
 quote_plus,
 urlencode,
)

from pyramid.exceptions import (
 ConfigurationError,
 PredicateMismatch,
)

from pyramid.httpexceptions import (
 HTTPForbidden,
 HTTPNotFound,
)

from pyramid.registry import (
 predvalseq,
 Deferred,
)

from pyramid.response import Response

from pyramid.security import NO_PERMISSION_REQUIRED
from pyramid.static import static_view
from pyramid.threadlocal import get_current_registry

from pyramid.url import parse_url_overrides

from pyramid.view import (
 render_view_to_response,
 AppendSlashNotFoundViewFactory,
)

from pyramid.util import (
 object_description,
 viewdefaults,
 action_method,
)

import pyramid.config.predicates

from pyramid.config.util import (
 DEFAULT_PHASH,
 MAX_ORDER,
 takes_one_arg,
)

urljoin = urlparse.urljoin
url_parse = urlparse.urlparse

def view_description(view):
 try:
 return view.__text__
 except AttributeError:
 # custom view mappers might not add __text__
 return object_description(view)

def wraps_view(wrapper):
 def inner(self, view):
 wrapper_view = wrapper(self, view)
 return preserve_view_attrs(view, wrapper_view)
 return inner

def preserve_view_attrs(view, wrapper):
 if view is None:
 return wrapper

 if wrapper is view:
 return view

 original_view = getattr(view, '__original_view__', None)

 if original_view is None:
 original_view = view

 wrapper.__wraps__ = view
 wrapper.__original_view__ = original_view
 wrapper.__module__ = view.__module__
 wrapper.__doc__ = view.__doc__

 try:
 wrapper.__name__ = view.__name__
 except AttributeError:
 wrapper.__name__ = repr(view)

 # attrs that may not exist on "view", but, if so, must be attached to
 # "wrapped view"
 for attr in ('__permitted__', '__call_permissive__', '__permission__',
 '__predicated__', '__predicates__', '__accept__',
 '__order__', '__text__'):
 try:
 setattr(wrapper, attr, getattr(view, attr))
 except AttributeError:
 pass

 return wrapper

class ViewDeriver(object):
 def __init__(self, **kw):
 self.kw = kw
 self.registry = kw['registry']
 self.authn_policy = self.registry.queryUtility(IAuthenticationPolicy)
 self.authz_policy = self.registry.queryUtility(IAuthorizationPolicy)
 self.logger = self.registry.queryUtility(IDebugLogger)

 def __call__(self, view):
 return self.attr_wrapped_view(
 self.predicated_view(
 self.authdebug_view(
 self.secured_view(
 self.owrapped_view(
 self.http_cached_view(
 self.decorated_view(
 self.rendered_view(
 self.mapped_view(
 view)))))))))

 @wraps_view
 def mapped_view(self, view):
 mapper = self.kw.get('mapper')
 if mapper is None:
 mapper = getattr(view, '__view_mapper__', None)
 if mapper is None:
 mapper = self.registry.queryUtility(IViewMapperFactory)
 if mapper is None:
 mapper = DefaultViewMapper

 mapped_view = mapper(**self.kw)(view)
 return mapped_view

 @wraps_view
 def owrapped_view(self, view):
 wrapper_viewname = self.kw.get('wrapper_viewname')
 viewname = self.kw.get('viewname')
 if not wrapper_viewname:
 return view
 def _owrapped_view(context, request):
 response = view(context, request)
 request.wrapped_response = response
 request.wrapped_body = response.body
 request.wrapped_view = view
 wrapped_response = render_view_to_response(context, request,
 wrapper_viewname)
 if wrapped_response is None:
 raise ValueError(
 'No wrapper view named %r found when executing view '
 'named %r' % (wrapper_viewname, viewname))
 return wrapped_response
 return _owrapped_view

 @wraps_view
 def http_cached_view(self, view):
 if self.registry.settings.get('prevent_http_cache', False):
 return view

 seconds = self.kw.get('http_cache')

 if seconds is None:
 return view

 options = {}

 if isinstance(seconds, (tuple, list)):
 try:
 seconds, options = seconds
 except ValueError:
 raise ConfigurationError(
 'If http_cache parameter is a tuple or list, it must be '
 'in the form (seconds, options); not %s' % (seconds,))

 def wrapper(context, request):
 response = view(context, request)
 prevent_caching = getattr(response.cache_control, 'prevent_auto',
 False)
 if not prevent_caching:
 response.cache_expires(seconds, **options)
 return response

 return wrapper

 @wraps_view
 def secured_view(self, view):
 permission = self.kw.get('permission')
 if permission == NO_PERMISSION_REQUIRED:
 # allow views registered within configurations that have a
 # default permission to explicitly override the default
 # permission, replacing it with no permission at all
 permission = None

 wrapped_view = view
 if self.authn_policy and self.authz_policy and (permission is not None):
 def _permitted(context, request):
 principals = self.authn_policy.effective_principals(request)
 return self.authz_policy.permits(context, principals,
 permission)
 def _secured_view(context, request):
 result = _permitted(context, request)
 if result:
 return view(context, request)
 view_name = getattr(view, '__name__', view)
 msg = getattr(
 request, 'authdebug_message',
 'Unauthorized: %s failed permission check' % view_name)
 raise HTTPForbidden(msg, result=result)
 _secured_view.__call_permissive__ = view
 _secured_view.__permitted__ = _permitted
 _secured_view.__permission__ = permission
 wrapped_view = _secured_view

 return wrapped_view

 @wraps_view
 def authdebug_view(self, view):
 wrapped_view = view
 settings = self.registry.settings
 permission = self.kw.get('permission')
 if settings and settings.get('debug_authorization', False):
 def _authdebug_view(context, request):
 view_name = getattr(request, 'view_name', None)

 if self.authn_policy and self.authz_policy:
 if permission is NO_PERMISSION_REQUIRED:
 msg = 'Allowed (NO_PERMISSION_REQUIRED)'
 elif permission is None:
 msg = 'Allowed (no permission registered)'
 else:
 principals = self.authn_policy.effective_principals(
 request)
 msg = str(self.authz_policy.permits(context, principals,
 permission))
 else:
 msg = 'Allowed (no authorization policy in use)'

 view_name = getattr(request, 'view_name', None)
 url = getattr(request, 'url', None)
 msg = ('debug_authorization of url %s (view name %r against '
 'context %r): %s' % (url, view_name, context, msg))
 self.logger and self.logger.debug(msg)
 if request is not None:
 request.authdebug_message = msg
 return view(context, request)

 wrapped_view = _authdebug_view

 return wrapped_view

 @wraps_view
 def predicated_view(self, view):
 preds = self.kw.get('predicates', ())
 if not preds:
 return view
 def predicate_wrapper(context, request):
 for predicate in preds:
 if not predicate(context, request):
 view_name = getattr(view, '__name__', view)
 raise PredicateMismatch(
 'predicate mismatch for view %s (%s)' % (
 view_name, predicate.text()))
 return view(context, request)
 def checker(context, request):
 return all((predicate(context, request) for predicate in
 preds))
 predicate_wrapper.__predicated__ = checker
 predicate_wrapper.__predicates__ = preds
 return predicate_wrapper

 @wraps_view
 def attr_wrapped_view(self, view):
 kw = self.kw
 accept, order, phash = (kw.get('accept', None),
 kw.get('order', MAX_ORDER),
 kw.get('phash', DEFAULT_PHASH))
 # this is a little silly but we don't want to decorate the original
 # function with attributes that indicate accept, order, and phash,
 # so we use a wrapper
 if (
 (accept is None) and
 (order == MAX_ORDER) and
 (phash == DEFAULT_PHASH)
):
 return view # defaults
 def attr_view(context, request):
 return view(context, request)
 attr_view.__accept__ = accept
 attr_view.__order__ = order
 attr_view.__phash__ = phash
 attr_view.__view_attr__ = self.kw.get('attr')
 attr_view.__permission__ = self.kw.get('permission')
 return attr_view

 @wraps_view
 def rendered_view(self, view):
 # one way or another this wrapper must produce a Response (unless
 # the renderer is a NullRendererHelper)
 renderer = self.kw.get('renderer')
 if renderer is None:
 # register a default renderer if you want super-dynamic
 # rendering. registering a default renderer will also allow
 # override_renderer to work if a renderer is left unspecified for
 # a view registration.
 return self._response_resolved_view(view)
 if renderer is renderers.null_renderer:
 return view
 return self._rendered_view(view, renderer)

 def _rendered_view(self, view, view_renderer):
 def rendered_view(context, request):
 renderer = view_renderer
 result = view(context, request)
 if result.__class__ is Response: # potential common case
 response = result
 else:
 registry = self.registry
 # this must adapt, it can't do a simple interface check
 # (avoid trying to render webob responses)
 response = registry.queryAdapterOrSelf(result, IResponse)
 if response is None:
 attrs = getattr(request, '__dict__', {})
 if 'override_renderer' in attrs:
 # renderer overridden by newrequest event or other
 renderer_name = attrs.pop('override_renderer')
 renderer = renderers.RendererHelper(
 name=renderer_name,
 package=self.kw.get('package'),
 registry = registry)
 if '__view__' in attrs:
 view_inst = attrs.pop('__view__')
 else:
 view_inst = getattr(view, '__original_view__', view)
 response = renderer.render_view(request, result, view_inst,
 context)
 return response

 return rendered_view

 def _response_resolved_view(self, view):
 registry = self.registry
 def viewresult_to_response(context, request):
 result = view(context, request)
 if result.__class__ is Response: # common case
 response = result
 else:
 response = registry.queryAdapterOrSelf(result, IResponse)
 if response is None:
 if result is None:
 append = (' You may have forgotten to return a value '
 'from the view callable.')
 elif isinstance(result, dict):
 append = (' You may have forgotten to define a '
 'renderer in the view configuration.')
 else:
 append = ''

 msg = ('Could not convert return value of the view '
 'callable %s into a response object. '
 'The value returned was %r.' + append)

 raise ValueError(msg % (view_description(view), result))

 return response

 return viewresult_to_response

 @wraps_view
 def decorated_view(self, view):
 decorator = self.kw.get('decorator')
 if decorator is None:
 return view
 return decorator(view)

@implementer(IViewMapper)
@provider(IViewMapperFactory)
class DefaultViewMapper(object):
 def __init__(self, **kw):
 self.attr = kw.get('attr')

 def __call__(self, view):
 if inspect.isclass(view):
 view = self.map_class(view)
 else:
 view = self.map_nonclass(view)
 return view

 def map_class(self, view):
 ronly = requestonly(view, self.attr)
 if ronly:
 mapped_view = self.map_class_requestonly(view)
 else:
 mapped_view = self.map_class_native(view)
 mapped_view.__text__ = 'method %s of %s' % (
 self.attr or '__call__', object_description(view))
 return mapped_view

 def map_nonclass(self, view):
 # We do more work here than appears necessary to avoid wrapping the
 # view unless it actually requires wrapping (to avoid function call
 # overhead).
 mapped_view = view
 ronly = requestonly(view, self.attr)
 if ronly:
 mapped_view = self.map_nonclass_requestonly(view)
 elif self.attr:
 mapped_view = self.map_nonclass_attr(view)
 if inspect.isroutine(mapped_view):
 # This branch will be true if the view is a function or a method.
 # We potentially mutate an unwrapped object here if it's a
 # function. We do this to avoid function call overhead of
 # injecting another wrapper. However, we must wrap if the
 # function is a bound method because we can't set attributes on a
 # bound method.
 if is_bound_method(view):
 _mapped_view = mapped_view
 def mapped_view(context, request):
 return _mapped_view(context, request)
 if self.attr is not None:
 mapped_view.__text__ = 'attr %s of %s' % (
 self.attr, object_description(view))
 else:
 mapped_view.__text__ = object_description(view)
 return mapped_view

 def map_class_requestonly(self, view):
 # its a class that has an __init__ which only accepts request
 attr = self.attr
 def _class_requestonly_view(context, request):
 inst = view(request)
 request.__view__ = inst
 if attr is None:
 response = inst()
 else:
 response = getattr(inst, attr)()
 return response
 return _class_requestonly_view

 def map_class_native(self, view):
 # its a class that has an __init__ which accepts both context and
 # request
 attr = self.attr
 def _class_view(context, request):
 inst = view(context, request)
 request.__view__ = inst
 if attr is None:
 response = inst()
 else:
 response = getattr(inst, attr)()
 return response
 return _class_view

 def map_nonclass_requestonly(self, view):
 # its a function that has a __call__ which accepts only a single
 # request argument
 attr = self.attr
 def _requestonly_view(context, request):
 if attr is None:
 response = view(request)
 else:
 response = getattr(view, attr)(request)
 return response
 return _requestonly_view

 def map_nonclass_attr(self, view):
 # its a function that has a __call__ which accepts both context and
 # request, but still has an attr
 def _attr_view(context, request):
 response = getattr(view, self.attr)(context, request)
 return response
 return _attr_view

def requestonly(view, attr=None):
 return takes_one_arg(view, attr=attr, argname='request')

@implementer(IMultiView)
class MultiView(object):

 def __init__(self, name):
 self.name = name
 self.media_views = {}
 self.views = []
 self.accepts = []

 def __discriminator__(self, context, request):
 # used by introspection systems like so:
 # view = adapters.lookup(....)
 # view.__discriminator__(context, request) -> view's discriminator
 # so that superdynamic systems can feed the discriminator to
 # the introspection system to get info about it
 view = self.match(context, request)
 return view.__discriminator__(context, request)

 def add(self, view, order, accept=None, phash=None):
 if phash is not None:
 for i, (s, v, h) in enumerate(list(self.views)):
 if phash == h:
 self.views[i] = (order, view, phash)
 return

 if accept is None or '*' in accept:
 self.views.append((order, view, phash))
 self.views.sort(key=operator.itemgetter(0))
 else:
 subset = self.media_views.setdefault(accept, [])
 for i, (s, v, h) in enumerate(list(subset)):
 if phash == h:
 subset[i] = (order, view, phash)
 return
 else:
 subset.append((order, view, phash))
 subset.sort(key=operator.itemgetter(0))
 accepts = set(self.accepts)
 accepts.add(accept)
 self.accepts = list(accepts) # dedupe

 def get_views(self, request):
 if self.accepts and hasattr(request, 'accept'):
 accepts = self.accepts[:]
 views = []
 while accepts:
 match = request.accept.best_match(accepts)
 if match is None:
 break
 subset = self.media_views[match]
 views.extend(subset)
 accepts.remove(match)
 views.extend(self.views)
 return views
 return self.views

 def match(self, context, request):
 for order, view, phash in self.get_views(request):
 if not hasattr(view, '__predicated__'):
 return view
 if view.__predicated__(context, request):
 return view
 raise PredicateMismatch(self.name)

 def __permitted__(self, context, request):
 view = self.match(context, request)
 if hasattr(view, '__permitted__'):
 return view.__permitted__(context, request)
 return True

 def __call_permissive__(self, context, request):
 view = self.match(context, request)
 view = getattr(view, '__call_permissive__', view)
 return view(context, request)

 def __call__(self, context, request):
 for order, view, phash in self.get_views(request):
 try:
 return view(context, request)
 except PredicateMismatch:
 continue
 raise PredicateMismatch(self.name)

class ViewsConfiguratorMixin(object):
 @viewdefaults
 @action_method
 def add_view(
 self,
 view=None,
 name="",
 for_=None,
 permission=None,
 request_type=None,
 route_name=None,
 request_method=None,
 request_param=None,
 containment=None,
 attr=None,
 renderer=None,
 wrapper=None,
 xhr=None,
 accept=None,
 header=None,
 path_info=None,
 custom_predicates=(),
 context=None,
 decorator=None,
 mapper=None,
 http_cache=None,
 match_param=None,
 check_csrf=None,
 **predicates):
 """ Add a :term:`view configuration` to the current
 configuration state. Arguments to ``add_view`` are broken
 down below into *predicate* arguments and *non-predicate*
 arguments. Predicate arguments narrow the circumstances in
 which the view callable will be invoked when a request is
 presented to :app:`Pyramid`; non-predicate arguments are
 informational.

 Non-Predicate Arguments

 view

 A :term:`view callable` or a :term:`dotted Python name`
 which refers to a view callable. This argument is required
 unless a ``renderer`` argument also exists. If a
 ``renderer`` argument is passed, and a ``view`` argument is
 not provided, the view callable defaults to a callable that
 returns an empty dictionary (see
 :ref:`views_which_use_a_renderer`).

 permission

 A :term:`permission` that the user must possess in order to invoke
 the :term:`view callable`. See :ref:`view_security_section` for
 more information about view security and permissions. This is
 often a string like ``view`` or ``edit``.

 If ``permission`` is omitted, a *default* permission may be used
 for this view registration if one was named as the
 :class:`pyramid.config.Configurator` constructor's
 ``default_permission`` argument, or if
 :meth:`pyramid.config.Configurator.set_default_permission` was used
 prior to this view registration. Pass the value
 :data:`pyramid.security.NO_PERMISSION_REQUIRED` as the permission
 argument to explicitly indicate that the view should always be
 executable by entirely anonymous users, regardless of the default
 permission, bypassing any :term:`authorization policy` that may be
 in effect.

 attr

 This knob is most useful when the view definition is a class.

 The view machinery defaults to using the ``__call__`` method
 of the :term:`view callable` (or the function itself, if the
 view callable is a function) to obtain a response. The
 ``attr`` value allows you to vary the method attribute used
 to obtain the response. For example, if your view was a
 class, and the class has a method named ``index`` and you
 wanted to use this method instead of the class' ``__call__``
 method to return the response, you'd say ``attr="index"`` in the
 view configuration for the view.

 renderer

 This is either a single string term (e.g. ``json``) or a
 string implying a path or :term:`asset specification`
 (e.g. ``templates/views.pt``) naming a :term:`renderer`
 implementation. If the ``renderer`` value does not contain
 a dot ``.``, the specified string will be used to look up a
 renderer implementation, and that renderer implementation
 will be used to construct a response from the view return
 value. If the ``renderer`` value contains a dot (``.``),
 the specified term will be treated as a path, and the
 filename extension of the last element in the path will be
 used to look up the renderer implementation, which will be
 passed the full path. The renderer implementation will be
 used to construct a :term:`response` from the view return
 value.

 Note that if the view itself returns a :term:`response` (see
 :ref:`the_response`), the specified renderer implementation
 is never called.

 When the renderer is a path, although a path is usually just
 a simple relative pathname (e.g. ``templates/foo.pt``,
 implying that a template named "foo.pt" is in the
 "templates" directory relative to the directory of the
 current :term:`package` of the Configurator), a path can be
 absolute, starting with a slash on UNIX or a drive letter
 prefix on Windows. The path can alternately be a
 :term:`asset specification` in the form
 ``some.dotted.package_name:relative/path``, making it
 possible to address template assets which live in a
 separate package.

 The ``renderer`` attribute is optional. If it is not
 defined, the "null" renderer is assumed (no rendering is
 performed and the value is passed back to the upstream
 :app:`Pyramid` machinery unmodified).

 http_cache

 .. versionadded:: 1.1

 When you supply an ``http_cache`` value to a view configuration,
 the ``Expires`` and ``Cache-Control`` headers of a response
 generated by the associated view callable are modified. The value
 for ``http_cache`` may be one of the following:

 - A nonzero integer. If it's a nonzero integer, it's treated as a
 number of seconds. This number of seconds will be used to
 compute the ``Expires`` header and the ``Cache-Control:
 max-age`` parameter of responses to requests which call this view.
 For example: ``http_cache=3600`` instructs the requesting browser
 to 'cache this response for an hour, please'.

 - A ``datetime.timedelta`` instance. If it's a
 ``datetime.timedelta`` instance, it will be converted into a
 number of seconds, and that number of seconds will be used to
 compute the ``Expires`` header and the ``Cache-Control:
 max-age`` parameter of responses to requests which call this view.
 For example: ``http_cache=datetime.timedelta(days=1)`` instructs
 the requesting browser to 'cache this response for a day, please'.

 - Zero (``0``). If the value is zero, the ``Cache-Control`` and
 ``Expires`` headers present in all responses from this view will
 be composed such that client browser cache (and any intermediate
 caches) are instructed to never cache the response.

 - A two-tuple. If it's a two tuple (e.g. ``http_cache=(1,
 {'public':True})``), the first value in the tuple may be a
 nonzero integer or a ``datetime.timedelta`` instance; in either
 case this value will be used as the number of seconds to cache
 the response. The second value in the tuple must be a
 dictionary. The values present in the dictionary will be used as
 input to the ``Cache-Control`` response header. For example:
 ``http_cache=(3600, {'public':True})`` means 'cache for an hour,
 and add ``public`` to the Cache-Control header of the response'.
 All keys and values supported by the
 ``webob.cachecontrol.CacheControl`` interface may be added to the
 dictionary. Supplying ``{'public':True}`` is equivalent to
 calling ``response.cache_control.public = True``.

 Providing a non-tuple value as ``http_cache`` is equivalent to
 calling ``response.cache_expires(value)`` within your view's body.

 Providing a two-tuple value as ``http_cache`` is equivalent to
 calling ``response.cache_expires(value[0], **value[1])`` within your
 view's body.

 If you wish to avoid influencing, the ``Expires`` header, and
 instead wish to only influence ``Cache-Control`` headers, pass a
 tuple as ``http_cache`` with the first element of ``None``, e.g.:
 ``(None, {'public':True})``.

 If you wish to prevent a view that uses ``http_cache`` in its
 configuration from having its caching response headers changed by
 this machinery, set ``response.cache_control.prevent_auto = True``
 before returning the response from the view. This effectively
 disables any HTTP caching done by ``http_cache`` for that response.

 wrapper

 The :term:`view name` of a different :term:`view
 configuration` which will receive the response body of this
 view as the ``request.wrapped_body`` attribute of its own
 :term:`request`, and the :term:`response` returned by this
 view as the ``request.wrapped_response`` attribute of its
 own request. Using a wrapper makes it possible to "chain"
 views together to form a composite response. The response
 of the outermost wrapper view will be returned to the user.
 The wrapper view will be found as any view is found: see
 :ref:`view_lookup`. The "best" wrapper view will be found
 based on the lookup ordering: "under the hood" this wrapper
 view is looked up via
 ``pyramid.view.render_view_to_response(context, request,
 'wrapper_viewname')``. The context and request of a wrapper
 view is the same context and request of the inner view. If
 this attribute is unspecified, no view wrapping is done.

 decorator

 A :term:`dotted Python name` to function (or the function itself,
 or an iterable of the aforementioned) which will be used to
 decorate the registered :term:`view callable`. The decorator
 function(s) will be called with the view callable as a single
 argument. The view callable it is passed will accept
 ``(context, request)``. The decorator(s) must return a
 replacement view callable which also accepts ``(context,
 request)``.

 If decorator is an iterable, the callables will be combined and
 used in the order provided as a decorator.
 For example::

 @view_config(...,
 decorator=(decorator2,
 decorator1))
 def myview(request):

 Is similar to doing::

 @view_config(...)
 @decorator2
 @decorator1
 def myview(request):
 ...

 Except with the existing benefits of ``decorator=`` (having a common
 decorator syntax for all view calling conventions and not having to
 think about preserving function attributes such as ``__name__`` and
 ``__module__`` within decorator logic).

 All view callables in the decorator chain must return a response
 object implementing :class:`pyramid.interfaces.IResponse` or raise
 an exception:

 .. code-block:: python

 def log_timer(wrapped):
 def wrapper(context, request):
 start = time.time()
 response = wrapped(context, request)
 duration = time.time() - start
 response.headers['X-View-Time'] = '%.3f' % (duration,)
 log.info('view took %.3f seconds', duration)
 return response
 return wrapper

 .. versionchanged:: 1.4a4
 Passing an iterable.

 mapper

 A Python object or :term:`dotted Python name` which refers to a
 :term:`view mapper`, or ``None``. By default it is ``None``, which
 indicates that the view should use the default view mapper. This
 plug-point is useful for Pyramid extension developers, but it's not
 very useful for 'civilians' who are just developing stock Pyramid
 applications. Pay no attention to the man behind the curtain.

 Predicate Arguments

 name

 The :term:`view name`. Read :ref:`traversal_chapter` to
 understand the concept of a view name.

 context

 An object or a :term:`dotted Python name` referring to an
 interface or class object that the :term:`context` must be
 an instance of, *or* the :term:`interface` that the
 :term:`context` must provide in order for this view to be
 found and called. This predicate is true when the
 :term:`context` is an instance of the represented class or
 if the :term:`context` provides the represented interface;
 it is otherwise false. This argument may also be provided
 to ``add_view`` as ``for_`` (an older, still-supported
 spelling).

 route_name

 This value must match the ``name`` of a :term:`route
 configuration` declaration (see :ref:`urldispatch_chapter`)
 that must match before this view will be called.

 request_type

 This value should be an :term:`interface` that the
 :term:`request` must provide in order for this view to be
 found and called. This value exists only for backwards
 compatibility purposes.

 request_method

 This value can be either a strings (such as ``GET``, ``POST``,
 ``PUT``, ``DELETE``, or ``HEAD``) representing an HTTP
 ``REQUEST_METHOD``, or a tuple containing one or more of these
 strings. A view declaration with this argument ensures that the
 view will only be called when the ``method`` attribute of the
 request (aka the ``REQUEST_METHOD`` of the WSGI environment) matches
 a supplied value. Note that use of ``GET`` also implies that the
 view will respond to ``HEAD`` as of Pyramid 1.4.

 .. versionchanged:: 1.2
 The ability to pass a tuple of items as ``request_method``.
 Previous versions allowed only a string.

 request_param

 This value can be any string or any sequence of strings. A view
 declaration with this argument ensures that the view will only be
 called when the :term:`request` has a key in the ``request.params``
 dictionary (an HTTP ``GET`` or ``POST`` variable) that has a
 name which matches the supplied value (if the value is a string)
 or values (if the value is a tuple). If any value
 supplied has a ``=`` sign in it,
 e.g. ``request_param="foo=123"``, then the key (``foo``)
 must both exist in the ``request.params`` dictionary, *and*
 the value must match the right hand side of the expression
 (``123``) for the view to "match" the current request.

 match_param

 .. versionadded:: 1.2

 This value can be a string of the format "key=value" or a tuple
 containing one or more of these strings.

 A view declaration with this argument ensures that the view will
 only be called when the :term:`request` has key/value pairs in its
 :term:`matchdict` that equal those supplied in the predicate.
 e.g. ``match_param="action=edit"`` would require the ``action``
 parameter in the :term:`matchdict` match the right hand side of
 the expression (``edit``) for the view to "match" the current
 request.

 If the ``match_param`` is a tuple, every key/value pair must match
 for the predicate to pass.

 containment

 This value should be a Python class or :term:`interface` (or a
 :term:`dotted Python name`) that an object in the
 :term:`lineage` of the context must provide in order for this view
 to be found and called. The nodes in your object graph must be
 "location-aware" to use this feature. See
 :ref:`location_aware` for more information about
 location-awareness.

 xhr

 This value should be either ``True`` or ``False``. If this
 value is specified and is ``True``, the :term:`request`
 must possess an ``HTTP_X_REQUESTED_WITH`` (aka
 ``X-Requested-With``) header that has the value
 ``XMLHttpRequest`` for this view to be found and called.
 This is useful for detecting AJAX requests issued from
 jQuery, Prototype and other Javascript libraries.

 accept

 The value of this argument represents a match query for one
 or more mimetypes in the ``Accept`` HTTP request header. If
 this value is specified, it must be in one of the following
 forms: a mimetype match token in the form ``text/plain``, a
 wildcard mimetype match token in the form ``text/*`` or a
 match-all wildcard mimetype match token in the form ``*/*``.
 If any of the forms matches the ``Accept`` header of the
 request, this predicate will be true.

 header

 This value represents an HTTP header name or a header
 name/value pair. If the value contains a ``:`` (colon), it
 will be considered a name/value pair
 (e.g. ``User-Agent:Mozilla/.*`` or ``Host:localhost``). The
 value portion should be a regular expression. If the value
 does not contain a colon, the entire value will be
 considered to be the header name
 (e.g. ``If-Modified-Since``). If the value evaluates to a
 header name only without a value, the header specified by
 the name must be present in the request for this predicate
 to be true. If the value evaluates to a header name/value
 pair, the header specified by the name must be present in
 the request *and* the regular expression specified as the
 value must match the header value. Whether or not the value
 represents a header name or a header name/value pair, the
 case of the header name is not significant.

 path_info

 This value represents a regular expression pattern that will
 be tested against the ``PATH_INFO`` WSGI environment
 variable. If the regex matches, this predicate will be
 ``True``.

 check_csrf

 If specified, this value should be one of ``None``, ``True``,
 ``False``, or a string representing the 'check name'. If the value
 is ``True`` or a string, CSRF checking will be performed. If the
 value is ``False`` or ``None``, CSRF checking will not be performed.

 If the value provided is a string, that string will be used as the
 'check name'. If the value provided is ``True``, ``csrf_token`` will
 be used as the check name.

 If CSRF checking is performed, the checked value will be the value
 of ``request.params[check_name]``. This value will be compared
 against the value of ``request.session.get_csrf_token()``, and the
 check will pass if these two values are the same. If the check
 passes, the associated view will be permitted to execute. If the
 check fails, the associated view will not be permitted to execute.

 Note that using this feature requires a :term:`session factory` to
 have been configured.

 .. versionadded:: 1.4a2

 physical_path

 If specified, this value should be a string or a tuple representing
 the :term:`physical path` of the context found via traversal for this
 predicate to match as true. For example: ``physical_path='/'`` or
 ``physical_path='/a/b/c'`` or ``physical_path=('', 'a', 'b', 'c')``.
 This is not a path prefix match or a regex, it's a whole-path match.
 It's useful when you want to always potentially show a view when some
 object is traversed to, but you can't be sure about what kind of
 object it will be, so you can't use the ``context`` predicate. The
 individual path elements inbetween slash characters or in tuple
 elements should be the Unicode representation of the name of the
 resource and should not be encoded in any way.

 .. versionadded:: 1.4a3

 effective_principals

 If specified, this value should be a :term:`principal` identifier or
 a sequence of principal identifiers. If the
 :attr:`pyramid.request.Request.effective_principals` property
 indicates that every principal named in the argument list is present
 in the current request, this predicate will return True; otherwise it
 will return False. For example:
 ``effective_principals=pyramid.security.Authenticated`` or
 ``effective_principals=('fred', 'group:admins')``.

 .. versionadded:: 1.4a4

 custom_predicates

 .. deprecated:: 1.5
 This value should be a sequence of references to custom
 predicate callables. Use custom predicates when no set of
 predefined predicates do what you need. Custom predicates
 can be combined with predefined predicates as necessary.
 Each custom predicate callable should accept two arguments:
 ``context`` and ``request`` and should return either
 ``True`` or ``False`` after doing arbitrary evaluation of
 the context and/or the request. The ``predicates`` argument
 to this method and the ability to register third-party view
 predicates via
 :meth:`pyramid.config.Configurator.add_view_predicate`
 obsoletes this argument, but it is kept around for backwards
 compatibility.

 predicates

 Pass a key/value pair here to use a third-party predicate
 registered via
 :meth:`pyramid.config.Configurator.add_view_predicate`. More than
 one key/value pair can be used at the same time. See
 :ref:`view_and_route_predicates` for more information about
 third-party predicates.

 .. versionadded: 1.4a1

 """
 if custom_predicates:
 warnings.warn(
 ('The "custom_predicates" argument to Configurator.add_view '
 'is deprecated as of Pyramid 1.5. Use '
 '"config.add_view_predicate" and use the registered '
 'view predicate as a predicate argument to add_view instead. '
 'See "Adding A Third Party View, Route, or Subscriber '
 'Predicate" in the "Hooks" chapter of the documentation '
 'for more information.'),
 DeprecationWarning,
 stacklevel=4
)

 view = self.maybe_dotted(view)
 context = self.maybe_dotted(context)
 for_ = self.maybe_dotted(for_)
 containment = self.maybe_dotted(containment)
 mapper = self.maybe_dotted(mapper)

 def combine(*decorators):
 def decorated(view_callable):
 # reversed() is allows a more natural ordering in the api
 for decorator in reversed(decorators):
 view_callable = decorator(view_callable)
 return view_callable
 return decorated

 if is_nonstr_iter(decorator):
 decorator = combine(*map(self.maybe_dotted, decorator))
 else:
 decorator = self.maybe_dotted(decorator)

 if not view:
 if renderer:
 def view(context, request):
 return {}
 else:
 raise ConfigurationError('"view" was not specified and '
 'no "renderer" specified')

 if request_type is not None:
 request_type = self.maybe_dotted(request_type)
 if not IInterface.providedBy(request_type):
 raise ConfigurationError(
 'request_type must be an interface, not %s' % request_type)

 if context is None:
 context = for_

 r_context = context
 if r_context is None:
 r_context = Interface
 if not IInterface.providedBy(r_context):
 r_context = implementedBy(r_context)

 if isinstance(renderer, string_types):
 renderer = renderers.RendererHelper(
 name=renderer, package=self.package,
 registry = self.registry)

 if accept is not None:
 accept = accept.lower()

 introspectables = []
 pvals = predicates.copy()
 pvals.update(
 dict(
 xhr=xhr,
 request_method=request_method,
 path_info=path_info,
 request_param=request_param,
 header=header,
 accept=accept,
 containment=containment,
 request_type=request_type,
 match_param=match_param,
 check_csrf=check_csrf,
 custom=predvalseq(custom_predicates),
)
)

 def discrim_func():
 # We need to defer the discriminator until we know what the phash
 # is. It can't be computed any sooner because thirdparty
 # predicates may not yet exist when add_view is called.
 order, preds, phash = predlist.make(self, **pvals)
 view_intr.update({'phash':phash, 'order':order, 'predicates':preds})
 return ('view', context, name, route_name, phash)

 discriminator = Deferred(discrim_func)

 if inspect.isclass(view) and attr:
 view_desc = 'method %r of %s' % (
 attr, self.object_description(view))
 else:
 view_desc = self.object_description(view)

 tmpl_intr = None

 view_intr = self.introspectable('views',
 discriminator,
 view_desc,
 'view')
 view_intr.update(
 dict(name=name,
 context=context,
 containment=containment,
 request_param=request_param,
 request_methods=request_method,
 route_name=route_name,
 attr=attr,
 xhr=xhr,
 accept=accept,
 header=header,
 path_info=path_info,
 match_param=match_param,
 check_csrf=check_csrf,
 callable=view,
 mapper=mapper,
 decorator=decorator,
)
)
 view_intr.update(**predicates)
 introspectables.append(view_intr)
 predlist = self.get_predlist('view')

 def register(permission=permission, renderer=renderer):
 request_iface = IRequest
 if route_name is not None:
 request_iface = self.registry.queryUtility(IRouteRequest,
 name=route_name)
 if request_iface is None:
 # route configuration should have already happened in
 # phase 2
 raise ConfigurationError(
 'No route named %s found for view registration' %
 route_name)

 if renderer is None:
 # use default renderer if one exists (reg'd in phase 1)
 if self.registry.queryUtility(IRendererFactory) is not None:
 renderer = renderers.RendererHelper(
 name=None,
 package=self.package,
 registry=self.registry
)

 if permission is None:
 # intent: will be None if no default permission is registered
 # (reg'd in phase 1)
 permission = self.registry.queryUtility(IDefaultPermission)

 # added by discrim_func above during conflict resolving
 preds = view_intr['predicates']
 order = view_intr['order']
 phash = view_intr['phash']

 # __no_permission_required__ handled by _secure_view
 deriver = ViewDeriver(
 registry=self.registry,
 permission=permission,
 predicates=preds,
 attr=attr,
 renderer=renderer,
 wrapper_viewname=wrapper,
 viewname=name,
 accept=accept,
 order=order,
 phash=phash,
 package=self.package,
 mapper=mapper,
 decorator=decorator,
 http_cache=http_cache,
)
 derived_view = deriver(view)
 derived_view.__discriminator__ = lambda *arg: discriminator
 # __discriminator__ is used by superdynamic systems
 # that require it for introspection after manual view lookup;
 # see also MultiView.__discriminator__
 view_intr['derived_callable'] = derived_view

 registered = self.registry.adapters.registered

 # A multiviews is a set of views which are registered for
 # exactly the same context type/request type/name triad. Each
 # consituent view in a multiview differs only by the
 # predicates which it possesses.

 # To find a previously registered view for a context
 # type/request type/name triad, we need to use the
 # ``registered`` method of the adapter registry rather than
 # ``lookup``. ``registered`` ignores interface inheritance
 # for the required and provided arguments, returning only a
 # view registered previously with the *exact* triad we pass
 # in.

 # We need to do this three times, because we use three
 # different interfaces as the ``provided`` interface while
 # doing registrations, and ``registered`` performs exact
 # matches on all the arguments it receives.

 old_view = None

 for view_type in (IView, ISecuredView, IMultiView):
 old_view = registered((IViewClassifier, request_iface,
 r_context), view_type, name)
 if old_view is not None:
 break

 isexc = isexception(context)

 def regclosure():
 if hasattr(derived_view, '__call_permissive__'):
 view_iface = ISecuredView
 else:
 view_iface = IView
 self.registry.registerAdapter(
 derived_view,
 (IViewClassifier, request_iface, context), view_iface, name
)
 if isexc:
 self.registry.registerAdapter(
 derived_view,
 (IExceptionViewClassifier, request_iface, context),
 view_iface, name)

 is_multiview = IMultiView.providedBy(old_view)
 old_phash = getattr(old_view, '__phash__', DEFAULT_PHASH)

 if old_view is None:
 # - No component was yet registered for any of our I*View
 # interfaces exactly; this is the first view for this
 # triad.
 regclosure()

 elif (not is_multiview) and (old_phash == phash):
 # - A single view component was previously registered with
 # the same predicate hash as this view; this registration
 # is therefore an override.
 regclosure()

 else:
 # - A view or multiview was already registered for this
 # triad, and the new view is not an override.

 # XXX we could try to be more efficient here and register
 # a non-secured view for a multiview if none of the
 # multiview's consituent views have a permission
 # associated with them, but this code is getting pretty
 # rough already
 if is_multiview:
 multiview = old_view
 else:
 multiview = MultiView(name)
 old_accept = getattr(old_view, '__accept__', None)
 old_order = getattr(old_view, '__order__', MAX_ORDER)
 multiview.add(old_view, old_order, old_accept, old_phash)
 multiview.add(derived_view, order, accept, phash)
 for view_type in (IView, ISecuredView):
 # unregister any existing views
 self.registry.adapters.unregister(
 (IViewClassifier, request_iface, r_context),
 view_type, name=name)
 if isexc:
 self.registry.adapters.unregister(
 (IExceptionViewClassifier, request_iface,
 r_context), view_type, name=name)
 self.registry.registerAdapter(
 multiview,
 (IViewClassifier, request_iface, context),
 IMultiView, name=name)
 if isexc:
 self.registry.registerAdapter(
 multiview,
 (IExceptionViewClassifier, request_iface, context),
 IMultiView, name=name)
 renderer_type = getattr(renderer, 'type', None) # gard against None
 intrspc = self.introspector
 if (
 renderer_type is not None and
 tmpl_intr is not None and
 intrspc is not None and
 intrspc.get('renderer factories', renderer_type) is not None
):
 # allow failure of registered template factories to be deferred
 # until view execution, like other bad renderer factories; if
 # we tried to relate this to an existing renderer factory
 # without checking if it the factory actually existed, we'd end
 # up with a KeyError at startup time, which is inconsistent
 # with how other bad renderer registrations behave (they throw
 # a ValueError at view execution time)
 tmpl_intr.relate('renderer factories', renderer.type)

 if mapper:
 mapper_intr = self.introspectable(
 'view mappers',
 discriminator,
 'view mapper for %s' % view_desc,
 'view mapper'
)
 mapper_intr['mapper'] = mapper
 mapper_intr.relate('views', discriminator)
 introspectables.append(mapper_intr)
 if route_name:
 view_intr.relate('routes', route_name) # see add_route
 if renderer is not None and renderer.name and '.' in renderer.name:
 # the renderer is a template
 tmpl_intr = self.introspectable(
 'templates',
 discriminator,
 renderer.name,
 'template'
)
 tmpl_intr.relate('views', discriminator)
 tmpl_intr['name'] = renderer.name
 tmpl_intr['type'] = renderer.type
 tmpl_intr['renderer'] = renderer
 introspectables.append(tmpl_intr)
 if permission is not None:
 # if a permission exists, register a permission introspectable
 perm_intr = self.introspectable(
 'permissions',
 permission,
 permission,
 'permission'
)
 perm_intr['value'] = permission
 perm_intr.relate('views', discriminator)
 introspectables.append(perm_intr)
 self.action(discriminator, register, introspectables=introspectables)

 @action_method
 def add_view_predicate(self, name, factory, weighs_more_than=None,
 weighs_less_than=None):
 """
 .. versionadded:: 1.4

 Adds a view predicate factory. The associated view predicate can
 later be named as a keyword argument to
 :meth:`pyramid.config.Configurator.add_view` in the
 ``predicates`` anonyous keyword argument dictionary.

 ``name`` should be the name of the predicate. It must be a valid
 Python identifier (it will be used as a keyword argument to
 ``add_view`` by others).

 ``factory`` should be a :term:`predicate factory` or :term:`dotted
 Python name` which refers to a predicate factory.

 See :ref:`view_and_route_predicates` for more information.
 """
 self._add_predicate(
 'view',
 name,
 factory,
 weighs_more_than=weighs_more_than,
 weighs_less_than=weighs_less_than
)

 def add_default_view_predicates(self):
 p = pyramid.config.predicates
 for (name, factory) in (
 ('xhr', p.XHRPredicate),
 ('request_method', p.RequestMethodPredicate),
 ('path_info', p.PathInfoPredicate),
 ('request_param', p.RequestParamPredicate),
 ('header', p.HeaderPredicate),
 ('accept', p.AcceptPredicate),
 ('containment', p.ContainmentPredicate),
 ('request_type', p.RequestTypePredicate),
 ('match_param', p.MatchParamPredicate),
 ('check_csrf', p.CheckCSRFTokenPredicate),
 ('physical_path', p.PhysicalPathPredicate),
 ('effective_principals', p.EffectivePrincipalsPredicate),
 ('custom', p.CustomPredicate),
):
 self.add_view_predicate(name, factory)

 def derive_view(self, view, attr=None, renderer=None):
 """
 Create a :term:`view callable` using the function, instance,
 or class (or :term:`dotted Python name` referring to the same)
 provided as ``view`` object.

 .. warning::

 This method is typically only used by :app:`Pyramid` framework
 extension authors, not by :app:`Pyramid` application developers.

 This is API is useful to framework extenders who create
 pluggable systems which need to register 'proxy' view
 callables for functions, instances, or classes which meet the
 requirements of being a :app:`Pyramid` view callable. For
 example, a ``some_other_framework`` function in another
 framework may want to allow a user to supply a view callable,
 but he may want to wrap the view callable in his own before
 registering the wrapper as a :app:`Pyramid` view callable.
 Because a :app:`Pyramid` view callable can be any of a
 number of valid objects, the framework extender will not know
 how to call the user-supplied object. Running it through
 ``derive_view`` normalizes it to a callable which accepts two
 arguments: ``context`` and ``request``.

 For example:

 .. code-block:: python

 def some_other_framework(user_supplied_view):
 config = Configurator(reg)
 proxy_view = config.derive_view(user_supplied_view)
 def my_wrapper(context, request):
 do_something_that_mutates(request)
 return proxy_view(context, request)
 config.add_view(my_wrapper)

 The ``view`` object provided should be one of the following:

 - A function or another non-class callable object that accepts
 a :term:`request` as a single positional argument and which
 returns a :term:`response` object.

 - A function or other non-class callable object that accepts
 two positional arguments, ``context, request`` and which
 returns a :term:`response` object.

 - A class which accepts a single positional argument in its
 constructor named ``request``, and which has a ``__call__``
 method that accepts no arguments that returns a
 :term:`response` object.

 - A class which accepts two positional arguments named
 ``context, request``, and which has a ``__call__`` method
 that accepts no arguments that returns a :term:`response`
 object.

 - A :term:`dotted Python name` which refers to any of the
 kinds of objects above.

 This API returns a callable which accepts the arguments
 ``context, request`` and which returns the result of calling
 the provided ``view`` object.

 The ``attr`` keyword argument is most useful when the view
 object is a class. It names the method that should be used as
 the callable. If ``attr`` is not provided, the attribute
 effectively defaults to ``__call__``. See
 :ref:`class_as_view` for more information.

 The ``renderer`` keyword argument should be a renderer
 name. If supplied, it will cause the returned callable to use
 a :term:`renderer` to convert the user-supplied view result to
 a :term:`response` object. If a ``renderer`` argument is not
 supplied, the user-supplied view must itself return a
 :term:`response` object. """
 return self._derive_view(view, attr=attr, renderer=renderer)

 # b/w compat
 def _derive_view(self, view, permission=None, predicates=(),
 attr=None, renderer=None, wrapper_viewname=None,
 viewname=None, accept=None, order=MAX_ORDER,
 phash=DEFAULT_PHASH, decorator=None,
 mapper=None, http_cache=None):
 view = self.maybe_dotted(view)
 mapper = self.maybe_dotted(mapper)
 if isinstance(renderer, string_types):
 renderer = renderers.RendererHelper(
 name=renderer, package=self.package,
 registry = self.registry)
 if renderer is None:
 # use default renderer if one exists
 if self.registry.queryUtility(IRendererFactory) is not None:
 renderer = renderers.RendererHelper(
 name=None,
 package=self.package,
 registry=self.registry)

 deriver = ViewDeriver(registry=self.registry,
 permission=permission,
 predicates=predicates,
 attr=attr,
 renderer=renderer,
 wrapper_viewname=wrapper_viewname,
 viewname=viewname,
 accept=accept,
 order=order,
 phash=phash,
 package=self.package,
 mapper=mapper,
 decorator=decorator,
 http_cache=http_cache)

 return deriver(view)

 @viewdefaults
 @action_method
 def add_forbidden_view(
 self,
 view=None,
 attr=None,
 renderer=None,
 wrapper=None,
 route_name=None,
 request_type=None,
 request_method=None,
 request_param=None,
 containment=None,
 xhr=None,
 accept=None,
 header=None,
 path_info=None,
 custom_predicates=(),
 decorator=None,
 mapper=None,
 match_param=None,
 **predicates
):
 """ Add a forbidden view to the current configuration state. The
 view will be called when Pyramid or application code raises a
 :exc:`pyramid.httpexceptions.HTTPForbidden` exception and the set of
 circumstances implied by the predicates provided are matched. The
 simplest example is:

 .. code-block:: python

 def forbidden(request):
 return Response('Forbidden', status='403 Forbidden')

 config.add_forbidden_view(forbidden)

 All arguments have the same meaning as
 :meth:`pyramid.config.Configurator.add_view` and each predicate
 argument restricts the set of circumstances under which this notfound
 view will be invoked. Unlike
 :meth:`pyramid.config.Configurator.add_view`, this method will raise
 an exception if passed ``name``, ``permission``, ``context``,
 ``for_``, or ``http_cache`` keyword arguments. These argument values
 make no sense in the context of a forbidden view.

 .. versionadded:: 1.3
 """
 for arg in ('name', 'permission', 'context', 'for_', 'http_cache'):
 if arg in predicates:
 raise ConfigurationError(
 '%s may not be used as an argument to add_forbidden_view'
 % arg
)

 settings = dict(
 view=view,
 context=HTTPForbidden,
 wrapper=wrapper,
 request_type=request_type,
 request_method=request_method,
 request_param=request_param,
 containment=containment,
 xhr=xhr,
 accept=accept,
 header=header,
 path_info=path_info,
 custom_predicates=custom_predicates,
 decorator=decorator,
 mapper=mapper,
 match_param=match_param,
 route_name=route_name,
 permission=NO_PERMISSION_REQUIRED,
 attr=attr,
 renderer=renderer,
)
 settings.update(predicates)
 return self.add_view(**settings)

 set_forbidden_view = add_forbidden_view # deprecated sorta-bw-compat alias

 @viewdefaults
 @action_method
 def add_notfound_view(
 self,
 view=None,
 attr=None,
 renderer=None,
 wrapper=None,
 route_name=None,
 request_type=None,
 request_method=None,
 request_param=None,
 containment=None,
 xhr=None,
 accept=None,
 header=None,
 path_info=None,
 custom_predicates=(),
 decorator=None,
 mapper=None,
 match_param=None,
 append_slash=False,
 **predicates
):
 """ Add a default Not Found View to the current configuration state.
 The view will be called when Pyramid or application code raises an
 :exc:`pyramid.httpexceptions.HTTPNotFound` exception (e.g. when a
 view cannot be found for the request). The simplest example is:

 .. code-block:: python

 def notfound(request):
 return Response('Not Found', status='404 Not Found')

 config.add_notfound_view(notfound)

 All arguments except ``append_slash`` have the same meaning as
 :meth:`pyramid.config.Configurator.add_view` and each predicate
 argument restricts the set of circumstances under which this notfound
 view will be invoked. Unlike
 :meth:`pyramid.config.Configurator.add_view`, this method will raise
 an exception if passed ``name``, ``permission``, ``context``,
 ``for_``, or ``http_cache`` keyword arguments. These argument values
 make no sense in the context of a Not Found View.

 If ``append_slash`` is ``True``, when this Not Found View is invoked,
 and the current path info does not end in a slash, the notfound logic
 will attempt to find a :term:`route` that matches the request's path
 info suffixed with a slash. If such a route exists, Pyramid will
 issue a redirect to the URL implied by the route; if it does not,
 Pyramid will return the result of the view callable provided as
 ``view``, as normal.

 .. versionadded:: 1.3
 """
 for arg in ('name', 'permission', 'context', 'for_', 'http_cache'):
 if arg in predicates:
 raise ConfigurationError(
 '%s may not be used as an argument to add_notfound_view'
 % arg
)

 settings = dict(
 view=view,
 context=HTTPNotFound,
 wrapper=wrapper,
 request_type=request_type,
 request_method=request_method,
 request_param=request_param,
 containment=containment,
 xhr=xhr,
 accept=accept,
 header=header,
 path_info=path_info,
 custom_predicates=custom_predicates,
 decorator=decorator,
 mapper=mapper,
 match_param=match_param,
 route_name=route_name,
 permission=NO_PERMISSION_REQUIRED,
)
 settings.update(predicates)
 if append_slash:
 view = self._derive_view(view, attr=attr, renderer=renderer)
 view = AppendSlashNotFoundViewFactory(view)
 settings['view'] = view
 else:
 settings['attr'] = attr
 settings['renderer'] = renderer
 return self.add_view(**settings)

 set_notfound_view = add_notfound_view # deprecated sorta-bw-compat alias

 @action_method
 def set_view_mapper(self, mapper):
 """
 Setting a :term:`view mapper` makes it possible to make use of
 :term:`view callable` objects which implement different call
 signatures than the ones supported by :app:`Pyramid` as described in
 its narrative documentation.

 The ``mapper`` argument should be an object implementing
 :class:`pyramid.interfaces.IViewMapperFactory` or a :term:`dotted
 Python name` to such an object. The provided ``mapper`` will become
 the default view mapper to be used by all subsequent :term:`view
 configuration` registrations.

 .. seealso::

 See also :ref:`using_a_view_mapper`.

 .. note::

 Using the ``default_view_mapper`` argument to the
 :class:`pyramid.config.Configurator` constructor
 can be used to achieve the same purpose.
 """
 mapper = self.maybe_dotted(mapper)
 def register():
 self.registry.registerUtility(mapper, IViewMapperFactory)
 # IViewMapperFactory is looked up as the result of view config
 # in phase 3
 intr = self.introspectable('view mappers',
 IViewMapperFactory,
 self.object_description(mapper),
 'default view mapper')
 intr['mapper'] = mapper
 self.action(IViewMapperFactory, register, order=PHASE1_CONFIG,
 introspectables=(intr,))

 @action_method
 def add_static_view(self, name, path, **kw):
 """ Add a view used to render static assets such as images
 and CSS files.

 The ``name`` argument is a string representing an
 application-relative local URL prefix. It may alternately be a full
 URL.

 The ``path`` argument is the path on disk where the static files
 reside. This can be an absolute path, a package-relative path, or a
 :term:`asset specification`.

 The ``cache_max_age`` keyword argument is input to set the
 ``Expires`` and ``Cache-Control`` headers for static assets served.
 Note that this argument has no effect when the ``name`` is a *url
 prefix*. By default, this argument is ``None``, meaning that no
 particular Expires or Cache-Control headers are set in the response.

 The ``permission`` keyword argument is used to specify the
 :term:`permission` required by a user to execute the static view. By
 default, it is the string
 :data:`pyramid.security.NO_PERMISSION_REQUIRED`, a special sentinel
 which indicates that, even if a :term:`default permission` exists for
 the current application, the static view should be renderered to
 completely anonymous users. This default value is permissive
 because, in most web apps, static assets seldom need protection from
 viewing. If ``permission`` is specified, the security checking will
 be performed against the default root factory ACL.

 Any other keyword arguments sent to ``add_static_view`` are passed on
 to :meth:`pyramid.config.Configurator.add_route` (e.g. ``factory``,
 perhaps to define a custom factory with a custom ACL for this static
 view).

 Usage

 The ``add_static_view`` function is typically used in conjunction
 with the :meth:`pyramid.request.Request.static_url` method.
 ``add_static_view`` adds a view which renders a static asset when
 some URL is visited; :meth:`pyramid.request.Request.static_url`
 generates a URL to that asset.

 The ``name`` argument to ``add_static_view`` is usually a simple URL
 prefix (e.g. ``'images'``). When this is the case, the
 :meth:`pyramid.request.Request.static_url` API will generate a URL
 which points to a Pyramid view, which will serve up a set of assets
 that live in the package itself. For example:

 .. code-block:: python

 add_static_view('images', 'mypackage:images/')

 Code that registers such a view can generate URLs to the view via
 :meth:`pyramid.request.Request.static_url`:

 .. code-block:: python

 request.static_url('mypackage:images/logo.png')

 When ``add_static_view`` is called with a ``name`` argument that
 represents a URL prefix, as it is above, subsequent calls to
 :meth:`pyramid.request.Request.static_url` with paths that start with
 the ``path`` argument passed to ``add_static_view`` will generate a
 URL something like ``http://<Pyramid app URL>/images/logo.png``,
 which will cause the ``logo.png`` file in the ``images`` subdirectory
 of the ``mypackage`` package to be served.

 ``add_static_view`` can alternately be used with a ``name`` argument
 which is a *URL*, causing static assets to be served from an external
 webserver. This happens when the ``name`` argument is a fully
 qualified URL (e.g. starts with ``http://`` or similar). In this
 mode, the ``name`` is used as the prefix of the full URL when
 generating a URL using :meth:`pyramid.request.Request.static_url`.
 Furthermore, if a protocol-relative URL (e.g. ``//example.com/images``)
 is used as the ``name`` argument, the generated URL will use the
 protocol of the request (http or https, respectively).

 For example, if ``add_static_view`` is called like so:

 .. code-block:: python

 add_static_view('http://example.com/images', 'mypackage:images/')

 Subsequently, the URLs generated by
 :meth:`pyramid.request.Request.static_url` for that static view will
 be prefixed with ``http://example.com/images`` (the external webserver
 listening on ``example.com`` must be itself configured to respond
 properly to such a request.):

 .. code-block:: python

 static_url('mypackage:images/logo.png', request)

 See :ref:`static_assets_section` for more information.
 """
 spec = self._make_spec(path)
 info = self.registry.queryUtility(IStaticURLInfo)
 if info is None:
 info = StaticURLInfo()
 self.registry.registerUtility(info, IStaticURLInfo)
 info.add(self, name, spec, **kw)

def isexception(o):
 if IInterface.providedBy(o):
 if IException.isEqualOrExtendedBy(o):
 return True
 return (
 isinstance(o, Exception) or
 (inspect.isclass(o) and (issubclass(o, Exception)))
)

@implementer(IStaticURLInfo)
class StaticURLInfo(object):

 def _get_registrations(self, registry):
 try:
 reg = registry._static_url_registrations
 except AttributeError:
 reg = registry._static_url_registrations = []
 return reg

 def generate(self, path, request, **kw):
 try:
 registry = request.registry
 except AttributeError: # bw compat (for tests)
 registry = get_current_registry()
 for (url, spec, route_name) in self._get_registrations(registry):
 if path.startswith(spec):
 subpath = path[len(spec):]
 if WIN: # pragma: no cover
 subpath = subpath.replace('\\', '/') # windows
 if url is None:
 kw['subpath'] = subpath
 return request.route_url(route_name, **kw)
 else:
 app_url, scheme, host, port, qs, anchor = \
 parse_url_overrides(kw)
 parsed = url_parse(url)
 if not parsed.scheme:
 url = urlparse.urlunparse(parsed._replace(
 scheme=request.environ['wsgi.url_scheme']))
 subpath = url_quote(subpath)
 result = urljoin(url, subpath)
 return result + qs + anchor

 raise ValueError('No static URL definition matching %s' % path)

 def add(self, config, name, spec, **extra):
 # This feature only allows for the serving of a directory and
 # the files contained within, not of a single asset;
 # appending a slash here if the spec doesn't have one is
 # required for proper prefix matching done in ``generate``
 # (``subpath = path[len(spec):]``).
 if os.path.isabs(spec): # FBO windows
 sep = os.sep
 else:
 sep = '/'
 if not spec.endswith(sep):
 spec = spec + sep

 # we also make sure the name ends with a slash, purely as a
 # convenience: a name that is a url is required to end in a
 # slash, so that ``urljoin(name, subpath))`` will work above
 # when the name is a URL, and it doesn't hurt things for it to
 # have a name that ends in a slash if it's used as a route
 # name instead of a URL.
 if not name.endswith('/'):
 # make sure it ends with a slash
 name = name + '/'

 if url_parse(name).netloc:
 # it's a URL
 # url, spec, route_name
 url = name
 route_name = None
 else:
 # it's a view name
 url = None
 cache_max_age = extra.pop('cache_max_age', None)
 # create a view
 view = static_view(spec, cache_max_age=cache_max_age,
 use_subpath=True)

 # Mutate extra to allow factory, etc to be passed through here.
 # Treat permission specially because we'd like to default to
 # permissiveness (see docs of config.add_static_view).
 permission = extra.pop('permission', None)
 if permission is None:
 permission = NO_PERMISSION_REQUIRED

 context = extra.pop('context', None)
 if context is None:
 context = extra.pop('for_', None)

 renderer = extra.pop('renderer', None)

 # register a route using the computed view, permission, and
 # pattern, plus any extras passed to us via add_static_view
 pattern = "%s*subpath" % name # name already ends with slash
 if config.route_prefix:
 route_name = '__%s/%s' % (config.route_prefix, name)
 else:
 route_name = '__%s' % name
 config.add_route(route_name, pattern, **extra)
 config.add_view(
 route_name=route_name,
 view=view,
 permission=permission,
 context=context,
 renderer=renderer,
)

 def register():
 registrations = self._get_registrations(config.registry)

 names = [t[0] for t in registrations]

 if name in names:
 idx = names.index(name)
 registrations.pop(idx)

 # url, spec, route_name
 registrations.append((url, spec, route_name))

 intr = config.introspectable('static views',
 name,
 'static view for %r' % name,
 'static view')
 intr['name'] = name
 intr['spec'] = spec

 config.action(None, callable=register, introspectables=(intr,))

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/rendering.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.rendering

from pyramid.interfaces import (
 IRendererFactory,
 PHASE1_CONFIG,
)

from pyramid.util import action_method
from pyramid import renderers

DEFAULT_RENDERERS = (
 ('json', renderers.json_renderer_factory),
 ('string', renderers.string_renderer_factory),
)

class RenderingConfiguratorMixin(object):
 def add_default_renderers(self):
 for name, renderer in DEFAULT_RENDERERS:
 self.add_renderer(name, renderer)

 @action_method
 def add_renderer(self, name, factory):
 """
 Add a :app:`Pyramid` :term:`renderer` factory to the
 current configuration state.

 The ``name`` argument is the renderer name. Use ``None`` to
 represent the default renderer (a renderer which will be used for all
 views unless they name another renderer specifically).

 The ``factory`` argument is Python reference to an
 implementation of a :term:`renderer` factory or a
 :term:`dotted Python name` to same.
 """
 factory = self.maybe_dotted(factory)
 # if name is None or the empty string, we're trying to register
 # a default renderer, but registerUtility is too dumb to accept None
 # as a name
 if not name:
 name = ''
 def register():
 self.registry.registerUtility(factory, IRendererFactory, name=name)
 intr = self.introspectable('renderer factories',
 name,
 self.object_description(factory),
 'renderer factory')
 intr['factory'] = factory
 intr['name'] = name
 # we need to register renderers early (in phase 1) because they are
 # used during view configuration (which happens in phase 3)
 self.action((IRendererFactory, name), register, order=PHASE1_CONFIG,
 introspectables=(intr,))

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/security.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.security

from pyramid.interfaces import (
 IAuthorizationPolicy,
 IAuthenticationPolicy,
 IDefaultPermission,
 PHASE1_CONFIG,
 PHASE2_CONFIG,
)

from pyramid.exceptions import ConfigurationError
from pyramid.util import action_method

class SecurityConfiguratorMixin(object):
 @action_method
 def set_authentication_policy(self, policy):
 """ Override the :app:`Pyramid` :term:`authentication policy` in the
 current configuration. The ``policy`` argument must be an instance
 of an authentication policy or a :term:`dotted Python name`
 that points at an instance of an authentication policy.

 .. note::

 Using the ``authentication_policy`` argument to the
 :class:`pyramid.config.Configurator` constructor can be used to
 achieve the same purpose.

 """
 def register():
 self._set_authentication_policy(policy)
 if self.registry.queryUtility(IAuthorizationPolicy) is None:
 raise ConfigurationError(
 'Cannot configure an authentication policy without '
 'also configuring an authorization policy '
 '(use the set_authorization_policy method)')
 intr = self.introspectable('authentication policy', None,
 self.object_description(policy),
 'authentication policy')
 intr['policy'] = policy
 # authentication policy used by view config (phase 3)
 self.action(IAuthenticationPolicy, register, order=PHASE2_CONFIG,
 introspectables=(intr,))

 def _set_authentication_policy(self, policy):
 policy = self.maybe_dotted(policy)
 self.registry.registerUtility(policy, IAuthenticationPolicy)

 @action_method
 def set_authorization_policy(self, policy):
 """ Override the :app:`Pyramid` :term:`authorization policy` in the
 current configuration. The ``policy`` argument must be an instance
 of an authorization policy or a :term:`dotted Python name` that points
 at an instance of an authorization policy.

 .. note::

 Using the ``authorization_policy`` argument to the
 :class:`pyramid.config.Configurator` constructor can be used to
 achieve the same purpose.
 """
 def register():
 self._set_authorization_policy(policy)
 def ensure():
 if self.autocommit:
 return
 if self.registry.queryUtility(IAuthenticationPolicy) is None:
 raise ConfigurationError(
 'Cannot configure an authorization policy without '
 'also configuring an authentication policy '
 '(use the set_authorization_policy method)')

 intr = self.introspectable('authorization policy', None,
 self.object_description(policy),
 'authorization policy')
 intr['policy'] = policy
 # authorization policy used by view config (phase 3) and
 # authentication policy (phase 2)
 self.action(IAuthorizationPolicy, register, order=PHASE1_CONFIG,
 introspectables=(intr,))
 self.action(None, ensure)

 def _set_authorization_policy(self, policy):
 policy = self.maybe_dotted(policy)
 self.registry.registerUtility(policy, IAuthorizationPolicy)

 @action_method
 def set_default_permission(self, permission):
 """
 Set the default permission to be used by all subsequent
 :term:`view configuration` registrations. ``permission``
 should be a :term:`permission` string to be used as the
 default permission. An example of a permission
 string:``'view'``. Adding a default permission makes it
 unnecessary to protect each view configuration with an
 explicit permission, unless your application policy requires
 some exception for a particular view.

 If a default permission is *not* set, views represented by
 view configuration registrations which do not explicitly
 declare a permission will be executable by entirely anonymous
 users (any authorization policy is ignored).

 Later calls to this method override will conflict with earlier calls;
 there can be only one default permission active at a time within an
 application.

 .. warning::

 If a default permission is in effect, view configurations meant to
 create a truly anonymously accessible view (even :term:`exception
 view` views) *must* use the value of the permission importable as
 :data:`pyramid.security.NO_PERMISSION_REQUIRED`. When this string
 is used as the ``permission`` for a view configuration, the default
 permission is ignored, and the view is registered, making it
 available to all callers regardless of their credentials.

 .. seealso::

 See also :ref:`setting_a_default_permission`.

 .. note::

 Using the ``default_permission`` argument to the
 :class:`pyramid.config.Configurator` constructor can be used to
 achieve the same purpose.
 """
 def register():
 self.registry.registerUtility(permission, IDefaultPermission)
 intr = self.introspectable('default permission',
 None,
 permission,
 'default permission')
 intr['value'] = permission
 perm_intr = self.introspectable('permissions',
 permission,
 permission,
 'permission')
 perm_intr['value'] = permission
 # default permission used during view registration (phase 3)
 self.action(IDefaultPermission, register, order=PHASE1_CONFIG,
 introspectables=(intr, perm_intr,))

 def add_permission(self, permission_name):
 """
 A configurator directive which registers a free-standing
 permission without associating it with a view callable. This can be
 used so that the permission shows up in the introspectable data under
 the ``permissions`` category (permissions mentioned via ``add_view``
 already end up in there). For example::

 config = Configurator()
 config.add_permission('view')
 """
 intr = self.introspectable(
 'permissions',
 permission_name,
 permission_name,
 'permission'
)
 intr['value'] = permission_name
 self.action(None, introspectables=(intr,))

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_static/pyramid_request_processing.png
middleware ingress

Request Processing

Y
tween ingress
------------ NewRequest
Y
URL dispatch
route predicates
traversal
---------------- ContextFound
Y
U e authorization
predicates decorators ingress
view mapper ingress
Y

egress

Y

middleware egress

view mapper egress

response adapter

Legend

event

external process
(middleware, tween)

internal process

BeforeRender

decorators egress

NewResponse

latexindex.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

The Pyramid Web Framework

Front Matter

		Copyright, Trademarks, and Attributions

		Typographical Conventions

		Author Introduction

Narrative Documentation

		Pyramid Introduction

		Installing Pyramid

		Creating Your First Pyramid Application

		Application Configuration

		Creating a Pyramid Project

		Startup

		Request Processing

		URL Dispatch

		Views

		Renderers

		Templates

		View Configuration

		Static Assets

		Request and Response Objects

		Sessions

		Using Events

		Environment Variables and .ini File Settings

		Logging

		PasteDeploy Configuration Files

		Command-Line Pyramid

		Internationalization and Localization

		Virtual Hosting

		Unit, Integration, and Functional Testing

		Resources

		Hello Traversal World

		Much Ado About Traversal

		Traversal

		Security

		Combining Traversal and URL Dispatch

		Invoking a Subrequest

		Using Hooks

		Pyramid Configuration Introspection

		Extending an Existing Pyramid Application

		Advanced Configuration

		Extending Pyramid Configuration

		Creating Pyramid Scaffolds

		Upgrading Pyramid

		Thread Locals

		Using the Zope Component Architecture in Pyramid

Tutorials

		SQLAlchemy + URL Dispatch Wiki Tutorial

		ZODB + Traversal Wiki Tutorial

		Running a Pyramid Application under mod_wsgi

API Documentation

		pyramid.authentication

		pyramid.authorization

		pyramid.compat

		pyramid.config

		pyramid.decorator

		pyramid.events

		pyramid.exceptions

		pyramid.httpexceptions

		pyramid.i18n

		API Documentation

		pyramid.interfaces

		pyramid.location

		pyramid.paster

		pyramid.path

		pyramid.registry

		pyramid.renderers

		pyramid.request

		pyramid.response

		pyramid.scaffolds

		pyramid.scripting

		pyramid.security

		pyramid.session

		pyramid.settings

		pyramid.static

		pyramid.testing

		pyramid.threadlocal

		pyramid.traversal

		pyramid.tweens

		pyramid.url

		pyramid.view

		pyramid.wsgi

Glossary and Index

		Glossary

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

foreword.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

Foreword

A Foreword By Paul Everitt

Paul Everitt is a principal at Agendaless Consulting.
Before his time at Agendaless, he was the co-founder of Digital
Creations, which later became Zope Corporation. He has been
a widely respected member of the Python community since 1994.

Some times amazing things can actually happen.

In the world of web frameworks, the rate of radioactive decay is very high.
Projects are starting, splintering, folding, and clashing constantly. For
Python, there are over 50 listed web frameworks. In some ways this shows
health and experimentation. Yet others have started to ask: "Is this really
good for Python developers?"

This book is the result of an event which bucked this trend, an event which
Armin Ronacher wrote was "one of the greatest moves in Python's web framework
history." Two projects merged and are bringing in a third. Consolidation
won a victory over splintering.

As someone from the Zope world, I had a strong interest in repoze.bfg. I
viewed it as the escape hatch for Zope, teleporting us into the modern world
of Python development, permitting but not requiring Zope-style idioms. Chris
McDonough established a great brand for repoze.bfg: small, documented,
tested, fast, stable, friendly. As the project manager for a very large
repoze.bfg application, I can strongly attest that it was a home run on those
points.

But in a crowded web frameworks landscape, repoze.bfg was a long-shot to get
critical mass. It had a lot to offer, but was missing critical pieces such
as momentum and name recognition.

Pylons has long been viewed as holding the number two spot in Python web
frameworks. It is one of (if not the) first "modern" web framework. With
lots of users, and a "full-stack" framework atop it (TurboGears), Pylons had
momentum and name recognition aplenty. But it needed more resources to
accomplish its goals of an architectural transition, and Ben Bangert needed
to share the load as architect during the transition.

Ben and Chris started talking during 2011 about architectural patterns and
discovered Pylons and repoze.bfg covered almost exactly the same surface
area. After some experiments, it became clear that, technically at least,
the next version of Pylons could be the same as the next version of
repoze.bfg.

But what about the non-technical parts? It was one thing to consolidate
code. Consolidating projects was new territory.

I was fortunate to meet with the principals in Las Vegas and watch as they
hashed out the idea. The projects would merge and keep the Pylons identity.
repoze.bfg would sacrifice its identity, but provide the technical
foundation. All the resources from the two projects would be combined.

I'll confess, I had high hopes for the outcome. Now that the merge has
happened and 1.0 released, I can honestly say it has done better than I could
have imagined. The story of "consolidation" is catching on, and interest in
working together is growing. Pyramid 1.0 is very, very high quality and
ready to go for PyCon 2011. People interested in "simple, fast, documented,
tested" have a strong framework and healthy project.

It took humility, patience, and pragmatism to reach this point of obvious
success. Certainly by the project leaders, who each had to give up some of
their sovereignty and sacred cows. But as well, each community had to
discuss the challenges, the various alternatives for going forward, and the
pros and cons of consolidation in general but also this particular
consolidation. That such a conversation and change could happen in a
responsible, adult fashion speaks volumes about the strength and maturity of
each community.

What might happen in 2011? TurboGears is considering a move into the
umbrella Pylons Project. As Armin writes in his post, there is fertile
ground for consolidation at other layers. In my own interests, I hope the
worlds of Zope and Plone view Pyramid as the base for the next decade of
their ideas. But also, the Pylons Project as a vibrant home for such ideas.

Congratulations, Pylons Project. Not only have you accelerated your spot on
the Python web frameworks chart, but you have injected the word
"consolidation" into the lexicon of hot ideas for 2011.

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.exceptions

from pyramid.httpexceptions import (
 HTTPBadRequest,
 HTTPNotFound,
 HTTPForbidden,
)

NotFound = HTTPNotFound # bw compat
Forbidden = HTTPForbidden # bw compat

CR = '\n'

[docs]class BadCSRFToken(HTTPBadRequest):
 """
 This exception indicates the request has failed cross-site request
 forgery token validation.
 """
 title = 'Bad CSRF Token'
 explanation = (
 'Access is denied. This server can not verify that your cross-site '
 'request forgery token belongs to your login session. Either you '
 'supplied the wrong cross-site request forgery token or your session '
 'no longer exists. This may be due to session timeout or because '
 'browser is not supplying the credentials required, as can happen '
 'when the browser has cookies turned off.')

[docs]class PredicateMismatch(HTTPNotFound):
 """
 This exception is raised by multiviews when no view matches
 all given predicates.

 This exception subclasses the :class:`HTTPNotFound` exception for a
 specific reason: if it reaches the main exception handler, it should
 be treated as :class:`HTTPNotFound`` by any exception view
 registrations. Thus, typically, this exception will not be seen
 publicly.

 However, this exception will be raised if the predicates of all
 views configured to handle another exception context cannot be
 successfully matched. For instance, if a view is configured to
 handle a context of ``HTTPForbidden`` and the configured with
 additional predicates, then :class:`PredicateMismatch` will be
 raised if:

 * An original view callable has raised :class:`HTTPForbidden` (thus
 invoking an exception view); and
 * The given request fails to match all predicates for said
 exception view associated with :class:`HTTPForbidden`.

 The same applies to any type of exception being handled by an
 exception view.
 """

[docs]class URLDecodeError(UnicodeDecodeError):
 """
 This exception is raised when :app:`Pyramid` cannot
 successfully decode a URL or a URL path segment. This exception
 behaves just like the Python builtin
 :exc:`UnicodeDecodeError`. It is a subclass of the builtin
 :exc:`UnicodeDecodeError` exception only for identity purposes,
 mostly so an exception view can be registered when a URL cannot be
 decoded.
 """

[docs]class ConfigurationError(Exception):
 """ Raised when inappropriate input values are supplied to an API
 method of a :term:`Configurator`"""

class ConfigurationConflictError(ConfigurationError):
 """ Raised when a configuration conflict is detected during action
 processing"""

 def __init__(self, conflicts):
 self._conflicts = conflicts

 def __str__(self):
 r = ["Conflicting configuration actions"]
 items = sorted(self._conflicts.items())
 for discriminator, infos in items:
 r.append(" For: %s" % (discriminator,))
 for info in infos:
 for line in str(info).rstrip().split(CR):
 r.append(" "+line)

 return CR.join(r)

class ConfigurationExecutionError(ConfigurationError):
 """An error occurred during execution of a configuration action
 """

 def __init__(self, etype, evalue, info):
 self.etype, self.evalue, self.info = etype, evalue, info

 def __str__(self):
 return "%s: %s\n in:\n %s" % (self.etype, self.evalue, self.info)

class CyclicDependencyError(Exception):
 """ The exception raised when the Pyramid topological sorter detects a
 cyclic dependency."""
 def __init__(self, cycles):
 self.cycles = cycles

 def __str__(self):
 L = []
 cycles = self.cycles
 for cycle in cycles:
 dependent = cycle
 dependees = cycles[cycle]
 L.append('%r sorts before %r' % (dependent, dependees))
 msg = 'Implicit ordering cycle:' + '; '.join(L)
 return msg

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/util.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.util

import functools
import inspect
import traceback
import weakref

from zope.interface import implementer

from pyramid.exceptions import (
 ConfigurationError,
 CyclicDependencyError,
)

from pyramid.compat import (
 iteritems_,
 is_nonstr_iter,
 integer_types,
 string_types,
 text_,
 PY3,
)

from pyramid.interfaces import IActionInfo
from pyramid.path import DottedNameResolver as _DottedNameResolver

class DottedNameResolver(_DottedNameResolver):
 def __init__(self, package=None): # default to package = None for bw compat
 return _DottedNameResolver.__init__(self, package)

_marker = object()

class InstancePropertyMixin(object):
 """ Mixin that will allow an instance to add properties at
 run-time as if they had been defined via @property or @reify
 on the class itself.
 """

 @classmethod
 def _make_property(cls, callable, name=None, reify=False):
 """ Convert a callable into one suitable for adding to the
 instance. This will return a 2-tuple containing the computed
 (name, property) pair.
 """

 is_property = isinstance(callable, property)
 if is_property:
 fn = callable
 if name is None:
 raise ValueError('must specify "name" for a property')
 if reify:
 raise ValueError('cannot reify a property')
 elif name is not None:
 fn = lambda this: callable(this)
 fn.__name__ = name
 fn.__doc__ = callable.__doc__
 else:
 name = callable.__name__
 fn = callable
 if reify:
 import pyramid.decorator # avoid circular import
 fn = pyramid.decorator.reify(fn)
 elif not is_property:
 fn = property(fn)

 return name, fn

 def _set_properties(self, properties):
 """ Create several properties on the instance at once.

 This is a more efficient version of
 :meth:`pyramid.util.InstancePropertyMixin.set_property` which
 can accept multiple ``(name, property)`` pairs generated via
 :meth:`pyramid.util.InstancePropertyMixin._make_property`.

 ``properties`` is a sequence of two-tuples *or* a data structure
 with an ``.items()`` method which returns a sequence of two-tuples
 (presumably a dictionary). It will be used to add several
 properties to the instance in a manner that is more efficient
 than simply calling ``set_property`` repeatedly.
 """
 attrs = dict(properties)

 if attrs:
 parent = self.__class__
 cls = type(parent.__name__, (parent, object), attrs)
 # We assign __provides__, __implemented__ and __providedBy__ below
 # to prevent a memory leak that results from from the usage of this
 # instance's eventual use in an adapter lookup. Adapter lookup
 # results in ``zope.interface.implementedBy`` being called with the
 # newly-created class as an argument. Because the newly-created
 # class has no interface specification data of its own, lookup
 # causes new ClassProvides and Implements instances related to our
 # just-generated class to be created and set into the newly-created
 # class' __dict__. We don't want these instances to be created; we
 # want this new class to behave exactly like it is the parent class
 # instead. See https://github.com/Pylons/pyramid/issues/1212 for
 # more information.
 for name in ('__implemented__', '__providedBy__', '__provides__'):
 # we assign these attributes conditionally to make it possible
 # to test this class in isolation without having any interfaces
 # attached to it
 val = getattr(parent, name, _marker)
 if val is not _marker:
 setattr(cls, name, val)
 self.__class__ = cls

 def _set_extensions(self, extensions):
 for name, fn in iteritems_(extensions.methods):
 method = fn.__get__(self, self.__class__)
 setattr(self, name, method)
 self._set_properties(extensions.descriptors)

 def set_property(self, callable, name=None, reify=False):
 """ Add a callable or a property descriptor to the instance.

 Properties, unlike attributes, are lazily evaluated by executing
 an underlying callable when accessed. They can be useful for
 adding features to an object without any cost if those features
 go unused.

 A property may also be reified via the
 :class:`pyramid.decorator.reify` decorator by setting
 ``reify=True``, allowing the result of the evaluation to be
 cached. Using this method, the value of the property is only
 computed once for the lifetime of the object.

 ``callable`` can either be a callable that accepts the instance
 as its single positional parameter, or it can be a property
 descriptor.

 If the ``callable`` is a property descriptor, the ``name``
 parameter must be supplied or a ``ValueError`` will be raised.
 Also note that a property descriptor cannot be reified, so
 ``reify`` must be ``False``.

 If ``name`` is None, the name of the property will be computed
 from the name of the ``callable``.

 .. code-block:: python
 :linenos:

 class Foo(InstancePropertyMixin):
 _x = 1

 def _get_x(self):
 return _x

 def _set_x(self, value):
 self._x = value

 foo = Foo()
 foo.set_property(property(_get_x, _set_x), name='x')
 foo.set_property(_get_x, name='y', reify=True)

 >>> foo.x
 1
 >>> foo.y
 1
 >>> foo.x = 5
 >>> foo.x
 5
 >>> foo.y # notice y keeps the original value
 1
 """
 prop = self._make_property(callable, name=name, reify=reify)
 self._set_properties([prop])

class WeakOrderedSet(object):
 """ Maintain a set of items.

 Each item is stored as a weakref to avoid extending their lifetime.

 The values may be iterated over or the last item added may be
 accessed via the ``last`` property.

 If items are added more than once, the most recent addition will
 be remembered in the order:

 order = WeakOrderedSet()
 order.add('1')
 order.add('2')
 order.add('1')

 list(order) == ['2', '1']
 order.last == '1'
 """

 def __init__(self):
 self._items = {}
 self._order = []

 def add(self, item):
 """ Add an item to the set."""
 oid = id(item)
 if oid in self._items:
 self._order.remove(oid)
 self._order.append(oid)
 return
 ref = weakref.ref(item, lambda x: self.remove(item))
 self._items[oid] = ref
 self._order.append(oid)

 def remove(self, item):
 """ Remove an item from the set."""
 oid = id(item)
 if oid in self._items:
 del self._items[oid]
 self._order.remove(oid)

 def empty(self):
 """ Clear all objects from the set."""
 self._items = {}
 self._order = []

 def __len__(self):
 return len(self._order)

 def __contains__(self, item):
 oid = id(item)
 return oid in self._items

 def __iter__(self):
 return (self._items[oid]() for oid in self._order)

 @property
 def last(self):
 if self._order:
 oid = self._order[-1]
 return self._items[oid]()

def strings_differ(string1, string2):
 """Check whether two strings differ while avoiding timing attacks.

 This function returns True if the given strings differ and False
 if they are equal. It's careful not to leak information about *where*
 they differ as a result of its running time, which can be very important
 to avoid certain timing-related crypto attacks:

 http://seb.dbzteam.org/crypto/python-oauth-timing-hmac.pdf

 """
 if len(string1) != len(string2):
 return True

 invalid_bits = 0
 for a, b in zip(string1, string2):
 invalid_bits += a != b

 return invalid_bits != 0

def object_description(object):
 """ Produce a human-consumable text description of ``object``,
 usually involving a Python dotted name. For example:

 >>> object_description(None)
 u'None'
 >>> from xml.dom import minidom
 >>> object_description(minidom)
 u'module xml.dom.minidom'
 >>> object_description(minidom.Attr)
 u'class xml.dom.minidom.Attr'
 >>> object_description(minidom.Attr.appendChild)
 u'method appendChild of class xml.dom.minidom.Attr'

 If this method cannot identify the type of the object, a generic
 description ala ``object <object.__name__>`` will be returned.

 If the object passed is already a string, it is simply returned. If it
 is a boolean, an integer, a list, a tuple, a set, or ``None``, a
 (possibly shortened) string representation is returned.
 """
 if isinstance(object, string_types):
 return text_(object)
 if isinstance(object, integer_types):
 return text_(str(object))
 if isinstance(object, (bool, float, type(None))):
 return text_(str(object))
 if isinstance(object, set):
 if PY3: # pragma: no cover
 return shortrepr(object, '}')
 else:
 return shortrepr(object, ')')
 if isinstance(object, tuple):
 return shortrepr(object, ')')
 if isinstance(object, list):
 return shortrepr(object, ']')
 if isinstance(object, dict):
 return shortrepr(object, '}')
 module = inspect.getmodule(object)
 if module is None:
 return text_('object %s' % str(object))
 modulename = module.__name__
 if inspect.ismodule(object):
 return text_('module %s' % modulename)
 if inspect.ismethod(object):
 oself = getattr(object, '__self__', None)
 if oself is None: # pragma: no cover
 oself = getattr(object, 'im_self', None)
 return text_('method %s of class %s.%s' %
 (object.__name__, modulename,
 oself.__class__.__name__))

 if inspect.isclass(object):
 dottedname = '%s.%s' % (modulename, object.__name__)
 return text_('class %s' % dottedname)
 if inspect.isfunction(object):
 dottedname = '%s.%s' % (modulename, object.__name__)
 return text_('function %s' % dottedname)
 return text_('object %s' % str(object))

def shortrepr(object, closer):
 r = str(object)
 if len(r) > 100:
 r = r[:100] + ' ... %s' % closer
 return r

class Sentinel(object):
 def __init__(self, repr):
 self.repr = repr

 def __repr__(self):
 return self.repr

FIRST = Sentinel('FIRST')
LAST = Sentinel('LAST')

class TopologicalSorter(object):
 """ A utility class which can be used to perform topological sorts against
 tuple-like data."""
 def __init__(
 self,
 default_before=LAST,
 default_after=None,
 first=FIRST,
 last=LAST,
):
 self.names = []
 self.req_before = set()
 self.req_after = set()
 self.name2before = {}
 self.name2after = {}
 self.name2val = {}
 self.order = []
 self.default_before = default_before
 self.default_after = default_after
 self.first = first
 self.last = last

 def remove(self, name):
 """ Remove a node from the sort input """
 self.names.remove(name)
 del self.name2val[name]
 after = self.name2after.pop(name, [])
 if after:
 self.req_after.remove(name)
 for u in after:
 self.order.remove((u, name))
 before = self.name2before.pop(name, [])
 if before:
 self.req_before.remove(name)
 for u in before:
 self.order.remove((name, u))

 def add(self, name, val, after=None, before=None):
 """ Add a node to the sort input. The ``name`` should be a string or
 any other hashable object, the ``val`` should be the sortable (doesn't
 need to be hashable). ``after`` and ``before`` represents the name of
 one of the other sortables (or a sequence of such named) or one of the
 special sentinel values :attr:`pyramid.util.FIRST`` or
 :attr:`pyramid.util.LAST` representing the first or last positions
 respectively. ``FIRST`` and ``LAST`` can also be part of a sequence
 passed as ``before`` or ``after``. A sortable should not be added
 after LAST or before FIRST. An example::

 sorter = TopologicalSorter()
 sorter.add('a', {'a':1}, before=LAST, after='b')
 sorter.add('b', {'b':2}, before=LAST, after='c')
 sorter.add('c', {'c':3})

 sorter.sorted() # will be {'c':3}, {'b':2}, {'a':1}

 """
 if name in self.names:
 self.remove(name)
 self.names.append(name)
 self.name2val[name] = val
 if after is None and before is None:
 before = self.default_before
 after = self.default_after
 if after is not None:
 if not is_nonstr_iter(after):
 after = (after,)
 self.name2after[name] = after
 self.order += [(u, name) for u in after]
 self.req_after.add(name)
 if before is not None:
 if not is_nonstr_iter(before):
 before = (before,)
 self.name2before[name] = before
 self.order += [(name, o) for o in before]
 self.req_before.add(name)

 def sorted(self):
 """ Returns the sort input values in topologically sorted order"""
 order = [(self.first, self.last)]
 roots = []
 graph = {}
 names = [self.first, self.last]
 names.extend(self.names)

 for a, b in self.order:
 order.append((a, b))

 def add_node(node):
 if not node in graph:
 roots.append(node)
 graph[node] = [0] # 0 = number of arcs coming into this node

 def add_arc(fromnode, tonode):
 graph[fromnode].append(tonode)
 graph[tonode][0] += 1
 if tonode in roots:
 roots.remove(tonode)

 for name in names:
 add_node(name)

 has_before, has_after = set(), set()
 for a, b in order:
 if a in names and b in names: # deal with missing dependencies
 add_arc(a, b)
 has_before.add(a)
 has_after.add(b)

 if not self.req_before.issubset(has_before):
 raise ConfigurationError(
 'Unsatisfied before dependencies: %s'
 % (', '.join(sorted(self.req_before - has_before)))
)
 if not self.req_after.issubset(has_after):
 raise ConfigurationError(
 'Unsatisfied after dependencies: %s'
 % (', '.join(sorted(self.req_after - has_after)))
)

 sorted_names = []

 while roots:
 root = roots.pop(0)
 sorted_names.append(root)
 children = graph[root][1:]
 for child in children:
 arcs = graph[child][0]
 arcs -= 1
 graph[child][0] = arcs
 if arcs == 0:
 roots.insert(0, child)
 del graph[root]

 if graph:
 # loop in input
 cycledeps = {}
 for k, v in graph.items():
 cycledeps[k] = v[1:]
 raise CyclicDependencyError(cycledeps)

 result = []

 for name in sorted_names:
 if name in self.names:
 result.append((name, self.name2val[name]))

 return result

def viewdefaults(wrapped):
 """ Decorator for add_view-like methods which takes into account
 __view_defaults__ attached to view it is passed. Not a documented API but
 used by some external systems."""
 def wrapper(self, *arg, **kw):
 defaults = {}
 if arg:
 view = arg[0]
 else:
 view = kw.get('view')
 view = self.maybe_dotted(view)
 if inspect.isclass(view):
 defaults = getattr(view, '__view_defaults__', {}).copy()
 if not '_backframes' in kw:
 kw['_backframes'] = 1 # for action_method
 defaults.update(kw)
 return wrapped(self, *arg, **defaults)
 return functools.wraps(wrapped)(wrapper)

@implementer(IActionInfo)
class ActionInfo(object):
 def __init__(self, file, line, function, src):
 self.file = file
 self.line = line
 self.function = function
 self.src = src

 def __str__(self):
 srclines = self.src.split('\n')
 src = '\n'.join(' %s' % x for x in srclines)
 return 'Line %s of file %s:\n%s' % (self.line, self.file, src)

def action_method(wrapped):
 """ Wrapper to provide the right conflict info report data when a method
 that calls Configurator.action calls another that does the same. Not a
 documented API but used by some external systems."""
 def wrapper(self, *arg, **kw):
 if self._ainfo is None:
 self._ainfo = []
 info = kw.pop('_info', None)
 # backframes for outer decorators to actionmethods
 backframes = kw.pop('_backframes', 0) + 2
 if is_nonstr_iter(info) and len(info) == 4:
 # _info permitted as extract_stack tuple
 info = ActionInfo(*info)
 if info is None:
 try:
 f = traceback.extract_stack(limit=4)

 # Work around a Python 3.5 issue whereby it would insert an
 # extra stack frame. This should no longer be necessary in
 # Python 3.5.1
 last_frame = ActionInfo(*f[-1])
 if last_frame.function == 'extract_stack': # pragma: no cover
 f.pop()
 info = ActionInfo(*f[-backframes])
 except: # pragma: no cover
 info = ActionInfo(None, 0, '', '')
 self._ainfo.append(info)
 try:
 result = wrapped(self, *arg, **kw)
 finally:
 self._ainfo.pop()
 return result

 if hasattr(wrapped, '__name__'):
 functools.update_wrapper(wrapper, wrapped)
 wrapper.__docobj__ = wrapped
 return wrapper

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config/adapters.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 		pyramid.config »

 Source code for pyramid.config.adapters

from webob import Response as WebobResponse

from functools import update_wrapper

from zope.interface import Interface

from pyramid.interfaces import (
 IResponse,
 ITraverser,
 IResourceURL,
)

from pyramid.config.util import (
 action_method,
 takes_one_arg,
)

class AdaptersConfiguratorMixin(object):
 @action_method
 def add_subscriber(self, subscriber, iface=None, **predicates):
 """Add an event :term:`subscriber` for the event stream
 implied by the supplied ``iface`` interface.

 The ``subscriber`` argument represents a callable object (or a
 :term:`dotted Python name` which identifies a callable); it will be
 called with a single object ``event`` whenever :app:`Pyramid` emits
 an :term:`event` associated with the ``iface``, which may be an
 :term:`interface` or a class or a :term:`dotted Python name` to a
 global object representing an interface or a class.

 Using the default ``iface`` value, ``None`` will cause the subscriber
 to be registered for all event types. See :ref:`events_chapter` for
 more information about events and subscribers.

 Any number of predicate keyword arguments may be passed in
 ``**predicates``. Each predicate named will narrow the set of
 circumstances in which the subscriber will be invoked. Each named
 predicate must have been registered via
 :meth:`pyramid.config.Configurator.add_subscriber_predicate` before it
 can be used. See :ref:`subscriber_predicates` for more information.

 .. versionadded:: 1.4
 The ``**predicates`` argument.
 """
 dotted = self.maybe_dotted
 subscriber, iface = dotted(subscriber), dotted(iface)
 if iface is None:
 iface = (Interface,)
 if not isinstance(iface, (tuple, list)):
 iface = (iface,)

 def register():
 predlist = self.get_predlist('subscriber')
 order, preds, phash = predlist.make(self, **predicates)

 derived_predicates = [self._derive_predicate(p) for p in preds]
 derived_subscriber = self._derive_subscriber(
 subscriber,
 derived_predicates,
)

 intr.update(
 {'phash':phash,
 'order':order,
 'predicates':preds,
 'derived_predicates':derived_predicates,
 'derived_subscriber':derived_subscriber,
 }
)

 self.registry.registerHandler(derived_subscriber, iface)

 intr = self.introspectable(
 'subscribers',
 id(subscriber),
 self.object_description(subscriber),
 'subscriber'
)

 intr['subscriber'] = subscriber
 intr['interfaces'] = iface

 self.action(None, register, introspectables=(intr,))
 return subscriber

 def _derive_predicate(self, predicate):
 derived_predicate = predicate

 if eventonly(predicate):
 def derived_predicate(*arg):
 return predicate(arg[0])
 # seems pointless to try to fix __doc__, __module__, etc as
 # predicate will invariably be an instance

 return derived_predicate

 def _derive_subscriber(self, subscriber, predicates):
 derived_subscriber = subscriber

 if eventonly(subscriber):
 def derived_subscriber(*arg):
 return subscriber(arg[0])
 if hasattr(subscriber, '__name__'):
 update_wrapper(derived_subscriber, subscriber)

 if not predicates:
 return derived_subscriber

 def subscriber_wrapper(*arg):
 # We need to accept *arg and pass it along because zope subscribers
 # are designed awkwardly. Notification via
 # registry.adapter.subscribers will always call an associated
 # subscriber with all of the objects involved in the subscription
 # lookup, despite the fact that the event sender always has the
 # option to attach those objects to the event object itself, and
 # almost always does.
 #
 # The "eventonly" jazz sprinkled in this function and related
 # functions allows users to define subscribers and predicates which
 # accept only an event argument without needing to accept the rest
 # of the adaptation arguments. Had I been smart enough early on to
 # use .subscriptions to find the subscriber functions in order to
 # call them manually with a single "event" argument instead of
 # relying on .subscribers to both find and call them implicitly
 # with all args, the eventonly hack would not have been required.
 # At this point, though, using .subscriptions and manual execution
 # is not possible without badly breaking backwards compatibility.
 if all((predicate(*arg) for predicate in predicates)):
 return derived_subscriber(*arg)

 if hasattr(subscriber, '__name__'):
 update_wrapper(subscriber_wrapper, subscriber)

 return subscriber_wrapper

 @action_method
 def add_subscriber_predicate(self, name, factory, weighs_more_than=None,
 weighs_less_than=None):
 """
 .. versionadded:: 1.4

 Adds a subscriber predicate factory. The associated subscriber
 predicate can later be named as a keyword argument to
 :meth:`pyramid.config.Configurator.add_subscriber` in the
 ``**predicates`` anonyous keyword argument dictionary.

 ``name`` should be the name of the predicate. It must be a valid
 Python identifier (it will be used as a ``**predicates`` keyword
 argument to :meth:`~pyramid.config.Configurator.add_subscriber`).

 ``factory`` should be a :term:`predicate factory` or :term:`dotted
 Python name` which refers to a predicate factory.

 See :ref:`subscriber_predicates` for more information.

 """
 self._add_predicate(
 'subscriber',
 name,
 factory,
 weighs_more_than=weighs_more_than,
 weighs_less_than=weighs_less_than
)

 @action_method
 def add_response_adapter(self, adapter, type_or_iface):
 """ When an object of type (or interface) ``type_or_iface`` is
 returned from a view callable, Pyramid will use the adapter
 ``adapter`` to convert it into an object which implements the
 :class:`pyramid.interfaces.IResponse` interface. If ``adapter`` is
 None, an object returned of type (or interface) ``type_or_iface``
 will itself be used as a response object.

 ``adapter`` and ``type_or_interface`` may be Python objects or
 strings representing dotted names to importable Python global
 objects.

 See :ref:`using_iresponse` for more information."""
 adapter = self.maybe_dotted(adapter)
 type_or_iface = self.maybe_dotted(type_or_iface)
 def register():
 reg = self.registry
 if adapter is None:
 reg.registerSelfAdapter((type_or_iface,), IResponse)
 else:
 reg.registerAdapter(adapter, (type_or_iface,), IResponse)
 discriminator = (IResponse, type_or_iface)
 intr = self.introspectable(
 'response adapters',
 discriminator,
 self.object_description(adapter),
 'response adapter')
 intr['adapter'] = adapter
 intr['type'] = type_or_iface
 self.action(discriminator, register, introspectables=(intr,))

 def add_default_response_adapters(self):
 # cope with WebOb response objects that aren't decorated with IResponse
 self.add_response_adapter(None, WebobResponse)

 @action_method
 def add_traverser(self, adapter, iface=None):
 """
 The superdefault :term:`traversal` algorithm that :app:`Pyramid` uses
 is explained in :ref:`traversal_algorithm`. Though it is rarely
 necessary, this default algorithm can be swapped out selectively for
 a different traversal pattern via configuration. The section
 entitled :ref:`changing_the_traverser` details how to create a
 traverser class.

 For example, to override the superdefault traverser used by Pyramid,
 you might do something like this:

 .. code-block:: python

 from myapp.traversal import MyCustomTraverser
 config.add_traverser(MyCustomTraverser)

 This would cause the Pyramid superdefault traverser to never be used;
 instead all traversal would be done using your ``MyCustomTraverser``
 class, no matter which object was returned by the :term:`root
 factory` of this application. Note that we passed no arguments to
 the ``iface`` keyword parameter. The default value of ``iface``,
 ``None`` represents that the registered traverser should be used when
 no other more specific traverser is available for the object returned
 by the root factory.

 However, more than one traversal algorithm can be active at the same
 time. The traverser used can depend on the result of the :term:`root
 factory`. For instance, if your root factory returns more than one
 type of object conditionally, you could claim that an alternate
 traverser adapter should be used against one particular class or
 interface returned by that root factory. When the root factory
 returned an object that implemented that class or interface, a custom
 traverser would be used. Otherwise, the default traverser would be
 used. The ``iface`` argument represents the class of the object that
 the root factory might return or an :term:`interface` that the object
 might implement.

 To use a particular traverser only when the root factory returns a
 particular class:

 .. code-block:: python

 config.add_traverser(MyCustomTraverser, MyRootClass)

 When more than one traverser is active, the "most specific" traverser
 will be used (the one that matches the class or interface of the
 value returned by the root factory most closely).

 Note that either ``adapter`` or ``iface`` can be a :term:`dotted
 Python name` or a Python object.

 See :ref:`changing_the_traverser` for more information.
 """
 iface = self.maybe_dotted(iface)
 adapter= self.maybe_dotted(adapter)
 def register(iface=iface):
 if iface is None:
 iface = Interface
 self.registry.registerAdapter(adapter, (iface,), ITraverser)
 discriminator = ('traverser', iface)
 intr = self.introspectable(
 'traversers',
 discriminator,
 'traverser for %r' % iface,
 'traverser',
)
 intr['adapter'] = adapter
 intr['iface'] = iface
 self.action(discriminator, register, introspectables=(intr,))

 @action_method
 def add_resource_url_adapter(self, adapter, resource_iface=None):
 """
 .. versionadded:: 1.3

 When you add a traverser as described in
 :ref:`changing_the_traverser`, it's convenient to continue to use the
 :meth:`pyramid.request.Request.resource_url` API. However, since the
 way traversal is done may have been modified, the URLs that
 ``resource_url`` generates by default may be incorrect when resources
 are returned by a custom traverser.

 If you've added a traverser, you can change how
 :meth:`~pyramid.request.Request.resource_url` generates a URL for a
 specific type of resource by calling this method.

 The ``adapter`` argument represents a class that implements the
 :class:`~pyramid.interfaces.IResourceURL` interface. The class
 constructor should accept two arguments in its constructor (the
 resource and the request) and the resulting instance should provide
 the attributes detailed in that interface (``virtual_path`` and
 ``physical_path``, in particular).

 The ``resource_iface`` argument represents a class or interface that
 the resource should possess for this url adapter to be used when
 :meth:`pyramid.request.Request.resource_url` looks up a resource url
 adapter. If ``resource_iface`` is not passed, or it is passed as
 ``None``, the url adapter will be used for every type of resource.

 See :ref:`changing_resource_url` for more information.
 """
 adapter = self.maybe_dotted(adapter)
 resource_iface = self.maybe_dotted(resource_iface)
 def register(resource_iface=resource_iface):
 if resource_iface is None:
 resource_iface = Interface
 self.registry.registerAdapter(
 adapter,
 (resource_iface, Interface),
 IResourceURL,
)
 discriminator = ('resource url adapter', resource_iface)
 intr = self.introspectable(
 'resource url adapters',
 discriminator,
 'resource url adapter for resource iface %r' % resource_iface,
 'resource url adapter',
)
 intr['adapter'] = adapter
 intr['resource_iface'] = resource_iface
 self.action(discriminator, register, introspectables=(intr,))

def eventonly(callee):
 return takes_one_arg(callee, argname='event')

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/registry.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.registry

import operator

from zope.interface import implementer

from zope.interface.registry import Components

from pyramid.compat import text_

from pyramid.interfaces import (
 ISettings,
 IIntrospector,
 IIntrospectable,
)

empty = text_('')

[docs]class Registry(Components, dict):
 """ A registry object is an :term:`application registry`. It is used by
 the framework itself to perform mappings of URLs to view callables, as
 well as servicing other various framework duties. A registry has its own
 internal API, but this API is rarely used by Pyramid application
 developers (it's usually only used by developers of the Pyramid
 framework). But it has a number of attributes that may be useful to
 application developers within application code, such as ``settings``,
 which is a dictionary containing application deployment settings.

 For information about the purpose and usage of the application registry,
 see :ref:`zca_chapter`.

 The application registry is usually accessed as ``request.registry`` in
 application code.

 """

 # for optimization purposes, if no listeners are listening, don't try
 # to notify them
 has_listeners = False

 _settings = None

 def __nonzero__(self):
 # defeat bool determination via dict.__len__
 return True

 def registerSubscriptionAdapter(self, *arg, **kw):
 result = Components.registerSubscriptionAdapter(self, *arg, **kw)
 self.has_listeners = True
 return result

 def registerSelfAdapter(self, required=None, provided=None, name=empty,
 info=empty, event=True):
 # registerAdapter analogue which always returns the object itself
 # when required is matched
 return self.registerAdapter(lambda x: x, required=required,
 provided=provided, name=name,
 info=info, event=event)

 def queryAdapterOrSelf(self, object, interface, default=None):
 # queryAdapter analogue which returns the object if it implements
 # the interface, otherwise it will return an adaptation to the
 # interface
 if not interface.providedBy(object):
 return self.queryAdapter(object, interface, default=default)
 return object

 def registerHandler(self, *arg, **kw):
 result = Components.registerHandler(self, *arg, **kw)
 self.has_listeners = True
 return result

[docs] def notify(self, *events):
 if self.has_listeners:
 # iterating over subscribers assures they get executed
 [_ for _ in self.subscribers(events, None)]

 # backwards compatibility for code that wants to look up a settings
 # object via ``registry.getUtility(ISettings)``
 def _get_settings(self):
 return self._settings

 def _set_settings(self, settings):
 self.registerUtility(settings, ISettings)
 self._settings = settings

 settings = property(_get_settings, _set_settings)

@implementer(IIntrospector)
class Introspector(object):
 def __init__(self):
 self._refs = {}
 self._categories = {}
 self._counter = 0

 def add(self, intr):
 category = self._categories.setdefault(intr.category_name, {})
 category[intr.discriminator] = intr
 category[intr.discriminator_hash] = intr
 intr.order = self._counter
 self._counter += 1

 def get(self, category_name, discriminator, default=None):
 category = self._categories.setdefault(category_name, {})
 intr = category.get(discriminator, default)
 return intr

 def get_category(self, category_name, default=None, sort_key=None):
 if sort_key is None:
 sort_key = operator.attrgetter('order')
 category = self._categories.get(category_name)
 if category is None:
 return default
 values = category.values()
 values = sorted(set(values), key=sort_key)
 return [
 {'introspectable':intr,
 'related':self.related(intr)}
 for intr in values
]

 def categorized(self, sort_key=None):
 L = []
 for category_name in self.categories():
 L.append((category_name, self.get_category(category_name,
 sort_key=sort_key)))
 return L

 def categories(self):
 return sorted(self._categories.keys())

 def remove(self, category_name, discriminator):
 intr = self.get(category_name, discriminator)
 if intr is None:
 return
 L = self._refs.pop(intr, [])
 for d in L:
 L2 = self._refs[d]
 L2.remove(intr)
 category = self._categories[intr.category_name]
 del category[intr.discriminator]
 del category[intr.discriminator_hash]

 def _get_intrs_by_pairs(self, pairs):
 introspectables = []
 for pair in pairs:
 category_name, discriminator = pair
 intr = self._categories.get(category_name, {}).get(discriminator)
 if intr is None:
 raise KeyError((category_name, discriminator))
 introspectables.append(intr)
 return introspectables

 def relate(self, *pairs):
 introspectables = self._get_intrs_by_pairs(pairs)
 relatable = ((x,y) for x in introspectables for y in introspectables)
 for x, y in relatable:
 L = self._refs.setdefault(x, [])
 if x is not y and y not in L:
 L.append(y)

 def unrelate(self, *pairs):
 introspectables = self._get_intrs_by_pairs(pairs)
 relatable = ((x,y) for x in introspectables for y in introspectables)
 for x, y in relatable:
 L = self._refs.get(x, [])
 if y in L:
 L.remove(y)

 def related(self, intr):
 category_name, discriminator = intr.category_name, intr.discriminator
 intr = self._categories.get(category_name, {}).get(discriminator)
 if intr is None:
 raise KeyError((category_name, discriminator))
 return self._refs.get(intr, [])

@implementer(IIntrospectable)
[docs]class Introspectable(dict):

 order = 0 # mutated by introspector.add
 action_info = None # mutated by self.register

 def __init__(self, category_name, discriminator, title, type_name):
 self.category_name = category_name
 self.discriminator = discriminator
 self.title = title
 self.type_name = type_name
 self._relations = []

 def relate(self, category_name, discriminator):
 self._relations.append((True, category_name, discriminator))

 def unrelate(self, category_name, discriminator):
 self._relations.append((False, category_name, discriminator))

 def _assert_resolved(self):
 assert undefer(self.discriminator) is self.discriminator

 @property
 def discriminator_hash(self):
 self._assert_resolved()
 return hash(self.discriminator)

 def __hash__(self):
 self._assert_resolved()
 return hash((self.category_name,) + (self.discriminator,))

 def __repr__(self):
 self._assert_resolved()
 return '<%s category %r, discriminator %r>' % (self.__class__.__name__,
 self.category_name,
 self.discriminator)

 def __nonzero__(self):
 return True

 __bool__ = __nonzero__ # py3

 def register(self, introspector, action_info):
 self.discriminator = undefer(self.discriminator)
 self.action_info = action_info
 introspector.add(self)
 for relate, category_name, discriminator in self._relations:
 discriminator = undefer(discriminator)
 if relate:
 method = introspector.relate
 else:
 method = introspector.unrelate
 method(
 (self.category_name, self.discriminator),
 (category_name, discriminator)
)

[docs]class Deferred(object):
 """ Can be used by a third-party configuration extender to wrap a
 :term:`discriminator` during configuration if an immediately hashable
 discriminator cannot be computed because it relies on unresolved values.
 The function should accept no arguments and should return a hashable
 discriminator."""
 def __init__(self, func):
 self.func = func

 def resolve(self):
 return self.func()

[docs]def undefer(v):
 """ Function which accepts an object and returns it unless it is a
 :class:`pyramid.registry.Deferred` instance. If it is an instance of
 that class, its ``resolve`` method is called, and the result of the
 method is returned."""
 if isinstance(v, Deferred):
 v = v.resolve()
 return v

[docs]class predvalseq(tuple):
 """ A subtype of tuple used to represent a sequence of predicate values """
 pass

global_registry = Registry('global')

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/scripting.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.scripting

from pyramid.config import global_registries
from pyramid.exceptions import ConfigurationError
from pyramid.request import Request

from pyramid.interfaces import (
 IRequestExtensions,
 IRequestFactory,
 IRootFactory,
)

from pyramid.threadlocal import manager as threadlocal_manager
from pyramid.traversal import DefaultRootFactory

[docs]def get_root(app, request=None):
 """ Return a tuple composed of ``(root, closer)`` when provided a
 :term:`router` instance as the ``app`` argument. The ``root``
 returned is the application root object. The ``closer`` returned
 is a callable (accepting no arguments) that should be called when
 your scripting application is finished using the root.

 ``request`` is passed to the :app:`Pyramid` application root
 factory to compute the root. If ``request`` is None, a default
 will be constructed using the registry's :term:`Request Factory`
 via the :meth:`pyramid.interfaces.IRequestFactory.blank` method.
 """
 registry = app.registry
 if request is None:
 request = _make_request('/', registry)
 threadlocals = {'registry':registry, 'request':request}
 app.threadlocal_manager.push(threadlocals)
 def closer(request=request): # keep request alive via this function default
 app.threadlocal_manager.pop()
 root = app.root_factory(request)
 return root, closer

[docs]def prepare(request=None, registry=None):
 """ This function pushes data onto the Pyramid threadlocal stack
 (request and registry), making those objects 'current'. It
 returns a dictionary useful for bootstrapping a Pyramid
 application in a scripting environment.

 ``request`` is passed to the :app:`Pyramid` application root
 factory to compute the root. If ``request`` is None, a default
 will be constructed using the registry's :term:`Request Factory`
 via the :meth:`pyramid.interfaces.IRequestFactory.blank` method.

 If ``registry`` is not supplied, the last registry loaded from
 :attr:`pyramid.config.global_registries` will be used. If you
 have loaded more than one :app:`Pyramid` application in the
 current process, you may not want to use the last registry
 loaded, thus you can search the ``global_registries`` and supply
 the appropriate one based on your own criteria.

 The function returns a dictionary composed of ``root``,
 ``closer``, ``registry``, ``request`` and ``root_factory``. The
 ``root`` returned is the application's root resource object. The
 ``closer`` returned is a callable (accepting no arguments) that
 should be called when your scripting application is finished
 using the root. ``registry`` is the registry object passed or
 the last registry loaded into
 :attr:`pyramid.config.global_registries` if no registry is passed.
 ``request`` is the request object passed or the constructed request
 if no request is passed. ``root_factory`` is the root factory used
 to construct the root.
 """
 if registry is None:
 registry = getattr(request, 'registry', global_registries.last)
 if registry is None:
 raise ConfigurationError('No valid Pyramid applications could be '
 'found, make sure one has been created '
 'before trying to activate it.')
 if request is None:
 request = _make_request('/', registry)
 # NB: even though _make_request might have already set registry on
 # request, we reset it in case someone has passed in their own
 # request.
 request.registry = registry
 threadlocals = {'registry':registry, 'request':request}
 threadlocal_manager.push(threadlocals)
 extensions = registry.queryUtility(IRequestExtensions)
 if extensions is not None:
 request._set_extensions(extensions)
 def closer():
 threadlocal_manager.pop()
 root_factory = registry.queryUtility(IRootFactory,
 default=DefaultRootFactory)
 root = root_factory(request)
 if getattr(request, 'context', None) is None:
 request.context = root
 return {'root':root, 'closer':closer, 'registry':registry,
 'request':request, 'root_factory':root_factory}

def _make_request(path, registry=None):
 """ Return a :meth:`pyramid.request.Request` object anchored at a
 given path. The object returned will be generated from the supplied
 registry's :term:`Request Factory` using the
 :meth:`pyramid.interfaces.IRequestFactory.blank` method.

 This request object can be passed to :meth:`pyramid.scripting.get_root`
 or :meth:`pyramid.scripting.prepare` to initialize an application in
 preparation for executing a script with a proper environment setup.
 URLs can then be generated with the object, as well as rendering
 templates.

 If ``registry`` is not supplied, the last registry loaded from
 :attr:`pyramid.config.global_registries` will be used. If you have
 loaded more than one :app:`Pyramid` application in the current
 process, you may not want to use the last registry loaded, thus
 you can search the ``global_registries`` and supply the appropriate
 one based on your own criteria.
 """
 if registry is None:
 registry = global_registries.last
 request_factory = registry.queryUtility(IRequestFactory, default=Request)
 request = request_factory.blank(path)
 request.registry = registry
 return request

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/tweens.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.tweens

import sys

from pyramid.interfaces import (
 IExceptionViewClassifier,
 IRequest,
 IView,
)

from zope.interface import providedBy

[docs]def excview_tween_factory(handler, registry):
 """ A :term:`tween` factory which produces a tween that catches an
 exception raised by downstream tweens (or the main Pyramid request
 handler) and, if possible, converts it into a Response using an
 :term:`exception view`."""
 adapters = registry.adapters

 def excview_tween(request):
 attrs = request.__dict__
 try:
 response = handler(request)
 except Exception as exc:
 # WARNING: do not assign the result of sys.exc_info() to a local
 # var here, doing so will cause a leak. We used to actually
 # explicitly delete both "exception" and "exc_info" from ``attrs``
 # in a ``finally:`` clause below, but now we do not because these
 # attributes are useful to upstream tweens. This actually still
 # apparently causes a reference cycle, but it is broken
 # successfully by the garbage collector (see
 # https://github.com/Pylons/pyramid/issues/1223).
 attrs['exc_info'] = sys.exc_info()
 attrs['exception'] = exc
 # clear old generated request.response, if any; it may
 # have been mutated by the view, and its state is not
 # sane (e.g. caching headers)
 if 'response' in attrs:
 del attrs['response']
 # we use .get instead of .__getitem__ below due to
 # https://github.com/Pylons/pyramid/issues/700
 request_iface = attrs.get('request_iface', IRequest)
 provides = providedBy(exc)
 for_ = (IExceptionViewClassifier, request_iface.combined, provides)
 view_callable = adapters.lookup(for_, IView, default=None)
 if view_callable is None:
 raise
 response = view_callable(exc, request)

 return response

 return excview_tween

MAIN = 'MAIN'
INGRESS = 'INGRESS'
EXCVIEW = 'pyramid.tweens.excview_tween_factory'

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/view.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.view

import venusian

from zope.interface import providedBy

from pyramid.interfaces import (
 IRoutesMapper,
 IView,
 IViewClassifier,
)

from pyramid.compat import (
 map_,
 decode_path_info,
)

from pyramid.httpexceptions import (
 HTTPFound,
 default_exceptionresponse_view,
)

from pyramid.threadlocal import get_current_registry

_marker = object()

[docs]def render_view_to_response(context, request, name='', secure=True):
 """ Call the :term:`view callable` configured with a :term:`view
 configuration` that matches the :term:`view name` ``name``
 registered against the specified ``context`` and ``request`` and
 return a :term:`response` object. This function will return
 ``None`` if a corresponding :term:`view callable` cannot be found
 (when no :term:`view configuration` matches the combination of
 ``name`` / ``context`` / and ``request``).

 If `secure`` is ``True``, and the :term:`view callable` found is
 protected by a permission, the permission will be checked before calling
 the view function. If the permission check disallows view execution
 (based on the current :term:`authorization policy`), a
 :exc:`pyramid.httpexceptions.HTTPForbidden` exception will be raised.
 The exception's ``args`` attribute explains why the view access was
 disallowed.

 If ``secure`` is ``False``, no permission checking is done."""
 provides = [IViewClassifier] + map_(providedBy, (request, context))
 try:
 reg = request.registry
 except AttributeError:
 reg = get_current_registry()
 view = reg.adapters.lookup(provides, IView, name=name)
 if view is None:
 return None

 if not secure:
 # the view will have a __call_permissive__ attribute if it's
 # secured; otherwise it won't.
 view = getattr(view, '__call_permissive__', view)

 # if this view is secured, it will raise a Forbidden
 # appropriately if the executing user does not have the proper
 # permission
 return view(context, request)

[docs]def render_view_to_iterable(context, request, name='', secure=True):
 """ Call the :term:`view callable` configured with a :term:`view
 configuration` that matches the :term:`view name` ``name``
 registered against the specified ``context`` and ``request`` and
 return an iterable object which represents the body of a response.
 This function will return ``None`` if a corresponding :term:`view
 callable` cannot be found (when no :term:`view configuration`
 matches the combination of ``name`` / ``context`` / and
 ``request``). Additionally, this function will raise a
 :exc:`ValueError` if a view function is found and called but the
 view function's result does not have an ``app_iter`` attribute.

 You can usually get the bytestring representation of the return value of
 this function by calling ``b''.join(iterable)``, or just use
 :func:`pyramid.view.render_view` instead.

 If ``secure`` is ``True``, and the view is protected by a permission, the
 permission will be checked before the view function is invoked. If the
 permission check disallows view execution (based on the current
 :term:`authentication policy`), a
 :exc:`pyramid.httpexceptions.HTTPForbidden` exception will be raised; its
 ``args`` attribute explains why the view access was disallowed.

 If ``secure`` is ``False``, no permission checking is
 done."""
 response = render_view_to_response(context, request, name, secure)
 if response is None:
 return None
 return response.app_iter

[docs]def render_view(context, request, name='', secure=True):
 """ Call the :term:`view callable` configured with a :term:`view
 configuration` that matches the :term:`view name` ``name``
 registered against the specified ``context`` and ``request``
 and unwind the view response's ``app_iter`` (see
 :ref:`the_response`) into a single bytestring. This function will
 return ``None`` if a corresponding :term:`view callable` cannot be
 found (when no :term:`view configuration` matches the combination
 of ``name`` / ``context`` / and ``request``). Additionally, this
 function will raise a :exc:`ValueError` if a view function is
 found and called but the view function's result does not have an
 ``app_iter`` attribute. This function will return ``None`` if a
 corresponding view cannot be found.

 If ``secure`` is ``True``, and the view is protected by a permission, the
 permission will be checked before the view is invoked. If the permission
 check disallows view execution (based on the current :term:`authorization
 policy`), a :exc:`pyramid.httpexceptions.HTTPForbidden` exception will be
 raised; its ``args`` attribute explains why the view access was
 disallowed.

 If ``secure`` is ``False``, no permission checking is done."""
 iterable = render_view_to_iterable(context, request, name, secure)
 if iterable is None:
 return None
 return b''.join(iterable)

[docs]class view_config(object):
 """ A function, class or method :term:`decorator` which allows a
 developer to create view registrations nearer to a :term:`view
 callable` definition than use :term:`imperative
 configuration` to do the same.

 For example, this code in a module ``views.py``::

 from resources import MyResource

 @view_config(name='my_view', context=MyResource, permission='read',
 route_name='site1')
 def my_view(context, request):
 return 'OK'

 Might replace the following call to the
 :meth:`pyramid.config.Configurator.add_view` method::

 import views
 from resources import MyResource
 config.add_view(views.my_view, context=MyResource, name='my_view',
 permission='read', route_name='site1')

 .. note: :class:`pyramid.view.view_config` is also importable, for
 backwards compatibility purposes, as the name
 :class:`pyramid.view.bfg_view`.

 :class:`pyramid.view.view_config` supports the following keyword
 arguments: ``context``, ``permission``, ``name``,
 ``request_type``, ``route_name``, ``request_method``, ``request_param``,
 ``containment``, ``xhr``, ``accept``, ``header``, ``path_info``,
 ``custom_predicates``, ``decorator``, ``mapper``, ``http_cache``,
 ``match_param``, ``check_csrf``, ``physical_path``, and ``predicates``.

 The meanings of these arguments are the same as the arguments passed to
 :meth:`pyramid.config.Configurator.add_view`. If any argument is left
 out, its default will be the equivalent ``add_view`` default.

 An additional keyword argument named ``_depth`` is provided for people who
 wish to reuse this class from another decorator. The default value is
 ``0`` and should be specified relative to the ``view_config`` invocation.
 It will be passed in to the :term:`venusian` ``attach`` function as the
 depth of the callstack when Venusian checks if the decorator is being used
 in a class or module context. It's not often used, but it can be useful
 in this circumstance. See the ``attach`` function in Venusian for more
 information.

 .. seealso::

 See also :ref:`mapping_views_using_a_decorator_section` for
 details about using :class:`pyramid.view.view_config`.

 .. warning::

 ``view_config`` will work ONLY on module top level members
 because of the limitation of ``venusian.Scanner.scan``.

 """
 venusian = venusian # for testing injection
 def __init__(self, **settings):
 if 'for_' in settings:
 if settings.get('context') is None:
 settings['context'] = settings['for_']
 self.__dict__.update(settings)

 def __call__(self, wrapped):
 settings = self.__dict__.copy()
 depth = settings.pop('_depth', 0)

 def callback(context, name, ob):
 config = context.config.with_package(info.module)
 config.add_view(view=ob, **settings)

 info = self.venusian.attach(wrapped, callback, category='pyramid',
 depth=depth + 1)

 if info.scope == 'class':
 # if the decorator was attached to a method in a class, or
 # otherwise executed at class scope, we need to set an
 # 'attr' into the settings if one isn't already in there
 if settings.get('attr') is None:
 settings['attr'] = wrapped.__name__

 settings['_info'] = info.codeinfo # fbo "action_method"
 return wrapped

bfg_view = view_config # bw compat (forever)

[docs]class view_defaults(view_config):
 """ A class :term:`decorator` which, when applied to a class, will
 provide defaults for all view configurations that use the class. This
 decorator accepts all the arguments accepted by
 :meth:`pyramid.view.view_config`, and each has the same meaning.

 See :ref:`view_defaults` for more information.
 """

 def __call__(self, wrapped):
 wrapped.__view_defaults__ = self.__dict__.copy()
 return wrapped

class AppendSlashNotFoundViewFactory(object):
 """ There can only be one :term:`Not Found view` in any
 :app:`Pyramid` application. Even if you use
 :func:`pyramid.view.append_slash_notfound_view` as the Not
 Found view, :app:`Pyramid` still must generate a ``404 Not
 Found`` response when it cannot redirect to a slash-appended URL;
 this not found response will be visible to site users.

 If you don't care what this 404 response looks like, and you only
 need redirections to slash-appended route URLs, you may use the
 :func:`pyramid.view.append_slash_notfound_view` object as the
 Not Found view. However, if you wish to use a *custom* notfound
 view callable when a URL cannot be redirected to a slash-appended
 URL, you may wish to use an instance of this class as the Not
 Found view, supplying a :term:`view callable` to be used as the
 custom notfound view as the first argument to its constructor.
 For instance:

 .. code-block:: python

 from pyramid.httpexceptions import HTTPNotFound
 from pyramid.view import AppendSlashNotFoundViewFactory

 def notfound_view(context, request): return HTTPNotFound('nope')

 custom_append_slash = AppendSlashNotFoundViewFactory(notfound_view)
 config.add_view(custom_append_slash, context=HTTPNotFound)

 The ``notfound_view`` supplied must adhere to the two-argument
 view callable calling convention of ``(context, request)``
 (``context`` will be the exception object).

 .. deprecated:: 1.3

 """
 def __init__(self, notfound_view=None):
 if notfound_view is None:
 notfound_view = default_exceptionresponse_view
 self.notfound_view = notfound_view

 def __call__(self, context, request):
 path = decode_path_info(request.environ['PATH_INFO'] or '/')
 registry = request.registry
 mapper = registry.queryUtility(IRoutesMapper)
 if mapper is not None and not path.endswith('/'):
 slashpath = path + '/'
 for route in mapper.get_routes():
 if route.match(slashpath) is not None:
 qs = request.query_string
 if qs:
 qs = '?' + qs
 return HTTPFound(location=request.path+'/'+qs)
 return self.notfound_view(context, request)

append_slash_notfound_view = AppendSlashNotFoundViewFactory()
append_slash_notfound_view.__doc__ = """\
For behavior like Django's ``APPEND_SLASH=True``, use this view as the
:term:`Not Found view` in your application.

When this view is the Not Found view (indicating that no view was found), and
any routes have been defined in the configuration of your application, if the
value of the ``PATH_INFO`` WSGI environment variable does not already end in
a slash, and if the value of ``PATH_INFO`` *plus* a slash matches any route's
path, do an HTTP redirect to the slash-appended PATH_INFO. Note that this
will *lose* ``POST`` data information (turning it into a GET), so you
shouldn't rely on this to redirect POST requests. Note also that static
routes are not considered when attempting to find a matching route.

Use the :meth:`pyramid.config.Configurator.add_view` method to configure this
view as the Not Found view::

 from pyramid.httpexceptions import HTTPNotFound
 from pyramid.view import append_slash_notfound_view
 config.add_view(append_slash_notfound_view, context=HTTPNotFound)

.. deprecated:: 1.3

"""

[docs]class notfound_view_config(object):
 """
 .. versionadded:: 1.3

 An analogue of :class:`pyramid.view.view_config` which registers a
 :term:`Not Found View`.

 The ``notfound_view_config`` constructor accepts most of the same arguments
 as the constructor of :class:`pyramid.view.view_config`. It can be used
 in the same places, and behaves in largely the same way, except it always
 registers a not found exception view instead of a 'normal' view.

 Example:

 .. code-block:: python

 from pyramid.view import notfound_view_config
 from pyramid.response import Response

 @notfound_view_config()
 def notfound(request):
 return Response('Not found, dude!', status='404 Not Found')

 All arguments except ``append_slash`` have the same meaning as
 :meth:`pyramid.view.view_config` and each predicate
 argument restricts the set of circumstances under which this notfound
 view will be invoked.

 If ``append_slash`` is ``True``, when the Not Found View is invoked, and
 the current path info does not end in a slash, the notfound logic will
 attempt to find a :term:`route` that matches the request's path info
 suffixed with a slash. If such a route exists, Pyramid will issue a
 redirect to the URL implied by the route; if it does not, Pyramid will
 return the result of the view callable provided as ``view``, as normal.

 See :ref:`changing_the_notfound_view` for detailed usage information.

 """

 venusian = venusian

 def __init__(self, **settings):
 self.__dict__.update(settings)

 def __call__(self, wrapped):
 settings = self.__dict__.copy()

 def callback(context, name, ob):
 config = context.config.with_package(info.module)
 config.add_notfound_view(view=ob, **settings)

 info = self.venusian.attach(wrapped, callback, category='pyramid')

 if info.scope == 'class':
 # if the decorator was attached to a method in a class, or
 # otherwise executed at class scope, we need to set an
 # 'attr' into the settings if one isn't already in there
 if settings.get('attr') is None:
 settings['attr'] = wrapped.__name__

 settings['_info'] = info.codeinfo # fbo "action_method"
 return wrapped

[docs]class forbidden_view_config(object):
 """
 .. versionadded:: 1.3

 An analogue of :class:`pyramid.view.view_config` which registers a
 :term:`forbidden view`.

 The forbidden_view_config constructor accepts most of the same arguments
 as the constructor of :class:`pyramid.view.view_config`. It can be used
 in the same places, and behaves in largely the same way, except it always
 registers a forbidden exception view instead of a 'normal' view.

 Example:

 .. code-block:: python

 from pyramid.view import forbidden_view_config
 from pyramid.response import Response

 @forbidden_view_config()
 def forbidden(request):
 return Response('You are not allowed', status='401 Unauthorized')

 All arguments passed to this function have the same meaning as
 :meth:`pyramid.view.view_config` and each predicate argument restricts
 the set of circumstances under which this notfound view will be invoked.

 See :ref:`changing_the_forbidden_view` for detailed usage information.

 """

 venusian = venusian

 def __init__(self, **settings):
 self.__dict__.update(settings)

 def __call__(self, wrapped):
 settings = self.__dict__.copy()

 def callback(context, name, ob):
 config = context.config.with_package(info.module)
 config.add_forbidden_view(view=ob, **settings)

 info = self.venusian.attach(wrapped, callback, category='pyramid')

 if info.scope == 'class':
 # if the decorator was attached to a method in a class, or
 # otherwise executed at class scope, we need to set an
 # 'attr' into the settings if one isn't already in there
 if settings.get('attr') is None:
 settings['attr'] = wrapped.__name__

 settings['_info'] = info.codeinfo # fbo "action_method"
 return wrapped

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/location.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.location

##
#
Copyright (c) 2003 Zope Corporation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##

[docs]def inside(resource1, resource2):
 """Is ``resource1`` 'inside' ``resource2``? Return ``True`` if so, else
 ``False``.

 ``resource1`` is 'inside' ``resource2`` if ``resource2`` is a
 :term:`lineage` ancestor of ``resource1``. It is a lineage ancestor
 if its parent (or one of its parent's parents, etc.) is an
 ancestor.
 """
 while resource1 is not None:
 if resource1 is resource2:
 return True
 resource1 = resource1.__parent__

 return False

[docs]def lineage(resource):
 """
 Return a generator representing the :term:`lineage` of the
 :term:`resource` object implied by the ``resource`` argument. The
 generator first returns ``resource`` unconditionally. Then, if
 ``resource`` supplies a ``__parent__`` attribute, return the resource
 represented by ``resource.__parent__``. If *that* resource has a
 ``__parent__`` attribute, return that resource's parent, and so on,
 until the resource being inspected either has no ``__parent__``
 attribute or which has a ``__parent__`` attribute of ``None``.
 For example, if the resource tree is::

 thing1 = Thing()
 thing2 = Thing()
 thing2.__parent__ = thing1

 Calling ``lineage(thing2)`` will return a generator. When we turn
 it into a list, we will get::

 list(lineage(thing2))
 [<Thing object at thing2>, <Thing object at thing1>]
 """
 while resource is not None:
 yield resource
 # The common case is that the AttributeError exception below
 # is exceptional as long as the developer is a "good citizen"
 # who has a root object with a __parent__ of None. Using an
 # exception here instead of a getattr with a default is an
 # important micro-optimization, because this function is
 # called in any non-trivial application over and over again to
 # generate URLs and paths.
 try:
 resource = resource.__parent__
 except AttributeError:
 resource = None

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/scaffolds.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.scaffolds

import binascii
import os
from textwrap import dedent

from pyramid.compat import native_

from pyramid.scaffolds.template import Template # API

[docs]class PyramidTemplate(Template):
 """
 A class that can be used as a base class for Pyramid scaffolding
 templates.
 """
[docs] def pre(self, command, output_dir, vars):
 """ Overrides :meth:`pyramid.scaffolds.template.Template.pre`, adding
 several variables to the default variables list (including
 ``random_string``, and ``package_logger``). It also prevents common
 misnamings (such as naming a package "site" or naming a package
 logger "root".
 """
 if vars['package'] == 'site':
 raise ValueError('Sorry, you may not name your package "site". '
 'The package name "site" has a special meaning in '
 'Python. Please name it anything except "site".')
 vars['random_string'] = native_(binascii.hexlify(os.urandom(20)))
 package_logger = vars['package']
 if package_logger == 'root':
 # Rename the app logger in the rare case a project is named 'root'
 package_logger = 'app'
 vars['package_logger'] = package_logger
 return Template.pre(self, command, output_dir, vars)

[docs] def post(self, command, output_dir, vars): # pragma: no cover
 """ Overrides :meth:`pyramid.scaffolds.template.Template.post`, to
 print "Welcome to Pyramid. Sorry for the convenience." after a
 successful scaffolding rendering."""

 separator = "=" * 79
 msg = dedent(
 """
 %(separator)s
 Tutorials: http://docs.pylonsproject.org/projects/pyramid_tutorials
 Documentation: http://docs.pylonsproject.org/projects/pyramid

 Twitter (tips & updates): http://twitter.com/pylons
 Mailing List: http://groups.google.com/group/pylons-discuss

 Welcome to Pyramid. Sorry for the convenience.
 %(separator)s
 """ % {'separator': separator})

 self.out(msg)
 return Template.post(self, command, output_dir, vars)

 def out(self, msg): # pragma: no cover (replaceable testing hook)
 print(msg)

class StarterProjectTemplate(PyramidTemplate):
 _template_dir = 'starter'
 summary = 'Pyramid starter project'

class ZODBProjectTemplate(PyramidTemplate):
 _template_dir = 'zodb'
 summary = 'Pyramid ZODB project using traversal'

class AlchemyProjectTemplate(PyramidTemplate):
 _template_dir = 'alchemy'
 summary = 'Pyramid SQLAlchemy project using url dispatch'

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/paster.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.paster

import os

from paste.deploy import (
 loadapp,
 appconfig,
)

from pyramid.compat import configparser
from logging.config import fileConfig
from pyramid.scripting import prepare

[docs]def get_app(config_uri, name=None, options=None, loadapp=loadapp):
 """ Return the WSGI application named ``name`` in the PasteDeploy
 config file specified by ``config_uri``.

 ``options``, if passed, should be a dictionary used as variable assignments
 like ``{'http_port': 8080}``. This is useful if e.g. ``%(http_port)s`` is
 used in the config file.

 If the ``name`` is None, this will attempt to parse the name from
 the ``config_uri`` string expecting the format ``inifile#name``.
 If no name is found, the name will default to "main"."""
 path, section = _getpathsec(config_uri, name)
 config_name = 'config:%s' % path
 here_dir = os.getcwd()

 app = loadapp(
 config_name,
 name=section,
 relative_to=here_dir,
 global_conf=options)

 return app

[docs]def get_appsettings(config_uri, name=None, options=None, appconfig=appconfig):
 """ Return a dictionary representing the key/value pairs in an ``app``
 section within the file represented by ``config_uri``.

 ``options``, if passed, should be a dictionary used as variable assignments
 like ``{'http_port': 8080}``. This is useful if e.g. ``%(http_port)s`` is
 used in the config file.

 If the ``name`` is None, this will attempt to parse the name from
 the ``config_uri`` string expecting the format ``inifile#name``.
 If no name is found, the name will default to "main"."""
 path, section = _getpathsec(config_uri, name)
 config_name = 'config:%s' % path
 here_dir = os.getcwd()
 return appconfig(
 config_name,
 name=section,
 relative_to=here_dir,
 global_conf=options)

[docs]def setup_logging(config_uri, fileConfig=fileConfig,
 configparser=configparser):
 """
 Set up logging via the logging module's fileConfig function with the
 filename specified via ``config_uri`` (a string in the form
 ``filename#sectionname``).

 ConfigParser defaults are specified for the special ``__file__``
 and ``here`` variables, similar to PasteDeploy config loading.
 """
 path, _ = _getpathsec(config_uri, None)
 parser = configparser.ConfigParser()
 parser.read([path])
 if parser.has_section('loggers'):
 config_file = os.path.abspath(path)
 return fileConfig(
 config_file,
 dict(__file__=config_file, here=os.path.dirname(config_file))
)

def _getpathsec(config_uri, name):
 if '#' in config_uri:
 path, section = config_uri.split('#', 1)
 else:
 path, section = config_uri, 'main'
 if name:
 section = name
 return path, section

[docs]def bootstrap(config_uri, request=None, options=None):
 """ Load a WSGI application from the PasteDeploy config file specified
 by ``config_uri``. The environment will be configured as if it is
 currently serving ``request``, leaving a natural environment in place
 to write scripts that can generate URLs and utilize renderers.

 This function returns a dictionary with ``app``, ``root``, ``closer``,
 ``request``, and ``registry`` keys. ``app`` is the WSGI app loaded
 (based on the ``config_uri``), ``root`` is the traversal root resource
 of the Pyramid application, and ``closer`` is a parameterless callback
 that may be called when your script is complete (it pops a threadlocal
 stack).

 .. note::

 Most operations within :app:`Pyramid` expect to be invoked within the
 context of a WSGI request, thus it's important when loading your
 application to anchor it when executing scripts and other code that is
 not normally invoked during active WSGI requests.

 .. note::

 For a complex config file containing multiple :app:`Pyramid`
 applications, this function will setup the environment under the context
 of the last-loaded :app:`Pyramid` application. You may load a specific
 application yourself by using the lower-level functions
 :meth:`pyramid.paster.get_app` and :meth:`pyramid.scripting.prepare` in
 conjunction with :attr:`pyramid.config.global_registries`.

 ``config_uri`` -- specifies the PasteDeploy config file to use for the
 interactive shell. The format is ``inifile#name``. If the name is left
 off, ``main`` will be assumed.

 ``request`` -- specified to anchor the script to a given set of WSGI
 parameters. For example, most people would want to specify the host,
 scheme and port such that their script will generate URLs in relation
 to those parameters. A request with default parameters is constructed
 for you if none is provided. You can mutate the request's ``environ``
 later to setup a specific host/port/scheme/etc.

 ``options`` Is passed to get_app for use as variable assignments like
 {'http_port': 8080} and then use %(http_port)s in the
 config file.

 See :ref:`writing_a_script` for more information about how to use this
 function.
 """
 app = get_app(config_uri, options=options)
 env = prepare(request)
 env['app'] = app
 return env

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/decorator.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.decorator

[docs]class reify(object):
 """ Use as a class method decorator. It operates almost exactly like the
 Python ``@property`` decorator, but it puts the result of the method it
 decorates into the instance dict after the first call, effectively
 replacing the function it decorates with an instance variable. It is, in
 Python parlance, a non-data descriptor. An example:

 .. code-block:: python

 class Foo(object):
 @reify
 def jammy(self):
 print('jammy called')
 return 1

 And usage of Foo:

 >>> f = Foo()
 >>> v = f.jammy
 'jammy called'
 >>> print(v)
 1
 >>> f.jammy
 1
 >>> # jammy func not called the second time; it replaced itself with 1
 """
 def __init__(self, wrapped):
 self.wrapped = wrapped
 try:
 self.__doc__ = wrapped.__doc__
 except: # pragma: no cover
 pass

 def __get__(self, inst, objtype=None):
 if inst is None:
 return self
 val = self.wrapped(inst)
 setattr(inst, self.wrapped.__name__, val)
 return val

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_images/project.png
Pyramid starter scaffold

Welcome to MyProject, an application generated by
([) @® ihe Pyramid Web Framework 1.6a1.

Generated byvi.6a1 M Docs % Github Project @ IRC Channel # Pylons Project
copyright © pylons project

_images/project-debug.png
800 [Grmwrsarosormen x) Tmmavemstoober NV (s

€ = C [[) localhost:6543/_debug_toolbar/34333836383933303034# Ay # O L OR 4 D

Pyramid DebugToolbar History ~ Global Settings

HTTP Headers Logging Performance@@Zi) Renderers€) RequestVars SQLAlchemy

Traceback

Renderers
Renderer Name
templates/mytemplate.pt
Rendering Value

{'project': "MyProject’}

System Values

context <pyramid_traversal. DefaultRootFactory instance at 0x10574a128>
renderer_info <pyramid.renderers.RendererHelper object at 0x105797450>
renderer_name ‘templates/mytemplate.pt'

req <Request at 0x1057ab050 GET http://localhost:6543/>

request <Request at 0x1057ab050 GET http://localhost:6543/>

view <function my_view at 0x1053299b0>

_images/resourcetreetraverser.png
Any path

elements in

in traversal
stack?

Current object has a
__getitem _
method?

Model Graph Traversal

_images/tb_introspector.png
€ - C [[) localhost:6543/_debug toolbar/34333932303138343438# QX O OR 24 9P

Pyramid DebugToolbar History Global ~ Settings

Introspection ~ Routes Settings Tweens Versions

Introspection
Permissions

permission __no_permission_required_
value *_no_permission_required_"
Source

Line 9 of file /Users/stevepiercy/projects/hack-on-pyramid/scaffolds/scaffolds/_init__.py:
config.add_static_view('static', 'static', cache_max_age=3600)

References

view object <pyramid static.static_view object at 0x105bed110>

Renderer factories
renderer factory object <pyramid.renderers.JSON object at 0x1018aee50>
factory <pyramid.renderers.JSON object at 0x1018aee50>
name ‘son'

Source

Line 17 of file /Users/stevepiercy/projects/hack-on-pyramid/pyramid/config/rendering.p
self.add_renderer(name, renderer)

_images/python-3.png
@ python'3

_modules/pyramid/session.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.session

import base64
import binascii
import hashlib
import hmac
import os
import time

from zope.deprecation import deprecated
from zope.interface import implementer

from webob.cookies import SignedSerializer

from pyramid.compat import (
 pickle,
 PY3,
 text_,
 bytes_,
 native_,
)

from pyramid.exceptions import BadCSRFToken
from pyramid.interfaces import ISession
from pyramid.util import strings_differ

def manage_accessed(wrapped):
 """ Decorator which causes a cookie to be renewed when an accessor
 method is called."""
 def accessed(session, *arg, **kw):
 session.accessed = now = int(time.time())
 if session._reissue_time is not None:
 if now - session.renewed > session._reissue_time:
 session.changed()
 return wrapped(session, *arg, **kw)
 accessed.__doc__ = wrapped.__doc__
 return accessed

def manage_changed(wrapped):
 """ Decorator which causes a cookie to be set when a setter method
 is called."""
 def changed(session, *arg, **kw):
 session.accessed = int(time.time())
 session.changed()
 return wrapped(session, *arg, **kw)
 changed.__doc__ = wrapped.__doc__
 return changed

[docs]def signed_serialize(data, secret):
 """ Serialize any pickleable structure (``data``) and sign it
 using the ``secret`` (must be a string). Return the
 serialization, which includes the signature as its first 40 bytes.
 The ``signed_deserialize`` method will deserialize such a value.

 This function is useful for creating signed cookies. For example:

 .. code-block:: python

 cookieval = signed_serialize({'a':1}, 'secret')
 response.set_cookie('signed_cookie', cookieval)
 """
 pickled = pickle.dumps(data, pickle.HIGHEST_PROTOCOL)
 try:
 # bw-compat with pyramid <= 1.5b1 where latin1 is the default
 secret = bytes_(secret)
 except UnicodeEncodeError:
 secret = bytes_(secret, 'utf-8')
 sig = hmac.new(secret, pickled, hashlib.sha1).hexdigest()
 return sig + native_(base64.b64encode(pickled))

[docs]def signed_deserialize(serialized, secret, hmac=hmac):
 """ Deserialize the value returned from ``signed_serialize``. If
 the value cannot be deserialized for any reason, a
 :exc:`ValueError` exception will be raised.

 This function is useful for deserializing a signed cookie value
 created by ``signed_serialize``. For example:

 .. code-block:: python

 cookieval = request.cookies['signed_cookie']
 data = signed_deserialize(cookieval, 'secret')
 """
 # hmac parameterized only for unit tests
 try:
 input_sig, pickled = (bytes_(serialized[:40]),
 base64.b64decode(bytes_(serialized[40:])))
 except (binascii.Error, TypeError) as e:
 # Badly formed data can make base64 die
 raise ValueError('Badly formed base64 data: %s' % e)

 try:
 # bw-compat with pyramid <= 1.5b1 where latin1 is the default
 secret = bytes_(secret)
 except UnicodeEncodeError:
 secret = bytes_(secret, 'utf-8')
 sig = bytes_(hmac.new(secret, pickled, hashlib.sha1).hexdigest())

 # Avoid timing attacks (see
 # http://seb.dbzteam.org/crypto/python-oauth-timing-hmac.pdf)
 if strings_differ(sig, input_sig):
 raise ValueError('Invalid signature')

 return pickle.loads(pickled)

[docs]def check_csrf_token(request,
 token='csrf_token',
 header='X-CSRF-Token',
 raises=True):
 """ Check the CSRF token in the request's session against the value in
 ``request.params.get(token)`` or ``request.headers.get(header)``.
 If a ``token`` keyword is not supplied to this function, the string
 ``csrf_token`` will be used to look up the token in ``request.params``.
 If a ``header`` keyword is not supplied to this function, the string
 ``X-CSRF-Token`` will be used to look up the token in ``request.headers``.

 If the value supplied by param or by header doesn't match the value
 supplied by ``request.session.get_csrf_token()``, and ``raises`` is
 ``True``, this function will raise an
 :exc:`pyramid.exceptions.BadCSRFToken` exception.
 If the check does succeed and ``raises`` is ``False``, this
 function will return ``False``. If the CSRF check is successful, this
 function will return ``True`` unconditionally.

 Note that using this function requires that a :term:`session factory` is
 configured.

 .. versionadded:: 1.4a2
 """
 supplied_token = request.params.get(token, request.headers.get(header, ""))
 if strings_differ(request.session.get_csrf_token(), supplied_token):
 if raises:
 raise BadCSRFToken('check_csrf_token(): Invalid token')
 return False
 return True

class PickleSerializer(object):
 """ A Webob cookie serializer that uses the pickle protocol to dump Python
 data to bytes."""
 def loads(self, bstruct):
 return pickle.loads(bstruct)

 def dumps(self, appstruct):
 return pickle.dumps(appstruct, pickle.HIGHEST_PROTOCOL)

[docs]def BaseCookieSessionFactory(
 serializer,
 cookie_name='session',
 max_age=None,
 path='/',
 domain=None,
 secure=False,
 httponly=False,
 timeout=1200,
 reissue_time=0,
 set_on_exception=True,
):
 """
 .. versionadded:: 1.5

 Configure a :term:`session factory` which will provide cookie-based
 sessions. The return value of this function is a :term:`session factory`,
 which may be provided as the ``session_factory`` argument of a
 :class:`pyramid.config.Configurator` constructor, or used as the
 ``session_factory`` argument of the
 :meth:`pyramid.config.Configurator.set_session_factory` method.

 The session factory returned by this function will create sessions
 which are limited to storing fewer than 4000 bytes of data (as the
 payload must fit into a single cookie).

 .. warning:

 This class provides no protection from tampering and is only intended
 to be used by framework authors to create their own cookie-based
 session factories.

 Parameters:

 ``serializer``
 An object with two methods: ``loads`` and ``dumps``. The ``loads``
 method should accept bytes and return a Python object. The ``dumps``
 method should accept a Python object and return bytes. A ``ValueError``
 should be raised for malformed inputs.

 ``cookie_name``
 The name of the cookie used for sessioning. Default: ``'session'``.

 ``max_age``
 The maximum age of the cookie used for sessioning (in seconds).
 Default: ``None`` (browser scope).

 ``path``
 The path used for the session cookie. Default: ``'/'``.

 ``domain``
 The domain used for the session cookie. Default: ``None`` (no domain).

 ``secure``
 The 'secure' flag of the session cookie. Default: ``False``.

 ``httponly``
 Hide the cookie from Javascript by setting the 'HttpOnly' flag of the
 session cookie. Default: ``False``.

 ``timeout``
 A number of seconds of inactivity before a session times out. If
 ``None`` then the cookie never expires. This lifetime only applies
 to the *value* within the cookie. Meaning that if the cookie expires
 due to a lower ``max_age``, then this setting has no effect.
 Default: ``1200``.

 ``reissue_time``
 The number of seconds that must pass before the cookie is automatically
 reissued as the result of a request which accesses the session. The
 duration is measured as the number of seconds since the last session
 cookie was issued and 'now'. If this value is ``0``, a new cookie
 will be reissued on every request accessing the session. If ``None``
 then the cookie's lifetime will never be extended.

 A good rule of thumb: if you want auto-expired cookies based on
 inactivity: set the ``timeout`` value to 1200 (20 mins) and set the
 ``reissue_time`` value to perhaps a tenth of the ``timeout`` value
 (120 or 2 mins). It's nonsensical to set the ``timeout`` value lower
 than the ``reissue_time`` value, as the ticket will never be reissued.
 However, such a configuration is not explicitly prevented.

 Default: ``0``.

 ``set_on_exception``
 If ``True``, set a session cookie even if an exception occurs
 while rendering a view. Default: ``True``.

 .. versionadded: 1.5a3
 """

 @implementer(ISession)
 class CookieSession(dict):
 """ Dictionary-like session object """

 # configuration parameters
 _cookie_name = cookie_name
 _cookie_max_age = max_age
 _cookie_path = path
 _cookie_domain = domain
 _cookie_secure = secure
 _cookie_httponly = httponly
 _cookie_on_exception = set_on_exception
 _timeout = timeout
 _reissue_time = reissue_time

 # dirty flag
 _dirty = False

 def __init__(self, request):
 self.request = request
 now = time.time()
 created = renewed = now
 new = True
 value = None
 state = {}
 cookieval = request.cookies.get(self._cookie_name)
 if cookieval is not None:
 try:
 value = serializer.loads(bytes_(cookieval))
 except ValueError:
 # the cookie failed to deserialize, dropped
 value = None

 if value is not None:
 try:
 # since the value is not necessarily signed, we have
 # to unpack it a little carefully
 rval, cval, sval = value
 renewed = float(rval)
 created = float(cval)
 state = sval
 new = False
 except (TypeError, ValueError):
 # value failed to unpack properly or renewed was not
 # a numeric type so we'll fail deserialization here
 state = {}

 if self._timeout is not None:
 if now - renewed > self._timeout:
 # expire the session because it was not renewed
 # before the timeout threshold
 state = {}

 self.created = created
 self.accessed = renewed
 self.renewed = renewed
 self.new = new
 dict.__init__(self, state)

 # ISession methods
 def changed(self):
 if not self._dirty:
 self._dirty = True
 def set_cookie_callback(request, response):
 self._set_cookie(response)
 self.request = None # explicitly break cycle for gc
 self.request.add_response_callback(set_cookie_callback)

 def invalidate(self):
 self.clear() # XXX probably needs to unset cookie

 # non-modifying dictionary methods
 get = manage_accessed(dict.get)
 __getitem__ = manage_accessed(dict.__getitem__)
 items = manage_accessed(dict.items)
 values = manage_accessed(dict.values)
 keys = manage_accessed(dict.keys)
 __contains__ = manage_accessed(dict.__contains__)
 __len__ = manage_accessed(dict.__len__)
 __iter__ = manage_accessed(dict.__iter__)

 if not PY3:
 iteritems = manage_accessed(dict.iteritems)
 itervalues = manage_accessed(dict.itervalues)
 iterkeys = manage_accessed(dict.iterkeys)
 has_key = manage_accessed(dict.has_key)

 # modifying dictionary methods
 clear = manage_changed(dict.clear)
 update = manage_changed(dict.update)
 setdefault = manage_changed(dict.setdefault)
 pop = manage_changed(dict.pop)
 popitem = manage_changed(dict.popitem)
 __setitem__ = manage_changed(dict.__setitem__)
 __delitem__ = manage_changed(dict.__delitem__)

 # flash API methods
 @manage_changed
 def flash(self, msg, queue='', allow_duplicate=True):
 storage = self.setdefault('_f_' + queue, [])
 if allow_duplicate or (msg not in storage):
 storage.append(msg)

 @manage_changed
 def pop_flash(self, queue=''):
 storage = self.pop('_f_' + queue, [])
 return storage

 @manage_accessed
 def peek_flash(self, queue=''):
 storage = self.get('_f_' + queue, [])
 return storage

 # CSRF API methods
 @manage_changed
 def new_csrf_token(self):
 token = text_(binascii.hexlify(os.urandom(20)))
 self['_csrft_'] = token
 return token

 @manage_accessed
 def get_csrf_token(self):
 token = self.get('_csrft_', None)
 if token is None:
 token = self.new_csrf_token()
 return token

 # non-API methods
 def _set_cookie(self, response):
 if not self._cookie_on_exception:
 exception = getattr(self.request, 'exception', None)
 if exception is not None: # dont set a cookie during exceptions
 return False
 cookieval = native_(serializer.dumps(
 (self.accessed, self.created, dict(self))
))
 if len(cookieval) > 4064:
 raise ValueError(
 'Cookie value is too long to store (%s bytes)' %
 len(cookieval)
)
 response.set_cookie(
 self._cookie_name,
 value=cookieval,
 max_age=self._cookie_max_age,
 path=self._cookie_path,
 domain=self._cookie_domain,
 secure=self._cookie_secure,
 httponly=self._cookie_httponly,
)
 return True

 return CookieSession

[docs]def UnencryptedCookieSessionFactoryConfig(
 secret,
 timeout=1200,
 cookie_name='session',
 cookie_max_age=None,
 cookie_path='/',
 cookie_domain=None,
 cookie_secure=False,
 cookie_httponly=False,
 cookie_on_exception=True,
 signed_serialize=signed_serialize,
 signed_deserialize=signed_deserialize,
):
 """
 .. deprecated:: 1.5
 Use :func:`pyramid.session.SignedCookieSessionFactory` instead.
 Caveat: Cookies generated using ``SignedCookieSessionFactory`` are not
 compatible with cookies generated using
 ``UnencryptedCookieSessionFactory``, so existing user session data
 will be destroyed if you switch to it.

 Configure a :term:`session factory` which will provide unencrypted
 (but signed) cookie-based sessions. The return value of this
 function is a :term:`session factory`, which may be provided as
 the ``session_factory`` argument of a
 :class:`pyramid.config.Configurator` constructor, or used
 as the ``session_factory`` argument of the
 :meth:`pyramid.config.Configurator.set_session_factory`
 method.

 The session factory returned by this function will create sessions
 which are limited to storing fewer than 4000 bytes of data (as the
 payload must fit into a single cookie).

 Parameters:

 ``secret``
 A string which is used to sign the cookie.

 ``timeout``
 A number of seconds of inactivity before a session times out.

 ``cookie_name``
 The name of the cookie used for sessioning.

 ``cookie_max_age``
 The maximum age of the cookie used for sessioning (in seconds).
 Default: ``None`` (browser scope).

 ``cookie_path``
 The path used for the session cookie.

 ``cookie_domain``
 The domain used for the session cookie. Default: ``None`` (no domain).

 ``cookie_secure``
 The 'secure' flag of the session cookie.

 ``cookie_httponly``
 The 'httpOnly' flag of the session cookie.

 ``cookie_on_exception``
 If ``True``, set a session cookie even if an exception occurs
 while rendering a view.

 ``signed_serialize``
 A callable which takes more or less arbitrary Python data structure and
 a secret and returns a signed serialization in bytes.
 Default: ``signed_serialize`` (using pickle).

 ``signed_deserialize``
 A callable which takes a signed and serialized data structure in bytes
 and a secret and returns the original data structure if the signature
 is valid. Default: ``signed_deserialize`` (using pickle).
 """

 class SerializerWrapper(object):
 def __init__(self, secret):
 self.secret = secret

 def loads(self, bstruct):
 return signed_deserialize(bstruct, secret)

 def dumps(self, appstruct):
 return signed_serialize(appstruct, secret)

 serializer = SerializerWrapper(secret)

 return BaseCookieSessionFactory(
 serializer,
 cookie_name=cookie_name,
 max_age=cookie_max_age,
 path=cookie_path,
 domain=cookie_domain,
 secure=cookie_secure,
 httponly=cookie_httponly,
 timeout=timeout,
 reissue_time=0, # to keep session.accessed == session.renewed
 set_on_exception=cookie_on_exception,
)

deprecated(
 'UnencryptedCookieSessionFactoryConfig',
 'The UnencryptedCookieSessionFactoryConfig callable is deprecated as of '
 'Pyramid 1.5. Use ``pyramid.session.SignedCookieSessionFactory`` instead.'
 ' Caveat: Cookies generated using SignedCookieSessionFactory are not '
 'compatible with cookies generated using UnencryptedCookieSessionFactory, '
 'so existing user session data will be destroyed if you switch to it.'
)

[docs]def SignedCookieSessionFactory(
 secret,
 cookie_name='session',
 max_age=None,
 path='/',
 domain=None,
 secure=False,
 httponly=False,
 set_on_exception=True,
 timeout=1200,
 reissue_time=0,
 hashalg='sha512',
 salt='pyramid.session.',
 serializer=None,
):
 """
 .. versionadded:: 1.5

 Configure a :term:`session factory` which will provide signed
 cookie-based sessions. The return value of this
 function is a :term:`session factory`, which may be provided as
 the ``session_factory`` argument of a
 :class:`pyramid.config.Configurator` constructor, or used
 as the ``session_factory`` argument of the
 :meth:`pyramid.config.Configurator.set_session_factory`
 method.

 The session factory returned by this function will create sessions
 which are limited to storing fewer than 4000 bytes of data (as the
 payload must fit into a single cookie).

 Parameters:

 ``secret``
 A string which is used to sign the cookie. The secret should be at
 least as long as the block size of the selected hash algorithm. For
 ``sha512`` this would mean a 128 bit (64 character) secret. It should
 be unique within the set of secret values provided to Pyramid for
 its various subsystems (see :ref:`admonishment_against_secret_sharing`).

 ``hashalg``
 The HMAC digest algorithm to use for signing. The algorithm must be
 supported by the :mod:`hashlib` library. Default: ``'sha512'``.

 ``salt``
 A namespace to avoid collisions between different uses of a shared
 secret. Reusing a secret for different parts of an application is
 strongly discouraged (see :ref:`admonishment_against_secret_sharing`).
 Default: ``'pyramid.session.'``.

 ``cookie_name``
 The name of the cookie used for sessioning. Default: ``'session'``.

 ``max_age``
 The maximum age of the cookie used for sessioning (in seconds).
 Default: ``None`` (browser scope).

 ``path``
 The path used for the session cookie. Default: ``'/'``.

 ``domain``
 The domain used for the session cookie. Default: ``None`` (no domain).

 ``secure``
 The 'secure' flag of the session cookie. Default: ``False``.

 ``httponly``
 Hide the cookie from Javascript by setting the 'HttpOnly' flag of the
 session cookie. Default: ``False``.

 ``timeout``
 A number of seconds of inactivity before a session times out. If
 ``None`` then the cookie never expires. This lifetime only applies
 to the *value* within the cookie. Meaning that if the cookie expires
 due to a lower ``max_age``, then this setting has no effect.
 Default: ``1200``.

 ``reissue_time``
 The number of seconds that must pass before the cookie is automatically
 reissued as the result of accessing the session. The
 duration is measured as the number of seconds since the last session
 cookie was issued and 'now'. If this value is ``0``, a new cookie
 will be reissued on every request accessing the session. If ``None``
 then the cookie's lifetime will never be extended.

 A good rule of thumb: if you want auto-expired cookies based on
 inactivity: set the ``timeout`` value to 1200 (20 mins) and set the
 ``reissue_time`` value to perhaps a tenth of the ``timeout`` value
 (120 or 2 mins). It's nonsensical to set the ``timeout`` value lower
 than the ``reissue_time`` value, as the ticket will never be reissued.
 However, such a configuration is not explicitly prevented.

 Default: ``0``.

 ``set_on_exception``
 If ``True``, set a session cookie even if an exception occurs
 while rendering a view. Default: ``True``.

 ``serializer``
 An object with two methods: ``loads`` and ``dumps``. The ``loads``
 method should accept bytes and return a Python object. The ``dumps``
 method should accept a Python object and return bytes. A ``ValueError``
 should be raised for malformed inputs. If a serializer is not passed,
 the :class:`pyramid.session.PickleSerializer` serializer will be used.

 .. versionadded: 1.5a3
 """
 if serializer is None:
 serializer = PickleSerializer()

 signed_serializer = SignedSerializer(
 secret,
 salt,
 hashalg,
 serializer=serializer,
)

 return BaseCookieSessionFactory(
 signed_serializer,
 cookie_name=cookie_name,
 max_age=max_age,
 path=path,
 domain=domain,
 secure=secure,
 httponly=httponly,
 timeout=timeout,
 reissue_time=reissue_time,
 set_on_exception=set_on_exception,
)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/testing.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.testing

import copy
import os
from contextlib import contextmanager

from zope.interface import (
 implementer,
 alsoProvides,
)

from pyramid.interfaces import (
 IRequest,
 IResponseFactory,
 ISession,
)

from pyramid.compat import (
 PY3,
 PYPY,
 class_types,
)

from pyramid.config import Configurator
from pyramid.decorator import reify
from pyramid.path import caller_package
from pyramid.response import Response
from pyramid.registry import Registry

from pyramid.security import (
 Authenticated,
 Everyone,
 AuthenticationAPIMixin,
 AuthorizationAPIMixin,
)

from pyramid.threadlocal import (
 get_current_registry,
 manager,
)

from pyramid.i18n import LocalizerRequestMixin
from pyramid.request import CallbackMethodsMixin
from pyramid.url import URLMethodsMixin
from pyramid.util import InstancePropertyMixin

_marker = object()

class DummyRootFactory(object):
 __parent__ = None
 __name__ = None
 def __init__(self, request):
 if 'bfg.routes.matchdict' in request:
 self.__dict__.update(request['bfg.routes.matchdict'])

class DummySecurityPolicy(object):
 """ A standin for both an IAuthentication and IAuthorization policy """
 def __init__(self, userid=None, groupids=(), permissive=True,
 remember_result=None, forget_result=None):
 self.userid = userid
 self.groupids = groupids
 self.permissive = permissive
 if remember_result is None:
 remember_result = []
 if forget_result is None:
 forget_result = []
 self.remember_result = remember_result
 self.forget_result = forget_result

 def authenticated_userid(self, request):
 return self.userid

 def unauthenticated_userid(self, request):
 return self.userid

 def effective_principals(self, request):
 effective_principals = [Everyone]
 if self.userid:
 effective_principals.append(Authenticated)
 effective_principals.append(self.userid)
 effective_principals.extend(self.groupids)
 return effective_principals

 def remember(self, request, principal, **kw):
 self.remembered = principal
 return self.remember_result

 def forget(self, request):
 self.forgotten = True
 return self.forget_result

 def permits(self, context, principals, permission):
 return self.permissive

 def principals_allowed_by_permission(self, context, permission):
 return self.effective_principals(None)

[docs]class DummyTemplateRenderer(object):
 """
 An instance of this class is returned from
 :meth:`pyramid.config.Configurator.testing_add_renderer`. It has a
 helper function (``assert_``) that makes it possible to make an
 assertion which compares data passed to the renderer by the view
 function against expected key/value pairs.
 """
 def __init__(self, string_response=''):
 self._received = {}
 self._string_response = string_response
 self._implementation = MockTemplate(string_response)

 # For in-the-wild test code that doesn't create its own renderer,
 # but mutates our internals instead. When all you read is the
 # source code, *everything* is an API!
 def _get_string_response(self):
 return self._string_response
 def _set_string_response(self, response):
 self._string_response = response
 self._implementation.response = response
 string_response = property(_get_string_response, _set_string_response)

 def implementation(self):
 return self._implementation

 def __call__(self, kw, system=None):
 if system:
 self._received.update(system)
 self._received.update(kw)
 return self.string_response

 def __getattr__(self, k):
 """ Backwards compatibility """
 val = self._received.get(k, _marker)
 if val is _marker:
 val = self._implementation._received.get(k, _marker)
 if val is _marker:
 raise AttributeError(k)
 return val

[docs] def assert_(self, **kw):
 """ Accept an arbitrary set of assertion key/value pairs. For
 each assertion key/value pair assert that the renderer
 (eg. :func:`pyramid.renderers.render_to_response`)
 received the key with a value that equals the asserted
 value. If the renderer did not receive the key at all, or the
 value received by the renderer doesn't match the assertion
 value, raise an :exc:`AssertionError`."""
 for k, v in kw.items():
 myval = self._received.get(k, _marker)
 if myval is _marker:
 myval = self._implementation._received.get(k, _marker)
 if myval is _marker:
 raise AssertionError(
 'A value for key "%s" was not passed to the renderer'
 % k)

 if myval != v:
 raise AssertionError(
 '\nasserted value for %s: %r\nactual value: %r' % (
 k, v, myval))
 return True

[docs]class DummyResource:
 """ A dummy :app:`Pyramid` :term:`resource` object."""
 def __init__(self, __name__=None, __parent__=None, __provides__=None,
 **kw):
 """ The resource's ``__name__`` attribute will be set to the
 value of the ``__name__`` argument, and the resource's
 ``__parent__`` attribute will be set to the value of the
 ``__parent__`` argument. If ``__provides__`` is specified, it
 should be an interface object or tuple of interface objects
 that will be attached to the resulting resource via
 :func:`zope.interface.alsoProvides`. Any extra keywords passed
 in the ``kw`` argumnent will be set as direct attributes of
 the resource object.

 .. note:: For backwards compatibility purposes, this class can also
 be imported as :class:`pyramid.testing.DummyModel`.

 """
 self.__name__ = __name__
 self.__parent__ = __parent__
 if __provides__ is not None:
 alsoProvides(self, __provides__)
 self.kw = kw
 self.__dict__.update(**kw)
 self.subs = {}

 def __setitem__(self, name, val):
 """ When the ``__setitem__`` method is called, the object
 passed in as ``val`` will be decorated with a ``__parent__``
 attribute pointing at the dummy resource and a ``__name__``
 attribute that is the value of ``name``. The value will then
 be returned when dummy resource's ``__getitem__`` is called with
 the name ``name```."""
 val.__name__ = name
 val.__parent__ = self
 self.subs[name] = val

 def __getitem__(self, name):
 """ Return a named subobject (see ``__setitem__``)"""
 ob = self.subs[name]
 return ob

 def __delitem__(self, name):
 del self.subs[name]

 def get(self, name, default=None):
 return self.subs.get(name, default)

[docs] def values(self):
 """ Return the values set by __setitem__ """
 return self.subs.values()

[docs] def items(self):
 """ Return the items set by __setitem__ """
 return self.subs.items()

[docs] def keys(self):
 """ Return the keys set by __setitem__ """
 return self.subs.keys()

 __iter__ = keys

 def __nonzero__(self):
 return True

 __bool__ = __nonzero__

 def __len__(self):
 return len(self.subs)

 def __contains__(self, name):
 return name in self.subs

[docs] def clone(self, __name__=_marker, __parent__=_marker, **kw):
 """ Create a clone of the resource object. If ``__name__`` or
 ``__parent__`` arguments are passed, use these values to
 override the existing ``__name__`` or ``__parent__`` of the
 resource. If any extra keyword args are passed in via the ``kw``
 argument, use these keywords to add to or override existing
 resource keywords (attributes)."""
 oldkw = self.kw.copy()
 oldkw.update(kw)
 inst = self.__class__(self.__name__, self.__parent__, **oldkw)
 inst.subs = copy.deepcopy(self.subs)
 if __name__ is not _marker:
 inst.__name__ = __name__
 if __parent__ is not _marker:
 inst.__parent__ = __parent__
 return inst

DummyModel = DummyResource # b/w compat (forever)

@implementer(ISession)
class DummySession(dict):
 created = None
 new = True
 def changed(self):
 pass

 def invalidate(self):
 self.clear()

 def flash(self, msg, queue='', allow_duplicate=True):
 storage = self.setdefault('_f_' + queue, [])
 if allow_duplicate or (msg not in storage):
 storage.append(msg)

 def pop_flash(self, queue=''):
 storage = self.pop('_f_' + queue, [])
 return storage

 def peek_flash(self, queue=''):
 storage = self.get('_f_' + queue, [])
 return storage

 def new_csrf_token(self):
 token = '0123456789012345678901234567890123456789'
 self['_csrft_'] = token
 return token

 def get_csrf_token(self):
 token = self.get('_csrft_', None)
 if token is None:
 token = self.new_csrf_token()
 return token

@implementer(IRequest)
[docs]class DummyRequest(
 URLMethodsMixin,
 CallbackMethodsMixin,
 InstancePropertyMixin,
 LocalizerRequestMixin,
 AuthenticationAPIMixin,
 AuthorizationAPIMixin,
):
 """ A DummyRequest object (incompletely) imitates a :term:`request` object.

 The ``params``, ``environ``, ``headers``, ``path``, and
 ``cookies`` arguments correspond to their :term:`WebOb`
 equivalents.

 The ``post`` argument, if passed, populates the request's
 ``POST`` attribute, but *not* ``params``, in order to allow testing
 that the app accepts data for a given view only from POST requests.
 This argument also sets ``self.method`` to "POST".

 Extra keyword arguments are assigned as attributes of the request
 itself.

 Note that DummyRequest does not have complete fidelity with a "real"
 request. For example, by default, the DummyRequest ``GET`` and ``POST``
 attributes are of type ``dict``, unlike a normal Request's GET and POST,
 which are of type ``MultiDict``. If your code uses the features of
 MultiDict, you should either use a real :class:`pyramid.request.Request`
 or adapt your DummyRequest by replacing the attributes with ``MultiDict``
 instances.

 Other similar incompatibilities exist. If you need all the features of
 a Request, use the :class:`pyramid.request.Request` class itself rather
 than this class while writing tests.
 """
 method = 'GET'
 application_url = 'http://example.com'
 host = 'example.com:80'
 domain = 'example.com'
 content_length = 0
 query_string = ''
 charset = 'UTF-8'
 script_name = ''
 _registry = None

 def __init__(self, params=None, environ=None, headers=None, path='/',
 cookies=None, post=None, **kw):
 if environ is None:
 environ = {}
 if params is None:
 params = {}
 if headers is None:
 headers = {}
 if cookies is None:
 cookies = {}
 self.environ = environ
 self.headers = headers
 self.params = params
 self.cookies = cookies
 self.matchdict = {}
 self.GET = params
 if post is not None:
 self.method = 'POST'
 self.POST = post
 else:
 self.POST = params
 self.host_url = self.application_url
 self.path_url = self.application_url
 self.url = self.application_url
 self.path = path
 self.path_info = path
 self.script_name = ''
 self.path_qs = ''
 self.body = ''
 self.view_name = ''
 self.subpath = ()
 self.traversed = ()
 self.virtual_root_path = ()
 self.context = None
 self.root = None
 self.virtual_root = None
 self.marshalled = params # repoze.monty
 self.session = DummySession()
 self.__dict__.update(kw)

 def _get_registry(self):
 if self._registry is None:
 return get_current_registry()
 return self._registry

 def _set_registry(self, registry):
 self._registry = registry

 def _del_registry(self):
 self._registry = None

 registry = property(_get_registry, _set_registry, _del_registry)

 @reify
 def response(self):
 f = self.registry.queryUtility(IResponseFactory, default=Response)
 return f()

have_zca = True

[docs]def setUp(registry=None, request=None, hook_zca=True, autocommit=True,
 settings=None, package=None):
 """
 Set :app:`Pyramid` registry and request thread locals for the
 duration of a single unit test.

 Use this function in the ``setUp`` method of a unittest test case
 which directly or indirectly uses:

 - any method of the :class:`pyramid.config.Configurator`
 object returned by this function.

 - the :func:`pyramid.threadlocal.get_current_registry` or
 :func:`pyramid.threadlocal.get_current_request` functions.

 If you use the ``get_current_*`` functions (or call :app:`Pyramid` code
 that uses these functions) without calling ``setUp``,
 :func:`pyramid.threadlocal.get_current_registry` will return a *global*
 :term:`application registry`, which may cause unit tests to not be
 isolated with respect to registrations they perform.

 If the ``registry`` argument is ``None``, a new empty
 :term:`application registry` will be created (an instance of the
 :class:`pyramid.registry.Registry` class). If the ``registry``
 argument is not ``None``, the value passed in should be an
 instance of the :class:`pyramid.registry.Registry` class or a
 suitable testing analogue.

 After ``setUp`` is finished, the registry returned by the
 :func:`pyramid.threadlocal.get_current_registry` function will
 be the passed (or constructed) registry until
 :func:`pyramid.testing.tearDown` is called (or
 :func:`pyramid.testing.setUp` is called again) .

 If the ``hook_zca`` argument is ``True``, ``setUp`` will attempt
 to perform the operation ``zope.component.getSiteManager.sethook(
 pyramid.threadlocal.get_current_registry)``, which will cause
 the :term:`Zope Component Architecture` global API
 (e.g. :func:`zope.component.getSiteManager`,
 :func:`zope.component.getAdapter`, and so on) to use the registry
 constructed by ``setUp`` as the value it returns from
 :func:`zope.component.getSiteManager`. If the
 :mod:`zope.component` package cannot be imported, or if
 ``hook_zca`` is ``False``, the hook will not be set.

 If ``settings`` is not ``None``, it must be a dictionary representing the
 values passed to a Configurator as its ``settings=`` argument.

 If ``package`` is ``None`` it will be set to the caller's package. The
 ``package`` setting in the :class:`pyramid.config.Configurator` will
 affect any relative imports made via
 :meth:`pyramid.config.Configurator.include` or
 :meth:`pyramid.config.Configurator.maybe_dotted`.

 This function returns an instance of the
 :class:`pyramid.config.Configurator` class, which can be
 used for further configuration to set up an environment suitable
 for a unit or integration test. The ``registry`` attribute
 attached to the Configurator instance represents the 'current'
 :term:`application registry`; the same registry will be returned
 by :func:`pyramid.threadlocal.get_current_registry` during the
 execution of the test.
 """
 manager.clear()
 if registry is None:
 registry = Registry('testing')
 if package is None:
 package = caller_package()
 config = Configurator(registry=registry, autocommit=autocommit,
 package=package)
 if settings is None:
 settings = {}
 if getattr(registry, 'settings', None) is None:
 config._set_settings(settings)
 if hasattr(registry, 'registerUtility'):
 # Sometimes nose calls us with a non-registry object because
 # it thinks this function is module test setup. Likewise,
 # someone may be passing us an esoteric "dummy" registry, and
 # the below won't succeed if it doesn't have a registerUtility
 # method.
 config.add_default_renderers()
 config.add_default_view_predicates()
 config.add_default_route_predicates()
 config.commit()
 global have_zca
 try:
 have_zca and hook_zca and config.hook_zca()
 except ImportError: # pragma: no cover
 # (dont choke on not being able to import z.component)
 have_zca = False
 config.begin(request=request)
 return config

[docs]def tearDown(unhook_zca=True):
 """Undo the effects of :func:`pyramid.testing.setUp`. Use this
 function in the ``tearDown`` method of a unit test that uses
 :func:`pyramid.testing.setUp` in its ``setUp`` method.

 If the ``unhook_zca`` argument is ``True`` (the default), call
 :func:`zope.component.getSiteManager.reset`. This undoes the
 action of :func:`pyramid.testing.setUp` when called with the
 argument ``hook_zca=True``. If :mod:`zope.component` cannot be
 imported, ``unhook_zca`` is set to ``False``.
 """
 global have_zca
 if unhook_zca and have_zca:
 try:
 from zope.component import getSiteManager
 getSiteManager.reset()
 except ImportError: # pragma: no cover
 have_zca = False
 info = manager.pop()
 manager.clear()
 if info is not None:
 registry = info['registry']
 if hasattr(registry, '__init__') and hasattr(registry, '__name__'):
 try:
 registry.__init__(registry.__name__)
 except TypeError:
 # calling __init__ is largely for the benefit of
 # people who want to use the global ZCA registry;
 # however maybe somebody's using a registry we don't
 # understand, let's not blow up
 pass

[docs]def cleanUp(*arg, **kw):
 """ An alias for :func:`pyramid.testing.setUp`. """
 package = kw.get('package', None)
 if package is None:
 package = caller_package()
 kw['package'] = package
 return setUp(*arg, **kw)

class DummyRendererFactory(object):
 """ Registered by
 :meth:`pyramid.config.Configurator.testing_add_renderer` as
 a dummy renderer factory. The indecision about what to use as a
 key (a spec vs. a relative name) is caused by test suites in the
 wild believing they can register either. The ``factory`` argument
 passed to this constructor is usually the *real* template renderer
 factory, found when ``testing_add_renderer`` is called."""
 def __init__(self, name, factory):
 self.name = name
 self.factory = factory # the "real" renderer factory reg'd previously
 self.renderers = {}

 def add(self, spec, renderer):
 self.renderers[spec] = renderer
 if ':' in spec:
 package, relative = spec.split(':', 1)
 self.renderers[relative] = renderer

 def __call__(self, info):
 spec = info.name
 renderer = self.renderers.get(spec)
 if renderer is None:
 if ':' in spec:
 package, relative = spec.split(':', 1)
 renderer = self.renderers.get(relative)
 if renderer is None:
 if self.factory:
 renderer = self.factory(info)
 else:
 raise KeyError('No testing renderer registered for %r' %
 spec)
 return renderer

class MockTemplate(object):
 def __init__(self, response):
 self._received = {}
 self.response = response
 def __getattr__(self, attrname):
 return self
 def __getitem__(self, attrname):
 return self
 def __call__(self, *arg, **kw):
 self._received.update(kw)
 return self.response

def skip_on(*platforms): # pragma: no cover
 skip = False
 for platform in platforms:
 if skip_on.os_name.startswith(platform):
 skip = True
 if platform == 'pypy' and PYPY:
 skip = True
 if platform == 'py3' and PY3:
 skip = True
 def decorator(func):
 if isinstance(func, class_types):
 if skip: return None
 else: return func
 else:
 def wrapper(*args, **kw):
 if skip:
 return
 return func(*args, **kw)
 wrapper.__name__ = func.__name__
 wrapper.__doc__ = func.__doc__
 return wrapper
 return decorator
skip_on.os_name = os.name # for testing

@contextmanager
[docs]def testConfig(registry=None,
 request=None,
 hook_zca=True,
 autocommit=True,
 settings=None):
 """Returns a context manager for test set up.

 This context manager calls :func:`pyramid.testing.setUp` when
 entering and :func:`pyramid.testing.tearDown` when exiting.

 All arguments are passed directly to :func:`pyramid.testing.setUp`.
 If the ZCA is hooked, it will always be un-hooked in tearDown.

 This context manager allows you to write test code like this:

 .. code-block:: python
 :linenos:

 with testConfig() as config:
 config.add_route('bar', '/bar/{id}')
 req = DummyRequest()
 resp = myview(req),
 """
 config = setUp(registry=registry,
 request=request,
 hook_zca=hook_zca,
 autocommit=autocommit,
 settings=settings)
 try:
 yield config
 finally:
 tearDown(unhook_zca=hook_zca)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/traversal.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.traversal

import warnings

from zope.deprecation import deprecated

from zope.interface import implementer
from zope.interface.interfaces import IInterface

from repoze.lru import lru_cache

from pyramid.interfaces import (
 IResourceURL,
 IRequestFactory,
 ITraverser,
 VH_ROOT_KEY,
)

with warnings.catch_warnings():
 warnings.filterwarnings('ignore')
 from pyramid.interfaces import IContextURL

from pyramid.compat import (
 PY3,
 native_,
 text_,
 ascii_native_,
 text_type,
 binary_type,
 is_nonstr_iter,
 decode_path_info,
 unquote_bytes_to_wsgi,
)

from pyramid.encode import url_quote
from pyramid.exceptions import URLDecodeError
from pyramid.location import lineage
from pyramid.threadlocal import get_current_registry

empty = text_('')

[docs]def find_root(resource):
 """ Find the root node in the resource tree to which ``resource``
 belongs. Note that ``resource`` should be :term:`location`-aware.
 Note that the root resource is available in the request object by
 accessing the ``request.root`` attribute.
 """
 for location in lineage(resource):
 if location.__parent__ is None:
 resource = location
 break
 return resource

[docs]def find_resource(resource, path):
 """ Given a resource object and a string or tuple representing a path
 (such as the return value of :func:`pyramid.traversal.resource_path` or
 :func:`pyramid.traversal.resource_path_tuple`), return a resource in this
 application's resource tree at the specified path. The resource passed
 in *must* be :term:`location`-aware. If the path cannot be resolved (if
 the respective node in the resource tree does not exist), a
 :exc:`KeyError` will be raised.

 This function is the logical inverse of
 :func:`pyramid.traversal.resource_path` and
 :func:`pyramid.traversal.resource_path_tuple`; it can resolve any
 path string or tuple generated by either of those functions.

 Rules for passing a *string* as the ``path`` argument: if the
 first character in the path string is the ``/``
 character, the path is considered absolute and the resource tree
 traversal will start at the root resource. If the first character
 of the path string is *not* the ``/`` character, the path is
 considered relative and resource tree traversal will begin at the resource
 object supplied to the function as the ``resource`` argument. If an
 empty string is passed as ``path``, the ``resource`` passed in will
 be returned. Resource path strings must be escaped in the following
 manner: each Unicode path segment must be encoded as UTF-8 and as
 each path segment must escaped via Python's :mod:`urllib.quote`.
 For example, ``/path/to%20the/La%20Pe%C3%B1a`` (absolute) or
 ``to%20the/La%20Pe%C3%B1a`` (relative). The
 :func:`pyramid.traversal.resource_path` function generates strings
 which follow these rules (albeit only absolute ones).

 Rules for passing *text* (Unicode) as the ``path`` argument are the same
 as those for a string. In particular, the text may not have any nonascii
 characters in it.

 Rules for passing a *tuple* as the ``path`` argument: if the first
 element in the path tuple is the empty string (for example ``('',
 'a', 'b', 'c')``, the path is considered absolute and the resource tree
 traversal will start at the resource tree root object. If the first
 element in the path tuple is not the empty string (for example
 ``('a', 'b', 'c')``), the path is considered relative and resource tree
 traversal will begin at the resource object supplied to the function
 as the ``resource`` argument. If an empty sequence is passed as
 ``path``, the ``resource`` passed in itself will be returned. No
 URL-quoting or UTF-8-encoding of individual path segments within
 the tuple is required (each segment may be any string or unicode
 object representing a resource name). Resource path tuples generated by
 :func:`pyramid.traversal.resource_path_tuple` can always be
 resolved by ``find_resource``.

 .. note:: For backwards compatibility purposes, this function can also
 be imported as :func:`pyramid.traversal.find_model`, although doing so
 will emit a deprecation warning.
 """
 if isinstance(path, text_type):
 path = ascii_native_(path)
 D = traverse(resource, path)
 view_name = D['view_name']
 context = D['context']
 if view_name:
 raise KeyError('%r has no subelement %s' % (context, view_name))
 return context

find_model = find_resource # b/w compat (forever)

[docs]def find_interface(resource, class_or_interface):
 """
 Return the first resource found in the :term:`lineage` of ``resource``
 which, a) if ``class_or_interface`` is a Python class object, is an
 instance of the class or any subclass of that class or b) if
 ``class_or_interface`` is a :term:`interface`, provides the specified
 interface. Return ``None`` if no resource providing ``interface_or_class``
 can be found in the lineage. The ``resource`` passed in *must* be
 :term:`location`-aware.
 """
 if IInterface.providedBy(class_or_interface):
 test = class_or_interface.providedBy
 else:
 test = lambda arg: isinstance(arg, class_or_interface)
 for location in lineage(resource):
 if test(location):
 return location

[docs]def resource_path(resource, *elements):
 """ Return a string object representing the absolute physical path of the
 resource object based on its position in the resource tree, e.g
 ``/foo/bar``. Any positional arguments passed in as ``elements`` will be
 appended as path segments to the end of the resource path. For instance,
 if the resource's path is ``/foo/bar`` and ``elements`` equals ``('a',
 'b')``, the returned string will be ``/foo/bar/a/b``. The first
 character in the string will always be the ``/`` character (a leading
 ``/`` character in a path string represents that the path is absolute).

 Resource path strings returned will be escaped in the following
 manner: each unicode path segment will be encoded as UTF-8 and
 each path segment will be escaped via Python's :mod:`urllib.quote`.
 For example, ``/path/to%20the/La%20Pe%C3%B1a``.

 This function is a logical inverse of
 :mod:`pyramid.traversal.find_resource`: it can be used to generate
 path references that can later be resolved via that function.

 The ``resource`` passed in *must* be :term:`location`-aware.

 .. note::

 Each segment in the path string returned will use the ``__name__``
 attribute of the resource it represents within the resource tree. Each
 of these segments *should* be a unicode or string object (as per the
 contract of :term:`location`-awareness). However, no conversion or
 safety checking of resource names is performed. For instance, if one of
 the resources in your tree has a ``__name__`` which (by error) is a
 dictionary, the :func:`pyramid.traversal.resource_path` function will
 attempt to append it to a string and it will cause a
 :exc:`pyramid.exceptions.URLDecodeError`.

 .. note::

 The :term:`root` resource *must* have a ``__name__`` attribute with a
 value of either ``None`` or the empty string for paths to be generated
 properly. If the root resource has a non-null ``__name__`` attribute,
 its name will be prepended to the generated path rather than a single
 leading '/' character.

 .. note::

 For backwards compatibility purposes, this function can also
 be imported as ``model_path``, although doing so will cause
 a deprecation warning to be emitted.
 """
 # joining strings is a bit expensive so we delegate to a function
 # which caches the joined result for us
 return _join_path_tuple(resource_path_tuple(resource, *elements))

model_path = resource_path # b/w compat (forever)

[docs]def traverse(resource, path):
 """Given a resource object as ``resource`` and a string or tuple
 representing a path as ``path`` (such as the return value of
 :func:`pyramid.traversal.resource_path` or
 :func:`pyramid.traversal.resource_path_tuple` or the value of
 ``request.environ['PATH_INFO']``), return a dictionary with the
 keys ``context``, ``root``, ``view_name``, ``subpath``,
 ``traversed``, ``virtual_root``, and ``virtual_root_path``.

 A definition of each value in the returned dictionary:

 - ``context``: The :term:`context` (a :term:`resource` object) found
 via traversal or url dispatch. If the ``path`` passed in is the
 empty string, the value of the ``resource`` argument passed to this
 function is returned.

 - ``root``: The resource object at which :term:`traversal` begins.
 If the ``resource`` passed in was found via url dispatch or if the
 ``path`` passed in was relative (non-absolute), the value of the
 ``resource`` argument passed to this function is returned.

 - ``view_name``: The :term:`view name` found during
 :term:`traversal` or :term:`url dispatch`; if the ``resource`` was
 found via traversal, this is usually a representation of the
 path segment which directly follows the path to the ``context``
 in the ``path``. The ``view_name`` will be a Unicode object or
 the empty string. The ``view_name`` will be the empty string if
 there is no element which follows the ``context`` path. An
 example: if the path passed is ``/foo/bar``, and a resource
 object is found at ``/foo`` (but not at ``/foo/bar``), the 'view
 name' will be ``u'bar'``. If the ``resource`` was found via
 urldispatch, the view_name will be the name the route found was
 registered with.

 - ``subpath``: For a ``resource`` found via :term:`traversal`, this
 is a sequence of path segments found in the ``path`` that follow
 the ``view_name`` (if any). Each of these items is a Unicode
 object. If no path segments follow the ``view_name``, the
 subpath will be the empty sequence. An example: if the path
 passed is ``/foo/bar/baz/buz``, and a resource object is found at
 ``/foo`` (but not ``/foo/bar``), the 'view name' will be
 ``u'bar'`` and the :term:`subpath` will be ``[u'baz', u'buz']``.
 For a ``resource`` found via url dispatch, the subpath will be a
 sequence of values discerned from ``*subpath`` in the route
 pattern matched or the empty sequence.

 - ``traversed``: The sequence of path elements traversed from the
 root to find the ``context`` object during :term:`traversal`.
 Each of these items is a Unicode object. If no path segments
 were traversed to find the ``context`` object (e.g. if the
 ``path`` provided is the empty string), the ``traversed`` value
 will be the empty sequence. If the ``resource`` is a resource found
 via :term:`url dispatch`, traversed will be None.

 - ``virtual_root``: A resource object representing the 'virtual' root
 of the resource tree being traversed during :term:`traversal`.
 See :ref:`vhosting_chapter` for a definition of the virtual root
 object. If no virtual hosting is in effect, and the ``path``
 passed in was absolute, the ``virtual_root`` will be the
 physical root resource object (the object at which :term:`traversal`
 begins). If the ``resource`` passed in was found via :term:`URL
 dispatch` or if the ``path`` passed in was relative, the
 ``virtual_root`` will always equal the ``root`` object (the
 resource passed in).

 - ``virtual_root_path`` -- If :term:`traversal` was used to find
 the ``resource``, this will be the sequence of path elements
 traversed to find the ``virtual_root`` resource. Each of these
 items is a Unicode object. If no path segments were traversed
 to find the ``virtual_root`` resource (e.g. if virtual hosting is
 not in effect), the ``traversed`` value will be the empty list.
 If url dispatch was used to find the ``resource``, this will be
 ``None``.

 If the path cannot be resolved, a :exc:`KeyError` will be raised.

 Rules for passing a *string* as the ``path`` argument: if the
 first character in the path string is the with the ``/``
 character, the path will considered absolute and the resource tree
 traversal will start at the root resource. If the first character
 of the path string is *not* the ``/`` character, the path is
 considered relative and resource tree traversal will begin at the resource
 object supplied to the function as the ``resource`` argument. If an
 empty string is passed as ``path``, the ``resource`` passed in will
 be returned. Resource path strings must be escaped in the following
 manner: each Unicode path segment must be encoded as UTF-8 and
 each path segment must escaped via Python's :mod:`urllib.quote`.
 For example, ``/path/to%20the/La%20Pe%C3%B1a`` (absolute) or
 ``to%20the/La%20Pe%C3%B1a`` (relative). The
 :func:`pyramid.traversal.resource_path` function generates strings
 which follow these rules (albeit only absolute ones).

 Rules for passing a *tuple* as the ``path`` argument: if the first
 element in the path tuple is the empty string (for example ``('',
 'a', 'b', 'c')``, the path is considered absolute and the resource tree
 traversal will start at the resource tree root object. If the first
 element in the path tuple is not the empty string (for example
 ``('a', 'b', 'c')``), the path is considered relative and resource tree
 traversal will begin at the resource object supplied to the function
 as the ``resource`` argument. If an empty sequence is passed as
 ``path``, the ``resource`` passed in itself will be returned. No
 URL-quoting or UTF-8-encoding of individual path segments within
 the tuple is required (each segment may be any string or unicode
 object representing a resource name).

 Explanation of the conversion of ``path`` segment values to
 Unicode during traversal: Each segment is URL-unquoted, and
 decoded into Unicode. Each segment is assumed to be encoded using
 the UTF-8 encoding (or a subset, such as ASCII); a
 :exc:`pyramid.exceptions.URLDecodeError` is raised if a segment
 cannot be decoded. If a segment name is empty or if it is ``.``,
 it is ignored. If a segment name is ``..``, the previous segment
 is deleted, and the ``..`` is ignored. As a result of this
 process, the return values ``view_name``, each element in the
 ``subpath``, each element in ``traversed``, and each element in
 the ``virtual_root_path`` will be Unicode as opposed to a string,
 and will be URL-decoded.
 """

 if is_nonstr_iter(path):
 # the traverser factory expects PATH_INFO to be a string, not
 # unicode and it expects path segments to be utf-8 and
 # urlencoded (it's the same traverser which accepts PATH_INFO
 # from user agents; user agents always send strings).
 if path:
 path = _join_path_tuple(tuple(path))
 else:
 path = ''

 # The user is supposed to pass us a string object, never Unicode. In
 # practice, however, users indeed pass Unicode to this API. If they do
 # pass a Unicode object, its data *must* be entirely encodeable to ASCII,
 # so we encode it here as a convenience to the user and to prevent
 # second-order failures from cropping up (all failures will occur at this
 # step rather than later down the line as the result of calling
 # ``traversal_path``).

 path = ascii_native_(path)

 if path and path[0] == '/':
 resource = find_root(resource)

 reg = get_current_registry()

 request_factory = reg.queryUtility(IRequestFactory)
 if request_factory is None:
 from pyramid.request import Request # avoid circdep
 request_factory = Request

 request = request_factory.blank(path)
 request.registry = reg
 traverser = reg.queryAdapter(resource, ITraverser)
 if traverser is None:
 traverser = ResourceTreeTraverser(resource)

 return traverser(request)

[docs]def resource_path_tuple(resource, *elements):
 """
 Return a tuple representing the absolute physical path of the
 ``resource`` object based on its position in a resource tree, e.g
 ``('', 'foo', 'bar')``. Any positional arguments passed in as
 ``elements`` will be appended as elements in the tuple
 representing the resource path. For instance, if the resource's
 path is ``('', 'foo', 'bar')`` and elements equals ``('a', 'b')``,
 the returned tuple will be ``('', 'foo', 'bar', 'a', 'b')``. The
 first element of this tuple will always be the empty string (a
 leading empty string element in a path tuple represents that the
 path is absolute).

 This function is a logical inverse of
 :func:`pyramid.traversal.find_resource`: it can be used to
 generate path references that can later be resolved by that function.

 The ``resource`` passed in *must* be :term:`location`-aware.

 .. note::

 Each segment in the path tuple returned will equal the ``__name__``
 attribute of the resource it represents within the resource tree. Each
 of these segments *should* be a unicode or string object (as per the
 contract of :term:`location`-awareness). However, no conversion or
 safety checking of resource names is performed. For instance, if one of
 the resources in your tree has a ``__name__`` which (by error) is a
 dictionary, that dictionary will be placed in the path tuple; no warning
 or error will be given.

 .. note::

 The :term:`root` resource *must* have a ``__name__`` attribute with a
 value of either ``None`` or the empty string for path tuples to be
 generated properly. If the root resource has a non-null ``__name__``
 attribute, its name will be the first element in the generated path tuple
 rather than the empty string.

 .. note::

 For backwards compatibility purposes, this function can also be imported
 as ``model_path_tuple``, although doing so will cause a deprecation
 warning to be emitted.
 """
 return tuple(_resource_path_list(resource, *elements))

model_path_tuple = resource_path_tuple # b/w compat (forever)

def _resource_path_list(resource, *elements):
 """ Implementation detail shared by resource_path and resource_path_tuple"""
 path = [loc.__name__ or '' for loc in lineage(resource)]
 path.reverse()
 path.extend(elements)
 return path

_model_path_list = _resource_path_list # b/w compat, not an API

[docs]def virtual_root(resource, request):
 """
 Provided any :term:`resource` and a :term:`request` object, return
 the resource object representing the :term:`virtual root` of the
 current :term:`request`. Using a virtual root in a
 :term:`traversal` -based :app:`Pyramid` application permits
 rooting, for example, the resource at the traversal path ``/cms`` at
 ``http://example.com/`` instead of rooting it at
 ``http://example.com/cms/``.

 If the ``resource`` passed in is a context obtained via
 :term:`traversal`, and if the ``HTTP_X_VHM_ROOT`` key is in the
 WSGI environment, the value of this key will be treated as a
 'virtual root path': the :func:`pyramid.traversal.find_resource`
 API will be used to find the virtual root resource using this path;
 if the resource is found, it will be returned. If the
 ``HTTP_X_VHM_ROOT`` key is not present in the WSGI environment,
 the physical :term:`root` of the resource tree will be returned instead.

 Virtual roots are not useful at all in applications that use
 :term:`URL dispatch`. Contexts obtained via URL dispatch don't
 really support being virtually rooted (each URL dispatch context
 is both its own physical and virtual root). However if this API
 is called with a ``resource`` argument which is a context obtained
 via URL dispatch, the resource passed in will be returned
 unconditionally."""
 try:
 reg = request.registry
 except AttributeError:
 reg = get_current_registry() # b/c
 urlgenerator = reg.queryMultiAdapter((resource, request), IContextURL)
 if urlgenerator is None:
 urlgenerator = TraversalContextURL(resource, request)
 return urlgenerator.virtual_root()

[docs]def traversal_path(path):
 """ Variant of :func:`pyramid.traversal.traversal_path_info` suitable for
 decoding paths that are URL-encoded.

 If this function is passed a Unicode object instead of a sequence of
 bytes as ``path``, that Unicode object *must* directly encodeable to
 ASCII. For example, u'/foo' will work but u'/<unprintable unicode>' (a
 Unicode object with characters that cannot be encoded to ascii) will
 not. A :exc:`UnicodeEncodeError` will be raised if the Unicode cannot be
 encoded directly to ASCII.
 """
 if isinstance(path, text_type):
 # must not possess characters outside ascii
 path = path.encode('ascii')
 # we unquote this path exactly like a PEP 3333 server would
 path = unquote_bytes_to_wsgi(path) # result will be a native string
 return traversal_path_info(path) # result will be a tuple of unicode

@lru_cache(1000)
def traversal_path_info(path):
 """ Given``path``, return a tuple representing that path which can be
 used to traverse a resource tree. ``path`` is assumed to be an
 already-URL-decoded ``str`` type as if it had come to us from an upstream
 WSGI server as the ``PATH_INFO`` environ variable.

 The ``path`` is first decoded to from its WSGI representation to Unicode;
 it is decoded differently depending on platform:

 - On Python 2, ``path`` is decoded to Unicode from bytes using the UTF-8
 decoding directly; a :exc:`pyramid.exc.URLDecodeError` is raised if a the
 URL cannot be decoded.

 - On Python 3, as per the PEP 3333 spec, ``path`` is first encoded to
 bytes using the Latin-1 encoding; the resulting set of bytes is
 subsequently decoded to text using the UTF-8 encoding; a
 :exc:`pyramid.exc.URLDecodeError` is raised if a the URL cannot be
 decoded.

 The ``path`` is split on slashes, creating a list of segments. If a
 segment name is empty or if it is ``.``, it is ignored. If a segment
 name is ``..``, the previous segment is deleted, and the ``..`` is
 ignored.

 Examples:

 ``/``

 ()

 ``/foo/bar/baz``

 (u'foo', u'bar', u'baz')

 ``foo/bar/baz``

 (u'foo', u'bar', u'baz')

 ``/foo/bar/baz/``

 (u'foo', u'bar', u'baz')

 ``/foo//bar//baz/``

 (u'foo', u'bar', u'baz')

 ``/foo/bar/baz/..``

 (u'foo', u'bar')

 ``/my%20archives/hello``

 (u'my archives', u'hello')

 ``/archives/La%20Pe%C3%B1a``

 (u'archives', u'<unprintable unicode>')

 .. note::

 This function does not generate the same type of tuples that
 :func:`pyramid.traversal.resource_path_tuple` does. In particular, the
 leading empty string is not present in the tuple it returns, unlike tuples
 returned by :func:`pyramid.traversal.resource_path_tuple`. As a result,
 tuples generated by ``traversal_path`` are not resolveable by the
 :func:`pyramid.traversal.find_resource` API. ``traversal_path`` is a
 function mostly used by the internals of :app:`Pyramid` and by people
 writing their own traversal machinery, as opposed to users writing
 applications in :app:`Pyramid`.
 """
 try:
 path = decode_path_info(path) # result will be Unicode
 except UnicodeDecodeError as e:
 raise URLDecodeError(e.encoding, e.object, e.start, e.end, e.reason)
 return split_path_info(path) # result will be tuple of Unicode

@lru_cache(1000)
def split_path_info(path):
 # suitable for splitting an already-unquoted-already-decoded (unicode)
 # path value
 path = path.strip('/')
 clean = []
 for segment in path.split('/'):
 if not segment or segment == '.':
 continue
 elif segment == '..':
 if clean:
 del clean[-1]
 else:
 clean.append(segment)
 return tuple(clean)

_segment_cache = {}

quote_path_segment_doc = """ \
Return a quoted representation of a 'path segment' (such as
the string ``__name__`` attribute of a resource) as a string. If the
``segment`` passed in is a unicode object, it is converted to a
UTF-8 string, then it is URL-quoted using Python's
``urllib.quote``. If the ``segment`` passed in is a string, it is
URL-quoted using Python's :mod:`urllib.quote`. If the segment
passed in is not a string or unicode object, an error will be
raised. The return value of ``quote_path_segment`` is always a
string, never Unicode.

You may pass a string of characters that need not be encoded as
the ``safe`` argument to this function. This corresponds to the
``safe`` argument to :mod:`urllib.quote`.

.. note::

 The return value for each segment passed to this
 function is cached in a module-scope dictionary for
 speed: the cached version is returned when possible
 rather than recomputing the quoted version. No cache
 emptying is ever done for the lifetime of an
 application, however. If you pass arbitrary
 user-supplied strings to this function (as opposed to
 some bounded set of values from a 'working set' known to
 your application), it may become a memory leak.
"""

if PY3: # pragma: no cover
 # special-case on Python 2 for speed? unchecked
 def quote_path_segment(segment, safe=''):
 """ %s """ % quote_path_segment_doc
 # The bit of this code that deals with ``_segment_cache`` is an
 # optimization: we cache all the computation of URL path segments
 # in this module-scope dictionary with the original string (or
 # unicode value) as the key, so we can look it up later without
 # needing to reencode or re-url-quote it
 try:
 return _segment_cache[(segment, safe)]
 except KeyError:
 if segment.__class__ not in (text_type, binary_type):
 segment = str(segment)
 result = url_quote(native_(segment, 'utf-8'), safe)
 # we don't need a lock to mutate _segment_cache, as the below
 # will generate exactly one Python bytecode (STORE_SUBSCR)
 _segment_cache[(segment, safe)] = result
 return result
else:
[docs] def quote_path_segment(segment, safe=''):
 """ %s """ % quote_path_segment_doc
 # The bit of this code that deals with ``_segment_cache`` is an
 # optimization: we cache all the computation of URL path segments
 # in this module-scope dictionary with the original string (or
 # unicode value) as the key, so we can look it up later without
 # needing to reencode or re-url-quote it
 try:
 return _segment_cache[(segment, safe)]
 except KeyError:
 if segment.__class__ is text_type: #isinstance slighly slower (~15%)
 result = url_quote(segment.encode('utf-8'), safe)
 else:
 result = url_quote(str(segment), safe)
 # we don't need a lock to mutate _segment_cache, as the below
 # will generate exactly one Python bytecode (STORE_SUBSCR)
 _segment_cache[(segment, safe)] = result
 return result

slash = text_('/')

@implementer(ITraverser)
class ResourceTreeTraverser(object):
 """ A resource tree traverser that should be used (for speed) when
 every resource in the tree supplies a ``__name__`` and
 ``__parent__`` attribute (ie. every resource in the tree is
 :term:`location` aware) ."""

 VIEW_SELECTOR = '@@'

 def __init__(self, root):
 self.root = root

 def __call__(self, request):
 environ = request.environ
 matchdict = request.matchdict

 if matchdict is not None:

 path = matchdict.get('traverse', slash) or slash
 if is_nonstr_iter(path):
 # this is a *traverse stararg (not a {traverse})
 # routing has already decoded these elements, so we just
 # need to join them
 path = '/' + slash.join(path) or slash

 subpath = matchdict.get('subpath', ())
 if not is_nonstr_iter(subpath):
 # this is not a *subpath stararg (just a {subpath})
 # routing has already decoded this string, so we just need
 # to split it
 subpath = split_path_info(subpath)

 else:
 # this request did not match a route
 subpath = ()
 try:
 # empty if mounted under a path in mod_wsgi, for example
 path = request.path_info or slash
 except KeyError:
 # if environ['PATH_INFO'] is just not there
 path = slash
 except UnicodeDecodeError as e:
 raise URLDecodeError(e.encoding, e.object, e.start, e.end,
 e.reason)

 if VH_ROOT_KEY in environ:
 # HTTP_X_VHM_ROOT
 vroot_path = decode_path_info(environ[VH_ROOT_KEY])
 vroot_tuple = split_path_info(vroot_path)
 vpath = vroot_path + path # both will (must) be unicode or asciistr
 vroot_idx = len(vroot_tuple) -1
 else:
 vroot_tuple = ()
 vpath = path
 vroot_idx = -1

 root = self.root
 ob = vroot = root

 if vpath == slash: # invariant: vpath must not be empty
 # prevent a call to traversal_path if we know it's going
 # to return the empty tuple
 vpath_tuple = ()
 else:
 # we do dead reckoning here via tuple slicing instead of
 # pushing and popping temporary lists for speed purposes
 # and this hurts readability; apologies
 i = 0
 view_selector = self.VIEW_SELECTOR
 vpath_tuple = split_path_info(vpath)
 for segment in vpath_tuple:
 if segment[:2] == view_selector:
 return {'context':ob,
 'view_name':segment[2:],
 'subpath':vpath_tuple[i+1:],
 'traversed':vpath_tuple[:vroot_idx+i+1],
 'virtual_root':vroot,
 'virtual_root_path':vroot_tuple,
 'root':root}
 try:
 getitem = ob.__getitem__
 except AttributeError:
 return {'context':ob,
 'view_name':segment,
 'subpath':vpath_tuple[i+1:],
 'traversed':vpath_tuple[:vroot_idx+i+1],
 'virtual_root':vroot,
 'virtual_root_path':vroot_tuple,
 'root':root}

 try:
 next = getitem(segment)
 except KeyError:
 return {'context':ob,
 'view_name':segment,
 'subpath':vpath_tuple[i+1:],
 'traversed':vpath_tuple[:vroot_idx+i+1],
 'virtual_root':vroot,
 'virtual_root_path':vroot_tuple,
 'root':root}
 if i == vroot_idx:
 vroot = next
 ob = next
 i += 1

 return {'context':ob, 'view_name':empty, 'subpath':subpath,
 'traversed':vpath_tuple, 'virtual_root':vroot,
 'virtual_root_path':vroot_tuple, 'root':root}

ModelGraphTraverser = ResourceTreeTraverser # b/w compat, not API, used in wild

@implementer(IResourceURL, IContextURL)
class ResourceURL(object):
 vroot_varname = VH_ROOT_KEY

 def __init__(self, resource, request):
 physical_path_tuple = resource_path_tuple(resource)
 physical_path = _join_path_tuple(physical_path_tuple)

 if physical_path_tuple != ('',):
 physical_path_tuple = physical_path_tuple + ('',)
 physical_path = physical_path + '/'

 virtual_path = physical_path
 virtual_path_tuple = physical_path_tuple

 environ = request.environ
 vroot_path = environ.get(self.vroot_varname)

 # if the physical path starts with the virtual root path, trim it out
 # of the virtual path
 if vroot_path is not None:
 vroot_path = vroot_path.rstrip('/')
 if vroot_path and physical_path.startswith(vroot_path):
 vroot_path_tuple = tuple(vroot_path.split('/'))
 numels = len(vroot_path_tuple)
 virtual_path_tuple = ('',) + physical_path_tuple[numels:]
 virtual_path = physical_path[len(vroot_path):]

 self.virtual_path = virtual_path # IResourceURL attr
 self.physical_path = physical_path # IResourceURL attr
 self.virtual_path_tuple = virtual_path_tuple # IResourceURL attr (1.5)
 self.physical_path_tuple = physical_path_tuple # IResourceURL attr (1.5)

 # bw compat for IContextURL methods
 self.resource = resource
 self.context = resource
 self.request = request

 # IContextURL method (deprecated in 1.3)
 def virtual_root(self):
 environ = self.request.environ
 vroot_varname = self.vroot_varname
 if vroot_varname in environ:
 return find_resource(self.context, environ[vroot_varname])
 # shortcut instead of using find_root; we probably already
 # have it on the request
 try:
 return self.request.root
 except AttributeError:
 return find_root(self.context)

 # IContextURL method (deprecated in 1.3)
 def __call__(self):
 """ Generate a URL based on the :term:`lineage` of a :term:`resource`
 object that is ``self.context``. If any resource in the context
 lineage has a Unicode name, it will be converted to a UTF-8 string
 before being attached to the URL. If a ``HTTP_X_VHM_ROOT`` key is
 present in the WSGI environment, its value will be treated as a
 'virtual root path': the path of the URL generated by this will be
 left-stripped of this virtual root path value.
 """
 local_url = getattr(self.context, '__resource_url__', None)
 if local_url is not None:
 result = local_url(
 self.request,
 {'virtual_path':self.virtual_path,
 'physical_path':self.physical_path},
)
 if result is not None:
 # allow it to punt by returning ``None``
 return result

 app_url = self.request.application_url # never ends in a slash
 return app_url + self.virtual_path

TraversalContextURL = ResourceURL # deprecated as of 1.3

deprecated(
 'TraversalContextURL',
 'As of Pyramid 1.3 the, "pyramid.traversal.TraversalContextURL" class is '
 'scheduled to be removed. Use the '
 '"pyramid.config.Configurator.add_resource_url_adapter" method to register '
 'a class that implements "pyramid.interfaces.IResourceURL" instead. '
 'See the "What\'s new In Pyramid 1.3" document for a further description.'
)

@lru_cache(1000)
def _join_path_tuple(tuple):
 return tuple and '/'.join([quote_path_segment(x) for x in tuple]) or '/'

class DefaultRootFactory:
 __parent__ = None
 __name__ = None
 def __init__(self, request):
 pass

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/response.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.response

import mimetypes
from os.path import (
 getmtime,
 getsize,
)

import venusian

from webob import Response as _Response
from zope.interface import implementer
from pyramid.interfaces import IResponse

def init_mimetypes(mimetypes):
 # this is a function so it can be unittested
 if hasattr(mimetypes, 'init'):
 mimetypes.init()
 return True
 return False

See http://bugs.python.org/issue5853 which is a recursion bug
that seems to effect Python 2.6, Python 2.6.1, and 2.6.2 (a fix
has been applied on the Python 2 trunk).
init_mimetypes(mimetypes)

_BLOCK_SIZE = 4096 * 64 # 256K

@implementer(IResponse)
[docs]class Response(_Response):
 pass

[docs]class FileResponse(Response):
 """
 A Response object that can be used to serve a static file from disk
 simply.

 ``path`` is a file path on disk.

 ``request`` must be a Pyramid :term:`request` object. Note
 that a request *must* be passed if the response is meant to attempt to
 use the ``wsgi.file_wrapper`` feature of the web server that you're using
 to serve your Pyramid application.

 ``cache_max_age`` is the number of seconds that should be used
 to HTTP cache this response.

 ``content_type`` is the content_type of the response.

 ``content_encoding`` is the content_encoding of the response.
 It's generally safe to leave this set to ``None`` if you're serving a
 binary file. This argument will be ignored if you also leave
 ``content-type`` as ``None``.
 """
 def __init__(self, path, request=None, cache_max_age=None,
 content_type=None, content_encoding=None):
 if content_type is None:
 content_type, content_encoding = mimetypes.guess_type(
 path,
 strict=False
)
 if content_type is None:
 content_type = 'application/octet-stream'
 # str-ifying content_type is a workaround for a bug in Python 2.7.7
 # on Windows where mimetypes.guess_type returns unicode for the
 # content_type.
 content_type = str(content_type)
 super(FileResponse, self).__init__(
 conditional_response=True,
 content_type=content_type,
 content_encoding=content_encoding
)
 self.last_modified = getmtime(path)
 content_length = getsize(path)
 f = open(path, 'rb')
 app_iter = None
 if request is not None:
 environ = request.environ
 if 'wsgi.file_wrapper' in environ:
 app_iter = environ['wsgi.file_wrapper'](f, _BLOCK_SIZE)
 if app_iter is None:
 app_iter = FileIter(f, _BLOCK_SIZE)
 self.app_iter = app_iter
 # assignment of content_length must come after assignment of app_iter
 self.content_length = content_length
 if cache_max_age is not None:
 self.cache_expires = cache_max_age

[docs]class FileIter(object):
 """ A fixed-block-size iterator for use as a WSGI app_iter.

 ``file`` is a Python file pointer (or at least an object with a ``read``
 method that takes a size hint).

 ``block_size`` is an optional block size for iteration.
 """
 def __init__(self, file, block_size=_BLOCK_SIZE):
 self.file = file
 self.block_size = block_size

 def __iter__(self):
 return self

 def next(self):
 val = self.file.read(self.block_size)
 if not val:
 raise StopIteration
 return val

 __next__ = next # py3

 def close(self):
 self.file.close()

[docs]class response_adapter(object):
 """ Decorator activated via a :term:`scan` which treats the function
 being decorated as a :term:`response adapter` for the set of types or
 interfaces passed as ``*types_or_ifaces`` to the decorator constructor.

 For example, if you scan the following response adapter:

 .. code-block:: python

 from pyramid.response import Response
 from pyramid.response import response_adapter

 @response_adapter(int)
 def myadapter(i):
 return Response(status=i)

 You can then return an integer from your view callables, and it will be
 converted into a response with the integer as the status code.

 More than one type or interface can be passed as a constructor argument.
 The decorated response adapter will be called for each type or interface.

 .. code-block:: python

 import json

 from pyramid.response import Response
 from pyramid.response import response_adapter

 @response_adapter(dict, list)
 def myadapter(ob):
 return Response(json.dumps(ob))

 This method will have no effect until a :term:`scan` is performed
 agains the package or module which contains it, ala:

 .. code-block:: python

 from pyramid.config import Configurator
 config = Configurator()
 config.scan('somepackage_containing_adapters')

 """
 venusian = venusian # for unit testing

 def __init__(self, *types_or_ifaces):
 self.types_or_ifaces = types_or_ifaces

 def register(self, scanner, name, wrapped):
 config = scanner.config
 for type_or_iface in self.types_or_ifaces:
 config.add_response_adapter(wrapped, type_or_iface)

 def __call__(self, wrapped):
 self.venusian.attach(wrapped, self.register, category='pyramid')
 return wrapped

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/authentication.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.authentication

import binascii
from codecs import utf_8_decode
from codecs import utf_8_encode
import hashlib
import base64
import datetime
import re
import time as time_mod
import warnings

from zope.interface import implementer

from webob.cookies import CookieProfile

from pyramid.compat import (
 long,
 text_type,
 binary_type,
 url_unquote,
 url_quote,
 bytes_,
 ascii_native_,
 native_,
)

from pyramid.interfaces import (
 IAuthenticationPolicy,
 IDebugLogger,
)

from pyramid.security import (
 Authenticated,
 Everyone,
)

from pyramid.util import strings_differ

VALID_TOKEN = re.compile(r"^[A-Za-z][A-Za-z0-9+_-]*$")

class CallbackAuthenticationPolicy(object):
 """ Abstract class """

 debug = False
 callback = None

 def _log(self, msg, methodname, request):
 logger = request.registry.queryUtility(IDebugLogger)
 if logger:
 cls = self.__class__
 classname = cls.__module__ + '.' + cls.__name__
 methodname = classname + '.' + methodname
 logger.debug(methodname + ': ' + msg)

 def _clean_principal(self, princid):
 if princid in (Authenticated, Everyone):
 princid = None
 return princid

 def authenticated_userid(self, request):
 """ Return the authenticated userid or ``None``.

 If no callback is registered, this will be the same as
 ``unauthenticated_userid``.

 If a ``callback`` is registered, this will return the userid if
 and only if the callback returns a value that is not ``None``.

 """
 debug = self.debug
 userid = self.unauthenticated_userid(request)
 if userid is None:
 debug and self._log(
 'call to unauthenticated_userid returned None; returning None',
 'authenticated_userid',
 request)
 return None
 if self._clean_principal(userid) is None:
 debug and self._log(
 ('use of userid %r is disallowed by any built-in Pyramid '
 'security policy, returning None' % userid),
 'authenticated_userid' ,
 request)
 return None

 if self.callback is None:
 debug and self._log(
 'there was no groupfinder callback; returning %r' % (userid,),
 'authenticated_userid',
 request)
 return userid
 callback_ok = self.callback(userid, request)
 if callback_ok is not None: # is not None!
 debug and self._log(
 'groupfinder callback returned %r; returning %r' % (
 callback_ok, userid),
 'authenticated_userid',
 request
)
 return userid
 debug and self._log(
 'groupfinder callback returned None; returning None',
 'authenticated_userid',
 request
)

 def effective_principals(self, request):
 """ A list of effective principals derived from request.

 This will return a list of principals including, at least,
 :data:`pyramid.security.Everyone`. If there is no authenticated
 userid, or the ``callback`` returns ``None``, this will be the
 only principal:

 .. code-block:: python

 return [Everyone]

 If the ``callback`` does not return ``None`` and an authenticated
 userid is found, then the principals will include
 :data:`pyramid.security.Authenticated`, the ``authenticated_userid``
 and the list of principals returned by the ``callback``:

 .. code-block:: python

 extra_principals = callback(userid, request)
 return [Everyone, Authenticated, userid] + extra_principals

 """
 debug = self.debug
 effective_principals = [Everyone]
 userid = self.unauthenticated_userid(request)

 if userid is None:
 debug and self._log(
 'unauthenticated_userid returned %r; returning %r' % (
 userid, effective_principals),
 'effective_principals',
 request
)
 return effective_principals

 if self._clean_principal(userid) is None:
 debug and self._log(
 ('unauthenticated_userid returned disallowed %r; returning %r '
 'as if it was None' % (userid, effective_principals)),
 'effective_principals',
 request
)
 return effective_principals

 if self.callback is None:
 debug and self._log(
 'groupfinder callback is None, so groups is []',
 'effective_principals',
 request)
 groups = []
 else:
 groups = self.callback(userid, request)
 debug and self._log(
 'groupfinder callback returned %r as groups' % (groups,),
 'effective_principals',
 request)

 if groups is None: # is None!
 debug and self._log(
 'returning effective principals: %r' % (
 effective_principals,),
 'effective_principals',
 request
)
 return effective_principals

 effective_principals.append(Authenticated)
 effective_principals.append(userid)
 effective_principals.extend(groups)

 debug and self._log(
 'returning effective principals: %r' % (
 effective_principals,),
 'effective_principals',
 request
)
 return effective_principals

@implementer(IAuthenticationPolicy)
[docs]class RepozeWho1AuthenticationPolicy(CallbackAuthenticationPolicy):
 """ A :app:`Pyramid` :term:`authentication policy` which
 obtains data from the :mod:`repoze.who` 1.X WSGI 'API' (the
 ``repoze.who.identity`` key in the WSGI environment).

 Constructor Arguments

 ``identifier_name``

 Default: ``auth_tkt``. The :mod:`repoze.who` plugin name that
 performs remember/forget. Optional.

 ``callback``

 Default: ``None``. A callback passed the :mod:`repoze.who` identity
 and the :term:`request`, expected to return ``None`` if the user
 represented by the identity doesn't exist or a sequence of principal
 identifiers (possibly empty) representing groups if the user does
 exist. If ``callback`` is None, the userid will be assumed to exist
 with no group principals.

 Objects of this class implement the interface described by
 :class:`pyramid.interfaces.IAuthenticationPolicy`.
 """

 def __init__(self, identifier_name='auth_tkt', callback=None):
 self.identifier_name = identifier_name
 self.callback = callback

 def _get_identity(self, request):
 return request.environ.get('repoze.who.identity')

 def _get_identifier(self, request):
 plugins = request.environ.get('repoze.who.plugins')
 if plugins is None:
 return None
 identifier = plugins[self.identifier_name]
 return identifier

[docs] def authenticated_userid(self, request):
 """ Return the authenticated userid or ``None``.

 If no callback is registered, this will be the same as
 ``unauthenticated_userid``.

 If a ``callback`` is registered, this will return the userid if
 and only if the callback returns a value that is not ``None``.

 """
 identity = self._get_identity(request)

 if identity is None:
 self.debug and self._log(
 'repoze.who identity is None, returning None',
 'authenticated_userid',
 request)
 return None

 userid = identity['repoze.who.userid']

 if userid is None:
 self.debug and self._log(
 'repoze.who.userid is None, returning None' % userid,
 'authenticated_userid',
 request)
 return None

 if self._clean_principal(userid) is None:
 self.debug and self._log(
 ('use of userid %r is disallowed by any built-in Pyramid '
 'security policy, returning None' % userid),
 'authenticated_userid',
 request)
 return None

 if self.callback is None:
 return userid

 if self.callback(identity, request) is not None: # is not None!
 return userid

[docs] def unauthenticated_userid(self, request):
 """ Return the ``repoze.who.userid`` key from the detected identity."""
 identity = self._get_identity(request)
 if identity is None:
 return None
 return identity['repoze.who.userid']

[docs] def effective_principals(self, request):
 """ A list of effective principals derived from the identity.

 This will return a list of principals including, at least,
 :data:`pyramid.security.Everyone`. If there is no identity, or
 the ``callback`` returns ``None``, this will be the only principal.

 If the ``callback`` does not return ``None`` and an identity is
 found, then the principals will include
 :data:`pyramid.security.Authenticated`, the ``authenticated_userid``
 and the list of principals returned by the ``callback``.

 """
 effective_principals = [Everyone]
 identity = self._get_identity(request)

 if identity is None:
 self.debug and self._log(
 ('repoze.who identity was None; returning %r' %
 effective_principals),
 'effective_principals',
 request
)
 return effective_principals

 if self.callback is None:
 groups = []
 else:
 groups = self.callback(identity, request)

 if groups is None: # is None!
 self.debug and self._log(
 ('security policy groups callback returned None; returning %r' %
 effective_principals),
 'effective_principals',
 request
)
 return effective_principals

 userid = identity['repoze.who.userid']

 if userid is None:
 self.debug and self._log(
 ('repoze.who.userid was None; returning %r' %
 effective_principals),
 'effective_principals',
 request
)
 return effective_principals

 if self._clean_principal(userid) is None:
 self.debug and self._log(
 ('unauthenticated_userid returned disallowed %r; returning %r '
 'as if it was None' % (userid, effective_principals)),
 'effective_principals',
 request
)
 return effective_principals

 effective_principals.append(Authenticated)
 effective_principals.append(userid)
 effective_principals.extend(groups)
 return effective_principals

[docs] def remember(self, request, principal, **kw):
 """ Store the ``principal`` as ``repoze.who.userid``.

 The identity to authenticated to :mod:`repoze.who`
 will contain the given principal as ``userid``, and
 provide all keyword arguments as additional identity
 keys. Useful keys could be ``max_age`` or ``userdata``.
 """
 identifier = self._get_identifier(request)
 if identifier is None:
 return []
 environ = request.environ
 identity = kw
 identity['repoze.who.userid'] = principal
 return identifier.remember(environ, identity)

[docs] def forget(self, request):
 """ Forget the current authenticated user.

 Return headers that, if included in a response, will delete the
 cookie responsible for tracking the current user.

 """
 identifier = self._get_identifier(request)
 if identifier is None:
 return []
 identity = self._get_identity(request)
 return identifier.forget(request.environ, identity)

@implementer(IAuthenticationPolicy)
[docs]class RemoteUserAuthenticationPolicy(CallbackAuthenticationPolicy):
 """ A :app:`Pyramid` :term:`authentication policy` which
 obtains data from the ``REMOTE_USER`` WSGI environment variable.

 Constructor Arguments

 ``environ_key``

 Default: ``REMOTE_USER``. The key in the WSGI environ which
 provides the userid.

 ``callback``

 Default: ``None``. A callback passed the userid and the request,
 expected to return None if the userid doesn't exist or a sequence of
 principal identifiers (possibly empty) representing groups if the
 user does exist. If ``callback`` is None, the userid will be assumed
 to exist with no group principals.

 ``debug``

 Default: ``False``. If ``debug`` is ``True``, log messages to the
 Pyramid debug logger about the results of various authentication
 steps. The output from debugging is useful for reporting to maillist
 or IRC channels when asking for support.

 Objects of this class implement the interface described by
 :class:`pyramid.interfaces.IAuthenticationPolicy`.
 """

 def __init__(self, environ_key='REMOTE_USER', callback=None, debug=False):
 self.environ_key = environ_key
 self.callback = callback
 self.debug = debug

[docs] def unauthenticated_userid(self, request):
 """ The ``REMOTE_USER`` value found within the ``environ``."""
 return request.environ.get(self.environ_key)

[docs] def remember(self, request, principal, **kw):
 """ A no-op. The ``REMOTE_USER`` does not provide a protocol for
 remembering the user. This will be application-specific and can
 be done somewhere else or in a subclass."""
 return []

[docs] def forget(self, request):
 """ A no-op. The ``REMOTE_USER`` does not provide a protocol for
 forgetting the user. This will be application-specific and can
 be done somewhere else or in a subclass."""
 return []

_marker = object()

@implementer(IAuthenticationPolicy)
[docs]class AuthTktAuthenticationPolicy(CallbackAuthenticationPolicy):
 """A :app:`Pyramid` :term:`authentication policy` which
 obtains data from a Pyramid "auth ticket" cookie.

 .. warning::

 The default hash algorithm used in this policy is MD5 and has known
 hash collision vulnerabilities. The risk of an exploit is low.
 However, for improved authentication security, use
 ``hashalg='sha512'``.

 Constructor Arguments

 ``secret``

 The secret (a string) used for auth_tkt cookie signing. This value
 should be unique across all values provided to Pyramid for various
 subsystem secrets (see :ref:`admonishment_against_secret_sharing`).
 Required.

 ``callback``

 Default: ``None``. A callback passed the userid and the
 request, expected to return ``None`` if the userid doesn't
 exist or a sequence of principal identifiers (possibly empty) if
 the user does exist. If ``callback`` is ``None``, the userid
 will be assumed to exist with no principals. Optional.

 ``cookie_name``

 Default: ``auth_tkt``. The cookie name used
 (string). Optional.

 ``secure``

 Default: ``False``. Only send the cookie back over a secure
 conn. Optional.

 ``include_ip``

 Default: ``False``. Make the requesting IP address part of
 the authentication data in the cookie. Optional.

 For IPv6 this option is not recommended. The ``mod_auth_tkt``
 specification does not specify how to handle IPv6 addresses, so using
 this option in combination with IPv6 addresses may cause an
 incompatible cookie. It ties the authentication ticket to that
 individual's IPv6 address.

 ``timeout``

 Default: ``None``. Maximum number of seconds which a newly
 issued ticket will be considered valid. After this amount of
 time, the ticket will expire (effectively logging the user
 out). If this value is ``None``, the ticket never expires.
 Optional.

 ``reissue_time``

 Default: ``None``. If this parameter is set, it represents the number
 of seconds that must pass before an authentication token cookie is
 automatically reissued as the result of a request which requires
 authentication. The duration is measured as the number of seconds
 since the last auth_tkt cookie was issued and 'now'. If this value is
 ``0``, a new ticket cookie will be reissued on every request which
 requires authentication.

 A good rule of thumb: if you want auto-expired cookies based on
 inactivity: set the ``timeout`` value to 1200 (20 mins) and set the
 ``reissue_time`` value to perhaps a tenth of the ``timeout`` value
 (120 or 2 mins). It's nonsensical to set the ``timeout`` value lower
 than the ``reissue_time`` value, as the ticket will never be reissued
 if so. However, such a configuration is not explicitly prevented.

 Optional.

 ``max_age``

 Default: ``None``. The max age of the auth_tkt cookie, in
 seconds. This differs from ``timeout`` inasmuch as ``timeout``
 represents the lifetime of the ticket contained in the cookie,
 while this value represents the lifetime of the cookie itself.
 When this value is set, the cookie's ``Max-Age`` and
 ``Expires`` settings will be set, allowing the auth_tkt cookie
 to last between browser sessions. It is typically nonsensical
 to set this to a value that is lower than ``timeout`` or
 ``reissue_time``, although it is not explicitly prevented.
 Optional.

 ``path``

 Default: ``/``. The path for which the auth_tkt cookie is valid.
 May be desirable if the application only serves part of a domain.
 Optional.

 ``http_only``

 Default: ``False``. Hide cookie from JavaScript by setting the
 HttpOnly flag. Not honored by all browsers.
 Optional.

 ``wild_domain``

 Default: ``True``. An auth_tkt cookie will be generated for the
 wildcard domain. If your site is hosted as ``example.com`` this
 will make the cookie available for sites underneath ``example.com``
 such as ``www.example.com``.
 Optional.

 ``parent_domain``

 Default: ``False``. An auth_tkt cookie will be generated for the
 parent domain of the current site. For example if your site is
 hosted under ``www.example.com`` a cookie will be generated for
 ``.example.com``. This can be useful if you have multiple sites
 sharing the same domain. This option supercedes the ``wild_domain``
 option.
 Optional.

 This option is available as of :app:`Pyramid` 1.5.

 ``domain``

 Default: ``None``. If provided the auth_tkt cookie will only be
 set for this domain. This option is not compatible with ``wild_domain``
 and ``parent_domain``.
 Optional.

 This option is available as of :app:`Pyramid` 1.5.

 ``hashalg``

 Default: ``md5`` (the literal string).

 Any hash algorithm supported by Python's ``hashlib.new()`` function
 can be used as the ``hashalg``.

 Cookies generated by different instances of AuthTktAuthenticationPolicy
 using different ``hashalg`` options are not compatible. Switching the
 ``hashalg`` will imply that all existing users with a valid cookie will
 be required to re-login.

 A warning is emitted at startup if an explicit ``hashalg`` is not
 passed. This is for backwards compatibility reasons.

 This option is available as of :app:`Pyramid` 1.4.

 Optional.

 .. note::

 ``md5`` is the default for backwards compatibility reasons. However,
 if you don't specify ``md5`` as the hashalg explicitly, a warning is
 issued at application startup time. An explicit value of ``sha512``
 is recommended for improved security, and ``sha512`` will become the
 default in a future Pyramid version.

 ``debug``

 Default: ``False``. If ``debug`` is ``True``, log messages to the
 Pyramid debug logger about the results of various authentication
 steps. The output from debugging is useful for reporting to maillist
 or IRC channels when asking for support.

 Objects of this class implement the interface described by
 :class:`pyramid.interfaces.IAuthenticationPolicy`.
 """

 def __init__(self,
 secret,
 callback=None,
 cookie_name='auth_tkt',
 secure=False,
 include_ip=False,
 timeout=None,
 reissue_time=None,
 max_age=None,
 path="/",
 http_only=False,
 wild_domain=True,
 debug=False,
 hashalg=_marker,
 parent_domain=False,
 domain=None,
):
 if hashalg is _marker:
 hashalg = 'md5'
 warnings.warn(
 'The MD5 hash function used by default by the '
 'AuthTktAuthenticationPolicy is known to be '
 'susceptible to collision attacks. It is the current default '
 'for backwards compatibility reasons, but we recommend that '
 'you use the SHA512 algorithm instead for improved security. '
 'Pass ``hashalg=\'sha512\'`` to the '
 'AuthTktAuthenticationPolicy constructor to do so.\n\nNote '
 'that a change to the hash algorithms will invalidate existing '
 'auth tkt cookies set by your application. If backwards '
 'compatibility of existing auth tkt cookies is of greater '
 'concern than the risk posed by the potential for a hash '
 'collision, you\'ll want to continue using MD5 explicitly. '
 'To do so, pass ``hashalg=\'md5\'`` in your application to '
 'the AuthTktAuthenticationPolicy constructor. When you do so '
 'this warning will not be emitted again. The default '
 'algorithm used in this policy will change in the future, so '
 'setting an explicit hashalg will futureproof your '
 'application.',
 DeprecationWarning,
 stacklevel=2
)
 self.cookie = AuthTktCookieHelper(
 secret,
 cookie_name=cookie_name,
 secure=secure,
 include_ip=include_ip,
 timeout=timeout,
 reissue_time=reissue_time,
 max_age=max_age,
 http_only=http_only,
 path=path,
 wild_domain=wild_domain,
 hashalg=hashalg,
 parent_domain=parent_domain,
 domain=domain,
)
 self.callback = callback
 self.debug = debug

[docs] def unauthenticated_userid(self, request):
 """ The userid key within the auth_tkt cookie."""
 result = self.cookie.identify(request)
 if result:
 return result['userid']

[docs] def remember(self, request, principal, **kw):
 """ Accepts the following kw args: ``max_age=<int-seconds>,
 ``tokens=<sequence-of-ascii-strings>``.

 Return a list of headers which will set appropriate cookies on
 the response.

 """
 return self.cookie.remember(request, principal, **kw)

[docs] def forget(self, request):
 """ A list of headers which will delete appropriate cookies."""
 return self.cookie.forget(request)

def b64encode(v):
 return base64.b64encode(bytes_(v)).strip().replace(b'\n', b'')

def b64decode(v):
 return base64.b64decode(bytes_(v))

this class licensed under the MIT license (stolen from Paste)
class AuthTicket(object):
 """
 This class represents an authentication token. You must pass in
 the shared secret, the userid, and the IP address. Optionally you
 can include tokens (a list of strings, representing role names),
 'user_data', which is arbitrary data available for your own use in
 later scripts. Lastly, you can override the cookie name and
 timestamp.

 Once you provide all the arguments, use .cookie_value() to
 generate the appropriate authentication ticket.

 Usage::

 token = AuthTicket('sharedsecret', 'username',
 os.environ['REMOTE_ADDR'], tokens=['admin'])
 val = token.cookie_value()

 """

 def __init__(self, secret, userid, ip, tokens=(), user_data='',
 time=None, cookie_name='auth_tkt', secure=False,
 hashalg='md5'):
 self.secret = secret
 self.userid = userid
 self.ip = ip
 self.tokens = ','.join(tokens)
 self.user_data = user_data
 if time is None:
 self.time = time_mod.time()
 else:
 self.time = time
 self.cookie_name = cookie_name
 self.secure = secure
 self.hashalg = hashalg

 def digest(self):
 return calculate_digest(
 self.ip, self.time, self.secret, self.userid, self.tokens,
 self.user_data, self.hashalg)

 def cookie_value(self):
 v = '%s%08x%s!' % (self.digest(), int(self.time),
 url_quote(self.userid))
 if self.tokens:
 v += self.tokens + '!'
 v += self.user_data
 return v

this class licensed under the MIT license (stolen from Paste)
class BadTicket(Exception):
 """
 Exception raised when a ticket can't be parsed. If we get far enough to
 determine what the expected digest should have been, expected is set.
 This should not be shown by default, but can be useful for debugging.
 """
 def __init__(self, msg, expected=None):
 self.expected = expected
 Exception.__init__(self, msg)

this function licensed under the MIT license (stolen from Paste)
def parse_ticket(secret, ticket, ip, hashalg='md5'):
 """
 Parse the ticket, returning (timestamp, userid, tokens, user_data).

 If the ticket cannot be parsed, a ``BadTicket`` exception will be raised
 with an explanation.
 """
 ticket = ticket.strip('"')
 digest_size = hashlib.new(hashalg).digest_size * 2
 digest = ticket[:digest_size]
 try:
 timestamp = int(ticket[digest_size:digest_size + 8], 16)
 except ValueError as e:
 raise BadTicket('Timestamp is not a hex integer: %s' % e)
 try:
 userid, data = ticket[digest_size + 8:].split('!', 1)
 except ValueError:
 raise BadTicket('userid is not followed by !')
 userid = url_unquote(userid)
 if '!' in data:
 tokens, user_data = data.split('!', 1)
 else: # pragma: no cover (never generated)
 # @@: Is this the right order?
 tokens = ''
 user_data = data

 expected = calculate_digest(ip, timestamp, secret,
 userid, tokens, user_data, hashalg)

 # Avoid timing attacks (see
 # http://seb.dbzteam.org/crypto/python-oauth-timing-hmac.pdf)
 if strings_differ(expected, digest):
 raise BadTicket('Digest signature is not correct',
 expected=(expected, digest))

 tokens = tokens.split(',')

 return (timestamp, userid, tokens, user_data)

this function licensed under the MIT license (stolen from Paste)
def calculate_digest(ip, timestamp, secret, userid, tokens, user_data,
 hashalg='md5'):
 secret = bytes_(secret, 'utf-8')
 userid = bytes_(userid, 'utf-8')
 tokens = bytes_(tokens, 'utf-8')
 user_data = bytes_(user_data, 'utf-8')
 hash_obj = hashlib.new(hashalg)

 # Check to see if this is an IPv6 address
 if ':' in ip:
 ip_timestamp = ip + str(int(timestamp))
 ip_timestamp = bytes_(ip_timestamp)
 else:
 # encode_ip_timestamp not required, left in for backwards compatibility
 ip_timestamp = encode_ip_timestamp(ip, timestamp)

 hash_obj.update(ip_timestamp + secret + userid + b'\0' +
 tokens + b'\0' + user_data)
 digest = hash_obj.hexdigest()
 hash_obj2 = hashlib.new(hashalg)
 hash_obj2.update(bytes_(digest) + secret)
 return hash_obj2.hexdigest()

this function licensed under the MIT license (stolen from Paste)
def encode_ip_timestamp(ip, timestamp):
 ip_chars = ''.join(map(chr, map(int, ip.split('.'))))
 t = int(timestamp)
 ts = ((t & 0xff000000) >> 24,
 (t & 0xff0000) >> 16,
 (t & 0xff00) >> 8,
 t & 0xff)
 ts_chars = ''.join(map(chr, ts))
 return bytes_(ip_chars + ts_chars)

[docs]class AuthTktCookieHelper(object):
 """
 A helper class for use in third-party authentication policy
 implementations. See
 :class:`pyramid.authentication.AuthTktAuthenticationPolicy` for the
 meanings of the constructor arguments.
 """
 parse_ticket = staticmethod(parse_ticket) # for tests
 AuthTicket = AuthTicket # for tests
 BadTicket = BadTicket # for tests
 now = None # for tests

 userid_type_decoders = {
 'int':int,
 'unicode':lambda x: utf_8_decode(x)[0], # bw compat for old cookies
 'b64unicode': lambda x: utf_8_decode(b64decode(x))[0],
 'b64str': lambda x: b64decode(x),
 }

 userid_type_encoders = {
 int: ('int', str),
 long: ('int', str),
 text_type: ('b64unicode', lambda x: b64encode(utf_8_encode(x)[0])),
 binary_type: ('b64str', lambda x: b64encode(x)),
 }

 def __init__(self, secret, cookie_name='auth_tkt', secure=False,
 include_ip=False, timeout=None, reissue_time=None,
 max_age=None, http_only=False, path="/", wild_domain=True,
 hashalg='md5', parent_domain=False, domain=None):

 serializer = _SimpleSerializer()

 self.cookie_profile = CookieProfile(
 cookie_name = cookie_name,
 secure = secure,
 max_age = max_age,
 httponly = http_only,
 path = path,
 serializer=serializer
)

 self.secret = secret
 self.cookie_name = cookie_name
 self.secure = secure
 self.include_ip = include_ip
 self.timeout = timeout
 self.reissue_time = reissue_time
 self.max_age = max_age
 self.wild_domain = wild_domain
 self.parent_domain = parent_domain
 self.domain = domain
 self.hashalg = hashalg

 def _get_cookies(self, request, value, max_age=None):
 cur_domain = request.domain

 domains = []
 if self.domain:
 domains.append(self.domain)
 else:
 if self.parent_domain and cur_domain.count('.') > 1:
 domains.append('.' + cur_domain.split('.', 1)[1])
 else:
 domains.append(None)
 domains.append(cur_domain)
 if self.wild_domain:
 domains.append('.' + cur_domain)

 profile = self.cookie_profile(request)

 kw = {}
 kw['domains'] = domains
 if max_age is not None:
 kw['max_age'] = max_age

 headers = profile.get_headers(value, **kw)
 return headers

[docs] def identify(self, request):
 """ Return a dictionary with authentication information, or ``None``
 if no valid auth_tkt is attached to ``request``"""
 environ = request.environ
 cookie = request.cookies.get(self.cookie_name)

 if cookie is None:
 return None

 if self.include_ip:
 remote_addr = environ['REMOTE_ADDR']
 else:
 remote_addr = '0.0.0.0'

 try:
 timestamp, userid, tokens, user_data = self.parse_ticket(
 self.secret, cookie, remote_addr, self.hashalg)
 except self.BadTicket:
 return None

 now = self.now # service tests

 if now is None:
 now = time_mod.time()

 if self.timeout and ((timestamp + self.timeout) < now):
 # the auth_tkt data has expired
 return None

 userid_typename = 'userid_type:'
 user_data_info = user_data.split('|')
 for datum in filter(None, user_data_info):
 if datum.startswith(userid_typename):
 userid_type = datum[len(userid_typename):]
 decoder = self.userid_type_decoders.get(userid_type)
 if decoder:
 userid = decoder(userid)

 reissue = self.reissue_time is not None

 if reissue and not hasattr(request, '_authtkt_reissued'):
 if ((now - timestamp) > self.reissue_time):
 # work around https://github.com/Pylons/pyramid/issues#issue/108
 tokens = list(filter(None, tokens))
 headers = self.remember(request, userid, max_age=self.max_age,
 tokens=tokens)
 def reissue_authtkt(request, response):
 if not hasattr(request, '_authtkt_reissue_revoked'):
 for k, v in headers:
 response.headerlist.append((k, v))
 request.add_response_callback(reissue_authtkt)
 request._authtkt_reissued = True

 environ['REMOTE_USER_TOKENS'] = tokens
 environ['REMOTE_USER_DATA'] = user_data
 environ['AUTH_TYPE'] = 'cookie'

 identity = {}
 identity['timestamp'] = timestamp
 identity['userid'] = userid
 identity['tokens'] = tokens
 identity['userdata'] = user_data
 return identity

[docs] def forget(self, request):
 """ Return a set of expires Set-Cookie headers, which will destroy
 any existing auth_tkt cookie when attached to a response"""
 request._authtkt_reissue_revoked = True
 return self._get_cookies(request, None)

[docs] def remember(self, request, userid, max_age=None, tokens=()):
 """ Return a set of Set-Cookie headers; when set into a response,
 these headers will represent a valid authentication ticket.

 ``max_age``
 The max age of the auth_tkt cookie, in seconds. When this value is
 set, the cookie's ``Max-Age`` and ``Expires`` settings will be set,
 allowing the auth_tkt cookie to last between browser sessions. If
 this value is ``None``, the ``max_age`` value provided to the
 helper itself will be used as the ``max_age`` value. Default:
 ``None``.

 ``tokens``
 A sequence of strings that will be placed into the auth_tkt tokens
 field. Each string in the sequence must be of the Python ``str``
 type and must match the regex ``^[A-Za-z][A-Za-z0-9+_-]*$``.
 Tokens are available in the returned identity when an auth_tkt is
 found in the request and unpacked. Default: ``()``.
 """
 if max_age is None:
 max_age = self.max_age

 environ = request.environ

 if self.include_ip:
 remote_addr = environ['REMOTE_ADDR']
 else:
 remote_addr = '0.0.0.0'

 user_data = ''

 encoding_data = self.userid_type_encoders.get(type(userid))

 if encoding_data:
 encoding, encoder = encoding_data
 userid = encoder(userid)
 user_data = 'userid_type:%s' % encoding

 new_tokens = []
 for token in tokens:
 if isinstance(token, text_type):
 try:
 token = ascii_native_(token)
 except UnicodeEncodeError:
 raise ValueError("Invalid token %r" % (token,))
 if not (isinstance(token, str) and VALID_TOKEN.match(token)):
 raise ValueError("Invalid token %r" % (token,))
 new_tokens.append(token)
 tokens = tuple(new_tokens)

 if hasattr(request, '_authtkt_reissued'):
 request._authtkt_reissue_revoked = True

 ticket = self.AuthTicket(
 self.secret,
 userid,
 remote_addr,
 tokens=tokens,
 user_data=user_data,
 cookie_name=self.cookie_name,
 secure=self.secure,
 hashalg=self.hashalg
)

 cookie_value = ticket.cookie_value()
 return self._get_cookies(request, cookie_value, max_age)

@implementer(IAuthenticationPolicy)
[docs]class SessionAuthenticationPolicy(CallbackAuthenticationPolicy):
 """ A :app:`Pyramid` authentication policy which gets its data from the
 configured :term:`session`. For this authentication policy to work, you
 will have to follow the instructions in the :ref:`sessions_chapter` to
 configure a :term:`session factory`.

 Constructor Arguments

 ``prefix``

 A prefix used when storing the authentication parameters in the
 session. Defaults to 'auth.'. Optional.

 ``callback``

 Default: ``None``. A callback passed the userid and the
 request, expected to return ``None`` if the userid doesn't
 exist or a sequence of principal identifiers (possibly empty) if
 the user does exist. If ``callback`` is ``None``, the userid
 will be assumed to exist with no principals. Optional.

 ``debug``

 Default: ``False``. If ``debug`` is ``True``, log messages to the
 Pyramid debug logger about the results of various authentication
 steps. The output from debugging is useful for reporting to maillist
 or IRC channels when asking for support.

 """

 def __init__(self, prefix='auth.', callback=None, debug=False):
 self.callback = callback
 self.prefix = prefix or ''
 self.userid_key = prefix + 'userid'
 self.debug = debug

[docs] def remember(self, request, principal, **kw):
 """ Store a principal in the session."""
 request.session[self.userid_key] = principal
 return []

[docs] def forget(self, request):
 """ Remove the stored principal from the session."""
 if self.userid_key in request.session:
 del request.session[self.userid_key]
 return []

 def unauthenticated_userid(self, request):
 return request.session.get(self.userid_key)

@implementer(IAuthenticationPolicy)
[docs]class BasicAuthAuthenticationPolicy(CallbackAuthenticationPolicy):
 """ A :app:`Pyramid` authentication policy which uses HTTP standard basic
 authentication protocol to authenticate users. To use this policy you will
 need to provide a callback which checks the supplied user credentials
 against your source of login data.

 Constructor Arguments

 ``check``

 A callback function passed a username, password and request, in that
 order as positional arguments. Expected to return ``None`` if the
 userid doesn't exist or a sequence of principal identifiers (possibly
 empty) if the user does exist.

 ``realm``

 Default: ``"Realm"``. The Basic Auth Realm string. Usually displayed to
 the user by the browser in the login dialog.

 ``debug``

 Default: ``False``. If ``debug`` is ``True``, log messages to the
 Pyramid debug logger about the results of various authentication
 steps. The output from debugging is useful for reporting to maillist
 or IRC channels when asking for support.

 Issuing a challenge

 Regular browsers will not send username/password credentials unless they
 first receive a challenge from the server. The following recipe will
 register a view that will send a Basic Auth challenge to the user whenever
 there is an attempt to call a view which results in a Forbidden response::

 from pyramid.httpexceptions import HTTPUnauthorized
 from pyramid.security import forget
 from pyramid.view import forbidden_view_config

 @forbidden_view_config()
 def basic_challenge(request):
 response = HTTPUnauthorized()
 response.headers.update(forget(request))
 return response
 """
 def __init__(self, check, realm='Realm', debug=False):
 self.check = check
 self.realm = realm
 self.debug = debug

[docs] def unauthenticated_userid(self, request):
 """ The userid parsed from the ``Authorization`` request header."""
 credentials = self._get_credentials(request)
 if credentials:
 return credentials[0]

[docs] def remember(self, request, principal, **kw):
 """ A no-op. Basic authentication does not provide a protocol for
 remembering the user. Credentials are sent on every request.

 """
 return []

[docs] def forget(self, request):
 """ Returns challenge headers. This should be attached to a response
 to indicate that credentials are required."""
 return [('WWW-Authenticate', 'Basic realm="%s"' % self.realm)]

 def callback(self, username, request):
 # Username arg is ignored. Unfortunately _get_credentials winds up
 # getting called twice when authenticated_userid is called. Avoiding
 # that, however, winds up duplicating logic from the superclass.
 credentials = self._get_credentials(request)
 if credentials:
 username, password = credentials
 return self.check(username, password, request)

 def _get_credentials(self, request):
 authorization = request.headers.get('Authorization')
 if not authorization:
 return None
 try:
 authmeth, auth = authorization.split(' ', 1)
 except ValueError: # not enough values to unpack
 return None
 if authmeth.lower() != 'basic':
 return None

 try:
 authbytes = b64decode(auth.strip())
 except (TypeError, binascii.Error): # can't decode
 return None

 # try utf-8 first, then latin-1; see discussion in
 # https://github.com/Pylons/pyramid/issues/898
 try:
 auth = authbytes.decode('utf-8')
 except UnicodeDecodeError:
 auth = authbytes.decode('latin-1')

 try:
 username, password = auth.split(':', 1)
 except ValueError: # not enough values to unpack
 return None
 return username, password

class _SimpleSerializer(object):
 def loads(self, bstruct):
 return native_(bstruct)

 def dumps(self, appstruct):
 return bytes_(appstruct)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/security.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.security

from zope.deprecation import deprecated
from zope.interface import providedBy

from pyramid.interfaces import (
 IAuthenticationPolicy,
 IAuthorizationPolicy,
 ISecuredView,
 IView,
 IViewClassifier,
)

from pyramid.compat import map_
from pyramid.threadlocal import get_current_registry

Everyone = 'system.Everyone'
Authenticated = 'system.Authenticated'
Allow = 'Allow'
Deny = 'Deny'

class AllPermissionsList(object):
 """ Stand in 'permission list' to represent all permissions """
 def __iter__(self):
 return ()
 def __contains__(self, other):
 return True
 def __eq__(self, other):
 return isinstance(other, self.__class__)

ALL_PERMISSIONS = AllPermissionsList()
DENY_ALL = (Deny, Everyone, ALL_PERMISSIONS)

NO_PERMISSION_REQUIRED = '__no_permission_required__'

def _get_registry(request):
 try:
 reg = request.registry
 except AttributeError:
 reg = get_current_registry() # b/c
 return reg

def _get_authentication_policy(request):
 registry = _get_registry(request)
 return registry.queryUtility(IAuthenticationPolicy)

[docs]def has_permission(permission, context, request):
 """
 A function that calls :meth:`pyramid.request.Request.has_permission`
 and returns its result.

 .. deprecated:: 1.5
 Use :meth:`pyramid.request.Request.has_permission` instead.

 .. versionchanged:: 1.5a3
 If context is None, then attempt to use the context attribute of self;
 if not set, then the AttributeError is propagated.
 """
 return request.has_permission(permission, context)

deprecated(
 'has_permission',
 'As of Pyramid 1.5 the "pyramid.security.has_permission" API is now '
 'deprecated. It will be removed in Pyramd 1.8. Use the '
 '"has_permission" method of the Pyramid request instead.'
)

[docs]def authenticated_userid(request):
 """
 A function that returns the value of the property
 :attr:`pyramid.request.Request.authenticated_userid`.

 .. deprecated:: 1.5
 Use :attr:`pyramid.request.Request.authenticated_userid` instead.
 """
 return request.authenticated_userid

deprecated(
 'authenticated_userid',
 'As of Pyramid 1.5 the "pyramid.security.authenticated_userid" API is now '
 'deprecated. It will be removed in Pyramd 1.8. Use the '
 '"authenticated_userid" attribute of the Pyramid request instead.'
)

[docs]def unauthenticated_userid(request):
 """
 A function that returns the value of the property
 :attr:`pyramid.request.Request.unauthenticated_userid`.

 .. deprecated:: 1.5
 Use :attr:`pyramid.request.Request.unauthenticated_userid` instead.
 """
 return request.unauthenticated_userid

deprecated(
 'unauthenticated_userid',
 'As of Pyramid 1.5 the "pyramid.security.unauthenticated_userid" API is '
 'now deprecated. It will be removed in Pyramd 1.8. Use the '
 '"unauthenticated_userid" attribute of the Pyramid request instead.'
)

[docs]def effective_principals(request):
 """
 A function that returns the value of the property
 :attr:`pyramid.request.Request.effective_principals`.

 .. deprecated:: 1.5
 Use :attr:`pyramid.request.Request.effective_principals` instead.
 """
 return request.effective_principals

deprecated(
 'effective_principals',
 'As of Pyramid 1.5 the "pyramid.security.effective_principals" API is '
 'now deprecated. It will be removed in Pyramd 1.8. Use the '
 '"effective_principals" attribute of the Pyramid request instead.'
)

[docs]def remember(request, principal, **kw):
 """
 Returns a sequence of header tuples (e.g. ``[('Set-Cookie', 'foo=abc')]``)
 on this request's response.
 These headers are suitable for 'remembering' a set of credentials
 implied by the data passed as ``principal`` and ``*kw`` using the
 current :term:`authentication policy`. Common usage might look
 like so within the body of a view function (``response`` is
 assumed to be a :term:`WebOb` -style :term:`response` object
 computed previously by the view code):

 .. code-block:: python

 from pyramid.security import remember
 headers = remember(request, 'chrism', password='123', max_age='86400')
 response = request.response
 response.headerlist.extend(headers)
 return response

 If no :term:`authentication policy` is in use, this function will
 always return an empty sequence. If used, the composition and
 meaning of ``**kw`` must be agreed upon by the calling code and
 the effective authentication policy.
 """
 policy = _get_authentication_policy(request)
 if policy is None:
 return []
 return policy.remember(request, principal, **kw)

[docs]def forget(request):
 """
 Return a sequence of header tuples (e.g. ``[('Set-Cookie',
 'foo=abc')]``) suitable for 'forgetting' the set of credentials
 possessed by the currently authenticated user. A common usage
 might look like so within the body of a view function
 (``response`` is assumed to be an :term:`WebOb` -style
 :term:`response` object computed previously by the view code):

 .. code-block:: python

 from pyramid.security import forget
 headers = forget(request)
 response.headerlist.extend(headers)
 return response

 If no :term:`authentication policy` is in use, this function will
 always return an empty sequence.
 """
 policy = _get_authentication_policy(request)
 if policy is None:
 return []
 return policy.forget(request)

[docs]def principals_allowed_by_permission(context, permission):
 """ Provided a ``context`` (a resource object), and a ``permission``
 (a string or unicode object), if a :term:`authorization policy` is
 in effect, return a sequence of :term:`principal` ids that possess
 the permission in the ``context``. If no authorization policy is
 in effect, this will return a sequence with the single value
 :mod:`pyramid.security.Everyone` (the special principal
 identifier representing all principals).

 .. note::

 even if an :term:`authorization policy` is in effect,
 some (exotic) authorization policies may not implement the
 required machinery for this function; those will cause a
 :exc:`NotImplementedError` exception to be raised when this
 function is invoked.
 """
 reg = get_current_registry()
 policy = reg.queryUtility(IAuthorizationPolicy)
 if policy is None:
 return [Everyone]
 return policy.principals_allowed_by_permission(context, permission)

[docs]def view_execution_permitted(context, request, name=''):
 """ If the view specified by ``context`` and ``name`` is protected
 by a :term:`permission`, check the permission associated with the
 view using the effective authentication/authorization policies and
 the ``request``. Return a boolean result. If no
 :term:`authorization policy` is in effect, or if the view is not
 protected by a permission, return ``True``. If no view can view found,
 an exception will be raised.

 .. versionchanged:: 1.4a4
 An exception is raised if no view is found.

 """
 reg = _get_registry(request)
 provides = [IViewClassifier] + map_(providedBy, (request, context))
 view = reg.adapters.lookup(provides, ISecuredView, name=name)
 if view is None:
 view = reg.adapters.lookup(provides, IView, name=name)
 if view is None:
 raise TypeError('No registered view satisfies the constraints. '
 'It would not make sense to claim that this view '
 '"is" or "is not" permitted.')
 return Allowed(
 'Allowed: view name %r in context %r (no permission defined)' %
 (name, context))
 return view.__permitted__(context, request)

class PermitsResult(int):
 def __new__(cls, s, *args):
 inst = int.__new__(cls, cls.boolval)
 inst.s = s
 inst.args = args
 return inst

 @property
 def msg(self):
 return self.s % self.args

 def __str__(self):
 return self.msg

 def __repr__(self):
 return '<%s instance at %s with msg %r>' % (self.__class__.__name__,
 id(self),
 self.msg)

[docs]class Denied(PermitsResult):
 """ An instance of ``Denied`` is returned when a security-related
 API or other :app:`Pyramid` code denies an action unrelated to
 an ACL check. It evaluates equal to all boolean false types. It
 has an attribute named ``msg`` describing the circumstances for
 the deny."""
 boolval = 0

[docs]class Allowed(PermitsResult):
 """ An instance of ``Allowed`` is returned when a security-related
 API or other :app:`Pyramid` code allows an action unrelated to
 an ACL check. It evaluates equal to all boolean true types. It
 has an attribute named ``msg`` describing the circumstances for
 the allow."""
 boolval = 1

class ACLPermitsResult(int):
 def __new__(cls, ace, acl, permission, principals, context):
 inst = int.__new__(cls, cls.boolval)
 inst.permission = permission
 inst.ace = ace
 inst.acl = acl
 inst.principals = principals
 inst.context = context
 return inst

 @property
 def msg(self):
 s = ('%s permission %r via ACE %r in ACL %r on context %r for '
 'principals %r')
 return s % (self.__class__.__name__,
 self.permission,
 self.ace,
 self.acl,
 self.context,
 self.principals)

 def __str__(self):
 return self.msg

 def __repr__(self):
 return '<%s instance at %s with msg %r>' % (self.__class__.__name__,
 id(self),
 self.msg)

[docs]class ACLDenied(ACLPermitsResult):
 """ An instance of ``ACLDenied`` represents that a security check made
 explicitly against ACL was denied. It evaluates equal to all boolean
 false types. It also has the following attributes: ``acl``, ``ace``,
 ``permission``, ``principals``, and ``context``. These attributes
 indicate the security values involved in the request. Its __str__ method
 prints a summary of these attributes for debugging purposes. The same
 summary is available as the ``msg`` attribute."""
 boolval = 0

[docs]class ACLAllowed(ACLPermitsResult):
 """ An instance of ``ACLAllowed`` represents that a security check made
 explicitly against ACL was allowed. It evaluates equal to all boolean
 true types. It also has the following attributes: ``acl``, ``ace``,
 ``permission``, ``principals``, and ``context``. These attributes
 indicate the security values involved in the request. Its __str__ method
 prints a summary of these attributes for debugging purposes. The same
 summary is available as the ``msg`` attribute."""
 boolval = 1

class AuthenticationAPIMixin(object):

 def _get_authentication_policy(self):
 reg = _get_registry(self)
 return reg.queryUtility(IAuthenticationPolicy)

 @property
 def authenticated_userid(self):
 """ Return the userid of the currently authenticated user or
 ``None`` if there is no :term:`authentication policy` in effect or
 there is no currently authenticated user.

 .. versionadded:: 1.5
 """
 policy = self._get_authentication_policy()
 if policy is None:
 return None
 return policy.authenticated_userid(self)

 @property
 def unauthenticated_userid(self):
 """ Return an object which represents the *claimed* (not verified) user
 id of the credentials present in the request. ``None`` if there is no
 :term:`authentication policy` in effect or there is no user data
 associated with the current request. This differs from
 :attr:`~pyramid.request.Request.authenticated_userid`, because the
 effective authentication policy will not ensure that a record
 associated with the userid exists in persistent storage.

 .. versionadded:: 1.5
 """
 policy = self._get_authentication_policy()
 if policy is None:
 return None
 return policy.unauthenticated_userid(self)

 @property
 def effective_principals(self):
 """ Return the list of 'effective' :term:`principal` identifiers
 for the ``request``. If no :term:`authentication policy` is in effect,
 this will return a one-element list containing the
 :data:`pyramid.security.Everyone` principal.

 .. versionadded:: 1.5
 """
 policy = self._get_authentication_policy()
 if policy is None:
 return [Everyone]
 return policy.effective_principals(self)

class AuthorizationAPIMixin(object):

 def has_permission(self, permission, context=None):
 """ Given a permission and an optional context, returns an instance of
 :data:`pyramid.security.Allowed` if the permission is granted to this
 request with the provided context, or the context already associated
 with the request. Otherwise, returns an instance of
 :data:`pyramid.security.Denied`. This method delegates to the current
 authentication and authorization policies. Returns
 :data:`pyramid.security.Allowed` unconditionally if no authentication
 policy has been registered for this request. If ``context`` is not
 supplied or is supplied as ``None``, the context used is the
 ``request.context`` attribute.

 :param permission: Does this request have the given permission?
 :type permission: unicode, str
 :param context: A resource object or ``None``
 :type context: object
 :returns: `pyramid.security.PermitsResult`

 .. versionadded:: 1.5

 """
 if context is None:
 context = self.context
 reg = _get_registry(self)
 authn_policy = reg.queryUtility(IAuthenticationPolicy)
 if authn_policy is None:
 return Allowed('No authentication policy in use.')
 authz_policy = reg.queryUtility(IAuthorizationPolicy)
 if authz_policy is None:
 raise ValueError('Authentication policy registered without '
 'authorization policy') # should never happen
 principals = authn_policy.effective_principals(self)
 return authz_policy.permits(context, principals, permission)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/path.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.path

import os
import pkg_resources
import sys
import imp

from zope.interface import implementer

from pyramid.interfaces import IAssetDescriptor

from pyramid.compat import string_types

ignore_types = [imp.C_EXTENSION, imp.C_BUILTIN]
init_names = ['__init__%s' % x[0] for x in imp.get_suffixes() if
 x[0] and x[2] not in ignore_types]

def caller_path(path, level=2):
 if not os.path.isabs(path):
 module = caller_module(level+1)
 prefix = package_path(module)
 path = os.path.join(prefix, path)
 return path

def caller_module(level=2, sys=sys):
 module_globals = sys._getframe(level).f_globals
 module_name = module_globals.get('__name__') or '__main__'
 module = sys.modules[module_name]
 return module

def package_name(pkg_or_module):
 """ If this function is passed a module, return the dotted Python
 package name of the package in which the module lives. If this
 function is passed a package, return the dotted Python package
 name of the package itself."""
 if pkg_or_module is None or pkg_or_module.__name__ == '__main__':
 return '__main__'
 pkg_name = pkg_or_module.__name__
 pkg_filename = getattr(pkg_or_module, '__file__', None)
 if pkg_filename is None:
 # Namespace packages do not have __init__.py* files,
 # and so have no __file__ attribute
 return pkg_name
 splitted = os.path.split(pkg_filename)
 if splitted[-1] in init_names:
 # it's a package
 return pkg_name
 return pkg_name.rsplit('.', 1)[0]

def package_of(pkg_or_module):
 """ Return the package of a module or return the package itself """
 pkg_name = package_name(pkg_or_module)
 __import__(pkg_name)
 return sys.modules[pkg_name]

def caller_package(level=2, caller_module=caller_module):
 # caller_module in arglist for tests
 module = caller_module(level+1)
 f = getattr(module, '__file__', '')
 if (('__init__.py' in f) or ('__init__$py' in f)): # empty at >>>
 # Module is a package
 return module
 # Go up one level to get package
 package_name = module.__name__.rsplit('.', 1)[0]
 return sys.modules[package_name]

def package_path(package):
 # computing the abspath is actually kinda expensive so we memoize
 # the result
 prefix = getattr(package, '__abspath__', None)
 if prefix is None:
 prefix = pkg_resources.resource_filename(package.__name__, '')
 # pkg_resources doesn't care whether we feed it a package
 # name or a module name within the package, the result
 # will be the same: a directory name to the package itself
 try:
 package.__abspath__ = prefix
 except:
 # this is only an optimization, ignore any error
 pass
 return prefix

class _CALLER_PACKAGE(object):
 def __repr__(self): # pragma: no cover (for docs)
 return 'pyramid.path.CALLER_PACKAGE'

CALLER_PACKAGE = _CALLER_PACKAGE()

class Resolver(object):
 def __init__(self, package=CALLER_PACKAGE):
 if package in (None, CALLER_PACKAGE):
 self.package = package
 else:
 if isinstance(package, string_types):
 try:
 __import__(package)
 except ImportError:
 raise ValueError(
 'The dotted name %r cannot be imported' % (package,)
)
 package = sys.modules[package]
 self.package = package_of(package)

 def get_package_name(self):
 if self.package is CALLER_PACKAGE:
 package_name = caller_package().__name__
 else:
 package_name = self.package.__name__
 return package_name

 def get_package(self):
 if self.package is CALLER_PACKAGE:
 package = caller_package()
 else:
 package = self.package
 return package

[docs]class AssetResolver(Resolver):
 """ A class used to resolve an :term:`asset specification` to an
 :term:`asset descriptor`.

 .. versionadded:: 1.3

 The constructor accepts a single argument named ``package`` which may be
 any of:

 - A fully qualified (not relative) dotted name to a module or package

 - a Python module or package object

 - The value ``None``

 - The constant value :attr:`pyramid.path.CALLER_PACKAGE`.

 The default value is :attr:`pyramid.path.CALLER_PACKAGE`.

 The ``package`` is used when a relative asset specification is supplied
 to the :meth:`~pyramid.path.AssetResolver.resolve` method. An asset
 specification without a colon in it is treated as relative.

 If ``package`` is ``None``, the resolver will
 only be able to resolve fully qualified (not relative) asset
 specifications. Any attempt to resolve a relative asset specification
 will result in an :exc:`ValueError` exception.

 If ``package`` is :attr:`pyramid.path.CALLER_PACKAGE`,
 the resolver will treat relative asset specifications as
 relative to the caller of the :meth:`~pyramid.path.AssetResolver.resolve`
 method.

 If ``package`` is a *module* or *module name* (as opposed to a package or
 package name), its containing package is computed and this
 package is used to derive the package name (all names are resolved relative
 to packages, never to modules). For example, if the ``package`` argument
 to this type was passed the string ``xml.dom.expatbuilder``, and
 ``template.pt`` is supplied to the
 :meth:`~pyramid.path.AssetResolver.resolve` method, the resulting absolute
 asset spec would be ``xml.minidom:template.pt``, because
 ``xml.dom.expatbuilder`` is a module object, not a package object.

 If ``package`` is a *package* or *package name* (as opposed to a module or
 module name), this package will be used to compute relative
 asset specifications. For example, if the ``package`` argument to this
 type was passed the string ``xml.dom``, and ``template.pt`` is supplied
 to the :meth:`~pyramid.path.AssetResolver.resolve` method, the resulting
 absolute asset spec would be ``xml.minidom:template.pt``.
 """
[docs] def resolve(self, spec):
 """
 Resolve the asset spec named as ``spec`` to an object that has the
 attributes and methods described in
 :class:`pyramid.interfaces.IAssetDescriptor`.

 If ``spec`` is an absolute filename
 (e.g. ``/path/to/myproject/templates/foo.pt``) or an absolute asset
 spec (e.g. ``myproject:templates.foo.pt``), an asset descriptor is
 returned without taking into account the ``package`` passed to this
 class' constructor.

 If ``spec`` is a *relative* asset specification (an asset
 specification without a ``:`` in it, e.g. ``templates/foo.pt``), the
 ``package`` argument of the constructor is used as the package
 portion of the asset spec. For example:

 .. code-block:: python

 a = AssetResolver('myproject')
 resolver = a.resolve('templates/foo.pt')
 print(resolver.abspath())
 # -> /path/to/myproject/templates/foo.pt

 If the AssetResolver is constructed without a ``package`` argument of
 ``None``, and a relative asset specification is passed to
 ``resolve``, an :exc:`ValueError` exception is raised.
 """
 if os.path.isabs(spec):
 return FSAssetDescriptor(spec)
 path = spec
 if ':' in path:
 package_name, path = spec.split(':', 1)
 else:
 if self.package is CALLER_PACKAGE:
 package_name = caller_package().__name__
 else:
 package_name = getattr(self.package, '__name__', None)
 if package_name is None:
 raise ValueError(
 'relative spec %r irresolveable without package' % (spec,)
)
 return PkgResourcesAssetDescriptor(package_name, path)

[docs]class DottedNameResolver(Resolver):
 """ A class used to resolve a :term:`dotted Python name` to a package or
 module object.

 .. versionadded:: 1.3

 The constructor accepts a single argument named ``package`` which may be
 any of:

 - A fully qualified (not relative) dotted name to a module or package

 - a Python module or package object

 - The value ``None``

 - The constant value :attr:`pyramid.path.CALLER_PACKAGE`.

 The default value is :attr:`pyramid.path.CALLER_PACKAGE`.

 The ``package`` is used when a relative dotted name is supplied to the
 :meth:`~pyramid.path.DottedNameResolver.resolve` method. A dotted name
 which has a ``.`` (dot) or ``:`` (colon) as its first character is
 treated as relative.

 If ``package`` is ``None``, the resolver will only be able to resolve
 fully qualified (not relative) names. Any attempt to resolve a
 relative name will result in an :exc:`ValueError` exception.

 If ``package`` is :attr:`pyramid.path.CALLER_PACKAGE`,
 the resolver will treat relative dotted names as relative to
 the caller of the :meth:`~pyramid.path.DottedNameResolver.resolve`
 method.

 If ``package`` is a *module* or *module name* (as opposed to a package or
 package name), its containing package is computed and this
 package used to derive the package name (all names are resolved relative
 to packages, never to modules). For example, if the ``package`` argument
 to this type was passed the string ``xml.dom.expatbuilder``, and
 ``.mindom`` is supplied to the
 :meth:`~pyramid.path.DottedNameResolver.resolve` method, the resulting
 import would be for ``xml.minidom``, because ``xml.dom.expatbuilder`` is
 a module object, not a package object.

 If ``package`` is a *package* or *package name* (as opposed to a module or
 module name), this package will be used to relative compute
 dotted names. For example, if the ``package`` argument to this type was
 passed the string ``xml.dom``, and ``.minidom`` is supplied to the
 :meth:`~pyramid.path.DottedNameResolver.resolve` method, the resulting
 import would be for ``xml.minidom``.
 """
[docs] def resolve(self, dotted):
 """
 This method resolves a dotted name reference to a global Python
 object (an object which can be imported) to the object itself.

 Two dotted name styles are supported:

 - ``pkg_resources``-style dotted names where non-module attributes
 of a package are separated from the rest of the path using a ``:``
 e.g. ``package.module:attr``.

 - ``zope.dottedname``-style dotted names where non-module
 attributes of a package are separated from the rest of the path
 using a ``.`` e.g. ``package.module.attr``.

 These styles can be used interchangeably. If the supplied name
 contains a ``:`` (colon), the ``pkg_resources`` resolution
 mechanism will be chosen, otherwise the ``zope.dottedname``
 resolution mechanism will be chosen.

 If the ``dotted`` argument passed to this method is not a string, a
 :exc:`ValueError` will be raised.

 When a dotted name cannot be resolved, a :exc:`ValueError` error is
 raised.

 Example:

 .. code-block:: python

 r = DottedNameResolver()
 v = r.resolve('xml') # v is the xml module

 """
 if not isinstance(dotted, string_types):
 raise ValueError('%r is not a string' % (dotted,))
 package = self.package
 if package is CALLER_PACKAGE:
 package = caller_package()
 return self._resolve(dotted, package)

[docs] def maybe_resolve(self, dotted):
 """
 This method behaves just like
 :meth:`~pyramid.path.DottedNameResolver.resolve`, except if the
 ``dotted`` value passed is not a string, it is simply returned. For
 example:

 .. code-block:: python

 import xml
 r = DottedNameResolver()
 v = r.maybe_resolve(xml)
 # v is the xml module; no exception raised
 """
 if isinstance(dotted, string_types):
 package = self.package
 if package is CALLER_PACKAGE:
 package = caller_package()
 return self._resolve(dotted, package)
 return dotted

 def _resolve(self, dotted, package):
 if ':' in dotted:
 return self._pkg_resources_style(dotted, package)
 else:
 return self._zope_dottedname_style(dotted, package)

 def _pkg_resources_style(self, value, package):
 """ package.module:attr style """
 if value.startswith(('.', ':')):
 if not package:
 raise ValueError(
 'relative name %r irresolveable without package' % (value,)
)
 if value in ['.', ':']:
 value = package.__name__
 else:
 value = package.__name__ + value
 # Calling EntryPoint.load with an argument is deprecated.
 # See https://pythonhosted.org/setuptools/history.html#id8
 ep = pkg_resources.EntryPoint.parse('x=%s' % value)
 if hasattr(ep, 'resolve'):
 # setuptools>=10.2
 return ep.resolve() # pragma: NO COVER
 else:
 return ep.load(False) # pragma: NO COVER

 def _zope_dottedname_style(self, value, package):
 """ package.module.attr style """
 module = getattr(package, '__name__', None) # package may be None
 if not module:
 module = None
 if value == '.':
 if module is None:
 raise ValueError(
 'relative name %r irresolveable without package' % (value,)
)
 name = module.split('.')
 else:
 name = value.split('.')
 if not name[0]:
 if module is None:
 raise ValueError(
 'relative name %r irresolveable without '
 'package' % (value,)
)
 module = module.split('.')
 name.pop(0)
 while not name[0]:
 module.pop()
 name.pop(0)
 name = module + name

 used = name.pop(0)
 found = __import__(used)
 for n in name:
 used += '.' + n
 try:
 found = getattr(found, n)
 except AttributeError:
 __import__(used)
 found = getattr(found, n) # pragma: no cover

 return found

@implementer(IAssetDescriptor)
class PkgResourcesAssetDescriptor(object):
 pkg_resources = pkg_resources

 def __init__(self, pkg_name, path):
 self.pkg_name = pkg_name
 self.path = path

 def absspec(self):
 return '%s:%s' % (self.pkg_name, self.path)

 def abspath(self):
 return self.pkg_resources.resource_filename(self.pkg_name, self.path)

 def stream(self):
 return self.pkg_resources.resource_stream(self.pkg_name, self.path)

 def isdir(self):
 return self.pkg_resources.resource_isdir(self.pkg_name, self.path)

 def listdir(self):
 return self.pkg_resources.resource_listdir(self.pkg_name, self.path)

 def exists(self):
 return self.pkg_resources.resource_exists(self.pkg_name, self.path)

@implementer(IAssetDescriptor)
class FSAssetDescriptor(object):

 def __init__(self, path):
 self.path = os.path.abspath(path)

 def absspec(self):
 raise NotImplementedError

 def abspath(self):
 return self.path

 def stream(self):
 return open(self.path, 'rb')

 def isdir(self):
 return os.path.isdir(self.path)

 def listdir(self):
 return os.listdir(self.path)

 def exists(self):
 return os.path.exists(self.path)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/encode.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.encode

from pyramid.compat import (
 text_type,
 binary_type,
 is_nonstr_iter,
 url_quote as _url_quote,
 url_quote_plus as _quote_plus,
)

def url_quote(val, safe=''): # bw compat api
 cls = val.__class__
 if cls is text_type:
 val = val.encode('utf-8')
 elif cls is not binary_type:
 val = str(val).encode('utf-8')
 return _url_quote(val, safe=safe)

[docs]def urlencode(query, doseq=True):
 """
 An alternate implementation of Python's stdlib `urllib.urlencode
 function <http://docs.python.org/library/urllib.html>`_ which
 accepts unicode keys and values within the ``query``
 dict/sequence; all Unicode keys and values are first converted to
 UTF-8 before being used to compose the query string.

 The value of ``query`` must be a sequence of two-tuples
 representing key/value pairs *or* an object (often a dictionary)
 with an ``.items()`` method that returns a sequence of two-tuples
 representing key/value pairs.

 For minimal calling convention backwards compatibility, this
 version of urlencode accepts *but ignores* a second argument
 conventionally named ``doseq``. The Python stdlib version behaves
 differently when ``doseq`` is False and when a sequence is
 presented as one of the values. This version always behaves in
 the ``doseq=True`` mode, no matter what the value of the second
 argument.

 See the Python stdlib documentation for ``urllib.urlencode`` for
 more information.

 .. versionchanged:: 1.5
 In a key/value pair, if the value is ``None`` then it will be
 dropped from the resulting output.
 """
 try:
 # presumed to be a dictionary
 query = query.items()
 except AttributeError:
 pass

 result = ''
 prefix = ''

 for (k, v) in query:
 k = quote_plus(k)

 if is_nonstr_iter(v):
 for x in v:
 x = quote_plus(x)
 result += '%s%s=%s' % (prefix, k, x)
 prefix = '&'
 elif v is None:
 result += '%s%s=' % (prefix, k)
 else:
 v = quote_plus(v)
 result += '%s%s=%s' % (prefix, k, v)

 prefix = '&'

 return result

bw compat api (dnr)
def quote_plus(val, safe=''):
 cls = val.__class__
 if cls is text_type:
 val = val.encode('utf-8')
 elif cls is not binary_type:
 val = str(val).encode('utf-8')
 return _quote_plus(val, safe=safe)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/static.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.static

-*- coding: utf-8 -*-
import os

from os.path import (
 normcase,
 normpath,
 join,
 isdir,
 exists,
)

from pkg_resources import (
 resource_exists,
 resource_filename,
 resource_isdir,
)

from repoze.lru import lru_cache

from pyramid.asset import resolve_asset_spec

from pyramid.compat import text_

from pyramid.httpexceptions import (
 HTTPNotFound,
 HTTPMovedPermanently,
)

from pyramid.path import caller_package
from pyramid.response import FileResponse
from pyramid.traversal import traversal_path_info

slash = text_('/')

[docs]class static_view(object):
 """ An instance of this class is a callable which can act as a
 :app:`Pyramid` :term:`view callable`; this view will serve
 static files from a directory on disk based on the ``root_dir``
 you provide to its constructor.

 The directory may contain subdirectories (recursively); the static
 view implementation will descend into these directories as
 necessary based on the components of the URL in order to resolve a
 path into a response.

 You may pass an absolute or relative filesystem path or a
 :term:`asset specification` representing the directory
 containing static files as the ``root_dir`` argument to this
 class' constructor.

 If the ``root_dir`` path is relative, and the ``package_name``
 argument is ``None``, ``root_dir`` will be considered relative to
 the directory in which the Python file which *calls* ``static``
 resides. If the ``package_name`` name argument is provided, and a
 relative ``root_dir`` is provided, the ``root_dir`` will be
 considered relative to the Python :term:`package` specified by
 ``package_name`` (a dotted path to a Python package).

 ``cache_max_age`` influences the ``Expires`` and ``Max-Age``
 response headers returned by the view (default is 3600 seconds or
 one hour).

 ``use_subpath`` influences whether ``request.subpath`` will be used as
 ``PATH_INFO`` when calling the underlying WSGI application which actually
 serves the static files. If it is ``True``, the static application will
 consider ``request.subpath`` as ``PATH_INFO`` input. If it is ``False``,
 the static application will consider request.environ[``PATH_INFO``] as
 ``PATH_INFO`` input. By default, this is ``False``.

 .. note::

 If the ``root_dir`` is relative to a :term:`package`, or is a
 :term:`asset specification` the :app:`Pyramid`
 :class:`pyramid.config.Configurator` method can be used to override
 assets within the named ``root_dir`` package-relative directory.
 However, if the ``root_dir`` is absolute, configuration will not be able
 to override the assets it contains.
 """

 def __init__(self, root_dir, cache_max_age=3600, package_name=None,
 use_subpath=False, index='index.html'):
 # package_name is for bw compat; it is preferred to pass in a
 # package-relative path as root_dir
 # (e.g. ``anotherpackage:foo/static``).
 self.cache_max_age = cache_max_age
 if package_name is None:
 package_name = caller_package().__name__
 package_name, docroot = resolve_asset_spec(root_dir, package_name)
 self.use_subpath = use_subpath
 self.package_name = package_name
 self.docroot = docroot
 self.norm_docroot = normcase(normpath(docroot))
 self.index = index

 def __call__(self, context, request):
 if self.use_subpath:
 path_tuple = request.subpath
 else:
 path_tuple = traversal_path_info(request.environ['PATH_INFO'])

 path = _secure_path(path_tuple)

 if path is None:
 raise HTTPNotFound('Out of bounds: %s' % request.url)

 if self.package_name: # package resource

 resource_path ='%s/%s' % (self.docroot.rstrip('/'), path)
 if resource_isdir(self.package_name, resource_path):
 if not request.path_url.endswith('/'):
 self.add_slash_redirect(request)
 resource_path = '%s/%s' % (resource_path.rstrip('/'),self.index)
 if not resource_exists(self.package_name, resource_path):
 raise HTTPNotFound(request.url)
 filepath = resource_filename(self.package_name, resource_path)

 else: # filesystem file

 # os.path.normpath converts / to \ on windows
 filepath = normcase(normpath(join(self.norm_docroot, path)))
 if isdir(filepath):
 if not request.path_url.endswith('/'):
 self.add_slash_redirect(request)
 filepath = join(filepath, self.index)
 if not exists(filepath):
 raise HTTPNotFound(request.url)

 return FileResponse(filepath, request, self.cache_max_age)

 def add_slash_redirect(self, request):
 url = request.path_url + '/'
 qs = request.query_string
 if qs:
 url = url + '?' + qs
 raise HTTPMovedPermanently(url)

_seps = set(['/', os.sep])
def _contains_slash(item):
 for sep in _seps:
 if sep in item:
 return True

_has_insecure_pathelement = set(['..', '.', '']).intersection

@lru_cache(1000)
def _secure_path(path_tuple):
 if _has_insecure_pathelement(path_tuple):
 # belt-and-suspenders security; this should never be true
 # unless someone screws up the traversal_path code
 # (request.subpath is computed via traversal_path too)
 return None
 if any([_contains_slash(item) for item in path_tuple]):
 return None
 encoded = slash.join(path_tuple) # will be unicode
 return encoded

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/compat.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.compat

import inspect
import platform
import sys
import types

if platform.system() == 'Windows': # pragma: no cover
 WIN = True
else: # pragma: no cover
 WIN = False

try: # pragma: no cover
 import __pypy__
 PYPY = True
except: # pragma: no cover
 __pypy__ = None
 PYPY = False

try:
 import cPickle as pickle
except ImportError: # pragma: no cover
 import pickle

True if we are running on Python 3.
PY3 = sys.version_info[0] == 3

if PY3: # pragma: no cover
 string_types = str,
 integer_types = int,
 class_types = type,
 text_type = str
 binary_type = bytes
 long = int
else:
 string_types = basestring,
 integer_types = (int, long)
 class_types = (type, types.ClassType)
 text_type = unicode
 binary_type = str
 long = long

[docs]def text_(s, encoding='latin-1', errors='strict'):
 """ If ``s`` is an instance of ``binary_type``, return
 ``s.decode(encoding, errors)``, otherwise return ``s``"""
 if isinstance(s, binary_type):
 return s.decode(encoding, errors)
 return s # pragma: no cover

[docs]def bytes_(s, encoding='latin-1', errors='strict'):
 """ If ``s`` is an instance of ``text_type``, return
 ``s.encode(encoding, errors)``, otherwise return ``s``"""
 if isinstance(s, text_type): # pragma: no cover
 return s.encode(encoding, errors)
 return s

if PY3: # pragma: no cover
 def ascii_native_(s):
 if isinstance(s, text_type):
 s = s.encode('ascii')
 return str(s, 'ascii', 'strict')
else:
[docs] def ascii_native_(s):
 if isinstance(s, text_type):
 s = s.encode('ascii')
 return str(s)

ascii_native_.__doc__ = """
Python 3: If ``s`` is an instance of ``text_type``, return
``s.encode('ascii')``, otherwise return ``str(s, 'ascii', 'strict')``

Python 2: If ``s`` is an instance of ``text_type``, return
``s.encode('ascii')``, otherwise return ``str(s)``
"""

if PY3: # pragma: no cover
 def native_(s, encoding='latin-1', errors='strict'):
 """ If ``s`` is an instance of ``text_type``, return
 ``s``, otherwise return ``str(s, encoding, errors)``"""
 if isinstance(s, text_type):
 return s
 return str(s, encoding, errors)
else:
[docs] def native_(s, encoding='latin-1', errors='strict'):
 """ If ``s`` is an instance of ``text_type``, return
 ``s.encode(encoding, errors)``, otherwise return ``str(s)``"""
 if isinstance(s, text_type):
 return s.encode(encoding, errors)
 return str(s)

native_.__doc__ = """
Python 3: If ``s`` is an instance of ``text_type``, return ``s``, otherwise
return ``str(s, encoding, errors)``

Python 2: If ``s`` is an instance of ``text_type``, return
``s.encode(encoding, errors)``, otherwise return ``str(s)``
"""

if PY3: # pragma: no cover
 from urllib import parse
 urlparse = parse
 from urllib.parse import quote as url_quote
 from urllib.parse import quote_plus as url_quote_plus
 from urllib.parse import unquote as url_unquote
 from urllib.parse import urlencode as url_encode
 from urllib.request import urlopen as url_open
 url_unquote_text = url_unquote
 url_unquote_native = url_unquote
else:
 import urlparse
 from urllib import quote as url_quote
 from urllib import quote_plus as url_quote_plus
 from urllib import unquote as url_unquote
 from urllib import urlencode as url_encode
 from urllib2 import urlopen as url_open
 def url_unquote_text(v, encoding='utf-8', errors='replace'): # pragma: no cover
 v = url_unquote(v)
 return v.decode(encoding, errors)
 def url_unquote_native(v, encoding='utf-8', errors='replace'): # pragma: no cover
 return native_(url_unquote_text(v, encoding, errors))

if PY3: # pragma: no cover
 import builtins
 exec_ = getattr(builtins, "exec")

[docs] def reraise(tp, value, tb=None):
 if value is None:
 value = tp
 if value.__traceback__ is not tb:
 raise value.with_traceback(tb)
 raise value

 del builtins

else: # pragma: no cover
 def exec_(code, globs=None, locs=None):
 """Execute code in a namespace."""
 if globs is None:
 frame = sys._getframe(1)
 globs = frame.f_globals
 if locs is None:
 locs = frame.f_locals
 del frame
 elif locs is None:
 locs = globs
 exec("""exec code in globs, locs""")

 exec_("""def reraise(tp, value, tb=None):
 raise tp, value, tb
""")

if PY3: # pragma: no cover
 def iteritems_(d):
 return d.items()
 def itervalues_(d):
 return d.values()
 def iterkeys_(d):
 return d.keys()
else: # pragma: no cover
[docs] def iteritems_(d):
 return d.iteritems()

[docs] def itervalues_(d):
 return d.itervalues()

[docs] def iterkeys_(d):
 return d.iterkeys()

if PY3: # pragma: no cover
[docs] def map_(*arg):
 return list(map(*arg))

else:
 map_ = map

if PY3: # pragma: no cover
 def is_nonstr_iter(v):
 if isinstance(v, str):
 return False
 return hasattr(v, '__iter__')
else:
[docs] def is_nonstr_iter(v):
 return hasattr(v, '__iter__')

if PY3: # pragma: no cover
 im_func = '__func__'
 im_self = '__self__'
else:
 im_func = 'im_func'
 im_self = 'im_self'

try: # pragma: no cover
 import configparser
except ImportError: # pragma: no cover
 import ConfigParser as configparser

try:
 from Cookie import SimpleCookie
except ImportError: # pragma: no cover
 from http.cookies import SimpleCookie

if PY3: # pragma: no cover
 from html import escape
else:
 from cgi import escape

try: # pragma: no cover
 input_ = raw_input
except NameError: # pragma: no cover
 input_ = input

try:
 from StringIO import StringIO as NativeIO
except ImportError: # pragma: no cover
 from io import StringIO as NativeIO

"json" is not an API; it's here to support older pyramid_debugtoolbar
versions which attempt to import it
import json

if PY3: # pragma: no cover
 # see PEP 3333 for why we encode WSGI PATH_INFO to latin-1 before
 # decoding it to utf-8
 def decode_path_info(path):
 return path.encode('latin-1').decode('utf-8')
else:
 def decode_path_info(path):
 return path.decode('utf-8')

if PY3: # pragma: no cover
 # see PEP 3333 for why we decode the path to latin-1
 from urllib.parse import unquote_to_bytes
 def unquote_bytes_to_wsgi(bytestring):
 return unquote_to_bytes(bytestring).decode('latin-1')
else:
 from urlparse import unquote as unquote_to_bytes
 def unquote_bytes_to_wsgi(bytestring):
 return unquote_to_bytes(bytestring)

def is_bound_method(ob):
 return inspect.ismethod(ob) and getattr(ob, im_self, None) is not None

support annotations and keyword-only arguments in PY3
if PY3:
 from inspect import getfullargspec as getargspec
else:
 from inspect import getargspec

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/threadlocal.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.threadlocal

import threading

from pyramid.registry import global_registry

class ThreadLocalManager(threading.local):
 def __init__(self, default=None):
 # http://code.google.com/p/google-app-engine-django/issues/detail?id=119
 # we *must* use a keyword argument for ``default`` here instead
 # of a positional argument to work around a bug in the
 # implementation of _threading_local.local in Python, which is
 # used by GAE instead of _thread.local
 self.stack = []
 self.default = default

 def push(self, info):
 self.stack.append(info)

 set = push # b/c

 def pop(self):
 if self.stack:
 return self.stack.pop()

 def get(self):
 try:
 return self.stack[-1]
 except IndexError:
 return self.default()

 def clear(self):
 self.stack[:] = []

def defaults():
 return {'request':None, 'registry':global_registry}

manager = ThreadLocalManager(default=defaults)

[docs]def get_current_request():
 """Return the currently active request or ``None`` if no request
 is currently active.

 This function should be used *extremely sparingly*, usually only
 in unit testing code. It's almost always usually a mistake to use
 ``get_current_request`` outside a testing context because its
 usage makes it possible to write code that can be neither easily
 tested nor scripted.
 """
 return manager.get()['request']

[docs]def get_current_registry(context=None): # context required by getSiteManager API
 """Return the currently active :term:`application registry` or the
 global application registry if no request is currently active.

 This function should be used *extremely sparingly*, usually only
 in unit testing code. It's almost always usually a mistake to use
 ``get_current_registry`` outside a testing context because its
 usage makes it possible to write code that can be neither easily
 tested nor scripted.
 """
 return manager.get()['registry']

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/settings.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.settings

from pyramid.compat import string_types

truthy = frozenset(('t', 'true', 'y', 'yes', 'on', '1'))

[docs]def asbool(s):
 """ Return the boolean value ``True`` if the case-lowered value of string
 input ``s`` is any of ``t``, ``true``, ``y``, ``on``, or ``1``, otherwise
 return the boolean value ``False``. If ``s`` is the value ``None``,
 return ``False``. If ``s`` is already one of the boolean values ``True``
 or ``False``, return it."""
 if s is None:
 return False
 if isinstance(s, bool):
 return s
 s = str(s).strip()
 return s.lower() in truthy

def aslist_cronly(value):
 if isinstance(value, string_types):
 value = filter(None, [x.strip() for x in value.splitlines()])
 return list(value)

[docs]def aslist(value, flatten=True):
 """ Return a list of strings, separating the input based on newlines
 and, if flatten=True (the default), also split on spaces within
 each line."""
 values = aslist_cronly(value)
 if not flatten:
 return values
 result = []
 for value in values:
 subvalues = value.split()
 result.extend(subvalues)
 return result

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/renderers.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.renderers

import json
import os
import re

from zope.interface import (
 implementer,
 providedBy,
)
from zope.interface.registry import Components

from pyramid.interfaces import (
 IJSONAdapter,
 IRendererFactory,
 IResponseFactory,
 IRendererInfo,
)

from pyramid.compat import (
 string_types,
 text_type,
)

from pyramid.decorator import reify

from pyramid.events import BeforeRender

from pyramid.httpexceptions import HTTPBadRequest

from pyramid.path import caller_package

from pyramid.response import Response
from pyramid.threadlocal import get_current_registry

API

[docs]def render(renderer_name, value, request=None, package=None):
 """ Using the renderer ``renderer_name`` (a template
 or a static renderer), render the value (or set of values) present
 in ``value``. Return the result of the renderer's ``__call__``
 method (usually a string or Unicode).

 If the ``renderer_name`` refers to a file on disk, such as when the
 renderer is a template, it's usually best to supply the name as an
 :term:`asset specification`
 (e.g. ``packagename:path/to/template.pt``).

 You may supply a relative asset spec as ``renderer_name``. If
 the ``package`` argument is supplied, a relative renderer path
 will be converted to an absolute asset specification by
 combining the package ``package`` with the relative
 asset specification ``renderer_name``. If ``package``
 is ``None`` (the default), the package name of the *caller* of
 this function will be used as the package.

 The ``value`` provided will be supplied as the input to the
 renderer. Usually, for template renderings, this should be a
 dictionary. For other renderers, this will need to be whatever
 sort of value the renderer expects.

 The 'system' values supplied to the renderer will include a basic set of
 top-level system names, such as ``request``, ``context``,
 ``renderer_name``, and ``view``. See :ref:`renderer_system_values` for
 the full list. If :term:`renderer globals` have been specified, these
 will also be used to augment the value.

 Supply a ``request`` parameter in order to provide the renderer
 with the most correct 'system' values (``request`` and ``context``
 in particular).

 """
 try:
 registry = request.registry
 except AttributeError:
 registry = None
 if package is None:
 package = caller_package()
 helper = RendererHelper(name=renderer_name, package=package,
 registry=registry)

 saved_response = None
 # save the current response, preventing the renderer from affecting it
 attrs = request.__dict__ if request is not None else {}
 if 'response' in attrs:
 saved_response = attrs['response']
 del attrs['response']

 result = helper.render(value, None, request=request)

 # restore the original response, overwriting any changes
 if saved_response is not None:
 attrs['response'] = saved_response
 elif 'response' in attrs:
 del attrs['response']

 return result

[docs]def render_to_response(renderer_name, value, request=None, package=None):
 """ Using the renderer ``renderer_name`` (a template
 or a static renderer), render the value (or set of values) using
 the result of the renderer's ``__call__`` method (usually a string
 or Unicode) as the response body.

 If the renderer name refers to a file on disk (such as when the
 renderer is a template), it's usually best to supply the name as a
 :term:`asset specification`.

 You may supply a relative asset spec as ``renderer_name``. If
 the ``package`` argument is supplied, a relative renderer name
 will be converted to an absolute asset specification by
 combining the package ``package`` with the relative
 asset specification ``renderer_name``. If you do
 not supply a ``package`` (or ``package`` is ``None``) the package
 name of the *caller* of this function will be used as the package.

 The ``value`` provided will be supplied as the input to the
 renderer. Usually, for template renderings, this should be a
 dictionary. For other renderers, this will need to be whatever
 sort of value the renderer expects.

 The 'system' values supplied to the renderer will include a basic set of
 top-level system names, such as ``request``, ``context``,
 ``renderer_name``, and ``view``. See :ref:`renderer_system_values` for
 the full list. If :term:`renderer globals` have been specified, these
 will also be used to argument the value.

 Supply a ``request`` parameter in order to provide the renderer
 with the most correct 'system' values (``request`` and ``context``
 in particular). Keep in mind that if the ``request`` parameter is
 not passed in, any changes to ``request.response`` attributes made
 before calling this function will be ignored.

 """
 try:
 registry = request.registry
 except AttributeError:
 registry = None
 if package is None:
 package = caller_package()
 helper = RendererHelper(name=renderer_name, package=package,
 registry=registry)
 return helper.render_to_response(value, None, request=request)

[docs]def get_renderer(renderer_name, package=None):
 """ Return the renderer object for the renderer ``renderer_name``.

 You may supply a relative asset spec as ``renderer_name``. If
 the ``package`` argument is supplied, a relative renderer name
 will be converted to an absolute asset specification by
 combining the package ``package`` with the relative
 asset specification ``renderer_name``. If ``package`` is ``None``
 (the default), the package name of the *caller* of this function
 will be used as the package.
 """
 if package is None:
 package = caller_package()
 helper = RendererHelper(name=renderer_name, package=package)
 return helper.renderer

concrete renderer factory implementations (also API)

def string_renderer_factory(info):
 def _render(value, system):
 if not isinstance(value, string_types):
 value = str(value)
 request = system.get('request')
 if request is not None:
 response = request.response
 ct = response.content_type
 if ct == response.default_content_type:
 response.content_type = 'text/plain'
 return value
 return _render

_marker = object()

[docs]class JSON(object):
 """ Renderer that returns a JSON-encoded string.

 Configure a custom JSON renderer using the
 :meth:`~pyramid.config.Configurator.add_renderer` API at application
 startup time:

 .. code-block:: python

 from pyramid.config import Configurator

 config = Configurator()
 config.add_renderer('myjson', JSON(indent=4))

 Once this renderer is registered as above, you can use
 ``myjson`` as the ``renderer=`` parameter to ``@view_config`` or
 :meth:`~pyramid.config.Configurator.add_view``:

 .. code-block:: python

 from pyramid.view import view_config

 @view_config(renderer='myjson')
 def myview(request):
 return {'greeting':'Hello world'}

 Custom objects can be serialized using the renderer by either
 implementing the ``__json__`` magic method, or by registering
 adapters with the renderer. See
 :ref:`json_serializing_custom_objects` for more information.

 .. note::

 The default serializer uses ``json.JSONEncoder``. A different
 serializer can be specified via the ``serializer`` argument. Custom
 serializers should accept the object, a callback ``default``, and any
 extra ``kw`` keyword arguments passed during renderer construction.
 This feature isn't widely used but it can be used to replace the
 stock JSON serializer with, say, simplejson. If all you want to
 do, however, is serialize custom objects, you should use the method
 explained in :ref:`json_serializing_custom_objects` instead
 of replacing the serializer.

 .. versionadded:: 1.4
 Prior to this version, there was no public API for supplying options
 to the underlying serializer without defining a custom renderer.
 """

 def __init__(self, serializer=json.dumps, adapters=(), **kw):
 """ Any keyword arguments will be passed to the ``serializer``
 function."""
 self.serializer = serializer
 self.kw = kw
 self.components = Components()
 for type, adapter in adapters:
 self.add_adapter(type, adapter)

[docs] def add_adapter(self, type_or_iface, adapter):
 """ When an object of the type (or interface) ``type_or_iface`` fails
 to automatically encode using the serializer, the renderer will use
 the adapter ``adapter`` to convert it into a JSON-serializable
 object. The adapter must accept two arguments: the object and the
 currently active request.

 .. code-block:: python

 class Foo(object):
 x = 5

 def foo_adapter(obj, request):
 return obj.x

 renderer = JSON(indent=4)
 renderer.add_adapter(Foo, foo_adapter)

 When you've done this, the JSON renderer will be able to serialize
 instances of the ``Foo`` class when they're encountered in your view
 results."""

 self.components.registerAdapter(adapter, (type_or_iface,),
 IJSONAdapter)

 def __call__(self, info):
 """ Returns a plain JSON-encoded string with content-type
 ``application/json``. The content-type may be overridden by
 setting ``request.response.content_type``."""
 def _render(value, system):
 request = system.get('request')
 if request is not None:
 response = request.response
 ct = response.content_type
 if ct == response.default_content_type:
 response.content_type = 'application/json'
 default = self._make_default(request)
 return self.serializer(value, default=default, **self.kw)

 return _render

 def _make_default(self, request):
 def default(obj):
 if hasattr(obj, '__json__'):
 return obj.__json__(request)
 obj_iface = providedBy(obj)
 adapters = self.components.adapters
 result = adapters.lookup((obj_iface,), IJSONAdapter,
 default=_marker)
 if result is _marker:
 raise TypeError('%r is not JSON serializable' % (obj,))
 return result(obj, request)
 return default

json_renderer_factory = JSON() # bw compat

JSONP_VALID_CALLBACK = re.compile(r"^[$a-z_][$0-9a-z_\.\[\]]+[^.]$", re.I)

[docs]class JSONP(JSON):
 """ `JSONP <http://en.wikipedia.org/wiki/JSONP>`_ renderer factory helper
 which implements a hybrid json/jsonp renderer. JSONP is useful for
 making cross-domain AJAX requests.

 Configure a JSONP renderer using the
 :meth:`pyramid.config.Configurator.add_renderer` API at application
 startup time:

 .. code-block:: python

 from pyramid.config import Configurator

 config = Configurator()
 config.add_renderer('jsonp', JSONP(param_name='callback'))

 The class' constructor also accepts arbitrary keyword arguments. All
 keyword arguments except ``param_name`` are passed to the ``json.dumps``
 function as its keyword arguments.

 .. code-block:: python

 from pyramid.config import Configurator

 config = Configurator()
 config.add_renderer('jsonp', JSONP(param_name='callback', indent=4))

 .. versionchanged:: 1.4
 The ability of this class to accept a ``**kw`` in its constructor.

 The arguments passed to this class' constructor mean the same thing as
 the arguments passed to :class:`pyramid.renderers.JSON` (including
 ``serializer`` and ``adapters``).

 Once this renderer is registered via
 :meth:`~pyramid.config.Configurator.add_renderer` as above, you can use
 ``jsonp`` as the ``renderer=`` parameter to ``@view_config`` or
 :meth:`pyramid.config.Configurator.add_view``:

 .. code-block:: python

 from pyramid.view import view_config

 @view_config(renderer='jsonp')
 def myview(request):
 return {'greeting':'Hello world'}

 When a view is called that uses the JSONP renderer:

 - If there is a parameter in the request's HTTP query string that matches
 the ``param_name`` of the registered JSONP renderer (by default,
 ``callback``), the renderer will return a JSONP response.

 - If there is no callback parameter in the request's query string, the
 renderer will return a 'plain' JSON response.

 .. versionadded:: 1.1

 .. seealso::

 See also :ref:`jsonp_renderer`.
 """

 def __init__(self, param_name='callback', **kw):
 self.param_name = param_name
 JSON.__init__(self, **kw)

 def __call__(self, info):
 """ Returns JSONP-encoded string with content-type
 ``application/javascript`` if query parameter matching
 ``self.param_name`` is present in request.GET; otherwise returns
 plain-JSON encoded string with content-type ``application/json``"""
 def _render(value, system):
 request = system.get('request')
 default = self._make_default(request)
 val = self.serializer(value, default=default, **self.kw)
 ct = 'application/json'
 body = val
 if request is not None:
 callback = request.GET.get(self.param_name)

 if callback is not None:
 if not JSONP_VALID_CALLBACK.match(callback):
 raise HTTPBadRequest(
 'Invalid JSONP callback function name.')

 ct = 'application/javascript'
 body = '/**/{0}({1});'.format(callback, val)
 response = request.response
 if response.content_type == response.default_content_type:
 response.content_type = ct
 return body
 return _render

@implementer(IRendererInfo)
class RendererHelper(object):
 def __init__(self, name=None, package=None, registry=None):
 if name and '.' in name:
 rtype = os.path.splitext(name)[1]
 else:
 # important.. must be a string; cannot be None; see issue 249
 rtype = name or ''

 if registry is None:
 registry = get_current_registry()

 self.name = name
 self.package = package
 self.type = rtype
 self.registry = registry

 @reify
 def settings(self):
 settings = self.registry.settings
 if settings is None:
 settings = {}
 return settings

 @reify
 def renderer(self):
 factory = self.registry.queryUtility(IRendererFactory, name=self.type)
 if factory is None:
 raise ValueError(
 'No such renderer factory %s' % str(self.type))
 return factory(self)

 def get_renderer(self):
 return self.renderer

 def render_view(self, request, response, view, context):
 system = {'view':view,
 'renderer_name':self.name, # b/c
 'renderer_info':self,
 'context':context,
 'request':request,
 'req':request,
 }
 return self.render_to_response(response, system, request=request)

 def render(self, value, system_values, request=None):
 renderer = self.renderer
 if system_values is None:
 system_values = {
 'view':None,
 'renderer_name':self.name, # b/c
 'renderer_info':self,
 'context':getattr(request, 'context', None),
 'request':request,
 'req':request,
 }

 system_values = BeforeRender(system_values, value)

 registry = self.registry
 registry.notify(system_values)

 result = renderer(value, system_values)
 return result

 def render_to_response(self, value, system_values, request=None):
 result = self.render(value, system_values, request=request)
 return self._make_response(result, request)

 def _make_response(self, result, request):
 # broken out of render_to_response as a separate method for testing
 # purposes
 response = getattr(request, 'response', None)
 if response is None:
 # request is None or request is not a pyramid.response.Response
 registry = self.registry
 response_factory = registry.queryUtility(IResponseFactory,
 default=Response)

 response = response_factory()

 if result is not None:
 if isinstance(result, text_type):
 response.text = result
 else:
 response.body = result

 return response

 def clone(self, name=None, package=None, registry=None):
 if name is None:
 name = self.name
 if package is None:
 package = self.package
 if registry is None:
 registry = self.registry
 return self.__class__(name=name, package=package, registry=registry)

class NullRendererHelper(RendererHelper):
 """ Special renderer helper that has render_* methods which simply return
 the value they are fed rather than converting them to response objects;
 useful for testing purposes and special case view configuration
 registrations that want to use the view configuration machinery but do
 not want actual rendering to happen ."""
 def __init__(self, name=None, package=None, registry=None):
 # we override the initializer to avoid calling get_current_registry
 # (it will return a reference to the global registry when this
 # thing is called at module scope; we don't want that).
 self.name = None
 self.package = None
 self.type = ''
 self.registry = None

 @property
 def settings(self):
 return get_current_registry().settings or {}

 def render_view(self, request, value, view, context):
 return value

 def render(self, value, system_values, request=None):
 return value

 def render_to_response(self, value, system_values, request=None):
 return value

 def clone(self, name=None, package=None, registry=None):
 return self

null_renderer = NullRendererHelper()

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/interfaces.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.interfaces

from zope.deprecation import deprecated

from zope.interface import (
 Attribute,
 Interface,
)

from pyramid.compat import PY3

public API interfaces

[docs]class IContextFound(Interface):
 """ An event type that is emitted after :app:`Pyramid` finds a
 :term:`context` object but before it calls any view code. See the
 documentation attached to :class:`pyramid.events.ContextFound`
 for more information.

 .. note::

 For backwards compatibility with versions of
 :app:`Pyramid` before 1.0, this event interface can also be
 imported as :class:`pyramid.interfaces.IAfterTraversal`.
 """
 request = Attribute('The request object')

IAfterTraversal = IContextFound

[docs]class INewRequest(Interface):
 """ An event type that is emitted whenever :app:`Pyramid`
 begins to process a new request. See the documentation attached
 to :class:`pyramid.events.NewRequest` for more information."""
 request = Attribute('The request object')

[docs]class INewResponse(Interface):
 """ An event type that is emitted whenever any :app:`Pyramid`
 view returns a response. See the
 documentation attached to :class:`pyramid.events.NewResponse`
 for more information."""
 request = Attribute('The request object')
 response = Attribute('The response object')

[docs]class IApplicationCreated(Interface):
 """ Event issued when the
 :meth:`pyramid.config.Configurator.make_wsgi_app` method
 is called. See the documentation attached to
 :class:`pyramid.events.ApplicationCreated` for more
 information.

 .. note::

 For backwards compatibility with :app:`Pyramid`
 versions before 1.0, this interface can also be imported as
 :class:`pyramid.interfaces.IWSGIApplicationCreatedEvent`.
 """
 app = Attribute("Created application")

IWSGIApplicationCreatedEvent = IApplicationCreated # b /c

[docs]class IResponse(Interface):
 """ Represents a WSGI response using the WebOb response interface.
 Some attribute and method documentation of this interface references
 :rfc:`2616`.

 This interface is most famously implemented by
 :class:`pyramid.response.Response` and the HTTP exception classes in
 :mod:`pyramid.httpexceptions`."""

 RequestClass = Attribute(
 """ Alias for :class:`pyramid.request.Request` """)

 def __call__(environ, start_response):
 """ :term:`WSGI` call interface, should call the start_response
 callback and should return an iterable"""

 accept_ranges = Attribute(
 """Gets and sets and deletes the Accept-Ranges header. For more
 information on Accept-Ranges see RFC 2616, section 14.5""")

 age = Attribute(
 """Gets and sets and deletes the Age header. Converts using int.
 For more information on Age see RFC 2616, section 14.6.""")

 allow = Attribute(
 """Gets and sets and deletes the Allow header. Converts using
 list. For more information on Allow see RFC 2616, Section 14.7.""")

 app_iter = Attribute(
 """Returns the app_iter of the response.

 If body was set, this will create an app_iter from that body
 (a single-item list)""")

 def app_iter_range(start, stop):
 """ Return a new app_iter built from the response app_iter that
 serves up only the given start:stop range. """

 body = Attribute(
 """The body of the response, as a str. This will read in the entire
 app_iter if necessary.""")

 body_file = Attribute(
 """A file-like object that can be used to write to the body. If you
 passed in a list app_iter, that app_iter will be modified by writes.""")

 cache_control = Attribute(
 """Get/set/modify the Cache-Control header (RFC 2616 section 14.9)""")

 cache_expires = Attribute(
 """ Get/set the Cache-Control and Expires headers. This sets the
 response to expire in the number of seconds passed when set. """)

 charset = Attribute(
 """Get/set the charset (in the Content-Type)""")

 def conditional_response_app(environ, start_response):
 """ Like the normal __call__ interface, but checks conditional
 headers:

 - If-Modified-Since (304 Not Modified; only on GET, HEAD)

 - If-None-Match (304 Not Modified; only on GET, HEAD)

 - Range (406 Partial Content; only on GET, HEAD)"""

 content_disposition = Attribute(
 """Gets and sets and deletes the Content-Disposition header.
 For more information on Content-Disposition see RFC 2616 section
 19.5.1.""")

 content_encoding = Attribute(
 """Gets and sets and deletes the Content-Encoding header. For more
 information about Content-Encoding see RFC 2616 section 14.11.""")

 content_language = Attribute(
 """Gets and sets and deletes the Content-Language header. Converts
 using list. For more information about Content-Language see RFC 2616
 section 14.12.""")

 content_length = Attribute(
 """Gets and sets and deletes the Content-Length header. For more
 information on Content-Length see RFC 2616 section 14.17.
 Converts using int. """)

 content_location = Attribute(
 """Gets and sets and deletes the Content-Location header. For more
 information on Content-Location see RFC 2616 section 14.14.""")

 content_md5 = Attribute(
 """Gets and sets and deletes the Content-MD5 header. For more
 information on Content-MD5 see RFC 2616 section 14.14.""")

 content_range = Attribute(
 """Gets and sets and deletes the Content-Range header. For more
 information on Content-Range see section 14.16. Converts using
 ContentRange object.""")

 content_type = Attribute(
 """Get/set the Content-Type header (or None), without the charset
 or any parameters. If you include parameters (or ; at all) when
 setting the content_type, any existing parameters will be deleted;
 otherwise they will be preserved.""")

 content_type_params = Attribute(
 """A dictionary of all the parameters in the content type. This is
 not a view, set to change, modifications of the dict would not
 be applied otherwise.""")

 def copy():
 """ Makes a copy of the response and returns the copy. """

 date = Attribute(
 """Gets and sets and deletes the Date header. For more information on
 Date see RFC 2616 section 14.18. Converts using HTTP date.""")

 def delete_cookie(key, path='/', domain=None):
 """ Delete a cookie from the client. Note that path and domain must
 match how the cookie was originally set. This sets the cookie to the
 empty string, and max_age=0 so that it should expire immediately. """

 def encode_content(encoding='gzip', lazy=False):
 """ Encode the content with the given encoding (only gzip and
 identity are supported)."""

 environ = Attribute(
 """Get/set the request environ associated with this response,
 if any.""")

 etag = Attribute(
 """ Gets and sets and deletes the ETag header. For more information
 on ETag see RFC 2616 section 14.19. Converts using Entity tag.""")

 expires = Attribute(
 """ Gets and sets and deletes the Expires header. For more
 information on Expires see RFC 2616 section 14.21. Converts using
 HTTP date.""")

 headerlist = Attribute(
 """ The list of response headers. """)

 headers = Attribute(
 """ The headers in a dictionary-like object """)

 last_modified = Attribute(
 """ Gets and sets and deletes the Last-Modified header. For more
 information on Last-Modified see RFC 2616 section 14.29. Converts
 using HTTP date.""")

 location = Attribute(
 """ Gets and sets and deletes the Location header. For more
 information on Location see RFC 2616 section 14.30.""")

 def md5_etag(body=None, set_content_md5=False):
 """ Generate an etag for the response object using an MD5 hash of the
 body (the body parameter, or self.body if not given). Sets self.etag.
 If set_content_md5 is True sets self.content_md5 as well """

 def merge_cookies(resp):
 """ Merge the cookies that were set on this response with the given
 resp object (which can be any WSGI application). If the resp is a
 webob.Response object, then the other object will be modified
 in-place. """

 pragma = Attribute(
 """ Gets and sets and deletes the Pragma header. For more information
 on Pragma see RFC 2616 section 14.32. """)

 request = Attribute(
 """ Return the request associated with this response if any. """)

 retry_after = Attribute(
 """ Gets and sets and deletes the Retry-After header. For more
 information on Retry-After see RFC 2616 section 14.37. Converts
 using HTTP date or delta seconds.""")

 server = Attribute(
 """ Gets and sets and deletes the Server header. For more information
 on Server see RFC216 section 14.38. """)

 def set_cookie(key, value='', max_age=None, path='/', domain=None,
 secure=False, httponly=False, comment=None, expires=None,
 overwrite=False):
 """ Set (add) a cookie for the response """

 status = Attribute(
 """ The status string. """)

 status_int = Attribute(
 """ The status as an integer """)

 unicode_body = Attribute(
 """ Get/set the unicode value of the body (using the charset of
 the Content-Type)""")

 def unset_cookie(key, strict=True):
 """ Unset a cookie with the given name (remove it from the
 response)."""

 vary = Attribute(
 """Gets and sets and deletes the Vary header. For more information
 on Vary see section 14.44. Converts using list.""")

 www_authenticate = Attribute(
 """ Gets and sets and deletes the WWW-Authenticate header. For more
 information on WWW-Authenticate see RFC 2616 section 14.47. Converts
 using 'parse_auth' and 'serialize_auth'. """)

class IException(Interface): # not an API
 """ An interface representing a generic exception """

[docs]class IExceptionResponse(IException, IResponse):
 """ An interface representing a WSGI response which is also an exception
 object. Register an exception view using this interface as a ``context``
 to apply the registered view for all exception types raised by
 :app:`Pyramid` internally (any exception that inherits from
 :class:`pyramid.response.Response`, including
 :class:`pyramid.httpexceptions.HTTPNotFound` and
 :class:`pyramid.httpexceptions.HTTPForbidden`)."""
 def prepare(environ):
 """ Prepares the response for being called as a WSGI application """

[docs]class IDict(Interface):
 # Documentation-only interface

 def __contains__(k):
 """ Return ``True`` if key ``k`` exists in the dictionary."""

 def __setitem__(k, value):
 """ Set a key/value pair into the dictionary"""

 def __delitem__(k):
 """ Delete an item from the dictionary which is passed to the
 renderer as the renderer globals dictionary."""

 def __getitem__(k):
 """ Return the value for key ``k`` from the dictionary or raise a
 KeyError if the key doesn't exist"""

 def __iter__():
 """ Return an iterator over the keys of this dictionary """

 def get(k, default=None):
 """ Return the value for key ``k`` from the renderer dictionary, or
 the default if no such value exists."""

 def items():
 """ Return a list of [(k,v)] pairs from the dictionary """

 def keys():
 """ Return a list of keys from the dictionary """

 def values():
 """ Return a list of values from the dictionary """

 if not PY3:

 def iterkeys():
 """ Return an iterator of keys from the dictionary """

 def iteritems():
 """ Return an iterator of (k,v) pairs from the dictionary """

 def itervalues():
 """ Return an iterator of values from the dictionary """

 has_key = __contains__

 def pop(k, default=None):
 """ Pop the key k from the dictionary and return its value. If k
 doesn't exist, and default is provided, return the default. If k
 doesn't exist and default is not provided, raise a KeyError."""

 def popitem():
 """ Pop the item with key k from the dictionary and return it as a
 two-tuple (k, v). If k doesn't exist, raise a KeyError."""

 def setdefault(k, default=None):
 """ Return the existing value for key ``k`` in the dictionary. If no
 value with ``k`` exists in the dictionary, set the ``default``
 value into the dictionary under the k name passed. If a value already
 existed in the dictionary, return it. If a value did not exist in
 the dictionary, return the default"""

 def update(d):
 """ Update the renderer dictionary with another dictionary ``d``."""

 def clear():
 """ Clear all values from the dictionary """

[docs]class IBeforeRender(IDict):
 """
 Subscribers to this event may introspect and modify the set of
 :term:`renderer globals` before they are passed to a :term:`renderer`.
 The event object itself provides a dictionary-like interface for adding
 and removing :term:`renderer globals`. The keys and values of the
 dictionary are those globals. For example::

 from repoze.events import subscriber
 from pyramid.interfaces import IBeforeRender

 @subscriber(IBeforeRender)
 def add_global(event):
 event['mykey'] = 'foo'

 .. seealso::

 See also :ref:`beforerender_event`.
 """
 rendering_val = Attribute('The value returned by a view or passed to a '
 '``render`` method for this rendering. '
 'This feature is new in Pyramid 1.2.')

[docs]class IRendererInfo(Interface):
 """ An object implementing this interface is passed to every
 :term:`renderer factory` constructor as its only argument (conventionally
 named ``info``)"""
 name = Attribute('The value passed by the user as the renderer name')
 package = Attribute('The "current package" when the renderer '
 'configuration statement was found')
 type = Attribute('The renderer type name')
 registry = Attribute('The "current" application registry when the '
 'renderer was created')
 settings = Attribute('The deployment settings dictionary related '
 'to the current application')

[docs]class IRendererFactory(Interface):
 def __call__(info):
 """ Return an object that implements
 :class:`pyramid.interfaces.IRenderer`. ``info`` is an
 object that implements :class:`pyramid.interfaces.IRendererInfo`.
 """

[docs]class IRenderer(Interface):
 def __call__(value, system):
 """ Call the renderer with the result of the
 view (``value``) passed in and return a result (a string or
 unicode object useful as a response body). Values computed by
 the system are passed by the system in the ``system``
 parameter, which is a dictionary. Keys in the dictionary
 include: ``view`` (the view callable that returned the value),
 ``renderer_name`` (the template name or simple name of the
 renderer), ``context`` (the context object passed to the
 view), and ``request`` (the request object passed to the
 view)."""

class ITemplateRenderer(IRenderer):
 def implementation():
 """ Return the object that the underlying templating system
 uses to render the template; it is typically a callable that
 accepts arbitrary keyword arguments and returns a string or
 unicode object """

deprecated(
 'ITemplateRenderer',
 'As of Pyramid 1.5 the, "pyramid.interfaces.ITemplateRenderer" interface '
 'is scheduled to be removed. It was used by the Mako and Chameleon '
 'renderers which have been split into their own packages.'
)

[docs]class IViewMapper(Interface):
 def __call__(self, object):
 """ Provided with an arbitrary object (a function, class, or
 instance), returns a callable with the call signature ``(context,
 request)``. The callable returned should itself return a Response
 object. An IViewMapper is returned by
 :class:`pyramid.interfaces.IViewMapperFactory`."""

[docs]class IViewMapperFactory(Interface):
 def __call__(self, **kw):
 """
 Return an object which implements
 :class:`pyramid.interfaces.IViewMapper`. ``kw`` will be a dictionary
 containing view-specific arguments, such as ``permission``,
 ``predicates``, ``attr``, ``renderer``, and other items. An
 IViewMapperFactory is used by
 :meth:`pyramid.config.Configurator.add_view` to provide a plugpoint
 to extension developers who want to modify potential view callable
 invocation signatures and response values.
 """

[docs]class IAuthenticationPolicy(Interface):
 """ An object representing a Pyramid authentication policy. """
 def authenticated_userid(request):
 """ Return the authenticated userid or ``None`` if no authenticated
 userid can be found. This method of the policy should ensure that a
 record exists in whatever persistent store is used related to the
 user (the user should not have been deleted); if a record associated
 with the current id does not exist in a persistent store, it should
 return ``None``."""

 def unauthenticated_userid(request):
 """ Return the *unauthenticated* userid. This method performs the
 same duty as ``authenticated_userid`` but is permitted to return the
 userid based only on data present in the request; it needn't (and
 shouldn't) check any persistent store to ensure that the user record
 related to the request userid exists."""

 def effective_principals(request):
 """ Return a sequence representing the effective principals
 including the userid and any groups belonged to by the current
 user, including 'system' groups such as Everyone and
 Authenticated. """

 def remember(request, principal, **kw):
 """ Return a set of headers suitable for 'remembering' the
 principal named ``principal`` when set in a response. An
 individual authentication policy and its consumers can decide
 on the composition and meaning of ``**kw.`` """

 def forget(request):
 """ Return a set of headers suitable for 'forgetting' the
 current user on subsequent requests. """

[docs]class IAuthorizationPolicy(Interface):
 """ An object representing a Pyramid authorization policy. """
 def permits(context, principals, permission):
 """ Return ``True`` if any of the ``principals`` is allowed the
 ``permission`` in the current ``context``, else return ``False``
 """

 def principals_allowed_by_permission(context, permission):
 """ Return a set of principal identifiers allowed by the
 ``permission`` in ``context``. This behavior is optional; if you
 choose to not implement it you should define this method as
 something which raises a ``NotImplementedError``. This method
 will only be called when the
 ``pyramid.security.principals_allowed_by_permission`` API is
 used."""

[docs]class IMultiDict(IDict): # docs-only interface
 """
 An ordered dictionary that can have multiple values for each key. A
 multidict adds the methods ``getall``, ``getone``, ``mixed``, ``extend``,
 ``add``, and ``dict_of_lists`` to the normal dictionary interface. A
 multidict data structure is used as ``request.POST``, ``request.GET``,
 and ``request.params`` within an :app:`Pyramid` application.
 """

 def add(key, value):
 """ Add the key and value, not overwriting any previous value. """

 def dict_of_lists():
 """
 Returns a dictionary where each key is associated with a list of
 values.
 """

 def extend(other=None, **kwargs):
 """ Add a set of keys and values, not overwriting any previous
 values. The ``other`` structure may be a list of two-tuples or a
 dictionary. If ``**kwargs`` is passed, its value *will* overwrite
 existing values."""

 def getall(key):
 """ Return a list of all values matching the key (may be an empty
 list) """

 def getone(key):
 """ Get one value matching the key, raising a KeyError if multiple
 values were found. """

 def mixed():
 """ Returns a dictionary where the values are either single values,
 or a list of values when a key/value appears more than once in this
 dictionary. This is similar to the kind of dictionary often used to
 represent the variables in a web request. """

internal interfaces

class IRequest(Interface):
 """ Request type interface attached to all request objects """

class ITweens(Interface):
 """ Marker interface for utility registration representing the ordered
 set of a configuration's tween factories"""

class IRequestHandler(Interface):
 """ """
 def __call__(self, request):
 """ Must return a tuple of IReqest, IResponse or raise an exception.
 The ``request`` argument will be an instance of an object that
 provides IRequest."""

IRequest.combined = IRequest # for exception view lookups

class IRequestExtensions(Interface):
 """ Marker interface for storing request extensions (properties and
 methods) which will be added to the request object."""
 descriptors = Attribute(
 """A list of descriptors that will be added to each request.""")
 methods = Attribute(
 """A list of methods to be added to each request.""")

class IRouteRequest(Interface):
 """ *internal only* interface used as in a utility lookup to find
 route-specific interfaces. Not an API."""

class IStaticURLInfo(Interface):
 """ A policy for generating URLs to static assets """
 def add(config, name, spec, **extra):
 """ Add a new static info registration """

 def generate(path, request, **kw):
 """ Generate a URL for the given path """

class IResponseFactory(Interface):
 """ A utility which generates a response factory """
 def __call__():
 """ Return a response factory (e.g. a callable that returns an object
 implementing IResponse, e.g. :class:`pyramid.response.Response`). It
 should accept all the arguments that the Pyramid Response class
 accepts."""

class IRequestFactory(Interface):
 """ A utility which generates a request """
 def __call__(environ):
 """ Return an object implementing IRequest, e.g. an instance
 of ``pyramid.request.Request``"""

 def blank(path):
 """ Return an empty request object (see
 :meth:`pyramid.request.Request.blank`)"""

class IViewClassifier(Interface):
 """ *Internal only* marker interface for views."""

class IExceptionViewClassifier(Interface):
 """ *Internal only* marker interface for exception views."""

class IView(Interface):
 def __call__(context, request):
 """ Must return an object that implements IResponse. """

class ISecuredView(IView):
 """ *Internal only* interface. Not an API. """
 def __call_permissive__(context, request):
 """ Guaranteed-permissive version of __call__ """

 def __permitted__(context, request):
 """ Return True if view execution will be permitted using the
 context and request, False otherwise"""

class IMultiView(ISecuredView):
 """ *internal only*. A multiview is a secured view that is a
 collection of other views. Each of the views is associated with
 zero or more predicates. Not an API."""
 def add(view, predicates, order, accept=None, phash=None):
 """ Add a view to the multiview. """

class IRootFactory(Interface):
 def __call__(request):
 """ Return a root object based on the request """

class IDefaultRootFactory(Interface):
 def __call__(request):
 """ Return the *default* root object for an application """

class ITraverser(Interface):
 def __call__(request):
 """ Return a dictionary with (at least) the keys ``root``,
 ``context``, ``view_name``, ``subpath``, ``traversed``,
 ``virtual_root``, and ``virtual_root_path``. These values are
 typically the result of an object graph traversal. ``root`` is the
 physical root object, ``context`` will be a model object,
 ``view_name`` will be the view name used (a Unicode name),
 ``subpath`` will be a sequence of Unicode names that followed the
 view name but were not traversed, ``traversed`` will be a sequence of
 Unicode names that were traversed (including the virtual root path,
 if any) ``virtual_root`` will be a model object representing the
 virtual root (or the physical root if traversal was not performed),
 and ``virtual_root_path`` will be a sequence representing the virtual
 root path (a sequence of Unicode names) or ``None`` if traversal was
 not performed.

 Extra keys for special purpose functionality can be returned as
 necessary.

 All values returned in the dictionary will be made available
 as attributes of the ``request`` object by the :term:`router`.
 """

ITraverserFactory = ITraverser # b / c for 1.0 code

class IViewPermission(Interface):
 def __call__(context, request):
 """ Return True if the permission allows, return False if it denies.
 """

class IRouter(Interface):
 """ WSGI application which routes requests to 'view' code based on
 a view registry."""
 registry = Attribute(
 """Component architecture registry local to this application.""")

class ISettings(Interface):
 """ Runtime settings utility for pyramid; represents the
 deployment settings for the application. Implements a mapping
 interface."""

this interface, even if it becomes unused within Pyramid, is
imported by other packages (such as traversalwrapper)
class ILocation(Interface):
 """Objects that have a structural location"""
 __parent__ = Attribute("The parent in the location hierarchy")
 __name__ = Attribute("The name within the parent")

class IDebugLogger(Interface):
 """ Interface representing a PEP 282 logger """

ILogger = IDebugLogger # b/c

[docs]class IRoutePregenerator(Interface):
 def __call__(request, elements, kw):

 """ A pregenerator is a function associated by a developer with a
 :term:`route`. The pregenerator for a route is called by
 :meth:`pyramid.request.Request.route_url` in order to adjust the set
 of arguments passed to it by the user for special purposes, such as
 Pylons 'subdomain' support. It will influence the URL returned by
 ``route_url``.

 A pregenerator should return a two-tuple of ``(elements, kw)``
 after examining the originals passed to this function, which
 are the arguments ``(request, elements, kw)``. The simplest
 pregenerator is::

 def pregenerator(request, elements, kw):
 return elements, kw

 You can employ a pregenerator by passing a ``pregenerator``
 argument to the
 :meth:`pyramid.config.Configurator.add_route`
 function.

 """

[docs]class IRoute(Interface):
 """ Interface representing the type of object returned from
 ``IRoutesMapper.get_route``"""
 name = Attribute('The route name')
 pattern = Attribute('The route pattern')
 factory = Attribute(
 'The :term:`root factory` used by the :app:`Pyramid` router '
 'when this route matches (or ``None``)')
 predicates = Attribute(
 'A sequence of :term:`route predicate` objects used to '
 'determine if a request matches this route or not after '
 'basic pattern matching has been completed.')
 pregenerator = Attribute('This attribute should either be ``None`` or '
 'a callable object implementing the '
 '``IRoutePregenerator`` interface')

 def match(path):
 """
 If the ``path`` passed to this function can be matched by the
 ``pattern`` of this route, return a dictionary (the
 'matchdict'), which will contain keys representing the dynamic
 segment markers in the pattern mapped to values extracted from
 the provided ``path``.

 If the ``path`` passed to this function cannot be matched by
 the ``pattern`` of this route, return ``None``.
 """
 def generate(kw):
 """
 Generate a URL based on filling in the dynamic segment markers
 in the pattern using the ``kw`` dictionary provided.
 """

class IRoutesMapper(Interface):
 """ Interface representing a Routes ``Mapper`` object """
 def get_routes():
 """ Return a sequence of Route objects registered in the mapper.
 Static routes will not be returned in this sequence."""

 def has_routes():
 """ Returns ``True`` if any route has been registered. """

 def get_route(name):
 """ Returns an ``IRoute`` object if a route with the name ``name``
 was registered, otherwise return ``None``."""

 def connect(name, pattern, factory=None, predicates=(), pregenerator=None,
 static=True):
 """ Add a new route. """

 def generate(name, kw):
 """ Generate a URL using the route named ``name`` with the
 keywords implied by kw"""

 def __call__(request):
 """ Return a dictionary containing matching information for
 the request; the ``route`` key of this dictionary will either
 be a Route object or ``None`` if no route matched; the
 ``match`` key will be the matchdict or ``None`` if no route
 matched. Static routes will not be considered for matching. """

[docs]class IResourceURL(Interface):
 virtual_path = Attribute(
 'The virtual url path of the resource as a string.'
)
 physical_path = Attribute(
 'The physical url path of the resource as a string.'
)
 virtual_path_tuple = Attribute(
 'The virtual url path of the resource as a tuple. (New in 1.5)'
)
 physical_path_tuple = Attribute(
 'The physical url path of the resource as a tuple. (New in 1.5)'
)

class IContextURL(IResourceURL):
 """
 .. deprecated:: 1.3
 An adapter which deals with URLs related to a context. Use
 :class:`pyramid.interfaces.IResourceURL` instead.
 """
 # this class subclasses IResourceURL because request.resource_url looks
 # for IResourceURL via queryAdapter. queryAdapter will find a deprecated
 # IContextURL registration if no registration for IResourceURL exists.
 # In reality, however, IContextURL objects were never required to have
 # the virtual_path or physical_path attributes spelled in IResourceURL.
 # The inheritance relationship is purely to benefit adapter lookup,
 # not to imply an inheritance relationship of interface attributes
 # and methods.
 #
 # Mechanics:
 #
 # class Fudge(object):
 # def __init__(self, one, two):
 # print(one, two)
 # class Another(object):
 # def __init__(self, one, two):
 # print(one, two)
 # ob = object()
 # r.registerAdapter(Fudge, (Interface, Interface), IContextURL)
 # print(r.queryMultiAdapter((ob, ob), IResourceURL))
 # r.registerAdapter(Another, (Interface, Interface), IResourceURL)
 # print(r.queryMultiAdapter((ob, ob), IResourceURL))
 #
 # prints
 #
 # <object object at 0x7fa678f3e2a0> <object object at 0x7fa678f3e2a0>
 # <__main__.Fudge object at 0x1cda890>
 # <object object at 0x7fa678f3e2a0> <object object at 0x7fa678f3e2a0>
 # <__main__.Another object at 0x1cda850>

 def virtual_root():
 """ Return the virtual root related to a request and the
 current context"""

 def __call__():
 """ Return a URL that points to the context. """

deprecated(
 'IContextURL',
 'As of Pyramid 1.3 the, "pyramid.interfaces.IContextURL" interface is '
 'scheduled to be removed. Use the '
 '"pyramid.config.Configurator.add_resource_url_adapter" method to register '
 'a class that implements "pyramid.interfaces.IResourceURL" instead. '
 'See the "What\'s new In Pyramid 1.3" document for more details.'
)

class IPEP302Loader(Interface):
 """ See http://www.python.org/dev/peps/pep-0302/#id30.
 """
 def get_data(path):
 """ Retrieve data for and arbitrary "files" from storage backend.

 Raise IOError for not found.

 Data is returned as bytes.
 """

 def is_package(fullname):
 """ Return True if the module specified by 'fullname' is a package.
 """

 def get_code(fullname):
 """ Return the code object for the module identified by 'fullname'.

 Return 'None' if it's a built-in or extension module.

 If the loader doesn't have the code object but it does have the source
 code, return the compiled source code.

 Raise ImportError if the module can't be found by the importer at all.
 """

 def get_source(fullname):
 """ Return the source code for the module identified by 'fullname'.

 Return a string, using newline characters for line endings, or None
 if the source is not available.

 Raise ImportError if the module can't be found by the importer at all.
 """

 def get_filename(fullname):
 """ Return the value of '__file__' if the named module was loaded.

 If the module is not found, raise ImportError.
 """

class IPackageOverrides(IPEP302Loader):
 """ Utility for pkg_resources overrides """

VH_ROOT_KEY is an interface; its imported from other packages (e.g.
traversalwrapper)
VH_ROOT_KEY = 'HTTP_X_VHM_ROOT'

class ILocalizer(Interface):
 """ Localizer for a specific language """

class ILocaleNegotiator(Interface):
 def __call__(request):
 """ Return a locale name """

class ITranslationDirectories(Interface):
 """ A list object representing all known translation directories
 for an application"""

class IDefaultPermission(Interface):
 """ A string object representing the default permission to be used
 for all view configurations which do not explicitly declare their
 own."""

[docs]class ISessionFactory(Interface):
 """ An interface representing a factory which accepts a request object and
 returns an ISession object """
 def __call__(request):
 """ Return an ISession object """

[docs]class ISession(IDict):
 """ An interface representing a session (a web session object,
 usually accessed via ``request.session``.

 Keys and values of a session must be pickleable.
 """

 # attributes

 created = Attribute('Integer representing Epoch time when created.')
 new = Attribute('Boolean attribute. If ``True``, the session is new.')

 # special methods

 def invalidate():
 """ Invalidate the session. The action caused by
 ``invalidate`` is implementation-dependent, but it should have
 the effect of completely dissociating any data stored in the
 session with the current request. It might set response
 values (such as one which clears a cookie), or it might not.

 An invalidated session may be used after the call to ``invalidate``
 with the effect that a new session is created to store the data. This
 enables workflows requiring an entirely new session, such as in the
 case of changing privilege levels or preventing fixation attacks.
 """

 def changed():
 """ Mark the session as changed. A user of a session should
 call this method after he or she mutates a mutable object that
 is *a value of the session* (it should not be required after
 mutating the session itself). For example, if the user has
 stored a dictionary in the session under the key ``foo``, and
 he or she does ``session['foo'] = {}``, ``changed()`` needn't
 be called. However, if subsequently he or she does
 ``session['foo']['a'] = 1``, ``changed()`` must be called for
 the sessioning machinery to notice the mutation of the
 internal dictionary."""

 def flash(msg, queue='', allow_duplicate=True):
 """ Push a flash message onto the end of the flash queue represented
 by ``queue``. An alternate flash message queue can used by passing
 an optional ``queue``, which must be a string. If
 ``allow_duplicate`` is false, if the ``msg`` already exists in the
 queue, it will not be re-added."""

 def pop_flash(queue=''):
 """ Pop a queue from the flash storage. The queue is removed from
 flash storage after this message is called. The queue is returned;
 it is a list of flash messages added by
 :meth:`pyramid.interfaces.ISession.flash`"""

 def peek_flash(queue=''):
 """ Peek at a queue in the flash storage. The queue remains in
 flash storage after this message is called. The queue is returned;
 it is a list of flash messages added by
 :meth:`pyramid.interfaces.ISession.flash`
 """

 def new_csrf_token():
 """ Create and set into the session a new, random cross-site request
 forgery protection token. Return the token. It will be a string."""

 def get_csrf_token():
 """ Return a random cross-site request forgery protection token. It
 will be a string. If a token was previously added to the session via
 ``new_csrf_token``, that token will be returned. If no CSRF token
 was previously set into the session, ``new_csrf_token`` will be
 called, which will create and set a token, and this token will be
 returned.
 """

[docs]class IIntrospector(Interface):
 def get(category_name, discriminator, default=None):
 """ Get the IIntrospectable related to the category_name and the
 discriminator (or discriminator hash) ``discriminator``. If it does
 not exist in the introspector, return the value of ``default`` """

 def get_category(category_name, default=None, sort_key=None):
 """ Get a sequence of dictionaries in the form
 ``[{'introspectable':IIntrospectable, 'related':[sequence of related
 IIntrospectables]}, ...]`` where each introspectable is part of the
 category associated with ``category_name`` .

 If the category named ``category_name`` does not exist in the
 introspector the value passed as ``default`` will be returned.

 If ``sort_key`` is ``None``, the sequence will be returned in the
 order the introspectables were added to the introspector. Otherwise,
 sort_key should be a function that accepts an IIntrospectable and
 returns a value from it (ala the ``key`` function of Python's
 ``sorted`` callable)."""

 def categories():
 """ Return a sorted sequence of category names known by
 this introspector """

 def categorized(sort_key=None):
 """ Get a sequence of tuples in the form ``[(category_name,
 [{'introspectable':IIntrospectable, 'related':[sequence of related
 IIntrospectables]}, ...])]`` representing all known
 introspectables. If ``sort_key`` is ``None``, each introspectables
 sequence will be returned in the order the introspectables were added
 to the introspector. Otherwise, sort_key should be a function that
 accepts an IIntrospectable and returns a value from it (ala the
 ``key`` function of Python's ``sorted`` callable)."""

 def remove(category_name, discriminator):
 """ Remove the IIntrospectable related to ``category_name`` and
 ``discriminator`` from the introspector, and fix up any relations
 that the introspectable participates in. This method will not raise
 an error if an introspectable related to the category name and
 discriminator does not exist."""

 def related(intr):
 """ Return a sequence of IIntrospectables related to the
 IIntrospectable ``intr``. Return the empty sequence if no relations
 for exist."""

 def add(intr):
 """ Add the IIntrospectable ``intr`` (use instead of
 :meth:`pyramid.interfaces.IIntrospector.add` when you have a custom
 IIntrospectable). Replaces any existing introspectable registered
 using the same category/discriminator.

 This method is not typically called directly, instead it's called
 indirectly by :meth:`pyramid.interfaces.IIntrospector.register`"""

 def relate(*pairs):
 """ Given any number of ``(category_name, discriminator)`` pairs
 passed as positional arguments, relate the associated introspectables
 to each other. The introspectable related to each pair must have
 already been added via ``.add`` or ``.add_intr``; a :exc:`KeyError`
 will result if this is not true. An error will not be raised if any
 pair has already been associated with another.

 This method is not typically called directly, instead it's called
 indirectly by :meth:`pyramid.interfaces.IIntrospector.register`
 """

 def unrelate(*pairs):
 """ Given any number of ``(category_name, discriminator)`` pairs
 passed as positional arguments, unrelate the associated introspectables
 from each other. The introspectable related to each pair must have
 already been added via ``.add`` or ``.add_intr``; a :exc:`KeyError`
 will result if this is not true. An error will not be raised if any
 pair is not already related to another.

 This method is not typically called directly, instead it's called
 indirectly by :meth:`pyramid.interfaces.IIntrospector.register`
 """

[docs]class IIntrospectable(Interface):
 """ An introspectable object used for configuration introspection. In
 addition to the methods below, objects which implement this interface
 must also implement all the methods of Python's
 ``collections.MutableMapping`` (the "dictionary interface"), and must be
 hashable."""

 title = Attribute('Text title describing this introspectable')
 type_name = Attribute('Text type name describing this introspectable')
 order = Attribute('integer order in which registered with introspector '
 '(managed by introspector, usually)')
 category_name = Attribute('introspection category name')
 discriminator = Attribute('introspectable discriminator (within category) '
 '(must be hashable)')
 discriminator_hash = Attribute('an integer hash of the discriminator')
 action_info = Attribute('An IActionInfo object representing the caller '
 'that invoked the creation of this introspectable '
 '(usually a sentinel until updated during '
 'self.register)')

 def relate(category_name, discriminator):
 """ Indicate an intent to relate this IIntrospectable with another
 IIntrospectable (the one associated with the ``category_name`` and
 ``discriminator``) during action execution.
 """

 def unrelate(category_name, discriminator):
 """ Indicate an intent to break the relationship between this
 IIntrospectable with another IIntrospectable (the one associated with
 the ``category_name`` and ``discriminator``) during action execution.
 """

 def register(introspector, action_info):
 """ Register this IIntrospectable with an introspector. This method
 is invoked during action execution. Adds the introspectable and its
 relations to the introspector. ``introspector`` should be an object
 implementing IIntrospector. ``action_info`` should be a object
 implementing the interface :class:`pyramid.interfaces.IActionInfo`
 representing the call that registered this introspectable.
 Pseudocode for an implementation of this method:

 .. code-block:: python

 def register(self, introspector, action_info):
 self.action_info = action_info
 introspector.add(self)
 for methodname, category_name, discriminator in self._relations:
 method = getattr(introspector, methodname)
 method((i.category_name, i.discriminator),
 (category_name, discriminator))
 """

 def __hash__():

 """ Introspectables must be hashable. The typical implementation of
 an introsepectable's __hash__ is::

 return hash((self.category_name,) + (self.discriminator,))
 """

[docs]class IActionInfo(Interface):
 """ Class which provides code introspection capability associated with an
 action. The ParserInfo class used by ZCML implements the same interface."""
 file = Attribute(
 'Filename of action-invoking code as a string')
 line = Attribute(
 'Starting line number in file (as an integer) of action-invoking code.'
 'This will be ``None`` if the value could not be determined.')

 def __str__():
 """ Return a representation of the action information (including
 source code from file, if possible) """

[docs]class IAssetDescriptor(Interface):
 """
 Describes an :term:`asset`.
 """

 def absspec():
 """
 Returns the absolute asset specification for this asset
 (e.g. ``mypackage:templates/foo.pt``).
 """

 def abspath():
 """
 Returns an absolute path in the filesystem to the asset.
 """

 def stream():
 """
 Returns an input stream for reading asset contents. Raises an
 exception if the asset is a directory or does not exist.
 """

 def isdir():
 """
 Returns True if the asset is a directory, otherwise returns False.
 """

 def listdir():
 """
 Returns iterable of filenames of directory contents. Raises an
 exception if asset is not a directory.
 """

 def exists():
 """
 Returns True if asset exists, otherwise returns False.
 """

class IJSONAdapter(Interface):
 """
 Marker interface for objects that can convert an arbitrary object
 into a JSON-serializable primitive.
 """

class IPredicateList(Interface):
 """ Interface representing a predicate list """

configuration phases: a lower phase number means the actions associated
with this phase will be executed earlier than those with later phase
numbers. The default phase number is 0, FTR.

PHASE1_CONFIG = -20
PHASE2_CONFIG = -10

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/zope/deprecation/deprecation.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for zope.deprecation.deprecation

##
#
Copyright (c) 2005 Zope Foundation and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
"""Deprecation Support

This module provides utilities to ease the development of backward-compatible
code.
"""
__docformat__ = "reStructuredText"
import sys
import types
import warnings

PY3 = sys.version_info[0] == 3

if PY3: #pragma NO COVER
 str_and_sequence_types = (str, list, tuple)
else: #pragma NO COVER
 str_and_sequence_types = (basestring, list, tuple)

class ShowSwitch(object):
 """Simple stack-based switch."""

 def __init__(self):
 self.stack = []

 def on(self):
 self.stack.pop()

 def off(self):
 self.stack.append(False)

 def reset(self):
 self.stack = []

 def __call__(self):
 return self.stack == []

 def __repr__(self):
 return '<ShowSwitch %s>' %(self() and 'on' or 'off')

This attribute can be used to temporarly deactivate deprecation
warnings, so that backward-compatibility code can import other
backward-compatiblity components without warnings being produced.
__show__ = ShowSwitch()

class Suppressor(object):

 def __enter__(self):
 __show__.off()

 def __exit__(self, *ignored):
 __show__.on()

ogetattr = object.__getattribute__
class DeprecationProxy(object):

 def __init__(self, module):
 self.__original_module = module
 self.__deprecated = {}

 def deprecate(self, names, message):
 """Deprecate the given names."""
 if not isinstance(names, (tuple, list)):
 names = (names,)
 for name in names:
 self.__deprecated[name] = message

 def __getattribute__(self, name):
 if name == 'deprecate' or name.startswith('_DeprecationProxy__'):
 return ogetattr(self, name)

 if name == '__class__':
 return types.ModuleType

 if name in ogetattr(self, '_DeprecationProxy__deprecated'):
 if __show__():
 warnings.warn(
 name + ': ' + self.__deprecated[name],
 DeprecationWarning, 2)

 return getattr(ogetattr(self, '_DeprecationProxy__original_module'),
 name)

 def __setattr__(self, name, value):
 if name.startswith('_DeprecationProxy__'):
 return object.__setattr__(self, name, value)

 setattr(self.__original_module, name, value)

 def __delattr__(self, name):
 if name.startswith('_DeprecationProxy__'):
 return object.__delattr__(self, name)

 delattr(self.__original_module, name)

class DeprecatedModule(object):

 def __init__(self, module, msg):
 self.__original_module = module
 self.__msg = msg

 def __getattribute__(self, name):
 if name.startswith('_DeprecatedModule__'):
 return ogetattr(self, name)

 if name == '__class__':
 return types.ModuleType

 if __show__():
 warnings.warn(self.__msg, DeprecationWarning, 2)

 return getattr(ogetattr(self, '_DeprecatedModule__original_module'),
 name)

 def __setattr__(self, name, value):
 if name.startswith('_DeprecatedModule__'):
 return object.__setattr__(self, name, value)
 setattr(self.__original_module, name, value)

 def __delattr__(self, name):
 if name.startswith('_DeprecatedModule__'):
 return object.__delattr__(self, name)
 delattr(self.__original_module, name)

class DeprecatedGetProperty(object):

 def __init__(self, prop, message):
 self.message = message
 self.prop = prop

 def __get__(self, inst, klass):
 if __show__():
 warnings.warn(self.message, DeprecationWarning, 2)
 return self.prop.__get__(inst, klass)

class DeprecatedGetSetProperty(DeprecatedGetProperty):

 def __set__(self, inst, prop):
 if __show__():
 warnings.warn(self.message, DeprecationWarning, 2)
 self.prop.__set__(inst, prop)

class DeprecatedGetSetDeleteProperty(DeprecatedGetSetProperty):

 def __delete__(self, inst):
 if __show__():
 warnings.warn(self.message, DeprecationWarning, 2)
 self.prop.__delete__(inst)

def DeprecatedMethod(method, message):

 def deprecated_method(*args, **kw):
 if __show__():
 warnings.warn(message, DeprecationWarning, 2)
 return method(*args, **kw)

 return deprecated_method

def deprecated(specifier, message):
 """Deprecate the given names."""

 # A string specifier (or list of strings) means we're called
 # top-level in a module and are to deprecate things inside this
 # module
 if isinstance(specifier, str_and_sequence_types):
 globals = sys._getframe(1).f_globals
 modname = globals['__name__']

 if not isinstance(sys.modules[modname], DeprecationProxy):
 sys.modules[modname] = DeprecationProxy(sys.modules[modname])
 sys.modules[modname].deprecate(specifier, message)

 # Anything else can mean the specifier is a function/method,
 # module, or just an attribute of a class
 elif isinstance(specifier, types.FunctionType):
 return DeprecatedMethod(specifier, message)
 elif isinstance(specifier, types.ModuleType):
 return DeprecatedModule(specifier, message)
 else:
 prop = specifier
 if hasattr(prop, '__get__') and hasattr(prop, '__set__') and \
 hasattr(prop, '__delete__'):
 return DeprecatedGetSetDeleteProperty(prop, message)
 elif hasattr(prop, '__get__') and hasattr(prop, '__set__'):
 return DeprecatedGetSetProperty(prop, message)
 elif hasattr(prop, '__get__'):
 return DeprecatedGetProperty(prop, message)

class deprecate(object):
 """Deprecation decorator"""

 def __init__(self, msg):
 self.msg = msg

 def __call__(self, func):
 return DeprecatedMethod(func, self.msg)

def moved(to_location, unsupported_in=None):
 old = sys._getframe(1).f_globals['__name__']
 message = '%s has moved to %s.' % (old, to_location)
 if unsupported_in:
 message += " Import of %s will become unsupported in %s" % (
 old, unsupported_in)

 warnings.warn(message, DeprecationWarning, 3)
 __import__(to_location)

 fromdict = sys.modules[to_location].__dict__
 tomod = sys.modules[old]
 tomod.__doc__ = message

 for name, v in fromdict.items():
 if name not in tomod.__dict__:
 setattr(tomod, name, v)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/i18n.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.i18n

import gettext
import os

from translationstring import (
 Translator,
 Pluralizer,
 TranslationString, # API
 TranslationStringFactory, # API
)

TranslationString = TranslationString # PyFlakes
TranslationStringFactory = TranslationStringFactory # PyFlakes

from pyramid.compat import PY3
from pyramid.decorator import reify

from pyramid.interfaces import (
 ILocalizer,
 ITranslationDirectories,
 ILocaleNegotiator,
)

from pyramid.threadlocal import get_current_registry

[docs]class Localizer(object):
 """
 An object providing translation and pluralizations related to
 the current request's locale name. A
 :class:`pyramid.i18n.Localizer` object is created using the
 :func:`pyramid.i18n.get_localizer` function.
 """
 def __init__(self, locale_name, translations):
 self.locale_name = locale_name
 self.translations = translations
 self.pluralizer = None
 self.translator = None

[docs] def translate(self, tstring, domain=None, mapping=None):
 """
 Translate a :term:`translation string` to the current language
 and interpolate any *replacement markers* in the result. The
 ``translate`` method accepts three arguments: ``tstring``
 (required), ``domain`` (optional) and ``mapping`` (optional).
 When called, it will translate the ``tstring`` translation
 string to a ``unicode`` object using the current locale. If
 the current locale could not be determined, the result of
 interpolation of the default value is returned. The optional
 ``domain`` argument can be used to specify or override the
 domain of the ``tstring`` (useful when ``tstring`` is a normal
 string rather than a translation string). The optional
 ``mapping`` argument can specify or override the ``tstring``
 interpolation mapping, useful when the ``tstring`` argument is
 a simple string instead of a translation string.

 Example::

 from pyramid.18n import TranslationString
 ts = TranslationString('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})
 translated = localizer.translate(ts)

 Example::

 translated = localizer.translate('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})

 """
 if self.translator is None:
 self.translator = Translator(self.translations)
 return self.translator(tstring, domain=domain, mapping=mapping)

[docs] def pluralize(self, singular, plural, n, domain=None, mapping=None):
 """
 Return a Unicode string translation by using two
 :term:`message identifier` objects as a singular/plural pair
 and an ``n`` value representing the number that appears in the
 message using gettext plural forms support. The ``singular``
 and ``plural`` objects should be unicode strings. There is no
 reason to use translation string objects as arguments as all
 metadata is ignored.

 ``n`` represents the number of elements. ``domain`` is the
 translation domain to use to do the pluralization, and ``mapping``
 is the interpolation mapping that should be used on the result. If
 the ``domain`` is not supplied, a default domain is used (usually
 ``messages``).

 Example::

 num = 1
 translated = localizer.pluralize('Add ${num} item',
 'Add ${num} items',
 num,
 mapping={'num':num})

 If using the gettext plural support, which is required for
 languages that have pluralisation rules other than n != 1, the
 ``singular`` argument must be the message_id defined in the
 translation file. The plural argument is not used in this case.

 Example::

 num = 1
 translated = localizer.pluralize('item_plural',
 '',
 num,
 mapping={'num':num})

 """
 if self.pluralizer is None:
 self.pluralizer = Pluralizer(self.translations)
 return self.pluralizer(singular, plural, n, domain=domain,
 mapping=mapping)

[docs]def default_locale_negotiator(request):
 """ The default :term:`locale negotiator`. Returns a locale name
 or ``None``.

 - First, the negotiator looks for the ``_LOCALE_`` attribute of
 the request object (possibly set by a view or a listener for an
 :term:`event`). If the attribute exists and it is not ``None``,
 its value will be used.

 - Then it looks for the ``request.params['_LOCALE_']`` value.

 - Then it looks for the ``request.cookies['_LOCALE_']`` value.

 - Finally, the negotiator returns ``None`` if the locale could not
 be determined via any of the previous checks (when a locale
 negotiator returns ``None``, it signifies that the
 :term:`default locale name` should be used.)
 """
 name = '_LOCALE_'
 locale_name = getattr(request, name, None)
 if locale_name is None:
 locale_name = request.params.get(name)
 if locale_name is None:
 locale_name = request.cookies.get(name)
 return locale_name

[docs]def negotiate_locale_name(request):
 """ Negotiate and return the :term:`locale name` associated with
 the current request."""
 try:
 registry = request.registry
 except AttributeError:
 registry = get_current_registry()
 negotiator = registry.queryUtility(ILocaleNegotiator,
 default=default_locale_negotiator)
 locale_name = negotiator(request)

 if locale_name is None:
 settings = registry.settings or {}
 locale_name = settings.get('default_locale_name', 'en')

 return locale_name

[docs]def get_locale_name(request):
 """
 .. deprecated:: 1.5
 Use :attr:`pyramid.request.Request.locale_name` directly instead.
 Return the :term:`locale name` associated with the current request.
 """
 return request.locale_name

[docs]def make_localizer(current_locale_name, translation_directories):
 """ Create a :class:`pyramid.i18n.Localizer` object
 corresponding to the provided locale name from the
 translations found in the list of translation directories."""
 translations = Translations()
 translations._catalog = {}

 locales_to_try = []
 if '_' in current_locale_name:
 locales_to_try = [current_locale_name.split('_')[0]]
 locales_to_try.append(current_locale_name)

 # intent: order locales left to right in least specific to most specific,
 # e.g. ['de', 'de_DE']. This services the intent of creating a
 # translations object that returns a "more specific" translation for a
 # region, but will fall back to a "less specific" translation for the
 # locale if necessary. Ordering from least specific to most specific
 # allows us to call translations.add in the below loop to get this
 # behavior.

 for tdir in translation_directories:
 locale_dirs = []
 for lname in locales_to_try:
 ldir = os.path.realpath(os.path.join(tdir, lname))
 if os.path.isdir(ldir):
 locale_dirs.append(ldir)

 for locale_dir in locale_dirs:
 messages_dir = os.path.join(locale_dir, 'LC_MESSAGES')
 if not os.path.isdir(os.path.realpath(messages_dir)):
 continue
 for mofile in os.listdir(messages_dir):
 mopath = os.path.realpath(os.path.join(messages_dir,
 mofile))
 if mofile.endswith('.mo') and os.path.isfile(mopath):
 with open(mopath, 'rb') as mofp:
 domain = mofile[:-3]
 dtrans = Translations(mofp, domain)
 translations.add(dtrans)

 return Localizer(locale_name=current_locale_name,
 translations=translations)

[docs]def get_localizer(request):
 """
 .. deprecated:: 1.5
 Use the :attr:`pyramid.request.Request.localizer` attribute directly
 instead. Retrieve a :class:`pyramid.i18n.Localizer` object
 corresponding to the current request's locale name.
 """
 return request.localizer

class Translations(gettext.GNUTranslations, object):
 """An extended translation catalog class (ripped off from Babel) """

 DEFAULT_DOMAIN = 'messages'

 def __init__(self, fileobj=None, domain=DEFAULT_DOMAIN):
 """Initialize the translations catalog.

 :param fileobj: the file-like object the translation should be read
 from
 """
 # germanic plural by default; self.plural will be overwritten by
 # GNUTranslations._parse (called as a side effect if fileobj is
 # passed to GNUTranslations.__init__) with a "real" self.plural for
 # this domain; see https://github.com/Pylons/pyramid/issues/235
 self.plural = lambda n: int(n != 1)
 gettext.GNUTranslations.__init__(self, fp=fileobj)
 self.files = list(filter(None, [getattr(fileobj, 'name', None)]))
 self.domain = domain
 self._domains = {}

 @classmethod
 def load(cls, dirname=None, locales=None, domain=DEFAULT_DOMAIN):
 """Load translations from the given directory.

 :param dirname: the directory containing the ``MO`` files
 :param locales: the list of locales in order of preference (items in
 this list can be either `Locale` objects or locale
 strings)
 :param domain: the message domain
 :return: the loaded catalog, or a ``NullTranslations`` instance if no
 matching translations were found
 :rtype: `Translations`
 """
 if locales is not None:
 if not isinstance(locales, (list, tuple)):
 locales = [locales]
 locales = [str(l) for l in locales]
 if not domain:
 domain = cls.DEFAULT_DOMAIN
 filename = gettext.find(domain, dirname, locales)
 if not filename:
 return gettext.NullTranslations()
 with open(filename, 'rb') as fp:
 return cls(fileobj=fp, domain=domain)

 def __repr__(self):
 return '<%s: "%s">' % (type(self).__name__,
 self._info.get('project-id-version'))

 def add(self, translations, merge=True):
 """Add the given translations to the catalog.

 If the domain of the translations is different than that of the
 current catalog, they are added as a catalog that is only accessible
 by the various ``d*gettext`` functions.

 :param translations: the `Translations` instance with the messages to
 add
 :param merge: whether translations for message domains that have
 already been added should be merged with the existing
 translations
 :return: the `Translations` instance (``self``) so that `merge` calls
 can be easily chained
 :rtype: `Translations`
 """
 domain = getattr(translations, 'domain', self.DEFAULT_DOMAIN)
 if merge and domain == self.domain:
 return self.merge(translations)

 existing = self._domains.get(domain)
 if merge and existing is not None:
 existing.merge(translations)
 else:
 translations.add_fallback(self)
 self._domains[domain] = translations

 return self

 def merge(self, translations):
 """Merge the given translations into the catalog.

 Message translations in the specified catalog override any messages
 with the same identifier in the existing catalog.

 :param translations: the `Translations` instance with the messages to
 merge
 :return: the `Translations` instance (``self``) so that `merge` calls
 can be easily chained
 :rtype: `Translations`
 """
 if isinstance(translations, gettext.GNUTranslations):
 self._catalog.update(translations._catalog)
 if isinstance(translations, Translations):
 self.files.extend(translations.files)

 return self

 def dgettext(self, domain, message):
 """Like ``gettext()``, but look the message up in the specified
 domain.
 """
 return self._domains.get(domain, self).gettext(message)

 def ldgettext(self, domain, message):
 """Like ``lgettext()``, but look the message up in the specified
 domain.
 """
 return self._domains.get(domain, self).lgettext(message)

 def dugettext(self, domain, message):
 """Like ``ugettext()``, but look the message up in the specified
 domain.
 """
 if PY3: # pragma: no cover
 return self._domains.get(domain, self).gettext(message)
 else: # pragma: no cover
 return self._domains.get(domain, self).ugettext(message)

 def dngettext(self, domain, singular, plural, num):
 """Like ``ngettext()``, but look the message up in the specified
 domain.
 """
 return self._domains.get(domain, self).ngettext(singular, plural, num)

 def ldngettext(self, domain, singular, plural, num):
 """Like ``lngettext()``, but look the message up in the specified
 domain.
 """
 return self._domains.get(domain, self).lngettext(singular, plural, num)

 def dungettext(self, domain, singular, plural, num):
 """Like ``ungettext()`` but look the message up in the specified
 domain.
 """
 if PY3: # pragma: no cover
 return self._domains.get(domain, self).ngettext(
 singular, plural, num)
 else: # pragma: no cover
 return self._domains.get(domain, self).ungettext(
 singular, plural, num)

class LocalizerRequestMixin(object):
 @reify
 def localizer(self):
 """ Convenience property to return a localizer """
 registry = self.registry

 current_locale_name = self.locale_name
 localizer = registry.queryUtility(ILocalizer, name=current_locale_name)

 if localizer is None:
 # no localizer utility registered yet
 tdirs = registry.queryUtility(ITranslationDirectories, default=[])
 localizer = make_localizer(current_locale_name, tdirs)

 registry.registerUtility(localizer, ILocalizer,
 name=current_locale_name)

 return localizer

 @reify
 def locale_name(self):
 locale_name = negotiate_locale_name(self)
 return locale_name

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/wsgi.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.wsgi

from functools import wraps
from pyramid.request import call_app_with_subpath_as_path_info

[docs]def wsgiapp(wrapped):
 """ Decorator to turn a WSGI application into a :app:`Pyramid`
 :term:`view callable`. This decorator differs from the
 :func:`pyramid.wsgi.wsgiapp2` decorator inasmuch as fixups of
 ``PATH_INFO`` and ``SCRIPT_NAME`` within the WSGI environment *are
 not* performed before the application is invoked.

 E.g., the following in a ``views.py`` module::

 @wsgiapp
 def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

 Allows the following call to
 :meth:`pyramid.config.Configurator.add_view`::

 from views import hello_world
 config.add_view(hello_world, name='hello_world.txt')

 The ``wsgiapp`` decorator will convert the result of the WSGI
 application to a :term:`Response` and return it to
 :app:`Pyramid` as if the WSGI app were a :app:`Pyramid`
 view.

 """

 if wrapped is None:
 raise ValueError('wrapped can not be None')

 def decorator(context, request):
 return request.get_response(wrapped)

 # Support case where wrapped is a callable object instance
 if getattr(wrapped, '__name__', None):
 return wraps(wrapped)(decorator)
 return wraps(wrapped, ('__module__', '__doc__'))(decorator)

[docs]def wsgiapp2(wrapped):
 """ Decorator to turn a WSGI application into a :app:`Pyramid`
 view callable. This decorator differs from the
 :func:`pyramid.wsgi.wsgiapp` decorator inasmuch as fixups of
 ``PATH_INFO`` and ``SCRIPT_NAME`` within the WSGI environment
 are performed before the application is invoked.

 E.g. the following in a ``views.py`` module::

 @wsgiapp2
 def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

 Allows the following call to
 :meth:`pyramid.config.Configurator.add_view`::

 from views import hello_world
 config.add_view(hello_world, name='hello_world.txt')

 The ``wsgiapp2`` decorator will convert the result of the WSGI
 application to a Response and return it to :app:`Pyramid` as if the WSGI
 app were a :app:`Pyramid` view. The ``SCRIPT_NAME`` and ``PATH_INFO``
 values present in the WSGI environment are fixed up before the
 application is invoked. In particular, a new WSGI environment is
 generated, and the :term:`subpath` of the request passed to ``wsgiapp2``
 is used as the new request's ``PATH_INFO`` and everything preceding the
 subpath is used as the ``SCRIPT_NAME``. The new environment is passed to
 the downstream WSGI application."""

 if wrapped is None:
 raise ValueError('wrapped can not be None')

 def decorator(context, request):
 return call_app_with_subpath_as_path_info(request, wrapped)

 # Support case where wrapped is a callable object instance
 if getattr(wrapped, '__name__', None):
 return wraps(wrapped)(decorator)
 return wraps(wrapped, ('__module__', '__doc__'))(decorator)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/config.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.config

import inspect
import itertools
import logging
import operator
import os
import sys
import venusian

from webob.exc import WSGIHTTPException as WebobWSGIHTTPException

from pyramid.interfaces import (
 IDebugLogger,
 IExceptionResponse,
 IPredicateList,
 PHASE1_CONFIG,
)

from pyramid.asset import resolve_asset_spec

from pyramid.authorization import ACLAuthorizationPolicy

from pyramid.compat import (
 text_,
 reraise,
 string_types,
)

from pyramid.events import ApplicationCreated

from pyramid.exceptions import (
 ConfigurationConflictError,
 ConfigurationError,
 ConfigurationExecutionError,
)

from pyramid.httpexceptions import default_exceptionresponse_view

from pyramid.path import (
 caller_package,
 package_of,
)

from pyramid.registry import (
 Introspectable,
 Introspector,
 Registry,
 undefer,
)

from pyramid.router import Router

from pyramid.settings import aslist

from pyramid.threadlocal import manager

from pyramid.util import (
 WeakOrderedSet,
 object_description,
)

from pyramid.config.adapters import AdaptersConfiguratorMixin
from pyramid.config.assets import AssetsConfiguratorMixin
from pyramid.config.factories import FactoriesConfiguratorMixin
from pyramid.config.i18n import I18NConfiguratorMixin
from pyramid.config.rendering import RenderingConfiguratorMixin
from pyramid.config.routes import RoutesConfiguratorMixin
from pyramid.config.security import SecurityConfiguratorMixin
from pyramid.config.settings import SettingsConfiguratorMixin
from pyramid.config.testing import TestingConfiguratorMixin
from pyramid.config.tweens import TweensConfiguratorMixin
from pyramid.config.util import PredicateList, not_
from pyramid.config.views import ViewsConfiguratorMixin
from pyramid.config.zca import ZCAConfiguratorMixin

from pyramid.path import DottedNameResolver

from pyramid.util import (
 action_method,
 ActionInfo,
)

empty = text_('')
_marker = object()

ConfigurationError = ConfigurationError # pyflakes

not_ = not_ # pyflakes, this is an API

[docs]class Configurator(
 TestingConfiguratorMixin,
 TweensConfiguratorMixin,
 SecurityConfiguratorMixin,
 ViewsConfiguratorMixin,
 RoutesConfiguratorMixin,
 ZCAConfiguratorMixin,
 I18NConfiguratorMixin,
 RenderingConfiguratorMixin,
 AssetsConfiguratorMixin,
 SettingsConfiguratorMixin,
 FactoriesConfiguratorMixin,
 AdaptersConfiguratorMixin,
):
 """
 A Configurator is used to configure a :app:`Pyramid`
 :term:`application registry`.

 If the ``registry`` argument is not ``None``, it must
 be an instance of the :class:`pyramid.registry.Registry` class
 representing the registry to configure. If ``registry`` is ``None``, the
 configurator will create a :class:`pyramid.registry.Registry` instance
 itself; it will also perform some default configuration that would not
 otherwise be done. After its construction, the configurator may be used
 to add further configuration to the registry.

 .. warning:: If ``registry`` is assigned the above-mentioned class
 instance, all other constructor arguments are ignored,
 with the exception of ``package``.

 If the ``package`` argument is passed, it must be a reference to a Python
 :term:`package` (e.g. ``sys.modules['thepackage']``) or a :term:`dotted
 Python name` to the same. This value is used as a basis to convert
 relative paths passed to various configuration methods, such as methods
 which accept a ``renderer`` argument, into absolute paths. If ``None``
 is passed (the default), the package is assumed to be the Python package
 in which the *caller* of the ``Configurator`` constructor lives.

 If the ``settings`` argument is passed, it should be a Python dictionary
 representing the :term:`deployment settings` for this application. These
 are later retrievable using the
 :attr:`pyramid.registry.Registry.settings` attribute (aka
 ``request.registry.settings``).

 If the ``root_factory`` argument is passed, it should be an object
 representing the default :term:`root factory` for your application or a
 :term:`dotted Python name` to the same. If it is ``None``, a default
 root factory will be used.

 If ``authentication_policy`` is passed, it should be an instance
 of an :term:`authentication policy` or a :term:`dotted Python
 name` to the same.

 If ``authorization_policy`` is passed, it should be an instance of
 an :term:`authorization policy` or a :term:`dotted Python name` to
 the same.

 .. note:: A ``ConfigurationError`` will be raised when an
 authorization policy is supplied without also supplying an
 authentication policy (authorization requires authentication).

 If ``renderers`` is ``None`` (the default), a default set of
 :term:`renderer` factories is used. Else, it should be a list of
 tuples representing a set of renderer factories which should be
 configured into this application, and each tuple representing a set of
 positional values that should be passed to
 :meth:`pyramid.config.Configurator.add_renderer`.

 If ``debug_logger`` is not passed, a default debug logger that logs to a
 logger will be used (the logger name will be the package name of the
 caller of this configurator). If it is passed, it should be an
 instance of the :class:`logging.Logger` (PEP 282) standard library class
 or a Python logger name. The debug logger is used by :app:`Pyramid`
 itself to log warnings and authorization debugging information.

 If ``locale_negotiator`` is passed, it should be a :term:`locale
 negotiator` implementation or a :term:`dotted Python name` to
 same. See :ref:`custom_locale_negotiator`.

 If ``request_factory`` is passed, it should be a :term:`request
 factory` implementation or a :term:`dotted Python name` to the same.
 See :ref:`changing_the_request_factory`. By default it is ``None``,
 which means use the default request factory.

 If ``default_permission`` is passed, it should be a
 :term:`permission` string to be used as the default permission for
 all view configuration registrations performed against this
 Configurator. An example of a permission string:``'view'``.
 Adding a default permission makes it unnecessary to protect each
 view configuration with an explicit permission, unless your
 application policy requires some exception for a particular view.
 By default, ``default_permission`` is ``None``, meaning that view
 configurations which do not explicitly declare a permission will
 always be executable by entirely anonymous users (any
 authorization policy in effect is ignored).

 .. seealso::

 See also :ref:`setting_a_default_permission`.

 If ``session_factory`` is passed, it should be an object which
 implements the :term:`session factory` interface. If a nondefault
 value is passed, the ``session_factory`` will be used to create a
 session object when ``request.session`` is accessed. Note that
 the same outcome can be achieved by calling
 :meth:`pyramid.config.Configurator.set_session_factory`. By
 default, this argument is ``None``, indicating that no session
 factory will be configured (and thus accessing ``request.session``
 will throw an error) unless ``set_session_factory`` is called later
 during configuration.

 If ``autocommit`` is ``True``, every method called on the configurator
 will cause an immediate action, and no configuration conflict detection
 will be used. If ``autocommit`` is ``False``, most methods of the
 configurator will defer their action until
 :meth:`pyramid.config.Configurator.commit` is called. When
 :meth:`pyramid.config.Configurator.commit` is called, the actions implied
 by the called methods will be checked for configuration conflicts unless
 ``autocommit`` is ``True``. If a conflict is detected, a
 ``ConfigurationConflictError`` will be raised. Calling
 :meth:`pyramid.config.Configurator.make_wsgi_app` always implies a final
 commit.

 If ``default_view_mapper`` is passed, it will be used as the default
 :term:`view mapper` factory for view configurations that don't otherwise
 specify one (see :class:`pyramid.interfaces.IViewMapperFactory`). If
 ``default_view_mapper`` is not passed, a superdefault view mapper will be
 used.

 If ``exceptionresponse_view`` is passed, it must be a :term:`view
 callable` or ``None``. If it is a view callable, it will be used as an
 exception view callable when an :term:`exception response` is raised. If
 ``exceptionresponse_view`` is ``None``, no exception response view will
 be registered, and all raised exception responses will be bubbled up to
 Pyramid's caller. By
 default, the ``pyramid.httpexceptions.default_exceptionresponse_view``
 function is used as the ``exceptionresponse_view``.

 If ``route_prefix`` is passed, all routes added with
 :meth:`pyramid.config.Configurator.add_route` will have the specified path
 prepended to their pattern.

 If ``introspection`` is passed, it must be a boolean value. If it's
 ``True``, introspection values during actions will be kept for use
 for tools like the debug toolbar. If it's ``False``, introspection
 values provided by registrations will be ignored. By default, it is
 ``True``.

 .. versionadded:: 1.1
 The ``exceptionresponse_view`` argument.

 .. versionadded:: 1.2
 The ``route_prefix`` argument.

 .. versionadded:: 1.3
 The ``introspection`` argument.
 """
 manager = manager # for testing injection
 venusian = venusian # for testing injection
 _ainfo = None
 basepath = None
 includepath = ()
 info = ''
 object_description = staticmethod(object_description)
 introspectable = Introspectable
 inspect = inspect

 def __init__(self,
 registry=None,
 package=None,
 settings=None,
 root_factory=None,
 authentication_policy=None,
 authorization_policy=None,
 renderers=None,
 debug_logger=None,
 locale_negotiator=None,
 request_factory=None,
 default_permission=None,
 session_factory=None,
 default_view_mapper=None,
 autocommit=False,
 exceptionresponse_view=default_exceptionresponse_view,
 route_prefix=None,
 introspection=True,
):
 if package is None:
 package = caller_package()
 name_resolver = DottedNameResolver(package)
 self.name_resolver = name_resolver
 self.package_name = name_resolver.get_package_name()
 self.package = name_resolver.get_package()
 self.registry = registry
 self.autocommit = autocommit
 self.route_prefix = route_prefix
 self.introspection = introspection
 if registry is None:
 registry = Registry(self.package_name)
 self.registry = registry
 self.setup_registry(
 settings=settings,
 root_factory=root_factory,
 authentication_policy=authentication_policy,
 authorization_policy=authorization_policy,
 renderers=renderers,
 debug_logger=debug_logger,
 locale_negotiator=locale_negotiator,
 request_factory=request_factory,
 default_permission=default_permission,
 session_factory=session_factory,
 default_view_mapper=default_view_mapper,
 exceptionresponse_view=exceptionresponse_view,
)

[docs] def setup_registry(self,
 settings=None,
 root_factory=None,
 authentication_policy=None,
 authorization_policy=None,
 renderers=None,
 debug_logger=None,
 locale_negotiator=None,
 request_factory=None,
 default_permission=None,
 session_factory=None,
 default_view_mapper=None,
 exceptionresponse_view=default_exceptionresponse_view,
):
 """ When you pass a non-``None`` ``registry`` argument to the
 :term:`Configurator` constructor, no initial setup is performed
 against the registry. This is because the registry you pass in may
 have already been initialized for use under :app:`Pyramid` via a
 different configurator. However, in some circumstances (such as when
 you want to use a global registry instead of a registry created as a
 result of the Configurator constructor), or when you want to reset
 the initial setup of a registry, you *do* want to explicitly
 initialize the registry associated with a Configurator for use under
 :app:`Pyramid`. Use ``setup_registry`` to do this initialization.

 ``setup_registry`` configures settings, a root factory, security
 policies, renderers, a debug logger, a locale negotiator, and various
 other settings using the configurator's current registry, as per the
 descriptions in the Configurator constructor."""

 registry = self.registry

 self._fix_registry()

 self._set_settings(settings)

 if isinstance(debug_logger, string_types):
 debug_logger = logging.getLogger(debug_logger)

 if debug_logger is None:
 debug_logger = logging.getLogger(self.package_name)

 registry.registerUtility(debug_logger, IDebugLogger)

 self.add_default_response_adapters()
 self.add_default_renderers()
 self.add_default_view_predicates()
 self.add_default_route_predicates()

 if exceptionresponse_view is not None:
 exceptionresponse_view = self.maybe_dotted(exceptionresponse_view)
 self.add_view(exceptionresponse_view, context=IExceptionResponse)
 self.add_view(exceptionresponse_view,context=WebobWSGIHTTPException)

 # commit below because:
 #
 # - the default exceptionresponse_view requires the superdefault view
 # mapper, so we need to configure it before adding default_view_mapper
 #
 # - superdefault renderers should be overrideable without requiring
 # the user to commit before calling config.add_renderer

 self.commit()

 # self.commit() should not be called within this method after this
 # point because the following registrations should be treated as
 # analogues of methods called by the user after configurator
 # construction. Rationale: user-supplied implementations should be
 # preferred rather than add-on author implementations with the help of
 # automatic conflict resolution.

 if authentication_policy and not authorization_policy:
 authorization_policy = ACLAuthorizationPolicy() # default

 if authorization_policy:
 self.set_authorization_policy(authorization_policy)

 if authentication_policy:
 self.set_authentication_policy(authentication_policy)

 if default_view_mapper is not None:
 self.set_view_mapper(default_view_mapper)

 if renderers:
 for name, renderer in renderers:
 self.add_renderer(name, renderer)

 if root_factory is not None:
 self.set_root_factory(root_factory)

 if locale_negotiator:
 self.set_locale_negotiator(locale_negotiator)

 if request_factory:
 self.set_request_factory(request_factory)

 if default_permission:
 self.set_default_permission(default_permission)

 if session_factory is not None:
 self.set_session_factory(session_factory)

 tweens = aslist(registry.settings.get('pyramid.tweens', []))
 for factory in tweens:
 self._add_tween(factory, explicit=True)

 includes = aslist(registry.settings.get('pyramid.includes', []))
 for inc in includes:
 self.include(inc)

 def _make_spec(self, path_or_spec):
 package, filename = resolve_asset_spec(path_or_spec, self.package_name)
 if package is None:
 return filename # absolute filename
 return '%s:%s' % (package, filename)

 def _split_spec(self, path_or_spec):
 return resolve_asset_spec(path_or_spec, self.package_name)

 def _fix_registry(self):
 """ Fix up a ZCA component registry that is not a
 pyramid.registry.Registry by adding analogues of ``has_listeners``,
 ``notify``, ``queryAdapterOrSelf``, and ``registerSelfAdapter``
 through monkey-patching."""

 _registry = self.registry

 if not hasattr(_registry, 'notify'):
 def notify(*events):
 [_ for _ in _registry.subscribers(events, None)]
 _registry.notify = notify

 if not hasattr(_registry, 'has_listeners'):
 _registry.has_listeners = True

 if not hasattr(_registry, 'queryAdapterOrSelf'):
 def queryAdapterOrSelf(object, interface, default=None):
 if not interface.providedBy(object):
 return _registry.queryAdapter(object, interface,
 default=default)
 return object
 _registry.queryAdapterOrSelf = queryAdapterOrSelf

 if not hasattr(_registry, 'registerSelfAdapter'):
 def registerSelfAdapter(required=None, provided=None,
 name=empty, info=empty, event=True):
 return _registry.registerAdapter(lambda x: x,
 required=required,
 provided=provided, name=name,
 info=info, event=event)
 _registry.registerSelfAdapter = registerSelfAdapter

 # API

 def _get_introspector(self):
 introspector = getattr(self.registry, 'introspector', _marker)
 if introspector is _marker:
 introspector = Introspector()
 self._set_introspector(introspector)
 return introspector

 def _set_introspector(self, introspector):
 self.registry.introspector = introspector

 def _del_introspector(self):
 del self.registry.introspector

 introspector = property(
 _get_introspector, _set_introspector, _del_introspector
)

 def get_predlist(self, name):
 predlist = self.registry.queryUtility(IPredicateList, name=name)
 if predlist is None:
 predlist = PredicateList()
 self.registry.registerUtility(predlist, IPredicateList, name=name)
 return predlist

 def _add_predicate(self, type, name, factory, weighs_more_than=None,
 weighs_less_than=None):
 factory = self.maybe_dotted(factory)
 discriminator = ('%s predicate' % type, name)
 intr = self.introspectable(
 '%s predicates' % type,
 discriminator,
 '%s predicate named %s' % (type, name),
 '%s predicate' % type)
 intr['name'] = name
 intr['factory'] = factory
 intr['weighs_more_than'] = weighs_more_than
 intr['weighs_less_than'] = weighs_less_than
 def register():
 predlist = self.get_predlist(type)
 predlist.add(name, factory, weighs_more_than=weighs_more_than,
 weighs_less_than=weighs_less_than)
 self.action(discriminator, register, introspectables=(intr,),
 order=PHASE1_CONFIG) # must be registered early

 @property
 def action_info(self):
 info = self.info # usually a ZCML action (ParserInfo) if self.info
 if not info:
 # Try to provide more accurate info for conflict reports
 if self._ainfo:
 info = self._ainfo[0]
 else:
 info = ActionInfo(None, 0, '', '')
 return info

[docs] def action(self, discriminator, callable=None, args=(), kw=None, order=0,
 introspectables=(), **extra):
 """ Register an action which will be executed when
 :meth:`pyramid.config.Configurator.commit` is called (or executed
 immediately if ``autocommit`` is ``True``).

 .. warning:: This method is typically only used by :app:`Pyramid`
 framework extension authors, not by :app:`Pyramid` application
 developers.

 The ``discriminator`` uniquely identifies the action. It must be
 given, but it can be ``None``, to indicate that the action never
 conflicts. It must be a hashable value.

 The ``callable`` is a callable object which performs the task
 associated with the action when the action is executed. It is
 optional.

 ``args`` and ``kw`` are tuple and dict objects respectively, which
 are passed to ``callable`` when this action is executed. Both are
 optional.

 ``order`` is a grouping mechanism; an action with a lower order will
 be executed before an action with a higher order (has no effect when
 autocommit is ``True``).

 ``introspectables`` is a sequence of :term:`introspectable` objects
 (or the empty sequence if no introspectable objects are associated
 with this action). If this configurator's ``introspection``
 attribute is ``False``, these introspectables will be ignored.

 ``extra`` provides a facility for inserting extra keys and values
 into an action dictionary.
 """
 # catch nonhashable discriminators here; most unit tests use
 # autocommit=False, which won't catch unhashable discriminators
 assert hash(discriminator)

 if kw is None:
 kw = {}

 autocommit = self.autocommit
 action_info = self.action_info

 if not self.introspection:
 # if we're not introspecting, ignore any introspectables passed
 # to us
 introspectables = ()

 if autocommit:
 # callables can depend on the side effects of resolving a
 # deferred discriminator
 undefer(discriminator)
 if callable is not None:
 callable(*args, **kw)
 for introspectable in introspectables:
 introspectable.register(self.introspector, action_info)

 else:
 action = extra
 action.update(
 dict(
 discriminator=discriminator,
 callable=callable,
 args=args,
 kw=kw,
 order=order,
 info=action_info,
 includepath=self.includepath,
 introspectables=introspectables,
)
)
 self.action_state.action(**action)

 def _get_action_state(self):
 registry = self.registry
 try:
 state = registry.action_state
 except AttributeError:
 state = ActionState()
 registry.action_state = state
 return state

 def _set_action_state(self, state):
 self.registry.action_state = state

 action_state = property(_get_action_state, _set_action_state)

 _ctx = action_state # bw compat

[docs] def commit(self):
 """ Commit any pending configuration actions. If a configuration
 conflict is detected in the pending configuration actions, this method
 will raise a :exc:`ConfigurationConflictError`; within the traceback
 of this error will be information about the source of the conflict,
 usually including file names and line numbers of the cause of the
 configuration conflicts."""
 self.action_state.execute_actions(introspector=self.introspector)
 self.action_state = ActionState() # old actions have been processed

[docs] def include(self, callable, route_prefix=None):
 """Include a configuration callable, to support imperative
 application extensibility.

 .. warning:: In versions of :app:`Pyramid` prior to 1.2, this
 function accepted ``*callables``, but this has been changed
 to support only a single callable.

 A configuration callable should be a callable that accepts a single
 argument named ``config``, which will be an instance of a
 :term:`Configurator`. However, be warned that it will not be the same
 configurator instance on which you call this method. The
 code which runs as a result of calling the callable should invoke
 methods on the configurator passed to it which add configuration
 state. The return value of a callable will be ignored.

 Values allowed to be presented via the ``callable`` argument to
 this method: any callable Python object or any :term:`dotted Python
 name` which resolves to a callable Python object. It may also be a
 Python :term:`module`, in which case, the module will be searched for
 a callable named ``includeme``, which will be treated as the
 configuration callable.

 For example, if the ``includeme`` function below lives in a module
 named ``myapp.myconfig``:

 .. code-block:: python
 :linenos:

 # myapp.myconfig module

 def my_view(request):
 from pyramid.response import Response
 return Response('OK')

 def includeme(config):
 config.add_view(my_view)

 You might cause it to be included within your Pyramid application like
 so:

 .. code-block:: python
 :linenos:

 from pyramid.config import Configurator

 def main(global_config, **settings):
 config = Configurator()
 config.include('myapp.myconfig.includeme')

 Because the function is named ``includeme``, the function name can
 also be omitted from the dotted name reference:

 .. code-block:: python
 :linenos:

 from pyramid.config import Configurator

 def main(global_config, **settings):
 config = Configurator()
 config.include('myapp.myconfig')

 Included configuration statements will be overridden by local
 configuration statements if an included callable causes a
 configuration conflict by registering something with the same
 configuration parameters.

 If the ``route_prefix`` is supplied, it must be a string. Any calls
 to :meth:`pyramid.config.Configurator.add_route` within the included
 callable will have their pattern prefixed with the value of
 ``route_prefix``. This can be used to help mount a set of routes at a
 different location than the included callable's author intended, while
 still maintaining the same route names. For example:

 .. code-block:: python
 :linenos:

 from pyramid.config import Configurator

 def included(config):
 config.add_route('show_users', '/show')

 def main(global_config, **settings):
 config = Configurator()
 config.include(included, route_prefix='/users')

 In the above configuration, the ``show_users`` route will have an
 effective route pattern of ``/users/show``, instead of ``/show``
 because the ``route_prefix`` argument will be prepended to the
 pattern.

 .. versionadded:: 1.2
 The ``route_prefix`` parameter.

 """
 # """ <-- emacs

 action_state = self.action_state

 if route_prefix is None:
 route_prefix = ''

 old_route_prefix = self.route_prefix
 if old_route_prefix is None:
 old_route_prefix = ''

 route_prefix = '%s/%s' % (
 old_route_prefix.rstrip('/'),
 route_prefix.lstrip('/')
)
 route_prefix = route_prefix.strip('/')
 if not route_prefix:
 route_prefix = None

 c = self.maybe_dotted(callable)
 module = self.inspect.getmodule(c)
 if module is c:
 try:
 c = getattr(module, 'includeme')
 except AttributeError:
 raise ConfigurationError(
 "module %r has no attribute 'includeme'" % (module.__name__)
)

 spec = module.__name__ + ':' + c.__name__
 sourcefile = self.inspect.getsourcefile(c)

 if sourcefile is None:
 raise ConfigurationError(
 'No source file for module %r (.py file must exist, '
 'refusing to use orphan .pyc or .pyo file).' % module.__name__)

 if action_state.processSpec(spec):
 configurator = self.__class__(
 registry=self.registry,
 package=package_of(module),
 autocommit=self.autocommit,
 route_prefix=route_prefix,
)
 configurator.basepath = os.path.dirname(sourcefile)
 configurator.includepath = self.includepath + (spec,)
 c(configurator)

[docs] def add_directive(self, name, directive, action_wrap=True):
 """
 Add a directive method to the configurator.

 .. warning:: This method is typically only used by :app:`Pyramid`
 framework extension authors, not by :app:`Pyramid` application
 developers.

 Framework extenders can add directive methods to a configurator by
 instructing their users to call ``config.add_directive('somename',
 'some.callable')``. This will make ``some.callable`` accessible as
 ``config.somename``. ``some.callable`` should be a function which
 accepts ``config`` as a first argument, and arbitrary positional and
 keyword arguments following. It should use config.action as
 necessary to perform actions. Directive methods can then be invoked
 like 'built-in' directives such as ``add_view``, ``add_route``, etc.

 The ``action_wrap`` argument should be ``True`` for directives which
 perform ``config.action`` with potentially conflicting
 discriminators. ``action_wrap`` will cause the directive to be
 wrapped in a decorator which provides more accurate conflict
 cause information.

 ``add_directive`` does not participate in conflict detection, and
 later calls to ``add_directive`` will override earlier calls.
 """
 c = self.maybe_dotted(directive)
 if not hasattr(self.registry, '_directives'):
 self.registry._directives = {}
 self.registry._directives[name] = (c, action_wrap)

 def __getattr__(self, name):
 # allow directive extension names to work
 directives = getattr(self.registry, '_directives', {})
 c = directives.get(name)
 if c is None:
 raise AttributeError(name)
 c, action_wrap = c
 if action_wrap:
 c = action_method(c)
 # Create a bound method (works on both Py2 and Py3)
 # http://stackoverflow.com/a/1015405/209039
 m = c.__get__(self, self.__class__)
 return m

[docs] def with_package(self, package):
 """ Return a new Configurator instance with the same registry
 as this configurator. ``package`` may be an actual Python package
 object or a :term:`dotted Python name` representing a package."""
 configurator = self.__class__(
 registry=self.registry,
 package=package,
 autocommit=self.autocommit,
 route_prefix=self.route_prefix,
 introspection=self.introspection,
)
 configurator.basepath = self.basepath
 configurator.includepath = self.includepath
 configurator.info = self.info
 return configurator

[docs] def maybe_dotted(self, dotted):
 """ Resolve the :term:`dotted Python name` ``dotted`` to a
 global Python object. If ``dotted`` is not a string, return
 it without attempting to do any name resolution. If
 ``dotted`` is a relative dotted name (e.g. ``.foo.bar``,
 consider it relative to the ``package`` argument supplied to
 this Configurator's constructor."""
 return self.name_resolver.maybe_resolve(dotted)

[docs] def absolute_asset_spec(self, relative_spec):
 """ Resolve the potentially relative :term:`asset
 specification` string passed as ``relative_spec`` into an
 absolute asset specification string and return the string.
 Use the ``package`` of this configurator as the package to
 which the asset specification will be considered relative
 when generating an absolute asset specification. If the
 provided ``relative_spec`` argument is already absolute, or if
 the ``relative_spec`` is not a string, it is simply returned."""
 if not isinstance(relative_spec, string_types):
 return relative_spec
 return self._make_spec(relative_spec)

 absolute_resource_spec = absolute_asset_spec # b/w compat forever

[docs] def begin(self, request=None):
 """ Indicate that application or test configuration has begun.
 This pushes a dictionary containing the :term:`application
 registry` implied by ``registry`` attribute of this
 configurator and the :term:`request` implied by the
 ``request`` argument onto the :term:`thread local` stack
 consulted by various :mod:`pyramid.threadlocal` API
 functions."""
 self.manager.push({'registry':self.registry, 'request':request})

[docs] def end(self):
 """ Indicate that application or test configuration has ended.
 This pops the last value pushed onto the :term:`thread local`
 stack (usually by the ``begin`` method) and returns that
 value.
 """
 return self.manager.pop()

 # this is *not* an action method (uses caller_package)
[docs] def scan(self, package=None, categories=None, onerror=None, ignore=None,
 **kw):
 """Scan a Python package and any of its subpackages for objects
 marked with :term:`configuration decoration` such as
 :class:`pyramid.view.view_config`. Any decorated object found will
 influence the current configuration state.

 The ``package`` argument should be a Python :term:`package` or module
 object (or a :term:`dotted Python name` which refers to such a
 package or module). If ``package`` is ``None``, the package of the
 caller is used.

 The ``categories`` argument, if provided, should be the
 :term:`Venusian` 'scan categories' to use during scanning. Providing
 this argument is not often necessary; specifying scan categories is
 an extremely advanced usage. By default, ``categories`` is ``None``
 which will execute *all* Venusian decorator callbacks including
 :app:`Pyramid`-related decorators such as
 :class:`pyramid.view.view_config`. See the :term:`Venusian`
 documentation for more information about limiting a scan by using an
 explicit set of categories.

 The ``onerror`` argument, if provided, should be a Venusian
 ``onerror`` callback function. The onerror function is passed to
 :meth:`venusian.Scanner.scan` to influence error behavior when an
 exception is raised during the scanning process. See the
 :term:`Venusian` documentation for more information about ``onerror``
 callbacks.

 The ``ignore`` argument, if provided, should be a Venusian ``ignore``
 value. Providing an ``ignore`` argument allows the scan to ignore
 particular modules, packages, or global objects during a scan.
 ``ignore`` can be a string or a callable, or a list containing
 strings or callables. The simplest usage of ``ignore`` is to provide
 a module or package by providing a full path to its dotted name. For
 example: ``config.scan(ignore='my.module.subpackage')`` would ignore
 the ``my.module.subpackage`` package during a scan, which would
 prevent the subpackage and any of its submodules from being imported
 and scanned. See the :term:`Venusian` documentation for more
 information about the ``ignore`` argument.

 To perform a ``scan``, Pyramid creates a Venusian ``Scanner`` object.
 The ``kw`` argument represents a set of keyword arguments to pass to
 the Venusian ``Scanner`` object's constructor. See the
 :term:`venusian` documentation (its ``Scanner`` class) for more
 information about the constructor. By default, the only keyword
 arguments passed to the Scanner constructor are ``{'config':self}``
 where ``self`` is this configurator object. This services the
 requirement of all built-in Pyramid decorators, but extension systems
 may require additional arguments. Providing this argument is not
 often necessary; it's an advanced usage.

 .. versionadded:: 1.1
 The ``**kw`` argument.

 .. versionadded:: 1.3
 The ``ignore`` argument.

 """
 package = self.maybe_dotted(package)
 if package is None: # pragma: no cover
 package = caller_package()

 ctorkw = {'config':self}
 ctorkw.update(kw)

 scanner = self.venusian.Scanner(**ctorkw)

 scanner.scan(package, categories=categories, onerror=onerror,
 ignore=ignore)

[docs] def make_wsgi_app(self):
 """ Commits any pending configuration statements, sends a
 :class:`pyramid.events.ApplicationCreated` event to all listeners,
 adds this configuration's registry to
 :attr:`pyramid.config.global_registries`, and returns a
 :app:`Pyramid` WSGI application representing the committed
 configuration state."""
 self.commit()
 app = Router(self.registry)

 # Allow tools like "pshell development.ini" to find the 'last'
 # registry configured.
 global_registries.add(self.registry)

 # Push the registry onto the stack in case any code that depends on
 # the registry threadlocal APIs used in listeners subscribed to the
 # IApplicationCreated event.
 self.manager.push({'registry':self.registry, 'request':None})
 try:
 self.registry.notify(ApplicationCreated(app))
 finally:
 self.manager.pop()

 return app

this class is licensed under the ZPL (stolen from Zope)
class ActionState(object):
 def __init__(self):
 # NB "actions" is an API, dep'd upon by pyramid_zcml's load_zcml func
 self.actions = []
 self._seen_files = set()

 def processSpec(self, spec):
 """Check whether a callable needs to be processed. The ``spec``
 refers to a unique identifier for the callable.

 Return True if processing is needed and False otherwise. If
 the callable needs to be processed, it will be marked as
 processed, assuming that the caller will procces the callable if
 it needs to be processed.
 """
 if spec in self._seen_files:
 return False
 self._seen_files.add(spec)
 return True

 def action(self, discriminator, callable=None, args=(), kw=None, order=0,
 includepath=(), info=None, introspectables=(), **extra):
 """Add an action with the given discriminator, callable and arguments
 """
 if kw is None:
 kw = {}
 action = extra
 action.update(
 dict(
 discriminator=discriminator,
 callable=callable,
 args=args,
 kw=kw,
 includepath=includepath,
 info=info,
 order=order,
 introspectables=introspectables,
)
)
 self.actions.append(action)

 def execute_actions(self, clear=True, introspector=None):
 """Execute the configuration actions

 This calls the action callables after resolving conflicts

 For example:

 >>> output = []
 >>> def f(*a, **k):
 ... output.append(('f', a, k))
 >>> context = ActionState()
 >>> context.actions = [
 ... (1, f, (1,)),
 ... (1, f, (11,), {}, ('x',)),
 ... (2, f, (2,)),
 ...]
 >>> context.execute_actions()
 >>> output
 [('f', (1,), {}), ('f', (2,), {})]

 If the action raises an error, we convert it to a
 ConfigurationExecutionError.

 >>> output = []
 >>> def bad():
 ... bad.xxx
 >>> context.actions = [
 ... (1, f, (1,)),
 ... (1, f, (11,), {}, ('x',)),
 ... (2, f, (2,)),
 ... (3, bad, (), {}, (), 'oops')
 ...]
 >>> try:
 ... v = context.execute_actions()
 ... except ConfigurationExecutionError, v:
 ... pass
 >>> print(v)
 exceptions.AttributeError: 'function' object has no attribute 'xxx'
 in:
 oops

 Note that actions executed before the error still have an effect:

 >>> output
 [('f', (1,), {}), ('f', (2,), {})]

 """

 try:
 for action in resolveConflicts(self.actions):
 callable = action['callable']
 args = action['args']
 kw = action['kw']
 info = action['info']
 # we use "get" below in case an action was added via a ZCML
 # directive that did not know about introspectables
 introspectables = action.get('introspectables', ())

 try:
 if callable is not None:
 callable(*args, **kw)
 except (KeyboardInterrupt, SystemExit): # pragma: no cover
 raise
 except:
 t, v, tb = sys.exc_info()
 try:
 reraise(ConfigurationExecutionError,
 ConfigurationExecutionError(t, v, info),
 tb)
 finally:
 del t, v, tb

 if introspector is not None:
 for introspectable in introspectables:
 introspectable.register(introspector, info)

 finally:
 if clear:
 del self.actions[:]

this function is licensed under the ZPL (stolen from Zope)
def resolveConflicts(actions):
 """Resolve conflicting actions

 Given an actions list, identify and try to resolve conflicting actions.
 Actions conflict if they have the same non-None discriminator.
 Conflicting actions can be resolved if the include path of one of
 the actions is a prefix of the includepaths of the other
 conflicting actions and is unequal to the include paths in the
 other conflicting actions.
 """

 def orderandpos(v):
 n, v = v
 if not isinstance(v, dict):
 # old-style tuple action
 v = expand_action(*v)
 return (v['order'] or 0, n)

 sactions = sorted(enumerate(actions), key=orderandpos)

 def orderonly(v):
 n, v = v
 if not isinstance(v, dict):
 # old-style tuple action
 v = expand_action(*v)
 return v['order'] or 0

 for order, actiongroup in itertools.groupby(sactions, orderonly):
 # "order" is an integer grouping. Actions in a lower order will be
 # executed before actions in a higher order. All of the actions in
 # one grouping will be executed (its callable, if any will be called)
 # before any of the actions in the next.

 unique = {}
 output = []

 for i, action in actiongroup:
 # Within an order, actions are executed sequentially based on
 # original action ordering ("i").

 if not isinstance(action, dict):
 # old-style tuple action
 action = expand_action(*action)

 # "ainfo" is a tuple of (order, i, action) where "order" is a
 # user-supplied grouping, "i" is an integer expressing the relative
 # position of this action in the action list being resolved, and
 # "action" is an action dictionary. The purpose of an ainfo is to
 # associate an "order" and an "i" with a particular action; "order"
 # and "i" exist for sorting purposes after conflict resolution.
 ainfo = (order, i, action)

 discriminator = undefer(action['discriminator'])
 action['discriminator'] = discriminator

 if discriminator is None:
 # The discriminator is None, so this action can never conflict.
 # We can add it directly to the result.
 output.append(ainfo)
 continue

 L = unique.setdefault(discriminator, [])
 L.append(ainfo)

 # Check for conflicts
 conflicts = {}

 for discriminator, ainfos in unique.items():
 # We use (includepath, order, i) as a sort key because we need to
 # sort the actions by the paths so that the shortest path with a
 # given prefix comes first. The "first" action is the one with the
 # shortest include path. We break sorting ties using "order", then
 # "i".
 def bypath(ainfo):
 path, order, i = ainfo[2]['includepath'], ainfo[0], ainfo[1]
 return path, order, i

 ainfos.sort(key=bypath)
 ainfo, rest = ainfos[0], ainfos[1:]
 output.append(ainfo)
 _, _, action = ainfo
 basepath, baseinfo, discriminator = (
 action['includepath'],
 action['info'],
 action['discriminator'],
)

 for _, _, action in rest:
 includepath = action['includepath']
 # Test whether path is a prefix of opath
 if (includepath[:len(basepath)] != basepath # not a prefix
 or includepath == basepath):
 L = conflicts.setdefault(discriminator, [baseinfo])
 L.append(action['info'])

 if conflicts:
 raise ConfigurationConflictError(conflicts)

 # sort conflict-resolved actions by (order, i) and yield them one by one
 for a in [x[2] for x in sorted(output, key=operator.itemgetter(0, 1))]:
 yield a

def expand_action(discriminator, callable=None, args=(), kw=None,
 includepath=(), info=None, order=0, introspectables=()):
 if kw is None:
 kw = {}
 return dict(
 discriminator=discriminator,
 callable=callable,
 args=args,
 kw=kw,
 includepath=includepath,
 info=info,
 order=order,
 introspectables=introspectables,
)

global_registries = WeakOrderedSet()

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/httpexceptions.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.httpexceptions

"""
HTTP Exceptions

This module contains Pyramid HTTP exception classes. Each class relates to a
single HTTP status code. Each class is a subclass of the
:class:`~HTTPException`. Each exception class is also a :term:`response`
object.

Each exception class has a status code according to :rfc:`2068`:
codes with 100-300 are not really errors; 400s are client errors,
and 500s are server errors.

Exception
 HTTPException
 HTTPSuccessful
 * 200 - HTTPOk
 * 201 - HTTPCreated
 * 202 - HTTPAccepted
 * 203 - HTTPNonAuthoritativeInformation
 * 204 - HTTPNoContent
 * 205 - HTTPResetContent
 * 206 - HTTPPartialContent
 HTTPRedirection
 * 300 - HTTPMultipleChoices
 * 301 - HTTPMovedPermanently
 * 302 - HTTPFound
 * 303 - HTTPSeeOther
 * 304 - HTTPNotModified
 * 305 - HTTPUseProxy
 * 307 - HTTPTemporaryRedirect
 HTTPError
 HTTPClientError
 * 400 - HTTPBadRequest
 * 401 - HTTPUnauthorized
 * 402 - HTTPPaymentRequired
 * 403 - HTTPForbidden
 * 404 - HTTPNotFound
 * 405 - HTTPMethodNotAllowed
 * 406 - HTTPNotAcceptable
 * 407 - HTTPProxyAuthenticationRequired
 * 408 - HTTPRequestTimeout
 * 409 - HTTPConflict
 * 410 - HTTPGone
 * 411 - HTTPLengthRequired
 * 412 - HTTPPreconditionFailed
 * 413 - HTTPRequestEntityTooLarge
 * 414 - HTTPRequestURITooLong
 * 415 - HTTPUnsupportedMediaType
 * 416 - HTTPRequestRangeNotSatisfiable
 * 417 - HTTPExpectationFailed
 * 422 - HTTPUnprocessableEntity
 * 423 - HTTPLocked
 * 424 - HTTPFailedDependency
 HTTPServerError
 * 500 - HTTPInternalServerError
 * 501 - HTTPNotImplemented
 * 502 - HTTPBadGateway
 * 503 - HTTPServiceUnavailable
 * 504 - HTTPGatewayTimeout
 * 505 - HTTPVersionNotSupported
 * 507 - HTTPInsufficientStorage

HTTP exceptions are also :term:`response` objects, thus they accept most of
the same parameters that can be passed to a regular
:class:`~pyramid.response.Response`. Each HTTP exception also has the
following attributes:

 ``code``
 the HTTP status code for the exception

 ``title``
 remainder of the status line (stuff after the code)

 ``explanation``
 a plain-text explanation of the error message that is
 not subject to environment or header substitutions;
 it is accessible in the template via ${explanation}

 ``detail``
 a plain-text message customization that is not subject
 to environment or header substitutions; accessible in
 the template via ${detail}

 ``body_template``
 a ``String.template``-format content fragment used for environment
 and header substitution; the default template includes both
 the explanation and further detail provided in the
 message.

Each HTTP exception accepts the following parameters, any others will
be forwarded to its :class:`~pyramid.response.Response` superclass:

 ``detail``
 a plain-text override of the default ``detail``

 ``headers``
 a list of (k,v) header pairs

 ``comment``
 a plain-text additional information which is
 usually stripped/hidden for end-users

 ``body_template``
 a ``string.Template`` object containing a content fragment in HTML
 that frames the explanation and further detail

 ``body``
 a string that will override the ``body_template`` and be used as the
 body of the response.

Substitution of response headers into template values is always performed.
Substitution of WSGI environment values is performed if a ``request`` is
passed to the exception's constructor.

The subclasses of :class:`~_HTTPMove`
(:class:`~HTTPMultipleChoices`, :class:`~HTTPMovedPermanently`,
:class:`~HTTPFound`, :class:`~HTTPSeeOther`, :class:`~HTTPUseProxy` and
:class:`~HTTPTemporaryRedirect`) are redirections that require a ``Location``
field. Reflecting this, these subclasses have one additional keyword argument:
``location``, which indicates the location to which to redirect.
"""

from string import Template

from zope.interface import implementer

from webob import html_escape as _html_escape

from pyramid.compat import (
 class_types,
 text_type,
 binary_type,
 text_,
)

from pyramid.interfaces import IExceptionResponse
from pyramid.response import Response

def _no_escape(value):
 if value is None:
 return ''
 if not isinstance(value, text_type):
 if hasattr(value, '__unicode__'):
 value = value.__unicode__()
 if isinstance(value, binary_type):
 value = text_(value, 'utf-8')
 else:
 value = text_type(value)
 return value

@implementer(IExceptionResponse)
[docs]class HTTPException(Response, Exception):

 ## You should set in subclasses:
 # code = 200
 # title = 'OK'
 # explanation = 'why this happens'
 # body_template_obj = Template('response template')
 #
 # This class itself uses the error code "520" with the error message/title
 # of "Unknown Error". This is not an RFC standard, however it is
 # implemented in practice. Sub-classes should be overriding the default
 # values and 520 should not be seen in the wild from Pyramid applications.
 # Due to changes in WebOb, a code of "None" is not valid, and WebOb due to
 # more strict error checking rejects it now.

 # differences from webob.exc.WSGIHTTPException:
 #
 # - doesn't use "strip_tags" (${br} placeholder for
, no other html
 # in default body template)
 #
 # - __call__ never generates a new Response, it always mutates self
 #
 # - explicitly sets self.message = detail to prevent whining by Python
 # 2.6.5+ access of Exception.message
 #
 # - its base class of HTTPException is no longer a Python 2.4 compatibility
 # shim; it's purely a base class that inherits from Exception. This
 # implies that this class' ``exception`` property always returns
 # ``self`` (it exists only for bw compat at this point).
 #
 # - documentation improvements (Pyramid-specific docstrings where necessary)
 #
 code = 520
 title = 'Unknown Error'
 explanation = ''
 body_template_obj = Template('''\
${explanation}${br}${br}
${detail}
${html_comment}
''')

 plain_template_obj = Template('''\
${status}

${body}''')

 html_template_obj = Template('''\
<html>
 <head>
 <title>${status}</title>
 </head>
 <body>
 <h1>${status}</h1>
 ${body}
 </body>
</html>''')

 ## Set this to True for responses that should have no request body
 empty_body = False

 def __init__(self, detail=None, headers=None, comment=None,
 body_template=None, **kw):
 status = '%s %s' % (self.code, self.title)
 Response.__init__(self, status=status, **kw)
 Exception.__init__(self, detail)
 self.detail = self.message = detail
 if headers:
 self.headers.extend(headers)
 self.comment = comment
 if body_template is not None:
 self.body_template = body_template
 self.body_template_obj = Template(body_template)

 if self.empty_body:
 del self.content_type
 del self.content_length

 def __str__(self):
 return self.detail or self.explanation

 def prepare(self, environ):
 if not self.body and not self.empty_body:
 html_comment = ''
 comment = self.comment or ''
 accept = environ.get('HTTP_ACCEPT', '')
 if accept and 'html' in accept or '*/*' in accept:
 self.content_type = 'text/html'
 escape = _html_escape
 page_template = self.html_template_obj
 br = '
'
 if comment:
 html_comment = '<!-- %s -->' % escape(comment)
 else:
 self.content_type = 'text/plain'
 escape = _no_escape
 page_template = self.plain_template_obj
 br = '\n'
 if comment:
 html_comment = escape(comment)
 args = {
 'br':br,
 'explanation': escape(self.explanation),
 'detail': escape(self.detail or ''),
 'comment': escape(comment),
 'html_comment':html_comment,
 }
 body_tmpl = self.body_template_obj
 if HTTPException.body_template_obj is not body_tmpl:
 # Custom template; add headers to args
 for k, v in environ.items():
 if (not k.startswith('wsgi.')) and ('.' in k):
 # omit custom environ variables, stringifying them may
 # trigger code that should not be executed here; see
 # https://github.com/Pylons/pyramid/issues/239
 continue
 args[k] = escape(v)
 for k, v in self.headers.items():
 args[k.lower()] = escape(v)
 body = body_tmpl.substitute(args)
 page = page_template.substitute(status=self.status, body=body)
 if isinstance(page, text_type):
 page = page.encode(self.charset)
 self.app_iter = [page]
 self.body = page

 @property
 def wsgi_response(self):
 # bw compat only
 return self

 exception = wsgi_response # bw compat only

 def __call__(self, environ, start_response):
 # differences from webob.exc.WSGIHTTPException
 #
 # - does not try to deal with HEAD requests
 #
 # - does not manufacture a new response object when generating
 # the default response
 #
 self.prepare(environ)
 return Response.__call__(self, environ, start_response)

WSGIHTTPException = HTTPException # b/c post 1.5

[docs]class HTTPError(HTTPException):
 """
 base class for exceptions with status codes in the 400s and 500s

 This is an exception which indicates that an error has occurred,
 and that any work in progress should not be committed.
 """

[docs]class HTTPRedirection(HTTPException):
 """
 base class for exceptions with status codes in the 300s (redirections)

 This is an abstract base class for 3xx redirection. It indicates
 that further action needs to be taken by the user agent in order
 to fulfill the request. It does not necessarly signal an error
 condition.
 """

class HTTPSuccessful(HTTPException):
 """
 Base class for exceptions with status codes in the 200s (successful
 responses)
 """

##
2xx success
##

[docs]class HTTPOk(HTTPSuccessful):
 """
 subclass of :class:`~HTTPSuccessful`

 Indicates that the request has succeeded.

 code: 200, title: OK
 """
 code = 200
 title = 'OK'

[docs]class HTTPCreated(HTTPSuccessful):
 """
 subclass of :class:`~HTTPSuccessful`

 This indicates that request has been fulfilled and resulted in a new
 resource being created.

 code: 201, title: Created
 """
 code = 201
 title = 'Created'

[docs]class HTTPAccepted(HTTPSuccessful):
 """
 subclass of :class:`~HTTPSuccessful`

 This indicates that the request has been accepted for processing, but the
 processing has not been completed.

 code: 202, title: Accepted
 """
 code = 202
 title = 'Accepted'
 explanation = 'The request is accepted for processing.'

[docs]class HTTPNonAuthoritativeInformation(HTTPSuccessful):
 """
 subclass of :class:`~HTTPSuccessful`

 This indicates that the returned metainformation in the entity-header is
 not the definitive set as available from the origin server, but is
 gathered from a local or a third-party copy.

 code: 203, title: Non-Authoritative Information
 """
 code = 203
 title = 'Non-Authoritative Information'

[docs]class HTTPNoContent(HTTPSuccessful):
 """
 subclass of :class:`~HTTPSuccessful`

 This indicates that the server has fulfilled the request but does
 not need to return an entity-body, and might want to return updated
 metainformation.

 code: 204, title: No Content
 """
 code = 204
 title = 'No Content'
 empty_body = True

[docs]class HTTPResetContent(HTTPSuccessful):
 """
 subclass of :class:`~HTTPSuccessful`

 This indicates that the server has fulfilled the request and
 the user agent SHOULD reset the document view which caused the
 request to be sent.

 code: 205, title: Reset Content
 """
 code = 205
 title = 'Reset Content'
 empty_body = True

[docs]class HTTPPartialContent(HTTPSuccessful):
 """
 subclass of :class:`~HTTPSuccessful`

 This indicates that the server has fulfilled the partial GET
 request for the resource.

 code: 206, title: Partial Content
 """
 code = 206
 title = 'Partial Content'

FIXME: add 207 Multi-Status (but it's complicated)

##
3xx redirection
##

class _HTTPMove(HTTPRedirection):
 """
 redirections which require a Location field

 Since a 'Location' header is a required attribute of 301, 302, 303,
 305 and 307 (but not 304), this base class provides the mechanics to
 make this easy.

 You must provide a ``location`` keyword argument.
 """
 # differences from webob.exc._HTTPMove:
 #
 # - ${location} isn't wrapped in an <a> tag in body
 #
 # - location keyword arg defaults to ''
 #
 # - location isn't prepended with req.path_url when adding it as
 # a header
 #
 # - ``location`` is first keyword (and positional) argument
 #
 # - ``add_slash`` argument is no longer accepted: code that passes
 # add_slash argument to the constructor will receive an exception.
 explanation = 'The resource has been moved to'
 body_template_obj = Template('''\
${explanation} ${location}; you should be redirected automatically.
${detail}
${html_comment}''')

 def __init__(self, location='', detail=None, headers=None, comment=None,
 body_template=None, **kw):
 if location is None:
 raise ValueError("HTTP redirects need a location to redirect to.")
 super(_HTTPMove, self).__init__(
 detail=detail, headers=headers, comment=comment,
 body_template=body_template, location=location, **kw)

[docs]class HTTPMultipleChoices(_HTTPMove):
 """
 subclass of :class:`~_HTTPMove`

 This indicates that the requested resource corresponds to any one
 of a set of representations, each with its own specific location,
 and agent-driven negotiation information is being provided so that
 the user can select a preferred representation and redirect its
 request to that location.

 code: 300, title: Multiple Choices
 """
 code = 300
 title = 'Multiple Choices'

[docs]class HTTPMovedPermanently(_HTTPMove):
 """
 subclass of :class:`~_HTTPMove`

 This indicates that the requested resource has been assigned a new
 permanent URI and any future references to this resource SHOULD use
 one of the returned URIs.

 code: 301, title: Moved Permanently
 """
 code = 301
 title = 'Moved Permanently'

[docs]class HTTPFound(_HTTPMove):
 """
 subclass of :class:`~_HTTPMove`

 This indicates that the requested resource resides temporarily under
 a different URI.

 code: 302, title: Found
 """
 code = 302
 title = 'Found'
 explanation = 'The resource was found at'

This one is safe after a POST (the redirected location will be
retrieved with GET):
[docs]class HTTPSeeOther(_HTTPMove):
 """
 subclass of :class:`~_HTTPMove`

 This indicates that the response to the request can be found under
 a different URI and SHOULD be retrieved using a GET method on that
 resource.

 code: 303, title: See Other
 """
 code = 303
 title = 'See Other'

[docs]class HTTPNotModified(HTTPRedirection):
 """
 subclass of :class:`~HTTPRedirection`

 This indicates that if the client has performed a conditional GET
 request and access is allowed, but the document has not been
 modified, the server SHOULD respond with this status code.

 code: 304, title: Not Modified
 """
 # FIXME: this should include a date or etag header
 code = 304
 title = 'Not Modified'
 empty_body = True

[docs]class HTTPUseProxy(_HTTPMove):
 """
 subclass of :class:`~_HTTPMove`

 This indicates that the requested resource MUST be accessed through
 the proxy given by the Location field.

 code: 305, title: Use Proxy
 """
 # Not a move, but looks a little like one
 code = 305
 title = 'Use Proxy'
 explanation = (
 'The resource must be accessed through a proxy located at')

[docs]class HTTPTemporaryRedirect(_HTTPMove):
 """
 subclass of :class:`~_HTTPMove`

 This indicates that the requested resource resides temporarily
 under a different URI.

 code: 307, title: Temporary Redirect
 """
 code = 307
 title = 'Temporary Redirect'

##
4xx client error
##

[docs]class HTTPClientError(HTTPError):
 """
 base class for the 400s, where the client is in error

 This is an error condition in which the client is presumed to be
 in-error. This is an expected problem, and thus is not considered
 a bug. A server-side traceback is not warranted. Unless specialized,
 this is a '400 Bad Request'
 """

[docs]class HTTPBadRequest(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the body or headers failed validity checks,
 preventing the server from being able to continue processing.

 code: 400, title: Bad Request
 """
 code = 400
 title = 'Bad Request'
 explanation = ('The server could not comply with the request since '
 'it is either malformed or otherwise incorrect.')

[docs]class HTTPUnauthorized(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the request requires user authentication.

 code: 401, title: Unauthorized
 """
 code = 401
 title = 'Unauthorized'
 explanation = (
 'This server could not verify that you are authorized to '
 'access the document you requested. Either you supplied the '
 'wrong credentials (e.g., bad password), or your browser '
 'does not understand how to supply the credentials required.')

[docs]class HTTPPaymentRequired(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 code: 402, title: Payment Required
 """
 code = 402
 title = 'Payment Required'
 explanation = ('Access was denied for financial reasons.')

[docs]class HTTPForbidden(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the server understood the request, but is
 refusing to fulfill it.

 code: 403, title: Forbidden

 Raise this exception within :term:`view` code to immediately return the
 :term:`forbidden view` to the invoking user. Usually this is a basic
 ``403`` page, but the forbidden view can be customized as necessary. See
 :ref:`changing_the_forbidden_view`. A ``Forbidden`` exception will be
 the ``context`` of a :term:`Forbidden View`.

 This exception's constructor treats two arguments specially. The first
 argument, ``detail``, should be a string. The value of this string will
 be used as the ``message`` attribute of the exception object. The second
 special keyword argument, ``result`` is usually an instance of
 :class:`pyramid.security.Denied` or :class:`pyramid.security.ACLDenied`
 each of which indicates a reason for the forbidden error. However,
 ``result`` is also permitted to be just a plain boolean ``False`` object
 or ``None``. The ``result`` value will be used as the ``result``
 attribute of the exception object. It defaults to ``None``.

 The :term:`Forbidden View` can use the attributes of a Forbidden
 exception as necessary to provide extended information in an error
 report shown to a user.
 """
 # differences from webob.exc.HTTPForbidden:
 #
 # - accepts a ``result`` keyword argument
 #
 # - overrides constructor to set ``self.result``
 #
 # differences from older ``pyramid.exceptions.Forbidden``:
 #
 # - ``result`` must be passed as a keyword argument.
 #
 code = 403
 title = 'Forbidden'
 explanation = ('Access was denied to this resource.')
 def __init__(self, detail=None, headers=None, comment=None,
 body_template=None, result=None, **kw):
 HTTPClientError.__init__(self, detail=detail, headers=headers,
 comment=comment, body_template=body_template,
 **kw)
 self.result = result

[docs]class HTTPNotFound(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the server did not find anything matching the
 Request-URI.

 code: 404, title: Not Found

 Raise this exception within :term:`view` code to immediately
 return the :term:`Not Found View` to the invoking user. Usually
 this is a basic ``404`` page, but the Not Found View can be
 customized as necessary. See :ref:`changing_the_notfound_view`.

 This exception's constructor accepts a ``detail`` argument
 (the first argument), which should be a string. The value of this
 string will be available as the ``message`` attribute of this exception,
 for availability to the :term:`Not Found View`.
 """
 code = 404
 title = 'Not Found'
 explanation = ('The resource could not be found.')

[docs]class HTTPMethodNotAllowed(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the method specified in the Request-Line is
 not allowed for the resource identified by the Request-URI.

 code: 405, title: Method Not Allowed
 """
 # differences from webob.exc.HTTPMethodNotAllowed:
 #
 # - body_template_obj uses ${br} instead of

 code = 405
 title = 'Method Not Allowed'
 body_template_obj = Template('''\
The method ${REQUEST_METHOD} is not allowed for this resource. ${br}${br}
${detail}''')

[docs]class HTTPNotAcceptable(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates the resource identified by the request is only
 capable of generating response entities which have content
 characteristics not acceptable according to the accept headers
 sent in the request.

 code: 406, title: Not Acceptable
 """
 # differences from webob.exc.HTTPNotAcceptable:
 #
 # - "template" attribute left off (useless, bug in webob?)
 code = 406
 title = 'Not Acceptable'

[docs]class HTTPProxyAuthenticationRequired(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This is similar to 401, but indicates that the client must first
 authenticate itself with the proxy.

 code: 407, title: Proxy Authentication Required
 """
 code = 407
 title = 'Proxy Authentication Required'
 explanation = ('Authentication with a local proxy is needed.')

[docs]class HTTPRequestTimeout(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the client did not produce a request within
 the time that the server was prepared to wait.

 code: 408, title: Request Timeout
 """
 code = 408
 title = 'Request Timeout'
 explanation = ('The server has waited too long for the request to '
 'be sent by the client.')

[docs]class HTTPConflict(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the request could not be completed due to a
 conflict with the current state of the resource.

 code: 409, title: Conflict
 """
 code = 409
 title = 'Conflict'
 explanation = ('There was a conflict when trying to complete '
 'your request.')

[docs]class HTTPGone(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the requested resource is no longer available
 at the server and no forwarding address is known.

 code: 410, title: Gone
 """
 code = 410
 title = 'Gone'
 explanation = ('This resource is no longer available. No forwarding '
 'address is given.')

[docs]class HTTPLengthRequired(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the server refuses to accept the request
 without a defined Content-Length.

 code: 411, title: Length Required
 """
 code = 411
 title = 'Length Required'
 explanation = ('Content-Length header required.')

[docs]class HTTPPreconditionFailed(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the precondition given in one or more of the
 request-header fields evaluated to false when it was tested on the
 server.

 code: 412, title: Precondition Failed
 """
 code = 412
 title = 'Precondition Failed'
 explanation = ('Request precondition failed.')

[docs]class HTTPRequestEntityTooLarge(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the server is refusing to process a request
 because the request entity is larger than the server is willing or
 able to process.

 code: 413, title: Request Entity Too Large
 """
 code = 413
 title = 'Request Entity Too Large'
 explanation = ('The body of your request was too large for this server.')

[docs]class HTTPRequestURITooLong(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the server is refusing to service the request
 because the Request-URI is longer than the server is willing to
 interpret.

 code: 414, title: Request-URI Too Long
 """
 code = 414
 title = 'Request-URI Too Long'
 explanation = ('The request URI was too long for this server.')

[docs]class HTTPUnsupportedMediaType(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the server is refusing to service the request
 because the entity of the request is in a format not supported by
 the requested resource for the requested method.

 code: 415, title: Unsupported Media Type
 """
 # differences from webob.exc.HTTPUnsupportedMediaType:
 #
 # - "template_obj" attribute left off (useless, bug in webob?)
 code = 415
 title = 'Unsupported Media Type'

[docs]class HTTPRequestRangeNotSatisfiable(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 The server SHOULD return a response with this status code if a
 request included a Range request-header field, and none of the
 range-specifier values in this field overlap the current extent
 of the selected resource, and the request did not include an
 If-Range request-header field.

 code: 416, title: Request Range Not Satisfiable
 """
 code = 416
 title = 'Request Range Not Satisfiable'
 explanation = ('The Range requested is not available.')

[docs]class HTTPExpectationFailed(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indidcates that the expectation given in an Expect
 request-header field could not be met by this server.

 code: 417, title: Expectation Failed
 """
 code = 417
 title = 'Expectation Failed'
 explanation = ('Expectation failed.')

[docs]class HTTPUnprocessableEntity(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the server is unable to process the contained
 instructions. Only for WebDAV.

 code: 422, title: Unprocessable Entity
 """
 ## Note: from WebDAV
 code = 422
 title = 'Unprocessable Entity'
 explanation = 'Unable to process the contained instructions'

[docs]class HTTPLocked(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the resource is locked. Only for WebDAV

 code: 423, title: Locked
 """
 ## Note: from WebDAV
 code = 423
 title = 'Locked'
 explanation = ('The resource is locked')

[docs]class HTTPFailedDependency(HTTPClientError):
 """
 subclass of :class:`~HTTPClientError`

 This indicates that the method could not be performed because the
 requested action depended on another action and that action failed.
 Only for WebDAV.

 code: 424, title: Failed Dependency
 """
 ## Note: from WebDAV
 code = 424
 title = 'Failed Dependency'
 explanation = (
 'The method could not be performed because the requested '
 'action dependended on another action and that action failed')

##
5xx Server Error
##
Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
performing the request. Except when responding to a HEAD request, the
server SHOULD include an entity containing an explanation of the error
situation, and whether it is a temporary or permanent condition. User
agents SHOULD display any included entity to the user. These response
codes are applicable to any request method.

[docs]class HTTPServerError(HTTPError):
 """
 base class for the 500s, where the server is in-error

 This is an error condition in which the server is presumed to be
 in-error. Unless specialized, this is a '500 Internal Server Error'.
 """

[docs]class HTTPInternalServerError(HTTPServerError):
 """
 subclass of :class:`~HTTPServerError`

 This indicates that the application raised an unexcpected exception.

 code: 500, title: Internal Server Error
 """
 code = 500
 title = 'Internal Server Error'
 explanation = (
 'The server has either erred or is incapable of performing '
 'the requested operation.')

[docs]class HTTPNotImplemented(HTTPServerError):
 """
 subclass of :class:`~HTTPServerError`

 This indicates that the server does not support the functionality
 required to fulfill the request.

 code: 501, title: Not Implemented
 """
 # differences from webob.exc.HTTPNotAcceptable:
 #
 # - "template" attr left off (useless, bug in webob?)
 code = 501
 title = 'Not Implemented'

[docs]class HTTPBadGateway(HTTPServerError):
 """
 subclass of :class:`~HTTPServerError`

 This indicates that the server, while acting as a gateway or proxy,
 received an invalid response from the upstream server it accessed
 in attempting to fulfill the request.

 code: 502, title: Bad Gateway
 """
 code = 502
 title = 'Bad Gateway'
 explanation = ('Bad gateway.')

[docs]class HTTPServiceUnavailable(HTTPServerError):
 """
 subclass of :class:`~HTTPServerError`

 This indicates that the server is currently unable to handle the
 request due to a temporary overloading or maintenance of the server.

 code: 503, title: Service Unavailable
 """
 code = 503
 title = 'Service Unavailable'
 explanation = ('The server is currently unavailable. '
 'Please try again at a later time.')

[docs]class HTTPGatewayTimeout(HTTPServerError):
 """
 subclass of :class:`~HTTPServerError`

 This indicates that the server, while acting as a gateway or proxy,
 did not receive a timely response from the upstream server specified
 by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary server
 (e.g. DNS) it needed to access in attempting to complete the request.

 code: 504, title: Gateway Timeout
 """
 code = 504
 title = 'Gateway Timeout'
 explanation = ('The gateway has timed out.')

[docs]class HTTPVersionNotSupported(HTTPServerError):
 """
 subclass of :class:`~HTTPServerError`

 This indicates that the server does not support, or refuses to
 support, the HTTP protocol version that was used in the request
 message.

 code: 505, title: HTTP Version Not Supported
 """
 code = 505
 title = 'HTTP Version Not Supported'
 explanation = ('The HTTP version is not supported.')

[docs]class HTTPInsufficientStorage(HTTPServerError):
 """
 subclass of :class:`~HTTPServerError`

 This indicates that the server does not have enough space to save
 the resource.

 code: 507, title: Insufficient Storage
 """
 code = 507
 title = 'Insufficient Storage'
 explanation = ('There was not enough space to save the resource')

[docs]def exception_response(status_code, **kw):
 """Creates an HTTP exception based on a status code. Example::

 raise exception_response(404) # raises an HTTPNotFound exception.

 The values passed as ``kw`` are provided to the exception's constructor.
 """
 exc = status_map[status_code](**kw)
 return exc

def default_exceptionresponse_view(context, request):
 if not isinstance(context, Exception):
 # backwards compat for an exception response view registered via
 # config.set_notfound_view or config.set_forbidden_view
 # instead of as a proper exception view
 context = request.exception or context
 return context # assumed to be an IResponse

status_map={}
code = None
for name, value in list(globals().items()):
 if (isinstance(value, class_types) and
 issubclass(value, HTTPException)
 and not name.startswith('_')):
 code = getattr(value, 'code', None)
 if code:
 status_map[code] = value
del name, value, code

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/authorization.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.authorization

from zope.interface import implementer

from pyramid.interfaces import IAuthorizationPolicy

from pyramid.location import lineage

from pyramid.compat import is_nonstr_iter

from pyramid.security import (
 ACLAllowed,
 ACLDenied,
 Allow,
 Deny,
 Everyone,
)

@implementer(IAuthorizationPolicy)
[docs]class ACLAuthorizationPolicy(object):
 """ An :term:`authorization policy` which consults an :term:`ACL`
 object attached to a :term:`context` to determine authorization
 information about a :term:`principal` or multiple principals.
 If the context is part of a :term:`lineage`, the context's parents
 are consulted for ACL information too. The following is true
 about this security policy.

 - When checking whether the 'current' user is permitted (via the
 ``permits`` method), the security policy consults the
 ``context`` for an ACL first. If no ACL exists on the context,
 or one does exist but the ACL does not explicitly allow or deny
 access for any of the effective principals, consult the
 context's parent ACL, and so on, until the lineage is exhausted
 or we determine that the policy permits or denies.

 During this processing, if any :data:`pyramid.security.Deny`
 ACE is found matching any principal in ``principals``, stop
 processing by returning an
 :class:`pyramid.security.ACLDenied` instance (equals
 ``False``) immediately. If any
 :data:`pyramid.security.Allow` ACE is found matching any
 principal, stop processing by returning an
 :class:`pyramid.security.ACLAllowed` instance (equals
 ``True``) immediately. If we exhaust the context's
 :term:`lineage`, and no ACE has explicitly permitted or denied
 access, return an instance of
 :class:`pyramid.security.ACLDenied` (equals ``False``).

 - When computing principals allowed by a permission via the
 :func:`pyramid.security.principals_allowed_by_permission`
 method, we compute the set of principals that are explicitly
 granted the ``permission`` in the provided ``context``. We do
 this by walking 'up' the object graph *from the root* to the
 context. During this walking process, if we find an explicit
 :data:`pyramid.security.Allow` ACE for a principal that
 matches the ``permission``, the principal is included in the
 allow list. However, if later in the walking process that
 principal is mentioned in any :data:`pyramid.security.Deny`
 ACE for the permission, the principal is removed from the allow
 list. If a :data:`pyramid.security.Deny` to the principal
 :data:`pyramid.security.Everyone` is encountered during the
 walking process that matches the ``permission``, the allow list
 is cleared for all principals encountered in previous ACLs. The
 walking process ends after we've processed the any ACL directly
 attached to ``context``; a set of principals is returned.

 Objects of this class implement the
 :class:`pyramid.interfaces.IAuthorizationPolicy` interface.
 """

 def permits(self, context, principals, permission):
 """ Return an instance of
 :class:`pyramid.security.ACLAllowed` instance if the policy
 permits access, return an instance of
 :class:`pyramid.security.ACLDenied` if not."""

 acl = '<No ACL found on any object in resource lineage>'

 for location in lineage(context):
 try:
 acl = location.__acl__
 except AttributeError:
 continue

 if acl and callable(acl):
 acl = acl()

 for ace in acl:
 ace_action, ace_principal, ace_permissions = ace
 if ace_principal in principals:
 if not is_nonstr_iter(ace_permissions):
 ace_permissions = [ace_permissions]
 if permission in ace_permissions:
 if ace_action == Allow:
 return ACLAllowed(ace, acl, permission,
 principals, location)
 else:
 return ACLDenied(ace, acl, permission,
 principals, location)

 # default deny (if no ACL in lineage at all, or if none of the
 # principals were mentioned in any ACE we found)
 return ACLDenied(
 '<default deny>',
 acl,
 permission,
 principals,
 context)

 def principals_allowed_by_permission(self, context, permission):
 """ Return the set of principals explicitly granted the
 permission named ``permission`` according to the ACL directly
 attached to the ``context`` as well as inherited ACLs based on
 the :term:`lineage`."""
 allowed = set()

 for location in reversed(list(lineage(context))):
 # NB: we're walking *up* the object graph from the root
 try:
 acl = location.__acl__
 except AttributeError:
 continue

 allowed_here = set()
 denied_here = set()

 if acl and callable(acl):
 acl = acl()

 for ace_action, ace_principal, ace_permissions in acl:
 if not is_nonstr_iter(ace_permissions):
 ace_permissions = [ace_permissions]
 if (ace_action == Allow) and (permission in ace_permissions):
 if not ace_principal in denied_here:
 allowed_here.add(ace_principal)
 if (ace_action == Deny) and (permission in ace_permissions):
 denied_here.add(ace_principal)
 if ace_principal == Everyone:
 # clear the entire allowed set, as we've hit a
 # deny of Everyone ala (Deny, Everyone, ALL)
 allowed = set()
 break
 elif ace_principal in allowed:
 allowed.remove(ace_principal)

 allowed.update(allowed_here)

 return allowed

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/url.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.url

""" Utility functions for dealing with URLs in pyramid """

import os
import warnings

from repoze.lru import lru_cache

from pyramid.interfaces import (
 IResourceURL,
 IRoutesMapper,
 IStaticURLInfo,
)

from pyramid.compat import (
 bytes_,
 string_types,
)
from pyramid.encode import (
 url_quote,
 urlencode,
)
from pyramid.path import caller_package
from pyramid.threadlocal import get_current_registry

from pyramid.traversal import (
 ResourceURL,
 quote_path_segment,
)

PATH_SAFE = '/:@&+$,' # from webob
QUERY_SAFE = '/?:@!$&\'()*+,;=' # RFC 3986
ANCHOR_SAFE = QUERY_SAFE

def parse_url_overrides(kw):
 """Parse special arguments passed when generating urls.

 The supplied dictionary is mutated, popping arguments as necessary.
 Returns a 6-tuple of the format ``(app_url, scheme, host, port,
 qs, anchor)``.
 """
 anchor = ''
 qs = ''
 app_url = None
 host = None
 scheme = None
 port = None

 if '_query' in kw:
 query = kw.pop('_query')
 if isinstance(query, string_types):
 qs = '?' + url_quote(query, QUERY_SAFE)
 elif query:
 qs = '?' + urlencode(query, doseq=True)

 if '_anchor' in kw:
 anchor = kw.pop('_anchor')
 anchor = url_quote(anchor, ANCHOR_SAFE)
 anchor = '#' + anchor

 if '_app_url' in kw:
 app_url = kw.pop('_app_url')

 if '_host' in kw:
 host = kw.pop('_host')

 if '_scheme' in kw:
 scheme = kw.pop('_scheme')

 if '_port' in kw:
 port = kw.pop('_port')

 return app_url, scheme, host, port, qs, anchor

class URLMethodsMixin(object):
 """ Request methods mixin for BaseRequest having to do with URL
 generation """

 def _partial_application_url(self, scheme=None, host=None, port=None):
 """
 Construct the URL defined by request.application_url, replacing any
 of the default scheme, host, or port portions with user-supplied
 variants.

 If ``scheme`` is passed as ``https``, and the ``port`` is *not*
 passed, the ``port`` value is assumed to ``443``. Likewise, if
 ``scheme`` is passed as ``http`` and ``port`` is not passed, the
 ``port`` value is assumed to be ``80``.
 """
 e = self.environ
 if scheme is None:
 scheme = e['wsgi.url_scheme']
 else:
 if scheme == 'https':
 if port is None:
 port = '443'
 if scheme == 'http':
 if port is None:
 port = '80'
 url = scheme + '://'
 if port is not None:
 port = str(port)
 if host is None:
 host = e.get('HTTP_HOST')
 if host is None:
 host = e['SERVER_NAME']
 if port is None:
 if ':' in host:
 host, port = host.split(':', 1)
 else:
 port = e['SERVER_PORT']
 else:
 if ':' in host:
 host, _ = host.split(':', 1)
 if scheme == 'https':
 if port == '443':
 port = None
 elif scheme == 'http':
 if port == '80':
 port = None
 url += host
 if port:
 url += ':%s' % port

 url_encoding = getattr(self, 'url_encoding', 'utf-8') # webob 1.2b3+
 bscript_name = bytes_(self.script_name, url_encoding)
 return url + url_quote(bscript_name, PATH_SAFE)

 def route_url(self, route_name, *elements, **kw):
 """Generates a fully qualified URL for a named :app:`Pyramid`
 :term:`route configuration`.

 Use the route's ``name`` as the first positional argument.
 Additional positional arguments (``*elements``) are appended to the
 URL as path segments after it is generated.

 Use keyword arguments to supply values which match any dynamic
 path elements in the route definition. Raises a :exc:`KeyError`
 exception if the URL cannot be generated for any reason (not
 enough arguments, for example).

 For example, if you've defined a route named "foobar" with the path
 ``{foo}/{bar}/*traverse``::

 request.route_url('foobar',
 foo='1') => <KeyError exception>
 request.route_url('foobar',
 foo='1',
 bar='2') => <KeyError exception>
 request.route_url('foobar',
 foo='1',
 bar='2',
 traverse=('a','b')) => http://e.com/1/2/a/b
 request.route_url('foobar',
 foo='1',
 bar='2',
 traverse='/a/b') => http://e.com/1/2/a/b

 Values replacing ``:segment`` arguments can be passed as strings
 or Unicode objects. They will be encoded to UTF-8 and URL-quoted
 before being placed into the generated URL.

 Values replacing ``*remainder`` arguments can be passed as strings
 or tuples of Unicode/string values. If a tuple is passed as a
 ``*remainder`` replacement value, its values are URL-quoted and
 encoded to UTF-8. The resulting strings are joined with slashes
 and rendered into the URL. If a string is passed as a
 ``*remainder`` replacement value, it is tacked on to the URL
 after being URL-quoted-except-for-embedded-slashes.

 If no ``_query`` keyword argument is provided, the request query string
 will be returned in the URL. If it is present, it will be used to
 compose a query string that will be tacked on to the end of the URL,
 replacing any request query string. The value of ``_query`` may be a
 sequence of two-tuples *or* a data structure with an ``.items()``
 method that returns a sequence of two-tuples (presumably a dictionary).
 This data structure will be turned into a query string per the
 documentation of :func:`pyramid.url.urlencode` function. This will
 produce a query string in the ``x-www-form-urlencoded`` format. A
 non-``x-www-form-urlencoded`` query string may be used by passing a
 string value as ``_query`` in which case it will be URL-quoted
 (e.g. query="foo bar" will become "foo%20bar"). However, the result
 will not need to be in ``k=v`` form as required by
 ``x-www-form-urlencoded``. After the query data is turned into a query
 string, a leading ``?`` is prepended, and the resulting string is
 appended to the generated URL.

 .. note::

 Python data structures that are passed as ``_query`` which are
 sequences or dictionaries are turned into a string under the same
 rules as when run through :func:`urllib.urlencode` with the ``doseq``
 argument equal to ``True``. This means that sequences can be passed
 as values, and a k=v pair will be placed into the query string for
 each value.

 .. versionchanged:: 1.5
 Allow the ``_query`` option to be a string to enable alternative
 encodings.

 If a keyword argument ``_anchor`` is present, its string
 representation will be quoted per :rfc:`3986#section-3.5` and used as
 a named anchor in the generated URL
 (e.g. if ``_anchor`` is passed as ``foo`` and the route URL is
 ``http://example.com/route/url``, the resulting generated URL will
 be ``http://example.com/route/url#foo``).

 .. note::

 If ``_anchor`` is passed as a string, it should be UTF-8 encoded. If
 ``_anchor`` is passed as a Unicode object, it will be converted to
 UTF-8 before being appended to the URL.

 .. versionchanged:: 1.5
 The ``_anchor`` option will be escaped instead of using
 its raw string representation.

 If both ``_anchor`` and ``_query`` are specified, the anchor
 element will always follow the query element,
 e.g. ``http://example.com?foo=1#bar``.

 If any of the keyword arguments ``_scheme``, ``_host``, or ``_port``
 is passed and is non-``None``, the provided value will replace the
 named portion in the generated URL. For example, if you pass
 ``_host='foo.com'``, and the URL that would have been generated
 without the host replacement is ``http://example.com/a``, the result
 will be ``http://foo.com/a``.

 Note that if ``_scheme`` is passed as ``https``, and ``_port`` is not
 passed, the ``_port`` value is assumed to have been passed as
 ``443``. Likewise, if ``_scheme`` is passed as ``http`` and
 ``_port`` is not passed, the ``_port`` value is assumed to have been
 passed as ``80``. To avoid this behavior, always explicitly pass
 ``_port`` whenever you pass ``_scheme``.

 If a keyword ``_app_url`` is present, it will be used as the
 protocol/hostname/port/leading path prefix of the generated URL.
 For example, using an ``_app_url`` of
 ``http://example.com:8080/foo`` would cause the URL
 ``http://example.com:8080/foo/fleeb/flub`` to be returned from
 this function if the expansion of the route pattern associated
 with the ``route_name`` expanded to ``/fleeb/flub``. If
 ``_app_url`` is not specified, the result of
 ``request.application_url`` will be used as the prefix (the
 default).

 If both ``_app_url`` and any of ``_scheme``, ``_host``, or ``_port``
 are passed, ``_app_url`` takes precedence and any values passed for
 ``_scheme``, ``_host``, and ``_port`` will be ignored.

 This function raises a :exc:`KeyError` if the URL cannot be
 generated due to missing replacement names. Extra replacement
 names are ignored.

 If the route object which matches the ``route_name`` argument has
 a :term:`pregenerator`, the ``*elements`` and ``**kw``
 arguments passed to this function might be augmented or changed.
 """
 try:
 reg = self.registry
 except AttributeError:
 reg = get_current_registry() # b/c
 mapper = reg.getUtility(IRoutesMapper)
 route = mapper.get_route(route_name)

 if route is None:
 raise KeyError('No such route named %s' % route_name)

 if route.pregenerator is not None:
 elements, kw = route.pregenerator(self, elements, kw)

 app_url, scheme, host, port, qs, anchor = parse_url_overrides(kw)

 if app_url is None:
 if (scheme is not None or host is not None or port is not None):
 app_url = self._partial_application_url(scheme, host, port)
 else:
 app_url = self.application_url

 path = route.generate(kw) # raises KeyError if generate fails

 if elements:
 suffix = _join_elements(elements)
 if not path.endswith('/'):
 suffix = '/' + suffix
 else:
 suffix = ''

 return app_url + path + suffix + qs + anchor

 def route_path(self, route_name, *elements, **kw):
 """
 Generates a path (aka a 'relative URL', a URL minus the host, scheme,
 and port) for a named :app:`Pyramid` :term:`route configuration`.

 This function accepts the same argument as
 :meth:`pyramid.request.Request.route_url` and performs the same duty.
 It just omits the host, port, and scheme information in the return
 value; only the script_name, path, query parameters, and anchor data
 are present in the returned string.

 For example, if you've defined a route named 'foobar' with the path
 ``/{foo}/{bar}``, this call to ``route_path``::

 request.route_path('foobar', foo='1', bar='2')

 Will return the string ``/1/2``.

 .. note::

 Calling ``request.route_path('route')`` is the same as calling
 ``request.route_url('route', _app_url=request.script_name)``.
 :meth:`pyramid.request.Request.route_path` is, in fact,
 implemented in terms of :meth:`pyramid.request.Request.route_url`
 in just this way. As a result, any ``_app_url`` passed within the
 ``**kw`` values to ``route_path`` will be ignored.
 """
 kw['_app_url'] = self.script_name
 return self.route_url(route_name, *elements, **kw)

 def resource_url(self, resource, *elements, **kw):
 """

 Generate a string representing the absolute URL of the
 :term:`resource` object based on the ``wsgi.url_scheme``,
 ``HTTP_HOST`` or ``SERVER_NAME`` in the request, plus any
 ``SCRIPT_NAME``. The overall result of this method is always a
 UTF-8 encoded string.

 Examples::

 request.resource_url(resource) =>

 http://example.com/

 request.resource_url(resource, 'a.html') =>

 http://example.com/a.html

 request.resource_url(resource, 'a.html', query={'q':'1'}) =>

 http://example.com/a.html?q=1

 request.resource_url(resource, 'a.html', anchor='abc') =>

 http://example.com/a.html#abc

 request.resource_url(resource, app_url='') =>

 /

 Any positional arguments passed in as ``elements`` must be strings
 Unicode objects, or integer objects. These will be joined by slashes
 and appended to the generated resource URL. Each of the elements
 passed in is URL-quoted before being appended; if any element is
 Unicode, it will converted to a UTF-8 bytestring before being
 URL-quoted. If any element is an integer, it will be converted to its
 string representation before being URL-quoted.

 .. warning:: if no ``elements`` arguments are specified, the resource
 URL will end with a trailing slash. If any
 ``elements`` are used, the generated URL will *not*
 end in a trailing slash.

 If a keyword argument ``query`` is present, it will be used to compose
 a query string that will be tacked on to the end of the URL. The value
 of ``query`` may be a sequence of two-tuples *or* a data structure with
 an ``.items()`` method that returns a sequence of two-tuples
 (presumably a dictionary). This data structure will be turned into a
 query string per the documentation of :func:``pyramid.url.urlencode``
 function. This will produce a query string in the
 ``x-www-form-urlencoded`` encoding. A non-``x-www-form-urlencoded``
 query string may be used by passing a *string* value as ``query`` in
 which case it will be URL-quoted (e.g. query="foo bar" will become
 "foo%20bar"). However, the result will not need to be in ``k=v`` form
 as required by ``x-www-form-urlencoded``. After the query data is
 turned into a query string, a leading ``?`` is prepended, and the
 resulting string is appended to the generated URL.

 .. note::

 Python data structures that are passed as ``query`` which are
 sequences or dictionaries are turned into a string under the same
 rules as when run through :func:`urllib.urlencode` with the ``doseq``
 argument equal to ``True``. This means that sequences can be passed
 as values, and a k=v pair will be placed into the query string for
 each value.

 .. versionchanged:: 1.5
 Allow the ``query`` option to be a string to enable alternative
 encodings.

 If a keyword argument ``anchor`` is present, its string
 representation will be used as a named anchor in the generated URL
 (e.g. if ``anchor`` is passed as ``foo`` and the resource URL is
 ``http://example.com/resource/url``, the resulting generated URL will
 be ``http://example.com/resource/url#foo``).

 .. note::

 If ``anchor`` is passed as a string, it should be UTF-8 encoded. If
 ``anchor`` is passed as a Unicode object, it will be converted to
 UTF-8 before being appended to the URL.

 .. versionchanged:: 1.5
 The ``anchor`` option will be escaped instead of using
 its raw string representation.

 If both ``anchor`` and ``query`` are specified, the anchor element
 will always follow the query element,
 e.g. ``http://example.com?foo=1#bar``.

 If any of the keyword arguments ``scheme``, ``host``, or ``port`` is
 passed and is non-``None``, the provided value will replace the named
 portion in the generated URL. For example, if you pass
 ``host='foo.com'``, and the URL that would have been generated
 without the host replacement is ``http://example.com/a``, the result
 will be ``http://foo.com/a``.

 If ``scheme`` is passed as ``https``, and an explicit ``port`` is not
 passed, the ``port`` value is assumed to have been passed as ``443``.
 Likewise, if ``scheme`` is passed as ``http`` and ``port`` is not
 passed, the ``port`` value is assumed to have been passed as
 ``80``. To avoid this behavior, always explicitly pass ``port``
 whenever you pass ``scheme``.

 If a keyword argument ``app_url`` is passed and is not ``None``, it
 should be a string that will be used as the port/hostname/initial
 path portion of the generated URL instead of the default request
 application URL. For example, if ``app_url='http://foo'``, then the
 resulting url of a resource that has a path of ``/baz/bar`` will be
 ``http://foo/baz/bar``. If you want to generate completely relative
 URLs with no leading scheme, host, port, or initial path, you can
 pass ``app_url=''``. Passing ``app_url=''`` when the resource path is
 ``/baz/bar`` will return ``/baz/bar``.

 .. versionadded:: 1.3
 ``app_url``

 If ``app_url`` is passed and any of ``scheme``, ``port``, or ``host``
 are also passed, ``app_url`` will take precedence and the values
 passed for ``scheme``, ``host``, and/or ``port`` will be ignored.

 If the ``resource`` passed in has a ``__resource_url__`` method, it
 will be used to generate the URL (scheme, host, port, path) for the
 base resource which is operated upon by this function.

 .. seealso::

 See also :ref:`overriding_resource_url_generation`.

 .. versionadded:: 1.5
 ``route_name``, ``route_kw``, and ``route_remainder_name``

 If ``route_name`` is passed, this function will delegate its URL
 production to the ``route_url`` function. Calling
 ``resource_url(someresource, 'element1', 'element2', query={'a':1},
 route_name='blogentry')`` is roughly equivalent to doing::

 remainder_path = request.resource_path(someobject)
 url = request.route_url(
 'blogentry',
 'element1',
 'element2',
 _query={'a':'1'},
 traverse=traversal_path,
)

 It is only sensible to pass ``route_name`` if the route being named has
 a ``*remainder`` stararg value such as ``*traverse``. The remainder
 value will be ignored in the output otherwise.

 By default, the resource path value will be passed as the name
 ``traverse`` when ``route_url`` is called. You can influence this by
 passing a different ``route_remainder_name`` value if the route has a
 different ``*stararg`` value at its end. For example if the route
 pattern you want to replace has a ``*subpath`` stararg ala
 ``/foo*subpath``::

 request.resource_url(
 resource,
 route_name='myroute',
 route_remainder_name='subpath'
)

 If ``route_name`` is passed, it is also permissible to pass
 ``route_kw``, which will passed as additional keyword arguments to
 ``route_url``. Saying ``resource_url(someresource, 'element1',
 'element2', route_name='blogentry', route_kw={'id':'4'},
 _query={'a':'1'})`` is roughly equivalent to::

 remainder_path = request.resource_path_tuple(someobject)
 kw = {'id':'4', '_query':{'a':'1'}, 'traverse':traversal_path}
 url = request.route_url(
 'blogentry',
 'element1',
 'element2',
 **kw,
)

 If ``route_kw`` or ``route_remainder_name`` is passed, but
 ``route_name`` is not passed, both ``route_kw`` and
 ``route_remainder_name`` will be ignored. If ``route_name``
 is passed, the ``__resource_url__`` method of the resource passed is
 ignored unconditionally. This feature is incompatible with
 resources which generate their own URLs.

 .. note::

 If the :term:`resource` used is the result of a :term:`traversal`, it
 must be :term:`location`-aware. The resource can also be the context
 of a :term:`URL dispatch`; contexts found this way do not need to be
 location-aware.

 .. note::

 If a 'virtual root path' is present in the request environment (the
 value of the WSGI environ key ``HTTP_X_VHM_ROOT``), and the resource
 was obtained via :term:`traversal`, the URL path will not include the
 virtual root prefix (it will be stripped off the left hand side of
 the generated URL).

 .. note::

 For backwards compatibility purposes, this method is also
 aliased as the ``model_url`` method of request.
 """
 try:
 reg = self.registry
 except AttributeError:
 reg = get_current_registry() # b/c

 url_adapter = reg.queryMultiAdapter((resource, self), IResourceURL)
 if url_adapter is None:
 url_adapter = ResourceURL(resource, self)

 virtual_path = getattr(url_adapter, 'virtual_path', None)

 if virtual_path is None:
 # old-style IContextURL adapter (Pyramid 1.2 and previous)
 warnings.warn(
 'Pyramid is using an IContextURL adapter to generate a '
 'resource URL; any "app_url", "host", "port", or "scheme" '
 'arguments passed to resource_url are being ignored. To '
 'avoid this behavior, as of Pyramid 1.3, register an '
 'IResourceURL adapter instead of an IContextURL '
 'adapter for the resource type(s). IContextURL adapters '
 'will be ignored in a later major release of Pyramid.',
 DeprecationWarning,
 2)

 resource_url = url_adapter()

 else:
 # IResourceURL adapter (Pyramid 1.3 and after)
 app_url = None
 scheme = None
 host = None
 port = None

 if 'route_name' in kw:
 newkw = {}
 route_name = kw['route_name']
 remainder = getattr(url_adapter, 'virtual_path_tuple', None)
 if remainder is None:
 # older user-supplied IResourceURL adapter without 1.5
 # virtual_path_tuple
 remainder = tuple(url_adapter.virtual_path.split('/'))
 remainder_name = kw.get('route_remainder_name', 'traverse')
 newkw[remainder_name] = remainder

 for name in (
 'app_url', 'scheme', 'host', 'port', 'query', 'anchor'
):
 val = kw.get(name, None)
 if val is not None:
 newkw['_' + name] = val

 if 'route_kw' in kw:
 route_kw = kw.get('route_kw')
 if route_kw is not None:
 newkw.update(route_kw)

 return self.route_url(route_name, *elements, **newkw)

 if 'app_url' in kw:
 app_url = kw['app_url']

 if 'scheme' in kw:
 scheme = kw['scheme']

 if 'host' in kw:
 host = kw['host']

 if 'port' in kw:
 port = kw['port']

 if app_url is None:
 if scheme or host or port:
 app_url = self._partial_application_url(scheme, host, port)
 else:
 app_url = self.application_url

 resource_url = None
 local_url = getattr(resource, '__resource_url__', None)

 if local_url is not None:
 # the resource handles its own url generation
 d = dict(
 virtual_path = virtual_path,
 physical_path = url_adapter.physical_path,
 app_url = app_url,
)
 # allow __resource_url__ to punt by returning None
 resource_url = local_url(self, d)

 if resource_url is None:
 # the resource did not handle its own url generation or the
 # __resource_url__ function returned None
 resource_url = app_url + virtual_path

 qs = ''
 anchor = ''

 if 'query' in kw:
 query = kw['query']
 if isinstance(query, string_types):
 qs = '?' + url_quote(query, QUERY_SAFE)
 elif query:
 qs = '?' + urlencode(query, doseq=True)

 if 'anchor' in kw:
 anchor = kw['anchor']
 anchor = url_quote(anchor, ANCHOR_SAFE)
 anchor = '#' + anchor

 if elements:
 suffix = _join_elements(elements)
 else:
 suffix = ''

 return resource_url + suffix + qs + anchor

 model_url = resource_url # b/w compat forever

 def resource_path(self, resource, *elements, **kw):
 """
 Generates a path (aka a 'relative URL', a URL minus the host, scheme,
 and port) for a :term:`resource`.

 This function accepts the same argument as
 :meth:`pyramid.request.Request.resource_url` and performs the same
 duty. It just omits the host, port, and scheme information in the
 return value; only the script_name, path, query parameters, and
 anchor data are present in the returned string.

 .. note::

 Calling ``request.resource_path(resource)`` is the same as calling
 ``request.resource_path(resource, app_url=request.script_name)``.
 :meth:`pyramid.request.Request.resource_path` is, in fact,
 implemented in terms of
 :meth:`pyramid.request.Request.resource_url` in just this way. As
 a result, any ``app_url`` passed within the ``**kw`` values to
 ``route_path`` will be ignored. ``scheme``, ``host``, and
 ``port`` are also ignored.
 """
 kw['app_url'] = self.script_name
 return self.resource_url(resource, *elements, **kw)

 def static_url(self, path, **kw):
 """
 Generates a fully qualified URL for a static :term:`asset`.
 The asset must live within a location defined via the
 :meth:`pyramid.config.Configurator.add_static_view`
 :term:`configuration declaration` (see :ref:`static_assets_section`).

 Example::

 request.static_url('mypackage:static/foo.css') =>

 http://example.com/static/foo.css

 The ``path`` argument points at a file or directory on disk which
 a URL should be generated for. The ``path`` may be either a
 relative path (e.g. ``static/foo.css``) or an absolute path (e.g.
 ``/abspath/to/static/foo.css``) or a :term:`asset specification`
 (e.g. ``mypackage:static/foo.css``).

 The purpose of the ``**kw`` argument is the same as the purpose of
 the :meth:`pyramid.request.Request.route_url` ``**kw`` argument. See
 the documentation for that function to understand the arguments which
 you can provide to it. However, typically, you don't need to pass
 anything as ``*kw`` when generating a static asset URL.

 This function raises a :exc:`ValueError` if a static view
 definition cannot be found which matches the path specification.

 """
 if not os.path.isabs(path):
 if not ':' in path:
 # if it's not a package:relative/name and it's not an
 # /absolute/path it's a relative/path; this means its relative
 # to the package in which the caller's module is defined.
 package = caller_package()
 path = '%s:%s' % (package.__name__, path)

 try:
 reg = self.registry
 except AttributeError:
 reg = get_current_registry() # b/c

 info = reg.queryUtility(IStaticURLInfo)
 if info is None:
 raise ValueError('No static URL definition matching %s' % path)

 return info.generate(path, self, **kw)

 def static_path(self, path, **kw):
 """
 Generates a path (aka a 'relative URL', a URL minus the host, scheme,
 and port) for a static resource.

 This function accepts the same argument as
 :meth:`pyramid.request.Request.static_url` and performs the
 same duty. It just omits the host, port, and scheme information in
 the return value; only the script_name, path, query parameters, and
 anchor data are present in the returned string.

 Example::

 request.static_path('mypackage:static/foo.css') =>

 /static/foo.css

 .. note::

 Calling ``request.static_path(apath)`` is the same as calling
 ``request.static_url(apath, _app_url=request.script_name)``.
 :meth:`pyramid.request.Request.static_path` is, in fact, implemented
 in terms of `:meth:`pyramid.request.Request.static_url` in just this
 way. As a result, any ``_app_url`` passed within the ``**kw`` values
 to ``static_path`` will be ignored.
 """
 if not os.path.isabs(path):
 if not ':' in path:
 # if it's not a package:relative/name and it's not an
 # /absolute/path it's a relative/path; this means its relative
 # to the package in which the caller's module is defined.
 package = caller_package()
 path = '%s:%s' % (package.__name__, path)

 kw['_app_url'] = self.script_name
 return self.static_url(path, **kw)

 def current_route_url(self, *elements, **kw):
 """
 Generates a fully qualified URL for a named :app:`Pyramid`
 :term:`route configuration` based on the 'current route'.

 This function supplements
 :meth:`pyramid.request.Request.route_url`. It presents an easy way to
 generate a URL for the 'current route' (defined as the route which
 matched when the request was generated).

 The arguments to this method have the same meaning as those with the
 same names passed to :meth:`pyramid.request.Request.route_url`. It
 also understands an extra argument which ``route_url`` does not named
 ``_route_name``.

 The route name used to generate a URL is taken from either the
 ``_route_name`` keyword argument or the name of the route which is
 currently associated with the request if ``_route_name`` was not
 passed. Keys and values from the current request :term:`matchdict`
 are combined with the ``kw`` arguments to form a set of defaults
 named ``newkw``. Then ``request.route_url(route_name, *elements,
 **newkw)`` is called, returning a URL.

 Examples follow.

 If the 'current route' has the route pattern ``/foo/{page}`` and the
 current url path is ``/foo/1`` , the matchdict will be
 ``{'page':'1'}``. The result of ``request.current_route_url()`` in
 this situation will be ``/foo/1``.

 If the 'current route' has the route pattern ``/foo/{page}`` and the
 current url path is ``/foo/1``, the matchdict will be
 ``{'page':'1'}``. The result of
 ``request.current_route_url(page='2')`` in this situation will be
 ``/foo/2``.

 Usage of the ``_route_name`` keyword argument: if our routing table
 defines routes ``/foo/{action}`` named 'foo' and
 ``/foo/{action}/{page}`` named ``fooaction``, and the current url
 pattern is ``/foo/view`` (which has matched the ``/foo/{action}``
 route), we may want to use the matchdict args to generate a URL to
 the ``fooaction`` route. In this scenario,
 ``request.current_route_url(_route_name='fooaction', page='5')``
 Will return string like: ``/foo/view/5``.

 """
 if '_route_name' in kw:
 route_name = kw.pop('_route_name')
 else:
 route = getattr(self, 'matched_route', None)
 route_name = getattr(route, 'name', None)
 if route_name is None:
 raise ValueError('Current request matches no route')

 if '_query' not in kw:
 kw['_query'] = self.GET

 newkw = {}
 newkw.update(self.matchdict)
 newkw.update(kw)
 return self.route_url(route_name, *elements, **newkw)

 def current_route_path(self, *elements, **kw):
 """
 Generates a path (aka a 'relative URL', a URL minus the host, scheme,
 and port) for the :app:`Pyramid` :term:`route configuration` matched
 by the current request.

 This function accepts the same argument as
 :meth:`pyramid.request.Request.current_route_url` and performs the
 same duty. It just omits the host, port, and scheme information in
 the return value; only the script_name, path, query parameters, and
 anchor data are present in the returned string.

 For example, if the route matched by the current request has the
 pattern ``/{foo}/{bar}``, this call to ``current_route_path``::

 request.current_route_path(foo='1', bar='2')

 Will return the string ``/1/2``.

 .. note::

 Calling ``request.current_route_path('route')`` is the same
 as calling ``request.current_route_url('route',
 _app_url=request.script_name)``.
 :meth:`pyramid.request.Request.current_route_path` is, in fact,
 implemented in terms of
 :meth:`pyramid.request.Request.current_route_url` in just this
 way. As a result, any ``_app_url`` passed within the ``**kw``
 values to ``current_route_path`` will be ignored.
 """
 kw['_app_url'] = self.script_name
 return self.current_route_url(*elements, **kw)

[docs]def route_url(route_name, request, *elements, **kw):
 """
 This is a backwards compatibility function. Its result is the same as
 calling::

 request.route_url(route_name, *elements, **kw)

 See :meth:`pyramid.request.Request.route_url` for more information.
 """
 return request.route_url(route_name, *elements, **kw)

[docs]def route_path(route_name, request, *elements, **kw):
 """
 This is a backwards compatibility function. Its result is the same as
 calling::

 request.route_path(route_name, *elements, **kw)

 See :meth:`pyramid.request.Request.route_path` for more information.
 """
 return request.route_path(route_name, *elements, **kw)

[docs]def resource_url(resource, request, *elements, **kw):
 """
 This is a backwards compatibility function. Its result is the same as
 calling::

 request.resource_url(resource, *elements, **kw)

 See :meth:`pyramid.request.Request.resource_url` for more information.
 """
 return request.resource_url(resource, *elements, **kw)

model_url = resource_url # b/w compat (forever)

[docs]def static_url(path, request, **kw):
 """
 This is a backwards compatibility function. Its result is the same as
 calling::

 request.static_url(path, **kw)

 See :meth:`pyramid.request.Request.static_url` for more information.
 """
 if not os.path.isabs(path):
 if not ':' in path:
 # if it's not a package:relative/name and it's not an
 # /absolute/path it's a relative/path; this means its relative
 # to the package in which the caller's module is defined.
 package = caller_package()
 path = '%s:%s' % (package.__name__, path)
 return request.static_url(path, **kw)

[docs]def static_path(path, request, **kw):
 """
 This is a backwards compatibility function. Its result is the same as
 calling::

 request.static_path(path, **kw)

 See :meth:`pyramid.request.Request.static_path` for more information.
 """
 if not os.path.isabs(path):
 if not ':' in path:
 # if it's not a package:relative/name and it's not an
 # /absolute/path it's a relative/path; this means its relative
 # to the package in which the caller's module is defined.
 package = caller_package()
 path = '%s:%s' % (package.__name__, path)
 return request.static_path(path, **kw)

[docs]def current_route_url(request, *elements, **kw):
 """
 This is a backwards compatibility function. Its result is the same as
 calling::

 request.current_route_url(*elements, **kw)

 See :meth:`pyramid.request.Request.current_route_url` for more
 information.
 """
 return request.current_route_url(*elements, **kw)

[docs]def current_route_path(request, *elements, **kw):
 """
 This is a backwards compatibility function. Its result is the same as
 calling::

 request.current_route_path(*elements, **kw)

 See :meth:`pyramid.request.Request.current_route_path` for more
 information.
 """
 return request.current_route_path(*elements, **kw)

@lru_cache(1000)
def _join_elements(elements):
 return '/'.join([quote_path_segment(s, safe=':@&+$,') for s in elements])

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/request.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.request

import json

from zope.interface import implementer
from zope.interface.interface import InterfaceClass

from webob import BaseRequest

from pyramid.interfaces import (
 IRequest,
 IResponse,
 ISessionFactory,
 IResponseFactory,
)

from pyramid.compat import (
 text_,
 bytes_,
 native_,
)

from pyramid.decorator import reify
from pyramid.i18n import LocalizerRequestMixin
from pyramid.response import Response
from pyramid.security import (
 AuthenticationAPIMixin,
 AuthorizationAPIMixin,
)
from pyramid.url import URLMethodsMixin
from pyramid.util import InstancePropertyMixin

class TemplateContext(object):
 pass

class CallbackMethodsMixin(object):
 response_callbacks = ()
 finished_callbacks = ()
 def add_response_callback(self, callback):
 """
 Add a callback to the set of callbacks to be called by the
 :term:`router` at a point after a :term:`response` object is
 successfully created. :app:`Pyramid` does not have a
 global response object: this functionality allows an
 application to register an action to be performed against the
 response once one is created.

 A 'callback' is a callable which accepts two positional
 parameters: ``request`` and ``response``. For example:

 .. code-block:: python
 :linenos:

 def cache_callback(request, response):
 'Set the cache_control max_age for the response'
 response.cache_control.max_age = 360
 request.add_response_callback(cache_callback)

 Response callbacks are called in the order they're added
 (first-to-most-recently-added). No response callback is
 called if an exception happens in application code, or if the
 response object returned by :term:`view` code is invalid.

 All response callbacks are called *after* the tweens and
 before the :class:`pyramid.events.NewResponse` event is sent.

 Errors raised by callbacks are not handled specially. They
 will be propagated to the caller of the :app:`Pyramid`
 router application.

 .. seealso::

 See also :ref:`using_response_callbacks`.
 """

 callbacks = self.response_callbacks
 if not callbacks:
 callbacks = []
 callbacks.append(callback)
 self.response_callbacks = callbacks

 def _process_response_callbacks(self, response):
 callbacks = self.response_callbacks
 while callbacks:
 callback = callbacks.pop(0)
 callback(self, response)

 def add_finished_callback(self, callback):
 """
 Add a callback to the set of callbacks to be called
 unconditionally by the :term:`router` at the very end of
 request processing.

 ``callback`` is a callable which accepts a single positional
 parameter: ``request``. For example:

 .. code-block:: python
 :linenos:

 import transaction

 def commit_callback(request):
 '''commit or abort the transaction associated with request'''
 if request.exception is not None:
 transaction.abort()
 else:
 transaction.commit()
 request.add_finished_callback(commit_callback)

 Finished callbacks are called in the order they're added (
 first- to most-recently- added). Finished callbacks (unlike
 response callbacks) are *always* called, even if an exception
 happens in application code that prevents a response from
 being generated.

 The set of finished callbacks associated with a request are
 called *very late* in the processing of that request; they are
 essentially the last thing called by the :term:`router`. They
 are called after response processing has already occurred in a
 top-level ``finally:`` block within the router request
 processing code. As a result, mutations performed to the
 ``request`` provided to a finished callback will have no
 meaningful effect, because response processing will have
 already occurred, and the request's scope will expire almost
 immediately after all finished callbacks have been processed.

 Errors raised by finished callbacks are not handled specially.
 They will be propagated to the caller of the :app:`Pyramid`
 router application.

 .. seealso::

 See also :ref:`using_finished_callbacks`.
 """

 callbacks = self.finished_callbacks
 if not callbacks:
 callbacks = []
 callbacks.append(callback)
 self.finished_callbacks = callbacks

 def _process_finished_callbacks(self):
 callbacks = self.finished_callbacks
 while callbacks:
 callback = callbacks.pop(0)
 callback(self)

@implementer(IRequest)
[docs]class Request(
 BaseRequest,
 URLMethodsMixin,
 CallbackMethodsMixin,
 InstancePropertyMixin,
 LocalizerRequestMixin,
 AuthenticationAPIMixin,
 AuthorizationAPIMixin,
):
 """
 A subclass of the :term:`WebOb` Request class. An instance of
 this class is created by the :term:`router` and is provided to a
 view callable (and to other subsystems) as the ``request``
 argument.

 The documentation below (save for the ``add_response_callback`` and
 ``add_finished_callback`` methods, which are defined in this subclass
 itself, and the attributes ``context``, ``registry``, ``root``,
 ``subpath``, ``traversed``, ``view_name``, ``virtual_root`` , and
 ``virtual_root_path``, each of which is added to the request by the
 :term:`router` at request ingress time) are autogenerated from the WebOb
 source code used when this documentation was generated.

 Due to technical constraints, we can't yet display the WebOb
 version number from which this documentation is autogenerated, but
 it will be the 'prevailing WebOb version' at the time of the
 release of this :app:`Pyramid` version. See
 http://webob.org/ for further information.
 """
 exception = None
 exc_info = None
 matchdict = None
 matched_route = None

 ResponseClass = Response

 @reify
 def tmpl_context(self):
 # docs-deprecated template context for Pylons-like apps; do not
 # remove.
 return TemplateContext()

 @reify
 def session(self):
 """ Obtain the :term:`session` object associated with this
 request. If a :term:`session factory` has not been registered
 during application configuration, a
 :class:`pyramid.exceptions.ConfigurationError` will be raised"""
 factory = self.registry.queryUtility(ISessionFactory)
 if factory is None:
 raise AttributeError(
 'No session factory registered '
 '(see the Sessions chapter of the Pyramid documentation)')
 return factory(self)

 @reify
 def response(self):
 """This attribute is actually a "reified" property which returns an
 instance of the :class:`pyramid.response.Response`. class. The
 response object returned does not exist until this attribute is
 accessed. Subsequent accesses will return the same Response object.

 The ``request.response`` API is used by renderers. A render obtains
 the response object it will return from a view that uses that renderer
 by accessing ``request.response``. Therefore, it's possible to use the
 ``request.response`` API to set up a response object with "the
 right" attributes (e.g. by calling ``request.response.set_cookie()``)
 within a view that uses a renderer. Mutations to this response object
 will be preserved in the response sent to the client."""
 registry = self.registry
 response_factory = registry.queryUtility(IResponseFactory,
 default=Response)
 return response_factory()

[docs] def is_response(self, ob):
 """ Return ``True`` if the object passed as ``ob`` is a valid
 response object, ``False`` otherwise."""
 if ob.__class__ is Response:
 return True
 registry = self.registry
 adapted = registry.queryAdapterOrSelf(ob, IResponse)
 if adapted is None:
 return False
 return adapted is ob

 @property
 def json_body(self):
 return json.loads(text_(self.body, self.charset))

def route_request_iface(name, bases=()):
 # zope.interface treats the __name__ as the __doc__ and changes __name__
 # to None for interfaces that contain spaces if you do not pass a
 # nonempty __doc__ (insane); see
 # zope.interface.interface.Element.__init__ and
 # https://github.com/Pylons/pyramid/issues/232; as a result, always pass
 # __doc__ to the InterfaceClass constructor.
 iface = InterfaceClass('%s_IRequest' % name, bases=bases,
 __doc__="route_request_iface-generated interface")
 # for exception view lookups
 iface.combined = InterfaceClass(
 '%s_combined_IRequest' % name,
 bases=(iface, IRequest),
 __doc__ = 'route_request_iface-generated combined interface')
 return iface

def add_global_response_headers(request, headerlist):
 def add_headers(request, response):
 for k, v in headerlist:
 response.headerlist.append((k, v))
 request.add_response_callback(add_headers)

def call_app_with_subpath_as_path_info(request, app):
 # Copy the request. Use the source request's subpath (if it exists) as
 # the new request's PATH_INFO. Set the request copy's SCRIPT_NAME to the
 # prefix before the subpath. Call the application with the new request
 # and return a response.
 #
 # Postconditions:
 # - SCRIPT_NAME and PATH_INFO are empty or start with /
 # - At least one of SCRIPT_NAME or PATH_INFO are set.
 # - SCRIPT_NAME is not '/' (it should be '', and PATH_INFO should
 # be '/').

 environ = request.environ
 script_name = environ.get('SCRIPT_NAME', '')
 path_info = environ.get('PATH_INFO', '/')
 subpath = list(getattr(request, 'subpath', ()))

 new_script_name = ''

 # compute new_path_info
 new_path_info = '/' + '/'.join([native_(x.encode('utf-8'), 'latin-1')
 for x in subpath])

 if new_path_info != '/': # don't want a sole double-slash
 if path_info != '/': # if orig path_info is '/', we're already done
 if path_info.endswith('/'):
 # readd trailing slash stripped by subpath (traversal)
 # conversion
 new_path_info += '/'

 # compute new_script_name
 workback = (script_name + path_info).split('/')

 tmp = []
 while workback:
 if tmp == subpath:
 break
 el = workback.pop()
 if el:
 tmp.insert(0, text_(bytes_(el, 'latin-1'), 'utf-8'))

 # strip all trailing slashes from workback to avoid appending undue slashes
 # to end of script_name
 while workback and (workback[-1] == ''):
 workback = workback[:-1]

 new_script_name = '/'.join(workback)

 new_request = request.copy()
 new_request.environ['SCRIPT_NAME'] = new_script_name
 new_request.environ['PATH_INFO'] = new_path_info

 return new_request.get_response(app)

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

_modules/pyramid/events.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Framework v1.5.8 »

 		Module code »

 Source code for pyramid.events

import venusian

from zope.interface import (
 implementer,
 Interface
)

from pyramid.interfaces import (
 IContextFound,
 INewRequest,
 INewResponse,
 IApplicationCreated,
 IBeforeRender,
)

[docs]class subscriber(object):
 """ Decorator activated via a :term:`scan` which treats the function
 being decorated as an event subscriber for the set of interfaces passed
 as ``*ifaces`` and the set of predicate terms passed as ``**predicates``
 to the decorator constructor.

 For example:

 .. code-block:: python

 from pyramid.events import NewRequest
 from pyramid.events import subscriber

 @subscriber(NewRequest)
 def mysubscriber(event):
 event.request.foo = 1

 More than one event type can be passed as a constructor argument. The
 decorated subscriber will be called for each event type.

 .. code-block:: python

 from pyramid.events import NewRequest, NewResponse
 from pyramid.events import subscriber

 @subscriber(NewRequest, NewResponse)
 def mysubscriber(event):
 print(event)

 When the ``subscriber`` decorator is used without passing an arguments,
 the function it decorates is called for every event sent:

 .. code-block:: python

 from pyramid.events import subscriber

 @subscriber()
 def mysubscriber(event):
 print(event)

 This method will have no effect until a :term:`scan` is performed
 against the package or module which contains it, ala:

 .. code-block:: python

 from pyramid.config import Configurator
 config = Configurator()
 config.scan('somepackage_containing_subscribers')

 Any ``**predicate`` arguments will be passed along to
 :meth:`pyramid.config.Configurator.add_subscriber`. See
 :ref:`subscriber_predicates` for a description of how predicates can
 narrow the set of circumstances in which a subscriber will be called.

 """
 venusian = venusian # for unit testing

 def __init__(self, *ifaces, **predicates):
 self.ifaces = ifaces
 self.predicates = predicates

 def register(self, scanner, name, wrapped):
 config = scanner.config
 for iface in self.ifaces or (Interface,):
 config.add_subscriber(wrapped, iface, **self.predicates)

 def __call__(self, wrapped):
 self.venusian.attach(wrapped, self.register, category='pyramid')
 return wrapped

@implementer(INewRequest)
[docs]class NewRequest(object):
 """ An instance of this class is emitted as an :term:`event`
 whenever :app:`Pyramid` begins to process a new request. The
 event instance has an attribute, ``request``, which is a
 :term:`request` object. This event class implements the
 :class:`pyramid.interfaces.INewRequest` interface."""
 def __init__(self, request):
 self.request = request

@implementer(INewResponse)
[docs]class NewResponse(object):
 """ An instance of this class is emitted as an :term:`event`
 whenever any :app:`Pyramid` :term:`view` or :term:`exception
 view` returns a :term:`response`.

 The instance has two attributes:``request``, which is the request
 which caused the response, and ``response``, which is the response
 object returned by a view or renderer.

 If the ``response`` was generated by an :term:`exception view`, the
 request will have an attribute named ``exception``, which is the
 exception object which caused the exception view to be executed. If the
 response was generated by a 'normal' view, this attribute of the request
 will be ``None``.

 This event will not be generated if a response cannot be created due to
 an exception that is not caught by an exception view (no response is
 created under this circumstace).

 This class implements the
 :class:`pyramid.interfaces.INewResponse` interface.

 .. note::

 Postprocessing a response is usually better handled in a WSGI
 :term:`middleware` component than in subscriber code that is
 called by a :class:`pyramid.interfaces.INewResponse` event.
 The :class:`pyramid.interfaces.INewResponse` event exists
 almost purely for symmetry with the
 :class:`pyramid.interfaces.INewRequest` event.
 """
 def __init__(self, request, response):
 self.request = request
 self.response = response

@implementer(IContextFound)
[docs]class ContextFound(object):
 """ An instance of this class is emitted as an :term:`event` after
 the :app:`Pyramid` :term:`router` finds a :term:`context`
 object (after it performs traversal) but before any view code is
 executed. The instance has an attribute, ``request``, which is
 the request object generated by :app:`Pyramid`.

 Notably, the request object will have an attribute named
 ``context``, which is the context that will be provided to the
 view which will eventually be called, as well as other attributes
 attached by context-finding code.

 This class implements the
 :class:`pyramid.interfaces.IContextFound` interface.

 .. note::

 As of :app:`Pyramid` 1.0, for backwards compatibility purposes, this
 event may also be imported as :class:`pyramid.events.AfterTraversal`.
 """
 def __init__(self, request):
 self.request = request

AfterTraversal = ContextFound # b/c as of 1.0

@implementer(IApplicationCreated)
[docs]class ApplicationCreated(object):
 """ An instance of this class is emitted as an :term:`event` when
 the :meth:`pyramid.config.Configurator.make_wsgi_app` is
 called. The instance has an attribute, ``app``, which is an
 instance of the :term:`router` that will handle WSGI requests.
 This class implements the
 :class:`pyramid.interfaces.IApplicationCreated` interface.

 .. note::

 For backwards compatibility purposes, this class can also be imported as
 :class:`pyramid.events.WSGIApplicationCreatedEvent`. This was the name
 of the event class before :app:`Pyramid` 1.0.
 """
 def __init__(self, app):
 self.app = app
 self.object = app

WSGIApplicationCreatedEvent = ApplicationCreated # b/c (as of 1.0)

@implementer(IBeforeRender)
[docs]class BeforeRender(dict):
 """
 Subscribers to this event may introspect and modify the set of
 :term:`renderer globals` before they are passed to a :term:`renderer`.
 This event object iself has a dictionary-like interface that can be used
 for this purpose. For example::

 from pyramid.events import subscriber
 from pyramid.events import BeforeRender

 @subscriber(BeforeRender)
 def add_global(event):
 event['mykey'] = 'foo'

 An object of this type is sent as an event just before a :term:`renderer`
 is invoked.

 If a subscriber adds a key via ``__setitem__`` that already exists in
 the renderer globals dictionary, it will overwrite the older value there.
 This can be problematic because event subscribers to the BeforeRender
 event do not possess any relative ordering. For maximum interoperability
 with other third-party subscribers, if you write an event subscriber meant
 to be used as a BeforeRender subscriber, your subscriber code will need to
 ensure no value already exists in the renderer globals dictionary before
 setting an overriding value (which can be done using ``.get`` or
 ``__contains__`` of the event object).

 The dictionary returned from the view is accessible through the
 :attr:`rendering_val` attribute of a :class:`~pyramid.events.BeforeRender`
 event.

 Suppose you return ``{'mykey': 'somevalue', 'mykey2': 'somevalue2'}`` from
 your view callable, like so::

 from pyramid.view import view_config

 @view_config(renderer='some_renderer')
 def myview(request):
 return {'mykey': 'somevalue', 'mykey2': 'somevalue2'}

 :attr:`rendering_val` can be used to access these values from the
 :class:`~pyramid.events.BeforeRender` object::

 from pyramid.events import subscriber
 from pyramid.events import BeforeRender

 @subscriber(BeforeRender)
 def read_return(event):
 # {'mykey': 'somevalue'} is returned from the view
 print(event.rendering_val['mykey'])

 In other words, :attr:`rendering_val` is the (non-system) value returned
 by a view or passed to ``render*`` as ``value``. This feature is new in
 Pyramid 1.2.

 For a description of the values present in the renderer globals dictionary,
 see :ref:`renderer_system_values`.

 .. seealso::

 See also :class:`pyramid.interfaces.IBeforeRender`.
 """
 def __init__(self, system, rendering_val=None):
 dict.__init__(self, system)
 self.rendering_val = rendering_val

 © Copyright 2008-2016, Agendaless Consulting.
 Last updated on May 08, 2016.
 Created using Sphinx 1.3.5.

