The Pyramid Web Framework
Version 1.7.6

Chris McDonough

Contents

Front Matter e e e e 1
0.1 Tutorials e 38
0.2 Narrative Documentation e e 295
0.3 APIDocumentation i i e e e e e e 672
0.4 p»* Scripts Documentation e e 851
Change History e 857

Glossary and Index

ii

Front Matter

Copyright, Trademarks, and Attributions

“The Pyramid Web Framework, Version 1.7.6*

by Chris McDonough

Copyright © 2008-2011, Agendaless Consulting.

ISBN-10: 0615445675

ISBN-13: 978-0615445670

First print publishing: February, 2011

All rights reserved. This material may be copied or distributed only subject to the terms and conditions set
forth in the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. You
must give the original author credit. You may not use this work for commercial purposes. If you alter,

transform, or build upon this work, you may distribute the resulting work only under the same or similar
license to this one.

O While the Pyramid documentation is offered under the Creative Commons Attribution-
Nonconmmercial-Share Alike 3.0 United States License, the Pyramid software is offered under a less
restrictive (BSD-like) license .

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. However, use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an “as-is” basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book. No patent liability is assumed with respect to the use of the
information contained herein.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://repoze.org/license.html
http://repoze.org/license.html

Attributions

Editor: Casey Duncan

Contributors: Ben Bangert, Blaise Laflamme, Rob Miller, Mike Orr, Carlos de la Guardia, Paul Everitt,
Tres Seaver, John Shipman, Marius Gedminas, Chris Rossi, Joachim Krebs, Xavier Spriet, Reed
O’Brien, William Chambers, Charlie Choiniere, Jamaludin Ahmad, Graham Higgins, Patricio Paez,
Michael Merickel, Eric Ongerth, Niall O’Higgins, Christoph Zwerschke, John Anderson, Atsushi
Odagiri, Kirk Strauser, JD Navarro, Joe Dallago, Savoir-Faire Linux, Lukasz Fidosz, Christopher
Lambacher, Claus Conrad, Chris Beelby, Phil Jenvey and a number of people with only pseudonyms
on GitHub.

Cover Designer: Hugues Laflamme of Kemeneur.
Used with permission:

The Request and Response Objects chapter is adapted, with permission, from documentation
originally written by Ian Bicking.

The Much Ado About Traversal chapter is adapted, with permission, from an article written
by Rob Miller.

The Logging is adapted, with permission, from the Pylons documentation logging chapter,
originally written by Phil Jenvey.

Print Production

The print version of this book was produced using the Sphinx documentation generation system and the
LaTeX typesetting system.

Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries, and other business communications
to Agendaless Consulting. Please send software and other technical queries to the Pylons-devel mailing
list.

http://www.sphinx-doc.org/en/stable/
http://www.latex-project.org/
mailto:webmaster@agendaless.com
https://groups.google.com/forum/#!forum/pylons-devel
https://groups.google.com/forum/#!forum/pylons-devel

HTML Version and Source Code
An HTML version of this book is freely available via http://docs.pylonsproject.org/projects/pyramid/en/
latest/

The source code for the examples used in this book are available within the Pyramid software distribution,
always available via https://github.com/Pylons/pyramid

Typographical Conventions

Literals, filenames, and function arguments are presented using the following style:
argumentl

Warnings which represent limitations and need-to-know information related to a topic or concept are
presented in the following style:

[} .. .
=5 This is a warning.

Notes which represent additional information related to a topic or concept are presented in the following
style:

6 This is a note.

We present Python method names using the following style:
pyramid.config.Configurator.add view()

We present Python class names, module names, attributes, and global variables using the following style:
pyramid.config.Configurator.registry

References to glossary terms are presented using the following style:
Pylons

URLSs are presented using the following style:
Pylons

References to sections and chapters are presented using the following style:
Traversal

Code and configuration file blocks are presented in the following style:

http://docs.pylonsproject.org/projects/pyramid/en/latest/
http://docs.pylonsproject.org/projects/pyramid/en/latest/
https://github.com/Pylons/pyramid
http://www.pylonsproject.org

def foo (abc):
2 pass

Example blocks representing UNIX shell commands are prefixed with a $ character, e.g.:

$ SVENV/bin/py.test -g

See veny for the meaning of $VENV.

Example blocks representing Windows commands are prefixed with a drive letter with an optional direc-
tory name, e.g.:

c:\examples> $VENV3\Scripts\py.test —-g

See veny for the meaning of $VENV$.

When a command that should be typed on one line is too long to fit on a page, the backslash \ is used to
indicate that the following printed line should be part of the command:

SVENV/bin/py.test tutorial/tests.py ——-cov-report term—-missing \
—-—cov=tutorial —-qgq

A sidebar, which presents a concept tangentially related to content discussed on a page, is rendered like
S0:

This is a sidebar

Sidebar information.

When multiple objects are imported from the same package, the following convention is used:

from foo import (
bar,
baz,

)

It may look unusual, but it has advantages:

* It allows one to swap out the higher-level package foo for something else that provides the similar
API. An example would be swapping out one database for another (e.g., graduating from SQLite to
PostgreSQL).

* Looks more neat in cases where a large number of objects get imported from that package.

* Adding or removing imported objects from the package is quicker and results in simpler diffs.

Author Introduction

Welcome to “The Pyramid Web Framework”. In this introduction, I’ll describe the audience for this book,
I’ll describe the book content, I'll provide some context regarding the genesis of Pyramid, and I'll thank
some important people.

I hope you enjoy both this book and the software it documents. I’ve had a blast writing both.

Audience

This book is aimed primarily at a reader that has the following attributes:
* At least a moderate amount of Python experience.
* A familiarity with web protocols such as HTTP and CGI.

If you fit into both of these categories, you’re in the direct target audience for this book. But don’t worry,
even if you have no experience with Python or the web, both are easy to pick up “on the fly”.

Python is an excellent language in which to write applications; becoming productive in Python is almost
mind-blowingly easy. If you already have experience in another language such as Java, Visual Basic, Perl,
Ruby, or even C/C++, learning Python will be a snap; it should take you no longer than a couple of days
to become modestly productive. If you don’t have previous programming experience, it will be slightly
harder, and it will take a little longer, but you’d be hard-pressed to find a better “first language.”

Web technology familiarity is assumed in various places within the book. For example, the book doesn’t
try to define common web-related concepts like “URL” or “query string.” Likewise, the book describes
various interactions in terms of the HTTP protocol, but it does not describe how the HTTP protocol works
in detail. Like any good web framework, though, Pyramid shields you from needing to know most of the
gory details of web protocols and low-level data structures. As a result, you can usually avoid becoming
“blocked” while you read this book even if you don’t yet deeply understand web technologies.

Book Content

This book is divided into four major parts:
Tutorials

Each tutorial builds a sample application or implements a set of concepts with a sample;
it then describes the application or concepts in terms of the sample. You should read the
tutorials if you want a guided tour of Pyramid.

Narrative Documentation

This is documentation which describes Pyramid concepts in narrative form, written in a
largely conversational tone. Each narrative documentation chapter describes an isolated Pyra-
mid concept. You should be able to get useful information out of the narrative chapters if you
read them out-of-order, or when you need only a reminder about a particular topic while
you’re developing an application.

API Documentation

Comprehensive reference material for every public API exposed by Pyramid. The API doc-
umentation is organized alphabetically by module name.

p* Scripts Documentation

p= scripts included with Pyramid.

The Genesis of repoze .bfg

Before the end of 2010, Pyramid was known as repoze.bfg.

I wrote repoze .bfg after many years of writing applications using Zope. Zope provided me with a lot
of mileage: it wasn’t until almost a decade of successfully creating applications using it that I decided
to write a different web framework. Although repoze.bfg takes inspiration from a variety of web
frameworks, it owes more of its core design to Zope than any other.

The Repoze “brand” existed before repoze.bfg was created. One of the first packages developed as
part of the Repoze brand was a package named repoze. zope2. This was a package that allowed Zope
2 applications to run under a WSGI server without modification. Zope 2 did not have reasonable WSGI
support at the time.

During the development of the repoze . zope2 package, I found that replicating the Zope 2 “publisher”
— the machinery that maps URLs to code — was time-consuming and fiddly. Zope 2 had evolved over
many years, and emulating all of its edge cases was extremely difficult. I finished the repoze. zope?2
package, and it emulates the normal Zope 2 publisher pretty well. But during its development, it became
clear that Zope 2 had simply begun to exceed my tolerance for complexity, and I began to look around for
simpler options.

I considered using the Zope 3 application server machinery, but it turned out that it had become more
indirect than the Zope 2 machinery it aimed to replace, which didn’t fulfill the goal of simplification. I
also considered using Django and Pylons, but neither of those frameworks offer much along the axes of
traversal, contextual declarative security, or application extensibility; these were features I had become
accustomed to as a Zope developer.

I decided that in the long term, creating a simpler framework that retained features I had become accus-
tomed to when developing Zope applications was a more reasonable idea than continuing to use any Zope
publisher or living with the limitations and unfamiliarities of a different framework. The result is what is
now Pyramid.

The Genesis of Pyramid

What was repoze.bfg has become Pyramid as the result of a coalition built between the Repoze and
Pylons community throughout the year 2010. By merging technology, we’re able to reduce duplication
of effort, and take advantage of more of each others’ technology.

Thanks

This book is dedicated to my grandmother, who gave me my first typewriter (a Royal), and my mother,
who bought me my first computer (a VIC-20).

Thanks to the following people for providing expertise, resources, and software. Without the help of
these folks, neither this book nor the software which it details would exist: Paul Everitt, Tres Seaver,
Andrew Sawyers, Malthe Borch, Carlos de la Guardia, Chris Rossi, Shane Hathaway, Daniel Holth,
Wichert Akkerman, Georg Brandl, Blaise Laflamme, Ben Bangert, Casey Duncan, Hugues Laflamme,
Mike Orr, John Shipman, Chris Beelby, Patricio Paez, Simon Oram, Nat Hardwick, Ian Bicking, Jim
Fulton, Michael Merickel, Tom Moroz of the Open Society Institute, and Todd Koym of Environmental
Health Sciences.

Thanks to Guido van Rossum and Tim Peters for Python.

Special thanks to Tricia for putting up with me.

Defending Pyramid’s Design

From time to time, challenges to various aspects of Pyramid design are lodged. To give context to dis-
cussions that follow, we detail some of the design decisions and trade-offs here. In some cases, we
acknowledge that the framework can be made better and we describe future steps which will be taken to
improve it. In others we just file the challenge as noted, as obviously you can’t please everyone all of the
time.

Pyramid Provides More Than One Way to Do It

A canon of Python popular culture is “TIOOWTDI” (“there is only one way to do it”, a slighting, tongue-
in-cheek reference to Perl’s “TIMTOWTDI”, which is an acronym for “there is more than one way to do
it”).

Pyramid is, for better or worse, a “TIMTOWTDI” system. For example, it includes more than one way to
resolve a URL to a view callable: via url dispatch or traversal. Multiple methods of configuration exist:
imperative configuration, configuration decoration, and ZCML (optionally via pyramid_zcml). It works
with multiple different kinds of persistence and templating systems. And so on. However, the existence
of most of these overlapping ways to do things are not without reason and purpose: we have a number
of audiences to serve, and we believe that TIMTOWTDI at the web framework level actually prevents a
much more insidious and harmful set of duplication at higher levels in the Python web community.

Pyramid began its life as repoze.bfg, written by a team of people with many years of prior Zope
experience. The idea of traversal and the way view lookup works was stolen entirely from Zope. The
authorization subsystem provided by Pyramid is a derivative of Zope’s. The idea that an application can
be extended without forking is also a Zope derivative.

Implementations of these features were required to allow the Pyramid authors to build the bread-and-
butter CMS-type systems for customers in the way in which they were accustomed. No other system,
save for Zope itself, had such features, and Zope itself was beginning to show signs of its age. We were
becoming hampered by consequences of its early design mistakes. Zope’s lack of documentation was
also difficult to work around. It was hard to hire smart people to work on Zope applications because there
was no comprehensive documentation set which explained “it all” in one consumable place, and it was
too large and self-inconsistent to document properly. Before repoze . bfg went under development, its
authors obviously looked around for other frameworks that fit the bill. But no non-Zope framework did.
So we embarked on building repoze.bfg.

As the result of our research, however, it became apparent that, despite the fact that no one framework
had all the features we required, lots of existing frameworks had good, and sometimes very compelling
ideas. In particular, URL dispatch is a more direct mechanism to map URLSs to code.

So, although we couldn’t find a framework, save for Zope, that fit our needs, and while we incorporated
a lot of Zope ideas into BFG, we also emulated the features we found compelling in other frameworks
(such as url dispatch). After the initial public release of BFG, as time went on, features were added to
support people allergic to various Zope-isms in the system, such as the ability to configure the application
using imperative configuration and configuration decoration, rather than solely using ZCML, and the
elimination of the required use of interface objects. It soon became clear that we had a system that was
very generic, and was beginning to appeal to non-Zope users as well as ex-Zope users.

As the result of this generalization, it became obvious BFG shared 90% of its feature set with the feature
set of Pylons 1, and thus had a very similar target market. Because they were so similar, choosing between
the two systems was an exercise in frustration for an otherwise non-partisan developer. It was also strange
for the Pylons and BFG development communities to be in competition for the same set of users, given
how similar the two frameworks were. So the Pylons and BFG teams began to work together to form a
plan to merge. The features missing from BFG (notably view handler classes, flash messaging, and other
minor missing bits), were added to provide familiarity to ex-Pylons users. The result is Pyramid.

The Python web framework space is currently notoriously balkanized. We’re truly hoping that the amal-
gamation of components in Pyramid will appeal to at least two currently very distinct sets of users: Pylons
and BFG users. By unifying the best concepts from Pylons and BFG into a single codebase, and leaving
the bad concepts from their ancestors behind, we’ll be able to consolidate our efforts better, share more
code, and promote our efforts as a unit rather than competing pointlessly. We hope to be able to shortcut
the pack mentality which results in a much larger duplication of effort, represented by competing but
incredibly similar applications and libraries, each built upon a specific low level stack that is incompatible
with the other. We’ll also shrink the choice of credible Python web frameworks down by at least one.
We’re also hoping to attract users from other communities (such as Zope’s and TurboGears’) by provid-
ing the features they require, while allowing enough flexibility to do things in a familiar fashion. Some
overlap of functionality to achieve these goals is expected and unavoidable, at least if we aim to prevent
pointless duplication at higher levels. If we’ve done our job well enough, the various audiences will be
able to coexist and cooperate rather than firing at each other across some imaginary web framework DMZ.

Pyramid Uses a Zope Component Architecture (“ZCA”) Registry

Pyramid uses a Zope Component Architecture (ZCA) “component registry” as its application registry
under the hood. This is a point of some contention. Pyramid is of a Zope pedigree, so it was natural for
its developers to use a ZCA registry at its inception. However, we understand that using a ZCA registry
has issues and consequences, which we’ve attempted to address as best we can. Here’s an introspection
about Pyramid use of a ZCA registry, and the trade-offs its usage involves.

Problems

The global API that may be used to access data in a ZCA component registry is not particularly pretty
or intuitive, and sometimes it’s just plain obtuse. Likewise, the conceptual load on a casual source code
reader of code that uses the ZCA global API is somewhat high. Consider a ZCA neophyte reading the
code that performs a typical “unnamed utility”” lookup using the zope . component .getUtility ()
global APIL:

from pyramid.interfaces import ISettings
from zope.component import getUtility
settings = getUtility (ISettings)

)

w

After this code runs, settings will be a Python dictionary. But it’s unlikely that any civilian would
know that just by reading the code. There are a number of comprehension issues with the bit of code
above that are obvious.

First, what’s a “utility”? Well, for the purposes of this discussion, and for the purpose of the code above,
it’s just not very important. If you really want to know, you can read this. However, still, readers of such
code need to understand the concept in order to parse it. This is problem number one.

Second, what’s this ISettings thing? It’s an interface. Is that important here? Not really, we’re just
using it as a key for some lookup based on its identity as a marker: it represents an object that has the
dictionary API, but that’s not very important in this context. That’s problem number two.

Third of all, what does the getUtility function do? It’s performing a lookup for the ISettings
“utility” that should return... well, a utility. Note how we’ve already built up a dependency on the
understanding of an interface and the concept of “utility” to answer this question: a bad sign so far. Note
also that the answer is circular, a really bad sign.

Fourth, where does get Ut 11ity look to get the data? Well, the “component registry” of course. What’s
a component registry? Problem number four.

Fifth, assuming you buy that there’s some magical registry hanging around, where is this registry? Hom-
ina homina... “around”? That’s sort of the best answer in this context (a more specific answer would
require knowledge of internals). Can there be more than one registry? Yes. So in which registry does
it find the registration? Well, the “current” registry of course. In terms of Pyramid, the current registry
is a thread local variable. Using an API that consults a thread local makes understanding how it works
non-local.

You’ve now bought in to the fact that there’s a registry that is just hanging around. But how does the
registry get populated? Why, via code that calls directives like config.add_view. In this particular
case, however, the registration of ISettings is made by the framework itself under the hood: it’s not
present in any user configuration. This is extremely hard to comprehend. Problem number six.

Clearly there’s some amount of cognitive load here that needs to be borne by a reader of code that extends
the Pyramid framework due to its use of the ZCA, even if they are already an expert Python programmer
and an expert in the domain of web applications. This is suboptimal.

10

http://zopecomponent.readthedocs.io/en/latest/api/utility.html#zope.component.getUtility
http://muthukadan.net/docs/zca.html#utility

Ameliorations

First, the primary amelioration: Pyramid does not expect application developers to understand ZCA con-
cepts or any of its APIs. If an application developer needs to understand a ZCA concept or API during
the creation of a Pyramid application, we’ve failed on some axis.

Instead the framework hides the presence of the ZCA registry behind special-purpose API functions that
do use ZCA APIs. Take for example the pyramid. security.authenticated_userid function,
which returns the userid present in the current request or None if no userid is present in the current
request. The application developer calls it like so:

from pyramid.security import authenticated_userid
userid = authenticated_userid(request)

)

They now have the current user id.

Under its hood however, the implementation of authenticated_useridis this:

1 |def authenticated_userid(request) :

2 """ Return the userid of the currently authenticated user or

3 ""None ' 1if there is no authentication policy in effect or there
4 is no currently authenticated user. """

5

6 registry = request.registry # the ZCA component registry

7 policy = registry.queryUtility (IAuthenticationPolicy)

8 if policy is None:

9 return None

10 return policy.authenticated_userid(request)

Using such wrappers, we strive to always hide the ZCA API from application developers. Application
developers should just never know about the ZCA API; they should call a Python function with some
object germane to the domain as an argument, and it should return a result. A corollary that follows is that
any reader of an application that has been written using Pyramid needn’t understand the ZCA API either.

Hiding the ZCA API from application developers and code readers is a form of enhancing domain speci-
ficity. No application developer wants to need to understand the small, detailed mechanics of how a web
framework does its thing. People want to deal in concepts that are closer to the domain they’re working
in. For example, web developers want to know about users, not utilities. Pyramid uses the ZCA as an
implementation detail, not as a feature which is exposed to end users.

However, unlike application developers, framework developers, including people who want to override
Pyramid functionality via preordained framework plugpoints like traversal or view lookup, must under-
stand the ZCA registry APIL

11

Pyramid framework developers were so concerned about conceptual load issues of the ZCA registry
API that a replacement registry implementation named repoze.component was actually developed.
Though this package has a registry implementation which is fully functional and well-tested, and its API
is much nicer than the ZCA registry API, work on it was largely abandoned, and it is not used in Pyramid.
We continued to use a ZCA registry within Pyramid because it ultimately proved a better fit.

O We continued using ZCA registry rather than disusing it in favor of using the registry implementation
in repoze.component largely because the ZCA concept of interfaces provides for use of an interface
hierarchy, which is useful in a lot of scenarios (such as context type inheritance). Coming up with a
marker type that was something like an interface that allowed for this functionality seemed like it was just
reinventing the wheel.

Making framework developers and extenders understand the ZCA registry API is a trade-off. We (the
Pyramid developers) like the features that the ZCA registry gives us, and we have long-ago borne the
weight of understanding what it does and how it works. The authors of Pyramid understand the ZCA
deeply and can read code that uses it as easily as any other code.

But we recognize that developers who might want to extend the framework are not as comfortable with
the ZCA registry API as the original developers. So for the purpose of being kind to third-party Pyramid
framework developers, we’ve drawn some lines in the sand.

In all core code, we’ve made use of ZCA global API functions, such as zope.component.
getUtility and zope.component .getAdapter, the exception instead of the rule. So instead
of:

from pyramid.interfaces import IAuthenticationPolicy
from zope.component import getUtility
policy = getUtility (IAuthenticationPolicy)

[P R

Pyramid code will usually do:

1 | from pyramid.interfaces import TAuthenticationPolicy
2 | from pyramid.threadlocal import get_current_registry
3| registry = get_current_registry ()

4|policy = registry.getUtility (IAuthenticationPolicy)

While the latter is more verbose, it also arguably makes it more obvious what’s going on. All of the
Pyramid core code uses this pattern rather than the ZCA global API.

12

https://github.com/repoze/repoze.component

Rationale

Here are the main rationales involved in the Pyramid decision to use the ZCA registry:

History. A nontrivial part of the answer to this question is “history”’. Much of the design of Pyramid
is stolen directly from Zope. Zope uses the ZCA registry to do a number of tricks. Pyramid mimics
these tricks, and, because the ZCA registry works well for that set of tricks, Pyramid uses it for the
same purposes. For example, the way that Pyramid maps a request to a view callable using traversal
is lifted almost entirely from Zope. The ZCA registry plays an important role in the particulars of
how this request to view mapping is done.

Features. The ZCA component registry essentially provides what can be considered something like
a superdictionary, which allows for more complex lookups than retrieving a value based on a single
key. Some of this lookup capability is very useful for end users, such as being able to register a
view that is only found when the context is some class of object, or when the context implements
some interface.

Singularity. There’s only one place where “application configuration” lives in a Pyramid appli-
cation: in a component registry. The component registry answers questions made to it by the
framework at runtime based on the configuration of an application. Note: “an application” is not
the same as “a process”’; multiple independently configured copies of the same Pyramid application
are capable of running in the same process space.

Composability. A ZCA component registry can be populated imperatively, or there’s an existing
mechanism to populate a registry via the use of a configuration file (ZCML, via the optional pyra-
mid_zcml package). We didn’t need to write a frontend from scratch to make use of configuration-
file-driven registry population.

Pluggability. Use of the ZCA registry allows for framework extensibility via a well-defined and
widely understood plugin architecture. As long as framework developers and extenders understand
the ZCA registry, it’s possible to extend Pyramid almost arbitrarily. For example, it’s relatively
easy to build a directive that registers several views all at once, allowing app developers to use that
directive as a “macro” in code that they write. This is somewhat of a differentiating feature from
other (non-Zope) frameworks.

Testability. Judicious use of the ZCA registry in framework code makes testing that code slightly
easier. Instead of using monkeypatching or other facilities to register mock objects for testing, we
inject dependencies via ZCA registrations, then use lookups in the code to find our mock objects.

Speed. The ZCA registry is very fast for a specific set of complex lookup scenarios that Pyramid
uses, having been optimized through the years for just these purposes. The ZCA registry contains
optional C code for this purpose which demonstrably has no (or very few) bugs.

Ecosystem. Many existing Zope packages can be used in Pyramid with few (or no) changes due to
our use of the ZCA registry.

13

Conclusion

If you only develop applications using Pyramid, there’s not much to complain about here. You just should
never need to understand the ZCA registry API; use documented Pyramid APIs instead. However, you
may be an application developer who doesn’t read API documentation. Instead you read the raw source
code, and because you haven’t read the API documentation, you don’t know what functions, classes, and
methods even form the Pyramid API. As a result, you’ve now written code that uses internals, and you’ve
painted yourself into a conceptual corner, needing to wrestle with some ZCA-using implementation detail.
If this is you, it’s extremely hard to have a lot of sympathy for you. You’ll either need to get familiar
with how we’re using the ZCA registry or you’ll need to use only the documented APIs; that’s why we
document them as APIs.

If you extend or develop Pyramid (create new directives, use some of the more obscure hooks as described
in Using Hooks, or work on the Pyramid core code), you will be faced with needing to understand at least
some ZCA concepts. In some places it’s used unabashedly, and will be forever. We know it’s quirky, but
it’s also useful and fundamentally understandable if you take the time to do some reading about it.

Pyramid “Encourages Use of ZCML”

ZCML is a configuration language that can be used to configure the Zope Component Architecture registry
that Pyramid uses for application configuration. Often people claim that Pyramid “needs ZCML”.

It doesn’t. In Pyramid 1.0, ZCML doesn’t ship as part of the core; instead it ships in the pyramid_zcml
add-on package, which is completely optional. No ZCML is required at all to use Pyramid, nor any other
sort of frameworky declarative frontend to application configuration.

Pyramid Does Traversal, and | Don’t Like Traversal

In Pyramid, traversal is the act of resolving a URL path to a resource object in a resource tree. Some
people are uncomfortable with this notion, and believe it is wrong. Thankfully if you use Pyramid and
you don’t want to model your application in terms of a resource tree, you needn’t use it at all. Instead use
URL dispatch to map URL paths to views.

The idea that some folks believe traversal is unilaterally wrong is understandable. The people who believe
it is wrong almost invariably have all of their data in a relational database. Relational databases aren’t
naturally hierarchical, so traversing one like a tree is not possible.

However, folks who deem traversal unilaterally wrong are neglecting to take into account that many

persistence mechanisms are hierarchical. Examples include a filesystem, an LDAP database, a ZODB
(or another type of graph) database, an XML document, and the Python module namespace. It is often

14

convenient to model the frontend to a hierarchical data store as a graph, using traversal to apply views to
objects that either are the resources in the tree being traversed (such as in the case of ZODB) or at least
ones which stand in for them (such as in the case of wrappers for files from the filesystem).

Also, many website structures are naturally hierarchical, even if the data which drives them isn’t. For
example, newspaper websites are often extremely hierarchical: sections within sections within sections,
ad infinitum. If you want your URLSs to indicate this structure, and the structure is indefinite (the number
of nested sections can be “N” instead of some fixed number), a resource tree is an excellent way to model
this, even if the backend is a relational database. In this situation, the resource tree is just a site structure.

Traversal also offers better composability of applications than URL dispatch, because it doesn’t rely on
a fixed ordering of URL matching. You can compose a set of disparate functionality (and add to it later)
around a mapping of view to resource more predictably than trying to get the right ordering of URL
pattern matching.

But the point is ultimately moot. If you don’t want to use traversal, you needn’t. Use URL dispatch
instead.

Pyramid Does URL Dispatch, and | Don’t Like URL Dispatch

In Pyramid, url dispatch is the act of resolving a URL path to a view callable by performing pattern
matching against some set of ordered route definitions. The route definitions are examined in order: the
first pattern which matches is used to associate the URL with a view callable.

Some people are uncomfortable with this notion, and believe it is wrong. These are usually people who
are steeped deeply in Zope. Zope does not provide any mechanism except traversal to map code to URLs.
This is mainly because Zope effectively requires use of ZODB, which is a hierarchical object store. Zope
also supports relational databases, but typically the code that calls into the database lives somewhere in
the ZODB object graph (or at least is a view related to a node in the object graph), and traversal is required
to reach this code.

I’ll argue that URL dispatch is ultimately useful, even if you want to use traversal as well. You
can actually combine URL dispatch and traversal in Pyramid (see Combining Traversal and URL
Dispatch). One example of such a usage: if you want to emulate something like Zope 2’s “Zope
Management Interface” Ul on top of your object graph (or any administrative interface), you can
register a route like config.add_route ('manage', '/manage/xtraverse') and then as-
sociate “management” views in your code by using the route_name argument to a view con-
ﬁguration, e.g, config.add_view('.some.callable', context=".some.Resource",
route_name="'manage"'). If you wire things up this way, someone then walks up to, for example,
/manage/obl/ob2, they might be presented with a management interface, but walking up to /ob1/
ob2 would present them with the default object view. There are other tricks you can pull in these hybrid
configurations if you’re clever (and maybe masochistic) too.

15

Also, if you are a URL dispatch hater, if you should ever be asked to write an application that must use
some legacy relational database structure, you might find that using URL dispatch comes in handy for
one-off associations between views and URL paths. Sometimes it’s just pointless to add a node to the
object graph that effectively represents the entry point for some bit of code. You can just use a route and
be done with it. If a route matches, a view associated with the route will be called. If no route matches,
Pyramid falls back to using traversal.

But the point is ultimately moot. If you use Pyramid, and you really don’t want to use URL dispatch, you
needn’t use it at all. Instead, use traversal exclusively to map URL paths to views, just like you do in
Zope.

Pyramid Views Do Not Accept Arbitrary Keyword Arguments

Many web frameworks (Zope, TurboGears, Pylons 1.X, Django) allow for their variant of a view callable
to accept arbitrary keyword or positional arguments, which are filled in using values present in the
request .POST, request .GET, or route match dictionaries. For example, a Django view will ac-
cept positional arguments which match information in an associated “urlconf” such as r ' “polls/ (?
P<poll_id>\d+)/$:

def aview(request, poll_id):
return HttpResponse (poll_id)

S}

Zope likewise allows you to add arbitrary keyword and positional arguments to any method of a resource
object found via traversal:

from persistent import Persistent

class MyZopeObject (Persistent) :
def aview(self, a, b, c=None):

)

return ' "% (a, b, <)

noE W o =

When this method is called as the result of being the published callable, the Zope request object’s GET and
POST namespaces are searched for keys which match the names of the positional and keyword arguments
in the request, and the method is called (if possible) with its argument list filled with values mentioned
therein. TurboGears and Pylons 1.X operate similarly.

Out of the box, Pyramid is configured to have none of these features. By default Pyramid view callables
always accept only request and no other arguments. The rationale is, this argument specification
matching when done aggressively can be costly, and Pyramid has performance as one of its main goals.
Therefore we’ve decided to make people, by default, obtain information by interrogating the request

16

object within the view callable body instead of providing magic to do unpacking into the view argument
list.

However, as of Pyramid 1.0a9, user code can influence the way view callables are expected to be called,

making it possible to compose a system out of view callables which are called with arbitrary arguments.
See Using a View Mapper.

Pyramid Provides Too Few “Rails”

By design, Pyramid is not a particularly opinionated web framework. It has a relatively parsimonious fea-
ture set. It contains no built in ORM nor any particular database bindings. It contains no form generation
framework. It has no administrative web user interface. It has no built in text indexing. It does not dictate
how you arrange your code.

Such opinionated functionality exists in applications and frameworks built on top of Pyramid. It’s in-
tended that higher-level systems emerge built using Pyramid as a base.

See also:

See also Pyramid Applications Are Extensible; I Don’t Believe in Application Extensibility.

Pyramid Provides Too Many “Rails”

Pyramid provides some features that other web frameworks do not. These are features meant for use cases
that might not make sense to you if you’re building a simple bespoke web application:

* An optional way to map URLSs to code using traversal which implies a walk of a resource tree.

* The ability to aggregate Pyramid application configuration from multiple sources using pyramid.
config.Configurator.include().

* View and subscriber registrations made using inferface objects instead of class objects (e.g., Using
Resource Interfaces in View Configuration).

* A declarative authorization system.

* Multiple separate 118N translation string factories, each of which can name its own domain.

17

These features are important to the authors of Pyramid. The Pyramid authors are often commissioned
to build CMS-style applications. Such applications are often frameworky because they have more than
one deployment. Each deployment requires a slightly different composition of sub-applications, and the
framework and sub-applications often need to be extensible. Because the application has more than one
deployment, pluggability and extensibility is important, as maintaining multiple forks of the application,
one per deployment, is extremely undesirable. Because it’s easier to extend a system that uses traversal
from the outside than it is to do the same in a system that uses URL dispatch, each deployment uses
a resource tree composed of a persistent tree of domain model objects, and uses traversal to map view
callable code to resources in the tree. The resource tree contains very granular security declarations, as
resources are owned and accessible by different sets of users. Interfaces are used to make unit testing and
implementation substitutability easier.

In a bespoke web application, usually there’s a single canonical deployment, and therefore no possibil-
ity of multiple code forks. Extensibility is not required; the code is just changed in place. Security
requirements are often less granular. Using the features listed above will often be overkill for such an
application.

If you don’t like these features, it doesn’t mean you can’t or shouldn’t use Pyramid. They are all optional,
and a lot of time has been spent making sure you don’t need to know about them up front. You can build
“Pylons 1.X style” applications using Pyramid that are purely bespoke by ignoring the features above.
You may find these features handy later after building a bespoke web application that suddenly becomes
popular and requires extensibility because it must be deployed in multiple locations.

Pyramid Is Too Big

“The Pyramid compressed tarball is larger than 2MB. It must beenormous!”

No. We just ship it with docs, test code, and scaffolding. Here’s a breakdown of what’s included in
subdirectories of the package tree:

docs/
3.6MB
pyramid/tests/
1.3MB
pyramid/scaffolds/
133KB
pyramid/ (except for pyramid/tests and pyramid/scaffolds)
812KB

Of the approximately 34K lines of Python code in the package, the code that actually has a chance of exe-
cuting during normal operation, excluding tests and scaffolding Python files, accounts for approximately
10K lines.

18

Pyramid Has Too Many Dependencies

Over time, we’ve made lots of progress on reducing the number of packaging dependencies Pyramid has
had. Pyramid 1.2 had 15 of them. Pyramid 1.3 and 1.4 had 12 of them. The current release as of this
writing, Pyramid 1.5, has only 7. This number is unlikely to become any smaller.

A port to Python 3 completed in Pyramid 1.3 helped us shed a good number of dependencies by forcing
us to make better packaging decisions. Removing Chameleon and Mako templating system dependencies
in the Pyramid core in 1.5 let us shed most of the remainder of them.

Pyramid “Cheats” to Obtain Speed

Complaints have been lodged by other web framework authors at various times that Pyramid “cheats”
to gain performance. One claimed cheating mechanism is our use (transitively) of the C extensions
provided by zope . interface to do fast lookups. Another claimed cheating mechanism is the religious
avoidance of extraneous function calls.

If there’s such a thing as cheating to get better performance, we want to cheat as much as possible. We
optimize Pyramid aggressively. This comes at a cost. The core code has sections that could be expressed
with more readability. As an amelioration, we’ve commented these sections liberally.

Pyramid Gets Its Terminology Wrong (“MVC”)

“I’'m a MVC web framework user, and I’'m confused. Pyramid calls the controller a view! And it doesn’t
have any controllers.”

If you are in this camp, you might have come to expect things about how your existing “MVC” framework
uses its terminology. For example, you probably expect that models are ORM models, controllers are
classes that have methods that map to URLs, and views are templates. Pyramid indeed has each of these
concepts, and each probably works almost exactly like your existing “MVC” web framework. We just
don’t use the MVC terminology, as we can’t square its usage in the web framework space with historical
reality.

People very much want to give web applications the same properties as common desktop GUI platforms
by using similar terminology, and to provide some frame of reference for how various components in the
common web framework might hang together. But in the opinion of the author, “MVC” doesn’t match

the web very well in general. Quoting from the Model-View-Controller Wikipedia entry:

Though MVC comes in different flavors, control flow is generally as follows:

19

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

The user interacts with the user interface in some way (for example, presses a
mouse button).

The controller handles the input event from the user interface, often via a reg-
istered handler or callback and converts the event into appropriate user action,
understandable for the model.

The controller notifies the model of the user action, possibly resulting in a change
in the model’s state. (For example, the controller updates the user’s shopping
cart.)[5]

A view queries the model in order to generate an appropriate user interface (for
example, the view lists the shopping cart’s contents). Note that the view gets its
own data from the model.

The controller may (in some implementations) issue a general instruction to the
view to render itself. In others, the view is automatically notified by the model of
changes in state (Observer) which require a screen update.

The user interface waits for further user interactions, which restarts the cycle.

To the author, it seems as if someone edited this Wikipedia definition, tortuously couching concepts in the
most generic terms possible in order to account for the use of the term “MVC” by current web frameworks.
I doubt such a broad definition would ever be agreed to by the original authors of the MVC pattern. But
even so, it seems most MVC web frameworks fail to meet even this falsely generic definition.

For example, do your templates (views) always query models directly as is claimed in “note that the view
gets its own data from the model”? Probably not. My “controllers” tend to do this, massaging the data
for easier use by the “view” (template). What do you do when your “controller” returns JSON? Do your
controllers use a template to generate JSON? If not, what’s the “view” then? Most MVC-style GUI web
frameworks have some sort of event system hooked up that lets the view detect when the model changes.
The web just has no such facility in its current form; it’s effectively pull-only.

So, in the interest of not mistaking desire with reality, and instead of trying to jam the square peg that is
the web into the round hole of “MVC”, we just punt and say there are two things: resources and views.
The resource tree represents a site structure, the view presents a resource. The templates are really just an
implementation detail of any given view. A view doesn’t need a template to return a response. There’s no
“controller”; it just doesn’t exist. The “model” is either represented by the resource tree or by a “domain
model” (like an SQLAIchemy model) that is separate from the framework entirely. This seems to us like
more reasonable terminology, given the current constraints of the web.

20

Pyramid Applications Are Extensible; | Don’t Believe in Application Extensibility

Any Pyramid application written obeying certain constraints is extensible. This feature is discussed in
the Pyramid documentation chapters named Extending an Existing Pyramid Application and Advanced
Configuration. It is made possible by the use of the Zope Component Architecture within Pyramid.

“Extensible” in this context means:

* The behavior of an application can be overridden or extended in a particular deployment of the
application without requiring that the deployer modify the source of the original application.

» The original developer is not required to anticipate any extensibility plug points at application
creation time to allow fundamental application behavior to be overridden or extended.

* The original developer may optionally choose to anticipate an application-specific set of plug
points, which may be hooked by a deployer. If they choose to use the facilities provided by the
ZCA, the original developer does not need to think terribly hard about the mechanics of introduc-
ing such a plug point.

Many developers seem to believe that creating extensible applications is not worth it. They instead sug-
gest that modifying the source of a given application for each deployment to override behavior is more
reasonable. Much discussion about version control branching and merging typically ensues.

It’s clear that making every application extensible isn’t required. The majority of web applications only
have a single deployment, and thus needn’t be extensible at all. However some web applications have
multiple deployments, and others have many deployments. For example, a generic content management
system (CMS) may have basic functionality that needs to be extended for a particular deployment. That
CMS may be deployed for many organizations at many places. Some number of deployments of this CMS
may be deployed centrally by a third party and managed as a group. It’s easier to be able to extend such
a system for each deployment via preordained plug points than it is to continually keep each software
branch of the system in sync with some upstream source. The upstream developers may change code in
such a way that your changes to the same codebase conflict with theirs in fiddly, trivial ways. Merging
such changes repeatedly over the lifetime of a deployment can be difficult and time consuming, and it’s
often useful to be able to modify an application for a particular deployment in a less invasive way.

If you don’t want to think about Pyramid application extensibility at all, you needn’t. You can ignore
extensibility entirely. However if you follow the set of rules defined in Extending an Existing Pyramid
Application, you don’t need to make your application extensible. Any application you write in the frame-
work just is automatically extensible at a basic level. The mechanisms that deployers use to extend it
will be necessarily coarse. Typically views, routes, and resources will be capable of being overridden.
But for most minor (and even some major) customizations, these are often the only override plug points
necessary. If the application doesn’t do exactly what the deployment requires, it’s often possible for a
deployer to override a view, route, or resource, and quickly make it do what they want it to do in ways
not necessarily anticipated by the original developer. Here are some example scenarios demonstrating
the benefits of such a feature.

21

* If a deployment needs a different styling, the deployer may override the main template and the CSS
in a separate Python package which defines overrides.

« If a deployment needs an application page to do something differently, or to expose more or differ-
ent information, the deployer may override the view that renders the page within a separate Python
package.

« If a deployment needs an additional feature, the deployer may add a view to the override package.

As long as the fundamental design of the upstream package doesn’t change, these types of modifications
often survive across many releases of the upstream package without needing to be revisited.

Extending an application externally is not a panacea, and carries a set of risks similar to branching and
merging. Sometimes major changes upstream will cause you to revisit and update some of your modifica-
tions. But you won’t regularly need to deal with meaningless textual merge conflicts that trivial changes
to upstream packages often entail when it comes time to update the upstream package, because if you
extend an application externally, there just is no textual merge done. Your modifications will also, for
whatever it’s worth, be contained in one, canonical, well-defined place.

Branching an application and continually merging in order to get new features and bug fixes is clearly
useful. You can do that with a Pyramid application just as usefully as you can do it with any application.
But deployment of an application written in Pyramid makes it possible to avoid the need for this even if
the application doesn’t define any plug points ahead of time. It’s possible that promoters of competing
web frameworks dismiss this feature in favor of branching and merging because applications written in
their framework of choice aren’t extensible out of the box in a comparably fundamental way.

While Pyramid applications are fundamentally extensible even if you don’t write them with specific ex-
tensibility in mind, if you’re moderately adventurous, you can also take it a step further. If you learn more
about the Zope Component Architecture, you can optionally use it to expose other more domain-specific
configuration plug points while developing an application. The plug points you expose needn’t be as
coarse as the ones provided automatically by Pyramid itself. For example, you might compose your own
directive that configures a set of views for a pre-baked purpose (e.g., restview or somesuch), allowing
other people to refer to that directive when they make declarations in the includeme of their customiza-
tion package. There is a cost for this: the developer of an application that defines custom plug points for
its deployers will need to understand the ZCA or they will need to develop their own similar extensibility
system.

Ultimately any argument about whether the extensibility features lent to applications by Pyramid are
good or bad is mostly pointless. You needn’t take advantage of the extensibility features provided by a
particular Pyramid application in order to affect a modification for a particular set of its deployments.
You can ignore the application’s extensibility plug points entirely, and use version control branching and
merging to manage application deployment modifications instead, as if you were deploying an application
written using any other web framework.

22

Zope 3 Enforces “TTW” Authorization Checks by Default; Pyramid Does Not

Challenge

Pyramid performs automatic authorization checks only at view execution time. Zope 3 wraps context
objects with a security proxy, which causes Zope 3 also to do security checks during attribute access. I
like this, because it means:

1. When I use the security proxy machinery, I can have a view that conditionally displays certain
HTML elements (like form fields) or prevents certain attributes from being modified depending on
the permissions that the accessing user possesses with respect to a context object.

2. I want to also expose my resources via a REST API using Twisted Web. If Pyramid performed au-
thorization based on attribute access via Zope3’s security proxies, I could enforce my authorization
policy in both Pyramid and in the Twisted-based system the same way.

Defense

Pyramid was developed by folks familiar with Zope 2, which has a “through the web” security model.
This TTW security model was the precursor to Zope 3’s security proxies. Over time, as the Pyramid
developers (working in Zope 2) created such sites, we found authorization checks during code interpreta-
tion extremely useful in a minority of projects. But much of the time, TTW authorization checks usually
slowed down the development velocity of projects that had no delegation requirements. In particular, if
we weren’t allowing untrusted users to write arbitrary Python code to be executed by our application, the
burden of through the web security checks proved too costly to justify. We (collectively) haven’t written
an application on top of which untrusted developers are allowed to write code in many years, so it seemed
to make sense to drop this model by default in a new web framework.

And since we tend to use the same toolkit for all web applications, it’s just never been a concern to be
able to use the same set of restricted-execution code under two different web frameworks.

Justifications for disabling security proxies by default notwithstanding, given that Zope 3 security proxies
are viral by nature, the only requirement to use one is to make sure you wrap a single object in a security
proxy and make sure to access that object normally when you want proxy security checks to happen. It
is possible to override the Pyramid traverser for a given application (see Changing the Traverser). To get
Zope3-like behavior, it is possible to plug in a different traverser which returns Zope3-security-proxy-
wrapped objects for each traversed object (including the context and the root). This would have the effect
of creating a more Zope3-like environment without much effort.

23

Pyramid uses its own HTTP exception class hierarchy rather than webob . exc

New in version 1.1.

The HTTP exception classes defined in pyramid. httpexceptions are very much like the ones
defined in webob . exc, (e.g., HTTPNotFound or HTTPForbidden). They have the same names and
largely the same behavior, and all have a very similar implementation, but not the same identity. Here’s
why they have a separate identity.

* Making them separate allows the HTTP exception classes to subclass pyramid. response.
Response. This speeds up response generation slightly due to the way the Pyramid router works.
The same speed up could be gained by monkeypatching webob . response .Response, butit’s

usually the case that monkeypatching turns out to be evil and wrong.

e Making them separate allows them to provide alternate __call__ logic, which also speeds up
response generation.

e Making them separate allows the exception classes to provide for the proper value of
RequestClass (pyramid. request.Request).

* Making them separate gives us freedom from thinking about backwards compatibility code present
in webob. exc related to Python 2.4, which we no longer support in Pyramid 1.1+.

* We change the behavior of two classes (HTTPNotFound and HTTPForbidden) in the module
so that they can be used by Pyramid internally for not found and forbidden exceptions.

* Making them separate allows us to influence the docstrings of the exception classes to provide
Pyramid-specific documentation.

* Making them separate allows us to silence a stupid deprecation warning under Python 2.6 when the

response objects are used as exceptions (related to self.message).

Pyramid has simpler traversal machinery than does Zope

Zope’s default traverser:

» Allows developers to mutate the traversal name stack while traversing (they can add and remove
path elements).

* Attempts to use an adaptation to obtain the next element in the path from the currently traversed
object, falling backto __bobo_traverse_ ,_ getitem__,andeventually __getattr_ .

24

http://docs.webob.org/en/latest/api/exceptions.html#module-webob.exc
http://docs.webob.org/en/latest/api/response.html#webob.response.Response
http://docs.webob.org/en/latest/api/exceptions.html#module-webob.exc

Zope’s default traverser allows developers to mutate the traversal name stack during traversal by mutat-
ing REQUEST ['TraversalNameStack']. Pyramid’s default traverser (pyramid.traversal.
ResourceTreeTraverser) does not offer a way to do this. It does not maintain a stack as a request
attribute and, even if it did, it does not pass the request to resource objects while it’s traversing. While it
was handy at times, this feature was abused in frameworks built atop Zope (like CMF and Plone), often
making it difficult to tell exactly what was happening when a traversal didn’t match a view. I felt it was
better for folks that wanted the feature to make them replace the traverser rather than build that particular
honey pot in to the default traverser.

Zope uses multiple mechanisms to attempt to obtain the next element in the resource tree based on a
name. It first tries an adaptation of the current resource to ITraversable, and if that fails, it falls back
to attempting a number of magic methods on the resource (__bobo_traverse_ , ___getitem_
and ___getattr__). My experience while both using Zope and attempting to reimplement its publisher
in repoze. zope?2 led me to believe the following:

» The default traverser should be as simple as possible. Zope’s publisher is somewhat difficult to
follow and replicate due to the fallbacks it tried when one traversal method failed. It is also slow.

* The entire traverser should be replaceable, not just elements of the traversal machinery. Pyramid
has a few big components rather than a plethora of small ones. If the entire traverser is replaceable,
it’s an antipattern to make portions of the default traverser replaceable. Doing so is a “knobs on
knobs” pattern, which is unfortunately somewhat endemic in Zope. In a “knobs on knobs” pattern, a
replaceable subcomponent of a larger component is made configurable using the same configuration
mechanism that can be used to replace the larger component. For example, in Zope, you can replace
the default traverser by registering an adapter. But you can also (or alternately) control how the
default traverser traverses by registering one or more adapters. As a result of being able to either
replace the larger component entirely or turn knobs on the default implementation of the larger
component, no one understands when (or whether) they should ever override the larger component
entrirely. This results, over time, in a rusting together of the larger “replaceable” component and
the framework itself because people come to depend on the availability of the default component
in order just to turn its knobs. The default component effectively becomes part of the framework,
which entirely subverts the goal of making it replaceable. In Pyramid, typically if a component is
replaceable, it will itself have no knobs (it will be solid state). If you want to influence behavior
controlled by that component, you will replace the component instead of turning knobs attached to
the component.

Microframeworks have smaller Hello World programs

Self-described “microframeworks” exist. Bottle and Flask are two that are becoming popular. Bobo
doesn’t describe itself as a microframework, but its intended user base is much the same. Many others
exist. We’ve even (only as a teaching tool, not as any sort of official project) created one using Pyramid.

25

http://bottlepy.org/docs/dev/index.html
http://flask.pocoo.org/
https://bobo.readthedocs.io/en/latest/
http://static.repoze.org/casts/videotags.html

The videos use BFG, a precursor to Pyramid, but the resulting code is available for Pyramid too). Mi-
croframeworks are small frameworks with one common feature: each allows its users to create a fully
functional application that lives in a single Python file.

Some developers and microframework authors point out that Pyramid’s “hello world” single-file program
is longer (by about five lines) than the equivalent program in their favorite microframework. Guilty as
charged.

This loss isn’t for lack of trying. Pyramid is useful in the same circumstance in which microframe-
works claim dominance: single-file applications. But Pyramid doesn’t sacrifice its ability to credibly
support larger applications in order to achieve “hello world” lines of code parity with the current crop of
microframeworks. Pyramid’s design instead tries to avoid some common pitfalls associated with naive
declarative configuration schemes. The subsections which follow explain the rationale.

Application programmers don’t control the module-scope codepath (import-time side-
effects are evil)

Imagine a directory structure with a set of Python files in it:

| -— app.py
|-— app2.py
"—— config.py

The contents of app . py:

1 | from config import decorator
2 | from config import L
3 | import pprint

5 | @decorator

¢ |def fool():

; pass

8

9o |if _ name_ == '__main__':
10 import app2

11 pprint.pprint (L)

The contents of app2 .py:

26

https://github.com/Pylons/groundhog

import app

w

@app.decorator
def bar():
5 pass

=

The contents of config.py:

L= T[]

3 |def decorator (func) :
4 L.append (func)
5 return func

If we cd to the directory that holds these files, and we run python app.py, given the directory struc-
ture and code above, what happens? Presumably, our decorator decorator will be used twice, once
by the decorated function foo in app . py, and once by the decorated function bar in app2 . py. Since
each time the decorator is used, the list L in config.py is appended to, we’d expect a list with two
elements to be printed, right? Sadly, no:

[chrism@thinko]$ python app.py

[<function foo at 0x7fd4eadlablb8>,
<function foo at 0x7fd4eadlab230>,
<function bar at 0x7f4eadlab2a8>]

By visual inspection, that outcome (three different functions in the list) seems impossible. We defined only
two functions, and we decorated each of those functions only once, so we believe that the decorator
decorator will run only twice. However, what we believe is in fact wrong, because the code at module
scope in our app . py module was executed twice. The code is executed once when the script is run as
__main__ (viapython app.py), and then it is executed again when app2 . py imports the same file

as app.

What does this have to do with our comparison to microframeworks? Many microframeworks in the cur-
rent crop (e.g., Bottle and Flask) encourage you to attach configuration decorators to objects defined at
module scope. These decorators execute arbitrarily complex registration code, which populates a single-
ton registry that is a global which is in turn defined in external Python module. This is analogous to the
above example: the “global registry” in the above example is the list L.

Let’s see what happens when we use the same pattern with the Groundhog microframework. Replace the
contents of app . py above with this:

27

https://github.com/Pylons/groundhog

1 | from config import gh

3 |@gh.route('/foo/")

4+ |def fool():

5 return 'foo'

6

7|/i€f name == '__main__ ':
8 import app2

9 pprint.pprint (L)

Replace the contents of app?2 . py above with this:

import app

w

Qapp.gh.route (' /bar/")
def bar():
5 'return bar'

~

Replace the contents of config.py above with this:

from groundhog import Groundhog
2 |gh = Groundhog ('myapp', 'seekrit!')

How many routes will be registered within the routing table of the “gh” Groundhog application? If you
answered three, you are correct. How many would a casual reader (and any sane developer) expect to be
registered? If you answered two, you are correct. Will the double registration be a problem? With our
Groundhog framework’s route method backing this application, not really. It will slow the application
down a little bit, because it will need to miss twice for a route when it does not match. Will it be a problem
with another framework, another application, or another decorator? Who knows. You need to understand
the application in its totality, the framework in its totality, and the chronology of execution to be able to
predict what the impact of unintentional code double-execution will be.

The encouragement to use decorators which perform population of an external registry has an unintended
consequence: the application developer now must assert ownership of every code path that executes
Python module scope code. Module-scope code is presumed by the current crop of decorator-based
microframeworks to execute once and only once. If it executes more than once, weird things will start to
happen. It is up to the application developer to maintain this invariant. Unfortunately, in reality this is an
impossible task, because Python programmers do not own the module scope code path, and never will.
Anyone who tries to sell you on the idea that they do so is simply mistaken. Test runners that you may
want to use to run your code’s tests often perform imports of arbitrary code in strange orders that manifest
bugs like the one demonstrated above. API documentation generation tools do the same. Some people

28

even think it’s safe to use the Python reload command, or delete objects from sys .modules, each of
which has hilarious effects when used against code that has import-time side effects.

Global registry-mutating microframework programmers therefore will at some point need to start read-
ing the tea leaves about what might happen if module scope code gets executed more than once, like we
do in the previous paragraph. When Python programmers assume they can use the module-scope code
path to run arbitrary code (especially code which populates an external registry), and this assumption is
challenged by reality, the application developer is often required to undergo a painful, meticulous debug-
ging process to find the root cause of an inevitably obscure symptom. The solution is often to rearrange
application import ordering, or move an import statement from module-scope into a function body. The
rationale for doing so can never be expressed adequately in the commit message which accompanies the
fix, and can’t be documented succinctly enough for the benefit of the rest of the development team so that
the problem never happens again. It will happen again, especially if you are working on a project with
other people who haven’t yet internalized the lessons you learned while you stepped through module-
scope code using pdb. This is a very poor situation in which to find yourself as an application developer:
you probably didn’t even know you or your team signed up for the job, because the documentation offered
by decorator-based microframeworks don’t warn you about it.

Folks who have a large investment in eager decorator-based configuration that populates an external data
structure (such as microframework authors) may argue that the set of circumstances I outlined above
is anomalous and contrived. They will argue that it just will never happen. If you never intend your
application to grow beyond one or two or three modules, that’s probably true. However, as your codebase
grows, and becomes spread across a greater number of modules, the circumstances in which module-
scope code will be executed multiple times will become more and more likely to occur and less and less
predictable. It’s not responsible to claim that double-execution of module-scope code will never happen.
It will; it’s just a matter of luck, time, and application complexity.

If microframework authors do admit that the circumstance isn’t contrived, they might then argue that real
damage will never happen as the result of the double-execution (or triple-execution, etc.) of module scope
code. You would be wise to disbelieve this assertion. The potential outcomes of multiple execution are
too numerous to predict because they involve delicate relationships between application and framework
code as well as chronology of code execution. It’s literally impossible for a framework author to know
what will happen in all circumstances. But even if given the gift of omniscience for some limited set
of circumstances, the framework author almost certainly does not have the double-execution anomaly in
mind when coding new features. They’re thinking of adding a feature, not protecting against problems
that might be caused by the 1% multiple execution case. However, any 1% case may cause 50% of your
pain on a project, so it’d be nice if it never occurred.

Responsible microframeworks actually offer a back-door way around the problem. They allow you to
disuse decorator-based configuration entirely. Instead of requiring you to do the following:

1|gh = Groundhog ('myapp', 'seekrit')

2

29

3| @gh.route('/foo/")

4+ |def fool():

5 return 'foo'

6

7/if _ name_ == '_ _main_ ':
8 gh.run ()

They allow you to disuse the decorator syntax and go almost all-imperative:

def foo():
return 'foo'

[P R

4|gh = Groundhog('myapp', 'seekrit')

¢ |if _ name_ == '_ main_ ':
7 gh.add_route (foo, '/foo/")
8 gh.run ()

This is a generic mode of operation that is encouraged in the Pyramid documentation. Some existing
microframeworks (Flask, in particular) allow for it as well. None (other than Pyramid) encourage it.
If you never expect your application to grow beyond two or three or four or ten modules, it probably
doesn’t matter very much which mode you use. If your application grows large, however, imperative
configuration can provide better predictability.

O Astute readers may notice that Pyramid has configuration decorators too. Aha! Don’t these deco-
rators have the same problems? No. These decorators do not populate an external Python module when
they are executed. They only mutate the functions (and classes and methods) to which they’re attached.
These mutations must later be found during a scan process that has a predictable and structured import
phase. Module-localized mutation is actually the best-case circumstance for double-imports. If a module
only mutates itself and its contents at import time, if it is imported twice, that’s OK, because each deco-
rator invocation will always be mutating an independent copy of the object to which it’s attached, not a
shared resource like a registry in another module. This has the effect that double-registrations will never
be performed.

Routes need relative ordering

Consider the following simple Groundhog application:

30

https://github.com/Pylons/groundhog

1 | from groundhog import Groundhog
2> |app = Groundhog ('myapp', 'seekrit')

4 |Qapp.route ('/admin')
s |def admin () :
6 return '<html>admin page</html>"'

s | @app.route('/:action')
9 |def do_action(action):

10 if action == 'add':

1 return '<html>add</html>"

12 if action == 'delete':

13 return '<html>delete</html>"'
14 return app.abort (404)

15

6|i1f name == '__main__ "'

17 app.run()

If you run this application and visit the URL /admin, you will see the “admin” page. This is the intended
result. However, what if you rearrange the order of the function definitions in the file?

1 | from groundhog import Groundhog
2 |app = Groundhog('myapp', 'seekrit')

4 |Qapp.route('/:action')
s |def do_action (action) :

6 if action == 'add':

7 return '<html>add</html>"

8 if action == 'delete':

9 return '<html>delete</html>"
10 return app.abort (404)

12 | @Qapp.route ('/admin')
13 |def admin () :

14 return '<html>admin page</html>"'
15

16 |1f _ name_ == '"_ _main_ ':

17 app.run ()

If you run this application and visit the URL /admin, your app will now return a 404 error. This is
probably not what you intended. The reason you see a 404 error when you rearrange function defini-
tion ordering is that routing declarations expressed via our microframework’s routing decorators have an
ordering, and that ordering matters.

31

In the first case, where we achieved the expected result, we first added a route with the pattern /admin,
then we added a route with the pattern / : action by virtue of adding routing patterns via decorators at
module scope. When a request with a PATH_INFO of /admin enters our application, the web frame-
work loops over each of our application’s route patterns in the order in which they were defined in our
module. As a result, the view associated with the /admin routing pattern will be invoked because it
matches first. All is right with the world.

In the second case, where we did not achieve the expected result, we first added a route with the pattern
/ :action, then we added a route with the pattern /admin. When a request with a PATH_INFO of
/admin enters our application, the web framework loops over each of our application’s route patterns in
the order in which they were defined in our module. As a result, the view associated with the / : action
routing pattern will be invoked because it matches first. A 404 error is raised. This is not what we wanted;
it just happened due to the order in which we defined our view functions.

This is because Groundhog routes are added to the routing map in import order, and matched in the
same order when a request comes in. Bottle, like Groundhog, as of this writing, matches routes in the
order in which they’re defined at Python execution time. Flask, on the other hand, does not order route
matching based on import order. Instead it reorders the routes you add to your application based on their
“complexity”. Other microframeworks have varying strategies to do route ordering.

Your application may be small enough where route ordering will never cause an issue. If your application
becomes large enough, however, being able to specify or predict that ordering as your application grows
larger will be difficult. At some point, you will likely need to start controlling route ordering more
explicitly, especially in applications that require extensibility.

If your microframework orders route matching based on complexity, you’ll need to understand what is
meant by “complexity”, and you’ll need to attempt to inject a “less complex” route to have it get matched
before any “more complex” one to ensure that it’s tried first.

If your microframework orders its route matching based on relative import/execution of function decorator
definitions, you will need to ensure that you execute all of these statements in the “right” order, and you’ll
need to be cognizant of this import/execution ordering as you grow your application or try to extend it.
This is a difficult invariant to maintain for all but the smallest applications.

In either case, your application must import the non-__main__ modules which contain configuration
decorations somehow for their configuration to be executed. Does that make you a little uncomfortable?
It should, because Application programmers don’t control the module-scope codepath (import-time side-
effects are evil).

Pyramid uses neither decorator import time ordering nor does it attempt to divine the relative complexity
of one route to another as a means to define a route match ordering. In Pyramid, you have to maintain rel-
ative route ordering imperatively via the chronology of multiple executions of the pyramid. config.
Configurator.add_route () method. The order in which you repeatedly call add_route be-
comes the order of route matching.

32

If needing to maintain this imperative ordering truly bugs you, you can use traversal instead of route
matching, which is a completely declarative (and completely predictable) mechanism to map code to
URLs. While URL dispatch is easier to understand for small non-extensible applications, traversal is a
great fit for very large applications and applications that need to be arbitrarily extensible.

“Stacked object proxies” are too clever / thread locals are a nuisance

Some microframeworks use the import statement to get a handle to an object which is not logically
global:

1 | from flask import request

2

3 |@Qapp.route('/login', methods=['POST', 'GET'])

4+ |def login():

5 error = None

6 if request.method == 'POST':

7 if valid_login(request.form['username'],

8 request.form['password']) :

9 return log_the_user_in(request.form['username'])
10 else:

1 error = 'Invalid username/password'

12 # this is executed if the request method was GET or the
13 # credentials were invalid

The Pylons 1.X web framework uses a similar strategy. It calls these things “Stacked Object Proxies”, so,
for purposes of this discussion, I’ll do so as well.

Import statements in Python (import foo, from bar import baz) are most frequently per-
formed to obtain a reference to an object defined globally within an external Python module. However, in
normal programs, they are never used to obtain a reference to an object that has a lifetime measured by
the scope of the body of a function. It would be absurd to try to import, for example, a variable named
i representing a loop counter defined in the body of a function. For example, we’d never try to import i
from the code below:

def afunc():
for i in range(10):
3 print (1)

©

By its nature, the request object that is created as the result of a WSGI server’s call into a long-lived web
framework cannot be global, because the lifetime of a single request will be much shorter than the lifetime
of the process running the framework. A request object created by a web framework actually has more

33

http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/

similarity to the i loop counter in our example above than it has to any comparable importable object
defined in the Python standard library or in normal library code.

However, systems which use stacked object proxies promote locally scoped objects, such as request,
out to module scope, for the purpose of being able to offer users a nice spelling involving import. They,
for what I consider dubious reasons, would rather present to their users the canonical way of getting at
a request as from framework import request instead of a saner from myframework.
threadlocals import get_request; request = get_request (), even though the lat-
ter is more explicit.

It would be most explicit if the microframeworks did not use thread local variables at all. Pyramid view
functions are passed a request object. Many of Pyramid’s APIs require that an explicit request object be
passed to them. It is possible to retrieve the current Pyramid request as a threadlocal variable, but it is
an “in case of emergency, break glass” type of activity. This explicitness makes Pyramid view functions
more easily unit testable, as you don’t need to rely on the framework to manufacture suitable “dummy”
request (and other similarly-scoped) objects during test setup. It also makes them more likely to work on
arbitrary systems, such as async servers, that do no monkeypatching.

Explicitly WSGI

Some microframeworks offer a run () method of an application object that executes a default server
configuration for easy execution.

Pyramid doesn’t currently try to hide the fact that its router is a WSGI application behind a convenience
run () APL It just tells people to import a WSGI server and use it to serve up their Pyramid application
as per the documentation of that WSGI server.

The extra lines saved by abstracting away the serving step behind run () seems to have driven dubious
second-order decisions related to its API in some microframeworks. For example, Bottle contains a
ServerAdapter subclass for each type of WSGI server it supports via its app . run () mechanism.
This means that there exists code in bottle.py that depends on the following modules: wsgiref,
flup, paste, cherrypy, fapws, tornado, google.appengine, twisted.web, diesel,
gevent, gunicorn, eventlet, and rocket. You choose the kind of server you want to run by
passing its name into the run method. In theory, this sounds great: I can try out Bottle on gunicorn
just by passing in a name! However, to fully test Bottle, all of these third-party systems must be installed
and functional. The Bottle developers must monitor changes to each of these packages and make sure
their code still interfaces properly with them. This increases the number of packages required for testing
greatly; this is a lot of requirements. It is likely difficult to fully automate these tests due to requirements
conflicts and build issues.

As a result, for single-file apps, we currently don’t bother to offer a run () shortcut. We tell folks to
import their WSGI server of choice and run it by hand. For the people who want a server abstraction
layer, we suggest that they use PasteDeploy. In PasteDeploy-based systems, the onus for making sure that
the server can interface with a WSGI application is placed on the server developer, not the web framework
developer, making it more likely to be timely and correct.

34

Wrapping up

Here’s a diagrammed version of the simplest pyramid application, where the inlined comments take into
account what we’ve discussed in the Microframeworks have smaller Hello World programs section.

1 | from pyramid.response import Response # explicit response, no thread local

2 | from wsgiref.simple_server import make_server # explicitly WSGI

3

4 |def hello_world(request): # accepts a request; no request thread local_
—reqd

5 # explicit response object means no response threadlocal

6 return Response('Hello world!")

7

s|if _ name_ == '_ main_ ':

9 from pyramid.config import Configurator

10 config = Configurator () # no global application object

11 config.add_view(hello_world) # explicit non-decorator registration

12 app = config.make_wsgi_app () # explicitly WSGI

13 server = make_server ('0.0.0.0", 8080, app)

14 server.serve_forever () # explicitly WSGI

Pyramid doesn’t offer pluggable apps

It is “Pyramidic” to compose multiple external sources into the same configuration using include ().
Any number of includes can be done to compose an application; includes can even be done from within
other includes. Any directive can be used within an include that can be used outside of one (such as
add_view()).

Pyramid has a conflict detection system that will throw an error if two included externals try to add the
same configuration in a conflicting way (such as both externals trying to add a route using the same name,
or both externals trying to add a view with the same set of predicates). It’s awful tempting to call this
set of features something that can be used to compose a system out of “pluggable applications”. But in
reality, there are a number of problems with claiming this:

e The terminology is strained. Pyramid really has no notion of a plurality of “applications”, just a
way to compose configuration from multiple sources to create a single WSGI application. That
WSGTI application may gain behavior by including or disincluding configuration, but once it’s all
composed together, Pyramid doesn’t really provide any machinery which can be used to demarcate
the boundaries of one “application” (in the sense of configuration from an external that adds routes,
views, etc) from another.

35

e Pyramid doesn’t provide enough ‘“rails” to make it possible to integrate truly honest-to-
god, download-an-app-from-a-random-place and-plug-it-in-to-create-a-system “pluggable” appli-
cations. Because Pyramid itself isn’t opinionated (it doesn’t mandate a particular kind of database,
it offers multiple ways to map URLs to code, etc), it’s unlikely that someone who creates some-
thing application-like will be able to casually redistribute it to J. Random Pyramid User and have
it just work by asking him to config.include a function from the package. This is particularly true
of very high level components such as blogs, wikis, twitter clones, commenting systems, etc. The
integrator (the Pyramid developer who has downloaded a package advertised as a “pluggable app™)
will almost certainly have made different choices about e.g. what type of persistence system he’s
using, and for the integrator to appease the requirements of the “pluggable application”, he may
be required to set up a different database, make changes to his own code to prevent his application
from shadowing the pluggable app (or vice versa), and any other number of arbitrary changes.

For this reason, we claim that Pyramid has “extensible” applications, not pluggable applications. Any
Pyramid application can be extended without forking it as long as its configuration statements have been
composed into things that can be pulled in via config.include.

It’s also perfectly reasonable for a single developer or team to create a set of interoperating components
which can be enabled or disabled by using config.include. That developer or team will be able to provide
the “rails” (by way of making high-level choices about the technology used to create the project, so there
won’t be any issues with plugging all of the components together. The problem only rears its head when
the components need to be distributed to arbitrary users. Note that Django has a similar problem with
“pluggable applications” that need to work for arbitrary third parties, even though they provide many,
many more rails than does Pyramid. Even the rails they provide are not enough to make the “pluggable
application” story really work without local modification.

Truly pluggable applications need to be created at a much higher level than a web framework, as no web
framework can offer enough constraints to really make them work out of the box. They really need to plug
into an application, instead. It would be a noble goal to build an application with Pyramid that provides
these constraints and which truly does offer a way to plug in applications (Joomla, Plone, Drupal come to
mind).

Pyramid Has Zope Things In It, So It’s Too Complex

On occasion, someone will feel compelled to post a mailing list message that reads something like this:

had a quick look at pyramid ... too complex to me and not really
understand for which benefits.. I feel should consider whether it's time
for me to step back to django .. I always hated zope (useless ?)

complexity and I love simple way of thinking

(Paraphrased from a real email, actually.)

Let’s take this criticism point-by-point.

36

Too Complex

If you can understand this hello world program, you can use Pyramid:

1 | from wsgiref.simple_ server import make_server
2 | from pyramid.config import Configurator
3 | from pyramid.response import Response

s|def hello_world(request) :

6 return Response('Hello world!")

7

s|if _ name_ == '_ _main_ ':

9 config = Configurator ()

10 config.add_view (hello_world)

1 app = config.make_wsgi_app ()

12 server = make_server ('0.0.0.0', 8080, app)
13 server.serve_forever ()

Pyramid has over 1200 pages of documentation (printed), covering topics from the very basic to the most
advanced. Nothing is left undocumented, quite literally. It also has an awesome, very helpful community.
Visit the #pyramid IRC channel on freenode.net and see.

Hate Zope

I’'m sorry you feel that way. The Zope brand has certainly taken its share of lumps over the years, and has
a reputation for being insular and mysterious. But the word “Zope” is literally quite meaningless without
qualification. What part of Zope do you hate? “Zope” is a brand, not a technology.

If it’s Zope2-the-web-framework, Pyramid is not that. The primary designers and developers of Pyramid,
if anyone, should know. We wrote Pyramid’s predecessor (repoze .bfg), in part, because we knew that
Zope 2 had usability issues and limitations. repoze.bfg (and now Pyramid) was written to address
these issues.

If it’s Zope3-the-web-framework, Pyramid is definitely not that. Making use of lots of Zope 3 technolo-
gies is territory already staked out by the Grok project. Save for the obvious fact that they’re both web
frameworks, Pyramid is very, very different than Grok. Grok exposes lots of Zope technologies to end
users. On the other hand, if you need to understand a Zope-only concept while using Pyramid, then we’ve
failed on some very basic axis.

If it’s just the word Zope: this can only be guilt by association. Because a piece of software internally uses
some package named zope . foo, it doesn’t turn the piece of software that uses it into “Zope”. There is
a lot of great software written that has the word Zope in its name. Zope is not some sort of monolithic
thing, and a lot of its software is usable externally. And while it’s not really the job of this document to
defend it, Zope has been around for over 10 years and has an incredibly large, active community. If you
don’t believe this, http://pypi-ranking.info/author is an eye-opening reality check.

37

https://webchat.freenode.net/?channels=pyramid
http://pypi-ranking.info/author

CONTENTS

Love Simplicity

Years of effort have gone into honing this package and its documentation to make it as simple as humanly
possible for developers to use. Everything is a tradeoff, of course, and people have their own ideas about
what “simple” is. You may have a style difference if you believe Pyramid is complex. Its developers
obviously disagree.

Other Challenges

Other challenges are encouraged to be sent to the Pylons-devel maillist. We’ll try to address them by
considering a design change, or at very least via exposition here.

Tutorials

Quick Tour of Pyramid

Pyramid lets you start small and finish big. This Quick Tour of Pyramid is for those who want to evaluate
Pyramid, whether you are new to Python web frameworks, or a pro in a hurry. For more detailed treatment
of each topic, give the Quick Tutorial for Pyramid a try.

Installation

Once you have a standard Python environment setup, getting started with Pyramid is a breeze. Unfortu-
nately “standard” is not so simple in Python. For this Quick Tour, it means Python, venv (or virtualenv
for Python 2.7), pip, and setuptools.

To save a little bit of typing and to be certain that we use the modules, scripts, and packages installed in
our virtual environment, we’ll set an environment variable, too.

As an example, for Python 3.5+ on Linux:

set an environment variable to where you want your virtual,,
—environment

export VENV=~/env

create the virtual environment

python3 -m venv S$VENV

install pyramid

SVENV/bin/pip install pyramid

or for a specific released version

SVENV/bin/pip install "pyramid==1.7.6"

W H W AN FHE D

38

https://groups.google.com/forum/#!forum/pylons-devel
https://www.python.org/downloads/
https://packaging.python.org/en/latest/projects/#venv
https://packaging.python.org/en/latest/projects/#virtualenv
https://packaging.python.org/en/latest/projects/#virtualenv
https://packaging.python.org/en/latest/projects/#pip
https://packaging.python.org/en/latest/projects/#easy-install

0.1. TUTORIALS

For Windows:

set an environment variable to where you want your virtual
—environment

:\> set VENV=c:\env

create the virtual environment

:\> python -m venv $VENV$

install pyramid

:\> SVENV$\Scripts\pip install pyramid

or for a specific released version

:\> $VENV%\Scripts\pip install "pyramid==1.7.6"

Q #F= Q HF=Q H= Q

Of course Pyramid runs fine on Python 2.7+, as do the examples in this Quick Tour. We’re showing Python
3 for simplicity. (Pyramid had production support for Python 3 in October 2011.) Also for simplicity, the
remaining examples will show only UNIX commands.

See also:

See also: Quick Tutorial section on Requirements, Installing Pyramid on a UNIX System, Before You
Install, Why use $VENV/bin/pip instead of source bin/activate, then pip, and Installing Pyramid on a
Windows System.

Hello World

Microframeworks have shown that learning starts best from a very small first step. Here’s a tiny applica-
tion in Pyramid:

1 | from wsgiref.simple_server import make_server
2 | from pyramid.config import Configurator
3 | from pyramid.response import Response

¢ |def hello_world(request) :

7 return Response ('<hl>Hello World!</hl>")

8

9

10o|if _ name_ == '"__main_ ':

11 config = Configurator()

12 config.add_route('hello', '/")

13 config.add_view(hello_world, route_name='hello')
14 app = config.make_wsgi_app ()

15 server = make_server ('0.0.0.0", 6543, app)

16 server.serve_forever ()

39

CONTENTS

This simple example is easy to run. Save this as app . py and run it:

$ SVENV/bin/python ./app.py

Next open http://localhost:6543/ in a browser, and you will see the Hello World! message.
New to Python web programming? If so, some lines in the module merit explanation:

1. Line 10. if __name__ == '__main__': is Python’s way of saying “Start here when run-
ning from the command line”.

2. Lines 11-13. Use Pyramid’s configurator to connect view code to a particular URL route.

3. Lines 6-7. Implement the view code that generates the response.

4. Lines 14-16. Publish a WSGI app using an HTTP server.
As shown in this example, the configurator plays a central role in Pyramid development. Building an
application from loosely-coupled parts via Application Configuration is a central idea in Pyramid, one
that we will revisit regurlarly in this Quick Tour.
See also:
See also: Quick Tutorial Hello World, Creating Your First Pyramid Application, and Todo List Applica-

tion in One File.

Handling web requests and responses

Developing for the web means processing web requests. As this is a critical part of a web application,
web developers need a robust, mature set of software for web requests.

Pyramid has always fit nicely into the existing world of Python web development (virtual environ-
ments, packaging, scaffolding, one of the first to embrace Python 3, etc.). Pyramid turned to the well-
regarded WebOb Python library for request and response handling. In our example above, Pyramid hands

hello_worlda request thatis based on WebOb.

Let’s see some features of requests and responses in action:

40

http://localhost:6543/
https://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/sample_applications/single_file_tasks.html#single-file-tutorial
https://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/sample_applications/single_file_tasks.html#single-file-tutorial

0.1. TUTORIALS

def hello_world(request) :
Some parameters from a request such as /?name=lisa

url = request.url
name = request.params.get ('name', 'No Name Provided")
body = 'URL with name: ' % (url, name)

return Response (
content_type="text/plain",
body=body

In this Pyramid view, we get the URL being visited from request.url. Also if you visited http:
/Nocalhost:6543/?name=alice in a browser, the name is included in the body of the response:

URL http://localhost:6543/?name=alice with name: alice

Finally we set the response’s content type, and return the Response.
See also:

See also: Quick Tutorial Request and Response and Request and Response Objects.

Views

For the examples above, the hello_world functionis a “view”. In Pyramid views are the primary way
to accept web requests and return responses.

So far our examples place everything in one file:
* the view function
* its registration with the configurator
* the route to map it to an URL
* the WSGI application launcher

Let’s move the views out to their own views .py module and change the app . py to scan that module,
looking for decorators that set up the views.

First our revised app . py:

41

http://localhost:6543/?name=alice
http://localhost:6543/?name=alice

CONTENTS

1 | from wsgiref.simple_ server import make_server
> | from pyramid.config import Configurator

3

4|if _ name_ == '_ _main__ ':

5 config = Configurator()

6 config.add_route('home', '/")

7 config.add_route('hello', '/howdy'")

3 config.add_route('redirect', '/goto')

9 config.add_route ('exception', '/problem')
10 config.scan('views"')

1 app = config.make_wsgi_app ()

12 server = make_server ('0.0.0.0', 6543, app)
13 server.serve_forever ()

We added some more routes, but we also removed the view code. Our views and their registrations (via
decorators) are now in a module views . py, which is scanned via config.scan ('views"').

We now have a views . py module that is focused on handling requests and responses:

1 |import cgi

3 | from pyramid.httpexceptions import HTTPFound
4+ | from pyramid.response import Response
5 | from pyramid.view import view_config

s|# First view, available at http://localhost:6543/

9 | @view_config(route_name="'home")

10 |def home_view (request) :

1 return Response ('<p>Visit hello</p>")

4| # /howdy?name=alice which links to the next view
15 | @view_config (route_name='hello')
16 |def hello_view (request) :

17 name = request.params.get ('name', 'No Name')

18 body = '<p>Hi $%s, this redirects</p>"'

19 # cgi.escape to prevent Cross-Site Scripting (XSS) [CWE 79]
20 return Response (body % cgi.escape (name))

21
22
» | # /goto which issues HTTP redirect to the last view
% |@view_config (route_name='redirect')

»5 |def redirect_view(request):

26 return HTTPFound (location="/problem")

42

0.1. TUTORIALS

» | # /problem which causes a site error
30 | @view_config (route_name='exception')
31 |def exception_view(request) :

32 raise Exception|()

We have four views, each leading to the other. If you start at http://localhost:6543/, you get a response
with a link to the next view. The hello_view (available at the URL /howdy) has a link to the
redirect_view, which issues a redirect to the final view.

Earlier we saw config.add_view as one way to configure a view. This section introduces
@view_config. Pyramid’s configuration supports imperative configuration, such as the config.
add_view in the previous example. You can also use declarative configuration in which a Python
decorator is placed on the line above the view. Both approaches result in the same final configuration,
thus usually it is simply a matter of taste.

See also:

See also: Quick Tutorial Views, Views, View Configuration, and Debugging View Configuration.

Routing

Writing web applications usually means sophisticated URL design. We just saw some Pyramid machinery
for requests and views. Let’s look at features that help with routing.

Above we saw the basics of routing URLSs to views in Pyramid:

113

* Your project’s “setup” code registers a route name to be used when matching part of the URL.

* Elsewhere a view is configured to be called for that route name.

O Why do this twice? Other Python web frameworks let you create a route and associate it with a
view in one step. As illustrated in Routes need relative ordering, multiple routes might match the same
URL pattern. Rather than provide ways to help guess, Pyramid lets you be explicit in ordering. Pyramid
also gives facilities to avoid the problem.

What if we want part of the URL to be available as data in my view? We can use this route declaration,
for example:

43

http://localhost:6543/

CONTENTS

6 config.add_route('hello', '/howdy/{first}/{last}")

With this, URLs such as /howdy/amy/smith will assign amy to first and smith to last. We
can then use this data in our view:

@view_config(route_name='hello')

¢ |def hello_world(request) :

body = '<hl>Hi 1</hl1>" % request.matchdict
return Response (body)

%)

)

=3

request .matchdict contains values from the URL that match the “replacement patterns” (the curly
braces) in the route declaration. This information can then be used in your view.

See also:

See also: Quick Tutorial Routing, URL Dispatch, Debugging Route Matching, and Request Processing.

Templating

Ouch. We have been making our own Response and filling the response body with HTML. You usually
won’t embed an HTML string directly in Python, but instead you will use a templating language.

Pyramid doesn’t mandate a particular database system, form library, and so on. It encourages replaceabil-
ity. This applies equally to templating, which is fortunate: developers have strong views about template
languages. That said, the Pylons Project officially supports bindings for Chameleon, Jinja2, and Mako.
In this step let’s use Chameleon.

Let’s add pyramid_chameleon, a Pyramid add-on which enables Chameleon as a renderer in our
Pyramid application:

$ SVENV/bin/pip install pyramid_chameleon

With the package installed, we can include the template bindings into our configuration in app . py:

6 config.add_route('hello', '/howdy/{name}")
7 config.include ('pyramid_chameleon')
8 config.scan('views")

Now lets change our views.py file:

44

0.1. TUTORIALS

from pyramid.view import view_config

=

@view_config(route_name='hello', renderer='hello_world.pt'")
def hello_world(request) :
6 return dict (name=request.matchdict['name'])

w

Ahbh, that looks better. We have a view that is focused on Python code. Our @view_config decorator
specifies a renderer that points to our template file. Our view then simply returns data which is then
supplied to our template hello_world.pt:

<!DOCTYPE html>

<html lang="en">

<head>

<title>Quick Glance</title>

</head>

<body>

<hl>Hello ${name}</hl>

</body>

</html>

Since our view returned dict (name=request.matchdict['name']), we can use name as a
variable in our template via $ { name}.

See also:
See also: Quick Tutorial Templating, Templates, Debugging Templates, and Available Add-On Template

System Bindings.

Templating with Jinja2

We just said Pyramid doesn’t prefer one templating language over another. Time to prove it. Jinja2 is a
popular templating system, modeled after Django’s templates. Let’s add pyramid_jinja2, a Pyramid
add-on which enables Jinja2 as a renderer in our Pyramid applications:

$ SVENV/bin/pip install pyramid_jinja2

With the package installed, we can include the template bindings into our configuration:

45

CONTENTS

6 config.add_route('hello', '/howdy/{name}")
7 config.include ('pyramid_Jjinja2")
8 config.scan('views")

The only change in our view is to point the renderer at the . jinja2 file:

IS

@view_config(route_name='hello', renderer='hello_world.jinja2")
def hello_world(request) :
6 return dict (name=request.matchdict['name'])

w

Our Jinja2 template is very similar to our previous template:

<!DOCTYPE html>

<html lang="en">

<head>

<title>Hello World</title>

</head>

<body>

<hl>Hello {{ name }}!</hl>
</body>

</html>

Pyramid’s templating add-ons register a new kind of renderer into your application. The renderer regis-
tration maps to different kinds of filename extensions. In this case, changing the extension from . pt to
. jinja2 passed the view response through the pyramid_jinja2 renderer.

See also:

See also: Quick Tutorial Jinja2, Jinja2 homepage, and pyramid_jinja2 Overview.

Static assets

Of course the Web is more than just markup. You need static assets: CSS, JS, and images. Let’s point our
web app at a directory from which Pyramid will serve some static assets. First let’s make another call to
the configurator in app . py:

6 config.add_route('hello', '/howdy/{name}")
7 config.add_static_view (name='static', path='static')
8 config.include ('pyramid_ jinja2')

46

http://jinja.pocoo.org/
https://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/index.html#overview

0.1. TUTORIALS

This tells our WSGI application to map requests under http://localhost:6543/static/ to files and directories
inside a static directory alongside our Python module.

Next make a directory named static, and place app . css inside:

body {
margin: Z2em;
font-family: sans-serif;

All we need to do now is point to it in the <head> of our Jinja2 template, hello_world. jinja2:

4 <title>Hello World</title>
5 <link rel="stylesheet" href="/static/app.css"/>
6 | </head>

This link presumes that our CSS is at a URL starting with /static/. What if the site is later moved
under /somesite/static/? Or perhaps a web developer changes the arrangement on disk? Pyramid
provides a helper to allow flexibility on URL generation:

4 <title>Hello World</title>

5 <link rel="stylesheet" href="{{ request.static url('__main__:static/
—app.css') }i"/>

6 | </head>

By using request .static_url to generate the full URL to the static assets, you ensure that you stay
in sync with the configuration and gain refactoring flexibility later.

See also:

See also: Quick Tutorial Static Assets, Static Assets, Preventing HTTP Caching, and Influencing HTTP
Caching.

Returning JSON

Modern web apps are more than rendered HTML. Dynamic pages now use JavaScript to update the Ul in
the browser by requesting server data as JSON. Pyramid supports this with a JSON renderer:

©

@view_config(route_name='hello_json', renderer='json')
10 |def hello_json (request) :
1 return [1, 2, 3]

47

http://localhost:6543/static/

CONTENTS

This wires up a view that returns some data through the JSON renderer, which calls Python’s JSON
support to serialize the data into JSON, and sets the appropriate HTTP headers.

We also need to add a route to app.py so that our app will know how to respond to a request for
hello. json.

6 config.add_route('hello', '/howdy/{name}")

7 config.add_route('hello_json', 'hello.json')

8 config.add_static_view (name='static', path='static')
See also:

See also: Quick Tutorial JSON, Writing View Callables Which Use a Renderer, JSON Renderer, and
Adding and Changing Renderers.

View classes

So far our views have been simple, free-standing functions. Many times your views are related. They may
have different ways to look at or work on the same data, or they may be a REST API that handles multiple
operations. Grouping these together as a view class makes sense and achieves the following goals.

* Group views

* Centralize some repetitive defaults

 Share some state and helpers

The following shows a “Hello World” example with three operations: view a form, save a change, or
press the delete button in our views.py:

7| # One route, at /howdy/amy, so don't repeat on each @view_config
s | @view_defaults (route_name='hello"')

9 |class HelloWorldViews:

10 def _ init__ (self, request):

1 self.request = request

12 # Our templates can now say {{ view.name }}
13 self.name = request.matchdict|['name']

14

15 # Retrieving /howdy/amy the first time

16 @view_config(renderer="'hello.jinja2")

17 def hello_view(self):

18 return dict ()

48

0.1. TUTORIALS

20

21

22

23

24

25

26

27

28

29

30

Posting to /howdy/amy via the

"Edit" s

@view_config(request_param='form.edit',

def edit_view(self):
print ('Edited')
return dict ()

Posting to /howdy/amy via the

"Delete"

ubmit button
renderer="'edit.jinja2")

submit button

@view_config(request_param='form.delete', renderer='delete.jinjaz2')

def delete _view(self):
print ('Deleted')
return dict ()

As you can see, the three views are logically grouped together. Specifically:

* The first view is returned when you go to /howdy/amy. This URL is mapped to the hel1o route
that we centrally set using the optional @view_defaults.

* The second view is returned when the form data contains a field with form.edit, such as clicking
on <input type="submit" name="form.edit" value="Save">. This rule is spec-

ified in the @view_config for that view.

e The third view is returned when clicking on a button such as <input type="submit"
name="form.delete" value="Delete">.

Only one route is needed, stated in one place atop the view class. Also, the assignment of name is done
inthe __init__ function. Our templates can then use { { view.name }}.

Pyramid view classes, combined with built-in and custom predicates, have much more to offer:

¢ All the same view configuration parameters as function views

* One route leading to multiple views, based on information in the request or data such
as request_param, request_method, accept, header, xhr, containment, and

custom_predicates

See also:

See also: Quick Tutorial View Classes, Quick Tutorial More View Classes, and Defining a View Callable
as a Class.

49

CONTENTS

Quick project startup with scaffolds

So far we have done all of our Quick Tour as a single Python file. No Python packages, no structure. Most
Pyramid projects, though, aren’t developed this way.

To ease the process of getting started, Pyramid provides scaffolds that generate sample projects from tem-
plates in Pyramid and Pyramid add-ons. Pyramid’s pcreate command can list the available scaffolds:

$ SVENV/bin/pcreate --list
Available scaffolds:

alchemy: Pyramid project using SQLAlchemy, SQLite, URL_,
—dispatch, and Jinja2

pyramid_jinja2_starter: Pyramid Jinja2 starter project

starter: Pyramid starter project using URL dispatch and,,
—Chameleon

zodb: Pyramid project using ZODB, traversal, and_
—Chameleon

The pyramid_jinja?2 add-on gave us a scaffold that we can use. From the parent directory of where
we want our Python package to be generated, let’s use that scaffold to make our project:

$ SVENV/bin/pcreate —--scaffold pyramid_jinja2_starter hello_world

We next use the normal Python command to set up our package for development:

$ cd hello_world
$ SVENV/bin/pip install -e

We are moving in the direction of a full-featured Pyramid project, with a proper setup for Python standards
(packaging) and Pyramid configuration. This includes a new way of running your application:

$ SVENV/bin/pserve development.ini

Let’s look at pserve and configuration in more depth.
See also:

See also: Quick Tutorial Scaffolds, Creating a Pyramid Project, and Creating Pyramid Scaffolds

50

0.1. TUTORIALS

Application running with pserve

Prior to scaffolds, our project mixed a number of operational details into our code. Why should my main
code care which HTTP server I want and what port number to run on?

pserve is Pyramid’s application runner, separating operational details from your code. When you install
Pyramid, a small command program called pserve is written to your bin directory. This program is an
executable Python module. It’s very small, getting most of its brains via import.

You can run pserve with ——help to see some of its options. Doing so reveals that you can ask pserve
to watch your development files and reload the server when they change:

$ SVENV/bin/pserve development.ini —--reload

The pserve command has a number of other options and operations. Most of the work, though, comes
from your project’s wiring, as expressed in the configuration file you supply to pserve. Let’s take a look
at this configuration file.

See also:

See also: What Is This pserve Thing

Configuration with . ini files

Earlier in Quick Tour we first met Pyramid’s configuration system. At that point we did all configuration
in Python code. For example, the port number chosen for our HTTP server was right there in Python
code. Our scaffold has moved this decision and more into the development . ini file:

#H##

app configuration

http://docs.pylonsproject.org/projects/pyramid/en/1.6-branch/narr/
—environment.html

###

[app:main]
use = egg:hello_world

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false

51

CONTENTS

pyramid.debug_templates = true

pyramid.default_locale_name = en

pyramid.includes =
pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1" and '::1".
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgl server configuration

###

[server:main]

use = egg:waltress#main
host = 127.0.0.1

port = 6543

###

logging configuration

http://docs.pylonsproject.org/projects/pyramid/en/1.6-branch/narr/
—~logging.html

###

[loggers]
keys = root, hello_world

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_hello_world]
level = DEBUG

handlers =

qualname = hello_world

[handler_ console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET

52

0.1. TUTORIALS

formatter = generic

[formatter_generic]
format = % (asctime)s % (levelname)-5.5s [%$(name)s:%(lineno)s]|[
—% (threadName)s] % (message)s

Let’s take a quick high-level look. First the . ini file is divided into sections:
* [app:main] configures our WSGI app
* [server:main] holds our WSGI server settings
* Various sections afterwards configure our Python logging system
We have a few decisions made for us in this configuration:
1. Choice of web server: use = egg:hello_worldtells pserve touse the waitress server.
2. Port number: port = 6543 tells waitress to listen on port 6543.

3. WSGI app: What package has our WSGI application in it? use = egg:hello_world in the
app section tells the configuration what application to load.

4. Easier development by automatic template reloading: In development mode, you shouldn’t have
to restart the server when editing a Jinja2 template. pyramid.reload_templates = true
sets this policy, which might be different in production.

Additionally the development .ini generated by this scaffold wired up Python’s standard logging.
We’ll now see in the console, for example, a log on every request that comes in, as well as traceback
information.

See also:

See also: Quick Tutorial Application Configuration, Environment Variables and .ini File Settings and
PasteDeploy Configuration Files

Easier development with debugtoolbar

As we introduce the basics, we also want to show how to be productive in development and debugging.
For example, we just discussed template reloading and earlier we showed ——reload for application
reloading.

pyramid_debugtoolbar is a popular Pyramid add-on which makes several tools available in your
browser. Adding it to your project illustrates several points about configuration.

The scaffold pyramid_jinja2_starter 1is already configured to include the add-on
pyramid_debugtoolbar inits setup.py:

53

CONTENTS

1 |requires = [

12 'pyramid',

13 'pyramid_jinja2"',

14 'pyramid_debugtoolbar',
15 'waitress',

16 |]

It was installed when you previously ran:

$ SVENV/bin/pip install -e

The pyramid_debugtoolbar package is a Pyramid add-on, which means we need to include its
configuration into our web application. The pyramid_jinja2 add-on already took care of this for us
inits__init_ .py:

16 config.include ('pyramid_jinja2')

And it uses the pyramid. includes facility in our development .ini:

15 |pyramid.includes =
16 pyramid_debugtoolbar

You’ll now see a Pyramid logo on the right side of your browser window, which when clicked opens a new
window that provides introspective access to debugging information. Even better, if your web application
generates an error, you will see a nice traceback on the screen. When you want to disable this toolbar,
there’s no need to change code: you can remove it from pyramid.includes in the relevant .ini
configuration file.

See also:

See also: Quick Tutorial pyramid_debugtoolbar and pyramid_debugtoolbar

Unit tests and py . test

Yikes! We got this far and we haven’t yet discussed tests. This is particularly egregious, as Pyramid has
had a deep commitment to full test coverage since before its release.

Our pyramid_jinja2_starter scaffold generated a tests.py module with one unit test in it. It
also configured setup.py with test requirements: py .test as the test runner, WebTest for running
view tests, and the pytest—cov tool which yells at us for code that isn’t tested. The highlighted lines
show this:

54

https://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/index.html#overview

0.1. TUTORIALS

34

35

36

37

requires = [
'pyramid’',
'pyramid_jinja2',
'pyramid_debugtoolbar',
'waitress',

tests_require = [
'WebTest >= 1.3.1', # py3 compat
'pytest’, # includes virtualenv
'pytest-cov',
]

zip_safe=False,
extras_require={

'testing': tests_require,
by

To install the test requirements, run SVENV/bin/pip install -e ".[testing]". We can now
run all our tests:

$ SVENV/bin/py.test —--cov —-cov-report=term-missing

This yields the following output.

test session starts
platform darwin -- Python 3.5.0, pytest-2.9.1, py-1.4.31, pluggy-0.3.1
rootdir: /Users/stevepiercy/projects/hack-on-pyramid/hello_world, inifile:
plugins: cov-2.2.1

collected 1 items

hello_world/tests.py
7777777777777 coverage: platform darwin, python 3.5.0-final-0 —————----———-

Name Stmts Miss Cover Missing
hello_world/__init___.py 11 8 27% 11-23
hello_world/resources.py 5 1 80% 38
hello_world/tests.py 14 0 100%
hello_world/views.py 4 0 100%

TOTAL 34 9 74%

55

CONTENTS

= 1 passed in 0.22 seconds,

Our unit test passed, although its coverage is incomplete. What did our test look like?

1 | import unittest
from pyramid import testing
3 | from pyramid.il8n import TranslationStringFactory

©

s|_ = TranslationStringFactory('hello_world")

s |class ViewTests (unittest.TestCase) :

10 def setUp(self):
11 testing.setUp ()

13 def tearDown (self):

14 testing.tearDown ()

15

16 def test_my_view(self):

17 from hello_world.views import my_view

18 request = testing.DummyRequest ()

19 response = my_view(request)

20 self.assertEqual (response['project'], 'hello_world")

Pyramid supplies helpers for test writing, which we use in the test setup and teardown. Our one test
imports the view, makes a dummy request, and sees if the view returns what we expected.

See also:

See also: Quick Tutorial Unit Testing, Quick Tutorial Functional Testing, and Unit, Integration, and
Functional Testing

Logging

It’s important to know what is going on inside our web application. In development we might need to
collect some output. In production we might need to detect situations when other people use the site. We
need logging.

56

0.1. TUTORIALS

Fortunately Pyramid uses the normal Python approach to logging. The scaffold generated in your
development.ini has a number of lines that configure the logging for you to some reasonable de-
faults. You then see messages sent by Pyramid (for example, when a new request comes in).

Maybe you would like to log messages in your code? In your Python module, import and set up the
logging:

w

import logging
log = logging.getLogger (_ name)

IS

You can now, in your code, log messages:

©

def my_view(request) :
10 log.debug ('Some Message')

This will log Some Message at a debug log level to the application-configured logger in your
development .ini. What controls that? These emphasized sections in the configuration file:

36 | [Lloggers]

37 | keys = root, hello_world
38
9 | [handlers]

4 | keys = console
41
2 | [formatters]

#3 | keys = generic
44
45 | [Llogger_root]

4 | level = INFO

47 |handlers = console
48
4 | [logger_hello_world]
50 | Level = DEBUG

s1 |handlers =

52 | qualname = hello_world

Our application, a package named hello_world, is set up as a logger and configured to log messages
at a DEBUG or higher level. When you visit http://localhost:6543, your console will now show:

2016-01-18 13:55:55,040 DEBUG [hello_world.views:10] [waitress] Some Message

See also:

See also: Quick Tutorial Logging and Logging.

57

http://localhost:6543

CONTENTS

Sessions

When people use your web application, they frequently perform a task that requires semi-permanent data
to be saved. For example, a shopping cart. This is called a session.

Pyramid has basic built-in support for sessions. Third party packages such as
pyramid_redis_sessions provide richer session support. Or you can create your own cus-
tom sessioning engine. Let’s take a look at the built-in sessioning support. Inour __init__ .py we
first import the kind of sessioning we want:

)

from hello world.resources import get_root
from pyramid.session import SignedCookieSessionFactory

w

5 As noted in the session docs, this example implementation is not intended for use in settings
with security implications.

Now make a “factory” and pass it to the configurator‘s session_factory argument:

13 settings.setdefault ('jinja2.i18n.domain', 'hello_world')

14

15 my_session_factory = SignedCookieSessionFactory ('itsaseekreet")
16 config = Configurator (root_factory=get_root, settings=settings,
17 session_factory=my_session_factory)

Pyramid’s request object now has a session attribute that we can use in our view code in views.py:

9 |def my_view (request) :

10 log.debug ('Some Message')

1 session = request.session

12 if 'counter' in session:

13 session['counter'] += 1
14 else:

15 session|['counter'] = 0

We need to update our Jinja2 template to show counter increment in the session:

40 <p class="lead">

41 {% trans $%}Hello{?% endtrans %} to <span class="font-normal
"> {{project }}, an application generated by
the <span,,
—class="font-normal">Pyramid Web Framework 1.6.</p>

42 <p>Counter: {{ request.session.counter }}</p>

58

0.1. TUTORIALS

See also:

See also: Quick Tutorial Sessions, Sessions, Flash Messages, pyramid.session, and pyra-
mid_redis_sessions.

Databases

Web applications mean data. Data means databases. Frequently SQL databases. SQL databases fre-
quently mean an “ORM?” (object-relational mapper.) In Python, ORM usually leads to the mega-quality
SQLAlchemy, a Python package that greatly eases working with databases.

Pyramid and SQLAIchemy are great friends. That friendship includes a scaffold!

$ SVENV/bin/pcreate —--scaffold alchemy sgla_demo
$ cd sgla_demo
$ SVENV/bin/pip install -e .

We now have a working sample SQLAlchemy application with all dependencies installed. The sample
project provides a console script to initialize a SQLite database with tables. Let’s run it, then start the
application:

$ SVENV/bin/initialize_sqgla_demo_db development.ini
$ SVENV/bin/pserve development.ini

The ORM eases the mapping of database structures into a programming language. SQLAlchemy uses
“models” for this mapping. The scaffold generated a sample model:

class MyModel (Base) :
_ _tablename_ = 'models'
id = Column (Integer, primary_key=True)
name = Column (Text)
value = Column (Integer)

View code, which mediates the logic between web requests and the rest of the system, can then easily get
at the data thanks to SQLAlIchemy:

one = query.filter (MyModel.name == 'one').first ()

See also:

See also: Quick Tutorial Databases, SQLAlchemy, Making Your Script into a Console Script,
SQLAlchemy + URL dispatch wiki tutorial, and Application Transactions with pyramid_tm.

59

http://www.sqlalchemy.org/
https://docs.pylonsproject.org/projects/pyramid-tm/en/latest/index.html#overview

CONTENTS

Forms

Developers have lots of opinions about web forms, thus there are many form libraries for Python. Pyramid
doesn’t directly bundle a form library, but Deform is a popular choice for forms, along with its related
Colander schema system.

As an example, imagine we want a form that edits a wiki page. The form should have two fields on it,
one of them a required title and the other a rich text editor for the body. With Deform we can express this
as a Colander schema:

class WikiPage (colander.MappingSchema) :
title = colander.SchemaNode (colander.String())
body = colander.SchemaNode (
colander.String(),
widget=deform.widget.RichTextWidget ()

With this in place, we can render the HTML for a form, perhaps with form data from an existing page:

form = self.wiki_form.render ()

We’d like to handle form submission, validation, and saving:

Get the form data that was posted
controls = self.request.POST.items ()
try:
Validate and either raise a validation error
or return deserialized data from widgets
appstruct = wiki_form.validate (controls)
except deform.ValidationFailure as e:
Bail out and render form with errors
return dict (title=title, page=page, form=e.render())

Change the content and redirect to the view
page['title'] = appstruct['title']
page['body'] = appstruct['body']

Deform and Colander provide a very flexible combination for forms, widgets, schemas, and validation.
Recent versions of Deform also include a retail mode for gaining Deform features on custom forms.

Also the deform_bootstrap Pyramid add-on restyles the stock Deform widgets using attractive CSS
from Twitter Bootstrap and more powerful widgets from Chosen.

See also:

See also: Quick Tutorial Forms, Deform, Colander, and deform_bootstrap.

60

https://docs.pylonsproject.org/projects/deform/en/latest/retail.html#retail
https://docs.pylonsproject.org/projects/deform/en/latest/index.html#overview
https://docs.pylonsproject.org/projects/colander/en/latest/index.html#overview
https://pypi.python.org/pypi/deform_bootstrap

0.1. TUTORIALS

Conclusion

This Quick Tour covered a little about a lot. We introduced a long list of concepts in Pyramid, many of
which are expanded on more fully in the Pyramid developer docs.

Quick Tutorial for Pyramid

Pyramid is a web framework for Python 2 and 3. This tutorial gives a Python 3/2-compatible, high-level
tour of the major features.

This hands-on tutorial covers “a little about a lot”: practical introductions to the most common facilities.
Fun, fast-paced, and most certainly not aimed at experts of the Pyramid web framework.

Contents

Requirements

Let’s get our tutorial environment set up. Most of the set up work is in standard Python development
practices (install Python and make an isolated virtual environment.)

O Pyramid encourages standard Python development practices with packaging tools, virtual envi-
ronments, logging, and so on. There are many variations, implementations, and opinions across the
Python community. For consistency, ease of documentation maintenance, and to minimize confusion, the
Pyramid documentation has adopted specific conventions that are consistent with the Python Packaging
Authority.

This Quick Tutorial is based on:

* Python 3.5. Pyramid fully supports Python 3.3+ and Python 2.7+. This tutorial uses Python 3.5
but runs fine under Python 2.7.

* venv. We believe in virtual environments. For this tutorial, we use Python 3.5’s built-in solution
venv. For Python 2.7, you can install virtualenv.

 pip. We use pip for package management.

61

CONTENTS

* Workspaces, projects, and packages. Our home directory will contain a tutorial workspace with
our Python virtual environment and Python projects (a directory with packaging information and
Python packages of working code.)

¢ Unix commands. Commands in this tutorial use UNIX syntax and paths. Windows users should
adjust commands accordingly.

O Pyramid was one of the first web frameworks to fully support Python 3 in October 2011.

O Windows commands use the plain old MSDOS shell. For PowerShell command syntax, see its
documentation.

Steps

1. Install Python 3
Create a project directory structure
Set an environment variable

Create a virtual environment

A

Install Pyramid

Install Python 3

See the detailed recommendation for your operating system described under Installing Pyramid.
e For Mac OS X Users
e [f You Don’t Yet Have a Python Interpreter (UNIX)

e [f You Don’t Yet Have a Python Interpreter (Windows)

Create a project directory structure

We will arrive at a directory structure of workspace —-> project —-> package, where our
workspace is named quick_tutorial. The following tree diagram shows how this will be structured,
and where our virtual environment will reside as we proceed through the tutorial:

62

0.1. TUTORIALS

- projects
‘- quick_tutorial

|- env

- step_one
|- intro
| |- __init___.py
\ ‘- app.py
‘- setup.py

For Linux, the commands to do so are as follows:

Mac and Linux

cd ~

mkdir -p projects/quick_tutorial
cd projects/quick_tutorial

Uy Oy Ur S

For Windows:

Windows

:\> ed \

:\> mkdir projects\quick_tutorial
:\> ed projects\quick_tutorial

o Q 0 =

In the above figure, your user home directory is represented by ~. In your home directory, all of your
projects are in the projects directory. This is a general convention not specific to Pyramid that many
developers use. Windows users will do well to use c: \ as the location for projects in order to avoid
spaces in any of the path names.

Next within projects is your workspace directory, here named quick_tutorial. A workspace is
a common term used by integrated development environments (IDE), like PyCharm and PyDev, where
virtual environments, specific project files, and repositories are stored.

Set an environment variable

This tutorial will refer frequently to the location of the virtual environment. We set an environment
variable to save typing later.

63

CONTENTS

Mac and Linux
$ export VENV=~/projects/quick_tutorial/env

Windows
c:\> set VENV=c:\projects\quick_tutoriallenv

Create a virtual environment

venv is a tool to create isolated Python 3 environments, each with its own Python binary and independent
set of installed Python packages in its site directories. Let’s create one, using the location we just specified
in the environment variable.

Mac and Linux
$ python3 -m venv S$VENV

Windows
c:\> c:\Python35\python -m venv %VENVS%

See also:

See also Python 3’s venv module and Python 2’s virtualenv package.

Update packaging tools in the virtual environment

It’s always a good idea to update to the very latest version of packaging tools because the installed Python
bundles only the version that was available at the time of its release.

Mac and Linux
SVENV/bin/pip install —--upgrade pip setuptools

Windows
c:\> SVENV2\Scripts\pip install --upgrade pip setuptools

See also:

See also Why use $VENV/bin/pip instead of source bin/activate, then pip.

64

https://docs.python.org/3/library/venv.html#module-venv
https://virtualenv.pypa.io/en/latest/

0.1. TUTORIALS

Install Pyramid

We have our Python standard prerequisites out of the way. The Pyramid part is pretty easy.

Mac and Linux
$ $VENV/bin/pip install "pyramid==1.7.6"

Windows
c:\> $VENV%\Scripts\pip install "pyramid==1.7.6"

Our Python virtual environment now has the Pyramid software available.

You can optionally install some of the extra Python packages used in this tutorial.

Mac and Linux

$ SVENV/bin/pip install webtest pytest pytest-cov deform sglalchemy \
pyramid_chameleon pyramid_debugtoolbar pyramid_jinja2 waitress \
pyramid_tm zope.sglalchemy

Windows

c:\> SVENVZ\Scripts\pip install webtest deform sglalchemy pyramid_
—chameleon pyramid_debugtoolbar pyramid_jinja2 waitress pyramid_tm zope.
—sglalchemy

Tutorial Approach

This tutorial uses conventions to keep the introduction focused and concise. Details, references, and
deeper discussions are mentioned in “See also” notes.

See also:

This is an example “See also” note.

This “Getting Started” tutorial is broken into independent steps, starting with the smallest possible “single
file WSGI app” example. Each of these steps introduce a topic and a very small set of concepts via
working code. The steps each correspond to a directory in this repo, where each step/topic/directory is a

Python package.

To successfully run each step:

65

CONTENTS

$ cd request_response
$ SVENV/bin/pip install -e

...and repeat for each step you would like to work on. In most cases we will start with the results of an
earlier step.

Directory tree

As we develop our tutorial, our directory tree will resemble the structure below:

quick_tutorial

|- env

‘- request_response
- tutorial
| |- __init_ .py
| |- tests.py
| - views.py
|- development.ini
‘- setup.py

Each of the first-level directories (e.g., request_response) is a Python project (except as noted for
the hello_world step). The tutorial directory is a Python package. At the end of each step, we
copy a previous directory into a new directory to use as a starting point.

Prelude: Quick Project Startup with Scaffolds

To ease the process of getting started, Pyramid provides scaffolds that generate sample projects from
templates in Pyramid and Pyramid add-ons.

Background

We’re going to cover a lot in this tutorial, focusing on one topic at a time and writing everything from
scratch. As a warm up, though, it sure would be nice to see some pixels on a screen.

Like other web development frameworks, Pyramid provides a number of “scaffolds” that generate work-

ing Python, template, and CSS code for sample applications. In this step we’ll use a built-in scaffold to
let us preview a Pyramid application, before starting from scratch on Step 1.

66

0.1. TUTORIALS

Objectives

* Use Pyramid’s pcreate command to list scaffolds and make a new project.

e Start up a Pyramid application and visit it in a web browser.

Steps

1. Pyramid’s pcreate command can list the available scaffolds:

$ SVENV/bin/pcreate --list
Available scaffolds:

alchemy: Pyramid project using SQLAlchemy, SQLite, URL
—dispatch, and Jinja2

starter: Pyramid starter project using URL dispatch and
—Chameleon

zodb: Pyramid project using ZODB, traversal, and,
—Chameleon

2. Tell pcreate to use the starter scaffold to make our project:

$ SVENV/bin/pcreate —--scaffold starter scaffolds

3. Install our project in editable mode for development in the current directory:

$ cd scaffolds
$ SVENV/bin/pip install -e

4. Start up the application by pointing Pyramid’s pserve command at the project’s (generated) con-
figuration file:

$ SVENV/bin/pserve development.ini --reload

On start up, pserve logs some output:

Starting subprocess with file monitor
Starting server in PID 72213.
Starting HTTP server on http://0.0.0.0:6543

5. Open http://localhost:6543/ in your browser.

67

http://localhost:6543/

CONTENTS

Analysis

Rather than starting from scratch, pcreate can make getting a Python project containing a Pyramid
application a quick matter. Pyramid ships with a few scaffolds. But installing a Pyramid add-on can give
you new scaffolds from that add-on.

pserve is Pyramid’s application runner, separating operational details from your code. When you install
Pyramid, a small command program called pserve is written to your bin directory. This program is an
executable Python module. It is passed a configuration file (in this case, development .ini).

01: Single-File Web Applications

What'’s the simplest way to get started in Pyramid? A single-file module. No Python packages, no pip
install —e ., no other machinery.

Background

Microframeworks are all the rage these days. “Microframework” is a marketing term, not a technical one.
They have a low mental overhead: they do so little, the only things you have to worry about are your
things.

Pyramid is special because it can act as a single-file module microframework. You can have a single
Python file that can be executed directly by Python. But Pyramid also provides facilities to scale to the
largest of applications.

Python has a standard called WSGI that defines how Python web applications plug into standard servers,
getting passed incoming requests, and returning responses. Most modern Python web frameworks obey an
“MVC” (model-view-controller) application pattern, where the data in the model has a view that mediates
interaction with outside systems.

In this step we’ll see a brief glimpse of WSGI servers, WSGI applications, requests, responses, and views.

Objectives

* Get a running Pyramid web application, as simply as possible.
 Use that as a well-understood base for adding each unit of complexity.

* Initial exposure to WSGI apps, requests, views, and responses.

68

0.1. TUTORIALS

Steps

1. Make sure you have followed the steps in Requirements.

2. Starting from your workspace directory (~/projects/quick_tutorial), create a directory

for this step:

$ mkdir hello_world; cd hello_world

3. Copy the following into hello_world/app.py:

1 | from wsgiref.simple_server import make_server

> | from pyramid.config import Configurator

3 | from pyramid.response import Response

4

5

¢ |def hello_world(request) :

7 print ('Incoming request')

8 return Response ('<body><hl>Hello World!</hl></body>")
9

10

n|lif name == '__main__ ':

12 config = Configurator()

13 config.add_route('hello', '/")

14 config.add_view(hello_world, route_name='hello')
15 app = config.make_wsgi_app ()

16 server = make_server('0.0.0.0"', 6543, app)

17 server.serve_forever ()

4. Run the application:

$ SVENV/bin/python app.py

5. Open http://localhost:6543/ in your browser.

Analysis

New to Python web programming? If so, some lines in the module merit explanation:

69

http://localhost:6543/

CONTENTS

1. Line 11. The if _ _name__ == '__main__': is Python’s way of saying, “Start here when
running from the command line”, rather than when this module is imported.

2. Lines 12-14. Use Pyramid’s configurator to connect view code to a particular URL route.
3. Lines 6-8. Implement the view code that generates the response.
4. Lines 15-17. Publish a WSGI app using an HTTP server.
As shown in this example, the configurator plays a central role in Pyramid development. Building an

application from loosely-coupled parts via Application Configuration is a central idea in Pyramid, one
that we will revisit regularly in this Quick Tutorial.

Extra credit

1. Why do we do this:

’print('Incoming request"') ‘

...instead of:

’print 'Incoming request' ‘

2. What happens if you return a string of HTML? A sequence of integers?

3. Put something invalid, such as print xyz, in the view function. Kill your python app.py
with ct r1-C and restart, then reload your browser. See the exception in the console?

4. The GI in WSGI stands for “Gateway Interface”. What web standard is this modelled after?

02: Python Packages for Pyramid Applications

Most modern Python development is done using Python packages, an approach Pyramid puts to good use.
In this step we redo “Hello World” as a minimal Python package inside a minimal Python project.

70

0.1. TUTORIALS

Background

Python developers can organize a collection of modules and files into a namespaced unit called a package.
If a directory is on sys.path and has a special file named __init__ .py, it is treated as a Python
package.

Packages can be bundled up, made available for installation, and installed through a toolchain oriented
around a setup . py file. For this tutorial, this is all you need to know:

* We will have a directory for each tutorial step as a project.

* This project will contain a setup . py which injects the features of the project machinery into the
directory.

e In this project we will make a tutorial subdirectory into a Python package using an
__init__ .py Python module file.

e Wewillrunpip install -e . toinstall our project in development mode.
In summary:
* You’ll do your development in a Python package.

* That package will be part of a project.

Objectives

* Make a Python “package” directory withan __init__ .py.
¢ Get a minimum Python “project” in place by making a setup.py.

* Install our tutorial project in development mode.

Steps

1. Make an area for this tutorial step:

71

https://docs.python.org/3/tutorial/modules.html#tut-packages

CONTENTS

$ cd ..; mkdir package; cd package

2. In package/setup.py, enter the following:

from setuptools import setup
requires = [

'pyramid’',

setup (name="'tutorial',
install_requires=requires,

3. Make the new project installed for development then make a directory for the actual code:

$ SVENV/bin/pip install -e
$ mkdir tutorial

4. Enter the following into package/tutorial/__init__ .py:

package

5. Enter the following into package/tutorial/app.py:

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request) :
print ('Incoming request')
return Response ('<body><hl>Hello World!</hl></body>")

if _ name_ == '_ main_ ':
config = Configurator ()
config.add_route('hello', '/")
config.add_view(hello_world, route_name='hello')
app = config.make_wsgi_app ()
server = make_server ('0.0.0.0", 6543, app)
server.serve_forever ()

72

0.1. TUTORIALS

6. Run the WSGI application with:

$ SVENV/bin/python tutorial/app.py

7. Open http://localhost:6543/ in your browser.

Analysis

Python packages give us an organized unit of project development. Python projects, via setup. py, give
us special features when our package is installed (in this case, in local development mode, also called
local editable mode as indicated by —e .).

In this step we have a Python package called tutorial. We use the same name in each step of the
tutorial, to avoid unnecessary retyping.

Above this tutorial directory we have the files that handle the packaging of this project. At the
moment, all we need is a bare-bones setup.py.

Everything else is the same about our application. We simply made a Python package with a setup.py
and installed it in development mode.

Note that the way we’re running the app (python tutorial/app.py) is a bit of an odd duck. We
would never do this unless we were writing a tutorial that tries to capture how this stuff works one step at
a time. It’s generally a bad idea to run a Python module inside a package directly as a script.

See also:

Python Packages and Working in “Development Mode”.

03: Application Configuration with . ini Files

Use Pyramid’s pserve command with a . ini configuration file for simpler, better application running.

Background

Pyramid has a first-class concept of configuration distinct from code. This approach is optional, but
its presence makes it distinct from other Python web frameworks. It taps into Python’s setuptools
library, which establishes conventions for installing and providing “entry points” for Python projects.
Pyramid uses an entry point to let a Pyramid application know where to find the WSGI app.

73

http://localhost:6543/
https://docs.python.org/3/tutorial/modules.html#tut-packages
https://packaging.python.org/en/latest/distributing/#working-in-development-mode

CONTENTS

Objectives

* Modify our setup.py to have an entry point telling Pyramid the location of the WSGI app.
¢ Create an application driven by an . ini file.
* Start the application with Pyramid’s pserve command.

* Move code into the package’s __init__ .py.

Steps

1. First we copy the results of the previous step:

$ cd ..; cp -r package ini; cd ini

2. Our ini/setup.py needs a setuptools “entry point” in the setup () function:

from setuptools import setup

requires = [
4 'pyramid’',

w

7 | setup (name="'tutorial',

8 install_requires=requires,
9 entry_points="""\

10 [paste.app_factory]

1 main = tutorial:main

nwn
’

3. We can now install our project, thus generating (or re-generating) an “egg” at ini/tutorial.

egg-info:

$ SVENV/bin/pip install -e

4. Let’s make a file ini/development . ini for our configuration:

74

0.1. TUTORIALS

1| [app:main]
2 |use = egg:tutorial

4| [server:main]

s|use = egg:pyramid#wsgiref
6| host = 0.0.0.0

7| port = 6543

5. We can refactor our startup code from the previous step’s app.py into ini/tutorial/
__init__ .py:

1 | from pyramid.config import Configurator
2 | from pyramid.response import Response

s |def hello_world(request) :
6 return Response ('<body><hl>Hello World!</hl></body>")

9 |def main(global_config, =x=*settings):

10 config = Configurator (settings=settings)

1 config.add_route ('hello', '/")

12 config.add_view(hello_world, route_name='hello')
13 return config.make_wsgi_app ()

6. Now that ini/tutorial/app.py isn’t used, let’s remove it:

’S rm tutorial/app.py ‘

7. Run your Pyramid application with:

’s SVENV/bin/pserve development.ini —--reload ‘

8. Open http://localhost:6543/.

Analysis

Our development . ini file is read by pserve and serves to bootstrap our application. Processing
then proceeds as described in the Pyramid chapter on application startup:

75

http://localhost:6543/

CONTENTS

The

pserve looks for [app:main] and finds use = egg:tutorial.

The projects’s setup . py has defined an “entry point” (lines 9-12) for the project’s “main” entry
point of tutorial :main.

The tutorial package’s___init__ hasamain function.

This function is invoked, with the values from certain . ini sections passed in.

.ini file is also used for two other functions:

Configuring the WSGI server. [server:main] wires up the choice of which WSGI server for
your WSGI application. In this case, we are using wsgiref bundled in the Python library. It also
wires up the port number: port = 6543 tells wsgiref to listen on port 6543.

Configuring Python logging. Pyramid uses Python standard logging, which needs a number of
configuration values. The . ini serves this function. This provides the console log output that you
see on startup and each request.

We moved our startup code from app.py to the package’s tutorial/__init__ .py. This isn’t
necessary, but it is a common style in Pyramid to take the WSGI app bootstrapping out of your module’s
code and put it in the package’s __init__ .py.

The pserve application runner has a number of command-line arguments and options. We are using
——reload which tells pserve to watch the filesystem for changes to relevant code (Python files, the
INI file, etc.) and, when something changes, restart the application. Very handy during development.

Extra credit

4.

. If you don’t like configuration and/or . ini files, could you do this yourself in Python code?

Can we have multiple . ini configuration files for a project? Why might you want to do that?

The entry point in setup.py didn’t mention __init__ .py when it declared
tutorial:main function. Why not?

What is the purpose of xxsettings? What does the » « signify?

See also:

Creating a Pyramid Project, Creating Pyramid Scaffolds, What Is This pserve Thing, Environment Vari-
ables and .ini File Settings, PasteDeploy Configuration Files

76

0.1. TUTORIALS

04: Easier Development with debugtoolbar

Error handling and introspection using the pyramid_debugtoolbar add-on.

Background

As we introduce the basics, we also want to show how to be productive in development and debugging.
For example, we just discussed template reloading, and earlier we showed ——reload for application
reloading.

pyramid_debugtoolbar is a popular Pyramid add-on which makes several tools available in your
browser. Adding it to your project illustrates several points about configuration.

Objectives

* Install and enable the toolbar to help during development.
* Explain Pyramid add-ons.

» Show how an add-on gets configured into your application.

Steps

1. First we copy the results of the previous step, as well as install the pyramid_debugtoolbar
package:

$ cd ..; cp -r ini debugtoolbar; cd debugtoolbar
$ SVENV/bin/pip install -e
$ SVENV/bin/pip install pyramid_debugtoolbar

2. Our debugtoolbar/development.ini gets a configuration entry for pyramid.
includes:

77

CONTENTS

[app:main]

use = egg:tutorial

pyramid.includes =
pyramid_debugtoolbar

[server:main]

use = egg:pyramidfwsgiref
host = 0.0.0.0

port = 6543

© ® N9 o wm A W =

3. Run the WSGI application with:

$ SVENV/bin/pserve development.ini —--reload

4. Open http://localhost:6543/ in your browser. See the handy toolbar on the right.

Analysis

pyramid_debugtoolbar is a full-fledged Python package, available on PyPI just like thousands of
other Python packages. Thus we start by installing the pyramid_debugtoolbar package into our
virtual environment using normal Python package installation commands.

The pyramid_debugtoolbar Python package is also a Pyramid add-on, which means we need to
include its add-on configuration into our web application. We could do this with imperative configuration
in tutorial/__init__ .py by using config.include. Pyramid also supports wiring in add-
on configuration via our development .ini using pyramid.includes. We use this to load the
configuration for the debugtoolbar.

You’ll now see an attractive button on the right side of your browser, which you may click to provide
introspective access to debugging information in a new browser tab. Even better, if your web application
generates an error, you will see a nice traceback on the screen. When you want to disable this toolbar,
there’s no need to change code: you can remove it from pyramid.includes in the relevant .ini
configuration file (thus showing why configuration files are handy).

Note that the toolbar injects a small amount of HTML/CSS into your app just before the closing </body>
tag in order to display itself. If you start to experience otherwise inexplicable client-side weirdness,
you can shut it off by commenting out the pyramid_debugtoolbar line in pyramid.includes
temporarily.

See also:

See also pyramid_debugtoolbar.

78

http://localhost:6543/
https://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/index.html#overview

0.1. TUTORIALS

Extra credit

1. Why don’t we add pyramid_debugtoolbar to the list of install_requires dependen-
cies in debugtoolbar/setup.py?

2. Introduce a bug into your application. Change:

def hello_world(request) :
return Response ('<body><hl>Hello World!</hl></body>")

to:

def hello_world(request) :
return xResponse ('<body><hl>Hello World!</hl></body>")

Save, and visit http://localhost:6543/ again. Notice the nice traceback display. On the lowest line,
click the “screen” icon to the right, and try typing the variable names request and Response.
What else can you discover?

05: Unit Tests and pytest

Provide unit testing for our project’s Python code.

Background

As the mantra says, “Untested code is broken code.” The Python community has had a long culture of
writing test scripts which ensure that your code works correctly as you write it and maintain it in the
future. Pyramid has always had a deep commitment to testing, with 100% test coverage from the earliest
pre-releases.

Python includes a unit testing framework in its standard library. Over the years a number of Python
projects, such as pytest, have extended this framework with alternative test runners that provide more
convenience and functionality. The Pyramid developers use pytest, which we’ll use in this tutorial.

Don’t worry, this tutorial won’t be pedantic about “test-driven development” (TDD). We’ll do just enough
to ensure that, in each step, we haven’t majorly broken the code. As you’re writing your code, you might
find this more convenient than changing to your browser constantly and clicking reload.

We’ll also leave discussion of pytest-cov for another section.

79

http://localhost:6543/
https://docs.python.org/3/library/unittest.html#unittest-minimal-example
https://docs.pytest.org/en/latest/index.html#features
http://pytest-cov.readthedocs.io/en/latest/

CONTENTS

Objectives

* Write unit tests that ensure the quality of our code.

* Install a Python package (pytest) which helps in our testing.

Steps

1. First we copy the results of the previous step, as well as install the pytest package:

.; cp -r debugtoolbar unit_testing; cd unit_testing
$ SVENV/bin/pip install -e
$ SVENV/bin/pip install pytest

2. Now we write a simple unit test in unit_testing/tutorial/tests.py:

w

import unittest

from pyramid import testing

class TutorialViewTests (unittest.TestCase) :
def setUp(self):
self.config = testing.setUp/()

def tearDown (self):
testing.tearDown ()

def test_hello_world(self):
from tutorial import hello_world

request = testing.DummyRequest ()
response = hello_world(request)
self.assertEqual (response.status_code, 200)

3. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py -g

1 passed in 0.14 seconds

80

0.1. TUTORIALS

Analysis

Our tests.py imports the Python standard unit testing framework. To make writing Pyramid-oriented
tests more convenient, Pyramid supplies some pyramid.testing helpers which we use in the test
setup and teardown. Our one test imports the view, makes a dummy request, and sees if the view returns
what we expect.

The tests.TutorialViewTests.test_hello_world test is a small example of a unit test.
First, we import the view inside each test. Why not import at the top, like in normal Python code?
Because imports can cause effects that break a test. We’d like our tests to be in units, hence the name unit

testing. Each test should isolate itself to the correct degree.

Our test then makes a fake incoming web request, then calls our Pyramid view. We test the HTTP status
code on the response to make sure it matches our expectations.

Note that our use of pyramid.testing.setUp () and pyramid.testing.tearDown () aren’t

actually necessary here; they are only necessary when your test needs to make use of the config object
(it’s a Configurator) to add stuff to the configuration state before calling the view.

Extra credit

1. Change the test to assert that the response status code should be 404 (meaning, not found). Run
py . test again. Read the error report and see if you can decipher what it is telling you.

2. As amore realistic example, put the test s . py back as you found it, and put an error in your view,
such as a reference to a non-existing variable. Run the tests and see how this is more convenient
than reloading your browser and going back to your code.

3. Finally, for the most realistic test, read about Pyramid Response objects and see how to change
the response code. Run the tests and see how testing confirms the “contract” that your code claims
to support.

4. How could we add a unit test assertion to test the HTML value of the response body?

5. Why do we import the hello_world view function inside the test_hello_world method
instead of at the top of the module?

See also:

See also Unit, Integration, and Functional Testing

81

CONTENTS

06: Functional Testing with WebTest

Write end-to-end full-stack testing using webtest.

Background

Unit tests are a common and popular approach to test-driven development (TDD). In web applications,
though, the templating and entire apparatus of a web site are important parts of the delivered quality. We’d
like a way to test these.

WebTest is a Python package that does functional testing. With WebTest you can write tests which
simulate a full HTTP request against a WSGI application, then test the information in the response. For

speed purposes, WebTest skips the setup/teardown of an actual HTTP server, providing tests that run fast
enough to be part of TDD.

Objectives

¢ Write a test which checks the contents of the returned HTML.

Steps

1. First we copy the results of the previous step, as well as install the webtest package:

$ cd ..; cp -r unit_testing functional_testing; cd functional_testing
$ SVENV/bin/pip install -e
$ SVENV/bin/pip install webtest

2. Let’sextend functional_testing/tutorial/tests.py toinclude a functional test:

import unittest

w

from pyramid import testing

=N

class TutorialViewTests (unittest.TestCase) :
def setUp(self):

-

82

http://docs.pylonsproject.org/projects/webtest/en/latest/

0.1. TUTORIALS

8 self.config = testing.setUp/()

10 def tearDown (self):
11 testing.tearDown ()

13 def test_hello_world(self):

14 from tutorial import hello_world

15

16 request = testing.DummyRequest ()

17 response = hello_world(request)

18 self.assertEqual (response.status_code, 200)

21 | class TutorialFunctionalTests (unittest.TestCase) :

2 def setUp(self):

23 from tutorial import main

24 app = main({})

25 from webtest import TestApp

26

27 self.testapp = TestApp (app)

28

29 def test_hello_world(self):

30 res = self.testapp.get('/', status=200)

31 self.assertIn(b'<hl>Hello World!</hl>"', res.body)

Be sure this file is not executable, or pytest may not include your tests.

3. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py —q

2 passed in 0.25 seconds

Analysis

We now have the end-to-end testing we were looking for. WebTest lets us simply extend our existing
pytest-based test approach with functional tests that are reported in the same output. These new tests
not only cover our templating, but they didn’t dramatically increase the execution time of our tests.

Extra credit

1. Why do our functional testsuse b ' ' ?

83

CONTENTS

07: Basic Web Handling With Views

Organize a views module with decorators and multiple views.

Background
For the examples so far, the hello_world function is a “view”. In Pyramid, views are the primary way
to accept web requests and return responses.
So far our examples place everything in one file:
* The view function
* Its registration with the configurator

* The route to map it to a URL

The WSGI application launcher

Let’s move the views out to their own views.py module and change our startup code to scan that
module, looking for decorators that set up the views. Let’s also add a second view and update our tests.

Objectives

* Move views into a module that is scanned by the configurator.

* Create decorators that do declarative configuration.

Steps

1. Let’s begin by using the previous package as a starting point for a new distribution, then making it
active:

$ cd ..; cp -r functional_testing views; cd views
$ SVENV/bin/pip install -e

2. Our views/tutorial/__init__ .py gets a lot shorter:

84

0.1. TUTORIALS

from pyramid.config import Configurator

4+ |def main(global_config, =xsettings):

5 config = Configurator (settings=settings)
6 config.add_route ('home', '/")

7 config.add_route('hello', '/howdy'")

8 config.scan('.views')

9 return config.make_wsgi_app ()

3. Let’s add a module views/tutorial/views.py that is focused on handling requests and
responses:

1 | from pyramid.response import Response
> | from pyramid.view import view_config

s|# First view, available at http://localhost:6543/

6 | @view_config(route_name='home"')

7 | def home (request) :

8 return Response ('<body>Visit hello</body>")

u | # /howdy

12| @view_config(route_name='hello')

13 |def hello(request):

14 return Response ('<body>Go back home</body>")

4. Update the tests to cover the two new views:

import unittest

from pyramid import testing

w

¢ | class TutorialViewTests (unittest.TestCase) :

7 def setUp(self):

8 self.config = testing.setUp/()
9

10 def tearDown (self):

11 testing.tearDown ()

13 def test_home (self):
14 from .views import home

85

CONTENTS

request = testing.DummyRequest ()

response = home (request)

self.assertEqual (response.status_code, 200)
self.assertIn(b'Visit', response.body)

def test_hello(self):
from .views import hello

request = testing.DummyRequest ()

response = hello(request)

self.assertEqual (response.status_code, 200)
self.assertIn(b'Go back', response.body)

30 | class TutorialFunctionalTests (unittest.TestCase) :

40

41

42

43

def setUp(self):
from tutorial import main
app = main({})
from webtest import TestApp

self.testapp = TestApp (app)

def test_home (self):
res = self.testapp.get('/', status=200)
self.assertIn(b'<body>Visit', res.body)

def test_hello(self):
res = self.testapp.get ('/howdy', status=200)
self.assertIn(b'<body>Go back', res.body)

5. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py —g

4 passed in 0.28 seconds

6. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini —--reload

7. Open http://localhost:6543/ and http://localhost:6543/howdy in your browser.

86

http://localhost:6543/
http://localhost:6543/howdy

0.1. TUTORIALS

Analysis

We added some more URLs, but we also removed the view code from the application startup code in
tutorial/__init__ .py. Our views, and their view registrations (via decorators) are now in a mod-
ule views.py, which is scanned via config.scan ('.views"').

We have two views, each leading to the other. If you start at http://localhost:6543/, you get a response
with a link to the next view. The hel1lo view (available at the URL /howdy) has a link back to the first

view.

This step also shows that the name appearing in the URL, the name of the “route” that maps a URL to a
view, and the name of the view, can all be different. More on routes later.

Earlier we saw config.add_view as one way to configure a view. This section introduces
@view_config. Pyramid’s configuration supports imperative configuration, such as the config.
add_view in the previous example. You can also use declarative configuration, in which a Python

decorator is placed on the line above the view. Both approaches result in the same final configuration,
thus usually, it is simply a matter of taste.

Extra credit

1. What does the dot in . views signify?
2. Why might assertIn be a better choice in testing the text in responses than assertEqual?
See also:

Views, View Configuration, and Debugging View Configuration

08: HTML Generation With Templating

Most web frameworks don’t embed HTML in programming code. Instead, they pass data into a templating
system. In this step we look at the basics of using HTML templates in Pyramid.

87

http://localhost:6543/
https://docs.python.org/3/glossary.html#term-decorator

CONTENTS

Background

Ouch. We have been making our own Response and filling the response body with HTML. You usually
won’t embed an HTML string directly in Python, but instead will use a templating language.

Pyramid doesn’t mandate a particular database system, form library, and so on. It encourages replaceabil-
ity. This applies equally to templating, which is fortunate: developers have strong views about template
languages. As of Pyramid 1.5a2, Pyramid doesn’t even bundle a template language!

It does, however, have strong ties to Jinja2, Mako, and Chameleon. In this step we see how to add

pyramid_chameleon to your project, then change your views to use templating.

Objectives

* Enable the pyramid_chameleon Pyramid add-on.
* Generate HTML from template files.
» Connect the templates as “renderers” for view code.

* Change the view code to simply return data.

Steps

1. Let’s begin by using the previous package as a starting point for a new project:

$ cd ..; cp -r views templating; cd templating

2. This step depends on pyramid_chameleon, so add it as a dependency in templating/
setup.py:

from setuptools import setup

requires = [
'pyramid’',
'pyramid_chameleon',

4 o v A W o =

88

https://github.com/Pylons/pyramid_chameleon

0.1. TUTORIALS

s | setup (name="'tutorial',

9 install_requires=requires,
10 entry_points="""\

11 [paste.app_factory]

12 main = tutorial:main
nmnwn
’

3. Now we can activate the development-mode distribution:

$ SVENV/bin/pip install -e

templating/tutorial/__init__ .py:

We need to connect pyramid_chameleon as a renderer by making a call in the setup of

from pyramid.config import Configurator

4| def main(global_config, **settings):

5 config = Configurator (settings=settings)
6 config.include ('pyramid chameleon')

7 config.add_route('home', '/")

8 config.add_route('hello', '/howdy")

9 config.scan('.views')

10 return config.make_wsgi_app ()

5. Our templating/tutorial/views.py no longer has HTML in it:

1 | from pyramid.view import view_config

4| # First view, available at http://localhost:6543/

5 | @view_config(route_name='home', renderer='home.pt')
¢ | def home (request) :

7 return {'name': 'Home View'}

8

9

| # /howdy

11 | @view_config(route_name='hello', renderer='home.pt')
12 |def hello(request):
13 return {'name': 'Hello View'}

6. Instead we have templating/tutorial/home.pt as atemplate:

89

CONTENTS

<!DOCTYPE html>
<html lang="en">
<head>
<title>Quick Tutorial: S${name}</title>
</head>
<body>
<hl>Hi ${name}</hl>
</body>
</html>

7. For convenience, change templating/development . ini to reload templates automatically
with pyramid.reload_templates:

[app:main]

use = egg:tutorial

pyramid.reload_templates = true

pyramid.includes =
pyramid_debugtoolbar

[server:main]

use = egg:pyramidfwsgiref
host = 0.0.0.0

port = 6543

8. Our unit tests in templating/tutorial/tests.py can focus on data

import unittest

from pyramid import testing

w

6 | class TutorialViewTests (unittest.TestCase) :

7 def setUp(self):

8 self.config = testing.setUp()
9

10 def tearDown (self):

11 testing.tearDown ()

13 def test_home (self):

14 from .views import home

15

16 request = testing.DummyRequest ()
17 response = home (request)

18 # Our view now returns data

90

0.1. TUTORIALS

40

41

42

43

def

self.assertEqual ('Home View', response['name'])

test_hello(self):
from .views import hello

request = testing.DummyRequest ()

response = hello(request)

Our view now returns data

self.assertEqual ('Hello View', response['name'])

class TutorialFunctionalTests (unittest.TestCase) :

def

def

def

setUp (self) :

from tutorial import main
app = main({})

from webtest import TestApp

self.testapp = TestApp (app)

test_home (self) :
res = self.testapp.get('/', status=200)
self.assertIn(b'<hl>Hi Home View', res.body)

test_hello(self):
res = self.testapp.get ('/howdy', status=200)
self.assertIn(b'<hl>Hi Hello View', res.body)

9. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py —g

4 passed in 0.46 seconds

10. Run your Pyramid application with:

S SVENV/bin/pserve development.ini —--reload

11. Open http://localhost:6543/ and http://localhost:6543/howdy in your browser.

Analysis

Ahh, that looks better. We have a view that is focused on Python code. Our @view_config decorator
specifies a renderer that points to our template file. Our view then simply returns data which is then
supplied to our template. Note that we used the same template for both views.

91

http://localhost:6543/
http://localhost:6543/howdy

CONTENTS

Note the effect on testing. We can focus on having a data-oriented contract with our view code.
See also:

Templates, Debugging Templates, and Available Add-On Template System Bindings.

09: Organizing Views With View Classes

Change our view functions to be methods on a view class, then move some declarations to the class level.

Background

So far our views have been simple, free-standing functions. Many times your views are related to one
another. They may be different ways to look at or work on the same data, or be a REST API that handles
multiple operations. Grouping these views together as a view class makes sense:

* Group views.

* Centralize some repetitive defaults.

 Share some state and helpers.
In this step we just do the absolute minimum to convert the existing views to a view class. In a later

tutorial step, we’ll examine view classes in depth.

Objectives

* Group related views into a view class.

* Centralize configuration with class-level @view_defaults.

Steps

1. First we copy the results of the previous step:

92

0.1. TUTORIALS

$ cd ..; cp -r templating view_classes; cd view_classes
$ SVENV/bin/pip install -e

2. Our view_classes/tutorial/views.py now has a view class with our two views:

from pyramid.view import (
2 view_config,

3 view_defaults

4)

6 | @Qview_defaults (renderer="home.pt"')
7| class TutorialViews:

8 def _ _init__ (self, request):

9 self.request = request

1 @view_config (route_name='"home')

12 def home (self):

13 return {'name': 'Home View'}
14

15 @view_config(route_name='hello')
16 def hello(self):

17 return {'name': 'Hello View'}

3. Our unit tests in view_classes/tutorial/tests.py don’t run, so let’s modify them to
import the view class, and make an instance before getting a response:

import unittest

from pyramid import testing

w

6 | class TutorialViewTests (unittest.TestCase) :

7 def setUp(self):

8 self.config = testing.setUp()
9

10 def tearDown (self):

11 testing.tearDown ()

13 def test_home (self):

14 from .views import TutorialViews
15

16 request = testing.DummyRequest ()
17 inst = TutorialViews (request)

18 response = inst.home ()

93

CONTENTS

19 self.assertEqual ('Home View', response['name'])
20

21 def test_hello(self):

2 from .views import TutorialViews

23

24 request = testing.DummyRequest ()

25 inst = TutorialViews (request)

26 response = inst.hello()

27 self.assertEqual ('Hello View', response['name'])

3 | class TutorialFunctionalTests (unittest.TestCase) :

31 def setUp(self):

32 from tutorial import main

33 app = main({})

34 from webtest import TestApp

35

36 self.testapp = TestApp (app)

37

38 def test_home(self):

39 res = self.testapp.get('/', status=200)

40 self.assertIn(b'<hl>Hi Home View', res.body)
41

42 def test_hello(self):

3 res = self.testapp.get ('/howdy', status=200)
44 self.assertIn(b'<hl>Hi Hello View', res.body)

4. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py -g

4 passed in 0.34 seconds

5. Run your Pyramid application with:

S SVENV/bin/pserve development.ini —--reload

6. Open http://localhost:6543/ and http://localhost:6543/howdy in your browser.

Analysis

To ease the transition to view classes, we didn’t introduce any new functionality. We simply changed the
view functions to methods on a view class, then updated the tests.

94

http://localhost:6543/
http://localhost:6543/howdy

0.1. TUTORIALS

Inour TutorialViews view class, you can see that our two view classes are logically grouped together
as methods on a common class. Since the two views shared the same template, we could move that to a
@view_defaults decorator at the class level.

The tests needed to change. Obviously we needed to import the view class. But you can also see the
pattern in the tests of instantiating the view class with the dummy request first, then calling the view
method being tested.

See also:

Defining a View Callable as a Class

10: Handling Web Requests and Responses

Web applications handle incoming requests and return outgoing responses. Pyramid makes working with
requests and responses convenient and reliable.

Objectives

» Learn the background on Pyramid’s choices for requests and responses.
* Grab data out of the request.

¢ Change information in the response headers.

Background

Developing for the web means processing web requests. As this is a critical part of a web application,
web developers need a robust, mature set of software for web requests and returning web responses.

Pyramid has always fit nicely into the existing world of Python web development (virtual environments,
packaging, scaffolding, first to embrace Python 3, and so on). Pyramid turned to the well-regarded WebOb
Python library for request and response handling. In our example above, Pyramid hands hello_world
a request that is based on WebOb.

Steps

1. First we copy the results of the view_classes step:

95

CONTENTS

$ SVENV/bin/pip install -e

$ cd ..; cp -r view_classes request_response; cd request_response

2. Simplify the routes in request_response/tutorial/__init__ .py:

from pyramid.config import Configurator

4| def main(global_config, **settings):

5 config = Configurator (settings=settings)
6 config.add_route ('home', '/'")

7 config.add_route('plain', '/plain')

8 config.scan('.views')

9 return config.make_wsgi_app ()

3. We only need one view in request_response/tutorial/views.py:

1 | from pyramid.httpexceptions import HTTPFound
2 | from pyramid.response import Response

3 | from pyramid.view import view_config

4

5

¢ | class TutorialViews:

7 def _ init__ (self, request):

8 self.request = request

9

10 @view_config (route_name="home')

1 def home (self):

12 return HTTPFound (location='/plain')
13

14 @view_config (route_name='plain')

15 def plain(self):

16 name = self.request.params.get ('name', 'No Name Provided')
17

18 body = 'URL %s with name: %s' % (self.request.url, name)
19 return Response (

20 content_type='text/plain',

21 body=body

2)

4. Update the tests in request_response/tutorial/tests.py:

96

0.1. TUTORIALS

40

41

42

43

45

46

import unittest

from pyramid import testing

class TutorialViewTests (unittest.TestCase) :
def setUp(self):
self.config = testing.setUp/()

def tearDown (self):
testing.tearDown ()

def test_home (self):
from .views import TutorialViews

request = testing.DummyRequest ()

inst = TutorialViews (request)

response = inst.home ()

self.assertEqual (response.status, '302 Found')

def test_plain_without_name (self):
from .views import TutorialViews

request = testing.DummyRequest ()

inst = TutorialViews (request)

response = inst.plain()

self.assertIn(b'No Name Provided', response.body)

def test_plain_with_name (self):
from .views import TutorialViews

request = testing.DummyRequest ()
request.GET['name'] = 'Jane Doe'

inst = TutorialViews (request)

response = inst.plain()
self.assertIn(b'Jane Doe', response.body)

class TutorialFunctionalTests (unittest.TestCase) :
def setUp(self):
from tutorial import main

app = main({})
from webtest import TestApp

self.testapp = TestApp (app)

97

CONTENTS

47

48 def test_plain_without_name (self):

49 res = self.testapp.get ('/plain', status=200)

50 self.assertIn(b'No Name Provided', res.body)

51

52 def test_plain_with_name (self):

53 res = self.testapp.get ('/plain?name=Jane%20Doe', status=200)
54 self.assertIn(b'Jane Doe', res.body)

5. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py -gq

5 passed in 0.30 seconds

6. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini —--reload

7. Open http://localhost:6543/ in your browser. You will be redirected to http://localhost:6543/plain.

8. Open http://localhost:6543/plain?’name=alice in your browser.

Analysis

In this view class, we have two routes and two views, with the first leading to the second by an HTTP
redirect. Pyramid can generate redirects by returning a special object from a view or raising a special
exception.

In this Pyramid view, we get the URL being visited from request .url. Also, if you visited http:
/Nocalhost:6543/plainTname=alice, the name is included in the body of the response:

URL http://localhost:6543/plain?name=alice with name: alice

Finally, we set the response’s content type and body, then return the response.

We updated the unit and functional tests to prove that our code does the redirection, but also handles
sending and not sending /plain?name.

98

http://localhost:6543/
http://localhost:6543/plain
http://localhost:6543/plain?name=alice
http://localhost:6543/plain?name=alice
http://localhost:6543/plain?name=alice

0.1. TUTORIALS

Extra credit

1. Could we also raise HTTPFound(location='/plain') instead of returning it? If so,
what’s the difference?

See also:

Request and Response Objects, generate redirects

11: Dispatching URLs To Views With Routing

Routing matches incoming URL patterns to view code. Pyramid’s routing has a number of useful features.

Background

Writing web applications usually means sophisticated URL design. We just saw some Pyramid machinery
for requests and views. Let’s look at features that help in routing.

Previously we saw the basics of routing URLSs to views in Pyramid.
* Your project’s “setup” code registers a route name to be used when matching part of the URL

» Elsewhere a view is configured to be called for that route name.

O Why do this twice? Other Python web frameworks let you create a route and associate it with a
view in one step. As illustrated in Routes need relative ordering, multiple routes might match the same
URL pattern. Rather than provide ways to help guess, Pyramid lets you be explicit in ordering. Pyramid
also gives facilities to avoid the problem. It’s relatively easy to build a system that uses implicit route
ordering with Pyramid too. See The Groundhog series of screencasts if you’re interested in doing so.

Objectives

* Define a route that extracts part of the URL into a Python dictionary.

» Use that dictionary data in a view.

Steps

1. First we copy the results of the view_classes step:

99

http://static.repoze.org/casts/videotags.html

CONTENTS

$ cd ..; cp -r view_classes routing; cd routing
$ SVENV/bin/pip install -e

2. Our routing/tutorial/__init__ .py needs aroute with a replacement pattern:

from pyramid.config import Configurator

4+ |def main(global_config, =*settings):

5 config = Configurator (settings=settings)

6 config.include ('pyramid chameleon")

7 config.add_route ('home', '/howdy/{first}/{last}")
8 config.scan('.views')

9 return config.make_wsgi_app ()

3. We just need one view in routing/tutorial/views.py:

from pyramid.view import (
2 view_config,

3 view_defaults

4)

7 | @view_defaults (renderer="home.pt"')
s | class TutorialViews:

9 def _ _init__ (self, request):

10 self.request = request

11

12 @view_config (route_name='"home')

13 def home (self):

14 first = self.request.matchdict['first']
15 last = self.request.matchdict['last']
16 return {

17 'name': 'Home View',

18 'first': first,

19 "last': last

4. We just need one view in routing/tutorial/home.pt:

1| <!DOCTYPE html>
> | <html lang="en">
3 | <head>

100

0.1. TUTORIALS

4 <title>Quick Tutorial: ${name}</title>
5 | </head>

s | <body>

7| <hl>${name}</hl>

s | <p>First: ${first}, Last: ${last}</p>

9 | </body>

0| </html>

. Update routing/tutorial/tests.py:

import unittest

from pyramid import testing

w

¢ | class TutorialViewTests (unittest.TestCase) :

7 def setUp(self):

8 self.config = testing.setUp/()
9

10 def tearDown (self):

11 testing.tearDown ()

13 def test_home (self):

14 from .views import TutorialViews

15

16 request = testing.DummyRequest ()

17 request .matchdict['first'] = 'First'

18 request.matchdict['last'] = 'Last'

19 inst = TutorialViews (request)

20 response = inst.home ()

21 self.assertEqual (response['first'], 'First')
2 self.assertEqual (response['last'], 'Last')

25 | class TutorialFunctionalTests (unittest.TestCase) :

26 def setUp(self):

27 from tutorial import main

28 app = main({})

2 from webtest import TestApp

30

31 self.testapp = TestApp (app)

32

3 def test_home (self):

34 res = self.testapp.get ('/howdy/Jane/Doe',
35 self.assertIn(b'Jane', res.body)

101

status=200)

CONTENTS

36 self.assertIn(b'Doe', res.body)

6. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py -g

2 passed in 0.39 seconds

7. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini --reload

8. Open http://localhost:6543/howdy/amy/smith in your browser.

Analysis

In__init__ .py we see an important change in our route declaration:

config.add_route('hello', '/howdy/{first}/{last}")

With this we tell the configurator that our URL has a “replacement pattern”. With this, URLs such as
/howdy/amy/smith will assign amy to first and smith to last. We can then use this data in
our view:

self.request.matchdict['first"']
self.request.matchdict['last"']

request .matchdict contains values from the URL that match the “replacement patterns™ (the curly
braces) in the route declaration. This information can then be used anywhere in Pyramid that has access
to the request.

Extra credit

1. What happens if you to go the URL http://localhost:6543/howdy? Is this the result that you ex-
pected?

See also:

Weird Stuff You Can Do With URL Dispatch

102

http://localhost:6543/howdy/amy/smith
http://localhost:6543/howdy
http://www.plope.com/weird_pyramid_urldispatch

0.1. TUTORIALS

12: Templating With jinja2

We just said Pyramid doesn’t prefer one templating language over another. Time to prove it. Jinja2
is a popular templating system, used in Flask and modeled after Django’s templates. Let’s add
pyramid_jinja2, a Pyramid add-on which enables Jinja2 as a renderer in our Pyramid applications.

Objectives

» Show Pyramid’s support for different templating systems.

* Learn about installing Pyramid add-ons.

Steps

1. In this step let’s start by copying the view_class step’s directory, and then installing the
pyramid_jinja2 add-on.

$ cd ..; cp —r view_classes jinja2; cd jinja2
$ SVENV/bin/pip install -e
$ SVENV/bin/pip install pyramid_jinja2

2. We need to include pyramid_jinjaZ2in jinja2/tutorial/_ _init__ .py:

from pyramid.config import Configurator

4+ |def main(global_config, =xxsettings):

5 config = Configurator (settings=settings)
6 config.include ('pyramid_Jjinja2")

7 config.add_route ('home', '/")

8 config.add_route('hello', '/howdy")

9 config.scan('.views")

10 return config.make_wsgi_app ()

3. Our jinja2/tutorial/views.py simply changes its renderer:

103

CONTENTS

1 | from pyramid.view import (
2 view_config,

3 view_defaults

4)

7| @view_defaults (renderer="home. jinja2")
s | class TutorialViews:

9 def _ _init__ (self, request):

10 self.request = request

11

12 @view_config (route_name='"home')

13 def home (self):

14 return {'name': 'Home View'}
15

16 @view_config(route_name='hello')
17 def hello(self):

18 return {'name': 'Hello View'}

4. Add jinja2/tutorial/home. jinja2 as atemplate:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Quick Tutorial: {{ name }}</title>
</head>
<body>
<hl>Hi {{ name }}</hl>
</body>
</html>

5. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py -gq

4 passed in 0.40 seconds

6. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini --reload

7. Open http://localhost:6543/ in your browser.

104

http://localhost:6543/

0.1. TUTORIALS

Analysis

Getting a Pyramid add-on into Pyramid is simple. First you use normal Python package installation tools
to install the add-on package into your Python virtual environment. You then tell Pyramid’s configurator
to run the setup code in the add-on. In this case the setup code told Pyramid to make a new “renderer”
available that looked for . jinja2 file extensions.

Our view code stayed largely the same. We simply changed the file extension on the renderer. For the
template, the syntax for Chameleon and Jinja2’s basic variable insertion is very similar.

Extra credit

1. Our project now depends on pyramid_jinjaZ2. We installed that dependency manually. What
is another way we could have made the association?

2. We used config.include which is an imperative configuration to get the Configurator to load
pyramid_Jjinja2°‘s configuration. What is another way could include it into the config?

See also:

Jinja2 homepage, and pyramid_jinja2 Overview

13: CSS/JS/Images Files With Static Assets

Of course the Web is more than just markup. You need static assets: CSS, JS, and images. Let’s point our
web app at a directory where Pyramid will serve some static assets.

Objectives

* Publish a directory of static assets at a URL.

* Use Pyramid to help generate URLSs to files in that directory.

Steps

1. First we copy the results of the view_classes step:

105

http://jinja.pocoo.org/
https://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/index.html#overview

CONTENTS

$ cd ..; cp -r view_classes static_assets; cd static_assets
$ SVENV/bin/pip install -e

2. Weaddacall config.add_static_viewin static_assets/tutorial/_ _init_ .
py:

from pyramid.config import Configurator

4| def main(global_config, =**settings):

5 config = Configurator (settings=settings)

6 config.include ('pyramid chameleon')

7 config.add_route ('home', '/")

8 config.add_route('hello', '/howdy'")

9 config.add_static_view (name='static', path='tutorial:static")
10 config.scan('.views")

11 return config.make_wsgi_app ()

3. We can add a CSS link in the <head> of our template at static_assets/tutorial/home.
pt:

<!DOCTYPE html>

<html lang="en">

<head>
<title>Quick Tutorial: S${name}</title>
<link rel="stylesheet"

href="${request.static_url ('tutorial:static/app.css') }"/>
</head>
<body>
<hl>Hi ${name}</hl>
</body>
</html>

4. Add aCSSfile at static_assets/tutorial/static/app.css:

body {
margin: 2Z2em;
font-family: sans-serif;

5. Make sure we haven’t broken any existing code by running the tests:

106

0.1. TUTORIALS

$ SVENV/bin/py.test tutorial/tests.py -g

4 passed in 0.50 seconds

6. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini —--reload

7. Open http://localhost:6543/ in your browser and note the new font.

Analysis

We changed our WSGI application to map requests under http://localhost:6543/static/ to files and direc-
tories inside a static directory inside our tutorial package. This directory contained app.css.

We linked to the CSS in our template. We could have hard-coded this link to /static/app.css. But
what if the site is later moved under /somesite/static/? Or perhaps the web developer changes
the arrangement on disk? Pyramid gives a helper that provides flexibility on URL generation:

${request.static_url ('tutorial:static/app.css')}

This matches the path="'tutorial:static' in our config.add_static_view registration.
By using request.static_url to generate the full URL to the static assets, you both ensure you
stay in sync with the configuration and gain refactoring flexibility later.

Extra credit

1. There is also a request.static_path APIL. How does this differ from request.
static_url?

See also:

Static Assets, Preventing HTTP Caching, and Influencing HTTP Caching

107

http://localhost:6543/
http://localhost:6543/static/

CONTENTS

14: AJAX Development With JSON Renderers

Modern web apps are more than rendered HTML. Dynamic pages now use JavaScript to update the Ul in
the browser by requesting server data as JSON. Pyramid supports this with a JSON renderer.

Background

As we saw in 08: HTML Generation With Templating, view declarations can specify a renderer. Output
from the view is then run through the renderer, which generates and returns the response. We first used a
Chameleon renderer, then a Jinja2 renderer.

Renderers aren’t limited, however, to templates that generate HTML. Pyramid supplies a JSON renderer
which takes Python data, serializes it to JSON, and performs some other functions such as setting the
content type. In fact you can write your own renderer (or extend a built-in renderer) containing custom
logic for your unique application.

Steps

1. First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes json; cd json
$ SVENV/bin/pip install -e

2. We add a new route for hello_jsonin json/tutorial/__ _init__ .py:

from pyramid.config import Configurator

)

~

def main(global_config, =xxsettings):

5 config = Configurator (settings=settings)

6 config.include ('pyramid_chameleon')

7 config.add_route('home', '/")

8 config.add_route('hello', '/howdy")

9 config.add_route('hello_json', 'howdy.Jjson')
10 config.scan('.views")

1 return config.make_wsgi_app ()

3. Rather than implement a new view, we will “stack” another decorator on the hello view in
views.py:

108

0.1. TUTORIALS

1 | from pyramid.view import (
2 view_config,

3 view_defaults

4)

7| @view_defaults (renderer="home.pt"')
s | class TutorialViews:

9 def _ _init__ (self, request):

10 self.request = request

11

12 @view_config (route_name='"home')

13 def home (self):

14 return {'name': 'Home View'}
15

16 @view_config(route_name='hello')
17 @view_config(route_name='hello_json', renderer='json')
18 def hello(self):

19 return {'name': 'Hello View'}

. We need a new functional test at the end of json/tutorial/tests.py:

import unittest

from pyramid import testing

w

¢ | class TutorialViewTests (unittest.TestCase) :

7 def setUp(self):

8 self.config = testing.setUp/()
9

10 def tearDown (self):

11 testing.tearDown ()

13 def test_home (self):

14 from .views import TutorialViews

15

16 request = testing.DummyRequest ()

17 inst = TutorialViews (request)

18 response = inst.home ()

19 self.assertEqual ('Home View', responsel['name'])
20

21 def test_hello(self):

2 from .views import TutorialViews

109

CONTENTS

24 request = testing.DummyRequest ()

25 inst = TutorialViews (request)

26 response = inst.hello()

27 self.assertEqual ('Hello View', response['name'])
28

29

30 | class TutorialFunctionalTests (unittest.TestCase) :

31 def setUp(self):

32 from tutorial import main

33 app = main({})

34 from webtest import TestApp

35

36 self.testapp = TestApp (app)

37

38 def test_home (self):

39 res = self.testapp.get('/', status=200)

40 self.assertIn(b'<hl>Hi Home View', res.body)

41

4 def test_hello(self):

43 res = self.testapp.get ('/howdy', status=200)

a4 self.assertIn(b'<hl>Hi Hello View', res.body)

45

46 def test_hello_json(self):

47 res = self.testapp.get ('/howdy. json', status=200)
48 self.assertIn(b'{"name": "Hello View"}', res.body)
49 self.assertEqual (res.content_type, 'application/json')
50

5. Run the tests:

$ SVENV/bin/py.test tutorial/tests.py -q

5 passed in 0.47 seconds

6. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini —--reload

7. Open http://localhost:6543/howdy.json in your browser and you will see the resulting JSON re-
sponse.

110

http://localhost:6543/howdy.json

0.1. TUTORIALS

Analysis

Earlier we changed our view functions and methods to return Python data. This change to a data-oriented
view layer made test writing easier, decoupling the templating from the view logic.

Since Pyramid has a JSON renderer as well as the templating renderers, it is an easy step to return JSON.
In this case we kept the exact same view and arranged to return a JSON encoding of the view data. We
did this by:

¢ Adding a route to map /howdy . json to a route name.

* Providing a @view_config that associated that route name with an existing view.

* Overriding the view defaults in the view config that mentions the hello_json route, so that
when the route is matched, we use the JSON renderer rather than the home . pt template renderer

that would otherwise be used.

In fact, for pure AJAX-style web applications, we could re-use the existing route by using Pyramid’s view
predicates to match on the Accepts: header sent by modern AJAX implementations.

Pyramid’s JSON renderer uses the base Python JSON encoder, thus inheriting its strengths and weak-
nesses. For example, Python can’t natively JSON encode DateTime objects. There are a number of
solutions for this in Pyramid, including extending the JSON renderer with a custom renderer.

See also:

Writing View Callables Which Use a Renderer, JSON Renderer, and Adding and Changing Renderers

15: More With View Classes

Group views into a class, sharing configuration, state, and logic.

111

CONTENTS

Background

As part of its mission to help build more ambitious web applications, Pyramid provides many more
features for views and view classes.

The Pyramid documentation discusses views as a Python “callable”. This callable can be a function, an
object witha __call__, or a Python class. In this last case, methods on the class can be decorated with
@view_config to register the class methods with the configurator as a view.
At first, our views were simple, free-standing functions. Many times your views are related: different
ways to look at or work on the same data, or a REST API that handles multiple operations. Grouping
these together as a view class makes sense:

* Group views.

* Centralize some repetitive defaults.

 Share some state and helpers.
Pyramid views have view predicates that determine which view is matched to a request, based on factors
such as the request method, the form parameters, and so on. These predicates provide many axes of

flexibility.

The following shows a simple example with four operations: view a home page which leads to a form,
save a change, and press the delete button.

Objectives

* Group related views into a view class.
* Centralize configuration with class-level @view_defaults.
* Dispatch one route/URL to multiple views based on request data.

 Share states and logic between views and templates via the view class.

Steps

1. First we copy the results of the previous step:

112

0.1. TUTORIALS

$ cd ..; cp -r templating more_view_classes; cd more_view_classes
$ SVENV/bin/pip install -e

2. Ourrouteinmore_view_classes/tutorial/__init__ .py needs some replacement pat-
terns:

from pyramid.config import Configurator

def main(global_config, =**settings):
config = Configurator (settings=settings)
config.include ('pyramid chameleon')
config.add_route('home', '/")
config.add_route('hello', '"/howdy/{first}/{last}")
config.scan('.views')
return config.make_wsgi_app ()

3. Ourmore_view_classes/tutorial/views.py now has a view class with several views:

from pyramid.view import (
view_config,
view_defaults

)

@view_defaults (route_name='hello')
class TutorialViews (object) :
def _ init_ (self, request):
self.request = request
self.view_name = 'TutorialViews'

@property

def full_name (self):
first = self.request.matchdict['first']
last = self.request.matchdict['last']
return first + ' ' + last

@view_config (route_name='home', renderer='home.pt')
def home (self):
return {'page_title': 'Home View'}

Retrieving /howdy/first/last the first time

@view_config(renderer='hello.pt')
def hello(self):

113

CONTENTS

2 return {'page_title': 'Hello View'}

27

28 # Posting to /howdy/first/last via the "Edit" submit button
29 @view_config(request_method='POST', renderer='edit.pt')

30 def edit (self):

31 new_name = self.request.params|['new_name']

32 return {'page_title': 'Edit View', 'new_name': new_name}
33

34 # Posting to /howdy/first/last via the "Delete" submit button
35 @view_config(request_method='POST', request_param='form.delete',
36 renderer="delete.pt")

37 def delete(self):

38 print ('Deleted')

39 return {'page_title': 'Delete View'}

4. Our primary view needs a template at more_view_classes/tutorial/home.pt:

<!DOCTYPE html>
<html lang="en">

<head>
<title>Quick Tutorial: ${view.view_name} - ${page_title}</title>
</head>
<body>
<hl>${view.view_name} - ${page_title}</hl>

<p>Go to the <a href="${request.route_url ('hello', first='jane',
last="doe') }">form.</p>

</body>

</html>

5. Ditto for our other view from the previous section at more_view_classes/tutorial/
hello.pt:

<!DOCTYPE html>
<html lang="en">

<head>
<title>Quick Tutorial: ${view.view_name} - ${page_title}</title>
</head>
<body>
<hl>${view.view_name} - ${page_title}</hl>

<p>Welcome, ${view.full name}</p>
<form method="POST"
action="${request.current_route_url()}">
<input name="new_name"/>

114

0.1. TUTORIALS

<input type="submit" name="form.edit" value="Save"/>
<input type="submit" name="form.delete" value="Delete"/>
</form>
</body>
</html>

6. We have an edit view that also needs a template at more_view_classes/tutorial/edit.
pt:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Quick Tutorial: ${view.view_name} - ${page_title}</title>
</head>
<body>
<hl>${view.view_name} - ${page_title}</hl>
<p>You submitted <code>${new_name}</code></p>
</body>
</html>

7. And finally the delete view’s template at more_view_classes/tutorial/delete.pt

<!DOCTYPE html>
<html lang="en">
<head>
<title>Quick Tutorial: ${page_title}</title>
</head>
<body>
<hl>${view.view_name} - ${page_title}</hl>
</body>
</html>

8. Our tests inmore_view_classes/tutorial/tests.py fail, so let’s modify them:

import unittest
from pyramid import testing
class TutorialViewTests (unittest.TestCase) :

def setUp(self):
self.config = testing.setUp()

115

CONTENTS

10 def tearDown (self):
11 testing.tearDown ()

13 def test_home (self):

14 from .views import TutorialViews

15

16 request = testing.DummyRequest ()

17 inst = TutorialViews (request)

18 response = inst.home ()

19 self.assertEqual ('Home View', responsel['page_title'])

21 | class TutorialFunctionalTests (unittest.TestCase) :

2 def setUp(self):

23 from tutorial import main

24 app = main({})

25 from webtest import TestApp

26

27 self.testapp = TestApp (app)

28

29 def test_home(self):

30 res = self.testapp.get('/', status=200)

31 self.assertIn(b'TutorialViews - Home View', res.body)

9. Now run the tests:

$ SVENV/bin/py.test tutorial/tests.py —-q

2 passed in 0.40 seconds

10. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini --reload

11. Open http://localhost:6543/howdy/jane/doe in your browser. Click the Save and Delete buttons,
and watch the output in the console window.

Analysis

As you can see, the four views are logically grouped together. Specifically:

* We have a home view available at http://localhost:6543/ with a clickable link to the hello view.

116

http://localhost:6543/howdy/jane/doe
http://localhost:6543/

0.1. TUTORIALS

* The second view is returned when you go to /howdy/ jane/doe. This URL is mapped to the
hello route that we centrally set using the optional @view_defaults.

* The third view is returned when the form is submitted with a POST method. This rule is specified
in the @view_config for that view.

e The fourth view is returned when clicking on a button such as <input type="submit"
name="form.delete" value="Delete"/>.

In this step we show, using the following information as criteria, how to decide which view to use:

* Method of the HTTP request (GET, POST, etc.)

* Parameter information in the request (submitted form field names)
We also centralize part of the view configuration to the class level with @view_defaults, then in one
view, override that default just for that one view. Finally, we put this commonality between views to work
in the view class by sharing:

 State assigned in TutorialViews.__init_

* A computed value

These are then available both in the view methods and in the templates (e.g., ${view.view_name}
and ${view.full_name}).

As a note, we made a switch in our templates on how we generate URLs. We previously hardcoded the
URLs, such as:

Howdy

In home . pt we switched to:

<a href="${request.route_url('hello', first='jane',
last="'doe'") }">form

Pyramid has rich facilities to help generate URLSs in a flexible, non-error prone fashion.

117

CONTENTS

Extra credit
1. Why could our template do S${view.full_name} and not have to do S${view.
full_name () }?

2. The edit and delete views are both receive POST requests. Why does the edit view configu-
ration not catch the POST used by delete?

3. We used Python @property on full_ name. If we reference this many times in a template or
view code, it would re-compute this every time. Does Pyramid provide something that will cache
the initial computation on a property?

4. Can you associate more than one route with the same view?

5. There is also a request.route_path APL. How does this differ from request.
route_url?

See also:

Defining a View Callable as a Class, Weird Stuff You Can Do With URL Dispatch

16: Collecting Application Info With Logging

Capture debugging and error output from your web applications using standard Python logging.

Background

It’s important to know what is going on inside our web application. In development we might need to
collect some output. In production, we might need to detect problems when other people use the site. We
need logging.

Fortunately Pyramid uses the normal Python approach to logging. The scaffold generated in your
development.ini has a number of lines that configure the logging for you to some reasonable de-
faults. You then see messages sent by Pyramid, for example, when a new request comes in.

Objectives

* Inspect the configuration setup used for logging.

* Add logging statements to your view code.

118

http://www.plope.com/weird_pyramid_urldispatch

0.1. TUTORIALS

Steps

1. First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes logging; cd logging
$ SVENV/bin/pip install -e

2. Extend logging/tutorial/views.py to log a message:

import logging
log = logging.getLogger (_name_)

N}

from pyramid.view import (
5 view_config,

6 view_defaults

7)

IS

10 | @view_defaults (renderer="'home.pt")
11 | class TutorialViews:

12 def _ _init__ (self, request):

13 self.request = request

14

15 @view_config(route_name='home"')
16 def home (self):

17 log.debug ('In home view')

18 return {'name': 'Home View'}
19

20 @view_config (route_name='hello')
21 def hello(self):

2 log.debug ('In hello view'")

23 return {'name': 'Hello View'}

3. Finally let’s edit development . ini configuration file to enable logging for our Pyramid appli-
cation:

[app:main]

use = egg:tutorial

pyramid.reload_templates = true

pyramid.includes =
pyramid_debugtoolbar

[server:main]

119

CONTENTS

use = egg:pyramidfwsgiref
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root, tutorial

[logger_ tutoriall]
level = DEBUG
handlers =

qualname = tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO

handlers = console

[handler_console]

class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %$(asctime)s % (levelname)-5.5s [%(name)s] [% (threadName) s]
—% (message) s

End logging configuration

4. Make sure the tests still pass:

$ SVENV/bin/py.test tutorial/tests.py -gq

4 passed in 0.41 seconds

5. Run your Pyramid application with:

120

0.1. TUTORIALS

$ SVENV/bin/pserve development.ini —--reload

6. Open http://localhost:6543/ and http://localhost:6543/howdy in your browser. Note, both in the
console and in the debug toolbar, the message that you logged.

Analysis

In our configuration file development.ini, our tutorial Python package is set up as a logger
and configured to log messages at a DEBUG or higher level. When you visit http://localhost:6543, your
console will now show:

2013-08-09 10:42:42,968 DEBUG [tutorial.views] [MainThread] In home view

Also, if you have configured your Pyramid application to use the pyramid_debugtoolbar, logging
statements appear in one of its menus.

See also:

See also Logging.

17: Transient Data Using Sessions

Store and retrieve non-permanent data in Pyramid sessions.

Background

When people use your web application, they frequently perform a task that requires semi-permanent data
to be saved. For example, a shopping cart. This is called a session.

Pyramid has basic built-in support for sessions. Third party packages such as pyramid_redis_sessions
provide richer session support. Or you can create your own custom sessioning engine. Let’s take a look
at the built-in sessioning support.

121

http://localhost:6543/
http://localhost:6543/howdy
http://localhost:6543
https://github.com/ericrasmussen/pyramid_redis_sessions

CONTENTS

Objectives

* Make a session factory using a built-in, simple Pyramid sessioning system.

» Change our code to use a session.

Steps

1. First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes sessions; cd sessions
$ SVENV/bin/pip install -e

2. Our sessions/tutorial/__init__ .py needs a choice of session factory to get registered
with the configurator:

)

from pyramid.config import Configurator
from pyramid.session import SignedCookieSessionFactory

def main(global_config, **settings):
my_session_factory = SignedCookieSessionFactory (
'itsaseekreet')
config = Configurator (settings=settings,
session_factory=my_session_factory)
config.include ('pyramid_chameleon')
config.add_route('home', '/")
config.add_route ('hello', '/howdy')
config.scan('.views")
return config.make_wsgi_app ()

3. Our views in sessions/tutorial/views.py can now use request.session:

-

®

from pyramid.view import (
view_config,
view_defaults

)

@view_defaults (renderer="'home.pt")
class TutorialViews:

122

0.1. TUTORIALS

9 def _ _init__ (self, request):

10 self.request = request

11

12 @property

13 def counter(self):

14 session = self.request.session
15 if 'counter' in session:

16 session['counter'] += 1
17 else:

18 session['counter'] = 1

19

20 return session|['counter']

21

22

23 @view_config (route_name='"home')
2 def home (self):

25 return {'name': 'Home View'}
26

27 @view_config(route_name='hello')
28 def hello(self):

29 return {'name': 'Hello View'}

. The template at sessions/tutorial/home.pt can display the value:

1| <!DOCTYPE html>

2 | <html lang="en">

3 | <head>

4 <title>Quick Tutorial: ${name}</title>
5 | </head>

6 | <body>

7| <hl>Hi S${name}</hl>

s | <p>Count: ${view.counter}</p>

9 | </body>

0| </html>

5. Make sure the tests still pass:

$ SVENV/bin/py.test tutorial/tests.py —qg

4 passed in 0.42 seconds

6. Run your Pyramid application with:

123

CONTENTS

$ SVENV/bin/pserve development.ini --reload

7. Open http://localhost:6543/ and http://localhost:6543/howdy in your browser. As you reload and
switch between those URLs, note that the counter increases and is not specific to the URL.

8. Restart the application and revisit the page. Note that counter still increases from where it left off.

Analysis
Pyramid’s request object now has a session attribute that we can use in our view code. It acts like a
dictionary.

Since all the views are using the same counter, we made the counter a Python property at the view class
level. With this, each reload will increase the counter displayed in our template.

In web development, “flash messages™ are notes for the user that need to appear on a screen after a future
web request. For example, when you add an item using a form POST, the site usually issues a second
HTTP Redirect web request to view the new item. You might want a message to appear after that second
web request saying “Your item was added.” You can’t just return it in the web response for the POST, as
it will be tossed out during the second web request.

Flash messages are a technique where messages can be stored between requests, using sessions, then
removed when they finally get displayed.

See also:

Sessions, Flash Messages, and pyramid.session.

18: Forms and Validation with Deform

Schema-driven, autogenerated forms with validation.

Background

Modern web applications deal extensively with forms. Developers, though, have a wide range of philoso-
phies about how frameworks should help them with their forms. As such, Pyramid doesn’t directly bundle
one particular form library. Instead there are a variety of form libraries that are easy to use in Pyramid.

Deform is one such library. In this step, we introduce Deform for our forms. This also gives us Colander
for schemas and validation.

124

http://localhost:6543/
http://localhost:6543/howdy
https://docs.pylonsproject.org/projects/deform/en/latest/index.html#overview
https://docs.pylonsproject.org/projects/colander/en/latest/index.html#overview

0.1. TUTORIALS

Objectives

* Make a schema using Colander, the companion to Deform.

* Create a form with Deform and change our views to handle validation.

Steps

1. First we copy the results of the view_classes step:

$ cd ..; cp -r view_classes forms; cd forms

2. Let’s edit forms/setup.py to declare a dependency on Deform (which then pulls in Colander
as a dependency:

from setuptools import setup

3 | requires = |

4 'pyramid’',

5 'pyramid_chameleon',
6 'deform'

9 | setup (name="tutorial"',

10 install_requires=requires,
1 entry_points="""\

12 [paste.app_factory]

13 main = tutorial:main

nwn
’

3. We can now install our project in development mode:

$ SVENV/bin/pip install -e

4. Register a static view in forms/tutorial/__init__ .py for Deform’s CSS, JavaScript, etc.,
as well as our demo wiki page’s views:

125

CONTENTS

1 | from pyramid.config import Configurator

2

3

4+ |def main(global_config, =xsettings):

5 config = Configurator (settings=settings)

6 config.include ('pyramid chameleon")

7 config.add_route ('wiki_view', '/")

8 config.add_route ('wikipage_add', '/add'")

9 config.add_route ('wikipage_view', '/{uid}")

10 config.add_route ('wikipage_edit', '/{uid}/edit")
11 config.add_static_view('deform_static', 'deform:static/")
12 config.scan('.views")

13 return config.make_wsgi_app ()

5. Implement the new views, as well as the form schemas and some dummy data, in forms/
tutorial/views.py:

import colander
import deform.widget

)

I

from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

v

7| pages = {

8 '100": dict(uid='100"', title='Page 100', body='100"),
9 '101": dict(uid='101", title='Page 101', body='101l"),
10 '102": dict(uid='102"', title='Page 102', body='102")

13| class WikiPage (colander.MappingSchema) :

14 title = colander.SchemaNode (colander.String())
15 body = colander.SchemaNode (

16 colander.String(),

17 widget=deform.widget.RichTextWidget ()

21 | class WikiViews (object) :

2 def _ _init__ (self, request):

23 self.request = request

24

25 @property

2 def wiki_form(self):

277 schema = WikiPage ()

28 return deform.Form(schema, buttons=('submit',))

126

0.1. TUTORIALS

40

41

42

43

45

46

47

48

49

50

51

52

53

60

61

62

63

65

66

67

68

69

70

71

72

73

o)

@property
def reqgts(self):
return self.wiki_form.get_widget_resources ()

@view_config (route_name='wiki_view', renderer='wiki_view.pt')
def wiki_view(self):
return dict (pages=pages.values|())

@view_config (route_name='wikipage_add',
renderer="'wikipage_addedit.pt")
def wikipage_add(self):
form = self.wiki_form.render ()

if 'submit' in self.request.params:
controls = self.request.POST.items ()
try:
appstruct = self.wiki_form.validate (controls)
except deform.ValidationFailure as e:
Form is NOT valid
return dict (form=e.render())

Form is valid, make a new identifier and add to 1ist
last_uid = int (sorted(pages.keys())[-1])
new_uid = str(last_uid + 1)
pages[new_uid] = dict(
uid=new_uid, title=appstruct['title'],
body=appstruct ['body']

Now visit new page
url = self.request.route_url ('wikipage_view', uid=new_uid)
return HTTPFound (url)

return dict (form=form)
@view_config(route_name='wikipage_view', renderer='wikipage_view.pt

def wikipage_view(self):
uid = self.request.matchdict(['uid']
page = pages[uid]
return dict (page=page)

@view_config (route_name='wikipage_edit',
renderer='wikipage_addedit.pt')
def wikipage_edit (self):

127

CONTENTS

74
75
76
77
78

79

90
91
92
93
94
95

96

6. A

uid = self.request.matchdict(['uid']
page = pages[uid]

wiki_form = self.wiki_form

if 'submit' in self.request.params:
controls = self.request.POST.items ()
try:
appstruct = wiki_form.validate (controls)
except deform.ValidationFailure as e:
return dict (page=page, form=e.render())

Change the content and redirect to the view

page['title'] = appstruct['title']
page['body'] = appstruct['body']
url = self.request.route_url ('wikipage_view',

uid=page['uid'])
return HTTPFound (url)

form = wiki_form.render (page)

return dict (page=page, form=form)

template for the top of the “wiki” in forms/tutorial /wiki_view.pt:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Wiki: View</title>
</head>
<body>
<hl>Wiki</h1l>

Add

WikiPage

<1li tal:repeat="page pages">

${page.title}

</1li>

</body>
</html>

128

0.1. TUTORIALS

7. Another template for adding/editing in forms/tutorial/wikipage_addedit.pt:

)

w

<!DOCTYPE html>
<html lang="en">
<head>
<title>WikiPage: Add/Edit</title>
<link rel="stylesheet"
href="${request.static_url ('deform:static/css/bootstrap.min.
—~css') "
type="text/css" media="screen" charset="utf-8"/>
<link rel="stylesheet"
href="${request.static_url ('deform:static/css/form.css"') }"
type="text/css"/>
<tal:block tal:repeat="regt view.reqgts['css']">
<link rel="stylesheet" type="text/css"
href="${request.static_url (reqt) }"/>
</tal:block>
<script src="S${request.static_url ('deform:static/scripts/jquery-2.
—~0.3.min.gs") }"
type="text/Javascript"></script>
<script src="S${request.static_url ('deform:static/scripts/bootstrap|
—min.js') "
type="text/Jjavascript"></script>

<tal:block tal:repeat="regt view.regts['js']">
<script src="S${request.static_url (reqgt)}"
type="text/Jjavascript"></script>
</tal:block>
</head>
<body>
<hl>Wiki</h1l>

<p>${structure: form}</p>

<script type="text/Jjavascript">
deform.load()

</script>

</body>

</html>

8. Add atemplate at forms/tutorial/wikipage_view.pt for viewing a wiki page:

<!DOCTYPE html>
<html lang="en">
<head>
<title>WikiPage: View</title>
</head>

129

CONTENTS

6 | <body>

7|

8 Up

9| |

10|
1 Edit

n|

14 | <hl>${page.title}</hl1>

15 | <p>${structure: page.body}</p>
16 | </body>

17 | </html>

9. Our tests in forms/tutorial/tests.py don’trun, so let’s modify them:

import unittest

from pyramid import testing

w

6 | class TutorialViewTests (unittest.TestCase) :

7 def setUp(self):

8 self.config = testing.setUp /()
9

10 def tearDown (self):

1 testing.tearDown ()

13 def test_home (self):

14 from .views import WikiViews

15

16 request = testing.DummyRequest ()

17 inst = WikiViews (request)

18 response = inst.wiki_view ()

19 self.assertEqual (len (response['pages']), 3)

» | class TutorialFunctionalTests (unittest.TestCase) :

23 def setUp(self):

2% from tutorial import main

25

26 app = main({})

27 from webtest import TestApp
28

29 self.testapp = TestApp (app)
30

31 def tearDown (self):

130

0.1. TUTORIALS

32 testing.tearDown ()

33

34 def test_home (self):

35 res = self.testapp.get('/', status=200)

36 self.assertIn(b'<title>Wiki: View</title>', res.body)

10. Run the tests:

$ SVENV/bin/py.test tutorial/tests.py —-gq

2 passed in 0.45 seconds

11. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini --reload

12. Open http://localhost:6543/ in a browser.

Analysis

This step helps illustrate the utility of asset specifications for static assets. We have an outside package
called Deform with static assets which need to be published. We don’t have to know where on disk it is
located. We point at the package, then the path inside the package.

We just need to include a call to add_static_view to make that directory available at a URL. For
Pyramid-specific packages, Pyramid provides a facility (config.include ()) which even makes that
unnecessary for consumers of a package. (Deform is not specific to Pyramid.)

Our forms have rich widgets which need the static CSS and JavaScript just mentioned. Deform
has a resource registry which allows widgets to specify which JavaScript and CSS are needed. Our
wikipage_addedit.pt template shows how we iterated over that data to generate markup that in-
cludes the needed resources.

Our add and edit views use a pattern called self-posting forms. Meaning, the same URL is used to GET
the form as is used to POST the form. The route, the view, and the template are the same URL whether
you are walking up to it for the first time or you clicked a button.

Inside the viewwedo if 'submit' in self.request.params: to see if this form wasaPOST
where the user clicked on a particular button <input name="submit">.

The form controller then follows a typical pattern:

131

http://localhost:6543/
https://docs.pylonsproject.org/projects/deform/en/latest/glossary.html#term-resource-registry

CONTENTS

* If you are doing a GET, skip over and just return the form.
e If you are doing a POST, validate the form contents.
* If the form is invalid, bail out by re-rendering the form with the supplied POST data.
« If the validation succeeded, perform some action and issue a redirect via HTTPFound.
We are, in essence, writing our own form controller. Other Pyramid-based systems, including

pyramid_deform, provide a form-centric view class which automates much of this branching and
routing.

Extra credit

1. Give a try at a button that goes to a delete view for a particular wiki page.

19: Databases Using SQLAIchemy

Store and retrieve data using the SQLAIchemy ORM atop the SQLite database.

Background

Our Pyramid-based wiki application now needs database-backed storage of pages. This frequently means
an SQL database. The Pyramid community strongly supports the SQLAlchemy project and its object-
relational mapper (ORM) as a convenient, Pythonic way to interface to databases.

In this step we hook up SQLAIchemy to a SQLite database table, providing storage and retrieval for the
wiki pages in the previous step.

O The alchemy scaffold is really helpful for getting an SQLAlchemy project going, including
generation of the console script. Since we want to see all the decisions, we will forgo convenience in this
tutorial, and wire it up ourselves.

132

http://docs.sqlalchemy.org/en/latest/index.html#index-toplevel
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#ormtutorial-toplevel
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#ormtutorial-toplevel

0.1. TUTORIALS

Objectives

* Store pages in SQLite by using SQLAIchemy models.

e Use SQLAIchemy queries to list/add/view/edit pages.

* Provide a database-initialize command by writing a Pyramid console script which can be run from
the command line.

Steps

1. We are going to use the forms step as our starting point:

$ cd ..; cp -r forms databases; cd databases

2. We need to add some dependencies in databases/setup.py as well as an “entry point” for
the command-line script:

w

from setuptools import setup

requires = [
'pyramid’',
'pyramid_chameleon',
'deform',
'sglalchemy’,
'pyramid_tm',
'zope.sglalchemy'

setup (name="tutorial',
install_requires=requires,

entry_points="""\
[paste.app_factory]
main = tutorial:main

[console_scripts]
initialize_tutorial_db = tutorial.initialize_db:main

wnn
14

6 We aren’t yet doing SVENV/bin/pip install -e . as we will change it later.

133

CONTENTS

3. Our configuration file at databases/development . ini wires together some new pieces:

[app:main]

use = egg:tutorial

pyramid.reload_templates = true

pyramid.includes =
pyramid_debugtoolbar
pyramid_tm

sglalchemy.url = sqglite:///% (here)s/sqgltutorial.sglite

[server:main]

use = egg:pyramidfwsgiref
host = 0.0.0.0

port = 6543

Begin logging configuration

[loggers]
keys = root, tutorial, sglalchemy.engine.base.Engine

[logger_ tutoriall]
level = DEBUG
handlers

qualname = tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_sglalchemy.engine.base.Engine]
level = INFO

handlers =

qualname = sqglalchemy.engine.base.Engine

[handler console]

class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

134

0.1. TUTORIALS

[formatter_generic]
format = %$(asctime)s % (levelname)-5.5s [%(name)s] [%(threadName) s]
—% (message) s

End logging configuration

4. This engine configuration now needs to be read into the application through changes in
databases/tutorial/__init__ .py:

from pyramid.config import Configurator
from sglalchemy import engine_from_config
from .models import DBSession, Base

def main(global_config, =xxsettings):
engine = engine_from_config(settings, 'sglalchemy.")
DBSession.configure (bind=engine)
Base.metadata.bind = engine

config = Configurator (settings=settings,
root_factory="'tutorial.models.Root")

config.include ('pyramid chameleon')

config.add_route ('wiki_view', '/")

config.add_route ('wikipage_add', '/add")

config.add_route ('wikipage_view', '/{uid}")

config.add_route ('wikipage_edit', '/{uid}/edit")

config.add_static_view('deform_static', 'deform:static/")

config.scan('.views')

return config.make_wsgi_app ()

5. Make a command-line script at databases/tutorial/initialize_db.py to initialize
the database:

import os
import sys
import transaction

from sglalchemy import engine_from_config

from pyramid.paster import (
get_appsettings,
setup_logging,
)

135

CONTENTS

12 | from .models import (

13 DBSession,
14 Page,
15 Base,

16)

19 | def usage (argv) :

20 cmd = os.path.basename (argv[0])

21 print ('usage: ¢s <config_uri>\n'

2 ' (example: "3%s development.ini")' % (cmd, cmd))
23 sys.exit (1)

% |def main (argv=sys.argv) :

27 if len(argv) != 2:

28 usage (argv)

29 config uri = argv[l]

30 setup_logging (config_uri)

31 settings = get_appsettings (config_uri)

32 engine = engine_from_ config(settings, 'sglalchemy.')
33 DBSession.configure (bind=engine)

34 Base.metadata.create_all (engine)

35 with transaction.manager:

36 model = Page (title='Root', body='<p>Root</p>")
37 DBSession.add (model)

6. Since setup.py changed, we now run it:

$ SVENV/bin/pip install -e

7. The script references some models in databases/tutorial/models.py:

from pyramid.security import Allow, Everyone

w

from sglalchemy import (

4 Column,
5 Integer,
6 Text,

7)

9| from sqglalchemy.ext.declarative import declarative_base

136

0.1. TUTORIALS

1 | from sglalchemy.orm import (
12 scoped_session,
13 sessionmaker,

14)
16 | from zope.sglalchemy import ZopeTransactionExtension
18 | DBSession = scoped_session (

19 sessionmaker (extension=ZopeTransactionExtension()))
20 | Base = declarative_base()

23 | class Page (Base) :

24 __tablename__ = 'wikipages'

25 uid = Column (Integer, primary_key=True)
2 title = Column (Text, unique=True)

27 body = Column (Text)

3 | class Root (object) :

31 _acl__ = [(Allow, Everyone, 'view'),

0 (Allow, 'group:editors', 'edit')]
33

34 def _ _init__ (self, request):

35 pass

. Let’s run this console script, thus producing our database and table:

$ SVENV/bin/initialize_tutorial_db development.ini

2016-04-16 13:01:33,055 INFO [sglalchemy.engine.base.

—AS anon_1

2016-04-16 13:01:33,055 INFO [sglalchemy.engine.base.
—Engine] [MainThread] ()

2016-04-16 13:01:33,056 INFO [sglalchemy.engine.base.
—Engine] [MainThread] SELECT CAST('test unicode returns'
—VARCHAR (60)) AS anon_1

2016-04-16 13:01:33,056 INFO [sglalchemy.engine.base.
—Engine] [MainThread] ()

2016-04-16 13:01:33,057 INFO [sglalchemy.engine.base.
—Engine] [MainThread] PRAGMA table_info ("wikipages")
2016-04-16 13:01:33,057 INFO [sglalchemy.engine.base.
—Engine] [MainThread] ()

2016-04-16 13:01:33,058 INFO [sglalchemy.engine.base.
—Engine] [MainThread]

137

—Engine] [MainThread] SELECT CAST('test plain returns' AS VARCHAR (60)) |

AS,,

CONTENTS

CREATE TABLE wikipages (
uid INTEGER NOT NULL,
title TEXT,
body TEXT,
PRIMARY KEY (uid),
UNIQUE (title)

2016-04-16 13:01:33,058 INFO [sglalchemy.engine.base.
—Engine] [MainThread] ()

2016-04-16 13:01:33,059 INFO [sglalchemy.engine.base.
—Engine] [MainThread] COMMIT

2016-04-16 13:01:33,062 INFO [sglalchemy.engine.base.
—Engine] [MainThread] BEGIN (implicit)

2016-04-16 13:01:33,062 INFO [sglalchemy.engine.base.
—Engine] [MainThread] INSERT INTO wikipages (title, body)
2016-04-16 13:01:33,063 INFO [sglalchemy.engine.base.
—Engine] [MainThread] ('Root', '<p>Root</p>")
2016-04-16 13:01:33,063 INFO [sglalchemy.engine.base.
—Engine] [MainThread] COMMIT

VALUES

(')

r

?)

9. With our data now driven by SQLAlchemy queries, we need to update our databases/

tutorial/views.py:

import colander
import deform.widget

)

from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

=

w

7 | from .models import DBSession, Page

10 | class WikiPage (colander.MappingSchema) :

11 title = colander.SchemaNode (colander.String())
12 body = colander.SchemaNode (

13 colander.String(),

14 widget=deform.widget.RichTextWidget ()

18 | class WikiViews (object) :
19 def _ init_ (self, request):
20 self.request = request

138

0.1. TUTORIALS

40

41

42

43

45

46

47

48

49

50

57

58

59

60

61

62

63

—one ()

")

@property
def wiki_form(self):
schema = WikiPage ()
return deform.Form(schema, buttons=('submit',))

@property
def reqgts(self):
return self.wiki_form.get_widget_resources ()

@view_config (route_name='wiki_view', renderer='wiki_view.pt')
def wiki_view(self):

pages = DBSession.query (Page) .order_by (Page.title)

return dict (title="'Wiki View', pages=pages)

@view_config (route_name='wikipage_add',
renderer="'wikipage_addedit.pt")
def wikipage_add(self):
form = self.wiki_form.render ()

if 'submit' in self.request.params:
controls = self.request.POST.items ()
try:
appstruct = self.wiki_form.validate (controls)
except deform.ValidationFailure as e:
Form 1is NOT valid
return dict (form=e.render ())

Add a new page to the database

new_title = appstruct['title']

new_body = appstruct['body']
DBSession.add (Page (title=new_title, body=new_body))

Get the new ID and redirect
page = DBSession.query (Page) .filter_ by (title=new_title) .

new_uid = page.uid

url = self.request.route_url ('wikipage_view', uid=new_uid)
return HTTPFound (url)

return dict (form=form)

@view_config (route_name='wikipage_view', renderer='wikipage_view.pf

139

CONTENTS

65 def wikipage_view(self):

66 uid = int(self.request.matchdict['uid'])

67 page = DBSession.query (Page) .filter_by (uid=uid) .one ()
68 return dict (page=page)

69

70

71 @view_config (route_name='wikipage_edit',

7 renderer="'wikipage_addedit.pt")

73 def wikipage_edit (self):

74 uid = int (self.request.matchdict['uid'])

75 page = DBSession.query (Page) .filter_by (uid=uid) .one ()
76

77 wiki_ form = self.wiki_form

78

79 if 'submit' in self.request.params:

80 controls = self.request.POST.items ()

81 try:

82 appstruct = wiki_form.validate (controls)

83 except deform.ValidationFailure as e:

84 return dict (page=page, form=e.render())

85

86 # Change the content and redirect to the view
87 page.title = appstruct(['title']

88 page.body = appstruct|['body']

89 url = self.request.route_url ('wikipage view', uid=uid)
90 return HTTPFound (url)

91

92 form = self.wiki_form.render (dict (

93 uid=page.uid, title=page.title, body=page.body)
94)

95

9% return dict (page=page, form=form)

10. Our tests in databases/tutorial/tests.py changed to include SQLAlchemy bootstrap-
ping:

1 | import unittest
> | import transaction

4| from pyramid import testing
7|def _initTestingDB() :

8 from sglalchemy import create_engine
9 from .models import (

140

0.1. TUTORIALS

&

42

43

45

46

47

48

49

50

51

52

53

54

55

DBSession,

Page,

Base

)
engine = create_engine('sglite://")
Base.metadata.create_all (engine)
DBSession.configure (bind=engine)
with transaction.manager:

model = Page(title='FrontPage', body='This is the front page')

DBSession.add (model)
return DBSession

class WikiViewTests (unittest.TestCase) :
def setUp(self):
self.session = _initTestingDB ()
self.config = testing.setUp/()

def tearDown (self):
self.session.remove ()
testing.tearDown ()

def test_wiki_view(self):
from tutorial.views import WikiViews

request = testing.DummyRequest ()

inst = WikiViews (request)

response = inst.wiki_view ()

self.assertEqual (response['title'], 'Wiki View'")

class WikiFunctionalTests (unittest.TestCase) :
def setUp(self):
from pyramid.paster import get_app
app = get_app('development.ini')
from webtest import TestApp
self.testapp = TestApp (app)

def tearDown (self):
from .models import DBSession
DBSession.remove ()

def test_it (self):
res = self.testapp.get('/', status=200)
self.assertIn(b'Wiki: View', res.body)
res = self.testapp.get('/add', status=200)

141

CONTENTS

56 self.assertIn(b'Add/Edit', res.body)

11. Run the tests in your package using py . test:

$ SVENV/bin/py.test tutorial/tests.py —-q

2 passed in 1.41 seconds

12. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini —--reload

13. Open http://localhost:6543/ in a browser.

Analysis

Let’s start with the dependencies. We made the decision to use SQLA1chemy to talk to our database. We
also, though, installed pyramid_tm and zope.sglalchemy. Why?

Pyramid has a strong orientation towards support for transactions. Specifically, you can install a
transaction manager into your application either as middleware or a Pyramid “tween”. Then, just before
you return the response, all transaction-aware parts of your application are executed.

This means Pyramid view code usually doesn’t manage transactions. If your view code or a template
generates an error, the transaction manager aborts the transaction. This is a very liberating way to write
code.

The pyramid_tm package provides a “tween” that is configured in the development.ini config-
uration file. That installs it. We then need a package that makes SQLAlchemy, and thus the RDBMS
transaction manager, integrate with the Pyramid transaction manager. That’s what zope . sglalchemy
does.

Where do we point at the location on disk for the SQLite file? In the configuration file. This lets consumers
of our package change the location in a safe (non-code) way. That is, in configuration. This configuration-
oriented approach isn’t required in Pyramid; you can still make such statements in your __init__ .py
or some companion module.

The initialize_tutorial_dbisanice example of framework support. You point your setup at the
location of some [console_scripts], and these get generated into your virtual environment’s bin

142

http://localhost:6543/

0.1. TUTORIALS

directory. Our console script follows the pattern of being fed a configuration file with all the bootstrapping.
It then opens SQLAIlchemy and creates the root of the wiki, which also makes the SQLite file. Note the
with transaction.manager part that puts the work in the scope of a transaction, as we aren’t
inside a web request where this is done automatically.

The models.py does a little bit of extra work to hook up SQLAlchemy into the Pyramid transaction
manager. It then declares the model for a Page.

Our views have changes primarily around replacing our dummy dictionary-of-dictionaries data with
proper database support: list the rows, add a row, edit a row, and delete a row.

Extra credit

1. Why all this code? Why can’t I just type two lines and have magic ensue?

2. Give a try at a button that deletes a wiki page.

20: Logins with authentication

Login views that authenticate a username and password against a list of users.

Background

Most web applications have URLSs that allow people to add/edit/delete content via a web browser. Time
to add security to the application. In this first step we introduce authentication. That is, logging in and
logging out, using Pyramid’s rich facilities for pluggable user storage.

In the next step we will introduce protection of resources with authorization security statements.

Objectives

* Introduce the Pyramid concepts of authentication.

* Create login and logout views.

Steps

1. We are going to use the view classes step as our starting point:

143

CONTENTS

$ cd ..; cp -r view_classes authentication; cd authentication

2. Add bcrypt as adependency in authentication/setup.py:

1 | from setuptools import setup

3 | requires = |

4 'pyramid’',
5 'pyramid_chameleon',
6 'berypt!

9 | setup (name="tutorial"',

10 install_requires=requires,
1" entry_points="""\

12 [paste.app_factory]

13 main = tutorial:main

nwn
’

3. We can now install our project in development mode:

$ SVENV/bin/pip install -e

4. Put the security hash in the authentication/development.ini configuration file as

tutorial.secret instead of putting it in the code:

[app:main]

2|use = egg:tutorial

3 |pyramid.reload_templates = true
4|pyramid.includes =

5 pyramid_debugtoolbar

6 |tutorial.secret = 98zd

s | [server:main]

9 |use = egg:pyramid#wsgiref
1o |host = 0.0.0.0

1| port = 6543

5. Get authentication (and for now, authorization policies) and login route into the configurator in

authentication/tutorial/__init__ .py:

144

0.1. TUTORIALS

1 | from pyramid.authentication import AuthTktAuthenticationPolicy
> | from pyramid.authorization import ACLAuthorizationPolicy
3 | from pyramid.config import Configurator

4

s | from .security import groupfinder

6

7

s |def main(global_config, *+*settings):

9 config = Configurator (settings=settings)

10 config.include ('pyramid_chameleon')

11

12 # Security policies

13 authn_policy = AuthTktAuthenticationPolicy (

14 settings|['tutorial.secret'], callback=groupfinder,
15 hashalg='shab512")

16 authz_policy = ACLAuthorizationPolicy ()

17 config.set_authentication_policy (authn_policy)

18 config.set_authorization_policy (authz_policy)

19

20 config.add_route ('home', '/")

21 config.add_route('hello', '/howdy")

2 config.add_route('login', '/login')

23 config.add_route('logout', '/logout')

24 config.scan('.views")

25 return config.make_wsgi_app ()

. Create an authentication/tutorial/security.py module that can find our user infor-
mation by providing an authentication policy callback:

1 | import bcrypt

4| def hash_password (pw) :
5 pwhash = bcrypt.hashpw(pw.encode ('utf8'), bcrypt.gensalt())
6 return pwhash.decode ('utfg8")

s | def check_password(pw, hashed_pw) :
9 expected_hash = hashed_pw.encode ('utfg8")
10 return bcrypt.checkpw (pw.encode ('utf8'), expected_hash)

13| USERS = {'editor': hash_password('editor'"),
14 'viewer': hash_password('viewer") }
15 | GROUPS = {'editor': ['group:editors']}

145

CONTENTS

18 |def groupfinder (userid, request):
19 if userid in USERS:
20 return GROUPS.get (userid, [1])

7. Update the views in authentication/tutorial/views.py:

1 | from pyramid.httpexceptions import HTTPFound
> | from pyramid.security import (

3 remember,

4 forget,

5)

7 | from pyramid.view import (
8 view_config,

9 view_defaults

10)

2| from .security import (
13 USERS,
14 check_password

18 | @view_defaults (renderer="'home.pt")
19 | class TutorialViews:

20 def _ init_ (self, request):

21 self.request = request

2 self.logged_in = request.authenticated_userid

23

24 @view_config (route_name='"home')

25 def home (self):

2 return {'name': 'Home View'}

27

28 @view_config (route_name='hello')

29 def hello(self):

30 return {'name': 'Hello View'}

31

k) @view_config(route_name='login', renderer='login.pt')

33 def login(self):

34 request = self.request

35 login_url = request.route_url('login')

36 referrer = request.url

37 if referrer == login_url:

38 referrer = '/' # never use login form itself as came_from
39 came_from = request.params.get ('came_from', referrer)

146

0.1. TUTORIALS

40 message
login = "'
password

if

41

= 11

42
'form.submitted' in request.params:
login request.params|['login']
password request.params ['password']

43

45

46

headers remember (request, login)
return HTTPFound (location=came_from,

headers=headers)
'Failed login'

47
48
49
50 message =
return dict (
name='Login',

52
53
message=message,
url=request.application_url +
came_from=came_from,
login=login,
password=password,

55 '/login',

56

58
59)
60
@view_config(route_name='logout')
def logout (self):

request = self.request

headers forget (request)

url request.route_url ('home')

return HTTPFound (location=url,

headers=headers)

61

62

63

65
66

67

if check_password(password, USERS.get (login)):

. Add alogin template at authentication/tutorial/login.pt:

1| <!DOCTYPE html>

2| <html lang="en">

3 | <head>

4 <title>Quick Tutorial:
5 | </head>

6 | <body>

7 | <hl>Login</hl>

s | <span tal:replace="message

S{name}</title>

H/>

<form action="${url}" method="post">
1 <input type="hidden" name="came_from"
value="${came_~from}"/>
for="login">Username</label>
type="text"

name="login"

<label

<input id="login"

147

CONTENTS

16 value="${login}"/>

17 <label for="password">Password</label>

18 <input type="password" id="password"

19 name="password"

20 value="${password}"/>

21 <input type="submit" name="form.submitted"
2 value="Log In"/>

» | </form>

u | </body>

5 | </html>

9. Provide a login/logout box in authentication/tutorial/home.pt:

1| <!DOCTYPE html>
2 | <html lang="en">

3 | <head>

4 <title>Quick Tutorial: ${name}</title>

5 | </head>

s | <body>

7

s | <div>

9 <a tal:condition="view.logged_in is None"

10 href="${request.application_url}/login">Log In
1 <a tal:condition="view.logged_in is not None"

12 href="${request.application_url}/logout">Logout
13| </div>

15| <hl>Hi ${name}</hl>

16 | <p>Visit hello</p>
17 | </body>

18 | </html>

10. Run your Pyramid application with:

$ SVENV/bin/pserve development.ini —--reload

11. Open http://localhost:6543/ in a browser.

12. Click the “Log In” link.

13. Submit the login form with the username editor and the password editor.
14. Note that the “Log In” link has changed to “Logout”.

15. Click the “Logout” link.

148

http://localhost:6543/

0.1. TUTORIALS

Analysis

Unlike many web frameworks, Pyramid includes a built-in but optional security model for authentication
and authorization. This security system is intended to be flexible and support many needs. In this security
model, authentication (who are you) and authorization (what are you allowed to do) are not just pluggable,
but decoupled. To learn one step at a time, we provide a system that identifies users and lets them log out.

In this example we chose to use the bundled AuthTktAuthenticationPolicy policy. We enabled it in our
configuration and provided a ticket-signing secret in our INI file.

Our view class grew a login view. When you reached it via a GET request, it returned a login form. When
reached via POST, it processed the submitted username and password against the “groupfinder” callable
that we registered in the configuration.

The function hash_password uses a one-way hashing algorithm with a salt on the user’s password
via bcrypt, instead of storing the password in plain text. This is considered to be a “best practice” for
security.

O There are alternative libraries to bcrypt if it is an issue on your system. Just make sure that the
library uses an algorithm approved for storing passwords securely.

The function check_password will compare the two hashed values of the submitted password and the
user’s password stored in the database. If the hashed values are equivalent, then the user is authenticated,
else authentication fails.

In our template, we fetched the 1logged_in value from the view class. We use this to calculate the
logged-in user, if any. In the template we can then choose to show a login link to anonymous visitors or a
logout link to logged-in users.

Extra credit

1. What is the difference between a user and a principal?
2. Can I use a database behind my groupfinder to look up principals?

3. Once I am logged in, does any user-centric information get jammed onto each request? Use
import pdb; pdb.set_trace () to answer this.

See also:

See also Security, AuthTktAuthenticationPolicy, berypt

149

https://pypi.python.org/pypi/bcrypt

CONTENTS

21: Protecting Resources With Authorization

Assign security statements to resources describing the permissions required to perform an operation.

Background

Our application has URLs that allow people to add/edit/delete content via a web browser. Time to add
security to the application. Let’s protect our add/edit views to require a login (username of editor and
password of editor). We will allow the other views to continue working without a password.

Objectives

¢ Introduce the Pyramid concepts of authentication, authorization, permissions, and access control
lists (ACLs).

* Make a root factory that returns an instance of our class for the top of the application.
* Assign security statements to our root resource.
* Add a permissions predicate on a view.

* Provide a Forbidden view to handle visiting a URL without adequate permissions.

Steps

1. We are going to use the authentication step as our starting point:

$ cd ..; cp -r authentication authorization; cd authorization
$ SVENV/bin/pip install -e

2. Start by changing authorization/tutorial/__init__ .py to specify a root factory to
the configurator:

150

0.1. TUTORIALS

1 | from pyramid.authentication import AuthTktAuthenticationPolicy
> | from pyramid.authorization import ACLAuthorizationPolicy
3 | from pyramid.config import Configurator

s | from .security import groupfinder

s |def main(global_config, *+*settings):

9 config = Configurator (settings=settings,

10 root_factory="'.resources.Root")
11 config.include ('pyramid chameleon')

13 # Security policies

14 authn_policy = AuthTktAuthenticationPolicy (

15 settings['tutorial.secret'], callback=groupfinder,
16 hashalg="'shab12")

17 authz_policy = ACLAuthorizationPolicy ()

18 config.set_authentication_policy (authn_policy)
19 config.set_authorization_policy (authz_policy)
20

21 config.add_route ('home', '/")

2 config.add_route('hello', '/howdy')

23 config.add_route('login', '/login')

2 config.add_route('logout', '/logout')

25 config.scan('.views')

26 return config.make_wsgi_app ()

. That means we need to implement authorization/tutorial/resources.py:

from pyramid.security import Allow, Everyone

4| class Root (object) :

5 _acl___ = [(Allow, Everyone, 'view'),

6 (Allow, 'group:editors', 'edit')]
7

8 def _ _init__ (self, request):

9 pass

. Change authorization/tutorial/views.py to require the edit permission on the
hello view and implement the forbidden view:

1 | from pyramid.httpexceptions import HTTPFound
2 | from pyramid.security import (

151

CONTENTS

40

41

42

43

45

46

47

48

remember,
forget,
)

from pyramid.view import (
view_config,
view_defaults,
forbidden_view_config

)

from .security import (
USERS,
check_password

@view_defaults (renderer='home.pt")
class TutorialViews:
def _ init_ (self, request):
self.request = request
self.logged_in = request.authenticated_userid

@view_config (route_name='"home')
def home (self):
return {'name': 'Home View'}

@view_config(route_name='hello', permission='edit')
def hello(self):
return {'name': 'Hello View'}

@view_config(route_name='login', renderer='login.pt')
@forbidden_view config(renderer='login.pt")
def login(self):

request = self.request
login_url = request.route_url('login'")
referrer = request.url
if referrer == login_url:
referrer = '/' # never use login form itself as came_from
came_from = request.params.get ('came_from', referrer)
message = "'
login = "'
password = "'
if '"form.submitted' in request.params:
login = request.params|['login']

password = request.params|['password']
if check_password(password, USERS.get (login)):

152

0.1. TUTORIALS

49 headers = remember (request, login)
50 return HTTPFound (location=came_from,
51 headers=headers)
52 message = 'Failed login'

53

54 return dict (

55 name="'Login"',

56 message=message,

57 url=request.application_url + '/login',
58 came_from=came_from,

59 login=login,

60 password=password,

61)

62

63 @view_config(route_name='logout"')

64 def logout (self):

65 request = self.request

66 headers = forget (request)

67 url = request.route_url ('home')

68 return HTTPFound (location=url,

69 headers=headers)

5. Run your Pyramid application with:

S SVENV/bin/pserve development.ini —--reload

6. Open http://localhost:6543/ in a browser.
7. If you are still logged in, click the “Log Out” link.

8. Visit http://localhost:6543/howdy in a browser. You should be asked to login.

Analysis

This simple tutorial step can be boiled down to the following:
* A view can require a permission (edit).
* The context for our view (the Root) has an access control list (ACL).

» This ACL says that the edit permission is available on Root to the group:editors principal.

153

http://localhost:6543/
http://localhost:6543/howdy

CONTENTS

* The registered groupf inder answers whether a particular user (editor) has a particular group
(group:editors).

In summary, hello wants edit permission, Root says group:editors has edit permission.

Of course, this only applies on Root. Some other part of the site (a.k.a. context) might have a different
ACL.

If you are not logged in and visit /howdy, you need to get shown the login screen. How does Pyramid
know what is the login page to use? We explicitly told Pyramid that the 1ogin view should be used by
decorating the view with @forbidden_view_config.

Extra credit

1. Do Ihave to puta renderer inmy @forbidden_view_config decorator?

2. Perhaps you would like the experience of not having enough permissions (forbidden) to be richer.
How could you change this?

3. Perhaps we want to store security statements in a database and allow editing via a browser. How
might this be done?

4. What if we want different security statements on different kinds of objects? Or on the same kinds
of objects, but in different parts of a URL hierarchy?

Indices and tables

¢ genindex
* modindex

e search

SQLAIchemy + URL dispatch wiki tutorial

This tutorial introduces an SQLAlchemy and URL dispatch-based Pyramid application to a developer
familiar with Python. When the tutorial is finished, the developer will have created a basic wiki application
with authentication and authorization.

For cut and paste purposes, the source code for all stages of this tutorial can be browsed on GitHub at
docs/tutorials/wiki2/src, which corresponds to the same location if you have Pyramid sources.

154

https://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src

0.1. TUTORIALS

Background

This version of the Pyramid wiki tutorial presents a Pyramid application that uses technologies which will
be familiar to someone with SQL database experience. It uses SQLAlchemy as a persistence mechanism
and URL dispatch to map URLs to code. It can also be followed by people without any prior Python web
framework experience.

To code along with this tutorial, the developer will need a UNIX machine with development tools (Mac
OS X with XCode, any Linux or BSD variant, etc.) or a Windows system of any kind.

O This tutorial runs on both Python 2 and 3 without modification.

Have fun!

Design

Following is a quick overview of the design of our wiki application to help us understand the changes that
we will be making as we work through the tutorial.

Overall

We choose to use reStructuredlext markup in the wiki text. Translation from reStructuredText to HTML
is provided by the widely used docutils Python module. We will add this module to the dependency
list in the project’s setup . py file.

Models

We’ll be using an SQLite database to hold our wiki data, and we’ll be using SQLAlchemy to access the
data in this database.

Within the database, we will define two tables:
* The users table which will store the id, name, password_hash and role of each wiki user.

* The pages table, whose elements will store the wiki pages. There are four columns: id, name, data
and creator_id.

There is a one-to-many relationship between users and pages tracking the user who created each wiki
page defined by the creator_id column on the pages table.

URLs like /PageName will try to find an element in the pages table that has a corresponding name.
To add a page to the wiki, a new row is created and the text is stored in data.

A page named FrontPage containing the text This is the front page, will be created when the storage is
initialized, and will be used as the wiki home page.

155

CONTENTS

Wiki Views

There will be three views to handle the normal operations of adding, editing, and viewing wiki pages, plus
one view for the wiki front page. Two templates will be used, one for viewing, and one for both adding
and editing wiki pages.

As of version 1.5 Pyramid no longer ships with templating systems. In this tutorial, we will use Jinja2.

Jinja2 is a modern and designer-friendly templating language for Python, modeled after Django’s tem-
plates.

Security

We’ll eventually be adding security to our application. To do this, we’ll be using a very simple role-based
security model. We’ll assign a single role category to each user in our system.

basic An authenticated user who can view content and create new pages. A basic user may also edit the
pages they have created but not pages created by other users.

editor An authenticated user who can create and edit any content in the system.

In order to accomplish this we’ll need to define an authentication policy which can identify users by their
userid and role. Then we’ll need to define a page resource which contains the appropriate ACL:

Action | Principal Permission
Allow | Everyone view

Allow | group:basic create
Allow | group:editors edit

Allow | <creator of page> | edit

Permission declarations will be added to the views to assert the security policies as each request is handled.

On the security side of the application there are two additional views for handling login and logout as
well as two exception views for handling invalid access attempts and unhandled URLs.

156

0.1. TUTORIALS

Summary

The URL, actions, template, and permission associated to each view are listed in the following table:

157

CONTENTS

URL

Action

View

Template

Permission

/

Redirect to
/FrontPage

view_wiki

/PageName

Display existing
page’

view_page

I

view.jinja2

view

/PageName/edit_pa

e®isplay edit form
with existing con-
tent.
If the form
was submit-
ted, redirect to
/PageName

edit_page

edit.jinja2

edit

/add_page/PageNar

n€reate the page

PageName in
storage, display
the edit form
without content.
If the form
was submit-
ted, redirect to
/PageName

add_page

edit.jinja2

create

/login

Display login
form, Forbidden?
If the form
was submitted,
authenticate.

e If authen-
tication
succeeds,
redirect to
the page
from which
we came.

e If authenti-
cation fails,
display
login form
with “login
failed”
message.

login

login.jinja2

/logout

Redirect to
/FrontPage

logout

2 Pyramid will return a default 404 Not Found page if the page PageName does not exist yet.

158

0.1. TUTORIALS

Installation

Before you begin

This tutorial assumes that you have already followed the steps in Installing Pyramid, except do not create
a virtual environment or install Pyramid. Thereby you will satisfy the following requirements.

* A Python interpreter is installed on your operating system.

* You’ve satisfied the Requirements for Installing Packages.

Create directory to contain the project

We need a workspace for our project files.

On UNIX

$ mkdir ~/pyramidtut

On Windows

c:\> mkdir pyramidtut

Create and use a virtual Python environment

Next let’s create a virtual environment workspace for our project. We will use the VENV environment
variable instead of the absolute path of the virtual environment.

On UNIX

! This is the default view for a Page context when there is no view name.
3 pyramid.exceptions.Forbidden is reached when a user tries to invoke a view that is not authorized by the authoriza-
tion policy.

159

CONTENTS

$ export VENV=~/pyramidtut

$ python3 -m venv SVENYV

On Windows

c:\> set VENV=c:\pyramidtut

Each version of Python uses different paths, so you will need to adjust the path to the command for your
Python version.

Python 2.7:

’c:\> c:\Python27\Scripts\virtualenv $VENV% ‘

Python 3.5:

’c:\> c:\Python35\Scripts\python -m venv $VENVS% ‘

Upgrade pip and setuptools in the virtual environment

On UNIX

$ SVENV/bin/pip install --upgrade pip setuptools

On Windows

c:\> SVENVZ\Scripts\pip install --upgrade pip setuptools

160

0.1. TUTORIALS

Install Pyramid into the virtual Python environment

On UNIX

$ SVENV/bin/pip install "pyramid==1.7.6"

On Windows

c:\> SVENV&\Scripts\pip install "pyramid==1.7.6"

Install SQLite3 and its development packages

If you used a package manager to install your Python or if you compiled your Python from source, then
you must install SQLite3 and its development packages. If you downloaded your Python as an installer
from https://www.python.org, then you already have it installed and can skip this step.

If you need to install the SQLite3 packages, then, for example, using the Debian system and apt —get,
the command would be the following:

$ sudo apt-get install libsqglite3-dev

Change directory to your virtual Python environment

Change directory to the pyramidtut directory, which is both your workspace and your virtual environ-
ment.

On UNIX

$ cd pyramidtut

On Windows

161

https://www.python.org

CONTENTS

c:\> ed pyramidtut

Making a project
Your next step is to create a project. For this tutorial we will use the scaffold named alchemy which
generates an application that uses SQLAlchemy and URL dispatch.

Pyramid supplies a variety of scaffolds to generate sample projects. We will use pcreate, a script that
comes with Pyramid, to create our project using a scaffold.

By passing alchemy into the pcreate command, the script creates the files needed to use
SQLAIchemy. By passing in our application name tutorial, the script inserts that application name
into all the required files. For example, pcreate creates the initialize_tutorial_db in the

pyramidtut/bin directory.

The below instructions assume your current working directory is “pyramidtut”.

On UNIX

$ SVENV/bin/pcreate —-s alchemy tutorial

On Windows

’c:\pyramidtut> SVENV%\Scripts\pcreate -s alchemy tutorial

O If you are using Windows, the alchemy scaffold may not deal gracefully with installation into a
location that contains spaces in the path. If you experience startup problems, try putting both the virtual
environment and the project into directories that do not contain spaces in their paths.

162

0.1. TUTORIALS

Installing the project in development mode

In order to do development on the project easily, you must “register” the project as a development egg in
your workspace using the pip install -e . command. In order to do so, change directory to the
tutorial directory that you created in Making a project, andrunthe pip install -e . command
using the virtual environment Python interpreter.

On UNIX

$ cd tutorial
$ SVENV/bin/pip install -e

On Windows

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> $VENV$\Scripts\pip install -e

The console will show pip checking for packages and installing missing packages. Success executing
this command will show a line like the following:

Successfully installed Chameleon-2.24 Mako-1.0.4 MarkupSafe-0.23 \
Pygments—2.1.3 SQLAlchemy-1.0.12 pyramid-chameleon-0.3 \
pyramid-debugtoolbar-2.4.2 pyramid-mako-1.0.2 pyramid-tm-0.12.1 \
transaction-1.4.4 tutorial waitress-0.8.10 zope.sglalchemy-0.7.6

Install testing requirements

In order to run tests, we need to install the testing requirements. This is done through our project’s
setup.pyfile,inthe tests_require and extras_require stanzas, and by issuing the command
below for your operating system.

» |tests_require = [

2 'WebTest >= 1.3.1', # py3 compat
2 'pytest', # includes virtualenv
25 'pytest-cov',

26]

163

CONTENTS

45 extras_require={
46 'testing': tests_require,
47 },
On UNIX
$ SVENV/bin/pip install -e ".[testing]"
On Windows
c:\pyramidtut\tutorial> $VENV%\Scripts\pip install -e ".[testing]"

Run the tests

After you’ve installed the project in development mode as well as the testing requirements, you may run
the tests for the project. The following commands provide options to py.test that specify the module for
which its tests shall be run, and to run py.test in quiet mode.

On UNIX

$ SVENV/bin/py.test -qg

On Windows

c:\pyramidtut\tutorial> $VENV%\Scripts\py.test —g

For a successful test run, you should see output that ends like this:

164

0.1. TUTORIALS

2 passed in 0.44 seconds

Expose test coverage information

You can run the py.test command to see test coverage information. This runs the tests in the same
way that py . test does, but provides additional “coverage” information, exposing which lines of your
project are covered by the tests.

We’ve already installed the pytest—cov package into our virtual environment, so we can run the tests
with coverage.

On UNIX

$ SVENV/bin/py.test —--cov —--cov-report=term-missing

On Windows

c:\pyramidtut\tutorial> $VENV%\Scripts\py.test —-cov \
—-—cov-report=term-missing

If successful, you will see output something like this:

======================== test session starts ========================
platform Python 3.5.1, pytest-2.9.1, py-1.4.31, pluggy-0.3.1

rootdir: /Users/stevepiercy/projects/pyramidtut/tutorial, inifile:
plugins: cov-2.2.1

collected 2 items

tutorial/tests.py
—————————————————— coverage: platform Python 3.5.1 -—————————————————

Name Stmts Miss Cover Missing
tutorial/__init__.py 8 6 25% 7-12
tutorial/models/_ _init_ .py 22 0 100%

165

CONTENTS

tutorial/models/meta.py 5 0 100%
tutorial/models/mymodel.py 8 0 100%
tutorial/routes.py 3 2 33% 2-3
tutorial/scripts/__init__ .py 0 0 100%
tutorial/scripts/initializedb.py 26 16 38% 22-25, 29-45
tutorial/views/__init__ .py 0 0 100%
tutorial/views/default.py 12 0 100%
tutorial/views/notfound.py 4 2 50% 6-17

TOTAL 88 26 70%
===================== 2 passed in 0.57 seconds ======================

Our package doesn’t quite have 100% test coverage.

Test and coverage scaffold defaults

Scaffolds include configuration defaults for py.test and test coverage. These configuration files are
pytest.ini and .coveragerc, located at the root of your package. Without these defaults, we
would need to specify the path to the module on which we want to run tests and coverage.

On UNIX

$ SVENV/bin/py.test --cov=tutorial tutorial/tests.py -q

On Windows

c:\pyramidtut\tutorial> %VENV$\Scripts\py.test —--cov=tutorial \
—-—-cov-report=term-missing tutoriall\tests.py —-g

py-test follows conventions for Python test discovery, and the configuration defaults from the scaffold tell
py . test where to find the module on which we want to run tests and coverage.

See also:

See py.test’s documentation for Usage and Invocations or invoke py.test -h to see its full set of
options.

166

https://docs.pytest.org/en/latest/goodpractices.html#test-discovery
https://docs.pytest.org/en/latest/usage.html#usage

0.1. TUTORIALS

Initializing the database

We needtouse the initialize_tutorial_db console script to initialize our database.

6 The initialize_tutorial_db command does not perform a migration, but rather it simply
creates missing tables and adds some dummy data. If you already have a database, you should delete it
before running initialize_tutorial_db again.

Type the following command, making sure you are still in the tutorial directory (the directory with a
development.ini init):

On UNIX

$ SVENV/bin/initialize_tutorial_db development.ini

On Windows

c:\pyramidtut\tutorial> $VENV%\Scripts\initialize_tutorial_db development.
—ini

The output to your console should be something like this:

2016-05-22 04:03:28,888 INFO
—Engine:1192] [MainThread]
—VARCHAR (60)) AS anon_1

2016-05-22 04:03:28,888 INFO
—Engine:1193] [MainThread] ()

2016-05-22 04:03:28,888 INFO
—Engine:1192] [MainThread]
—VARCHAR (60)) AS anon_1

2016-05-22 04:03:28,889 INFO
—~Engine:1193] [MainThread] ()
2016-05-22 04:03:28,890 INFO
—~Engine:1097] [MainThread]
2016-05-22 04:03:28,890 INFO
—Engine:1100] [MainThread] ()
2016-05-22 04:03:28,892 INFO
—Engine:1097] [MainThread]

SELECT CAST('test plain returns' AS_
[sglalchemy.engine.base.
[sglalchemy.engine.base.

SELECT CAST ('test unicode returns' AS_,

PRAGMA table_info ("models")

[sglalchemy.engine.base.

[sglalchemy.engine.base.
[sglalchemy.engine.base.
[sglalchemy.engine.base.

[sglalchemy.engine.base.

167

CONTENTS

CREATE TABLE models (
id INTEGER NOT NULL,
name TEXT,
value INTEGER,
CONSTRAINT pk_models PRIMARY KEY (id)

2016-05-22 04:03:28,892 INFO [sglalchemy.engine.base.

—~FEngine:1100] [MainThread] ()

2016-05-22 04:03:28,893 INFO [sglalchemy.engine.base.

—~Engine:686] [MainThread] COMMIT

2016-05-22 04:03:28,893 INFO [sglalchemy.engine.base.

—Engine:1097] [MainThread] CREATE UNIQUE INDEX my_index ON models (name)
2016-05-22 04:03:28,893 INFO [sglalchemy.engine.base.

—~FEngine:1100] [MainThread] ()

2016-05-22 04:03:28,894 INFO [sglalchemy.engine.base.

—~Engine:686] [MainThread] COMMIT

2016-05-22 04:03:28,896 INFO [sglalchemy.engine.base.

—Engine:646] [MainThread] BEGIN (implicit)

2016-05-22 04:03:28,897 INFO [sglalchemy.engine.base.

—~Engine:1097] [MainThread] INSERT INTO models (name, value) VALUES (?, ?)
2016-05-22 04:03:28,897 INFO [sglalchemy.engine.base.

—~Engine:1100] [MainThread] ('one', 1)

2016-05-22 04:03:28,898 INFO [sglalchemy.engine.base.

—Engine:686] [MainThread] COMMIT

Success! You should now have a tutorial.sglite file in your current working directory. This is an
SQLite database with a single table defined in it (models).

Start the application

Start the application.

On UNIX

$ SVENV/bin/pserve development.ini —--reload

168

0.1. TUTORIALS

On Windows

’c:\pyramidtut\tutorial> $VENVS\Scripts\pserve development.ini --reload

O Your OS firewall, if any, may pop up a dialog asking for authorization to allow python to accept
incoming network connections.

If successful, you will see something like this on your console:

Starting subprocess with file monitor
Starting server in PID 82349.
serving on http://127.0.0.1:6543

This means the server is ready to accept requests.

Visit the application in a browser

In a browser, visit http://localhost:6543/. You will see the generated application’s default page.

One thing you’ll notice is the “debug toolbar” icon on right hand side of the page. You can read more about
the purpose of the icon at The Debug Toolbar. It allows you to get information about your application
while you develop.

Decisions the alchemy scaffold has made for you

Creating a project using the alchemy scaffold makes the following assumptions:
* You are willing to use SQLAlchemy as a database access tool.
* You are willing to use URL dispatch to map URLSs to code.

* You want to use zope.sqlalchemy, pyramid_tm, and the transaction packages to scope sessions to
requests.

* You want to use pyramid_jinja2 to render your templates. Different templating engines can be used,
but we had to choose one to make this tutorial. See Available Add-On Template System Bindings
for some options.

O Pyramid supports any persistent storage mechanism (e.g., object database or filesystem files). It
also supports an additional mechanism to map URLSs to code (traversal). However, for the purposes of
this tutorial, we’ll only be using URL dispatch and SQLAlchemy.

169

http://localhost:6543/
https://pypi.python.org/pypi/zope.sqlalchemy
http://docs.pylonsproject.org/projects/pyramid-tm/en/latest/
http://zodb.readthedocs.org/en/latest/transactions.html
http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/

CONTENTS

Basic Layout

The starter files generated by the alchemy scaffold are very basic, but they provide a good orientation
for the high-level patterns common to most URL dispatch-based Pyramid projects.

Application configuration with __init__ .py

A directory on disk can be turned into a Python package by containing an __init__ .py file. Even if
empty, this marks a directory as a Python package. We use __init__ .py both as a marker, indicating
the directory in which it’s contained is a package, and to contain application configuration code.

Open tutorial/__init__ .py. It should already contain the following:

from pyramid.config import Configurator

4 |def main(global_config, =x*settings):

5 """ This function returns a Pyramid WSGI application.
P nwnn

7 config = Configurator (settings=settings)

8 config.include ('pyramid_jinja2')

9 config.include (' .models")

10 config.include('.routes")

11 config.scan()
12 return config.make_wsgi_app ()

Let’s go over this piece-by-piece. First we need some imports to support later code:

from pyramid.config import Configurator

__init__ .py defines a function named main. Here is the entirety of the ma in function we’ve defined
inour__init__ .py:

4+ |def main(global_config, =**settings):

5 "mm This function returns a Pyramid WSGI application.
s nn

7 config = Configurator (settings=settings)

8 config.include ('pyramid_ jinja2')

9 config.include (' .models")

170

0.1. TUTORIALS

10 config.include ('.routes")
1 config.scan()
12 return config.make_wsgi_app ()

When you invoke the pserve development.ini command, the main function above is executed.
It accepts some settings and returns a WSGI application. (See Startup for more about pserve.)

Next in main, construct a Configurator object:

7 config = Configurator (settings=settings)

settings is passed to the Configurator as a keyword argument with the dictionary values passed
as the xxsettings argument. This will be a dictionary of settings parsed from the .ini file, which
contains deployment-related values, such as pyramid.reload_templates, sqlalchemy.url,
and so on.

Next include Jinja2 templating bindings so that we can use renderers with the . jinjaZ2 extension within
our project.

config.include ('pyramid_jinja2')

Next include the the package models using a dotted Python path. The exact setup of the models will be
covered later.

config.include ('.models") ‘

Next include the routes module using a dotted Python path. This module will be explained in the next
section.

config.include ('.routes") ‘

ﬁ Pyramid’s pyramid.config.Configurator.include () method is the primary mecha-
nism for extending the configurator and breaking your code into feature-focused modules.

main next calls the scan method of the configurator (pyramid.config.Configurator.
scan ()), which will recursively scan our tutorial package, looking for @view_config and other
special decorators. When it finds a @view_config decorator, a view configuration will be registered,
allowing one of our application URLSs to be mapped to some code.

171

CONTENTS

n’ config.scan() ‘

Finally main is finished configuring things, so it uses the pyramid.config.Configurator.
make_wsgi_app () method to return a WSGI application:

return config.make_wsgi_app () ‘

Route declarations

Open the tutorial/routes.py file. It should already contain the following:

1 |def includeme (configqg) :
2 config.add_static_view('static', 'static', cache_max_age=3600)
3 config.add_route('home', '/")

On line 2, we call pyramid.config.Configurator.add_static_view () with three argu-
ments: static (the name), static (the path), and cache_max_age (a keyword argument).

This registers a static resource view which will match any URL that starts with the prefix /static
(by virtue of the first argument to add_static_view). This will serve up static resources
for us from within the static directory of our tutorial package, in this case via http://
localhost:6543/static/ and below (by virtue of the second argument to add_static_view).
With this declaration, we’re saying that any URL that starts with /static should go to the static view;
any remainder of its path (e.g., the /foo in /static/foo) will be used to compose a path to a static
file resource, such as a CSS file.

On line 3, the module registers a route configuration via the pyramid.config.Configurator.
add_route () method that will be used when the URL is /. Since this route has a pat tern equaling
/, it is the route that will be matched when the URL / is visited, e.g., http://localhost:6543/.

View declarations via the views package

The main function of a web framework is mapping each URL pattern to code (a view callable) that is
executed when the requested URL matches the corresponding route. Our application uses the pyramid.
view.view_config () decorator to perform this mapping.

Open tutorial/views/default.py inthe views package. It should already contain the follow-
ing:

172

0.1. TUTORIALS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

from pyramid.response import Response
from pyramid.view import view_config

from sglalchemy.exc import DBAPIError

from ..models import MyModel

@view_config(route_name='home', renderer='../templates/mytemplate.jinja2"')
def my_view(request) :
try:
query = request.dbsession.query (MyModel)
one = query.filter (MyModel.name == 'one').first ()

except DBAPIError:
return Response (db_err_msg, content_type='text/plain', status=500)

return {'one': one, 'project': 'tutorial'}
db_err_msg = """\
Pyramid is having a problem using your SQL database. The problem

might be caused by one of the following things:

1. You may need to run the "initialize_tutorial_db" script
to initialize your database tables. Check your virtual
environment's "bin" directory for this script and try to run it.

2. Your database server may not be running. Check that the
database server referred to by the "sglalchemy.url" setting in
your "development.ini" file is running.

After you fix the problem, please restart the Pyramid application to

try it again.
nmmwn

The important part here is that the @view_config decorator associates the function it decorates
(my_view) with a view configuration, consisting of:

* aroute_name (home)

¢ arenderer, which is a template from the templates subdirectory of the package.

When the pattern associated with the home view is matched during a request, my_view () will be
executed. my_view () returns a dictionary; the renderer will use the templates/mytemplate.
jinjaZ2 template to create a response based on the values in the dictionary.

173

CONTENTS

Note that my_view () accepts a single argument named request. This is the standard call signature
for a Pyramid view callable.

Remember in our __init__ .py when we executed the pyramid.config.Configurator.
scan () method config.scan () ? The purpose of calling the scan method was to find and process
this @view_config decorator in order to create a view configuration within our application. Without
being processed by scan, the decorator effectively does nothing. @view_config isinert without being
detected via a scan.

The sample my_view () created by the scaffold uses a try: and except: clause to detect if there
is a problem accessing the project database and provide an alternate error response. That response will
include the text shown at the end of the file, which will be displayed in the browser to inform the user
about possible actions to take to solve the problem.

Content models with the models package

In an SQLAIchemy-based application, a model object is an object composed by querying the SQL
database. The models package is where the alchemy scaffold put the classes that implement our
models.

First, open tutorial /models/meta.py, which should already contain the following:

1 | from sglalchemy.ext.declarative import declarative_base
2 | from sqglalchemy.schema import MetaData

4 | # Recommended naming convention used by Alembic, as various different_
—database

s | # providers will autogenerate vastly different names making migrations more
6| # difficult. See: http://alembic.zzzcomputing.com/en/latest/naming.html

7 | NAMING_CONVENTION = {

8 "ix"e Tix_ ,

9 "ug": "ug_ _ ",

10 "ck": "ck_ _ ",

1 "fk": "fk_ _ - ",
12 "pk": "pk_ "

15 |metadata = MetaData (naming_convention=NAMING_CONVENTION)
16 | Base = declarative_base (metadata=metadata)

meta.py contains imports and support code for defining the models. We create a dictionary
NAMING_CONVENTION as well for consistent naming of support objects like indices and constraints.

174

0.1. TUTORIALS

from sglalchemy.ext.declarative import declarative_base
from sqglalchemy.schema import MetaData

[N}

Recommended naming convention used by Alembic, as various different,

=

—~database

providers will autogenerate vastly different names making migrations more
6| # difficult. See: http://alembic.zzzcomputing.com/en/latest/naming.html

7 | NAMING_CONVENTION = {

w

3 "ix": 'ix_ % (cc

9 "uq" . "uq t:; (

10 "ck": "ck_3%

11 "fk": "fk_$% table
12 "pk":

Next we create a metadata object from the class sglalchemy.schema.MetaData, using
NAMING_CONVENTION as the value for the naming_convention argument.

A MetaData object represents the table and other schema definitions for a single database. We also
need to create a declarative Base object to use as a base class for our models. Our models will inherit
from this Base, which will attach the tables to the metadata we created, and define our application’s
database schema.

15 |[metadata = MetaData (naming_convention=NAMING_CONVENTION)
16 | Base = declarative_base (metadata=metadata)

Next open tutorial/models/mymodel . py, which should already contain the following:

from sqglalchemy import (

2 Column,
3 Index,

4 Integer,
5 Text,

s | from .meta import Base

11 | class MyModel (Base) :

12 _ _tablename_ = 'models'
13 id = Column (Integer, primary_key=True)
14 name = Column (Text)

175

http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData

CONTENTS

15 value = Column (Integer)

18 | Index ('my_index', MyModel.name, unique=True, mysql_length=255)

Notice we’ve defined the models as a package to make it straightforward for defining models in sep-
arate modules. To give a simple example of a model class, we have defined one named MyModel in
mymodel.py:

11 | class MyModel (Base) :

12 _ _tablename_ = 'models'

13 id = Column (Integer, primary_key=True)
14 name = Column (Text)

15 value = Column (Integer)

Our example model does not require an __init__ method because SQLAlchemy supplies for us a
default constructor, if one is not already present, which accepts keyword arguments of the same name as
that of the mapped attributes.

ﬁ Example usage of MyModel:

’johnny = MyModel (name="John Doe", value=10)

The MyModel classhasa___tablename___ attribute. This informs SQLAlchemy which table to use to
store the data representing instances of this class.

Finally, open tutorial/models/__init__ .py, which should already contain the following:

1 | from sqglalchemy import engine_from_config

> | from sqlalchemy.orm import sessionmaker

3 | from sqglalchemy.orm import configure_mappers
4 | import zope.sglalchemy

6| # import or define all models here to ensure they are attached to the
7| # Base.metadata prior to any initialization routines
s | from .mymodel import MyModel # noga

0| # run configure_mappers after defining all of the models to ensure
ul|# all relationships can be setup
12 |configure_mappers ()

176

0.1. TUTORIALS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

def get_engine(settings, prefix='sqglalchemy.'):
return engine_from config(settings, prefix)

def get_session_factory(engine) :
factory = sessionmaker ()
factory.configure (bind=engine)
return factory

def get_tm _session(session_factory, transaction_manager):

mwn

Get a " 'sglalchemy.orm.Session’ ' instance backed by a transaction.

This function will hook the session to the transaction manager which
will take care of committing any changes.

- When using pyramid_tm it will automatically be committed or aborted
depending on whether an exception 1is raised.

- When using scripts you should wrap the session in a manager yourself.
For example::

import transaction

engine = get_engine (settings)
session_factory = get_session_factory (engine)
with transaction.manager:
dbsession = get_tm session (session_factory, transaction.
—manager)

mmn

dbsession = session_factory ()
zope.sqglalchemy.register (

dbsession, transaction_manager=transaction_manager)
return dbsession

def includeme (config):
mmn

Initialize the model for a Pyramid app.

Activate this setup using " ‘config.include('tutorial.models') .

177

CONTENTS

58 o

59 settings = config.get_settings ()

60

61 # use pyramid_tm to hook the transaction lifecycle to the request
62 config.include ('pyramid_tm")

63

64 session_factory = get_session_factory(get_engine (settings))
65 config.registry['dbsession_factory'] = session_factory

66

67 # make request.dbsession available for use in Pyramid

68 config.add_request_method(

69 # r.tm is the transaction manager used by pyramid_tm

70 lambda r: get_tm_session(session_factory, r.tm),

71 'dbsession’,

72 reify=True

73)

Ourmodels/__init__.py module defines the primary API we will use for configuring the database
connections within our application, and it contains several functions we will cover below.

As we mentioned above, the purpose of the models.meta.metadata objectis to describe the schema
of the database. This is done by defining models that inherit from the Base object attached to that
metadata object. In Python, code is only executed if it is imported, and so to attach the models table
defined in mymodel . py to the metadata, we must import it. If we skip this step, then later, when we
run sglalchemy.schema.MetaData.create_all (), the table will not be created because the
metadata object does not know about it!

Another important reason to import all of the models is that, when defining relationships between
models, they must all exist in order for SQLAlchemy to find and build those internal mappings.
This is why, after importing all the models, we explicitly execute the function sglalchemy.orm.
configure_mappers (), once we are sure all the models have been defined and before we start cre-
ating connections.

Next we define several functions for connecting to our database. The first and lowest level is
the get_engine function. This creates an SQLAlchemy database engine using sglalchemy.
engine_from_config() from the sgqlalchemy.-prefixed settings in the development .ini
file’s [app:main] section. This setting is a URI (something like sglite://).

15 |def get_engine (settings, prefix='sqglalchemy.'):
16 return engine_from config(settings, prefix)

The function get_session_factory accepts an SQLAlchemy database engine, and creates a
session_factory from the SQLAlchemy class sqlalchemy.orm.session.sessionmaker.
This session_factory is then used for creating sessions bound to the database engine.

178

http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData.create_all
http://docs.sqlalchemy.org/en/latest/orm/mapping_api.html#sqlalchemy.orm.configure_mappers
http://docs.sqlalchemy.org/en/latest/orm/mapping_api.html#sqlalchemy.orm.configure_mappers
http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.engine_from_config
http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.engine_from_config
http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.sessionmaker

0.1. TUTORIALS

19 |def get_session_factory(engine) :

20 factory = sessionmaker ()
21 factory.configure (bind=engine)
2 return factory

The function get_tm_session registers a database session with a transaction manager, and returns a
dbsession object. With the transaction manager, our application will automatically issue a transaction
commit after every request, unless an exception is raised, in which case the transaction will be aborted.

» |def get_tm_session(session_factory, transaction_manager) :

26 e

27 Get a "~ “sqglalchemy.orm.Session’ 1instance backed by a transaction.

28

2 This function will hook the session to the transaction manager which

30 will take care of committing any changes.

31

32 — When using pyramid _tm it will automatically be committed or aborted

33 depending on whether an exception is raised.

34

35 — When using scripts you should wrap the session in a manager yourself.

36 For example::

37

38 import transaction

39

40 engine = get_engine (settings)

41 session_factory = get_session_factory (engine)

2 with transaction.manager:

43 dbsession = get_tm_session (session_factory, transaction.
—manager)

44

45 e

46 dbsession = session_factory()

47 zope.sglalchemy.register (

48 dbsession, transaction_manager=transaction_manager)

49 return dbsession

Finally, we define an includeme function, which is a hook for use with pyramid.config.
Configurator.include () to activate code in a Pyramid application add-on. It is the code that
is executed above when we ran config.include ('.models"') in our application’s main func-
tion. This function will take the settings from the application, create an engine, and define a request.
dbsession property, which we can use to do work on behalf of an incoming request to our application.

179

CONTENTS

52

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

That’s about all there is to it regarding models, views, and initialization code in our stock application.

The Index import and the Index object creation in mymodel . py is not required for this tutorial, and

def includeme (config):

mown

Initialize the model for a Pyramid app.

Activate this setup using ' config.include ('tutorial.models') .

mmwn

settings = config.get_settings()

use pyramid_tm to hook the transaction lifecycle to the request
config.include ('pyramid_tm")

session_factory = get_session_factory(get_engine (settings))
config.registry['dbsession_factory'] = session_factory

make request.dbsession available for use in Pyramid
config.add_request_method (
r.tm is the transaction manager used by pyramid_tm
lambda r: get_tm_session(session_factory, r.tm),
'dbsession’,
reify=True

will be removed in the next step.

Defining the Domain Model

The first change we’ll make to our stock pcreate-generated application will be to define a wiki page

domain model.

6 There is nothing special about the filename user.py or page.py except that they are Python
modules. A project may have many models throughout its codebase in arbitrarily named modules. Mod-
ules implementing models often have model in their names or they may live in a Python subpackage of
your application package named models (as we’ve done in this tutorial), but this is only a convention

and not a requirement.

180

0.1. TUTORIALS

Declaring dependencies in our setup.py file

The models code in our application will depend on a package which is not a dependency of the original
“tutorial” application. The original “tutorial” application was generated by the pcreate command; it
doesn’t know about our custom application requirements.

We need to add a dependency, the bcrypt package, to our tutorial package’s setup.py file by
assigning this dependency to the requires parameter in the setup () function.

Open tutorial/setup.py and edit it to look like the following:

| | import os

2

3 | from setuptools import setup, find_packages

4

s |here = os.path.abspath(os.path.dirname(file))
¢ |with open(os.path.join (here, 'README.txt')) as f:
7 README = f.read()

s |{with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 |requires = [

12 'bcrypt',

13 'pyramid’',

14 'pyramid_jinja2"',

1s 'pyramid_debugtoolbar’,

16 'pyramid_tm',

17 'SQLAlchenmy',

18 'transaction',

19 'zope.sglalchemy',

20 'waitress',

21]

22

3 |tests_require = [

24 'WebTest >= 1.3.1', # py3 compat

25 'pytest', # includes virtualenv

26 'pytest-cov',

27]

28

» | setup (name="tutorial',

30 version='0.0",

31 description="'tutorial',

2 long_description=README + '\n\n' + CHANGES,
33 classifiers=][

34 "Programming Language :: Python",

181

CONTENTS

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

"Framework :: Pyramid",
"Topic :: Internet :: WWW/HTTP",
"Topic :: Internet :: WWW/HTTP :: WSGI
]I
author="",
author_email="",
url="",

keywords="'web wsgi bfg pylons pyramid',
packages=find_packages(),
include_package_data=True,
zip_safe=False,
extras_require={

'testing': tests_require,
}I

install_requires=requires,

entry_points="""\
[paste.app_factory]
main = tutorial:main

[console_scripts]

Application",

initialize_tutorial_db = tutorial.scripts.initializedb:main

nun
’

)

Only the highlighted line needs to be added.

Running pip install -e

Since a new software dependency was added, you will need to run pip install -e . again inside
the root of the tutorial package to obtain and register the newly added dependency distribution.

Make sure your current working directory is the root of the project (the directory in which setup.py
lives) and execute the following command.

On UNIX:

$ cd tutorial
$ SVENV/bin/pip install -e

On Windows:

182

0.1. TUTORIALS

c:\pyramidtut> ed tutorial
c:\pyramidtut\tutorial> 2VENVZ\Scripts\pip install -e

Success executing this command will end with a line to the console something like this:

Successfully installed bcrypt-2.0.0 cffi-1.5.2 pycparser—-2.14 tutorial-0.0

Remove mymodel . py

Let’s delete the file tutorial/models/mymodel.py. The MyModel class is only a sample and
we’re not going to use it.

Add user.py

Create a new file tutorial/models/user.py with the following contents:

1 | import bcrypt
2 | from sqglalchemy import (

3 Column,
4 Integer,
5 Text,

s | from .meta import Base

1 |class User (Base) :

12 """ The SQLAlchemy declarative model class for a User object. """
13 _ _tablename__ = 'users'

14 id = Column (Integer, primary_key=True)

15 name = Column (Text, nullable=False, unique=True)

16 role = Column (Text, nullable=False)

17

18 password_hash = Column (Text)

19

20 def set_password(self, pw):

21 pwhash = bcrypt.hashpw(pw.encode ('utf8'), bcrypt.gensalt())
2 self.password_hash = pwhash.decode ('utfg8")

23

183

CONTENTS

24 def check_password(self, pw):

25 if self.password_hash is not None:

26 expected_hash = self.password_hash.encode ('utf8")

27 return bcrypt.checkpw (pw.encode ('utf8'), expected_hash)
28 return False

This is a very basic model for a user who can authenticate with our wiki.

We discussed briefly in the previous chapter that our models will inherit from an SQLAlchemy
sglalchemy.ext.declarative.declarative_base (). This will attach the model to our
schema.

As you can see, our User class has a class-level attribute ___tablename___ which equals the string
users. Our User class will also have class-level attributes named id, name, password_hash, and
role (all instances of sglalchemy.schema.Column). These will map to columns in the users
table. The id attribute will be the primary key in the table. The name attribute will be a text column,
each value of which needs to be unique within the column. The password_hash is a nullable text
attribute that will contain a securely hashed password'. Finally, the role text attribute will hold the role
of the user.

There are two helper methods that will help us later when using the user objects. The first is
set_password which will take a raw password and transform it using berypt into an irreversible rep-
resentation, a process known as “hashing”. The second method, check_password, will allow us to
compare the hashed value of the submitted password against the hashed value of the password stored in
the user’s record in the database. If the two hashed values match, then the submitted password is valid,
and we can authenticate the user.

We hash passwords so that it is impossible to decrypt them and use them to authenticate in the application.
If we stored passwords foolishly in clear text, then anyone with access to the database could retrieve any
password to authenticate as any user.

Add page.py

Create a new file tutorial/models/page.py with the following contents:

! We are using the berypt package from PyPI to hash our passwords securely. There are other one-way hash algorithms for
passwords if berypt is an issue on your system. Just make sure that it’s an algorithm approved for storing passwords versus a generic
one-way hash.

184

http://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base
http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Column
https://pypi.python.org/pypi/bcrypt
https://pypi.python.org/pypi/bcrypt

0.1. TUTORIALS

1 | from sqglalchemy import

2 Column,

3 ForeignKey,
4 Integer,

5 Text,

61)

9 | from .meta import Base

2 | class Page (Base) :

13 """ The SQLAlchemy declarative model class for a Page object.
14 __tablename___ = 'pages'

15 id = Column (Integer, primary_key=True)

16 name = Column (Text, nullable=False,

17 data = Column (Text, nullable=False)

18

19 creator_id = Column (ForeignKey ('users.id'),
20 creator = relationship('User',

(

7| from sqlalchemy.orm import relationship

unique=True)

mmn

nullable=False)
backref='created_pages')

As you can see, our Page class is very similar to the User defined above, except with attributes focused
on storing information about a wiki page, including id, name, and data. The only new construct intro-
duced here is the creator_id column, which is a foreign key referencing the users table. Foreign
keys are very useful at the schema-level, but since we want to relate User objects with Page objects,
we also define a creator attribute as an ORM-level mapping between the two tables. SQLAlchemy
will automatically populate this value using the foreign key referencing the user. Since the foreign key
has nullable=False, we are guaranteed that an instance of page will have a corresponding page .

creator, which will be a User instance.

Edit models/__init__ .py

Since we are using a package for our models, we also need to update our __init__ .py file to ensure

that the models are attached to the metadata.

Open the tutorial/models/__init__ .py file and edit it to look like the following:

1 | from sqglalchemy import engine_from_config
2 | from sglalchemy.orm import sessionmaker
3 | from sglalchemy.orm import configure_mappers

4 | import zope.sglalchemy

185

CONTENTS

import or define all models here to ensure they are attached to the
Base.metadata prior to any initialization routines

s | from .page import Page # noga

9 | from .user import User # noqga

o

N}

n|# run configure_mappers after defining all of the models to ensure
2| # all relationships can be setup
13 | configure_mappers ()

16 |def get_engine (settings, prefix='sglalchemy.'):
17 return engine_from config(settings, prefix)

20 |def get_session_factory(engine) :

21 factory = sessionmaker ()
2 factory.configure (bind=engine)
23 return factory

24
25
% |def get_tm_session(session_factory, transaction_manager) :

morn
27

28 Get a " ‘sqglalchemy.orm.Session’ ' instance backed by a transaction.

29

30 This function will hook the session to the transaction manager which

31 will take care of committing any changes.

32

33 — When using pyramid_tm it will automatically be committed or aborted

34 depending on whether an exception is raised.

35

36 — When using scripts you should wrap the session in a manager yourself.

37 For example::

38

39 import transaction

40

41 engine = get_engine (settings)

4 session_factory = get_session_factory (engine)

43 with transaction.manager:

44 dbsession = get_tm _session (session_factory, transaction.
—manager)

45

46 o

47 dbsession = session_factory ()

48 zope.sglalchemy.register (

49 dbsession, transaction_manager=transaction_manager)

50 return dbsession

186

0.1. TUTORIALS

51

52

53 |def includeme (config) :

54 o

55 Initialize the model for a Pyramid app.

56

57 Activate this setup using ' config.include ('tutorial.models') .
58

59 e

60 settings = config.get_settings ()

61

62 # use pyramid_tm to hook the transaction lifecycle to the request
63 config.include ('pyramid_tm')

64

65 session_factory = get_session_factory(get_engine (settings))
66 config.registry['dbsession factory'] = session_factory

67

68 # make request.dbsession available for use in Pyramid

69 config.add_request_method (

70 # r.tm is the transaction manager used by pyramid_tm

71 lambda r: get_tm_session(session_factory, r.tm),

7 'dbsession’,

73 reify=True

74)

Here we align our imports with the names of the models, Page and User.

Edit scripts/initializedb.py

We haven’t looked at the details of this file yet, but within the scripts directory of your tutorial
package is a file named initializedb.py. Code in this file is executed whenever we run the
initialize_tutorial_db command, as we did in the installation step of this tutorial®.

Since we’ve changed our model, we need to make changes to our initializedb.py script. In par-
ticular, we’ll replace our import of MyMode 1 with those of User and Page. We’ll also change the very
end of the script to create two User objects (basic and editor) as well as a Page, rather than a
MyModel, and add them to our dbsession.

Open tutorial/scripts/initializedb.py and edit it to look like the following:

2 The command is named initialize_tutorial_db because of the mapping defined in the [console_scripts]
entry point of our project’s setup . py file.

187

CONTENTS

1 | import os
2 | import sys
3 | import transaction

5 | from pyramid.paster import (
6 get_appsettings,

7 setup_logging,

8)

10 | from pyramid.scripts.common import parse_vars

2 | from ..models.meta import Base
3 | from ..models import (

14 get_engine,
15 get_session_factory,
16 get_tm_session,

17)
18 | from ..models import Page, User

20
21 |def usage (argv) :

2 cmd = os.path.basename (argv[0])

3 print ('usage: $%s <config_uri> [var=value]\n'

24 '(example: "$%s development.ini")' % (cmd, cmd))
25 sys.exit (1)

26
27
s |def main(argv=sys.argv):

29 if len(argv) < 2:

30 usage (argv)

31 config uri = argv[l]

2 options = parse_vars(argv[2:])

33 setup_logging (config_uri)

34 settings = get_appsettings (config_uri, options=options)
35

36 engine = get_engine (settings)

37 Base.metadata.create_all (engine)

38

39 session_factory = get_session_factory (engine)

40

41 with transaction.manager:

2 dbsession = get_tm_session(session_factory, transaction.manager)
43

44 editor = User (name='editor', role='editor')

45 editor.set_password('editor')

46 dbsession.add (editor)

188

0.1. TUTORIALS

47

48 basic = User (name='basic', role='basic')
49 basic.set_password('basic")

50 dbsession.add (basic)

51

52 page = Page (

53 name='FrontPage',

54 creator=editor,

55 data='This is the front page’',
56)

57 dbsession.add (page)

Only the highlighted lines need to be changed.

Installing the project and re-initializing the database

Because our model has changed, and in order to reinitialize the database, we need to rerun the
initialize_tutorial_db command to pick up the changes we’ve made to both the models.py
file and to the initializedb.py file. See Initializing the database for instructions.

Success will look something like this:

2016-05-22 04:12:09,226 INFO
—Engine:1192] [MainThread]
—VARCHAR (60)) AS anon_1

2016-05-22 04:12:09,226 INFO
—~Engine:1193] [MainThread] ()

2016-05-22 04:12:09,226 INFO
—Engine:1192] [MainThread]
—VARCHAR (60)) AS anon_1

2016-05-22 04:12:09,227 INFO
—~Engine:1193] [MainThread] ()
2016-05-22 04:12:09,227 INFO
—Engine:1097] [MainThread]
2016-05-22 04:12:09,227 INFO
—~FEngine:1100] [MainThread] ()
2016-05-22 04:12:09,228 INFO
—~Engine:1097] [MainThread]
2016-05-22 04:12:09,228 INFO
—~Engine:1100] [MainThread] ()
2016-05-22 04:12:09,229 INFO
—~FEngine:1097] [MainThread]
CREATE TABLE users (

[sglalchemy.engine.base.

SELECT CAST('test plain returns' AS_
[sglalchemy.engine.base.
[sglalchemy.engine.base.

SELECT CAST ('test unicode returns' AS_,

[sglalchemy.engine.base.

[sglalchemy.engine.base.

PRAGMA table_info("users")

[sglalchemy.engine.base.

[sglalchemy.engine.base.

PRAGMA table_info ("pages")

[sglalchemy.engine.base.

[sglalchemy.engine.base.

189

CONTENTS

id INTEGER NOT NULL,

name TEXT NOT NULL,

role TEXT NOT NULL,

password_hash TEXT,

CONSTRAINT pk_users PRIMARY KEY (id),
CONSTRAINT ug_users_name UNIQUE (name)

2016-05-22 04:12:09,229 INFO [sglalchemy.engine.base.
—Engine:1100] [MainThread] ()
2016-05-22 04:12:09,230 INFO [sglalchemy.engine.base.
—FEngine:686] [MainThread] COMMIT
2016-05-22 04:12:09,230 INFO [sglalchemy.engine.base.
—~Engine:1097] [MainThread]
CREATE TABLE pages (

id INTEGER NOT NULL,

name TEXT NOT NULL,

data TEXT NOT NULL,

creator_id INTEGER NOT NULL,

CONSTRAINT pk_pages PRIMARY KEY (id),

CONSTRAINT ug_pages_name UNIQUE (name),

CONSTRAINT fk_pages_creator_id_users FOREIGN KEY (creator_id)
—REFERENCES users (id)
)

2016-05-22 04:12:09,231 INFO [sglalchemy.engine.base.
—~Engine:1100] [MainThread] ()

2016-05-22 04:12:09,231 INFO [sglalchemy.engine.base.
—~FEngine:686] [MainThread] COMMIT

2016-05-22 04:12:09,782 INFO [sglalchemy.engine.base.
—Engine:646] [MainThread] BEGIN (implicit)

2016-05-22 04:12:09,783 INFO [sglalchemy.engine.base.
—Engine:1097] [MainThread] INSERT INTO users (name, role, password_hash)
—VALUES (2?2, 2?2, ?)

2016-05-22 04:12:09,784 INFO [sglalchemy.engine.base.
—FEngine:1100] [MainThread] ('editor', 'editor', b'$2b$12SK/
SWLVKR15fMAb6UM58ueTetX1E3r1c5cRK52zFPimK598scXBR/xWC ")

2016-05-22 04:12:09,784 INFO [sglalchemy.engine.base.

—Engine:1097] [MainThread] INSERT INTO users (name, role, password_hash)
—VALUES (2?2, 2, ?)

2016-05-22 04:12:09,784 INFO [sglalchemy.engine.base.

—~Engine:1100] [MainThread] ('basic', 'basic', b'$2b$125JfwLyCIGv3t.
—RTSmIrh3B.FKXRT9FevkAgafWdK50gq7H14mgAQORe ")

2016-05-22 04:12:09,785 INFO [sglalchemy.engine.base.

—Engine:1097] [MainThread] INSERT INTO pages (name, data, creator_id),
—VALUES (2?2, 2, ?)

190

0.1. TUTORIALS

2016-05-22 04:12:09,785 INFO [sglalchemy.engine.base.

—Engine:1100] [MainThread] ('FrontPage', 'This is the front page', 1)
2016-05-22 04:12:09,786 INFO [sglalchemy.engine.base.

—FEngine:686] [MainThread] COMMIT

View the application in a browser

We can’t. At this point, our system is in a “non-runnable” state; we’ll need to change view-related files in
the next chapter to be able to start the application successfully. If you try to start the application (see Start
the application), you’ll wind up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

Defining Views

A view callable in a Pyramid application is typically a simple Python function that accepts a single
parameter named request. A view callable is assumed to return a response object.

The request object has a dictionary as an attribute named matchdict. A matchdict maps the place-
holders in the matching URL pattern to the substrings of the path in the request URL. For instance, if a
call to pyramid.config.Configurator.add_route () has the pattern /{one}/{two}, and
a user visits http://example.com/foo/bar, our pattern would be matched against /foo/bar
and the matchdict would look like { 'one':"'foo', 'two':'bar'}.

Adding the docutils dependency

Remember in the previous chapter we added a new dependency of the bcrypt package. Again, the view
code in our application will depend on a package which is not a dependency of the original “tutorial”
application.

We need to add a dependency on the docutils package to our tutorial package’s setup.py file
by assigning this dependency to the requires parameter in the setup () function.

Open tutorial/setup.py and edit it to look like the following:

191

CONTENTS

1 | import os
3 | from setuptools import setup, find_packages

s |here = os.path.abspath(os.path.dirname(file))
¢ |with open (os.path. join (here, 'README.txt')) as f:
7 README = f.read()

s |{with open(os.path.join (here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

1 |requires = [

12 'berypt!',

13 'docutils',

14 'pyramid’',

15 'pyramid_jinja2',

16 'pyramid_debugtoolbar’,

17 'pyramid_tm',

18 'SQLAlchemy',

19 'transaction',

20 'zope.sglalchemy',

21 'waitress',

2]

23

% |tests_require = [

25 'WebTest >= 1.3.1', # py3 compat
26 'pytest', # includes virtualenv
27 'pytest-cov',

28]
29
3 | setup (name="tutorial',

31 version='0.0",

3 description="'tutorial',

3 long_description=README + '\n\n' + CHANGES,
34 classifiers=][

35 "Programming Language :: Python",

36 "Framework :: Pyramid",

37 "Topic :: Internet :: WWW/HTTP",

38 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
39 1,

40 author="",

41 author_email="",

42 url="",

43 keywords="'web wsgi bfg pylons pyramid',

44 packages=find_packages(),

45 include_package_data=True,

46 zip_safe=False,

192

0.1. TUTORIALS

47 extras_require={

48 'testing': tests_require,
49 },

50 install_requires=requires,

51 entry_points="""\

52 [paste.app_factory]

53 main = tutorial:main

54 [console_scripts]

55 initialize_tutorial_db = tutorial.scripts.initializedb:main
56 mwry

57)

Only the highlighted line needs to be added.

Again, as we did in the previous chapter, the dependency now needs to be installed, so re-run the $VENV/
bin/pip install -e . command.

Static assets

Our templates name static assets, including CSS and images. We don’t need to create these files within
our package’s static directory because they were provided at the time we created the project.

As an example, the CSS file will be accessed via http://localhost:6543/static/theme.
css by virtue of the call to the add_static_view directive we’ve made in the routes.py
file. Any number and type of static assets can be placed in this directory (or subdirectories) and
are just referred to by URL or by using the convenience method static_url, e.g., request.
static_url ('<package>:static/foo.css') within templates.

Adding routes to routes.py

This is the URL Dispatch tutorial, so let’s start by adding some URL patterns to our app. Later we’ll
attach views to handle the URLs.

The routes.py file contains pyramid.config.Configurator.add_route () calls which
serve to add routes to our application. First we’ll get rid of the existing route created by the template

using the name 'home '. It’s only an example and isn’t relevant to our application.

We then need to add four calls to add_route. Note that the ordering of these declarations is very
important. Route declarations are matched in the order they’re registered.

193

CONTENTS

1.

Add a declaration which maps the pattern / (signifying the root URL) to the route named
view_wiki. In the next step, we will map it to our view_wiki view callable by virtue of
the @view_config decorator attached to the view_wiki view function, which in turn will be
indicated by route_name="view_wiki'.

Add a declaration which maps the pattern / { pagename} to the route named view_page. This
is the regular view for a page. Again, in the next step, we will map it to our view_page view
callable by virtue of the @view_config decorator attached to the view_page view function,
whin in turn will be indicated by route_name="'view_page'.

. Add a declaration which maps the pattern /add_page/{pagename} to the route named

add_page. This is the add view for a new page. We will map it to our add_page view callable
by virtue of the @view_config decorator attached to the add_page view function, which in
turn will be indicated by route_name="'add_page'.

Add a declaration which maps the pattern / {pagename}/edit_page to the route named
edit_page. This is the edit view for a page. We will map it to our edit_page view callable
by virtue of the @view_config decorator attached to the edit_page view function, which in
turn will be indicated by route_name="'edit_page'.

As aresult of our edits, the routes . py file should look like the following:

= T SO VR S

def includeme (config) :

config.add_static_view('static', 'static', cache_max_age=3600)
config.add_route ('view_wiki', '/")

config.add_route (

config.add_route ('add_page', '/add_page/{pagename}')
config.add_route ('edit_page', '/{pagename}/edit_page')

'view_page', '/{pagename}')

The highlighted lines are the ones that need to be added or edited.

add_page/ {pagename }, then we would never be able to add pages. This is because the first route
would always match a request to /add_page/edit_page whereas we want /add_page/ .. to
have priority. This isn’t a huge problem in this particular app because wiki pages are always camel
case, but it’s important to be aware of this behavior in your own apps.

The order of the routes is important! If you placed / {pagename}/edit_page before /

Adding view functions in views/default .py

It’s time for a major change. Open tutorial/views/default.py and edit it to look like the
following:

194

0.1. TUTORIALS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

from pyramid.compat import escape
import re
from docutils.core import publish_parts

from pyramid.httpexceptions import (
HTTPFound,
HTTPNotFound,
)

from pyramid.view import view_config
from ..models import Page, User

regular expression used to find WikiWords
wikiwords = re.compile (r"\b ([A-Z]\w+[A-Z]+\w+)")

@view_config(route_name='view_wiki")

def view_wiki (request) :
next_url = request.route_url ('view_page', pagename='FrontPage')
return HTTPFound(location=next_url)

@view_config (route_name='view_page', renderer='../templates/view.Jjinja2'")
def view_page (request) :

pagename = request.matchdict['pagename']

page = request.dbsession.query (Page) .filter_by (name=pagename) .first ()

if page is None:
raise HTTPNotFound('No such page')

def add_link (match):
word = match.group (1)

exists = request.dbsession.query(Page).filter_ by (name=word) .all ()

if exists:
view_url = request.route_url ('view_page', pagename=word)
return '%s' % (view_url, escape (word))
else:
add_url = request.route_url ('add_page', pagename=word)

o

return '%s"' % (add_url, escape (word))

content = publish_parts(page.data, writer_name='html'"') ['html_body"']

content = wikiwords.sub (add_link, content)
edit_url = request.route_url ('edit_page', pagename=page.name)
return dict (page=page, content=content, edit_url=edit_url)

@view_config(route_name='edit_page', renderer='../templates/edit.Jjinja2")

def edit_page (request) :
pagename = request.matchdict['pagename']

195

CONTENTS

47 page = request.dbsession.query (Page).filter_ by (name=pagename) .one ()
48 if 'form.submitted' in request.params:

49 page.data = request.params]|'body']

50 next_url = request.route_url ('view_page', pagename=page.name)

51 return HTTPFound(location=next_url)

52 return dict (

53 pagename=page.name,

54 pagedata=page.data,

55 save_url=request.route_url ('edit_page', pagename=page.name),

56)

57

ss | @view_config (route_name='add_page', renderer='../templates/edit.jinja2")
59 |def add_page (request) :

60 pagename = request.matchdict['pagename']

61 if request.dbsession.query (Page) .filter_by (name=pagename) .count () > O:
62 next_url = request.route_url('edit_page', pagename=pagename)

63 return HTTPFound(location=next_url)

64 if 'form.submitted' in request.params:

65 body = request.params|['body']

66 page = Page (name=pagename, data=body)

67 page.creator = (

68 request.dbsession.query (User) .filter_by (name='editor') .one())
69 request .dbsession.add (page)

70 next_url = request.route_url ('view_page', pagename=pagename)

71 return HTTPFound(location=next_url)

72 save_url = request.route_url ('add_page', pagename=pagename)

73 return dict (pagename=pagename, pagedata='"', save_url=save_url)

The highlighted lines need to be added or edited.

We added some imports, and created a regular expression to find “WikiWords”.

We got rid of the my_view view function and its decorator that was added when we originally rendered
the alchemy scaffold. It was only an example and isn’t relevant to our application. We also deleted the

db_err_msg string.

Then we added four view callable functions to our views/default .py module, as mentioned in the
previous step:

* view_wiki () - Displays the wiki itself. It will answer on the root URL.
* view_page () - Displays an individual page.

e edit_page () - Allows the user to edit a page.

196

0.1. TUTORIALS

* add_page () - Allows the user to add a page.

We’ll describe each one briefly in the following sections.

O There is nothing special about the filename default .py exept that it is a Python module. A
project may have many view callables throughout its codebase in arbitrarily named modules. Modules
implementing view callables often have view in their name (or may live in a Python subpackage of your
application package named views, as in our case), but this is only by convention, not a requirement.

The view_wiki view function

Following is the code for the view_wiki view function and its decorator:

17 | @view_config(route_name='view_wiki")

s |def view_wiki (request) :

19 next_url = request.route_url ('view_page', pagename='FrontPage')
20 return HTTPFound(location=next_url)

view_wiki () is the default view that gets called when a request is made to the root URL of our wiki.
It always redirects to a URL which represents the path to our “FrontPage”.

The view_wiki view callable always redirects to the URL of a Page resource named “FrontPage”.
To do so, it returns an instance of the pyramid. httpexceptions.HTTPFound class (instances of
which implement the pyramid. interfaces.IResponse interface, like pyramid. response.
Response). It uses the pyramid. request.Request.route_url () API to construct a URL to
the FrontPage page (i.e., http://localhost:6543/FrontPage), and uses it as the “location”
of the HTTPFound response, forming an HTTP redirect.

The view_page view function

Here is the code for the view_page view function and its decorator:

197

CONTENTS

» | @view_config (route_name='view_page', renderer='../templates/view.Jjinja2")
» |def view_page (request) :

2 pagename = request.matchdict['pagename']

25 page = request.dbsession.query (Page) .filter_ by (name=pagename) .first ()
26 if page is None:

27 raise HTTPNotFound('No such page')

28

29 def add_link (match) :

30 word = match.group (1)

31 exists = request.dbsession.query(Page).filter_ by (name=word) .all ()
3 if exists:

3 view_url = request.route_url ('view_page', pagename=word)

34 return '%s' % (view_url, escape(word))

35 else:

36 add_url = request.route_url ('add_page', pagename=word)

37 return '%s"'" % (add_url, escape (word))

38

39 content = publish_parts(page.data, writer_name='html') ['html_body"']
40 content = wikiwords.sub (add_link, content)

41 edit_url = request.route_url ('edit_page', pagename=page.name)

4 return dict (page=page, content=content, edit_url=edit_url)

view_page () is used to display a single page of our wiki. It renders the reStructuredText body of a
page (stored as the data attribute of a Page model object) as HTML. Then it substitutes an HTML
anchor for each WikiWord reference in the rendered HTML using a compiled regular expression.

The curried function named add_1ink is used as the first argument to wikiwords. sub, indicating
that it should be called to provide a value for each WikiWord match found in the content. If the wiki
already contains a page with the matched WikiWord name, add_1ink () generates a view link to be
used as the substitution value and returns it. If the wiki does not already contain a page with the matched
WikiWord name, add_1link () generates an “add” link as the substitution value and returns it.

As aresult, the content variable is now a fully formed bit of HTML containing various view and add
links for WikiWords based on the content of our current page object.

We then generate an edit URL, because it’s easier to do here than in the template, and we return a dic-
tionary with a number of arguments. The fact that view_page () returns a dictionary (as opposed to
a response object) is a cue to Pyramid that it should try to use a renderer associated with the view con-
figuration to render a response. In our case, the renderer used will be the view. jinja2 template, as
indicated in the @view_config decorator that is applied to view_page ().

If the page does not exist, then we need to handle that by raising a pyramid. httpexceptions.
HTTPNotFound to trigger our 404 handling, defined in tutorial/views/notfound.py.

198

0.1. TUTORIALS

O Using raise versus return with the HTTP exceptions is an important distinction that can com-
monly mess people up. In tutorial/views/notfound.py there is an exception view registered
for handling the HTTPNotFound exception. Exception views are only triggered for raised exceptions.
If the H-TTPNotFound is returned, then it has an internal “stock” template that it will use to render itself
as a response. If you aren’t seeing your exception view being executed, this is most likely the problem!
See Using Special Exceptions in View Callables for more information about exception views.

The edit_page view function

Here is the code for the edit_page view function and its decorator:

4 |@view_config(route_name='edit_page', renderer='../templates/edit.jinja2")
45 |def edit_page (request):

46 pagename = request.matchdict['pagename']

47 page = request.dbsession.query(Page).filter_by (name=pagename) .one ()
48 if '"form.submitted' in request.params:

49 page.data = request.params]['body']

50 next_url = request.route_url ('view_page', pagename=page.name)

51 return HTTPFound (location=next_url)

52 return dict (

53 pagename=page.name,

54 pagedata=page.data,

55 save_url=request.route_url ('edit_page', pagename=page.name),

56)

edit_page () is invoked when a user clicks the “Edit this Page” button on the view form. It renders an
edit form, but it also acts as the handler for the form which it renders. The matchdict attribute of the
request passed to the edit_page view will have a 'pagename' key matching the name of the page
that the user wants to edit.

If the view execution is a result of a form submission (i.e., the expression 'form.submitted' in
request .params is True), the view grabs the body element of the request parameters and sets it as
the data attribute of the page object. It then redirects to the view_page view of the wiki page.

If the view execution is not a result of a form submission (i.e., the expression ' form.submitted'
in request.params is False), the view simply renders the edit form, passing the page object and
a save_url which will be used as the action of the generated form.

O Since our request.dbsession defined in the previous chapter is registered with the
pyramid_tm transaction manager, any changes we make to objects managed by the that session will

199

CONTENTS

be committed automatically. In the event that there was an error (even later, in our template code), the
changes would be aborted. This means the view itself does not need to concern itself with commit/rollback
logic.

The add_page view function

Here is the code for the add_page view function and its decorator:

ss | @view_config (route_name='add_page', renderer='../templates/edit.jinja2")
s9 |def add_page (request) :

60 pagename = request.matchdict['pagename']

61 if request.dbsession.query (Page) .filter_by (name=pagename) .count () > 0:
62 next_url = request.route_url ('edit_page', pagename=pagename)

63 return HTTPFound(location=next_url)

64 if 'form.submitted' in request.params:

65 body = request.params|['body']

66 page = Page (name=pagename, data=body)

67 page.creator = (

68 request .dbsession.query (User) .filter_ by (name='editor') .one())
69 request .dbsession.add (page)

70 next_url = request.route_url ('view_page', pagename=pagename)

71 return HTTPFound(location=next_url)

72 save_url = request.route_url ('add_page', pagename=pagename)

73 return dict (pagename=pagename, pagedata='"', save_url=save_url)

add_page () is invoked when a user clicks on a WikiWord which isn’t yet represented as a page
in the system. The add_1link function within the view_page view generates URLs to this view.
add_page () also acts as a handler for the form that is generated when we want to add a page object.
The matchdict attribute of the request passed to the add_page () view will have the values we need
to construct URLs and find model objects.

The matchdict will have a 'pagename' key that matches the name of the page we’d like to add. If
our add view is invoked via, for example, http://localhost:6543/add_page/SomeName, the
value for 'pagename' in the matchdict will be ' SomeName'.

Next a check is performed to determine whether the Page already exists in the database. If it already
exists, then the client is redirected to the edit_page view, else we continue to the next check.

If the view execution is a result of a form submission (i.e., the expression ' form.submitted' in

request .params is True), we grab the page body from the form data, create a Page object with this
page body and the name taken from matchdict ['pagename'], and save it into the database using

200

0.1. TUTORIALS

request .dbession.add. Since we have not yet covered authentication, we don’t have a logged-in
user to add as the page’s creator. Until we get to that point in the tutorial, we’ll just assume that all
pages are created by the editor user. Thus we query for that object, and set it on page.creator.
Finally, we redirect the client back to the view_page view for the newly created page.

If the view execution is not a result of a form submission (i.e., the expression ' form. submitted' in
request .params is False), the view callable renders a template. To do so, it generates a save_url
which the template uses as the form post URL during rendering. We’re lazy here, so we’re going to use
the same template (templates/edit. jinja2) for the add view as well as the page edit view. To do
so we create a dummy Page object in order to satisfy the edit form’s desire to have some page object
exposed as page. Pyramid will render the template associated with this view to a response.

Adding templates

The view_page, add_page and edit_page views that we’ve added reference a template. Each
template is a Jinja2 template. These templates will live in the templates directory of our tutorial
package. Jinja2 templates must have a . jinja2 extension to be recognized as such.

The layout. jinja2 template

Update tutorial/templates/layout.jinja2 with the following content, as indicated by the
emphasized lines:

<!DOCTYPE html>
2| <html lang="{{request.locale_name}}">

3 <head>

4 <meta charset="utf-8">

5 <meta http-equiv="X-UA-Compatible" content="IE=edge">

6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">

8 <meta name="author" content="Pylons Project">

9 <link rel="shortcut icon" href="{{request.static_url ('tutorial:static/

—pyramid-16xl16.png') } } ">

11 <title>{% block subtitle %}{% endblock %}Pyramid tutorial wiki (based
—on TurboGears 20-Minute Wiki)</title>

13 <!-- Bootstrap core CSS —-—>
14 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/
—pbootstrap.min.css" rel="stylesheet">

201

CONTENTS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

43

45

46

47

48

49

50

51

52

53

54

<!-- Custom styles for this scaffold —-->
<link href="{{request.static_url ('tutorial:static/theme.css')}}" rel=
—"stylesheet">

<!-- HTML5 shim and Respond. js IE8 support of HTML5 elements and media_
—queries ——>
<!-—[if 1t IE 9]>
<script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></
—script>
<script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min. js">
—</script>
<!lendif]-->
</head>

<body>

<div class="starter-template">
<div class="container">
<div class="row">
<div class="col-md-2">
<img class="logo img-responsive" src="{{request.static_url
—'tutorial:static/pyramid.png') }}" alt="pyramid web framework">
</div>
<div class="col-md-10">
<div class="content">
{% block content %}{% endblock %}
</div>
</div>
</div>
<div class="row">
<div class="copyright">
Copyright © Pylons Project

</div>
</div>
</div>
</div>
<!-- Bootstrap core JavaScript
=== ——>
<!-- Placed at the end of the document so the pages load faster —-->

<script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></
—script>
<script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/7js/
—bootstrap.min. js"></script>
</body>

202

0.1. TUTORIALS

55

</html>

Since we’re using a templating engine, we can factor common boilerplate out of our page templates into
reusable components. One method for doing this is template inheritance via blocks.

* We have defined two placeholders in the layout template where a child template can override the
content. These blocks are named subtitle (line 11) and content (line 36).

* Please refer to the Jinja2 documentation for more information about template inheritance.

The view. jinja2 template

Create tutorial/templates/view. jinja2 and add the following content:

{% extends 'layout.jinja2' %}
{% block subtitle %}{{page.name}} - {% endblock subtitle %}

{% block content %}
<p>{{ content|safe }}</p>
<p>

Edit this page

</p>
<p>
Viewing {{page.name}}, created by {{page.
—creator.name} }.
</p>
<p>You can return to the

—FrontPage.
</p>
{% endblock content %}

This template is used by view_page () for displaying a single wiki page.

* We begin by extending the 1ayout . jinja2 template defined above, which provides the skeleton
of the page (line 1).

* We override the subtitle block from the base layout, inserting the page name into the page’s
title (line 3).

203

http://jinja.pocoo.org/

CONTENTS

* We override the content block from the base layout to insert our markup into the body (lines

5-18).

* We use a variable that is replaced with the content value provided by the view (line 6). content
contains HTML, so the | safe filter is used to prevent escaping it (e.g., changing “>” to “>”).

* We create a link that points at the “edit” URL, which when clicked invokes the edit_page view

for the requested page (line 9).

The edit. jinja2 template

Create tutorial/templates/edit. jinja2 and add the following content:

This template serves two use cases. It is used by add_page () and edit_page () for adding and

{% extends 'layout.jinja2' %}
{% block subtitle %}Edit {{pagename}} - {% endblock subtitle %}

{% block content %}
<p>
Editing { {pagename}}
</p>
<p>You can return to the

—FrontPage.
</p>
<form action="{{ save_url }}" method="post">
<div class="form-group">
<textarea class="form-control" name="body" rows="10" cols="60">{{_
—pagedata }}</textarea>
</div>
<div class="form-group">
<button type="submit" name="form.submitted" wvalue="Save" class="btn
—btn-default">Save</button>
</div>
</form>
{% endblock content %}

editing a wiki page. It displays a page containing a form and which provides the following:

* Again, we extend the layout . jinja2 template, which provides the skeleton of the page (line

1.

204

0.1. TUTORIALS

* Override the subtitle block to affect the <t it le> tag in the head of the page (line 3).

* A 10-row by 60-column textarea field named body that is filled with any existing page data
when it is rendered (line 14).

¢ A submit button that has the name form. submitted (line 17).

The form POSTs back to the save_url argument supplied by the view (line 12). The view will
use the body and form. submitted values.

The 404. jinja2 template

Replace tutorial/templates/404. jinja2 with the following content:

{% extends "layout.jinja2" %}

w

{% block content %}
<div class="content">

I

5 <hl>Pyramid tutorial wiki <span_
—class="smaller"> (based on TurboGears 20-Minute Wiki)</hl>

6 <p class="lead">404 Page Not Found</
—p>

7| </div>

{% endblock content %}

=3

This template is linked from the not found_view defined in tutorial/views/notfound.py as
shown here:

from pyramid.view import notfound_view_config

~

@notfound view_config(renderer='../templates/404.jinja2")
def notfound_view (request):

6 request .response.status = 404

7 return {}

w

There are several important things to note about this configuration:

* The not found_view in the above snippet is called an exception view. For more information see
Using Special Exceptions in View Callables.

205

CONTENTS

* The not found_view sets the response status to 404. It’s possible to affect the response object
used by the renderer via Varying Attributes of Rendered Responses.

e The not found_view is registered as an exception view and will be invoked only if pyramid.
httpexceptions.HTTPNotFound israised as an exception. This means it will not be invoked
for any responses returned from a view normally. For example, on line 27 of tutorial/views/
default.py the exception is raised which will trigger the view.

Finally, we may delete the tutorial/templates/mytemplate.jinja2 template that was pro-
vided by the alchemy scaffold, as we have created our own templates for the wiki.

O Our templates use a request object that none of our tutorial views return in their dictionary.
request is one of several names that are available “by default” in a template when a template renderer
is used. See System Values Used During Rendering for information about other names that are available
by default when a template is used as a renderer.

Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLSs, checking that the result is as expected:

* http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage page object.

* http://localhost:6543/FrontPage invokes the view_page view of the FrontPage page object.

* http://localhost:6543/FrontPage/edit_page invokes the edit_page view for the FrontPage
page object.

* http://localhost:6543/add_page/SomePageName invokes the add_page view for a page. If the
page already exists, then it redirects the user to the edit_page view for the page object.

* http://localhost:6543/SomePageName/edit_page invokes the edit_page view for an existing
page, or generates an error if the page does not exist.

e To generate an error, visit http://localhost:6543/foobars/edit_page which will generate a

NoResultFound: No row was found for one () error. Youll see an interactive
traceback facility provided by pyramid_debugtoolbar.

206

http://localhost:6543/
http://localhost:6543/FrontPage
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName
http://localhost:6543/SomePageName/edit_page
http://localhost:6543/foobars/edit_page

0.1. TUTORIALS

Adding authentication

Pyramid provides facilities for authentication and authorization. In this section we’ll focus solely on the
authentication APIs to add login and logout functionality to our wiki.

We will implement authentication with the following steps:
* Add an authentication policy and a request . user computed property (security.py).
¢ Add routes for /1login and /logout (routes.py).
* Add login and logout views (views/auth.py).
e Add alogin template (login. jinja2).

* Add “Login” and “Logout” links to every page based on the user’s authenticated state (Layout.
jinja2).

* Make the existing views verify user state (views/default.py).

* Redirect to /1ogin when a user is denied access to any of the views that require permission,
instead of a default “403 Forbidden” page (views/auth.py).

Authenticating requests

The core of Pyramid authentication is an authentication policy which is used to identify authentication
information from a request, as well as handling the low-level login and logout operations required to
track users across requests (via cookies, headers, or whatever else you can imagine).

Add the authentication policy

Create a new file tutorial/security.py with the following content:

207

CONTENTS

1 | from pyramid.authentication import AuthTktAuthenticationPolicy
2 | from pyramid.authorization import ACLAuthorizationPolicy

4| from .models import User

7| class MyAuthenticationPolicy (AuthTktAuthenticationPolicy) :

8 def authenticated_userid(self, request):
9 user = request.user
10 if user is not None:

1 return user.id

13 |def get_user (request) :

14 user_id = request.unauthenticated_userid

15 if user_id is not None:

16 user = request.dbsession.query (User) .get (user_id)
17 return user

19 |def includeme (config):

20 settings = config.get_settings ()

21 authn_policy = MyAuthenticationPolicy (

2 settings|['auth.secret'],

23 hashalg='shab12"',

24)

25 config.set_authentication_policy (authn_policy)

26 config.set_authorization_policy (ACLAuthorizationPolicy())
27 config.add_request_method(get_user, 'user', reify=True)

Here we’ve defined:
* A new authentication policy named MyAuthenticationPolicy, which is subclassed
from Pyramid’s pyramid. authentication.AuthTktAuthenticationPolicy, which

tracks the userid using a signed cookie (lines 7-11).

* A get_user function, which can convert the unauthenticated_userid from the policy
into a User object from our database (lines 13-17).

* The get_user is registered on the request as request . user to be used throughout our appli-
cation as the authenticated User object for the logged-in user (line 27).

The logic in this file is a little bit interesting, so we’ll go into detail about what’s happening here:

First, the default authentication policies all provide a method named unauthenticated_userid
which is responsible for the low-level parsing of the information in the request (cookies, headers, etc.). If

208

0.1. TUTORIALS

auserid is found, then it is returned from this method. This is named unauthenticated_userid
because, at the lowest level, it knows the value of the userid in the cookie, but it doesn’t know if it’s
actually a user in our system (remember, anything the user sends to our app is untrusted).

Second, our application should only care about authenticated_userid and request.user,
which have gone through our application-specific process of validating that the user is logged in.

In order to provide an authenticated_userid we need a verification step. That can happen any-
where, so we’ve elected to do it inside of the cached request .user computed property. This is a
convenience that makes request . user the source of truth in our system. It is either None or a User
object from our database. This is why the get_user function uses the unauthenticated_userid
to check the database.

Configure the app

Since we’ve added a new tutorial/security.py module, we need to include it. Open the file
tutorial/__init__ .py and edit the following lines:

from pyramid.config import Configurator

4 |def main(global_config, =**settings):

5 "mm This function returns a Pyramid WSGI application.
6 mmn

7 config = Configurator (settings=settings)

8 config.include ('pyramid_ jinja2')

9 config.include ('.models")

10 config.include('.routes")

11 config.include ('.security")

12 config.scan()

13 return config.make_wsgi_app ()

Our authentication policy is expecting a new setting, auth.secret. Open the file development.
ini and add the highlighted line below:

sglalchemy.url = sqglite:///% (here)s/tutorial.sqglite

%

20 |auth.secret = seekrit

Finally, best practices tell us to use a different secret for production, so open production.ini and
add a different secret:

209

CONTENTS

15 | sglalchemy.url = sqglite:///% (here)s/tutorial.sqglite

17 |auth.secret = real-seekrit

Add permission checks

Pyramid has full support for declarative authorization, which we’ll cover in the next chapter. However,
many people looking to get their feet wet are just interested in authentication with some basic form of
home-grown authorization. We’ll show below how to accomplish the simple security goals of our wiki,
now that we can track the logged-in state of users.
Remember our goals:

* Allow only editor and basic logged-in users to create new pages.

* Only allow editor users and the page creator (possibly a basic user) to edit pages.

Open the file tutorial/views/default.py and fix the following imports:

w

from pyramid.httpexceptions import (

6 HTTPForbidden,
7 HTTPFound,
8 HTTPNotFound,

0)
n | from pyramid.view import view_config

13 | from ..models import Page

Change the two highlighted lines.

In the same file, now edit the edit_page view function:

45 | @view_config(route_name='edit_page', renderer='../templates/edit.jinja2")
46 |def edit_page (request) :

47 pagename = request.matchdict['pagename']

48 page = request.dbsession.query(Page).filter_by (name=pagename) .one ()
49 user = request.user

50 if user is None or (user.role != 'editor' and page.creator != user):
51 raise HTTPForbidden

210

0.1. TUTORIALS

52 if 'form.submitted' in request.params:

53 page.data = request.params]['body']

54 next_url = request.route_url ('view_page', pagename=page.name)
55 return HTTPFound(location=next_url)

56 return dict (

57 pagename=page.name,

58 pagedata=page.data,

59 save_url=request.route_url ('edit_page', pagename=page.name),
60)

Only the highlighted lines need to be changed.

If the user either is not logged in or the user is not the page’s creator and not an editor, then we raise
HTTPForbidden

In the same file, now edit the add_page view function:

e | @view_config (route_name='add_page', renderer='../templates/edit.jinja2")
03 |def add_page (request) :

64 user = request.user

65 if user is None or user.role not in ('editor', 'basic'):

66 raise HTTPForbidden

67 pagename = request.matchdict['pagename']

68 if request.dbsession.query (Page) .filter_by (name=pagename) .count () > 0O:
69 next_url = request.route_url ('edit_page', pagename=pagename)

70 return HTTPFound (location=next_url)

71 if '"form.submitted' in request.params:

72 body = request.params|['body']

73 page = Page (name=pagename, data=body)

74 page.creator = request.user

75 request .dbsession.add (page)

76 next_url = request.route_url ('view_page', pagename=pagename)

Only the highlighted lines need to be changed.

If the user either is not logged in or is not in the basic or editor roles, then we raise
HTTPForbidden, which will return a “403 Forbidden” response to the user. However, we will hook
this later to redirect to the login page. Also, now that we have request .user, we no longer have to

hard-code the creator as the editor user, so we can finally drop that hack.

These simple checks should protect our views.

211

CONTENTS

Login, logout

Now that we’ve got the ability to detect logged-in users, we need to add the /login and /logout
views so that they can actually login and logout!

Add routes for /login and /logout

Go back to tutorial/routes.py and add these two routes as highlighted:

3 config.add_route ('view_wiki', '/")

4 config.add_route('login', '/login')

5 config.add_route('logout', '/logout')

6 config.add_route ('view_page', '/{pagename}')

O The preceding lines must be added before the following view_page route definition:

config.add_route ('view_page', '/{pagename}')

This is because view_page‘s route definition uses a catch-all “replacement marker” /{pagename}
(see Route Pattern Syntax), which will catch any route that was not already caught by any route registered
before it. Hence, for 1ogin and logout views to have the opportunity of being matched (or “caught”),
they must be above / {pagename}.

Add login, logout, and forbidden views

Create a new file tutorial/views/auth.py, and add the following code to it:

from pyramid.httpexceptions import HTTPFound
from pyramid.security import (

3 remember,

forget,

5)

from pyramid.view import (

7 forbidden_view_config,

8 view_config,

)

IS

o

212

0.1. TUTORIALS

n |from ..models import User

14 | @view_config (route_name='login', renderer='../templates/login.jinja2")
15 |def login(request) :

16 next_url = request.params.get ('next', request.referrer)

17 if not next_url:

18 next_url = request.route_url ('view_wiki")

19 message = "'

20 login = "'

21 if 'form.submitted' in request.params:

2 login = request.params|['login']

23 password = request.params|['password']

24 user = request.dbsession.query (User) .filter_by (name=login) .first ()
25 if user is not None and user.check_password(password) :
26 headers = remember (request, user.id)

27 return HTTPFound (location=next_url, headers=headers)
28 message = 'Failed login'

29

30 return dict (

31 message=message,

32 url=request.route_url('login'),

33 next_url=next_url,

34 login=login,

35)
36
37 | @view_config(route_name='logout')
3 |def logout (request) :

39 headers = forget (request)
40 next_url = request.route_url ('view_wiki")
41 return HTTPFound(location=next_url, headers=headers)

42
43 |@Qforbidden_view_config ()

4 |def forbidden_view(request) :

45 next_url = request.route_url ('login', _query={'next': request.url})
46 return HTTPFound (location=next_url)

&

This code adds three new views to the application:

* The 1login view renders a login form and processes the post from the login form, checking cre-
dentials against our users table in the database.

The check is done by first finding a User record in the database, then using our user.
check_password method to compare the hashed passwords.

213

CONTENTS

If the credentials are valid, then we use our authentication policy to store the user’s id in the response
using pyramid.security.remember ().

Finally, the user is redirected back to either the page which they were trying to access (next) or
the front page as a fallback. This parameter is used by our forbidden view, as explained below, to
finish the login workflow.

* The logout view handles requests to /logout by clearing the credentials using pyramid.
security. forget (), then redirecting them to the front page.

e The forbidden_view is registered using the pyramid.view.
forbidden_view_config decorator. This is a special exception view, which is invoked when
apyramid.httpexceptions.HTTPForbidden exception is raised.

This view will handle a forbidden error by redirecting the user to /1login. As a convenience, it
also sets the next= query string to the current URL (the one that is forbidding access). This way,
if the user successfully logs in, they will be sent back to the page which they had been trying to
access.

Add the login. jinja2 template

Create tutorial/templates/login. jinja2 with the following content:

{% extends 'layout.jinja2' %}
{% block title %}Login - {% endblock title %}

{% block content %}
<p>

Login

{{ message }}
</p>
<form action="{{ url }}" method="post">
<input type="hidden" name="next" value="{{ next_url }}">
<div class="form-group">
<label for="login">Username</label>
<input type="text" name="login" value="{{ login }}">
</div>
<div class="form-group">
<label for="password">Password</label>
<input type="password" name="password">

214

0.1. TUTORIALS

</div>
<div class="form-group">
<button type="submit" name="form.submitted" value="Log In" class="btn,
—btn-default">Log In</button>
</div>
</form>
{% endblock content %}

The above template is referenced in the login view that we just added in tutorial/views/auth.py.

Add “Login” and “Logout” links

Open tutorial/templates/layout.jinja2 and add the following code as indicated by the
highlighted lines.

35

36

37

38

40
41

42

43

44

45

46

<div class="content">

{% if request.user is none %}

<p class="pull-right">

Login

</p>

{% else %}

<p class="pull-right">

{{request.user.name}} <a href="{{request.route_url ('logout') }}
—">Logout

</p>

{%$ endif %}

{% block content %}{% endblock %}

</div>

The request .user will be None if the user is not authenticated, or a tutorial.models.User
object if the user is authenticated. This check will make the logout link shown only when the user is
logged in, and conversely the login link is only shown when the user is logged out.

Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLSs, checking that the result is as expected:

* http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage page object. It is executable by any user.

215

http://localhost:6543/

CONTENTS

http://localhost:6543/FrontPage invokes the view_page view of the FrontPage page object.
There is a “Login” link in the upper right corner while the user is not authenticated, else it is a
“Logout” link when the user is authenticated.

http://localhost:6543/FrontPage/edit_page invokes the edit_page view for the FrontPage
page object. It is executable by only the editor user. If a different user (or the anonymous
user) invokes it, then a login form will be displayed. Supplying the credentials with the username
editor and password editor will display the edit page form.

http://localhost:6543/add_page/SomePageName invokes the add_page view for a page. If the
page already exists, then it redirects the user to the edit_page view for the page object. It
is executable by either the editor or basic user. If a different user (or the anonymous user)
invokes it, then a login form will be displayed. Supplying the credentials with either the username
editor and password editor, or username basic and password basic, will display the edit
page form.

http://localhost:6543/SomePageName/edit_page invokes the edit_page view for an existing
page, or generates an error if the page does not exist. It is editable by the basic user if the
page was created by that user in the previous step. If, instead, the page was created by the editor
user, then the login page should be shown for the basic user.

After logging in (as a result of hitting an edit or add page and submitting the login form with the
editor credentials), we’ll see a “Logout” link in the upper right hand corner. When we click it,
we’re logged out, redirected back to the front page, and a “Login” link is shown in the upper right
hand corner.

Adding authorization

In the last chapter we built authentication into our wiki. We also went one step further and used the
request .user object to perform some explicit authorization checks. This is fine for a lot of applica-

tions,

but Pyramid provides some facilities for cleaning this up and decoupling the constraints from the

view function itself.

We will implement access control with the following steps:

Update the authentication policy to break down the userid into a list of principals (security.
PYy)-

Define an authorization policy for mapping users, resources and permissions (security.py).
Add new resource definitions that will be used as the context for the wiki pages (routes.py).
Add an ACL to each resource (routes.py).

Replace the inline checks on the views with permission declarations (views/default.py).

216

http://localhost:6543/FrontPage
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName
http://localhost:6543/SomePageName/edit_page

0.1. TUTORIALS

Add user principals

A principal is a level of abstraction on top of the raw userid that describes the user in terms of its capabil-
ities, roles, or other identifiers that are easier to generalize. The permissions are then written against the
principals without focusing on the exact user involved.

Pyramid defines two builtin principals used in every application: pyramid. security.Everyone
and pyramid. security.Authenticated. On top of these we have already mentioned the re-
quired principals for this application in the original design. The user has two possible roles: editor or
basic. These will be prefixed by the string role: to avoid clashing with any other types of principals.

Open the file tutorial/security.py and edit it as follows:

1 | from pyramid.authentication import AuthTktAuthenticationPolicy
2 | from pyramid.authorization import ACLAuthorizationPolicy

3 | from pyramid.security import (

4 Authenticated,

5 Everyone,

8 | from .models import User

1 |class MyAuthenticationPolicy (AuthTktAuthenticationPolicy):

12 def authenticated_userid(self, request):
13 user = request.user

14 if user is not None:

15 return user.id

16

17 def effective_principals(self, request):
18 principals = [Everyone]

19 user = request.user

20 if user is not None:

21 principals.append(Authenticated)
2 principals.append(str (user.id))
23 principals.append('role:' + user.role)
2 return principals

25
% |def get_user (request) :

27 user_id = request.unauthenticated_userid

28 if user_id is not None:

29 user = request.dbsession.query (User) .get (user_id)
30 return user

31
» |def includeme (configqg) :

217

CONTENTS

33 settings = config.get_settings ()

34 authn_policy = MyAuthenticationPolicy (

35 settings['auth.secret'],

36 hashalg='shabl2",

37)

38 config.set_authentication_policy (authn_policy)

39 config.set_authorization_policy (ACLAuthorizationPolicy())
40 config.add_request_method(get_user, 'user', reify=True)

Only the highlighted lines need to be added.
Note that the role comes from the User object. We also add the user. id as a principal for when we

want to allow that exact user to edit pages which they have created.

Add the authorization policy

We already added the authorization policy in the previous chapter because Pyramid requires one when
adding an authentication policy. However, it was not used anywhere, so we’ll mention it now.

In the file tutorial/security.py, notice the following lines:

38 config.set_authentication_policy (authn_policy)
39 config.set_authorization_policy (ACLAuthorizationPolicy())
40 config.add_request_method (get_user, 'user', reify=True)

We’re using the pyramid. authorization.ACLAuthorizationPolicy, which will suffice for
most applications. It uses the context to define the mapping between a principal and permission for the
current request viathe __acl__.

Add resources and ACLs

Resources are the hidden gem of Pyramid. You’ve made it!

Every URL in a web application represents a resource (the “R” in Uniform Resource Locator). Often the
resource is something in your data model, but it could also be an abstraction over many models.

Our wiki has two resources:

218

0.1. TUTORIALS

1. A NewPage. Represents a potential Page that does not exist. Any logged-in user, having either
role of basic or editor, can create pages.

2. A PageResource. Represents a Page that is to be viewed or edited. editor users, as well as
the original creator of the Page, may edit the PageResource. Anyone may view it.

6 The wiki data model is simple enough that the PageResource is mostly redundant with our
models.Page SQLAlchemy class. It is completely valid to combine these into one class. However,
for this tutorial, they are explicitly separated to make clear the distinction between the parts about which
Pyramid cares versus application-defined objects.

There are many ways to define these resources, and they can even be grouped into collections with a
hierarchy. However, we’re keeping it simple here!

Open the file tutorial/routes.py and edit the following lines:

1 | from pyramid.httpexceptions import (
2 HTTPNotFound,

3 HTTPFound,

4 1)
s | from pyramid.security import (
6 Allow,

7 Everyone,

0| from .models import Page

12 |def includeme (config) :

13 config.add_static_view('static', 'static', cache_max_age=3600)

14 config.add_route ('view_wiki', '/")

15 config.add_route('login', '/login'")

16 config.add_route('logout', '/logout')

17 config.add_route ('view_page', '/{pagename}', factory=page_factory)
18 config.add_route ('add_page', '/add_page/{pagename}',

19 factory=new_page_factory)

20 config.add_route ('edit_page', '/{pagename}/edit_page',

21 factory=page_factory)

22
3 |def new_page_factory (request) :

2 pagename = request.matchdict['pagename']

25 if request.dbsession.query (Page) .filter_by (name=pagename) .count () > 0O:
2 next_url = request.route_url('edit_page', pagename=pagename)

27 raise HTTPFound (location=next_url)

219

CONTENTS

28 return NewPage (pagename)
29
3 | class NewPage (object) :

3l def _ _init__ (self, pagename):

2 self.pagename = pagename

33

34 def _ acl__ (self):

35 return |

36 (Allow, 'role:editor', 'create'),
37 (Allow, 'role:basic', 'create'),

38]
39
4w |def page_factory(request) :

41 pagename = request.matchdict['pagename']

4 page = request.dbsession.query(Page) .filter_by (name=pagename) .first ()
4 if page is None:

44 raise HTTPNotFound

45 return PageResource (page)

46
41 | class PageResource (object) :

48 def _ _init__ (self, page):

49 self.page = page

50

51 def _ acl_ (self):

52 return |

53 (Allow, Everyone, 'view'),

54 (Allow, 'role:editor', 'edit'),

55 (Allow, str(self.page.creator_id), 'edit'"),

56]

The highlighted lines need to be edited or added.

The NewPage class has an __acl__ on it that returns a list of mappings from principal to permission.
This defines who can do what with that resource. In our case we want to allow only those users with the
principals of either role:editor or role:basic to have the create permission:

3 | class NewPage (object) :

31 def _ _init__ (self, pagename) :

32 self.pagename = pagename

33

34 def _ acl__ (self):

35 return [

36 (Allow, 'role:editor', 'create'),
37 (Allow, 'role:basic', 'create'),
38]

220

0.1. TUTORIALS

The NewPage is loaded as the context of the add_page route by declaring a factory on the route:

18 config.add_route ('add_page', '/add_page/{pagename}',
19 factory=new_page_factory)

The PageResource class defines the ACL for a Page. It uses an actual Page object to determine who
can do what to the page.

&

5

class PageResource (object) :
48 def _ _init__ (self, page):
49 self.page = page

50
51 def acl__ (self):

52 return |

53 (Allow, Everyone, 'view'),

54 (Allow, 'role:editor', 'edit'),

55 (Allow, str(self.page.creator_id), 'edit'"),

56]

The PageResource is loaded as the context of the view_page and edit_page routes by declaring
a factory on the routes:

17 config.add_route ('view_page', '/{pagename}', factory=page_factory)
18 config.add_route ('add_page', '/add_page/{pagename}',

19 factory=new_page_factory)

20 config.add_route ('edit_page', '/{pagename}/edit_page',

21 factory=page_factory)

Add view permissions

At this point we’ve modified our application to load the PageResource, including the actual Page
model in the page_factory. The PageResource is now the context for all view_page and
edit_page views. Similarly the NewPage will be the context for the add_page view.

Open the file tutorial/views/default.py.

First, you can drop a few imports that are no longer necessary:

w

from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

N

221

CONTENTS

Edit the view_page view to declare the view permission, and remove the explicit checks within the
view:

18 | @view_config (route_name='view_page', renderer='../templates/view.Jjinja2',
19 permission="'view')

0 |def view_page (request) :

21 page = request.context.page

22

23 def add_link (match) :

The work of loading the page has already been done in the factory, so we can just pull the page object
out of the PageResource, loaded as request . context. Our factory also guarantees we will have
a Page, as it raises the HTTPNotFound exception if no Page exists, again simplifying the view logic.

Edit the edit_page view to declare the edit permission:

3

&

@view_config(route_name='edit_page', renderer='../templates/edit.jinja2',
39 permission='edit'")

4 |def edit_page (request) :

41 page = request.context.page

£ if '"form.submitted' in request.params:

Edit the add_page view to declare the create permission:

52 | @view_config (route_name='add_page', renderer='../templates/edit.jinja2',
53 permission="'create')

s« |def add_page (request) :

55 pagename = request.context.pagename

56 if 'form.submitted' in request.params:

Note the pagename here is pulled off of the context instead of request .matchdict. The factory
has done a lot of work for us to hide the actual route pattern.

The ACLs defined on each resource are used by the authorization policy to determine if any principal
is allowed to have some permission. If this check fails (for example, the user is not logged in) then an
HTTPForbidden exception will be raised automatically. Thus we’re able to drop those exceptions and

checks from the views themselves. Rather we’ve defined them in terms of operations on a resource.

The final tutorial/views/default . py should look like the following:

222

0.1. TUTORIALS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

from pyramid.compat import escape
import re
from docutils.core import publish_parts

from pyramid.httpexceptions import HTTPFound
from pyramid.view import view_config

from ..models import Page

regular expression used to find WikiWords
wikiwords = re.compile (r"\b ([A-Z]\w+ [A-Z]+\w+)")

@view_config(route_name='view_wiki")
def view_wiki (request) :

next_url = request.route_url ('view_page', pagename='FrontPage')

return HTTPFound (location=next_url)

@view_config(route_name='view_page', renderer='../templates/view.Jjinja2',

permission="'view')
def view_page (request) :
page = request.context.page

def add_link (match):
word = match.group (1)

exists = request.dbsession.query(Page).filter by (name=word) .all ()

if exists:

view_url = request.route_url ('view_page', pagename=word)

o

return '%s' % (view_url, escape (word))

else:

add_url = request.route_url ('add_page', pagename=word)
return '2s' % (add_url, escape (word))

content = publish_parts(page.data, writer_name='html'"') ['html_body"']

content = wikiwords.sub (add_link, content)

edit_url = request.route_url ('edit_page', pagename=page.name)
return dict (page=page, content=content, edit_url=edit_url)

@view_config(route_name='edit_page', renderer='../templates/edit.Jjinja2"',

permission="'edit"')
def edit_page (request) :

page = request.context.page

if 'form.submitted' in request.params:
page.data = request.params]['body']
next_url = request.route_url ('view_page',
return HTTPFound (location=next_url)

return dict (

223

pagename=page .name)

CONTENTS

47 pagename=page.name,
48 pagedata=page.data,

49 save_url=request.route_url ('edit_page', pagename=page.name),

50)

51

52 | @view_config(route_name='add_page', renderer='../templates/edit.jinja2',
s3 permission='create')

s« |def add_page (request) :

55 pagename = request.context.pagename

56 if 'form.submitted' in request.params:

57 body = request.params|['body']

58 page = Page (name=pagename, data=body)

59 page.creator = request.user

60 request .dbsession.add (page)

61 next_url = request.route_url ('view_page', pagename=pagename)

62 return HTTPFound(location=next_url)

63 save_url = request.route_url ('add_page', pagename=pagename)

64 return dict (pagename=pagename, pagedata='"', save_url=save_url)

Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLSs, checking that the result is as expected:

* http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage page object. It is executable by any user.

* http://localhost:6543/FrontPage invokes the view_page view of the FrontPage page object.
There is a “Login” link in the upper right corner while the user is not authenticated, else it is a
“Logout” link when the user is authenticated.

* http://localhost:6543/FrontPage/edit_page invokes the edit_page view for the FrontPage
page object. It is executable by only the editor user. If a different user (or the anonymous
user) invokes it, then a login form will be displayed. Supplying the credentials with the username
editor and password editor will display the edit page form.

* http://localhost:6543/add_page/SomePageName invokes the add_page view for a page. If the
page already exists, then it redirects the user to the edit_page view for the page object. It
is executable by either the editor or basic user. If a different user (or the anonymous user)
invokes it, then a login form will be displayed. Supplying the credentials with either the username
editor and password editor, or username basic and password basic, will display the edit
page form.

224

http://localhost:6543/
http://localhost:6543/FrontPage
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName

0.1. TUTORIALS

* http://localhost:6543/SomePageName/edit_page invokes the edit_page view for an existing
page, or generates an error if the page does not exist. It is editable by the basic user if the
page was created by that user in the previous step. If, instead, the page was created by the editor
user, then the login page should be shown for the basic user.

o After logging in (as a result of hitting an edit or add page and submitting the login form with the
editor credentials), we’ll see a “Logout” link in the upper right hand corner. When we click it,
we’re logged out, redirected back to the front page, and a “Login” link is shown in the upper right
hand corner.

Adding Tests

We will now add tests for the models and views as well as a few functional tests in a new tests sub-
package. Tests ensure that an application works, and that it continues to work when changes are made in
the future.

The file tests.py was generated as part of the alchemy scaffold, but it is a common practice to put
tests into a tests subpackage, especially as projects grow in size and complexity. Each module in the
test subpackage should contain tests for its corresponding module in our application. Each corresponding
pair of modules should have the same names, except the test module should have the prefix test_.

Start by deleting tests . py, then create a new directory to contain our new tests as well as a new empty
file tests/__init__ .py.

Dot very important when refactoring a Python module into a package to be sure to delete the
cache files (.pyc files or __pycache___ folders) sitting around! Python will prioritize the cache
files before traversing into folders, using the old code, and you will wonder why none of your changes
are working!

Test the views

We’ll create anew tests/test_views.py file, adding a BaseTest class used as the base for other
test classes. Next we’ll add tests for each view function we previously added to our application. We’ll add
four test classes: ViewWikiTests, ViewPageTests, AddPageTests, and EditPageTests.
These test the view_wiki, view_page, add_page, and edit_page views.

225

http://localhost:6543/SomePageName/edit_page

CONTENTS

Functional tests

We’ll test the whole application, covering security aspects that are not tested in the unit tests, like logging
in, logging out, checking that the basic user cannot edit pages that it didn’t create but the editor user
can, and so on.

View the results of all our edits to tests subpackage

Open tutorial/tests/test_views.py, and edit it such that it appears as follows:

1 | import unittest

2 | import transaction

3

4 | from pyramid import testing

5

6

7 |def dummy_request (dbsession) :

8 return testing.DummyRequest (dbsession=dbsession)
9

10

11 |class BaseTest (unittest.TestCase) :

12 def setUp(self):

13 from ..models import get_tm_session

14 self.config = testing.setUp (settings={

15 'sgqlalchemy.url': 'sqglite:///:memory:'

16 1)

17 self.config.include ('. .models")

18 self.config.include('..routes")

19

20 session_factory = self.config.registry['dbsession_ factory']
21 self.session = get_tm_session(session_factory, transaction.manager)
22

23 self.init_database ()

24

25 def init_database(self):

2 from ..models.meta import Base

27 session_factory = self.config.registry['dbsession_factory']
28 engine = session_factory.kw['bind']

29 Base.metadata.create_all (engine)

30

31 def tearDown (self):

32 testing.tearDown ()

33 transaction.abort ()

226

0.1. TUTORIALS

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

def makeUser (self, name, role, password='dummy') :
from ..models import User
user = User (name=name, role=role)
user.set_password (password)
return user

def makePage (self, name, data, creator):
from ..models import Page
return Page (name=name, data=data, creator=creator)

class ViewWikiTests (unittest.TestCase) :
def setUp(self):
self.config = testing.setUp()
self.config.include('..routes")

def tearDown (self):
testing.tearDown ()

def _callFUT (self, request):
from tutorial.views.default import view_wiki
return view_wiki (request)

def test_it (self):
request = testing.DummyRequest ()
response = self._callFUT (request)

self.assertEqual (response.location, 'http://example.com/FrontPage')

class ViewPageTests (BaseTest) :
def _callFUT (self, request):
from tutorial.views.default import view_page
return view_page (request)

def test_it (self):
from ..routes import PageResource

add a page to the db

user = self.makeUser('foo', 'editor')

page = self.makePage ('IDoExist', 'Hello CruelWorld IDoExist',
self.session.add_all ([page, user])

create a request asking for the page we've created

request = dummy_request (self.session)
request.context = PageResource (page)

227

user)

CONTENTS

80

81 # call the view we're testing and check its behavior

82 info = self._callFUT (request)

83 self.assertEqual (info['page'], page)

84 self.assertEqual (

85 info['content'],

86 '<div class="document">\n'"

87 '<p>Hello "
88 'CruelWorld '

89 '"'

9 'IDoExist"

91 '</p>\n</div>\n")

92 self.assertEqual (info['edit_url'],

93 'http://example.com/IDoExist/edit_page')

94

95

9

=3

class AddPageTests (BaseTest) :

97 def _callFUT (self, request):

98 from tutorial.views.default import add_page

99 return add_page (request)

100

101 def test_it_pageexists(self):

102 from ..models import Page

103 from ..routes import NewPage

104 request = testing.DummyRequest ({'form.submitted': True,

105 'body': 'Hello yo!'},

106 dbsession=self.session)

107 request.user = self.makeUser('foo', 'editor')

108 request.context = NewPage ('AnotherPage')

109 self._callFUT (request)

110 pagecount = self.session.query (Page).filter_by (name='AnotherPage').
—count ()

111 self.assertGreater (pagecount, 0)

112

13 def test_it_notsubmitted(self):

114 from ..routes import NewPage

115 request = dummy_request (self.session)

116 request.user = self.makeUser('foo', 'editor')
117 request.context = NewPage ('AnotherPage')

118 info = self._callFUT (request)

119 self.assertEqual (info['pagedata']l, '")

120 self.assertEqual (info['save_url'],

121 'http://example.com/add_page/AnotherPage')
122

123 def test_it_submitted(self):

124 from ..models import Page

228

0.1. TUTORIALS

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

165

166

167

168

from ..routes import NewPage
request = testing.DummyRequest ({'form.submitted': True,

'body': 'Hello yo!'},
dbsession=self.session)
request.user = self.makeUser('foo', 'editor')

request.context = NewPage ('AnotherPage’)

self._callFUT (request)

page = self.session.query (Page).filter by (name='AnotherPage') .one ()
self.assertEqual (page.data, 'Hello yo!")

class EditPageTests (BaseTest) :

def

def

def

def

_callFUT (self, request):
from tutorial.views.default import edit_page
return edit_page (request)

makeContext (self, page):
from ..routes import PageResource
return PageResource (page)

test_it_notsubmitted(self) :

user = self.makeUser('foo', 'editor')
('abc', 'hello', user)
([page, user])

page = self.makePage
self.session.add_all

request = dummy_request (self.session)

request.context = self.makeContext (page)

info = self._callFUT (request)

self.assertEqual (info['pagename'], 'abc')

self.assertEqual (info['save_url'],
'http://example.com/abc/edit_page')

test_it_submitted(self):

user = self.makeUser('foo', 'editor')

page = self.makePage('abc', 'hello', user)
self.session.add_all ([page, user])

request = testing.DummyRequest ({'form.submitted': True,
'body': 'Hello yo!'},
dbsession=self.session)
request.context = self.makeContext (page)
response = self._callFUT (request)

self.assertEqual (response.location, 'http://example.com/abc')
self.assertEqual (page.data, 'Hello yo!")

Open tutorial/tests/test_functional.py, and edit it such that it appears as follows:

229

CONTENTS

1 | import transaction

2 | import unittest

3 | import webtest

4

5

¢ |class FunctionalTests (unittest.TestCase):

7

8 basic_login = (

9 '/login?login=basic&password=basic'

10 '&énext=FrontPage&form.submitted=Login"')

11 basic_wrong_login = (

12 '/login?login=basic&password=incorrect'

13 '¢next=FrontPage&form.submitted=Login')

14 editor_login = (

15 '/login?login=editor&password=editor'

16 '¢next=FrontPage&form.submitted=Login"')

17

18 @classmethod

19 def setUpClass(cls):

20 from tutorial.models.meta import Base

21 from tutorial .models import (

2 User,

23 Page,

24 get_tm_session,

25)

26 from tutorial import main

27

28 settings = {

29 'sqgqlalchemy.url': 'sqglite://',

30 'auth.secret': 'seekrit',

31 }

B app = main({}, =*+*settings)

33 cls.testapp = webtest.TestApp (app)

34

35 session_factory = app.registry['dbsession_factory']

36 cls.engine = session_factory.kw['bind']

37 Base.metadata.create_all (bind=cls.engine)

38

39 with transaction.manager:

40 dbsession = get_tm_session(session_factory, transaction.
—manager)

41 editor = User (name='editor', role='editor'")

4 editor.set_password('editor')

43 basic = User (name='basic', role='basic')

4 basic.set_password('basic')

4s pagel = Page (name='FrontPage', data='This is the front page')

230

0.1. TUTORIALS

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

pagel.creator = editor

page2 = Page (name='BackPage', data='This is the back page')

page2.creator = basic
dbsession.add_all ([basic, editor, pagel, page2])

@classmethod

def tearDownClass(cls):
from tutorial.models.meta import Base
Base.metadata.drop_all (bind=cls.engine)

def test_root (self):
res = self.testapp.get('/', status=302)

self.assertEqual (res.location, 'http://localhost/FrontPage')

def test_FrontPage (self):
res = self.testapp.get ('/FrontPage', status=200)
self.assertTrue (b'FrontPage' in res.body)

def test_unexisting_page (self):
self.testapp.get ('/SomePage', status=404)

def test_successful_log_in(self):
res = self.testapp.get (self.basic_login, status=302)

self.assertEqual (res.location, 'http://localhost/FrontPage')

def test_failed_log_in(self):

res = self.testapp.get (self.basic_wrong_login, status=200)

self.assertTrue(b'login' in res.body)

def test_logout_link_present_when_logged_in(self) :
self.testapp.get (self.basic_login, status=302)
res = self.testapp.get ('/FrontPage', status=200)
self.assertTrue (b'Logout' in res.body)

def test_logout_link_not_present_after_logged_out (self):
self.testapp.get (self.basic_login, status=302)
self.testapp.get (' /FrontPage', status=200)
res = self.testapp.get('/logout', status=302)
self.assertTrue (b'Logout' not in res.body)

def test_anonymous_user_cannot_edit (self):

res = self.testapp.get ('/FrontPage/edit_page', status=302).follow()

self.assertTrue(b'Login' in res.body)

def test_anonymous_user_cannot_add(self) :

res = self.testapp.get ('/add_page/NewPage', status=302).follow ()

231

CONTENTS

92 self.assertTrue(b'Login' in res.body)

93

94 def test_basic_user_cannot_edit_front (self):

95 self.testapp.get (self.basic_login, status=302)

9% res = self.testapp.get ('/FrontPage/edit_page', status=302).follow()
97 self.assertTrue(b'Login' in res.body)

98

99 def test_basic_user_can_edit_back (self) :

100 self.testapp.get (self.basic_login, status=302)

101 res = self.testapp.get ('/BackPage/edit_page', status=200)
102 self.assertTrue (b'Editing' in res.body)

103

104 def test_basic_user_can_add(self):

105 self.testapp.get (self.basic_login, status=302)

106 res = self.testapp.get ('/add_page/NewPage', status=200)
107 self.assertTrue(b'Editing' in res.body)

108

109 def test_editors_member_ user_can_edit (self) :

110 self.testapp.get (self.editor_login, status=302)

11 res = self.testapp.get ('/FrontPage/edit_page', status=200)
12 self.assertTrue(b'Editing' in res.body)

113

114 def test_editors_member user_can_add(self) :

115 self.testapp.get (self.editor_login, status=302)

116 res = self.testapp.get ('/add_page/NewPage', status=200)
17 self.assertTrue(b'Editing' in res.body)

118

119 def test_editors_member user_can_view(self):

120 self.testapp.get (self.editor_login, status=302)

121 res = self.testapp.get ('/FrontPage', status=200)

122 self.assertTrue (b'FrontPage' in res.body)

6 We’re utilizing the excellent WebTest package to do functional testing of the application. This is
defined in the tests_require section of our setup.py. Any other dependencies needed only for
testing purposes can be added there and will be installed automatically when running setup.py test.

Running the tests

We can run these tests similarly to how we did in Run the tests:

On UNIX:

232

http://docs.pylonsproject.org/projects/webtest/en/latest/

0.1. TUTORIALS

’$ SVENV/bin/py.test —gq ‘

On Windows:

’c:\pyramidtut\tutorial> SVENVS\Scripts\py.test —-g ‘

The expected result should look like the following:

22 passed, 1 pytest-warnings in 5.81 seconds

O If you use Python 3 during this tutorial, you will see deprecation warnings in the output, which
we will choose to ignore. In making this tutorial run on both Python 2 and 3, the authors prioritized
simplicity and focus for the learner over accommodating warnings. In your own app or as extra credit,
you may choose to either drop Python 2 support or hack your code to work without warnings on both
Python 2 and 3.

Distributing Your Application

Once your application works properly, you can create a “tarball” from it by using the setup.py sdist
command. The following commands assume your current working directory contains the tutorial
package and the setup. py file.

On UNIX:

’$ SVENV/bin/python setup.py sdist ‘

On Windows:

’c:\pyramidtut> SVENV%\Scripts\python setup.py sdist ‘

The output of such a command will be something like:

233

CONTENTS

running sdist

.. more output

creating dist

Creating tar archive

removing 'tutorial-0.0' (and everything under it)

Note that this command creates a tarball in the “dist” subdirectory named tutorial-0.0.tar.gz.
You can send this file to your friends to show them your cool new application. They should be able to
install it by pointing the easy_install command directly at it. Or you can upload it to PyPI and share
it with the rest of the world, where it can be downloaded via easy_install remotely like any other
package people download from PyPIL.

ZODB + Traversal Wiki Tutorial

This tutorial introduces a ZODB and traversal-based Pyramid application to a developer familiar with
Python. It will be most familiar to developers with previous Zope experience. When finished, the devel-
oper will have created a basic Wiki application with authentication.

For cut and paste purposes, the source code for all stages of this tutorial can be browsed on GitHub at
docs/tutorials/wiki/src, which corresponds to the same location if you have Pyramid sources.

Background

This version of the Pyramid wiki tutorial presents a Pyramid application that uses technologies which will
be familiar to someone with Zope experience. It uses ZODB as a persistence mechanism and traversal
to map URLs to code. It can also be followed by people without any prior Python web framework
experience.

To code along with this tutorial, the developer will need a UNIX machine with development tools (Mac
OS X with XCode, any Linux or BSD variant, etc.) or a Windows system of any kind.

% This tutorial has been written for Python 2. It is unlikely to work without modification under
Python 3.

Have fun!

234

https://pypi.python.org/pypi
https://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src

0.1. TUTORIALS

Design

Following is a quick overview of the design of our wiki application, to help us understand the changes
that we will be making as we work through the tutorial.

Overall

We choose to use reStructuredlext markup in the wiki text. Translation from reStructuredText to HTML
is provided by the widely used docut ils Python module. We will add this module in the dependency
list on the project setup. py file.

Models

The root resource named Wiki will be a mapping of wiki page names to page resources. The page
resources will be instances of a Page class and they store the text content.

URLs like /PageName will be traversed using Wiki[PageName | => page, and the context that results
is the page resource of an existing page.

To add a page to the wiki, a new instance of the page resource is created and its name and reference are
added to the Wiki mapping.

A page named FrontPage containing the text This is the front page, will be created when the storage is

initialized, and will be used as the wiki home page.

Views

There will be three views to handle the normal operations of adding, editing, and viewing wiki pages, plus
one view for the wiki front page. Two templates will be used, one for viewing, and one for both adding
and editing wiki pages.

The default templating systems in Pyramid are Chameleon and Mako. Chameleon is a variant of ZPT,

which is an XML-based templating language. Mako is a non-XML-based templating language. Because
we had to pick one, we chose Chameleon for this tutorial.

235

CONTENTS

Security

We’ll eventually be adding security to our application. The components we’ll use to do this are below.

e USERS, a dictionary mapping userids to their corresponding passwords.

* groupfinder, an authorization callback that looks up USERS and GROUPS. It will be provided

inanew security.py file.

¢ An ACL is attached to the root resource. Each row below details an ACE:

Action | Principal Permission
Allow | Everyone View
Allow | group:editors | Edit

* Permission declarations are added to the views to assert the security policies as each request is

handled.

Two additional views and one template will handle the login and logout tasks.

Summary

The URL, context, actions, template and permission associated to each view are listed in the following

table:

GROUPS, a dictionary mapping userids to a list of groups to which they belong.

236

0.1. TUTORIALS

URL

View

Context

Action

Template

Permission

/

view_wiki

Wiki

Redirect to
/FrontPage

/PageName

view_page!

Page

Display exist-
ing page”

view.pt

view

/PageName/edit

|_pdge page

Page

edit
with

Display
form

existing
content.
If the form
was submit-
ted, redirect
to /PageName

edit.pt

edit

/add_page/Page

Nadae page

Wiki

Create the
page Pa-
geName in
storage, dis-
play the edit
form without
content.

If the form
was submit-
ted, redirect
to /PageName

edit.pt

edit

/login

login

Wiki, Forbid-
den?

Display login
form.

If the form
was sub-
mitted,
authenticate.

o If
authen-
tication
suc-
ceeds,
redirect
to the
page
that we
came
from.

o If
authen-
tication
fails,

37 display

login
form
with

[13 P

login.pt

CONTENTS

Installation

Before you begin

This tutorial assumes that you have already followed the steps in Installing Pyramid, except do not create
a virtual environment or install Pyramid. Thereby you will satisfy the following requirements.

* A Python interpreter is installed on your operating system.

* You’ve satisfied the Requirements for Installing Packages.

Create directory to contain the project

We need a workspace for our project files.

On UNIX

$ mkdir ~/pyramidtut

On Windows

c:\> mkdir pyramidtut

Create and use a virtual Python environment

Next let’s create a virtual environment workspace for our project. We will use the VENV environment
variable instead of the absolute path of the virtual environment.

On UNIX

2 Pyramid will return a default 404 Not Found page if the page PageName does not exist yet.
3 pyramid.exceptions.Forbidden is reached when a user tries to invoke a view that is not authorized by the authoriza-
tion policy.

238

0.1. TUTORIALS

$ export VENV=~/pyramidtut

$ python3 -m venv SVENYV

On Windows

c:\> set VENV=c:\pyramidtut

Each version of Python uses different paths, so you will need to adjust the path to the command for your
Python version.

Python 2.7:

’c:\> c:\Python27\Scripts\virtualenv $VENV% ‘

Python 3.5:

’c:\> c:\Python35\Scripts\python -m venv $VENVS% ‘

Upgrade pip and setuptools in the virtual environment

On UNIX

$ SVENV/bin/pip install —--upgrade pip setuptools

On Windows

c:\> SVENVZ\Scripts\pip install --upgrade pip setuptools

239

CONTENTS

Install Pyramid into the virtual Python environment

On UNIX

$ SVENV/bin/pip install "pyramid==1.7.6"

On Windows

c:\> S$VENV%\Scripts\pip install "pyramid==1.7.6"

Change directory to your virtual Python environment

Change directory to the pyramidtut directory, which is both your workspace and your virtual environ-
ment.

On UNIX

$ cd pyramidtut

On Windows

c:\> ed pyramidtut

Making a project
Your next step is to create a project. For this tutorial, we will use the scaffold named zodb, which

generates an application that uses ZODB and traversal.

Pyramid supplies a variety of scaffolds to generate sample projects. We will use pcreate, a script that
comes with Pyramid, to create our project using a scaffold.

By passing zodb into the pcreate command, the script creates the files needed to use ZODB. By
passing in our application name tutorial, the script inserts that application name into all the required
files.

The below instructions assume your current working directory is “pyramidtut”.

240

0.1. TUTORIALS

On UNIX

$ SVENV/bin/pcreate -s zodb tutorial

On Windows

’c:\pyramidtut> SVENV%\Scripts\pcreate —-s zodb tutorial

O If you are using Windows, the zodb scaffold may not deal gracefully with installation into a
location that contains spaces in the path. If you experience startup problems, try putting both the virtual
environment and the project into directories that do not contain spaces in their paths.

Installing the project in development mode

In order to do development on the project easily, you must “register” the project as a development egg in
your workspace using the pip install —e . command. In order to do so, change directory to the
tutorial directory that you created in Making a project, andrunthe pip install -e . command
using the virtual environment Python interpreter.

On UNIX

$ cd tutorial
$ SVENV/bin/pip install -e

On Windows

c:\pyramidtut> ed tutorial
c:\pyramidtut\tutorial> $VENV$\Scripts\pip install -e

The console will show pip checking for packages and installing missing packages. Success executing
this command will show a line like the following:

241

CONTENTS

Successfully installed BTrees-4.2.0 Chameleon-2.24 Mako-1.0.4 \
MarkupSafe-0.23 Pygments-2.1.3 ZConfig-3.1.0 ZEO-4.2.0bl ZODB-4.2.0 \
Z0DB3-3.11.0 mock—-2.0.0 pbr-1.8.1 persistent—-4.1.1 pyramid-chameleon-0.3 \
pyramid-debugtoolbar-2.4.2 pyramid-mako-1.0.2 pyramid-tm-0.12.1 \
pyramid-zodbconn-0.7 six-1.10.0 transaction-1.4.4 tutorial waitress-0.8.10_
<\

zc.lockfile-1.1.0 zdaemon-4.1.0 zodbpickle-0.6.0 zodburi-2.0

Install testing requirements

In order to run tests, we need to install the testing requirements. This is done through our project’s
setup.pyfile,inthe tests_requireand extras_require stanzas, and by issuing the command
below for your operating system.

» |tests_require = [
2 'WebTest >= 1.3.1', # py3 compat
24 'pytest', # includes virtualenv
25 'pytest-cov',
26]
45 extras_require={
46 'testing': tests_require,
47 },
On UNIX
$ SVENV/bin/pip install -e ".[testing]"
On Windows
c:\pyramidtut\tutorial> $VENV$\Scripts\pip install -e ".[testing]"

242

0.1. TUTORIALS

Run the tests

After you’ve installed the project in development mode as well as the testing requirements, you may run
the tests for the project. The following commands provide options to py.test that specify the module for
which its tests shall be run, and to run py.test in quiet mode.

On UNIX

$ SVENV/bin/py.test —-q

On Windows

c:\pyramidtut\tutorial> $VENV%\Scripts\py.test —-g

For a successful test run, you should see output that ends like this:

1 passed in 0.24 seconds

Expose test coverage information

You can run the py.test command to see test coverage information. This runs the tests in the same
way that py . test does, but provides additional “coverage” information, exposing which lines of your
project are covered by the tests.

We’ve already installed the pytest—cov package into our virtual environment, so we can run the tests
with coverage.

On UNIX
$ SVENV/bin/py.test —--cov —-cov-report=term-missing
On Windows

243

CONTENTS

c:\pyramidtut\tutorial> $VENV%\Scripts\py.test —-cov \
——cov-report=term-missing

If successful, you will see output something like this:

======================== test session starts ========================
platform Python 3.5.1, pytest-2.9.1, py-1.4.31, pluggy-0.3.1

rootdir: /Users/stevepiercy/projects/pyramidtut/tutorial, inifile:
plugins: cov-2.2.1

collected 1 items

tutorial/tests.py
777777777777777777 coverage: platform Python 3.5.1 —-—————————————————

Name Stmts Miss Cover Missing
tutorial/__init__ .py 12 7 42% 7-8, 14-18
tutorial/models.py 10 6 40% 9-14
tutorial/tests.py 12 0 100%
tutorial/views.py 4 0 100%

TOTAL 38 13 66%

Our package doesn’t quite have 100% test coverage.

Test and coverage scaffold defaults

Scaffolds include configuration defaults for py . test and test coverage. These configuration files are
pytest.ini and .coveragerc, located at the root of your package. Without these defaults, we
would need to specify the path to the module on which we want to run tests and coverage.

On UNIX

$ SVENV/bin/py.test —--cov=tutorial tutorial/tests.py —-q

On Windows

244

0.1. TUTORIALS

c:\pyramidtut\tutorial> SVENV$\Scripts\py.test —--cov=tutorial \
—-—-cov-report=term-missing tutoriall\tests.py —-qg

py.test follows conventions for Python test discovery, and the configuration defaults from the scaffold tell
py . test where to find the module on which we want to run tests and coverage.

See also:

See py.test’s documentation for Usage and Invocations or invoke py.test —h to see its full set of
options.

Start the application

Start the application.

On UNIX
$ SVENV/bin/pserve development.ini --reload
On Windows
’c:\pyramidtut\tutorial> $VENVS\Scripts\pserve development.ini —--reload

O Your OS firewall, if any, may pop up a dialog asking for authorization to allow python to accept
incoming network connections.

If successful, you will see something like this on your console:

Starting subprocess with file monitor
Starting server in PID 82349.
serving on http://127.0.0.1:6543

This means the server is ready to accept requests.

245

https://docs.pytest.org/en/latest/goodpractices.html#test-discovery
https://docs.pytest.org/en/latest/usage.html#usage

CONTENTS

Visit the application in a browser

In a browser, visit http://localhost:6543/. You will see the generated application’s default page.
One thing you’ll notice is the “debug toolbar” icon on right hand side of the page. You can read more about

the purpose of the icon at The Debug Toolbar. It allows you to get information about your application
while you develop.

Decisions the zodb scaffold has made for you

Creating a project using the zodb scaffold makes the following assumptions:
* You are willing to use ZODB as persistent storage.
* You are willing to use traversal to map URLs to code.

* You want to use pyramid_zodbconn, pyramid_tm, and the transaction packages to manage connec-
tions and transactions with ZODB.

* You want to use pyramid_chameleon to render your templates. Different templating engines can
be used, but we had to choose one to make this tutorial. See Available Add-On Template System
Bindings for some options.

O Pyramid supports any persistent storage mechanism (e.g., an SQL database or filesystem files). It
also supports an additional mechanism to map URLSs to code (URL dispatch). However, for the purposes
of this tutorial, we’ll only be using traversal and ZODB.

Basic Layout

The starter files generated by the zodb scaffold are very basic, but they provide a good orientation for
the high-level patterns common to most traversal-based (and ZODB-based) Pyramid projects.

246

http://localhost:6543/
http://docs.pylonsproject.org/projects/pyramid-zodbconn/en/latest/
http://docs.pylonsproject.org/projects/pyramid-tm/en/latest/
http://zodb.readthedocs.org/en/latest/transactions.html
http://docs.pylonsproject.org/projects/pyramid-chameleon/en/latest/

0.1. TUTORIALS

Application configuration with __init__ .py

A directory on disk can be turned into a Python package by containing an __init__ .py file. Even if
empty, this marks a directory as a Python package. We use __init__ .py both as a marker, indicating
the directory in which it’s contained is a package, and to contain application configuration code.

When you run the application using the pserve command using the development.ini gener-
ated configuration file, the application configuration points at a setuptools entry point described as
egg:tutorial. In our application, because the application’s setup . py file says so, this entry point
happens to be the main function within the file named __init__ .py.

Open tutorial/__init__.py. It should already contain the following:

1 | from pyramid.config import Configurator
2 | from pyramid_zodbconn import get_connection
3| from .models import appmaker

¢ |def root_factory(request) :
7 conn = get_connection (request)
8 return appmaker (conn.root ())

1 |def main(global_config, =xxsettings):

12 """ This function returns a Pyramid WSGI application.

13 o

14 config = Configurator (root_factory=root_factory, settings=settings)
15 config.include ('pyramid chameleon")

16 config.add_static_view('static', 'static', cache_max_age=3600)

17 config.scan ()

18 return config.make_wsgi_app ()

1. Lines 1-3. Perform some dependency imports.
2. Lines 6-8. Define a root factory for our Pyramid application.
3. Linell. __init__ .py defines a function named main.

4. Line 14. We construct a Configurator with a root factory and the settings keywords parsed by
PasteDeploy. The root factory is named root_factory.

5. Line 15. Include support for the Chameleon template rendering bindings, allowing us to use the
. pt templates.

247

CONTENTS

6. Line 16. Register a “static view”, which answers requests whose URL paths start with /static,

using the pyramid.config.Configurator.add_static_view () method. This state-
ment registers a view that will serve up static assets, such as CSS and image files, for us, in this
case, at http://localhost:6543/static/ and below. The first argument is the “name”
static, which indicates that the URL path prefix of the view will be /static. The second
argument of this tag is the “path”, which is a relative asset specification, so it finds the resources
it should serve within the static directory inside the tutorial package. Alternatively the
scaffold could have used an absolute asset specification as the path (tutorial:static).

. Line 17. Perform a scan. A scan will find configuration decoration, such as view configuration

decorators (e.g., @view_config) in the source code of the tutorial package and will take
actions based on these decorators. We don’t pass any arguments to scan (), which implies that
the scan should take place in the current package (in this case, tutorial). The scaffold could
have equivalently said config.scan ('tutorial'), but it chose to omit the package name
argument.

. Line 18. Use the pyramid. config.Configurator.make_wsgi_app () method to return

a WSGI application.

Resources and models with models.py

Pyramid uses the word resource to describe objects arranged hierarchically in a resource tree. This tree
is consulted by traversal to map URLSs to code. In this application, the resource tree represents the site
structure, but it also represents the domain model of the application, because each resource is a node
stored persistently in a ZODB database. The models . py file is where the zodb scaffold put the classes
that implement our resource objects, each of which also happens to be a domain model object.

Here is the source for models.py:

from persistent.mapping import PersistentMapping

class MyModel (PersistentMapping) :

parent = __ name = None

def appmaker (zodb_root) :

if 'app_root' not in zodb_root:
app_root = MyModel ()
zodb_root ['app_root'] = app_root
import transaction
transaction.commit ()

return zodb_root['app_root']

248

0.1. TUTORIALS

1. Lines 4-5. The MyModel resource class is implemented here. Instances of this class are capa-
ble of being persisted in ZODB because the class inherits from the persistent .mapping.
PersistentMapping class. The __parent__ and _ _name___ are important parts of the
traversal protocol. By default, have these as None indicating that this is the root object.

2. Lines 8-14. appmaker is used to return the application root object. It is called on every request to
the Pyramid application. It also performs bootstrapping by creating an application root (inside the
ZODB root object) if one does not already exist. It is used by the root__factory we’ve defined

inour__init__ .py.

Bootstrapping is done by first seeing if the database has the persistent application root. If not, we
make an instance, store it, and commit the transaction. We then return the application root object.

Views With views.py

Our scaffold generated a default views.py on our behalf. It contains a single view, which is used to
render the page shown when you visit the URL http://localhost:6543/.

Here is the source for views.py:

1 | from pyramid.view import view_config
2 | from .models import MyModel

5 | @view_config (context=MyModel, renderer='templates/mytemplate.pt')
¢ |def my_view (request) :
7 return {'project': 'tutorial'}

Let’s try to understand the components in this module:
1. Lines 1-2. Perform some dependency imports.
2. Line 5. Use the pyramid.view.view_config () configuration decoration to perform a view
configuration registration. This view configuration registration will be activated when the applica-
tion is started. It will be activated by virtue of it being found as the result of a scan (when Line 14

of __init__ .pyisrun).

The @view_config decorator accepts a number of keyword arguments. We use two keyword
arguments here: context and renderer.

The context argument signifies that the decorated view callable should only be run when traver-
sal finds the tutorial .models.MyModel resource to be the context of a request. In English,

249

CONTENTS

this means that when the URL / is visited, because MyMode is the root model, this view callable
will be invoked.

The renderer argument names an asset specification of templates/mytemplate.pt. This
asset specification points at a Chameleon template which lives in the mytemplate.pt file
within the templates directory of the tutorial package. And indeed if you look in the
templates directory of this package, you’ll see a mytemplate.pt template file, which ren-
ders the default home page of the generated project. This asset specification is relative (to the
view.py’s current package). Alternatively we could have used the absolute asset specification
tutorial:templates/mytemplate.pt, but chose to use the relative version.

Since this call to @view_config doesn’t pass a name argument, the my_view function which
it decorates represents the “default” view callable used when the context is of the type MyModel.

3. Lines 6-7. We define a view callable named my_view, which we decorated in the step above. This
view callable is a function we write generated by the zodb scaffold that is given a request and
which returns a dictionary. The mytemplate.pt renderer named by the asset specification in
the step above will convert this dictionary to a response on our behalf.

The function returns the dictionary { 'project': 'tutorial'}. This dictionary is used by the
template named by the mytemplate.pt asset specification to fill in certain values on the page.

Configuration in development . ini

The development . ini (in the tutorial project directory, as opposed to the tutorial package directory)
looks like this:

###

app configuration

http://docs.pylonsproject.org/projects/pyramid/en/1.7-branch/narr/
—environment.html

###

[app:main]
use = egg:tutorial

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =

250

0.1. TUTORIALS

pyramid_debugtoolbar
pyramid_zodbconn
pyramid_tm

tm.attempts = 3
zodbconn.uri = file://% (here)s/Data.fs?connection_cache_size=20000

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1" and '::1"'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgl server configuration

###

[server:main]

use = egg:waitress#main
host = 127.0.0.1

port = 6543

#H##

logging configuration

http://docs.pylonsproject.org/projects/pyramid/en/1.7-branch/narr/
—~logging.html

###

[loggers]

keys = root, tutorial
[handlers]

keys = console
[formatters]

keys = generic

[logger_root]
level = INFO
handlers = console

[logger_ tutoriall]
level = DEBUG
handlers =

qualname = tutorial

[handler_ console]
class = StreamHandler

251

CONTENTS

args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = % (asctime)s % (levelname)-5.5s [%$(name)s:%(lineno)s]|[
—% (threadName) s] % (message)s

Note the existence of a [app:main] section which specifies our WSGI application. Our ZODB
database settings are specified as the zodbconn.uri setting within this section. This value, and
the other values within this section, are passed as **settings to the main function we defined in
__init__ .py when the server is started via pserve.

Defining the Domain Model

The first change we’ll make to our stock pcreate-generated application will be to define two resource
constructors, one representing a wiki page, and another representing the wiki as a mapping of wiki page
names to page objects. We’ll do this inside our models.py file.

Because we’re using ZODB to represent our resource tree, each of these resource constructors represents
a domain model object, so we’ll call these constructors “model constructors”. Both our Page and Wiki
constructors will be class objects. A single instance of the “Wiki” class will serve as a container for
“Page” objects, which will be instances of the “Page” class.

Delete the database

In the next step, we’re going to remove the MyModel Python model class from our models.py file.
Since this class is referred to within our persistent storage (represented on disk as a file named Data.
f's), we’ll have strange things happen the next time we want to visit the application in a browser. Remove
the Data. fs from the tutorial directory before proceeding any further. It’s always fine to do this as
long as you don’t care about the content of the database; the database itself will be recreated as necessary.

Edit models.py

O There is nothing special about the filename models.py. A project may have many models
throughout its codebase in arbitrarily named files. Files implementing models often have model in their

252

0.1. TUTORIALS

filenames or they may live in a Python subpackage of your application package named mode1s, but this
is only by convention.

Open tutorial/models.py file and edit it to look like the following:

1 | from persistent import Persistent
2 | from persistent.mapping import PersistentMapping

4| class Wiki (PersistentMapping) :
5 __name___ = None
6 __parent__ = None

s |class Page (Persistent):
9 def _ init_ (self, data):
10 self.data = data

12 |def appmaker (zodb_root) :

13 if 'app_root' not in zodb_root:

14 app_root = Wiki ()

15 frontpage = Page('This is the front page')
16 app_root ['FrontPage'] = frontpage

17 frontpage. name_ = 'FrontPage'

18 frontpage.__parent_ = app_root

19 zodb_root ['app_root'] = app_root

20 import transaction

21 transaction.commit ()

2 return zodb_root['app_root']

The first thing we want to do is remove the MyModel class from the generated models.py file. The
MyModel class is only a sample and we’re not going to use it.

Then, we’ll add a Wiki class. We want it to inherit from the persistent.mapping.
PersistentMapping class because it provides mapping behavior, and it makes sure that our Wiki
page is stored as a “first-class” persistent object in our ZODB database.

Our Wiki class should have two attributes set to None at class scope: __parent___and __name__.
If amodel hasa___parent___ attribute of None in a traversal-based Pyramid application, it means that
it’s the root model. The __name___ of the root model is also always None.

Then we’ll add a Page class. This class should inherit from the persistent .Persistent class.
We’ll also giveitan ___init__ method that accepts a single parameter named data. This parameter will
contain the reStructuredText body representing the wiki page content. Note that Page objects don’t have
aninitial __name__ or__parent__ attribute. All objects in a traversal graph musthavea ___name_

253

CONTENTS

and a __parent__ attribute. We don’t specify these here because both __name___and __parent_
will be set by a view function when a Page is added to our Wiki mapping.

As a last step, we want to change the appmaker function in our models.py file so that the root
resource of our application is a Wiki instance. We’ll also slot a single page object (the front page) into the
Wiki within the appmaker. This will provide traversal a resource tree to work against when it attempts
to resolve URLSs to resources.

View the application in a browser

We can’t. At this point, our system is in a “non-runnable” state; we’ll need to change view-related files in
the next chapter to be able to start the application successfully. If you try to start the application (See Start
the application), you’ll wind up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

Defining Views

A view callable in a traversal -based Pyramid application is typically a simple Python function that
accepts two parameters: context and request. A view callable is assumed to return a response object.

O A Pyramid view can also be defined as callable which accepts only a request argument. You’ll see
this one-argument pattern used in other Pyramid tutorials and applications. Either calling convention will
work in any Pyramid application; the calling conventions can be used interchangeably as necessary. In
traversal based applications, URLs are mapped to a context resource, and since our resource tree also
represents our application’s “domain model”, we’re often interested in the context because it represents
the persistent storage of our application. For this reason, in this tutorial we define views as callables that
accept context in the callable argument list. If you do need the context within a view function that
only takes the request as a single argument, you can obtain it via request .context.

We’re going to define several view callable functions, then wire them into Pyramid using some view
configuration.

254

0.1. TUTORIALS

Declaring Dependencies in Our setup.py File

The view code in our application will depend on a package which is not a dependency of the original
“tutorial” application. The original “tutorial” application was generated by the pcreate command; it
doesn’t know about our custom application requirements.

We need to add a dependency on the docutils package to our tutorial package’s setup.py file
by assigning this dependency to the requires parameter in the setup () function.

Open setup.py and edit it to look like the following:

| | import os
3 | from setuptools import setup, find_packages

s |here = os.path.abspath(os.path.dirname(file))
¢ |with open(os.path.join (here, 'README.txt')) as f:

7 README = f.read()

s |{with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 |requires = [

12 'pyramid',

13 'pyramid_chameleon',

14 'pyramid_debugtoolbar',

15 'pyramid_tm',

16 'pyramid_zodbconn',

17 'transaction',

18 'Z0DB3"',

19 'waitress',

20 'docutils',

21]

22

3 |tests_require = [

24 'WebTest >= 1.3.1', # py3 compat
25 'pytest', # includes virtualenv
26 'pytest-cov',

27]
28

» | setup (name="tutorial',

=3

30 version='0.0",

31 description="'tutorial',

2 long_description=README + '\n\n' + CHANGES,
33 classifiers=][

34 "Programming Language :: Python",

255

CONTENTS

35 "Framework :: Pyramid",

36 "Topic :: Internet :: WWW/HTTP",
37 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
38 1,

39 author="",

40 author_email="",

41 url="",

42 keywords="'web pylons pyramid',

43 packages=find_packages (),

44 include_package_data=True,

45 zip_safe=False,

46 extras_require={

47 'testing': tests_require,

48 1,

49 install_requires=requires,

50 entry_points="""\

51 [paste.app_factory]

52 main = tutorial:main

53 mwr

54)

Only the highlighted line needs to be added.

Running pip install -e
Since a new software dependency was added, you will need to run pip install —-e . again inside
the root of the tutorial package to obtain and register the newly added dependency distribution.

Make sure your current working directory is the root of the project (the directory in which setup.py
lives) and execute the following command.

On UNIX:

$ cd tutorial
$ SVENV/bin/pip install -e

On Windows:

c:\pyramidtut> ed tutorial
c:\pyramidtut\tutorial> 2VENVZ\Scripts\pip install -e

Success executing this command will end with a line to the console something like:

256

0.1. TUTORIALS

Successfully installed docutils-0.12 tutorial-0.0

Adding view functions in views.py

It’s time for a major change. Open tutorial/views.py and edit it to look like the following:

1 | from docutils.core import publish_parts
2 | import re

4 | from pyramid.httpexceptions import HTTPFound
s | from pyramid.view import view_config

7| from .models import Page

9| # reqgular expression used to find WikiWords
0 |wikiwords = re.compile (r"\b ([A-Z]\w+[A-Z]+\w+)")

2 |@view_config (context='.models.Wiki"')
13 |def view_wiki (context, request):
14 return HTTPFound (location=request.resource_url (context, 'FrontPage'))

16 | @view_config(context='.models.Page', renderer='templates/view.pt')
17 |def view_page (context, request):

18 wiki = context.__parent_

19

20 def check (match) :

21 word = match.group (1)

2 if word in wiki:

23 page = wiki[word]

24 view_url = request.resource_url (page)

25 return '%s' % (view_url, word)

26 else:

27 add_url = request.application_url + '/add_page/' + word

28 return '%s' % (add_url, word)

29

30 content = publish_parts(context.data, writer_name='html') ['html body']
31 content = wikiwords.sub (check, content)

£ edit_url = request.resource_url (context, 'edit_page')

33 return dict (page = context, content = content, edit_url = edit_url)
34

35 | @view_config (name='add_page', context='.models.Wiki',

36 renderer="templates/edit.pt'")

37 |def add_page (context, request):

257

CONTENTS

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

55

56

57

58

59

60

@view_config(name='edit_page', context='.models.Page',

def edit_page (context, request):

pagename = request.subpath[0]
if 'form.submitted' in request.params:
body = request.params|['body']
page = Page (body)
page._name__ = pagename
page.__parent__ = context
context [pagename] = page
return HTTPFound (location = request.resource_url (page))
save_url = request.resource_url (context, 'add _page', pagename)
page = Page('")
page._name_ = pagename
page.__parent__ = context
return dict (page = page, save_url = save_url)

renderer="templates/edit.pt'")
if 'form.submitted' in request.params:
context.data = request.params|['body']

return HTTPFound (location = request.resource_url (context))

return dict (page=context,
save_url=request.resource_url (context, 'edit_page'))

We added some imports and created a regular expression to find “WikiWords”.

We got rid of the my_view view function and its decorator that was added when we originally rendered
the zodb scaffold. It was only an example and isn’t relevant to our application.

Then we added four view callable functions to our views . py module:

view_wiki () - Displays the wiki itself. It will answer on the root URL.
view_page () - Displays an individual page.
add_page () - Allows the user to add a page.

edit_page () - Allows the user to edit a page.

We’ll describe each one briefly in the following sections.

6 There is nothing special about the filename views.py. A project may have many view callables

throughout its codebase in arbitrarily named files. Files implementing view callables often have view in
their filenames (or may live in a Python subpackage of your application package named views), but this
is only by convention.

258

0.1. TUTORIALS

The view_wiki view function

Following is the code for the view_wiki view function and its decorator:

12 | @view_config(context="'.models.Wiki")
13 |def view_wiki (context, request):
14 return HTTPFound (location=request.resource_url (context, 'FrontPage'))

O In our code, we use an import that is relative to our package named tutorial, meaning we can
omit the name of the package in the import and context statements. In our narrative, however, we
refer to a class and thus we use the absolute form, meaning that the name of the package is included.

view_wiki () is the default view that gets called when a request is made to the root URL of our wiki.
It always redirects to an URL which represents the path to our “FrontPage”.

We provide it with a @view_config decorator which names the class tutorial .models.Wiki
as its context. This means that when a Wiki resource is the context and no view name exists in the
request, then this view will be used. The view configuration associated with view_wiki does not use
a renderer because the view callable always returns a response object rather than a dictionary. No
renderer is necessary when a view returns a response object.

The view_wiki view callable always redirects to the URL of a Page resource named “FrontPage”.
To do so, it returns an instance of the pyramid. httpexceptions.HTTPFound class (instances of
which implement the pyramid. interfaces. IResponse interface, like pyramid. response.
Response does). It uses the pyramid. request.Request.route _url () API to construct an
URL to the FrontPage page resource (i.e., http://localhost:6543/FrontPage), and uses it
as the “location” of the HTTPFound response, forming an HTTP redirect.

The view_page view function

Here is the code for the view_page view function and its decorator:

16 | @view_config (context='.models.Page', renderer='templates/view.pt')
17 |def view_page (context, request):
18 wiki = context.__parent_

20 def check (match) :
21 word = match.group (1)

259

CONTENTS

2 if word in wiki:

23 page = wiki[word]

2 view_url = request.resource_url (page)

25 return '%s' % (view_url, word)

26 else:

27 add_url = request.application_url + '/add_page/' + word

28 return '%s' % (add_url, word)

29

30 content = publish_parts(context.data, writer_name='html') ['html_body"]
31 content = wikiwords.sub (check, content)

k) edit_url = request.resource_url (context, 'edit_page')

33 return dict (page = context, content = content, edit_url = edit_url)

The view_page function is configured to respond as the default view of a Page resource. We provide
it with a @view_config decorator which names the class tutorial .models.Page as its context.
This means that when a Page resource is the context, and no view name exists in the request, this view
will be used. We inform Pyramid this view will use the templates/view.pt template file as a
renderer.

The view_page function generates the reStructuredText body of a page (stored as the data attribute
of the context passed to the view; the context will be a Page resource) as HTML. Then it substitutes an
HTML anchor for each WikiWord reference in the rendered HTML using a compiled regular expression.

The curried function named check is used as the first argument to wikiwords. sub, indicating that
it should be called to provide a value for each WikiWord match found in the content. If the wiki (our
page’s __parent_) already contains a page with the matched WikiWord name, the check function
generates a view link to be used as the substitution value and returns it. If the wiki does not already
contain a page with the matched WikiWord name, the function generates an “add” link as the substitution
value and returns it.

As aresult, the content variable is now a fully formed bit of HTML containing various view and add
links for WikiWords based on the content of our current page resource.

We then generate an edit URL because it’s easier to do here than in the template, and we wrap up a number
of arguments in a dictionary and return it.

The arguments we wrap into a dictionary include page, content, and edit_url. As a result, the
template associated with this view callable (via renderer= in its configuration) will be able to use
these names to perform various rendering tasks. The template associated with this view callable will be a
template which lives in templates/view.pt.

Note the contrast between this view callable and the view_wiki view callable. In the view_wiki
view callable, we unconditionally return a response object. In the view_page view callable, we return
a dictionary. It is always fine to return a response object from a Pyramid view. Returning a dictionary is
allowed only when there is a renderer associated with the view callable in the view configuration.

260

0.1. TUTORIALS

The add_page view function

Here is the code for the add_page view function and its decorator:

35 | @view_config (name='add_page', context='.models.Wiki',

36 renderer="templates/edit.pt'")

37 |def add_page (context, request):

38 pagename = request.subpath[0]

39 if '"form.submitted' in request.params:

40 body = request.params|['body']

41 page = Page (body)

2 page._name__ = pagename

43 page.__parent___ = context

44 context [pagename] = page

45 return HTTPFound (location = request.resource_url (page))
46 save_url = request.resource_url (context, 'add_page', pagename)
47 page = Page('")

48 page._ name = pagename

49 page.__parent__ = context

50 return dict (page = page, save_url = save_url)

The add_page function is configured to respond when the context resource is a Wiki and the view name
is add_page. We provide it with a @view_config decorator which names the string add_page as
its view name (via name=), the class tutorial .models.Wik1i as its context, and the renderer named
templates/edit.pt. This means that when a Wiki resource is the context, and a view name named
add_page exists as the result of traversal, this view will be used. We inform Pyramid this view will use
the templates/edit .pt template file as a renderer. We share the same template between add
and edit views, thus edit . pt instead of add.pt.

The add_page function will be invoked when a user clicks on a WikiWord which isn’t yet represented as
a page in the system. The check function within the view_page view generates URLs to this view. It
also acts as a handler for the form that is generated when we want to add a page resource. The context
of the add_page view is always a Wiki resource (not a Page resource).

The request subpath in Pyramid is the sequence of names that are found after the view name in the URL
segments given in the PATH_INFO of the WSGI request as the result of traversal. If our add view is
invoked via, e.g., http://localhost:6543/add_page/SomeName, the subpath will be a tuple:
('SomeName',).

The add view takes the zeroth element of the subpath (the wiki page name), and aliases it to the name
attribute in order to know the name of the page we’re trying to add.

If the view rendering is not a result of a form submission (if the expression ' form.submitted' in
request .params is False), the view renders a template. To do so, it generates a “save url” which

261

CONTENTS

the template uses as the form post URL during rendering. We’re lazy here, so we’re trying to use the same
template (templates/edit .pt) for the add view as well as the page edit view. To do so, we create a
dummy Page resource object in order to satisfy the edit form’s desire to have some page object exposed
as page, and we’ll render the template to a response.

If the view rendering is a result of a form submission (if the expression 'form.submitted' in
request .params is True), we grab the page body from the form data, create a Page object using the
name in the subpath and the page body, and save it into “our context” (the Wiki) usingthe ___setitem___
method of the context. We then redirect back to the view_page view (the default view for a page) for
the newly created page.

The edit_page view function

Here is the code for the edit_page view function and its decorator:

52 | @view_config (name='edit_page', context='.models.Page',

53 renderer="templates/edit.pt")

s4 |def edit_page (context, request):

55 if '"form.submitted' in request.params:

56 context.data = request.params|['body']

57 return HTTPFound (location = request.resource_url (context))

58

59 return dict (page=context,

60 save_url=request.resource_url (context, 'edit_page'))

The edit_page function is configured to respond when the context is a Page resource and the view name
is edit_page. We provide it with a @view_config decorator which names the string edit_page
as its view name (via name=), the class tutorial .models.Page as its context, and the renderer
named templates/edit.pt. This means that when a Page resource is the context, and a view name
exists as the result of traversal named edit_page, this view will be used. We inform Pyramid this view
will use the templates/edit .pt template file as a renderer.

The edit_page function will be invoked when a user clicks the “Edit this Page” button on the view
form. It renders an edit form but it also acts as the form post view callable for the form it renders. The
context of the edit_page view will always be a Page resource (never a Wiki resource).

If the view execution is not a result of a form submission (if the expression ' form.submitted' in
request .params is False), the view simply renders the edit form, passing the page resource, and a
save_url which will be used as the action of the generated form.

If the view execution is a result of a form submission (if the expression 'form.submitted' in
request .params is True), the view grabs the body element of the request parameter and sets it as
the data attribute of the page context. It then redirects to the default view of the context (the page),
which will always be the view_page view.

262

0.1. TUTORIALS

Adding templates

The view_page, add_page and edit_page views that we’ve added reference a template. Each
template is a Chameleon ZPT template. These templates will live in the templates directory of our
tutorial package. Chameleon templates must have a . pt extension to be recognized as such.

The view.pt template

Create tutorial/templates/view.pt and add the following content:

<!DOCTYPE html>
<html lang="${request.locale_name}">

[S)

3 <head>

4 <meta charset="utf-8">

5 <meta http-equiv="X-UA-Compatible" content="IE=edge">

6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">

8 <meta name="author" content="Pylons Project">

9 <1link rel="shortcut icon" href="${request.static_url ('tutorial:static/

—pyramid-16x16.png') } ">

11 <title>${page._ _name__} - Pyramid tutorial wiki (based on

12 TurboGears 20-Minute Wiki)</title>

13

14 <!-- Bootstrap core CSS —-->

15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/

—pbootstrap.min.css" rel="stylesheet">

17 <!-— Custom styles for this scaffold —-->
18 <link href="${request.static_url ('tutorial:static/theme.css')}" rel=
—"stylesheet">

20 <!-— HTML5 shim and Respond.js IE8 support of HTML5 elements and media,,
—queries ——>

21 <!--[if 1t IE 9]>

2 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv. js"></
—script>

23 <script src="//oss.maxcdn.com/libs/respond. js/1.3.0/respond.min.js">
—~</script>

2 <!lendif]-—>

25 </head>

2% <body>

27

263

CONTENTS

28 <div class="starter-template">

29 <div class="container">

30 <div class="row">

31 <div class="col-md-2">

k) <img class="logo img-responsive" src="${request.static_url (
—'tutorial:static/pyramid.png')}" alt="pyramid web framework">

3 </div>

34 <div class="col-md-10">

35 <div class="content">

36 <div tal:replace="structure content">

37 Page text goes here.

38 </div>

39 <p>

40 <a tal:attributes="href edit_url" href="">

41 Edit this page

2

43 </p>

44 <p>

4s Viewing

46 Page Name Goes Here

47 </p>

48 <p>You can return to the

49 FrontPage.

50 </p>

51 </div>

52 </div>

53 </div>

54 <div class="row">

55 <div class="copyright">

56 Copyright © Pylons Project

57 </div>

58 </div>

59 </div>

60 </div>

61

62

63 <!-—- Bootstrap core JavaScript

78 LSS et b B b e B B e b e e b Bl s e L LSt e e e >

65 <!-— Placed at the end of the document so the pages load faster —-->

66 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></
—script>

67 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/Js/
—pbootstrap.min. js"></script>

68 </body>

o | </html>

264

0.1. TUTORIALS

This template is used by view_page () for displaying a single wiki page. It includes:

e A div element that is replaced with the content value provided by the view (lines 36-38).
content contains HTML, so the st ructure keyword is used to prevent escaping it (i.e., chang-
ing “>” to “>”, etc.)

* A link that points at the “edit” URL which invokes the edit_page view for the page being viewed
(lines 40-42).

The edit .pt template

Create tutorial/templates/edit .pt and add the following content:

)

20

21

22

23

24

25

<!DOCTYPE html>
<html lang="${request.locale_name}">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="pyramid web application">
<meta name="author" content="Pylons Project">
<link rel="shortcut icon" href="S${request.static_url ('tutorial:static/
—pyramid-16xl16.png') } ">

<title>${page.__name__} - Pyramid tutorial wiki (based on
TurboGears 20-Minute Wiki)</title>

<!-- Bootstrap core CSS —-->
<link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/
—bootstrap.min.css" rel="stylesheet">

<!-- Custom styles for this scaffold —-->
<link href="${request.static_url ('tutorial:static/theme.css')}" rel=
—"stylesheet">

<!-— HTML5 shim and Respond. js IE8 support of HTML5 elements and media,,
—queries ——>
<!-—-[if 1t IE 9]>
<script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv. js"></
—script>
<script src="//oss.maxcdn.com/libs/respond. js/1.3.0/respond.min. js">
—</script>
<!lendif]—-——>
</head>

265

CONTENTS

26 <body>

27

28 <div class="starter-template">

29 <div class="container">

30 <div class="row">

31 <div class="col-md-2">

2 <img class="logo img-responsive" src="${request.static_url (
—'tutorial:static/pyramid.png')}" alt="pyramid web framework">

3 </div>

34 <div class="col-md-10">

35 <div class="content">

36 <p>

37 Editing

38 Page Name Goes Here

39 </p>

40 <p>You can return to the

41 FrontPage.

4 </p>

43 <form action="${save_url}" method="post">

44 <div class="form-group">

45 <textarea class="form-control" name="body" tal:content=
—"page.data" rows="10" cols="60"></textarea>

46 </div>

47 <div class="form-group">

48 <button type="submit" name="form.submitted" value="Save"
—class="btn btn-default">Save</button>

49 </div>

50 </form>

51 </div>

52 </div>

53 </div>

54 <div class="row">

55 <div class="copyright">

56 Copyright © Pylons Project

57 </div>

58 </div>

59 </div>

60 </div>

61

62

63 <!-- Bootstrap core JavaScript

64 == ——>

65 <!-— Placed at the end of the document so the pages load faster ——>

66 <secript src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min. js"></
—script>

% <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/
—bootstrap.min. js"></script>

266

0.1. TUTORIALS

68 </body>
o | </html>

This template is used by add_page () and edit_page () for adding and editing a wiki page. It
displays a page containing a form that includes:

* A 10 row by 60 column textarea field named body that is filled with any existing page data
when it is rendered (line 45).

¢ A submit button that has the name form. submitted (line 48).

The form POSTs back to the save_ur1l argument supplied by the view (line 43). The view will use the
body and form. submitted values.

O Our templates use a request object that none of our tutorial views return in their dictionary.
request is one of several names that are available “by default” in a template when a template renderer
is used. See System Values Used During Rendering for information about other names that are available
by default when a template is used as a renderer.

Static assets

Our templates name static assets, including CSS and images. We don’t need to create these files within
our package’s stat ic directory because they were provided at the time we created the project.

As an example, the CSS file will be accessed via http://localhost:6543/static/theme.
css by virtue of the call to the add_static_view directive we’ve made in the __init__ .py
file. Any number and type of static assets can be placed in this directory (or subdirectories) and
are just referred to by URL or by using the convenience method static_url, e.g.,, request.
static_url ('<package>:static/foo.css') within templates.

Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLSs, checking that the result is as expected:

* http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage Page resource.

267

http://localhost:6543/

CONTENTS

* http://localhost:6543/FrontPage/ invokes the view_page view of the front page resource. This is
because it’s the default view (a view without a name) for Page resources.

* http://localhost:6543/FrontPage/edit_page invokes the edit view for the FrontPage Page re-
source.

* http://localhost:6543/add_page/SomePageName invokes the add view for a Page.

 To generate an error, visit http://localhost:6543/add_page which will generate an IndexErrorr:
tuple index out of range error. You’'ll see an interactive traceback facility provided by
pyramid_debugtoolbar.

Adding authorization

Pyramid provides facilities for authentication and authorization. We’ll make use of both features to
provide security to our application. Our application currently allows anyone with access to the server to
view, edit, and add pages to our wiki. We’ll change that to allow only people who are members of a group
named group:editors to add and edit wiki pages, but we’ll continue allowing anyone with access to
the server to view pages.

We will also add a login page and a logout link on all the pages. The login page will be shown when a
user is denied access to any of the views that require permission, instead of a default “403 Forbidden”

page.
We will implement the access control with the following steps:

* Add users and groups (security.py, a new module).

Add an ACL (models.py).
* Add an authentication policy and an authorization policy (__init___.py).
* Add permission declarations to the edit_page and add_page views (views.py).
Then we will add the login and logout feature:
¢ Add 1login and logout views (views.py).
* Add alogin template (Login.pt).
* Make the existing views return a 1ogged_in flag to the renderer (views.py).
¢ Add a “Logout” link to be shown when logged in and viewing or editing a page (view.pt, edit.

pt).

268

http://localhost:6543/FrontPage/
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName
http://localhost:6543/add_page

0.1. TUTORIALS

Access control

Add users and groups

Create anew tutorial/security.py module with the following content:

USERS = {'editor':'editor',
'viewer':'viewer'}
GROUPS = {'editor':['group:editors']}

©

w

s |def groupfinder (userid, request):
6 if userid in USERS:
7 return GROUPS.get (userid, [1])

The groupfinder function accepts a userid and a request and returns one of these values:

* If the userid exists in the system, it will return a sequence of group identifiers (or an empty sequence
if the user isn’t a member of any groups).

o If the userid does not exist in the system, it will return None.
For example, groupfinder ('editor', request) returns ['group:editor'],
groupfinder ('viewer', request) returns [],and groupfinder ('admin', request)
returns None. We will use groupfinder () as an authentication policy “callback” that will provide

the principal or principals for a user.

In a production system, user and group data will most often come from a database, but here we use
“dummy” data to represent user and groups sources.

Add an ACL

Open tutorial/models.py and add the following import statement at the head:

from pyramid.security import (
2 Allow,
3 Everyone,

4)

Add the following lines to the Wiki class:

269

CONTENTS

9 |class Wiki (PersistentMapping) :

10 _ _name___ = None

1 __parent__ = None

12 _acl___ = [(Allow, Everyone, 'view'),

13 (Allow, 'group:editors', 'edit')]

We import A11ow, an action that means that permission is allowed, and Everyone, a special principal
that is associated to all requests. Both are used in the ACE entries that make up the ACL.

The ACL is a list that needs to be named __acl__ and be an attribute of a class. We define an ACL

with two ACE entries: the first entry allows any user the view permission. The second entry allows the
group:editors principal the edit permission.

The Wiki class that contains the ACL is the resource constructor for the root resource, which is a Wiki
instance. The ACL is provided to each view in the context of the request as the context attribute.

It’s only happenstance that we’re assigning this ACL at class scope. An ACL can be attached to an object
instance t00; this is how “row level security” can be achieved in Pyramid applications. We actually need
only one ACL for the entire system, however, because our security requirements are simple, so this feature
is not demonstrated. See Assigning ACLs to Your Resource Objects for more information about what an
ACL represents.

Add authentication and authorization policies

Open tutorial/___init__ .py and add the highlighted import statements:

1 | from pyramid.config import Configurator
2 | from pyramid_zodbconn import get_connection

4 | from pyramid.authentication import AuthTktAuthenticationPolicy
5 | from pyramid.authorization import ACLAuthorizationPolicy

7| from .models import appmaker
8 | from .security import groupfinder

Now add those policies to the configuration:

270

0.1. TUTORIALS

18 authn_policy = AuthTktAuthenticationPolicy (

19 'sosecret', callback=groupfinder, hashalg='shab512")

20 authz_policy = ACLAuthorizationPolicy ()

21 config = Configurator (root_factory=root_factory, settings=settings)
2 config.set_authentication_policy (authn_policy)

23 config.set_authorization_policy (authz_policy)

Only the highlighted lines need to be added.

We are enabling an AuthTktAuthenticationPolicy, which is based in an auth ticket that may be
included in the request. We are also enabling an ACLAuthorizationPolicy, which uses an ACL to
determine the allow or deny outcome for a view.

Note that the pyramid. authentication.AuthTktAuthenticationPolicy constructor ac-
cepts two arguments: secret and callback. secret is a string representing an encryption key used
by the “authentication ticket” machinery represented by this policy: it is required. The callback is the
groupfinder () function that we created before.

Add permission declarations

Open tutorial/views.py and add a permission="edit' parameter to the @view_config
decorators for add_page () and edit_page ():

@view_config(name="'add_page', context='.models.Wiki',
renderer="'templates/edit.pt"',
permission='edit")

@view_config(name='edit_page', context='.models.Page',
renderer="templates/edit.pt',
permission='edit")

Only the highlighted lines, along with their preceding commas, need to be edited and added.

The result is that only users who possess the edit permission at the time of the request may invoke those
two views.

Add a permission="'view' parameter to the @view_config decorator for view_wiki () and
view_page () as follows:

271

CONTENTS

@view_config(context="'.models.Wiki",
permission="'view")

@view_config(context='.models.Page', renderer='templates/view.pt',
permission="'view')

Only the highlighted lines, along with their preceding commas, need to be edited and added.
This allows anyone to invoke these two views.
We are done with the changes needed to control access. The changes that follow will add the login and

logout feature.

Login, logout

Add login and logout views

We’ll add a 1ogin view which renders a login form and processes the post from the login form, checking
credentials.

We’ll also add a 1ogout view callable to our application and provide a link to it. This view will clear
the credentials of the logged in user and redirect back to the front page.

Add the following import statements to the head of tutorial/views.py:

from pyramid.view import (
view_config,
forbidden_view_config,

)

from pyramid.security import (
remember,
forget,
)

from .security import USERS

272

0.1. TUTORIALS

All the highlighted lines need to be added or edited.

forbidden _view_config() will be used to customize the default 403 Forbidden page.

remember () and forget () help to create and expire an auth ticket cookie.

Now add the 1ogin and 1ogout views at the end of the file:

82 | @view_config(context='.models.Wiki', name='login',

83 renderer="'templates/login.pt"')

84 | @forbidden_view_config(renderer='templates/login.pt"')

ss |def login (request) :

86 login_url = request.resource_url (request.context, 'login')
87 referrer = request.url

88 if referrer == login_url:

89 referrer = '/' # never use the login form itself as came_from
90 came_from = request.params.get ('came_from', referrer)
91 message = "'

92 login = "'

93 password = "'

94 if '"form.submitted' in request.params:

95 login = request.params|['login']

9% password = request.params|['password']

97 if USERS.get (login) == password:

98 headers = remember (request, login)

99 return HTTPFound (location=came_from,

100 headers=headers)

101 message = 'Failed login'

102

103 return dict (

104 message=message,

105 url=request.application_url + '/login',

106 came_from=came_from,

107 login=login,

108 password=password,

109)

110

111

12 | @view_config (context='.models.Wiki', name='logout')

us |def logout (request) :

114 headers = forget (request)

115 return HTTPFound (location=request.resource_url (request.context),
116 headers=headers)

login () has two decorators:

e a @view_config decorator which associates it with the 1ogin route and makes it visible when

we visit /login,

273

CONTENTS

e a@forbidden_view_config decorator which turns it into a forbidden view. 1ogin () will
be invoked when a user tries to execute a view callable for which they lack authorization. For
example, if a user has not logged in and tries to add or edit a Wiki page, they will be shown the
login form before being allowed to continue.

The order of these two view configuration decorators is unimportant.

logout () is decorated with a @view_config decorator which associates it with the 1ogout route.
It will be invoked when we visit /1ogout.

Add the login.pt Template

Create tutorial/templates/login.pt with the following content:

<!DOCTYPE html>
<html lang="${request.locale_name}">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="pyramid web application">
<meta name="author" content="Pylons Project">
<1link rel="shortcut icon" href="${request.static_url ('tutorial:static/
—pyramid-16x16.png') } ">

<title>Login - Pyramid tutorial wiki (based on
TurboGears 20-Minute Wiki)</title>

<!-- Bootstrap core CSS —-—>
<link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/
—pbootstrap.min.css" rel="stylesheet">

<!-— Custom styles for this scaffold —-->
<link href="${request.static_url ('tutorial:static/theme.css')}" rel=
—"stylesheet">

<!-— HTML5 shim and Respond.js IE8 support of HTML5 elements and media_,
—queries ——>
<!--[if 1t IE 9]>
<script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv. js"></
—script>
<script src="//oss.maxcdn.com/libs/respond. js/1.3.0/respond.min.js">
—~</script>
<!'l[endif]—-——>

274

0.1. TUTORIALS

</head>
<body>

<div class="starter-template">
<div class="container">
<div class="row">
<div class="col-md-2">
<img class="logo img-responsive" src="${request.static_url (
—'tutorial:static/pyramid.png')}" alt="pyramid web framework">
</div>
<div class="col-md-10">
<div class="content">
<p>

Login

</p>
<form action="${url}" method="post">
<input type="hidden" name="came_from" value="${came_from}">
<div class="form-group">
<label for="login">Username</label>
<input type="text" name="login" value="S${login}">
</div>
<div class="form-group">
<label for="password">Password</label>
<input type="password" name="password" value="${password}
">
</div>
<div class="form-group">
<button type="submit" name="form.submitted" value="Log In
—" class="btn btn-default">Log In</button>
</div>
</form>
</div>
</div>
</div>
<div class="row">
<div class="copyright">
Copyright © Pylons Project
</div>
</div>
</div>
</div>

275

CONTENTS

<!-- Bootstrap core JavaScript

==——=—=—=—=—=—=—==—=======——===—==—==——=—===—=—=—=—=—==——=—=—=—=—========= ——>

<!-— Placed at the end of the document so the pages load faster ——>

<script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min. js"></
—script>

<script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/Js/
—bootstrap.min. js"></script>
</body>
</html>

The above template is referenced in the login view that we just added in views . py.

Return a 1logged_in flag to the renderer

Open tutorial/views.py again. Add a logged_in parameter to the return value of
view_page (), add_page (), and edit_page () as follows:

return dict (page=context, content=content, edit_url=edit_url,
logged_in=request.authenticated_userid)

return dict (page=page, save_url=save_url,
logged_in=request.authenticated_userid)

return dict (page=context,
save_url=request.resource_url (context, 'edit_page'),
logged_in=request.authenticated_userid)

Only the highlighted lines need to be added or edited.

The pyramid. request.Request.authenticated_userid () will be None if the user is not
authenticated, or a userid if the user is authenticated.

Add a “Logout” link when logged in

Opentutorial/templates/edit.pt and tutorial/templates/view.pt and add the fol-
lowing code as indicated by the highlighted lines.

276

0.1. TUTORIALS

<div class="col-md-10">

<div class="content">

<p tal:condition="logged_in" class="pull-right">
Logout

</p>

The attribute tal:condition="1logged_in" will make the element be included when 1ogged_in
is any user id. The link will invoke the logout view. The above element will not be included if
logged_in is None, such as when a user is not authenticated.

Reviewing our changes

Our tutorial/__init_ .py will look like this when we’re done:

20

21

22

23

24

25

26

27

from pyramid.config import Configurator
from pyramid_zodbconn import get_connection

from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy

from .models import appmaker
from .security import groupfinder

def root_factory(request) :

conn =
return

def main(global_config, =**settings):
""" This function returns a Pyramid WSGI application.

mmwn

authn_policy = AuthTktAuthenticationPolicy (

'sosecret', callback=groupfinder, hashalg='shab512")
authz_policy = ACLAuthorizationPolicy ()
= Configurator (root_factory=root_factory, settings=settings)
set_authentication_policy (authn_policy)
.set_authorization_policy (authz_policy)
include ('pyramid_chameleon')
add_static_view('static'

config

config.

config

config.
config.
config.

return

get_connection (request)
appmaker (conn.root ())

scan ()
config.make_wsgi_app ()

, 'static', cache_max_age=3600)

277

CONTENTS

Only the highlighted lines need to be added or edited.

Our tutorial/models.py will look like this when we’re done:

1 | from persistent import Persistent
2 | from persistent.mapping import PersistentMapping

4+ | from pyramid.security import (
5 Allow,

6 Everyone,

7)

9 |class Wiki (PersistentMapping) :

10 __name___ = None

1 __parent__ = None

12 _acl___ = [(Allow, Everyone, 'view'),

13 (Allow, 'group:editors', 'edit')]

15 |class Page (Persistent) :
16 def _ init_ (self, data):
17 self.data = data

19 |def appmaker (zodb_root) :

20 if 'app_root' not in zodb_root:

21 app_root = Wiki ()

2 frontpage = Page('This is the front page')
23 app_root['FrontPage'] = frontpage

2 frontpage. name_ = 'FrontPage'

25 frontpage.___parent___ = app_root

26 zodb_root ['app_root'] = app_root

27 import transaction

28 transaction.commit ()

29 return zodb_root['app_root']

Only the highlighted lines need to be added or edited.

Our tutorial/views.py will look like this when we’re done:

1 | from docutils.core import publish_parts
2 | import re

4 | from pyramid.httpexceptions import HTTPFound

¢ | from pyramid.view import (
7 view_config,

278

0.1. TUTORIALS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

forbidden_view_config,

)

from pyramid.security import (
remember,
forget,
)

from .security import USERS
from .models import Page

regular expression used to find WikiWords
wikiwords = re.compile (r"\b ([A-Z]\w+[A-Z]+\w+)")

@view_config(context="'.models.Wiki"',
permission="'view')
def view_wiki (context, request):
return HTTPFound (location=request.resource_url (context, 'FrontPage'))

@view_config(context='.models.Page', renderer='templates/view.pt',
permission="'view'")
def view_page (context, request):
wiki = context.__parent___

def check (match) :

word = match.group (1)

if word in wiki:
page = wiki[word]
view_url = request.resource_url (page)
return '%s5' % (view_url, word)

else:
add_url = request.application_url + '/add_page/' + word
return '%s' % (add_url, word)

content = publish_parts(context.data, writer_name='html') ['html_body']
content = wikiwords.sub (check, content)
edit_url = request.resource_url (context, 'edit_page')

return dict (page=context, content=content, edit_url=edit_url,
logged_in=request.authenticated_userid)

@view_config(name="'add_page', context='.models.Wiki',
renderer="templates/edit.pt',
permission='edit'")

def add_page (context, request):

279

CONTENTS

54 pagename = request.subpath[0]

55 if 'form.submitted' in request.params:

56 body = request.params|['body']

57 page = Page (body)

58 page._ name_ = pagename

59 page.__parent__ = context

60 context [pagename] = page

61 return HTTPFound (location=request.resource_url (page))
62 save_url = request.resource_url (context, 'add _page', pagename)
63 page = Page('")

64 page._name_ = pagename

65 page.__parent__ = context

66

67 return dict (page=page, save_url=save_url,

68 logged_in=request.authenticated_userid)

69

70 | @view_config(name='edit_page', context='.models.Page',

71 renderer="templates/edit.pt',

7 permission='edit'")

73 |def edit_page (context, request):

74 if 'form.submitted' in request.params:

75 context.data = request.params|['body']

76 return HTTPFound (location=request.resource_url (context))
77

78 return dict (page=context,

79 save_url=request.resource_url (context, 'edit_page'),
80 logged_in=request.authenticated_userid)

81

82 | @view_config(context="'.models.Wiki', name='login',

83 renderer="templates/login.pt")

34 | @forbidden_view_config(renderer='templates/login.pt'")

ss |def login (request) :

86 login_url = request.resource_url (request.context, 'login')
87 referrer = request.url

88 if referrer == login_url:

89 referrer = '/ # never use the login form itself as came_from
90 came_from = request.params.get ('came_from', referrer)

91 message = ''

92 login = "'

93 password = "'

94 if 'form.submitted' in request.params:

95 login = request.params|['login']

96 password = request.params]|'password']

97 if USERS.get (login) == password:

98 headers = remember (request, login)

99 return HTTPFound (location=came_from,

280

0.1. TUTORIALS

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

headers=headers)
message = 'Failed login'

return dict (
message=message,
url=request.application_url + '/login',
came_from=came_from,
login=login,
password=password,

@view_config(context='.models.Wiki', name='logout')
def logout (request) :
headers = forget (request)
return HTTPFound (location=request.resource_url (request.context),
headers=headers)

Only the highlighted lines need to be added or edited.

Our tutorial/templates/edit.pt template will look like this when we’re done:

[N}

w

<!DOCTYPE html>
<html lang="${request.locale_name}">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="pyramid web application">
<meta name="author" content="Pylons Project">
<1link rel="shortcut icon" href="${request.static_url ('tutorial:static/
—pyramid-16x16.png') } ">

<title>${page.__name__} - Pyramid tutorial wiki (based on
TurboGears 20-Minute Wiki)</title>

<!-- Bootstrap core CSS —-->
<link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/
—pbootstrap.min.css" rel="stylesheet">

<!-— Custom styles for this scaffold —-->
<link href="${request.static_url ('tutorial:static/theme.css')}" rel=

—"stylesheet">

<!-— HTML5 shim and Respond. js IE8 support of HTML5 elements and media,,
—queries ——>

281

CONTENTS

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

<!-—[if 1t IE 9]>
<script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv. js"></
—script>
<script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min. js">
—~</script>
<!'fendif]-->
</head>
<body>

<div class="starter-template">
<div class="container">
<div class="row">
<div class="col-md-2">
<img class="logo img-responsive" src="${request.static_url (
—'tutorial:static/pyramid.png') }" alt="pyramid web framework">
</div>
<div class="col-md-10">
<div class="content">
<p tal:condition="logged_in" class="pull-right">
Logout
</p>
<p>
Editing
Page Name Goes Here
</p>
<p>You can return to the
FrontPage.
</p>
<form action="${save_url}" method="post">
<div class="form-group">
<textarea class="form-control" name="body" tal:content=
—"page.data" rows="10" cols="60"></textarea>
</div>
<div class="form-group">
<button type="submit" name="form.submitted" wvalue="Save"
—class="btn btn-default">Save</button>
</div>
</form>
</div>
</div>
</div>
<div class="row">
<div class="copyright">
Copyright © Pylons Project
</div>
</div>

282

0.1. TUTORIALS

62

63

65

66

67

68

69

70

7

72

</div>
</div>
<!-- Bootstrap core JavaScript
m———————————— === e e e >
<!-- Placed at the end of the document so the pages load faster —-—>
<secript src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min. js"></
—script>

<script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/
—bootstrap.min. js"></script>
</body>
</html>

Only the highlighted lines need to be added or edited.

Our tutorial/templates/view.pt template will look like this when we’re done:

20

21

22

23

<!DOCTYPE html>
<html lang="${request.locale_name}">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="pyramid web application">
<meta name="author" content="Pylons Project">
<link rel="shortcut icon" href="S${request.static_url ('tutorial:static/
—pyramid-16x16.png') } ">

<title>${page.__name__} - Pyramid tutorial wiki (based on
TurboGears 20-Minute Wiki)</title>

<!-- Bootstrap core CSS ——>
<1link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/
—bootstrap.min.css" rel="stylesheet">

<!-- Custom styles for this scaffold —-->
<link href="${request.static_url ('tutorial:static/theme.css')}" rel=
—~"stylesheet">

<!-— HTML5 shim and Respond. js IE8 support of HTML5 elements and media_,
—queries ——>
<!-—-[if 1t IE 9]>
<script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv. js"></
—script>
<script src="//oss.maxcdn.com/libs/respond. js/1.3.0/respond.min. js">
—</script>

283

CONTENTS

24 <!'lendif]—-—>

25 </head>

2 <body>

27

28 <div class="starter-template">

29 <div class="container">

30 <div class="row">

31 <div class="col-md-2">

32 <img class="logo img-responsive" src="${request.static_url(
—'tutorial:static/pyramid.png')}" alt="pyramid web framework">

33 </div>

34 <div class="col-md-10">

35 <div class="content">

36 <p tal:condition="logged_in" class="pull-right">

37 Logout

38 </p>

39 <div tal:replace="structure content">

40 Page text goes here.

41 </div>

42 <p>

43 <a tal:attributes="href edit_url" href="">

44 Edit this page

45

46 </p>

47 <p>

48 Viewing

49 Page Name Goes Here

50 </p>

51 <p>You can return to the

52 FrontPage.

53 </p>

54 </div>

55 </div>

56 </div>

57 <div class="row">

58 <div class="copyright">

59 Copyright © Pylons Project

60 </div>

61 </div>

62 </div>

63 </div>

64

65

66 <!-- Bootstrap core JavaScript

67 e e e i

68 <!-- Placed at the end of the document so the pages load faster —-->

284

0.1. TUTORIALS

69

70

72

<script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min. js"></

—script>

<secript src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/Js/

—bootstrap.min. js"></script>

</body>

</html>

Only the highlighted lines need to be added or edited.

Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLSs, checking that the result is as expected:

http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage Page resource. It is executable by any user.

http://localhost:6543/FrontPage invokes the view_page view of the FrontPage Page resource.
This is because it’s the default view (a view without a name) for Page resources. It is executable
by any user.

http://localhost:6543/FrontPage/edit_page invokes the edit view for the FrontPage object. It is ex-
ecutable by only the editor user. If a different user (or the anonymous user) invokes it, a login
form will be displayed. Supplying the credentials with the username editor, password editor
will display the edit page form.

http://localhost:6543/add_page/SomePageName invokes the add view for a page. It is executable
by only the editor user. If a different user (or the anonymous user) invokes it, a login form will be
displayed. Supplying the credentials with the username editor, password editor will display
the edit page form.

After logging in (as a result of hitting an edit or add page and submitting the login form with the
editor credentials), we’ll see a Logout link in the upper right hand corner. When we click it,
we’re logged out, and redirected back to the front page.

Adding Tests

We will now add tests for the models and the views and a few functional tests in tests . py. Tests ensure
that an application works, and that it continues to work when changes are made in the future.

285

http://localhost:6543/
http://localhost:6543/FrontPage
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName

CONTENTS

Test the models

We write tests for the model classes and the appmaker. Changing tests.py, we’ll write a separate
test class for each model class, and we’ll write a test class for the appmaker.

To do so, we’ll retain the tutorial . tests.ViewTests class that was generated as part of the zodb

scaffold. We’ll add three test classes: one for the Page model named PageModelTests, one for the
Wiki model named WikiModelTests, and one for the appmaker named AppmakerTests.

Test the views

We’ll modify our tests.py file, adding tests for each view function we added previously. As a
result, we’ll delete the ViewTests class that the zodb scaffold provided, and add four other test
classes: ViewWikiTests, ViewPageTests, AddPageTests, and EditPageTests. These test
the view_wiki, view_page, add_page, and edit_page views.

Functional tests

We’ll test the whole application, covering security aspects that are not tested in the unit tests, like logging
in, logging out, checking that the viewer user cannot add or edit pages, but the editor user can, and
SO on.

View the results of all our edits to tests.py

Open the tutorial/tests.py module, and edit it such that it appears as follows:

import unittest

w

from pyramid import testing

w

class PageModelTests (unittest.TestCase):

7 def _getTargetClass(self):
8 from .models import Page
9 return Page

1 def _makeOne(self, data=u'some data'):

286

0.1. TUTORIALS

20

21

22

23

24

25

26

27

28

29

30

31

3

b

33

34

35

36

37

38

39

40

41

2

43

45

46

47

48

49

50

51

52

53

54

55

56

57

return self._getTargetClass () (data=data)
def test_constructor(self):
instance = self._makeOne ()
self.assertEqual (instance.data, u'some data')
class WikiModelTests (unittest.TestCase) :
def _getTargetClass(self):
from .models import Wiki

return Wiki

def _makeOne (self):
return self._getTargetClass () ()

def test_it (self):

wiki = self._makeOne ()
self.assertEqual (wiki.__parent__, None)
self.assertEqual (wiki. name_, None)

class AppmakerTests (unittest.TestCase):
def _callFUT(self, zodb_root):
from .models import appmaker

return appmaker (zodb_root)

def test_it (self):

root = {}
self._callFUT (root)
self.assertEqual (root['app_root']['FrontPage'].data,

'This is the front page')

class ViewWikiTests (unittest.TestCase) :
def test_it (self):
from .views import view_wiki

context = testing.DummyResource ()
request = testing.DummyRequest ()
response = view_wiki (context, request)

self.assertEqual (response.location, 'http://example.com/FrontPage')

class ViewPageTests (unittest.TestCase) :
def _callFUT(self, context, request):
from .views import view_page
return view_page (context, request)

def test_it (self):

287

CONTENTS

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

wiki = testing.DummyResource ()

wiki['IDoExist'] = testing.DummyResource ()

context = testing.DummyResource (data='Hello CruelWorld IDoExist')
context.__parent_ = wiki

context.__name__ = 'thepage'

request = testing.DummyRequest ()

info = self._callFUT (context, request)

self.assertEqual (info['page'], context)
self.assertEqual (
info['content'],
'<div class="document">\n"
'<p>Hello "
'CruelWorld '
'"
'IDoExist"
'</p>\n</div>\n")
self.assertEqual (info['edit_url'],
'http://example.com/thepage/edit_page')

class AddPageTests (unittest.TestCase):

def

def

def

_callFUT (self, context, request):
from .views import add_page
return add_page (context, request)

test_it_notsubmitted(self):
context = testing.DummyResource ()
request = testing.DummyRequest ()
request.subpath = ['AnotherPage']
info = self._callFUT (context, request)
self.assertEqual (info['page'].data,'")
self.assertEqual (
info['save_url'],
request.resource_url (context, 'add _page', 'AnotherPage'))

test_it_submitted(self):

context = testing.DummyResource ()

request = testing.DummyRequest ({'form.submitted':True,
'body':"'Hello yo!'})

request.subpath = ['AnotherPage']

self._callFUT (context, request)

page = context['AnotherPage']

self.assertEqual (page.data, 'Hello yo!")

self.assertEqual (page._ name__, 'AnotherPage')

self.assertEqual (page.__parent__, context)

288

0.1. TUTORIALS

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

class EditPageTests (unittest.TestCase) :
def _callFUT (self, context, request):
from .views import edit_page
return edit_page (context, request)

def test_it_notsubmitted(self):

context = testing.DummyResource ()
request = testing.DummyRequest ()
info = self._callFUT (context, request)

self.assertEqual (info['page'], context)
self.assertEqual (info['save_url'],
request.resource_url (context, 'edit_page'))

def test_it_submitted(self):

context = testing.DummyResource ()

request = testing.DummyRequest ({'form.submitted':True,
'body':"'Hello yo!'})

response = self._callFUT (context, request)

self.assertEqual (response.location, 'http://example.com/")
self.assertEqual (context.data, 'Hello yo!')

class FunctionalTests (unittest.TestCase) :

viewer_login = '/login?login=viewer&password=viewer' \
'&came_from=FrontPage&form.submitted=Login'

viewer_wrong_login = '/login?login=viewergpassword=incorrect' \
'&came_from=FrontPage&form.submitted=Login'

editor_login = '/login?login=editor&password=editor' \

'&came_from=FrontPage&form.submitted=Login'

def setUp(self):
import tempfile
import os.path
from . import main
self.tmpdir = tempfile.mkdtemp ()

dbpath = os.path.join(self.tmpdir, 'test.db'")

uri = 'file://' + dbpath
settings = { 'zodbconn.uri' : uri ,
'pyramid.includes': ['pyramid_zodbconn', 'pyramid_tm

app = main({}, +*+*settings)

self.db = app.registry._zodb_databases['']
from webtest import TestApp

self.testapp = TestApp (app)

289

CONTENTS

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

def

def

def

def

def

def

def

def

def

def

def

tearDown (self) :

import shutil
self.db.close ()
shutil.rmtree(self.tmpdir)

test_root (self):
res = self.testapp.get('/', status=302)
self.assertEqual (res.location, 'http://localhost/FrontPage')

test_FrontPage (self) :
res = self.testapp.get ('/FrontPage', status=200)
self.assertTrue (b'FrontPage' in res.body)

test_unexisting_page (self):
res = self.testapp.get ('/SomePage', status=404)
self.assertTrue (b'Not Found' in res.body)

test_referrer_is_login(self):
res = self.testapp.get('/login', status=200)
self.assertTrue (b'name="came_from" value="/"' in res.body)

test_successful_log_in(self):
res = self.testapp.get(self.viewer_login, status=302)
self.assertEqual (res.location, 'http://localhost/FrontPage')

test_failed_log_in(self):
res = self.testapp.get(self.viewer_wrong_login, status=200)
self.assertTrue(b'login' in res.body)

test_logout_link_present_when_logged_in(self):

res = self.testapp.get(self.viewer_login, status=302)
res = self.testapp.get ('/FrontPage', status=200)
self.assertTrue (b'Logout' in res.body)

test_logout_link_not_present_after_logged_out (self):
res = self.testapp.get(self.viewer_login, status=302)
res = self.testapp.get ('/FrontPage', status=200)

res = self.testapp.get ('/logout', status=302)
self.assertTrue (b'Logout' not in res.body)

test_anonymous_user_cannot_edit (self):
res = self.testapp.get ('/FrontPage/edit_page', status=200)

self.assertTrue(b'Login' in res.body)

test_anonymous_user_cannot_add(self) :

290

0.1. TUTORIALS

195 res = self.testapp.get ('/add_page/NewPage', status=200)
196 self.assertTrue(b'Login' in res.body)

197

198 def test_viewer_user_cannot_edit (self):

199 res = self.testapp.get(self.viewer_login, status=302)
200 res = self.testapp.get ('/FrontPage/edit_page', status=200)
201 self.assertTrue(b'Login' in res.body)

202

203 def test_viewer_user_cannot_add(self) :

204 res = self.testapp.get(self.viewer_login, status=302)
205 res = self.testapp.get ('/add_page/NewPage', status=200)
206 self.assertTrue(b'Login' in res.body)

207

208 def test_editors_member user_can_edit (self):

209 res = self.testapp.get(self.editor_login, status=302)
210 res = self.testapp.get ('/FrontPage/edit_page', status=200)
211 self.assertTrue (b'Editing' in res.body)

212

213 def test_editors_member user_can_add(self) :

214 res = self.testapp.get(self.editor_login, status=302)
215 res = self.testapp.get ('/add_page/NewPage', status=200)
216 self.assertTrue(b'Editing' in res.body)

217

218 def test_editors_member_ user_can_view(self) :

219 res = self.testapp.get(self.editor_login, status=302)
220 res = self.testapp.get ('/FrontPage', status=200)

21 self.assertTrue (b'FrontPage' in res.body)

Running the tests

We can run these tests by using py.test similarly to how we did in Run the tests. Courtesy of the
scaffold, our testing dependencies have already been satisfied and py . test and coverage have already
been configured, so we can jump right to running tests.

On UNIX:

$ SVENV/bin/py.test -q

On Windows:

291

CONTENTS

c:\pyramidtut\tutorial> $VENV%\Scripts\py.test -qg

The expected result should look like the following:

24 passed in 2.46 seconds

Distributing Your Application

Once your application works properly, you can create a “tarball” from it by using the setup.py sdist
command. The following commands assume your current working directory is the tutorial package
we’ve created and that the parent directory of the tutorial package is a virtual environment represent-
ing a Pyramid environment.

On UNIX:

’$ SVENV/bin/python setup.py sdist

On Windows:

’c:\pyramidtut> SVENV%\Scripts\python setup.py sdist ‘

The output of such a command will be something like:

running sdist

more output

creating dist

Creating tar archive

removing 'tutorial-0.0' (and everything under it)

Note that this command creates a tarball in the “dist” subdirectory named tutorial-0.0.tar.gz.
You can send this file to your friends to show them your cool new application. They should be able to
install it by pointing the pip install . command directly at it. Or you can upload it to PyPI and
share it with the rest of the world, where it can be downloaded via pip install remotely like any
other package people download from PyPI.

292

https://pypi.python.org/pypi

0.1. TUTORIALS

Running a Pyramid Application under mod_wsgi

mod_wsgi is an Apache module developed by Graham Dumpleton. It allows WSGI programs to be served
using the Apache web server.

This guide will outline broad steps that can be used to get a Pyramid application running under Apache via
mod_wsgi. This particular tutorial was developed under Apple’s Mac OS X platform (Snow Leopard,
on a 32-bit Mac), but the instructions should be largely the same for all systems, delta specific path
information for commands and files.

O Unfortunately these instructions almost certainly won’t work for deploying a Pyramid application
on a Windows system using mod_wsgi. If you have experience with Pyramid and mod_wsgi on
Windows systems, please help us document this experience by submitting documentation to the Pylons-
devel maillist.

1. The tutorial assumes you have Apache already installed on your system. If you do not, install
Apache 2.X for your platform in whatever manner makes sense.

2. Itis also assumed that you have satisfied the Requirements for Installing Packages.

3. Once you have Apache installed, install mod_wsgi. Use the (excellent) installation instructions
for your platform into your system’s Apache installation.

4. Create a virtual environment which we’ll use to install our application.

cd ~
mkdir modwsgi
cd modwsgi

Uy W Ay

python3 -m venv env

5. Install Pyramid into the newly created virtual environment:

$ cd ~/modwsgi/env
$ SVENV/bin/pip install "pyramid==1.7.6"

6. Create and install your Pyramid application. For the purposes of this tutorial, we’ll just be using
the pyramid_starter application as a baseline application. Substitute your existing Pyramid
application as necessary if you already have one.

293

https://groups.google.com/forum/#!forum/pylons-devel
https://groups.google.com/forum/#!forum/pylons-devel
https://code.google.com/archive/p/modwsgi/wikis/InstallationInstructions.wiki

CONTENTS

cd ~/modwsgi/env

SVENV/bin/pcreate -s starter myapp
cd myapp

SVENV/bin/pip install -e

n r

7. Within the virtual environment directory (~/modwsgi/env), create a script named pyramid.
wsgi. Give it these contents:

from pyramid.paster import get_app, setup_logging

ini_path = '/Users/chrism/modwsgi/env/myapp/production.ini’
setup_logging (ini_path)

application = get_app(ini_path, 'main')

The first argument to get_app is the project configuration file name. It’s best to use the
production. ini file provided by your scaffold, as it contains settings appropriate for produc-
tion. The second is the name of the section within the .ini file that should be loaded by mod_wsgi.
The assignment to the name application is important: mod_wsgi requires finding such an
assignment when it opens the file.

The call to setup_logging initializes the standard library’s logging module to allow logging
within your application. See Logging Configuration.

There is no need to make the pyramid.wsgi script executable. However, you’ll need to make
sure that two users have access to change into the ~/modwsgi /env directory: your current user
(mine is chrism and the user that Apache will run as often named apache or httpd). Make
sure both of these users can “cd” into that directory.

8. Edit your Apache configuration and add some stuff. I happened to create a file named /etc/
apache2/other/modwsgi.conf on my own system while installing Apache, so this stuff
went in there.

Use only 1 Python sub-interpreter. Multiple sub-interpreters

play badly with C extensions. See

http://stackoverflow.com/a/10558360/209039

WSGIApplicationGroup %{GLOBAL}

WSGIPassAuthorization On

WSGIDaemonProcess pyramid user=chrism group=staff threads=4 \
python-path=/Users/chrism/modwsgi/env/1lib/python2.7/site-packages

WSGIScriptAlias /myapp /Users/chrism/modwsgi/env/pyramid.wsgi

<Directory /Users/chrism/modwsgi/env>
WSGIProcessGroup pyramid

294

0.2. NARRATIVE DOCUMENTATION

Order allow,deny
Allow from all
</Directory>

9. Restart Apache

$ sudo /usr/sbin/apachectl restart

10. Visit http://localhost/myapp in a browser. You should see the sample application ren-
dered in your browser.

mod_wsgi has many knobs and a great variety of deployment modes. This is just one representation of
how you might use it to serve up a Pyramid application. See the mod_wsgi configuration documentation
for more in-depth configuration information.

Narrative Documentation

Pyramid Introduction

Pyramid is a general, open source, Python web application development framework. Its primary goal is
to make it easier for a Python developer to create web applications.

Frameworks vs. Libraries

A framework differs from a library in one very important way: library code is always called by code
that you write, while a framework always calls code that you write. Using a set of libraries to create an
application is usually easier than using a framework initially, because you can choose to cede control to
library code you have not authored very selectively. But when you use a framework, you are required
to cede a greater portion of control to code you have not authored: code that resides in the framework
itself. You needn’t use a framework at all to create a web application using Python. A rich set of li-
braries already exists for the platform. In practice, however, using a framework to create an application
is often more practical than rolling your own via a set of libraries if the framework provides a set of
facilities that fits your application requirements.

Pyramid attempts to follow these design and engineering principles:

295

https://modwsgi.readthedocs.io/en/develop/configuration.html

CONTENTS

Simplicity Pyramid takes a “pay only for what you eat” approach. You can get results even if you have
only a partial understanding of Pyramid. It doesn’t force you to use any particular technology to
produce an application, and we try to keep the core set of concepts that you need to understand to
a minimum.

Minimalism Pyramid tries to solve only the fundamental problems of creating a web application: the
mapping of URLs to code, templating, security, and serving static assets. We consider these to be
the core activities that are common to nearly all web applications.

Documentation Pyramid’s minimalism means that it is easier for us to maintain complete and up-to-date
documentation. It is our goal that no aspect of Pyramid is undocumented.

Speed Pyramid is designed to provide noticeably fast execution for common tasks such as templating
and simple response generation.

Reliability Pyramid is developed conservatively and tested exhaustively. Where Pyramid source code is
concerned, our motto is: “If it ain’t tested, it’s broke”.

Openness As with Python, the Pyramid software is distributed under a permissive open source license.

What makes Pyramid unique

Understandably, people don’t usually want to hear about squishy engineering principles; they want to
hear about concrete stuff that solves their problems. With that in mind, what would make someone want
to use Pyramid instead of one of the many other web frameworks available today? What makes Pyramid
unique?

This is a hard question to answer because there are lots of excellent choices, and it’s actually quite hard
to make a wrong choice, particularly in the Python web framework market. But one reasonable answer
is this: you can write very small applications in Pyramid without needing to know a lot. “What?” you
say. “That can’t possibly be a unique feature. Lots of other web frameworks let you do that!” Well,
you’re right. But unlike many other systems, you can also write very large applications in Pyramid if you
learn a little more about it. Pyramid will allow you to become productive quickly, and will grow with
you. It won’t hold you back when your application is small, and it won’t get in your way when your
application becomes large. “Well that’s fine,” you say. “Lots of other frameworks let me write large apps,
too.” Absolutely. But other Python web frameworks don’t seamlessly let you do both. They seem to fall
into two non-overlapping categories: frameworks for “small apps” and frameworks for “big apps”. The
“small app” frameworks typically sacrifice “big app” features, and vice versa.

We don’t think it’s a universally reasonable suggestion to write “small apps” in a “small framework™ and

“big apps” in a “big framework”. You can’t really know to what size every application will eventually
grow. We don’t really want to have to rewrite a previously small application in another framework when

296

http://repoze.org/license.html

0.2. NARRATIVE DOCUMENTATION

it gets “too big”. We believe the current binary distinction between frameworks for small and large
applications is just false. A well-designed framework should be able to be good at both. Pyramid strives
to be that kind of framework.

To this end, Pyramid provides a set of features that combined are unique amongst Python web frameworks.
Lots of other frameworks contain some combination of these features. Pyramid of course actually stole
many of them from those other frameworks. But Pyramid is the only one that has all of them in one place,
documented appropriately, and useful a la carte without necessarily paying for the entire banquet. These
are detailed below.

Single-file applications

You can write a Pyramid application that lives entirely in one Python file, not unlike existing Python mi-
croframeworks. This is beneficial for one-off prototyping, bug reproduction, and very small applications.
These applications are easy to understand because all the information about the application lives in a sin-
gle place, and you can deploy them without needing to understand much about Python distributions and
packaging. Pyramid isn’t really marketed as a microframework, but it allows you to do almost everything
that frameworks that are marketed as “micro” offer in very similar ways.

from wsgiref.simple_ server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request) :

return Response ('Hello " % request.matchdict)
if name == '_ main_ ':
config = Configurator ()

config.add_route ('hello', '/hello/ ")
config.add_view(hello_world, route_name='hello')
app = config.make_wsgi_app ()

server = make_server ('0.0.0.0", 8080, app)
server.serve_forever ()

See also:

See also Creating Your First Pyramid Application.

297

CONTENTS

Decorator-based configuration

If you like the idea of framework configuration statements living next to the code it configures, so you
don’t have to constantly switch between files to refer to framework configuration when adding new code,
you can use Pyramid decorators to localize the configuration. For example:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='fred')
def fred_view(request):
return Response ('fred')

However, unlike some other systems, using decorators for Pyramid configuration does not make your ap-
plication difficult to extend, test, or reuse. The view_config decorator, for example, does not actually
change the input or output of the function it decorates, so testing it is a “WYSIWYG” operation. You
don’t need to understand the framework to test your own code. You just behave as if the decorator is not
there. You can also instruct Pyramid to ignore some decorators, or use completely imperative configu-
ration instead of decorators to add views. Pyramid decorators are inert instead of eager. You detect and
activate them with a scan.

Example: Adding View Configuration Using the @view_config Decorator.

URL generation

Pyramid is capable of generating URLSs for resources, routes, and static assets. Its URL generation APIs
are easy to use and flexible. If you use Pyramid’s various APIs for generating URLs, you can change your
configuration around arbitrarily without fear of breaking a link on one of your web pages.

Example: Generating Route URLs.

Static file serving

Pyramid is perfectly willing to serve static files itself. It won’t make you use some external web server
to do that. You can even serve more than one set of static files in a single Pyramid web application
(e.g., /staticand /static?2). You can optionally place your files on an external web server and ask
Pyramid to help you generate URLSs to those files. This let’s you use Pyramid’s internal file serving while
doing development, and a faster static file server in production, without changing any code.

Example: Serving Static Assets.

298

0.2. NARRATIVE DOCUMENTATION

Fully interactive development

When developing a Pyramid application, several interactive features are available. Pyramid can auto-
matically utilize changed templates when rendering pages and automatically restart the application to
incorporate changed Python code. Plain old print () calls used for debugging can display to a console.

Pyramid’s debug toolbar comes activated when you use a Pyramid scaffold to render a project. This
toolbar overlays your application in the browser, and allows you access to framework data, such as the
routes configured, the last renderings performed, the current set of packages installed, SQLAlchemy
queries run, logging data, and various other facts. When an exception occurs, you can use its interactive
debugger to poke around right in your browser to try to determine the cause of the exception. It’s handy.

Example: The Debug Toolbar.

Debugging settings

Pyramid has debugging settings that allow you to print Pyramid runtime information to the console when
things aren’t behaving as you’re expecting. For example, you can turn on debug_not found, which
prints an informative message to the console every time a URL does not match any view. You can turn
on debug_authorization, which lets you know why a view execution was allowed or denied by
printing a message to the console. These features are useful for those WTF moments.

There are also a number of commands that you can invoke within a Pyramid environment that allow you
to introspect the configuration of your system. proutes shows all configured routes for an application
in the order they’ll be evaluated for matching. pviews shows all configured views for any given URL.

These are also WTF-crushers in some circumstances.

Examples: Debugging View Authorization Failures and Command-Line Pyramid.

Add-ons

Pyramid has an extensive set of add-ons held to the same quality standards as the Pyramid core itself. Add-
ons are packages which provide functionality that the Pyramid core doesn’t. Add-on packages already
exist which let you easily send email, let you use the Jinja2 templating system, let you use XML-RPC or
JSON-RPC, let you integrate with jQuery Mobile, etc.

Examples: https://trypyramid.com/resources-extending-pyramid.html

299

https://trypyramid.com/resources-extending-pyramid.html

CONTENTS

Class-based and function-based views

Pyramid has a structured, unified concept of a view callable. View callables can be functions, methods
of classes, or even instances. When you add a new view callable, you can choose to make it a function
or a method of a class. In either case Pyramid treats it largely the same way. You can change your mind
later and move code between methods of classes and functions. A collection of similar view callables can
be attached to a single class as methods, if that floats your boat, and they can share initialization code as
necessary. All kinds of views are easy to understand and use, and operate similarly. There is no phony
distinction between them. They can be used for the same purposes.

Here’s a view callable defined as a function:

1 | from pyramid.response import Response
2 | from pyramid.view import view_config

4| @view_config(route_name='aview')
s |def aview (request) :
6 return Response ('one')

Here’s a few views defined as methods of a class instead:

i1 | from pyramid.response import Response

2 | from pyramid.view import view_config

3

4| class AView (object) :

5 def __ _init__ (self, request):

6 self.request = request

7

8 @view_config (route_name='view_one')
9 def view_one(self):

10 return Response ('one')

11

12 @view_config(route_name='view_two')
13 def view_two (self):

14 return Response ('two')

See also:

See also @view_config Placement.

300

0.2. NARRATIVE DOCUMENTATION

Asset specifications

Asset specifications are strings that contain both a Python package name and a file or directory name, e.g.,
MyPackage:static/index.html. Use of these specifications is omnipresent in Pyramid. An asset
specification can refer to a template, a translation directory, or any other package-bound static resource.
This makes a system built on Pyramid extensible because you don’t have to rely on globals (“the static
directory”) or lookup schemes (“the ordered set of template directories”) to address your files. You can
move files around as necessary, and include other packages that may not share your system’s templates or
static files without encountering conflicts.

Because asset specifications are used heavily in Pyramid, we’ve also provided a way to allow users to
override assets. Say you love a system that someone else has created with Pyramid but you just need to
change “that one template” to make it all better. No need to fork the application. Just override the asset
specification for that template with your own inside a wrapper, and you’re good to go.

Examples: Understanding Asset Specifications and Overriding Assets.

Extensible templating

Pyramid has a structured API that allows for pluggability of “renderers”. Templating systems such as
Mako, Genshi, Chameleon, and Jinja2 can be treated as renderers. Renderer bindings for all of these
templating systems already exist for use in Pyramid. But if you’d rather use another, it’s not a big deal.
Just copy the code from an existing renderer package, and plug in your favorite templating system. You’ll
then be able to use that templating system from within Pyramid just as you’d use one of the “built-in”
templating systems.

Pyramid does not make you use a single templating system exclusively. You can use multiple templating
systems, even in the same project.

Example: Using Templates Directly.

Rendered views can return dictionaries

If you use a renderer, you don’t have to return a special kind of “webby” Response object from a
view. Instead you can return a dictionary, and Pyramid will take care of converting that dictionary to a
Response using a template on your behalf. This makes the view easier to test, because you don’t have
to parse HTML in your tests. Instead just make an assertion that the view returns “the right stuff” in the
dictionary. You can write “real” unit tests instead of functionally testing all of your views.

For example, instead of returning a Response object from a render_to_response call:

301

CONTENTS

from pyramid.renderers import render_to_response

w

def myview (request) :
4 return render_to_response ('myapp:templates/mytemplate.pt', {'a':1},
5 request=request)

You can return a Python dictionary:

from pyramid.view import view_config

w

@view_config(renderer='myapp:templates/mytemplate.pt')
def myview (request) :
5 return {'a':1}

I

When this view callable is called by Pyramid, the { 'a':1} dictionary will be rendered to a response
on your behalf. The string passed as renderer= above is an asset specification. It is in the form
packagename:directoryname/filename.ext. In this case, it refers to the mytemplate.pt
file in the templates directory within the myapp Python package. Asset specifications are omnipresent
in Pyramid. See Asset specifications for more information.

Example: Renderers.

Event system

Pyramid emits events during its request processing lifecycle. You can subscribe any number of listeners to
these events. For example, to be notified of a new request, you can subscribe to the NewRequest event.
To be notified that a template is about to be rendered, you can subscribe to the BeforeRender event,
and so forth. Using an event publishing system as a framework notification feature instead of hardcoded
hook points tends to make systems based on that framework less brittle.

You can also use Pyramid’s event system to send your own events. For example, if you’d like to create
a system that is itself a framework, and may want to notify subscribers that a document has just been
indexed, you can create your own event type (Document Indexed perhaps) and send the event via
Pyramid. Users of this framework can then subscribe to your event like they’d subscribe to the events that
are normally sent by Pyramid itself.

Example: Using Events and Event Types.

302

0.2. NARRATIVE DOCUMENTATION

Built-in internationalization

Pyramid ships with internationalization-related features in its core: localization, pluralization, and creat-
ing message catalogs from source files and templates. Pyramid allows for a plurality of message catalogs
via the use of translation domains. You can create a system that has its own translations without conflict
with other translations in other domains.

Example: Internationalization and Localization.

HTTP caching

Pyramid provides an easy way to associate views with HTTP caching policies. You can just tell Pyramid
to configure your view with an http_cache statement, and it will take care of the rest:

@view_config (http_cache=3600) # 60 minutes
def myview (request) :

Pyramid will add appropriate Cache-Control and Expires headers to responses generated when
this view is invoked.

See the add_view () method’s http_cache documentation for more information.

Sessions

Pyramid has built-in HTTP sessioning. This allows you to associate data with otherwise anonymous
users between requests. Lots of systems do this. But Pyramid also allows you to plug in your own
sessioning system by creating some code that adheres to a documented interface. Currently there is a
binding package for the third-party Redis sessioning system that does exactly this. But if you have a
specialized need (perhaps you want to store your session data in MongoDB), you can. You can even
switch between implementations without changing your application code.

Example: Sessions.

303

CONTENTS

Speed

The Pyramid core is, as far as we can tell, at least marginally faster than any other existing Python web
framework. It has been engineered from the ground up for speed. It only does as much work as absolutely
necessary when you ask it to get a job done. Extraneous function calls and suboptimal algorithms in its
core codepaths are avoided. It is feasible to get, for example, between 3500 and 4000 requests per second
from a simple Pyramid view on commodity dual-core laptop hardware and an appropriate WSGI server
(mod_wsgi or gunicorn). In any case, performance statistics are largely useless without requirements and
goals, but if you need speed, Pyramid will almost certainly never be your application’s bottleneck; at least
no more than Python will be a bottleneck.

Example: http://blog.curiasolutions.com/pages/the- great-web-framework-shootout.html

Exception views

Exceptions happen. Rather than deal with exceptions that might present themselves to a user in production
in an ad-hoc way, Pyramid allows you to register an exception view. Exception views are like regular
Pyramid views, but they’re only invoked when an exception “bubbles up” to Pyramid itself. For example,
you might register an exception view for the Except ion exception, which will catch all exceptions, and
present a pretty “well, this is embarrassing” page. Or you might choose to register an exception view for
only specific kinds of application-specific exceptions, such as an exception that happens when a file is not
found, or an exception that happens when an action cannot be performed because the user doesn’t have
permission to do something. In the former case, you can show a pretty “Not Found” page; in the latter
case you might show a login form.

Example: Custom Exception Views.

No singletons

Pyramid is written in such a way that it requires your application to have exactly zero “singleton”
data structures. Or put another way, Pyramid doesn’t require you to construct any “mutable globals”.
Or put even another different way, an import of a Pyramid application needn’t have any “import-time
side effects”. This is esoteric-sounding, but if you’ve ever tried to cope with parameterizing a Django
settings.py file for multiple installations of the same application, or if you’ve ever needed to monkey-
patch some framework fixture so that it behaves properly for your use case, or if you've ever wanted to
deploy your system using an asynchronous server, you’ll end up appreciating this feature. It just won’t be
a problem. You can even run multiple copies of a similar but not identically configured Pyramid applica-
tion within the same Python process. This is good for shared hosting environments, where RAM is at a
premium.

304

http://blog.curiasolutions.com/pages/the-great-web-framework-shootout.html
https://docs.python.org/3/library/exceptions.html#Exception

0.2. NARRATIVE DOCUMENTATION

View predicates and many views per route

Unlike many other systems, Pyramid allows you to associate more than one view per route. For example,
you can create a route with the pattern /items and when the route is matched, you can shuffle off the
request to one view if the request method is GET, another view if the request method is POST, etc. A
system known as “view predicates” allows for this. Request method matching is the most basic thing
you can do with a view predicate. You can also associate views with other request parameters, such as
the elements in the query string, the Accept header, whether the request is an XHR request or not, and
lots of other things. This feature allows you to keep your individual views clean. They won’t need much
conditional logic, so they’ll be easier to test.

Example: View Configuration Parameters.

Transaction management

Pyramid’s scaffold system renders projects that include a transaction management system, stolen from
Zope. When you use this transaction management system, you cease being responsible for committing
your data anymore. Instead Pyramid takes care of committing: it commits at the end of a request or aborts
if there’s an exception. Why is that a good thing? Having a centralized place for transaction management
is a great thing. If, instead of managing your transactions in a centralized place, you sprinkle session.
commit calls in your application logic itself, you can wind up in a bad place. Wherever you manually
commit data to your database, it’s likely that some of your other code is going to run after your commit.
If that code goes on to do other important things after that commit, and an error happens in the later code,
you can easily wind up with inconsistent data if you’re not extremely careful. Some data will have been
written to the database that probably should not have. Having a centralized commit point saves you from
needing to think about this; it’s great for lazy people who also care about data integrity. Either the request
completes successfully, and all changes are committed, or it does not, and all changes are aborted.

Pyramid’s transaction management system allows you to synchronize commits between multiple
databases. It also allows you to do things like conditionally send email if a transaction commits, but

otherwise keep quiet.

Example: SQLAlchemy + URL dispatch wiki tutorial (note the lack of commit statements anywhere in
application code).

305

CONTENTS

Configuration conflict detection

When a system is small, it’s reasonably easy to keep it all in your head. But when systems grow large,
you may have hundreds or thousands of configuration statements which add a view, add a route, and so
forth.

Pyramid’s configuration system keeps track of your configuration statements. If you accidentally add two
that are identical, or Pyramid can’t make sense out of what it would mean to have both statements active
at the same time, it will complain loudly at startup time. It’s not dumb though. It will automatically
resolve conflicting configuration statements on its own if you use the configuration include () system.
“More local” statements are preferred over “less local” ones. This allows you to intelligently factor large
systems into smaller ones.

Example: Conflict Detection.

Configuration extensibility

Unlike other systems, Pyramid provides a structured “include” mechanism (see include ()) that allows
you to combine applications from multiple Python packages. All the configuration statements that can be
performed in your “main” Pyramid application can also be performed by included packages, including
the addition of views, routes, subscribers, and even authentication and authorization policies. You can
even extend or override an existing application by including another application’s configuration in your
own, overriding or adding new views and routes to it. This has the potential to allow you to create a big
application out of many other smaller ones. For example, if you want to reuse an existing application that
already has a bunch of routes, you can just use the include statement with a route_prefix. The
new application will live within your application at an URL prefix. It’s not a big deal, and requires little
up-front engineering effort.

For example:

from pyramid.config import Configurator

3|if _ name_ == '_ _main__ ':
4 config = Configurator()
5 config.include ('pyramid_ jinja2'")
6 config.include ('pyramid _exclog')

7 config.include ('some.other.guys.package', route_prefix='/someotherguy')

See also:

See also Including Configuration from External Sources and Rules for Building an Extensible Application.

306

0.2. NARRATIVE DOCUMENTATION

Flexible authentication and authorization

Pyramid includes a flexible, pluggable authentication and authorization system. No matter where your
user data is stored, or what scheme you’d like to use to permit your users to access your data, you can
use a predefined Pyramid plugpoint to plug in your custom authentication and authorization code. If you
want to change these schemes later, you can just change it in one place rather than everywhere in your
code. It also ships with prebuilt well-tested authentication and authorization schemes out of the box. But
what if you don’t want to use Pyramid’s built-in system? You don’t have to. You can just write your own
bespoke security code as you would in any other system.

Example: Enabling an Authorization Policy.

Traversal

Traversal is a concept stolen from Zope. It allows you to create a tree of resources, each of which can
be addressed by one or more URLs. Each of those resources can have one or more views associated with
it. If your data isn’t naturally treelike, or you’re unwilling to create a treelike representation of your data,
you aren’t going to find traversal very useful. However, traversal is absolutely fantastic for sites that need
to be arbitrarily extensible. It’s a lot easier to add a node to a tree than it is to shoehorn a route into an
ordered list of other routes, or to create another entire instance of an application to service a department
and glue code to allow disparate apps to share data. It’s a great fit for sites that naturally lend themselves
to changing departmental hierarchies, such as content management systems and document management
systems. Traversal also lends itself well to systems that require very granular security (“Bob can edit this
document” as opposed to “Bob can edit documents”).

Examples: Hello Traversal World and Much Ado About Traversal.

Tweens

Pyramid has a sort of internal WSGI-middleware-ish pipeline that can be hooked by arbitrary add-ons
named “tweens”. The debug toolbar is a “tween”, and the pyramid_tm transaction manager is also.
Tweens are more useful than WSGI middleware in some circumstances because they run in the context
of Pyramid itself, meaning you have access to templates and other renderers, a “real” request object, and
other niceties.

Example: Registering Tiveens.

307

CONTENTS

View response adapters

A lot is made of the aesthetics of what kinds of objects you’re allowed to return from view callables in
various frameworks. In a previous section in this document, we showed you that, if you use a renderer,
you can usually return a dictionary from a view callable instead of a full-on Response object. But some
frameworks allow you to return strings or tuples from view callables. When frameworks allow for this,
code looks slightly prettier, because fewer imports need to be done, and there is less code. For example,

compare this:

def aview(request) :
2 return "Hello world!"

To this:

from pyramid.response import Response

def aview(request):
4 return Response ("Hello world!")

w

The former is “prettier”, right?

Out of the box, if you define the former view callable (the one that simply returns a string) in Pyramid,
when it is executed, Pyramid will raise an exception. This is because “explicit is better than implicit”, in
most cases, and by default Pyramid wants you to return a Response object from a view callable. This is
because there’s usually a heck of a lot more to a response object than just its body. But if you’re the kind
of person who values such aesthetics, we have an easy way to allow for this sort of thing:

from pyramid.config import Configurator
from pyramid.response import Response

)

def string_response_adapter(s):
5 response = Response(s)

IS

6 response.content_type = 'text/html'
7 return response

8

9|if _ name_ == '"_ main_ ':

10 config = Configurator()

11 config.add_response_adapter (string_response_adapter, basestring)

Do that once in your Pyramid application at startup. Now you can return strings from any of your view
callables, e.g.:

308

0.2. NARRATIVE DOCUMENTATION

def helloview(request) :
2 return "Hello world!"

=

def goodbyeview (request) :
5 return "Goodbye world!"

Oh noes! What if you want to indicate a custom content type? And a custom status code? No fear:

1 | from pyramid.config import Configurator

3 |def tuple_response_adapter (val) :

4 status_int, content_type, body = val
5 response = Response (body)

6 response.content_type = content_type
7 response.status_int = status_int

3 return response

10 |def string_response_adapter (body) :
1 response = Response (body)

12 response.content_type = 'text/html'

13 response.status_int = 200

14 return response

15

16 |1f _ name_ == '"_ _main_ ':

17 config = Configurator()

18 config.add_response_adapter (string_response_adapter, basestring)
19 config.add_response_adapter (tuple_response_adapter, tuple)

Once this is done, both of these view callables will work:

1 |def aview (request) :
2 return "Hello world!"

4+ |def anotherview (request) :
5 return (403, 'text/plain', "Forbidden")

Pyramid defaults to explicit behavior, because it’s the most generally useful, but provides hooks that allow
you to adapt the framework to localized aesthetic desires.

See also:

See also Changing How Pyramid Treats View Responses.

309

CONTENTS

“Global” response object

“Constructing these response objects in my view callables is such a chore! And I'm way too lazy to
register a response adapter, as per the prior section,” you say. Fine. Be that way:

1 |def aview (request) :

2 response = request.response

3 response.body = 'Hello world!'

4 response.content_type = 'text/plain'
5 return response

See also:

See also Varying Attributes of Rendered Responses.

Automating repetitive configuration

Does Pyramid’s configurator allow you to do something, but you’re a little adventurous and just want
it a little less verbose? Or you’d like to offer up some handy configuration feature to other Pyramid
users without requiring that we change Pyramid? You can extend Pyramid’s Configurator with your own
directives. For example, let’s say you find yourself calling pyramid.config.Configurator.
add_view () repetitively. Usually you can take the boring away by using existing shortcuts, but let’s
say that this is a case where there is no such shortcut:

1 | from pyramid.config import Configurator

3|config = Configurator ()

4| config.add_route ('xhr_route', '/xhr/{id}")

s |config.add_view('my.package.GET_view', route_name='xhr_ route',

6 xhr=True, permission='view', request_method='GET")
7| config.add_view('my.package.POST_view', route_name='xhr route',

8 xhr=True, permission='view', request_method='POST")
9 |config.add_view('my.package.HEAD view', route_name='xhr route',

10 xhr=True, permission='view', request_method="'HEAD')

Pretty tedious right? You can add a directive to the Pyramid configurator to automate some of the tedium
away:

310

0.2. NARRATIVE DOCUMENTATION

1 | from pyramid.config import Configurator

3 |def add_protected_xhr_views (config, module) :

4 module = config.maybe_dotted (module)

5 for method in ('GET', 'POST', 'HEAD'):

6 view = getattr (module, 'xhr_ 5s_view' % method, None)

7 if view is not None:

8 config.add_view(view, route_name='xhr_ route', xhr=True,
9 permission="'view', request_method=method)

n|config = Configurator ()
12 |config.add_directive ('add_protected_xhr views', add_protected_xhr_views)

Once that’s done, you can call the directive you’ve just added as a method of the Configurator object:

config.add_route ('xhr_route', '/xhr/{id}")
config.add_protected_xhr_ views ('my.package')

[S)

Your previously repetitive configuration lines have now morphed into one line.

You can share your configuration code with others this way, too, by packaging it up and calling
add_directive () from within a function called when another user uses the include () method
against your code.

See also:

See also Adding Methods to the Configurator via add_directive.

Programmatic introspection

If you're building a large system that other users may plug code into, it’s useful to be able to get an
enumeration of what code they plugged in at application runtime. For example, you might want to show
them a set of tabs at the top of the screen based on an enumeration of views they registered.

This is possible using Pyramid’s introspector.

Here’s an example of using Pyramid’s introspector from within a view callable:

311

CONTENTS

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='bar"')
def show_current_route_pattern (request) :

6 introspector = request.registry.introspector

7 route_name = request.matched_route.name

8 route_intr = introspector.get ('routes', route_name)
9 return Response (str (route_intr['pattern']))

See also:

See also Pyramid Configuration Introspection.

Python 3 compatibility

Pyramid and most of its add-ons are Python 3 compatible. If you develop a Pyramid application today,
you won’t need to worry that five years from now you’ll be backwatered because there are language
features you’d like to use but your framework doesn’t support newer Python versions.

Testing

Every release of Pyramid has 100% statement coverage via unit and integration tests, as measured by the
coverage tool available on PyPlI. It also has greater than 95% decision/condition coverage as measured
by the instrumental tool available on PyPI. It is automatically tested by Travis, and Jenkins on Python
2.7, Python 3.3, Python 3.4, Python 3.5, PyPy, and PyPy3 after each commit to its GitHub repository.
Official Pyramid add-ons are held to a similar testing standard. We still find bugs in Pyramid and its
official add-ons, but we’ve noticed we find a lot more of them while working on other projects that don’t
have a good testing regime.

Travis: https://travis-ci.org/Pylons/pyramid Jenkins: http://jenkins.pylonsproject.org/job/pyramid/

Support

It’s our goal that no Pyramid question go unanswered. Whether you ask a question on IRC, on the Pylons-
discuss mailing list, or on StackOverflow, you're likely to get a reasonably prompt response. We don’t
tolerate “support trolls” or other people who seem to get their rocks off by berating fellow users in our
various official support channels. We try to keep it well-lit and new-user-friendly.

Example: Visit irc://freenode.net#pyramid (the #pyramid channel on irc.freenode.net in an IRC client)
or the pylons-discuss maillist at https://groups.google.com/forum/#!forum/pylons-discuss.

312

https://travis-ci.org/Pylons/pyramid
http://jenkins.pylonsproject.org/job/pyramid/
https://groups.google.com/forum/#!forum/pylons-discuss

0.2. NARRATIVE DOCUMENTATION

Documentation

It’s a constant struggle, but we try to maintain a balance between completeness and new-user-friendliness
in the official narrative Pyramid documentation (concrete suggestions for improvement are always ap-
preciated, by the way). We also maintain a “cookbook” of recipes, which are usually demonstrations of
common integration scenarios too specific to add to the official narrative docs. In any case, the Pyramid
documentation is comprehensive.

Example: The Pyramid Community Cookbook.

What Is The Pylons Project?

Pyramid is a member of the collection of software published under the Pylons Project. Pylons software
is written by a loose-knit community of contributors. The Pylons Project website includes details about
how Pyramid relates to the Pylons Project.

Pyramid and Other Web Frameworks

The first release of Pyramid’s predecessor (named repoze .bfg) was made in July of 2008. At the end
of 2010, we changed the name of repoze .bfg to Pyramid. It was merged into the Pylons project as
Pyramid in November of that year.

Pyramid was inspired by Zope, Pylons (version 1.0), and Django. As a result, Pyramid borrows several
concepts and features from each, combining them into a unique web framework.

Many features of Pyramid trace their origins back to Zope. Like Zope applications, Pyramid applications
can be easily extended. If you obey certain constraints, the application you produce can be reused, mod-
ified, re-integrated, or extended by third-party developers without forking the original application. The
concepts of traversal and declarative security in Pyramid were pioneered first in Zope.

The Pyramid concept of URL dispatch is inspired by the Routes system used by Pylons version 1.0. Like
Pylons version 1.0, Pyramid is mostly policy-free. It makes no assertions about which database you
should use. Pyramid no longer has built-in templating facilities as of version 1.5a2, but instead officially
supports bindings for templating languages, including Chameleon, Jinja2, and Mako. In essence, it only
supplies a mechanism to map URLSs to view code, along with a set of conventions for calling those views.
You are free to use third-party components that fit your needs in your applications.

The concept of view is used by Pyramid mostly as it would be by Django. Pyramid has a documentation
culture more like Django’s than like Zope’s.

313

https://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/index.html#pyramid-cookbook
http://www.pylonsproject.org

CONTENTS

Like Pylons version 1.0, but unlike Zope, a Pyramid application developer may use completely imperative
code to perform common framework configuration tasks such as adding a view or a route. In Zope, ZCML
is typically required for similar purposes. In Grok, a Zope-based web framework, decorator objects
and class-level declarations are used for this purpose. Out of the box, Pyramid supports imperative and
decorator-based configuration. ZCML may be used via an add-on package named pyramid_zcml.

Also unlike Zope and other “full-stack” frameworks such as Django, Pyramid makes no assumptions
about which persistence mechanisms you should use to build an application. Zope applications are typ-
ically reliant on ZODB. Pyramid allows you to build ZODB applications, but it has no reliance on the
ZODB software. Likewise, Django tends to assume that you want to store your application’s data in a
relational database. Pyramid makes no such assumption, allowing you to use a relational database, and
neither encouraging nor discouraging the decision.

Other Python web frameworks advertise themselves as members of a class of web frameworks named
model-view-controller frameworks. Insofar as this term has been claimed to represent a class of web
frameworks, Pyramid also generally fits into this class.

You Say Pyramid is MVC, but Where’s the Controller?

The Pyramid authors believe that the MVC pattern just doesn’t really fit the web very well. In a
Pyramid application, there is a resource tree which represents the site structure, and views which tend
to present the data stored in the resource tree and a user-defined “domain model”. However, no facility
provided by the framework actually necessarily maps to the concept of a “controller” or “model”. So
if you had to give it some acronym, I guess you’d say Pyramid is actually an “RV” framework rather
than an “MVC” framework. “MVC”, however, is close enough as a general classification moniker for
purposes of comparison with other web frameworks.

Installing Pyramid

© This installation guide emphasizes the use of Python 3.4 and greater for simplicity.

Before You Install Pyramid

Install Python version 3.4 or greater for your operating system, and satisfy the Requirements for Installing
Packages, as described in the following sections.

314

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

0.2. NARRATIVE DOCUMENTATION

Python Versions

As of this writing, Pyramid has been tested under Python 2.7, Python 3.3, Python 3.4, Python 3.5,
PyPy, and PyPy3. Pyramid does not run under any version of Python before 2.7.

Pyramid is known to run on all popular UNIX-like systems such as Linux, Mac OS X, and FreeBSD, as
well as on Windows platforms. It is also known to run on PyPy (1.9+).

Pyramid installation does not require the compilation of any C code. However, some Pyramid dependen-
cies may attempt to build binary extensions from C code for performance speed ups. If a compiler or
Python headers are unavailable, the dependency will fall back to using pure Python instead.

O i you see any warnings or errors related to failing to compile the binary extensions, in most cases
you may safely ignore those errors. If you wish to use the binary extensions, please verify that you have
a functioning compiler and the Python header files installed for your operating system.

For Mac OS X Users

Python comes pre-installed on Mac OS X, but due to Apple’s release cycle, it is often out of date. Unless
you have a need for a specific earlier version, it is recommended to install the latest 3.x version of Python.

You can install the latest verion of Python for Mac OS X from the binaries on python.org.

Alternatively, you can use the homebrew package manager.

for python 3.x
$ brew install python3

If you use an installer for your Python, then you can skip to the section Installing Pyramid on a UNIX
System.

If You Don’t Yet Have a Python Interpreter (UNIX)

If your system doesn’t have a Python interpreter, and you’re on UNIX, you can either install Python using
your operating system’s package manager or you can install Python from source fairly easily on any
UNIX system that has development tools.

See also:

See the official Python documentation Using Python on Unix platforms for full details.

315

https://www.python.org/downloads/mac-osx/
http://brew.sh/
https://docs.python.org/3/using/unix.html#using-on-unix

CONTENTS

If You Don’t Yet Have a Python Interpreter (Windows)

If your Windows system doesn’t have a Python interpreter, you’ll need to install it by downloading a
Python 3.x-series interpreter executable from python.org’s download section (the files labeled “Windows
Installer”). Once you’ve downloaded it, double click on the executable, and select appropriate options
during the installation process. To standardize this documentation, we used the GUI installer and selected
the following options:

¢ Screen 1: Install Python 3.x.x (32- or 64-bit)
— Check “Install launcher for all users (recommended)”
— Check “Add Python 3.x to PATH”
— Click “Customize installation”
* Screen 2: Optional Features
— Check all options
— Click “Next”
* Screen 3: Advanced Options
— Check all options
— Customize install location: “C:\Python3x”, where “x” is the minor version of Python
— Click “Next”
You might also need to download and install the Python for Windows extensions.
See also:
See the official Python documentation Using Python on Windows for full details.
See also:

Download and install the Python for Windows extensions. Carefully read the README.txt file at the end
of the list of builds, and follow its directions. Make sure you get the proper 32- or 64-bit build and Python
version.

See also:

Python launcher for Windows provides a command py that allows users to run any installed version of
Python.

316

https://www.python.org/downloads/
https://docs.python.org/3/using/windows.html#using-on-windows
https://sourceforge.net/projects/pywin32/files/pywin32/
https://docs.python.org/3/using/windows.html#launcher

0.2. NARRATIVE DOCUMENTATION

L After you install Python on Windows, you might need to add the c: \Python3x directory
to your environment’s Path, where x is the minor version of installed Python, in order to make it
possible to invoke Python from a command prompt by typing python. To do so, right click My
Computer, select Properties —> Advanced Tab —>Environment Variables, and add
that directory to the end of the Path environment variable.

See also:

See Configuring Python (on Windows) for full details.

Requirements for Installing Packages

Use pip for installing packages and python3 -m venv env for creating a virtual environment. A
virtual environment is a semi-isolated Python environment that allows packages to be installed for use by
a particular application, rather than being installed system wide.

See also:

See the Python Packaging Authority’s (PyPA) documention Requirements for Installing Packages for full
details.

Installing Pyramid on a UNIX System

After installing Python as described previously in For Mac OS X Users or If You Don’t Yet Have a Python
Interpreter (UNIX), and satisfying the Requirements for Installing Packages, you can now install Pyramid.

1. Make a virtual environment workspace:

$ export VENV=~/env
$ python3 -m venv SVENV

You can either follow the use of the environment variable $VENV, or replace it with the root di-
rectory of the virtual environment. If you choose the former approach, ensure that $VENV is an
absolute path. In the latter case, the export command can be skipped.

2. (Optional) Consider using SVENV/bin/activate to make your shell environment wired to use
the virtual environment.

317

https://docs.python.org/3/using/windows.html#configuring-python
https://packaging.python.org/en/latest/installing/#requirements-for-installing-packages

CONTENTS

3. Use pip to get Pyramid and its direct dependencies installed:

$ SVENV/bin/pip install "pyramid==1.7.6"

“ Why use SVENV/bin/pip instead of source bin/activate,thenpip?

SVENV/bin/pip clearly specifies that pip is run from within the virtual environment and not at the
system level.

activate drops turds into the user’s shell environment, leaving them vulnerable to executing commands
in the wrong context. deact ivate might not correctly restore previous shell environment variables.

Although using source bin/activate, then pip, requires fewer key strokes to issue commands
once invoked, there are other things to consider. Michael F. Lamb (datagrok) presents a summary in
Virtualenv’s bin/activate is Doing It Wrong.

Ultimately we prefer to keep things clear and simple, so we use $VENV/bin/pip.

Installing Pyramid on a Windows System

After installing Python as described previously in If You Don’t Yet Have a Python Interpreter (Windows),
and satisfying the Requirements for Installing Packages, you can now install Pyramid.

1. Make a virtual environment workspace:

c:\> set VENV=c:\env

replace "x" with your minor version of Python 3
c:\> c:\Python3x\python -m venv $VENV%

c:\> ed SVENVS%

You can either follow the use of the environment variable $VENV$%, or replace it with the root
directory of the virtual environment. If you choose the former approach, ensure that $VENV$ is an
absolute path. In the latter case, the set command can be skipped.

2. (Optional) Consider using $VENV$\Scripts\activate.bat to make your shell environment
wired to use the virtual environment.

3. Use pip to get Pyramid and its direct dependencies installed:

c:\> $VENV%\Scripts\pip install "pyramid==1.7.6"

O See the note above for Why use $VENV/bin/pip instead of source bin/activate, then pip.

318

https://gist.github.com/datagrok/2199506

0.2. NARRATIVE DOCUMENTATION

What Gets Installed

When you install Pyramid, various libraries such as WebOb, PasteDeploy, and others are installed.

Additionally, as chronicled in Creating a Pyramid Project, scaffolds will be registered, which make it
easy to start a new Pyramid project.

Creating Your First Pyramid Application

In this chapter, we will walk through the creation of a tiny Pyramid application. After we’re finished
creating the application, we’ll explain in more detail how it works. It assumes you already have Pyramid
installed. If you do not, head over to the Installing Pyramid section.

Hello World

Here’s one of the very simplest Pyramid applications:

1 | from wsgiref.simple server import make_server
> | from pyramid.config import Configurator

3 | from pyramid.response import Response
4

5

¢ |def hello_world(request) :

7 return Response ('Hello " % request.matchdict)
8

9|if _ name_ == '_ main_ ':

10 config = Configurator()

1 config.add_route ('hello', '/hello/ ")

12 config.add_view(hello_world, route_name='hello')

13 app = config.make_wsgi_app()

14 server = make_server ('0.0.0.0", 8080, app)

15 server.serve_forever ()

When this code is inserted into a Python script named helloworld.py and executed by a Python
interpreter which has the Pyramid software installed, an HTTP server is started on TCP port 8080.

On UNIX:

319

CONTENTS

’$ SVENV/bin/python helloworld.py

On Windows:

’c:\> $VENVS\Scripts\python helloworld.py ‘

This command will not return and nothing will be printed to the console. When port 8080 is visited
by a browser on the URL /hello/world, the server will simply serve up the text “Hello world!”. If
your application is running on your local system, using http://localhost:8080/hello/world in a browser will
show this result.

Each time you visit a URL served by the application in a browser, a logging line will be emitted to the
console displaying the hostname, the date, the request method and path, and some additional information.
This output is done by the wsgiref server we’ve used to serve this application. It logs an “access log” in
Apache combined logging format to the console.

Press Ctr1-C (or Ctr1-Break on Windows) to stop the application.

Now that we have a rudimentary understanding of what the application does, let’s examine it piece by

piece.

Imports

The above helloworld. py script uses the following set of import statements:

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

[S)

w

The script imports the Configurator class from the pyramid. config module. An instance of the
Configurator class is later used to configure your Pyramid application.

Like many other Python web frameworks, Pyramid uses the WSGI protocol to connect an application and
a web server together. The wsgiref server is used in this example as a WSGI server for convenience,

as it is shipped within the Python standard library.

The script also imports the pyramid. response.Response class for later use. An instance of this
class will be used to create a web response.

320

http://localhost:8080/hello/world
https://docs.python.org/3/library/wsgiref.html#module-wsgiref

0.2. NARRATIVE DOCUMENTATION

View Callable Declarations

The above script, beneath its set of imports, defines a function named hello_world.

def hello_world(request) :
2 return Response ('Hello " % request.matchdict)

The function accepts a single argument (request) and it returns an instance of the pyramid.
response.Response class. The single argument to the class’ constructor is a string computed from
parameters matched from the URL. This value becomes the body of the response.

This function is known as a view callable. A view callable accepts a single argument, request. It is
expected to return a response object. A view callable doesn’t need to be a function; it can be represented
via another type of object, like a class or an instance, but for our purposes here, a function serves us well.

A view callable is always called with a request object. A request object is a representation of an HTTP
request sent to Pyramid via the active WSGI server.

A view callable is required to return a response object because a response object has all the information
necessary to formulate an actual HTTP response; this object is then converted to text by the WSGI server
which called Pyramid and it is sent back to the requesting browser. To return a response, each view
callable creates an instance of the Response class. In the hello_world function, a string is passed
as the body to the response.

Application Configuration

In the above script, the following code represents the configuration of this simple application. The ap-
plication is configured using the previously defined imports and function definitions, placed within the
confines of an i f statement:

1|if _ name_ == '__main__ ':

2 config = Configurator ()

3 config.add_route('hello', '/hello/ ")

4 config.add_view(hello_world, route_name='hello')
5 app = config.make_wsgi_app ()

6 server = make_server ('0.0.0.0', 8080, app)

7 server.serve_forever ()

Let’s break this down piece by piece.

Configurator Construction

321

CONTENTS

1|if name == '__main__ ':
config = Configurator ()

©

The if _ _name_ == '__main__': line in the code sample above represents a Python idiom: the
code inside this if clause is not invoked unless the script containing this code is run directly from the
operating system command line. For example, if the file named helloworld.py contains the entire
script body, the code within the i f statement will only be invoked when python helloworld.py is
executed from the command line.

Using the 1f clause is necessary—or at least best practice—because code in a Python . py file may be
eventually imported via the Python import statement by another . py file. . py files that are imported
by other . py files are referred to as modules. By usingthe if _ name_ == '__main__': idiom,
the script above is indicating that it does not want the code within the if statement to execute if this
module is imported from another; the code within the if block should only be run during a direct script
execution.

The config = Configurator () line above creates an instance of the Configurator class. The
resulting config object represents an API which the script uses to configure this particular Pyramid
application. Methods called on the Configurator will cause registrations to be made in an application
registry associated with the application.

Adding Configuration

1 config.add_route('hello', '/hello/ ")
2 config.add_view(hello_world, route_name='hello')

The first line above calls the pyramid. config.Configurator.add_route () method, which
registers a route to match any URL path that begins with /hello/ followed by a string.

The second line registers the hello_world function as a view callable and makes sure that it will be
called when the he 110 route is matched.

WSGI Application Creation

1 app = config.make_wsgi_app ()

322

0.2. NARRATIVE DOCUMENTATION

After configuring views and ending configuration, the script creates a WSGI application via the
pyramid.config.Configurator.make_wsgi_app () method. A call to make_wsgi_app
implies that all configuration is finished (meaning all method calls to the configurator, which sets up
views and various other configuration settings, have been performed). The make_wsgi_app method
returns a WSGI application object that can be used by any WSGI server to present an application to a
requestor. WSGI is a protocol that allows servers to talk to Python applications. We don’t discuss WSGI
in any depth within this book, but you can learn more about it by reading its documentation.

The Pyramid application object, in particular, is an instance of a class representing a Pyramid router. It
has a reference to the application registry which resulted from method calls to the configurator used to
configure it. The router consults the registry to obey the policy choices made by a single application.
These policy choices were informed by method calls to the Configurator made earlier; in our case, the
only policy choices made were implied by calls to its add_view and add_route methods.

WSGI Application Serving

1 server = make_server ('0.0.0.0', 8080, app)
2 server.serve_forever ()

Finally, we actually serve the application to requestors by starting up a WSGI server. We happen to use the
wsgiref make_server server maker for this purpose. We pass in as the first argument '0.0.0.0",
which means “listen on all TCP interfaces”. By default, the HTTP server listens only onthe 127.0.0.1
interface, which is problematic if you’re running the server on a remote system and you wish to access
it with a web browser from a local system. We also specify a TCP port number to listen on, which is
8080, passing it as the second argument. The final argument is the app object (a router), which is the
application we wish to serve. Finally, we call the server’s serve_forever method, which starts the
main loop in which it will wait for requests from the outside world.

When this line is invoked, it causes the server to start listening on TCP port 8080. The server will serve
requests forever, or at least until we stop it by killing the process which runs it (usually by pressing
Ctrl-Cor Ctrl-Break in the terminal we used to start it).

Conclusion

Our hello world application is one of the simplest possible Pyramid applications, configured “impera-
tively”. We can see that it’s configured imperatively because the full power of Python is available to us as
we perform configuration tasks.

323

http://wsgi.readthedocs.org/en/latest/
https://docs.python.org/3/library/wsgiref.html#module-wsgiref

CONTENTS

References

For more information about the API of a Configurator object, see Configurator .

For more information about view configuration, see View Configuration.

Application Configuration

Most people already understand “configuration” as settings that influence the operation of an application.
For instance, it’s easy to think of the values in a . ini file parsed at application startup time as “configu-
ration”. However, if you’re reasonably open-minded, it’s easy to think of code as configuration too. Since
Pyramid, like most other web application platforms, is a framework, it calls into code that you write (as
opposed to a library, which is code that exists purely for you to call). The act of plugging application
code that you’ve written into Pyramid is also referred to within this documentation as “configuration”;
you are configuring Pyramid to call the code that makes up your application.

See also:
For information on . ini files for Pyramid applications see the Startup chapter.

There are two ways to configure a Pyramid application: imperative configuration and declarative config-
uration. Both are described below.

Imperative Configuration

“Imperative configuration” just means configuration done by Python statements, one after the next. Here’s
one of the simplest Pyramid applications, configured imperatively:

1 | from wsgiref.simple_server import make_server
> | from pyramid.config import Configurator
3 | from pyramid.response import Response

s |def hello_world(request):

6 return Response('Hello world!")

7

s|if name == '__main__ ':

9 config = Configurator ()

10 config.add_view(hello_world)

1 app = config.make_wsgi_app ()

12 server = make_server ('0.0.0.0", 8080, app)
13 server.serve_forever ()

324

0.2. NARRATIVE DOCUMENTATION

We won’t talk much about what this application does yet. Just note that the configuration statements
take place underneath the if __ _name__ == '__main___': stanza in the form of method calls on a
Configurator object (e.g., config.add_view (.. .)). These statements take place one after the other,
and are executed in order, so the full power of Python, including conditionals, can be employed in this
mode of configuration.

Declarative Configuration

It’s sometimes painful to have all configuration done by imperative code, because often the code for a
single application may live in many files. If the configuration is centralized in one place, you’ll need to
have at least two files open at once to see the “big picture”: the file that represents the configuration, and
the file that contains the implementation objects referenced by the configuration. To avoid this, Pyramid
allows you to insert configuration decoration statements very close to code that is referred to by the
declaration itself. For example:

from pyramid.response import Response
from pyramid.view import view_config

[S)

4| @view_config(name='hello', request_method='GET")
s |def hello(request):
6 return Response('Hello'")

The mere existence of configuration decoration doesn’t cause any configuration registration to be per-
formed. Before it has any effect on the configuration of a Pyramid application, a configuration decoration
within application code must be found through a process known as a scan.

For example, the pyramid.view.view_config decorator in the code example above adds an at-
tribute to the he 1 1o function, making it available for a scan to find it later.

A scan of a module or a package and its subpackages for decorations happens when the pyramid.
config.Configurator.scan () method is invoked: scanning implies searching for configuration
declarations in a package and its subpackages. For example:

1 | from wsgiref.simple server import make_server
> | from pyramid.config import Configurator

3 | from pyramid.response import Response

4 | from pyramid.view import view_config

6 | @view_config()
7|def hello(request) :
8 return Response('Hello')

325

CONTENTS

0|if name == "' main__ ':

1 config = Configurator()

12 config.scan()

13 app = config.make_wsgi_app()

14 server = make_server ('0.0.0.0', 8080, app)
15 server.serve_forever ()

The scanning machinery imports each module and subpackage in a package or module recursively, look-
ing for special attributes attached to objects defined within a module. These special attributes are typically
attached to code via the use of a decorator. For example, the view_config decorator can be attached
to a function or instance method.

Once scanning is invoked, and configuration decoration is found by the scanner, a set of calls are made
to a Configurator on your behalf. These calls replace the need to add imperative configuration statements
that don’t live near the code being configured.

The combination of configuration decoration and the invocation of a scan is collectively known as declar-
ative configuration.

In the example above, the scanner translates the arguments to view_config into a call to the
pyramid.config.Configurator.add_view () method, effectively:

config.add_view (hello)

Summary

There are two ways to configure a Pyramid application: declaratively and imperatively. You can choose
the mode with which you’re most comfortable; both are completely equivalent. Examples in this docu-
mentation will use both modes interchangeably.

Creating a Pyramid Project

As we saw in Creating Your First Pyramid Application, it’s possible to create a Pyramid application
completely manually. However, it’s usually more convenient to use a scaffold to generate a basic Pyramid
project.

A project is a directory that contains at least one Python package. You’ll use a scaffold to create a project,

and you’ll create your application logic within a package that lives inside the project. Even if your
application is extremely simple, it is useful to place code that drives the application within a package,

326

0.2. NARRATIVE DOCUMENTATION

because (1) a package is more easily extended with new code, and (2) an application that lives inside a
package can also be distributed more easily than one which does not live within a package.

Pyramid comes with a variety of scaffolds that you can use to generate a project. Each scaffold makes
different configuration assumptions about what type of application you’re trying to construct.

These scaffolds are rendered using the pcreate command that is installed as part of Pyramid.

Scaffolds Included with Pyramid

The convenience scaffolds included with Pyramid differ from each other on a number of axes:
* the persistence mechanism they offer (no persistence mechanism, ZODB, or SQLAlchemy)
* the mechanism they use to map URLs to code (traversal or URL dispatch)

The included scaffolds are these:

starter URL mapping via URL dispatch and no persistence mechanism

zodb URL mapping via traversal and persistence via ZODB

alchemy URL mapping via URL dispatch and persistence via SQLAlchemy

Creating the Project

See also:

See also the output of pcreate —help.

In Installing Pyramid, you created a virtual Python environment via the venv command. To start a
Pyramid project, use the pcreate command installed within the virtual environment. We’ll choose the
starter scaffold for this purpose. When we invoke pcreate, it will create a directory that represents

our project.

In Installing Pyramid we called the virtual environment directory env. The following commands assume
that our current working directory is the env directory.

The below example uses the pcreate command to create a project with the starter scaffold.

On UNIX:

327

CONTENTS

’$ SVENV/bin/pcreate —-s starter MyProject ‘

Or on Windows:

’c:\> sVENVS\Scripts\pcreate —-s starter MyProject ‘

As a result of invoking the pcreate command, a directory named MyPro ject is created. That direc-
tory is a project directory. The setup . py file in that directory can be used to distribute your application,
or install your application for deployment or development.

An .ini file named development.ini will be created in the project directory. You will use this
.ini file to configure a server, to run your application, and to debug your application. It contains con-
figuration that enables an interactive debugger and settings optimized for development.

Another . ini file named production.ini will also be created in the project directory. It contains
configuration that disables any interactive debugger (to prevent inappropriate access and disclosure), and
turns off a number of debugging settings. You can use this file to put your application into production.

The MyProject project directory contains an additional subdirectory named myproject (note the
case difference) representing a Python package which holds very simple Pyramid sample code. This is
where you’ll edit your application’s Python code and templates.

We created this project within an env virtual environment directory. However, note that this is not
mandatory. The project directory can go more or less anywhere on your filesystem. You don’t need
to put it in a special “web server” directory, and you don’t need to put it within a virtual environment
directory. The author uses Linux mainly, and tends to put project directories which he creates within his
~/projects directory. On Windows, it’s a good idea to put project directories within a directory that
contains no space characters, so it’s wise to avoid a path that contains, i.e., My Documents. As aresult,
the author, when he uses Windows, just puts his projects in C: \projects.

L You'll need to avoid using pcreate to create a project with the same name as a Python
standard library component. In particular, this means you should avoid using the names site or
test, both of which conflict with Python standard library packages. You should also avoid using the
name pyramid, which will conflict with Pyramid itself.

328

0.2. NARRATIVE DOCUMENTATION

Installing your Newly Created Project for Development

To install a newly created project for development, you should cd to the newly created project directory
and use the Python interpreter from the virtual environment you created during Installing Pyramid to
invoke the command pip install -e ., which installs the project in development mode (—e is for
“editable”) into the current directory (.).

The file named setup.py will be in the root of the pcreate-generated project directory. The python
you’re invoking should be the one that lives in the bin (or Scripts on Windows) directory of your
virtual Python environment. Your terminal’s current working directory must be the newly created project
directory.

On UNIX:

$ cd MyProject
$ SVENV/bin/pip install -e

Or on Windows:

c:\> ed MyProject
c:\> SVENVZ\Scripts\pip install -e

Elided output from a run of this command on UNIX is shown below:

$ cd MyProject
$ SVENV/bin/pip install -e

Successfully installed Chameleon-2.24 Mako-1.0.4 MyProject \
pyramid-chameleon-0.3 pyramid-debugtoolbar-2.4.2 pyramid-mako-1.0.2

This will install a distribution representing your project into the virtual environment interpreter’s library
set so it can be found by import statements and by other console scripts such as pserve, pshell,
proutes, and pviews.

Running the Tests for Your Application

To run unit tests for your application, you must first install the testing dependencies.

On UNIX:

329

CONTENTS

’$ SVENV/bin/pip install -e ".[testing]" ‘
On Windows:
’c:\> SVENVS\Scripts\pip install —-e ".[testing]" ‘

Once the testing requirements are installed, then you can run the tests using the py . test command that
was just installed in the bin directory of your virtual environment.

On UNIX:

’$ SVENV/bin/py.test —-g ‘

On Windows:

’c:\> SVENV%\Scripts\py.test —-g ‘

Here’s sample output from a test run on UNIX:

$ SVENV/bin/py.test —-g

2 passed in 0.47 seconds

The tests themselves are found in the tests.py module in your pcreate generated project. Within a
project generated by the starter scaffold, only two sample tests exist.

O The —qg option is passed to the py . test command to limit the output to a stream of dots. If you
don’t pass —q, you’ll see verbose test result output (which normally isn’t very useful).

Alternatively, if you’d like to see test coverage, pass the ——cov option to py . test:

$ SVENV/bin/py.test —--cov —g

Scaffolds include configuration defaults for py . test and test coverage. These configuration files are
pytest.ini and .coveragerc, located at the root of your package. Without these defaults, we
would need to specify the path to the module on which we want to run tests and coverage.

330

0.2. NARRATIVE DOCUMENTATION

$ SVENV/bin/py.test —--cov=myproject myproject/tests.py —qgq

See also:

See py.test’s documentation for Usage and Invocations or invoke py.test -h to see its full set of
options.

Running the Project Application

See also:
See also the output of pserve —help.

Once a project is installed for development, you can run the application it represents using the pserve
command against the generated configuration file. In our case, this file is named development . ini.

On UNIX:

’$ SVENV/bin/pserve development.ini

On Windows:

’c:\> $VENV$\Scripts\pserve development.ini ‘

Here’s sample output from a run of pserve on UNIX:

$ SVENV/bin/pserve development.ini
Starting server in PID 16208.
serving on http://127.0.0.1:6543

Access is restricted such that only a browser running on the same machine as Pyramid will be able to
access your Pyramid application. However, if you want to open access to other machines on the same
network, then edit the development . ini file, and replace the host value in the [server:main]
section, changing it from 127.0.0.1to 0.0.0. 0. For example:

[server:main]

use = egg:waltress#main
host = 0.0.0.0

port = 6543

331

https://docs.pytest.org/en/latest/usage.html#usage

CONTENTS

Now when you use pserve to start the application, it will respond to requests on al/l IP addresses pos-
sessed by your system, not just requests to localhost. This is whatthe 0.0.0.0 in serving on
http://0.0.0.0:6543 means. The server will respond to requests made to 127.0.0.1 and on
any external IP address. For example, your system might be configured to have an external IP address
192.168.1.50. If that’s the case, if you use a browser running on the same system as Pyramid, it
will be able to access the application via http://127.0.0.1:6543/ aswellasviahttp://192.
168.1.50:6543/. However, other people on other computers on the same network will also be able
to visit your Pyramid application in their browser by visiting http://192.168.1.50:6543/.

You can change the port on which the server runs on by changing the same portion of
the development.ini file. For example, you can change the port = 6543 line in the
development.ini file’s [server:main] sectionto port = 8080 to run the server on port 8080
instead of port 6543.

You can shut down a server started this way by pressing Ct r1-C (or Ctr1-Break on Windows).

The default server used to run your Pyramid application when a project is created from a scaffold is named
Waitress. This server is what prints the serving on. .. line when you run pserve. It’s a good idea
to use this server during development because it’s very simple. It can also be used for light production.
Setting your application up under a different server is not advised until you’ve done some development
work under the default server, particularly if you’re not yet experienced with Python web development.
Python web server setup can be complex, and you should get some confidence that your application
works in a default environment before trying to optimize it or make it “more like production”. It’s awfully
easy to get sidetracked trying to set up a non-default server for hours without actually starting to do any
development. One of the nice things about Python web servers is that they’re largely interchangeable, so
if your application works under the default server, it will almost certainly work under any other server in
production if you eventually choose to use a different one. Don’t worry about it right now.

For more detailed information about the startup process, see Startup. For more information about environ-

ment variables and configuration file settings that influence startup and runtime behavior, see Environment
Variables and .ini File Settings.

Reloading Code

During development, it’s often useful to run pserve using its ——reload option. When —-reload is
passed to pserve, changes to any Python module your project uses will cause the server to restart. This
typically makes development easier, as changes to Python code made within a Pyramid application is not
put into effect until the server restarts.

For example, on UNIX:

332

0.2. NARRATIVE DOCUMENTATION

$ SVENV/bin/pserve development.ini --reload
Starting subprocess with file monitor
Starting server in PID 16601.

serving on http://127.0.0.1:6543

Now if you make a change to any of your project’s . py files or .ini files, you’ll see the server restart
automatically:

development.ini changed; reloading...
———————————————————— Restarting —————————--—---—-——-
Starting server in PID 16602.

serving on http://127.0.0.1:6543

Changes to template files (such as .pt or .mak files) won’t cause the server to restart. Changes to
template files don’t require a server restart as long as the pyramid.reload_templates setting in
the development . ini file is t rue. Changes made to template files when this setting is true will take
effect immediately without a server restart.

Viewing the Application

Once your application is running via pserve, you may visit http://localhost:6543/ in your
browser. You will see something in your browser like what is displayed in the following image:

333

CONTENTS

800 /& starter Scaffold for The py % '\ | Steve | 17
& — C [localhost:6543 QA @ = O R 9 =

....? . Pyra Mid starter scaffold

e, Welcome to MyProject, an application generated by
Qe ®
. eo° . the Pyramid Web Framework 1.6a1.

Generated byvi.6al W Docs % Github Project @ IRC Channel % Pylons Project

copyright © pylons project

This is the page shown by default when you visit an unmodified pcreate generated starter applica-
tion in a browser.

The Debug Toolbar

Show Toolbar

334

0.2. NARRATIVE DOCUMENTATION

If you click on the Pyramid logo at the top right of the page, a new target window will open to present
a debug toolbar that provides various niceties while you’re developing. This logo will float above every
HTML page served by Pyramid while you develop an application, and allows you to show the toolbar as
necessary.

® O O / & starter Scaffold for The Py % J/ [' Pyramid Debug Tolbar % \[__\ Steve | 1
<« € [} localhost:6543/_debug_toolbar/34333836383933393034# A #H @ =« O R P =
. Pyramid DebugToolbar History Global Settings
.
Requests HTTP Headers Logging Perfurmance Rendererso Request Vars SQLAIchemy
GET 200 Traceback
/
GET 200 Renderers
/
Renderer Name
GET (200] templates/mytemplate.pt
/
Rendering Value
GET
/ @ {'project': '"MyProject’}
System Values
GET [200
/ context <pyramid.traversal.DefaultRootFactory instance at 0x10574a128>
T @ renderer_info <pyramid.renderers.RendererHelper object at 0x105797450>
/ renderer_name ‘templates/mytemplate.pt’
GET @ req <Request at 0x1057ab050 GET http:/flocalhost:6543/>
/static/pyramid-...
request <Request at 0x1057ab050 GET http://localhost:6543/>
GET @ view <function my_view at 0x1053299b0>
/static/theme.css
GET 200]
/static/pyramid....

If you don’t see the Pyramid logo on the top right of the page, it means you’re browsing from a system
that does not have debugging access. By default, for security reasons, only a browser originating from
localhost (127.0.0.1) can see the debug toolbar. To allow your browser on a remote system to
access the server, add a line within the [app:main] section of the development.ini file in the
form debugtoolbar.hosts = X .X.X.X. For example, if your Pyramid application is running
on a remote system, and you’re browsing from a host with the IP address 192.168.1.1, you'd add
something like this to enable the toolbar when your system contacts Pyramid:

[app:main]
.. other settings
debugtoolbar.hosts = 192.168.1.1

335

CONTENTS

For more information about what the debug toolbar allows you to do, see the documentation for pyra-
mid_debugtoolbar.

The debug toolbar will not be shown (and all debugging will be turned off) when you use the
production.ini file instead of the development . ini ini file to run the application.

You can also turn the debug toolbar off by editing development . ini and commenting out a line. For
example, instead of:

[app:main]

2| # ... elided configuration
3 |pyramid.includes =
4 pyramid_debugtoolbar

Put a hash mark at the beginning of the pyramid_debugtoolbar line:

[app:main]
2| # ... elided configuration
pyramid.includes =

w

4| # pyramid_debugtoolbar

Then restart the application to see that the toolbar has been turned off.

Note that if you comment out the pyramid_debugtoolbar line, the # must be in the first column.
If you put it anywhere else, and then attempt to restart the application, you’ll receive an error that ends
something like this:

ImportError: No module named #pyramid_debugtoolbar

The Project Structure

The starter scaffold generated a project (named MyP ro ject), which contains a Python package. The
package is also named myproject, but it’s lowercased; the scaffold generates a project which contains
a package that shares its name except for case.

All Pyramid pcreate-generated projects share a similar structure. The MyProject project we’ve
generated has the following directory structure:

336

https://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/index.html#overview
https://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/index.html#overview

0.2. NARRATIVE DOCUMENTATION

MyProject/

| -—— CHANGES.txt

| -— development.ini

| -— MANIFEST.in

| -— myproject

| |-— __init___.py

|-— static

| |-— pyramid-16x16.png
| | -— pyramid.png

| |-— theme.css

| "—— theme.min.css
|-— templates

\ ‘—— mytemplate.pt
|-— tests.py

\ -— views.py

| -— production.ini

| —— README.txt

" —— setup.py

The MyProject Project

The MyProject project directory is the distribution and deployment wrapper for your application. It
contains both the myproject package representing your application as well as files used to describe,
run, and test your application.

1. CHANGES. txt describes the changes you’ve made to the application. It is conventionally written
in ReStructuredText format.

2. README. txt describes the application in general. It is conventionally written in ReStructuredText
format.

3. development.ini is a PasteDeploy configuration file that can be used to execute your applica-
tion during development.

4. production. ini is a PasteDeploy configuration file that can be used to execute your application
in a production configuration.

5. MANIFEST. in is a distutils “manifest” file, naming which files should be included in a source
distribution of the package when python setup.py sdist isrun.

6. setup.py is the file you’ll use to test and distribute your application. It is a standard setuptools
setup.py file.

337

CONTENTS

development.ini

The development . ini file is a PasteDeploy configuration file. Its purpose is to specify an application
to run when you invoke pserve, as well as the deployment settings provided to that application.

The generated development . ini file looks like so:

V| ###

2 | # app configuration

3| # http://docs.pylonsproject.org/projects/pyramid/en/1.7-branch/narr/
—environment.html

4| #H##

6 | [app:main]
7|use = egg:MyProject

9 |pyramid.reload_templates = true

0 |pyramid.debug_authorization = false
u |pyramid.debug_notfound = false

2 |pyramid.debug_routematch = false

13 |pyramid.default_locale_name = en

14 |pyramid.includes =

15 pyramid_debugtoolbar

17 | # By default, the toolbar only appears for clients from IP addresses
8| # '127.0.0.1" and '"::1"'.

v | # debugtoolbar.hosts = 127.0.0.1 ::1

20
o | #H#H

» | # wsgl server configuration
» | ##4#

24
» | [server:main]

6 |use = egg:waitress#main
2 |host = 127.0.0.1

% |port = 6543

29
0 | #HF

31 |# logging configuration

» |# http://docs.pylonsproject.org/projects/pyramid/en/1.7-branch/narr/
—~logging.html

3| #H##

34
35 | [loggers]

36 | keys = root, myproject
37

338

0.2. NARRATIVE DOCUMENTATION

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO

handlers = console

[logger_myproject]

level = DEBUG
handlers =

qualname = myproject

[handler_ console]

class = StreamHandler
args = (sys.stderr,)

level = NOTSET

formatter = generic

[formatter_generic]
format = % (asctime)s % (levelname)-5.5s [%(name)s:%(lineno)s]|[

—% (threadName) s

% (message) s

This file contains several sections including [app:main], [server:main], and several other sec-
tions related to logging configuration.

The [app:main] section represents configuration for your Pyramid application. The use setting is the
only setting required to be present in the [app:main] section. Its default value, egg:MyProject,
indicates that our MyProject project contains the application that should be served. Other settings added to
this section are passed as keyword arguments to the function named main in our package’s __init__ .
py module. You can provide startup-time configuration parameters to your application by adding more
settings to this section.

See also:

See Entry Points and PasteDeploy .ini Files for more information about the meaning of the use =
egg:MyProject value in this section.

The pyramid.reload_templates settinginthe [app:main] section is a Pyramid-specific setting
which is passed into the framework. If it exists, and its value is t rue, supported template changes
will not require an application restart to be detected. See Automatically Reloading Templates for more
information.

339

CONTENTS

L The pyramid.reload_templates option should be turned off for production applications,
as template rendering is slowed when it is turned on.

The pyramid.includes setting in the [app:main] section tells Pyramid to “include” configuration
from another package. In this case, the line pyramid.includes = pyramid_debugtoolbar
tells Pyramid to include configuration from the pyramid_debugtoolbar package. This turns on a
debugging panel in development mode which can be opened by clicking on the Pyramid logo on the top
right of the screen. Including the debug toolbar will also make it possible to interactively debug exceptions
when an error occurs.

Various other settings may exist in this section having to do with debugging or influencing runtime be-
havior of a Pyramid application. See Environment Variables and .ini File Settings for more information
about these settings.

The name main in [app:main] signifies that this is the default application run by pserve when it is
invoked against this configuration file. The name main is a convention used by PasteDeploy signifying
that it is the default application.

The [server:main] section of the configuration file configures a WSGI server which listens on TCP
port 6543. It is configured to listen on localhost only (127.0.0.1). The sections after # logging
configuration represent Python’s standard library 1 0ogging module configuration for your applica-
tion. These sections are passed to the logging module’s config file configuration engine when the pserve
or pshell commands are executed. The default configuration sends application logging output to the
standard error output of your terminal. For more information about logging configuration, see Logging.

See the PasteDeploy documentation for more information about other types of things you can put into this
. in1i file, such as other applications, middleware, and alternate WSGI server implementations.

production.ini

The production.ini file is a PasteDeploy configuration file with a purpose much like that of
development .ini. However, it disables the debug toolbar, and filters all log messages except those
above the WARN level. It also turns off template development options such that templates are not au-
tomatically reloaded when changed, and turns off all debugging options. This file is appropriate to use
instead of development .ini when you put your application into production.

It’s important to use production. ini (and not development . ini) to benchmark your application
and put it into production. development . ini configures your system with a debug toolbar that helps
development, but the inclusion of this toolbar slows down page rendering times by over an order of
magnitude. The debug toolbar is also a potential security risk if you have it configured incorrectly.

340

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/2/howto/logging.html#configuring-logging

0.2. NARRATIVE DOCUMENTATION

MANIFEST.in

The MANIFEST. in file is a distutils configuration file which specifies the non-Python files that should
be included when a distribution of your Pyramid project is created when you run python setup.py
sdist. Due to the information contained in the default MANIFEST . in, an sdist of your Pyramid project
will include . txt files, . ini files, . rst files, graphics files, and template files, as well as . py files. See
https://docs.python.org/2/distutils/sourcedist.html#the-manifest-in-template for more information about
the syntax and usage of MANIFEST. in.

Without the presence of a MANIFEST. in file or without checking your source code into a version con-
trol repository, setup.py sdist places only Python source files (files ending with a . py extension)
into tarballs generated by python setup.py sdist. This means, for example, if your project was
not checked into a setuptools-compatible source control system, and your project directory didn’t con-
tain a MANIFEST. in file that told the sdist machinery to include .pt files, the myproject/
templates/mytemplate.pt file would not be included in the generated tarball.

Projects generated by Pyramid scaffolds include a default MANIFEST. in file. The MANIFEST. in file
contains declarations which tell it to include files like * . pt, ».css and . s in the generated tarball.
If you include files with extensions other than the files named in the project’s MANIFEST. in and you
don’t make use of a setuptools-compatible version control system, you’ll need to edit the MANIFEST. in
file and include the statements necessary to include your new files. See https://docs.python.org/2/distutils/
sourcedist.html#principle for more information about how to do this.

You can also delete MANIFEST. in from your project and rely on a setuptools feature which simply
causes all files checked into a version control system to be put into the generated tarball. To allow this to
happen, check all the files that you’d like to be distributed along with your application’s Python files into
Subversion. After you do this, when you rerun setup.py sdist, all files checked into the version
control system will be included in the tarball. If you don’t use Subversion, and instead use a different
version control system, you may need to install a setuptools add-on such as setuptools—git or
setuptools—hg for this behavior to work properly.

setup.py

The setup.py file is a setuptools setup file. It is meant to be used to define requirements for installing
dependencies for your package and testing, as well as distributing your application.

6 setup.py is the de facto standard which Python developers use to distribute their reusable code.
You can read more about setup.py files and their usage in the Python Packaging User Guide and
Setuptools documentation.

Our generated setup . py looks like this:

341

https://docs.python.org/2/distutils/sourcedist.html#the-manifest-in-template
https://docs.python.org/2/distutils/sourcedist.html#principle
https://docs.python.org/2/distutils/sourcedist.html#principle
https://packaging.python.org/en/latest/
http://pythonhosted.org/setuptools/

CONTENTS

1 | import os
3 | from setuptools import setup, find_packages

s |here = os.path.abspath(os.path.dirname(file))
¢ |with open (os.path.join (here, 'README.txt')) as f:
7 README = f.read()

s |{with open(os.path.join (here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

1 |requires = [

12 'pyramid’,

13 'pyramid_chameleon',

14 'pyramid_debugtoolbar’,

15 'waitress',

16]

17

18 |tests_require = [

19 'WebTest >= 1.3.1', # py3 compat
20 'pytest', # includes virtualenv
21 'pytest-cov',

2]
23
% | setup (name="MyProject',

25 version='0.0",

26 description='MyProject',

27 long_description=README + '\n\n' + CHANGES,
28 classifiers=][

29 "Programming Language :: Python",
30 "Framework :: Pyramid",

31 "Topic :: Internet :: WWW/HTTP",
2 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
33 1,

34 author="",

35 author_email="",

36 url="",

37 keywords="'web pyramid pylons',

38 packages=find_packages (),

39 include_package_data=True,

40 zip_safe=False,

41 extras_require={

2 'testing': tests_require,

43 b

44 install_ requires=requires,

45 entry_points="""\

46 [paste.app_factory]

342

0.2. NARRATIVE DOCUMENTATION

47 main = myproject:main
48 mnn

49)

The setup.py file calls the setuptools setup function, which does various things depending on the
arguments passed to pip on the command line.

Within the arguments to this function call, information about your application is kept. While it’s be-
yond the scope of this documentation to explain everything about setuptools setup files, we’ll provide a
whirlwind tour of what exists in this file in this section.

Your application’s name can be any string; it is specified in the name field. The version number is
specified in the version value. A short description is provided in the description field. The
long_description is conventionally the content of the README and CHANGES files appended to-
gether. The classifiers field is a list of Trove classifiers describing your application. author and
author_email are text fields which probably don’t need any description. url is a field that should
point at your application project’s URL (if any). packages=find_packages () causes all pack-
ages within the project to be found when packaging the application. include_package_data will
include non-Python files when the application is packaged if those files are checked into version con-
trol. zip_safe=False indicates that this package is not safe to use as a zipped egg; instead it will
always unpack as a directory, which is more convenient. install_requires indicates that this pack-
age depends on the pyramid package. extras_require is a Python dictionary that defines what
is required to be installed for running tests. We examined entry_points in our discussion of the
development . ini file; this file defines the main entry point that represents our project’s application.

Usually you only need to think about the contents of the setup . py file when distributing your applica-
tion to other people, when adding Python package dependencies, or when versioning your application for
your own use. For fun, you can try this command now:

$ SVENV/bin/python setup.py sdist

This will create a tarball of your application in a di st subdirectory named MyProject-0.0.tar.gz.
You can send this tarball to other people who want to install and use your application.

The myproject Package

The myproject package lives inside the MyPro ject project. It contains:
1. An __init__ .py file signifies that this is a Python package. It also contains code that helps

users run the application, including a main function which is used as a entry point for commands
such as pserve, pshell, pviews, and others.

343

https://pypi.python.org/pypi?%3Aaction=list_classifiers

CONTENTS

2. A templates directory, which contains Chameleon (or other types of) templates.
3. A tests.py module, which contains unit test code for the application.

4. A views.py module, which contains view code for the application.

These are purely conventions established by the scaffold. Pyramid doesn’t insist that you name things in
any particular way. However, it’s generally a good idea to follow Pyramid standards for naming, so that
other Pyramid developers can get up to speed quickly on your code when you need help.

__init__ .py

We need a small Python module that configures our application and which advertises an entry point for use
by our PasteDeploy . ini file. This is the file named __init__ .py. The presence ofan __init__ .
py also informs Python that the directory which contains it is a package.

from pyramid.config import Configurator

def main(global_config, =x*settings):

""" This function returns a Pyramid WSGI application.

config = Configurator (settings=settings)

config.include ('pyramid_chameleon')
config.add_static_view('static', 'static', cache_max_age=3600)
config.add_route ('home', '/")

config.scan()

return config.make_wsgi_app ()

1. Line 1 imports the Configurator class from pyramid. config that we use later.

2. Lines 4-12 define a function named main that returns a Pyramid WSGI application. This function

is meant to be called by the PasteDeploy framework as a result of running pserve.
Within this function, application configuration is performed.
Line 7 creates an instance of a Configurator.

Line 8 adds support for Chameleon templating bindings, allowing us to specify renderers with the
. pt extension.

Line 9 registers a static view, which will serve up the files from the myproject:static asset
specification (the stat ic directory of the mypro ject package).

Line 10 adds a route to the configuration. This route is later used by a view in the views module.

Line 11 calls config. scan (), which picks up view registrations declared elsewhere in the pack-
age (in this case, in the views . py module).

Line 12 returns a WSGI application to the caller of the function (Pyramid’s pserve).

344

0.2. NARRATIVE DOCUMENTATION

views.py

Much of the heavy lifting in a Pyramid application is done by view callables. A view callable is the main
tool of a Pyramid web application developer; it is a bit of code which accepts a request and which returns
a response.

from pyramid.view import view_config

=

@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request) :
6 return {'project': 'MyProject'}

w

Lines 4-6 define and register a view callable named my_view. The function named my_view is
decorated with a view_config decorator (which is processed by the config.scan () line in our
__init__ .py). The view_config decorator asserts that this view be found when a route named home
is matched. In our case, because our __init__ .py maps the route named home to the URL pat-
tern /, this route will match when a visitor visits the root URL. The view_config decorator also names a
renderer, which in this case is a template that will be used to render the result of the view callable. This
particular view declaration points at templates/mytemplate.pt, which is an asset specification
that specifies the mytemplate . pt file within the templates directory of the myproject package.
The asset specification could have also been specified as myproject:templates/mytemplate.
pt; the leading package name and colon is optional. The template file pointed to is a Chameleon ZPT
template file (templates/my_template.pt).

This view callable function is handed a single piece of information: the request. The request is an instance
of the WebOb Request class representing the browser’s request to our server.

This view is configured to invoke a renderer on a template. The dictionary the view returns (on line 6)
provides the value the renderer substitutes into the template when generating HTML. The renderer then
returns the HTML in a response.

O Dictionaries provide values to femplates.

O When the application is run with the scaffold’s default development.ini configuration, logging is set
up to aid debugging. If an exception is raised, uncaught tracebacks are displayed after the startup messages
on the console running the server. Also print () statements may be inserted into the application for
debugging to send output to this console.

345

CONTENTS

u development.ini has a setting that controls how templates are reloaded, pyramid.
reload_templates.

* When set to True (as in the scaffold development .ini), changed templates automatically
reload without a server restart. This is convenient while developing, but slows template rendering
speed.

* When set to False (the default value), changing templates requires a server restart to reload them.
Production applications should use pyramid.reload_templates = False.

See also:

See also Writing View Callables Which Use a Renderer for more information about how views, renderers,
and templates relate and cooperate.

See also:

Pyramid can also dynamically reload changed Python files. See also Reloading Code.

See also:

See also the The Debug Toolbar, which provides interactive access to your application’s internals and,

should an exception occur, allows interactive access to traceback execution stack frames from the Python
interpreter.

static

This directory contains static assets which support the mytemplate.pt template. It includes CSS and
images.

templates/mytemplate.pt

This is the single Chameleon template that exists in the project. Its contents are too long to show here,
but it displays a default page when rendered. It is referenced by the call to @view_config as the
renderer of the my_view view callable in the views.py file. See Writing View Callables Which
Use a Renderer for more information about renderers.

Templates are accessed and used by view configurations and sometimes by view functions themselves.
See Using Templates Directly and Templates Used as Renderers via Configuration.

346

0.2. NARRATIVE DOCUMENTATION

tests.py

The tests.py module includes unit tests for your application.

import unittest

from pyramid import testing

w

6 |class ViewTests (unittest.TestCase) :
7 def setUp(self):
8 self.config

testing.setUp ()

def tearDown (self):
testing.tearDown ()

def test_my_view(self):

from .views import my_view

request = testing.DummyRequest ()

info my_view (request)

self.assertEqual (info['project'],

class FunctionalTests (unittest.TestCase) :
def setUp(self):
from myproject import main
app = main({})
from webtest import TestApp
self.testapp TestApp (app)

20
21

22

23

24

25
26
27 def test_root (self):

res self.testapp.get('/",

self.assertTrue (b'Pyramid'’

28

29

'MyProject')

status=200)
in res.body)

This sample tests.py file has one unit test and one functional test defined within it. These tests are
executed when you run py . test -g. You may add more tests here as you build your application. You
are not required to write tests to use Pyramid. This file is simply provided for convenience and example.

See Unit, Integration, and Functional Testing for more information about writing Pyramid unit tests.

Modifying Package Structure

It is best practice for your application’s code layout to not stray too much from accepted Pyramid scaffold
defaults. If you refrain from changing things very much, other Pyramid coders will be able to more

347

CONTENTS

quickly understand your application. However, the code layout choices made for you by a scaffold are in
no way magical or required. Despite the choices made for you by any scaffold, you can decide to lay your
code out any way you see fit.

For example, the configuration method named add_view () requires you to pass a dotted Python name
or a direct object reference as the class or function to be used as a view. By default, the starter scaffold
would have you add view functions to the views .py module in your package. However, you might be
more comfortable creating a views directory, and adding a single file for each view.

If your project package name was myproject and you wanted to arrange all your views in a Python
subpackage within the myproject package named views instead of within a single views.py file,
you might do the following.

* Create a views directory inside your myproject package directory (the same directory which
holds views.py).

¢ Create a file within the new views directory named __init__ .py. (It can be empty. This just
tells Python that the views directory is a package.)

* Move the content from the existing views . py file to a file inside the new views directory named,
say, blog.py. Because the templates directory remains in the myproject package, the
template asset specification values in blog.py must now be fully qualified with the project’s
package name (myproject:templates/blog.pt).

You can then continue to add view callable functions to the blog.py module, but you can also add
other .py files which contain view callable functions to the views directory. As long as you use the
@view_config directive to register views in conjunction with config. scan (), they will be picked
up automatically when the application is restarted.

Using the Interactive Shell

It is possible to use the pshell command to load a Python interpreter prompt with a similar configuration
as would be loaded if you were running your Pyramid application via pserve. This can be a useful
debugging tool. See The Interactive Shell for more details.

348

0.2. NARRATIVE DOCUMENTATION

What Is This pserve Thing

The code generated by a Pyramid scaffold assumes that you will be using the pserve command to start
your application while you do development. pserve is a command that reads a PasteDeploy . in1i file
(e.g., development . ini), and configures a server to serve a Pyramid application based on the data in
the file.

pserve is by no means the only way to start up and serve a Pyramid application. As we saw in Creating
Your First Pyramid Application, pserve needn’t be invoked at all to run a Pyramid application. The
use of pserve to run a Pyramid application is purely conventional based on the output of its scaffold-
ing. But we strongly recommend using pserve while developing your application because many other
convenience introspection commands (such as pviews, prequest, proutes, and others) are also
implemented in terms of configuration availability of this . ini file format. It also configures Pyramid
logging and provides the ——reload switch for convenient restarting of the server when code changes.

Using an Alternate WSGI Server

Pyramid scaffolds generate projects which use the Waitress WSGI server. Waitress is a server that is
suited for development and light production usage. It’s not the fastest nor the most featureful WSGI
server. Instead, its main feature is that it works on all platforms that Pyramid needs to run on, making it a
good choice as a default server from the perspective of Pyramid’s developers.

Any WSGI server is capable of running a Pyramid application. But we suggest you stick with the default
server for development, and that you wait to investigate other server options until you’re ready to deploy
your application to production. Unless for some reason you need to develop on a non-local system, inves-
tigating alternate server options is usually a distraction until you’re ready to deploy. But we recommend
developing using the default configuration on a local system that you have complete control over; it will
provide the best development experience.

One popular production alternative to the default Waitress server is mod_wsgi. You can use mod_wsgi
to serve your Pyramid application using the Apache web server rather than any “pure-Python” server like
Waitress. It is fast and featureful. See Running a Pyramid Application under mod_wsgi for details.

Another good production alternative is Green Unicorn (aka gunicorn). It’s faster than Waitress and
slightly easier to configure than mod_wsgi, although it depends, in its default configuration, on having
a buffering HTTP proxy in front of it. It does not, as of this writing, work on Windows.

Startup

When you cause a Pyramid application to start up in a console window, you’ll see something much like
this show up on the console:

349

CONTENTS

$ SVENV/bin/pserve development.ini
Starting server in PID 16305.
serving on http://127.0.0.1:6543

This chapter explains what happens between the time you press the “Return” key on your keyboard
after typing pserve development.ini and the time the line serving on http://127.0.
0.1:6543 is output to your console.

The Startup Process

The easiest and best-documented way to start and serve a Pyramid application is to use the pserve
command against a PasteDeploy .ini file. This uses the . ini file to infer settings and starts a server
listening on a port. For the purposes of this discussion, we’ll assume that you are using this command to
run your Pyramid application.

Here’s a high-level time-ordered overview of what happens when you press return after running
pserve development.ini.

1. The pserve command is invoked under your shell with the argument development .ini. As
a result, Pyramid recognizes that it is meant to begin to run and serve an application using the
information contained within the development . ini file.

2. The framework finds a section named either [app:main], [pipeline:main], or
[composite:main] in the .ini file. This section represents the configuration of a WSGI
application that will be served. If you’re using a simple application (e.g., [app:main]), the
application’s paste.app_factory entry point will be named on the use= line within the
section’s configuration. If instead of a simple application, you’re using a WSGI pipeline (e.g.,
a [pipeline:main] section), the application named on the “last” element will refer to your
Pyramid application. If instead of a simple application or a pipeline, you’re using a “composite”
(e.g., [composite:main]), refer to the documentation for that particular composite to under-
stand how to make it refer to your Pyramid application. In most cases, a Pyramid application built
from a scaffold will have a single [app:main] section in it, and this will be the application
served.

3. The framework finds all 1ogging related configuration in the . ini file and uses it to configure

the Python standard library logging system for this application. See Logging Configuration for
more information.

350

https://docs.python.org/3/library/logging.html#module-logging

0.2. NARRATIVE DOCUMENTATION

4. The application’s constructor named by the entry point referenced on the use= line of the section
representing your Pyramid application is passed the key/value parameters mentioned within the
section in which it’s defined. The constructor is meant to return a router instance, which is a WSGI

application.

For Pyramid applications, the constructor will be a function named main inthe __init__ .py
file within the package in which your application lives. If this function succeeds, it will return a
Pyramid router instance. Here’s the contents of an example __init__ .py module:

1 | from pyramid.config import Configurator

2

3

4| def main(global_config, **settings):

5 """ This function returns a Pyramid WSGI application.
p mon

7 config = Configurator (settings=settings)

8 config.include ('pyramid_chameleon')

9 config.add_static_view('static', 'static', cache_max_age=3600)
10 config.add_route('home', '/")

11 config.scan()

12 return config.make_wsgi_app ()

Note that the constructor function accepts a global_config argument, which is a dictionary of
key/value pairs mentioned in the [DEFAULT] section of an . ini file (if [DEFAULT] is present).
It also accepts a »*settings argument, which collects another set of arbitrary key/value pairs.
The arbitrary key/value pairs received by this function in « x set t ings will be composed of all the
key/value pairs that are present in the [app:main] section (except for the use= setting) when
this function is called when you run pserve.

Our generated development . ini file looks like so:

V| ###

2| # app configuration

3| # http://docs.pylonsproject.org/projects/pyramid/en/1.7-branch/narr/
—environment.html

4| ###

¢ | [app:main]
7|use = egg:MyProject

9 |pyramid.reload_templates = true

10 | pyramid.debug_authorization = false
1 |pyramid.debug_notfound = false

2 | pyramid.debug_routematch = false

13 |pyramid.default_locale_name = en

351

CONTENTS

20

21

22

23

24

25

26

27

28

29

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

pyramid.includes =
pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1" and '::1".
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgl server configuration

#H##

[server:main]

use = egg:wailtress#main
host = 127.0.0.1

port = 6543

###

logging configuration

http://docs.pylonsproject.org/projects/pyramid/en/1.7-branch/narr/
—~logging.html

#H##

[loggers]
keys = root, myproject

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_myproject]
level = DEBUG
handlers =

qualname = myproject

[handler_console]

class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

352

0.2. NARRATIVE DOCUMENTATION

10.

so | [formatter_generic]
60 | format = % (asctime)s %$(levelname)-5.5s [%$(name)s:%(lineno)s]|
—% (threadName) s] % (message)s

In this case, the myproject.__init__ :main function referred to by the entry point
URI egg:MyProject (see development.ini for more information about entry point
URIs, and how they relate to callables) will receive the key/value pairs {pyramid.
reload_templates = true, pyramid.debug_authorization = false,
pyramid.debug_notfound = false, pyramid.debug_routematch =

false, pyramid.default_locale_name = en, and pyramid.includes =
pyramid_debugtoolbar}. See Environment Variables and .ini File Settings for the meanings
of these keys.

The main function first constructs a Configurator instance, passing the sett ings dictionary
captured via the » *settings kwarg as its settings argument.

The settings dictionary contains all the options in the [app:main] section of our .ini file ex-
cept the use option (which is internal to PasteDeploy) such as pyramid.reload_templates,
pyramid.debug_authorization, etc.

The main function then calls various methods on the instance of the class Configurator cre-
ated in the previous step. The intent of calling these methods is to populate an application registry,
which represents the Pyramid configuration related to the application.

The make_wsgi_app () method is called. The result is a router instance. The router is associated
with the application registry implied by the configurator previously populated by other methods run
against the Configurator. The router is a WSGI application.

. An ApplicationCreated event is emitted (see Using Events for more information about

events).

Assuming there were no errors, the main function in myproject returns the router instance
created by pyramid.config.Configurator.make_wsgi_app () back to pserve. As
far as pserve is concerned, it is “just another WSGI application”.

pserve starts the WSGI server defined within the [server:main] section. In our case, this is
the Waitress server (use = egg:waitress#main), and it will listen on all interfaces (host
= 127.0.0.1), on port number 6543 (port = 6543). The server code itself is what prints
serving on http://127.0.0.1:6543. The server serves the application, and the appli-
cation is running, waiting to receive requests.

See also:

Logging configuration is described in the Logging chapter. There, in Request Logging with Paste’s
TransLogger, you will also find an example of how to configure middleware to add pre-packaged func-
tionality to your application.

353

CONTENTS

Deployment Settings

Note that an augmented version of the values passed as x+settings to the Configurator con-
structor will be available in Pyramid view callable code as request .registry.settings. You
can create objects you wish to access later from view code, and put them into the dictionary you pass to
the configurator as settings. They will then be present in the request.registry.settings
dictionary at application runtime.

354

0.2. NARRATIVE DOCUMENTATION

355

CONTENTS

Request Processing

Request Processing

p
. . Legend
middleware ingress
event
Y
; external process
tween ingress .
9 (middleware, tween)
------------- NewRequest
Y internal process
URL dispatch view deriver
route predicates
callback
¢ ““““““““““““ BeforeTraversal
traversal
¢ ---------------- ContextFound
view lookup authorization
CSRF checks
predicates -
decorators ingress
i view mapper ingress
view pipeline view
view mapper egress
response adapter f----- BeforeRender
tween egress decorators egress
---------------- response callbacks
i NewResponse
finished callbacks

middleware egress

356

0.2. NARRATIVE DOCUMENTATION

Once a Pyramid application is up and running, it is ready to accept requests and return responses. What
happens from the time a WSGI request enters a Pyramid application through to the point that Pyramid
hands off a response back to WSGI for upstream processing?

1.

10.

A user initiates a request from their browser to the hostname and port number of the WSGI server
used by the Pyramid application.

The WSGI server used by the Pyramid application passes the WSGI environmenttothe ___call_
method of the Pyramid router object.

. A request object is created based on the WSGI environment.

The application registry and the request object created in the last step are pushed on to the thread
local stack that Pyramid uses to allow the functions named get_current_request () and
get_current_registry () to work.

A NewRequest event is sent to any subscribers.

If any route has been defined within application configuration, the Pyramid router calls a URL
dispatch “route mapper.” The job of the mapper is to examine the request to determine whether
any user-defined route matches the current WSGI environment. The router passes the request as an
argument to the mapper.

If any route matches, the route mapper adds the attributes matchdict and matched_route to
the request object. The former contains a dictionary representing the matched dynamic elements of
the request’s PATH_INFO value, and the latter contains the TRout e object representing the route
which matched.

A BeforeTraversal eventis sent to any subscribers.

Continuing, if any route matches, the root object associated with the found route is generated. If
the route configuration which matched has an associated factory argument, then this factory is
used to generate the root object; otherwise a default root factory is used.

However, if no route matches, and if a root_factory argument was passed to the Configurator
constructor, that callable is used to generate the root object. If the root_factory argument
passed to the Configurator constructor was None, a default root factory is used to generate a root
object.

The Pyramid router calls a “traverser” function with the root object and the request. The traverser
function attempts to traverse the root object (using any existing __getitem___ on the root object
and subobjects) to find a context. If the root object has no __getitem__ method, the root itself
is assumed to be the context. The exact traversal algorithm is described in Traversal. The traverser
function returns a dictionary, which contains a context and a view name as well as other ancillary
information.

357

CONTENTS

11.

12.

13.

14.

15.

16.

17.

18.

The request is decorated with various names returned from the traverser (such as context,
view_name, and so forth), so they can be accessed via, for example, request . context within
view code.

A ContextFound event is sent to any subscribers.

Pyramid looks up a view callable using the context, the request, and the view name. If a view
callable doesn’t exist for this combination of objects (based on the type of the context, the type
of the request, and the value of the view name, and any predicate attributes applied to the view
configuration), Pyramid raises a HTTPNotFound exception, which is meant to be caught by a
surrounding exception view.

If a view callable was found, Pyramid attempts to call it. If an authorization policy is in use,
and the view configuration is protected by a permission, Pyramid determines whether the view
callable being asked for can be executed by the requesting user based on credential information
in the request and security information attached to the context. If the view execution is allowed,
Pyramid calls the view callable to obtain a response. If view execution is forbidden, Pyramid raises
a HTTPForbidden exception.

If any exception is raised within a root factory, by traversal, by a view callable, or by Pyramid itself
(such as when it raises HTTPNotFound or HTTPForbidden), the router catches the exception,
and attaches it to the request as the except ion attribute. It then attempts to find a exception view
for the exception that was caught. If it finds an exception view callable, that callable is called, and is
presumed to generate a response. If an exception view that matches the exception cannot be found,
the exception is reraised.

The following steps occur only when a response could be successfully generated by a normal view
callable or an exception view callable. Pyramid will attempt to execute any response callback
functions attached via add_response_callback (). A NewResponse event is then sent
to any subscribers. The response object’s __call__ method is then used to generate a WSGI
response. The response is sent back to the upstream WSGI server.

Pyramid will attempt to execute any finished callback functions attached via
add_finished callback ().

The thread local stack is popped.

358

0.2. NARRATIVE DOCUMENTATION

Pyramid Router

Obtain a root object from the root factory

v

Traverse the model graph
from the root using the path

v

Traversal locates
the context and view name

v

Look up a view callable in the registry
using the context and view name

Y

View callable
found?

Return the Not Found View

Current user has
authorization to invoke

the view callable?

Return the Forbidden View

Invoke the view callable,
which returns a response

!

Return the response

CONTENTS

This is a very high-level overview that leaves out various details. For more detail about subsystems
invoked by the Pyramid router, such as traversal, URL dispatch, views, and event processing, see URL
Dispatch, Views, and Using Events.

URL Dispatch

URL dispatch provides a simple way to map URLSs to view code using a simple pattern matching language.
An ordered set of patterns is checked one by one. If one of the patterns matches the path information
associated with a request, a particular view callable is invoked. A view callable is a specific bit of code,
defined in your application, that receives the request and returns a response object.

High-Level Operational Overview

If any route configuration is present in an application, the Pyramid Router checks every incoming request
against an ordered set of URL matching patterns present in a route map.

If any route pattern matches the information in the request, Pyramid will invoke the view lookup process
to find a matching view.

If no route pattern in the route map matches the information in the request provided in your application,

Pyramid will fail over to using traversal to perform resource location and view lookup.

Route Configuration

Route configuration is the act of adding a new route to an application. A route has a name, which acts as an
identifier to be used for URL generation. The name also allows developers to associate a view configura-
tion with the route. A route also has a pattern, meant to match against the PATH_INFO portion of a URL
(the portion following the scheme and port, e.g., / foo/barinthe URL http://localhost:8080/
foo/bar). It also optionally has a factory and a set of route predicate attributes.

Configuring a Route to Match a View

The pyramid.config.Configurator.add_route () method adds a single route configuration
to the application registry. Here’s an example:

360

0.2. NARRATIVE DOCUMENTATION

"config" below is presumed to be an instance of the

pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function

from views import myview

config.add_route ('myroute', '/prefix/{one}/{two}")
config.add_view (myview, route_name='myroute')

When a view callable added to the configuration by way of add_view () becomes associated with a
route via its route_name predicate, that view callable will always be found and invoked when the
associated route pattern matches during a request.

More commonly, you will not use any add_view statements in your project’s “setup” code. You will
instead use add_route statements, and use a scan to associate view callables with routes. For example,
if this is a portion of your project’s __init__ .py:

config.add_route ('myroute', '/prefix/{one}/{two}")
config.scan ('mypackage')

Note that we don’t call add_view () in this setup code. However, the above scan execution config.
scan ('mypackage') will pick up each configuration decoration, including any objects decorated
with the pyramid. view. view_config decorator in the mypackage Python package. For exam-
ple, if you have a views.py in your package, a scan will pick up any of its configuration decorators, so
we can add one there that references myroute as a route_name parameter:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='myroute')
def nmyview (request) :
return Response ('OK")

The above combination of add_route and scan is completely equivalent to using the previous combi-
nation of add_route and add_view.

Route Pattern Syntax

The syntax of the pattern matching language used by Pyramid URL dispatch in the pattern argument is
straightforward. It is close to that of the Routes system used by Pylons.

The pattern used in route configuration may start with a slash character. If the pattern does not start with
a slash character, an implicit slash will be prepended to it at matching time. For example, the following
patterns are equivalent:

361

CONTENTS

’{foo}/bar/baz ‘

and:

’/{foo}/bar/baz ‘

If a pattern is a valid URL it won’t be matched against an incoming request. Instead it can be useful for
generating external URLs. See External routes for details.

A pattern segment (an individual item between / characters in the pattern) may either be a literal string
(e.g., foo) or it may be a replacement marker (e.g., {foo}), or a certain combination of both. A
replacement marker does not need to be preceded by a / character.

A replacement marker is in the format { name }, where this means “accept any characters up to the next
slash character and use this as the name matchdict value.”

A replacement marker in a pattern must begin with an uppercase or lowercase ASCII letter or an under-
score, and can be composed only of uppercase or lowercase ASCII letters, underscores, and numbers. For
example: a, a_b, _b, and b9 are all valid replacement marker names, but Oa is not.

Changed in version 1.2: A replacement marker could not start with an underscore until Pyramid 1.2.
Previous versions required that the replacement marker start with an uppercase or lowercase letter.

A matchdict is the dictionary representing the dynamic parts extracted from a URL based on the routing
pattern. It is available as request .matchdict. For example, the following pattern defines one literal
segment (foo) and two replacement markers (baz, and bar):

foo/{baz}/{bar}

The above pattern will match these URLSs, generating the following matchdicts:

foo/1/2 -> {'baz':u'l', 'bar':u'2'}
foo/abc/def -> {'baz':u'abc', 'bar':u'def'}

It will not match the following patterns however:

foo/1/2/ -> No match (trailing slash)
bar/abc/def -> First segment literal mismatch

The match for a segment replacement marker in a segment will be done only up to the first non-
alphanumeric character in the segment in the pattern. So, for instance, if this route pattern was used:

362

0.2. NARRATIVE DOCUMENTATION

foo/{name}.html

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{'name':u'biz'}. However, the literal path /foo/biz will not match, because it does not contain
a literal .html at the end of the segment represented by {name} .html (it only contains biz, not
biz.html).

To capture both segments, two replacement markers can be used:

foo/{name}. {ext}

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{'name': 'biz', 'ext': 'html'}. This occurs because there is a literal part of . (period)
between the two replacement markers {name} and {ext}.

Replacement markers can optionally specify a regular expression which will be used to decide whether a
path segment should match the marker. To specify that a replacement marker should match only a specific
set of characters as defined by a regular expression, you must use a slightly extended form of replacement
marker syntax. Within braces, the replacement marker name must be followed by a colon, then directly
thereafter, the regular expression. The default regular expression associated with a replacement marker
[~/ 1+ matches one or more characters which are not a slash. For example, under the hood, the replace-
ment marker {foo} can more verbosely be spelled as {foo: [~/]+}. You can change this to be an
arbitrary regular expression to match an arbitrary sequence of characters, such as { foo: \d+} to match
only digits.

It is possible to use two replacement markers without any literal characters between them, for instance
/{foo}{bar}. However, this would be a nonsensical pattern without specifying a custom regular
expression to restrict what each marker captures.

Segments must contain at least one character in order to match a segment replacement marker. For
example, for the URL /abc/:

e /abc/{foo} will not match.
e /{foo}/ will match.

Note that values representing matched path segments will be URL-unquoted and decoded from UTF-8
into Unicode within the matchdict. So for instance, the following pattern:

foo/{bar}

When matching the following URL:

363

CONTENTS

’http://example.com/foo/La%ZOPe%C3%Bla

The matchdict will look like so (the value is URL-decoded / UTF-8 decoded):

’{'bar':u'La Pe\xfla'} ‘

Literal strings in the path segment should represent the decoded value of the PATH_INFO provided to
Pyramid. You don’t want to use a URL-encoded value or a bytestring representing the literal encoded as
UTF-8 in the pattern. For example, rather than this:

’/Foo%2OBar/{baz} ‘

You’ll want to use something like this:

’/Foo Bar/{baz} ‘

For patterns that contain “high-order” characters in its literals, you’ll want to use a Unicode value as the
pattern as opposed to any URL-encoded or UTF-8-encoded value. For example, you might be tempted to
use a bytestring pattern like this:

/La Pe\xc3\xbla/{x}

But this will either cause an error at startup time or it won’t match properly. You’ll want to use a Unicode
value as the pattern instead rather than raw bytestring escapes. You can use a high-order Unicode value
as the pattern by using Python source file encoding plus the “real” character in the Unicode pattern in the
source, like so:

’/La Pefia/ {x} ‘

Or you can ignore source file encoding and use equivalent Unicode escape characters in the pattern.

’/La Pe\xfla/{x} ‘

Dynamic segment names cannot contain high-order characters, so this applies only to literals in the pat-
tern.

If the pattern has a * in it, the name which follows it is considered a “remainder match”. A remainder
match must come at the end of the pattern. Unlike segment replacement markers, it does not need to be
preceded by a slash. For example:

364

https://www.python.org/dev/peps/pep-0263/

0.2. NARRATIVE DOCUMENTATION

foo/{baz}/{bar}*xfizzle

The above pattern will match these URLSs, generating the following matchdicts:

foo/1/2/ ->
{'baz':u'l', 'bar':u'2', 'fizzle':()}

foo/abc/def/a/b/c >
{'baz':u'abc', 'bar':u'def', 'fizzle':(u'a', u'b', u'c')}

Note that when a * st ararg remainder match is matched, the value put into the matchdict is turned into
a tuple of path segments representing the remainder of the path. These path segments are URL-unquoted
and decoded from UTF-8 into Unicode. For example, for the following pattern:

’foo/*fizzle ‘

When matching the following path:

’/foo/La%2OPe%C3%B1a/a/b/c ‘

Will generate the following matchdict:

’{'fizzle':(u'La Pe\xfla', u'a', u'b', u'c")} ‘

By default, the xstararg will parse the remainder sections into a tuple split by segment. Changing the
regular expression used to match a marker can also capture the remainder of the URL, for example:

foo/{baz}/{bar}{fizzle:.x}

The above pattern will match these URLSs, generating the following matchdicts:

foo/1/2/ -> {'baz':u'l', 'bar':u'2', 'fizzle':u''}
foo/abc/def/a/b/c -> {'baz':u'abc', 'bar':u'def', 'fizzle': u'a/b/c'}

This occurs because the default regular expression for a marker is [~/]+ which will match everything
up to the first /, while {fizzle: .} will result in a regular expression match of .« capturing the
remainder into a single value.

365

CONTENTS

Route Declaration Ordering

Route configuration declarations are evaluated in a specific order when a request enters the system. As a
result, the order of route configuration declarations is very important. The order in which route declara-
tions are evaluated is the order in which they are added to the application at startup time. (This is unlike a
different way of mapping URLSs to code that Pyramid provides, named traversal, which does not depend
on pattern ordering).

For routes added via the add_route method, the order that routes are evaluated is the order in which
they are added to the configuration imperatively.

For example, route configuration statements with the following patterns might be added in the following
order:

members/ {def}
members/abc

In such a configuration, the members/abc pattern would never be matched. This is because the match
ordering will always match members/{def} first; the route configuration with members/abc will
never be evaluated.

Route Configuration Arguments

Route configuration add_route statements may specify a large number of arguments. They are docu-
mented as part of the API documentation at pyramid. config.Configurator.add_route ().

Many of these arguments are route predicate arguments. A route predicate argument specifies that some
aspect of the request must be true for the associated route to be considered a match during the route

matching process. Examples of route predicate arguments are pattern, xhr, and request_method.

Other arguments are name and factory. These arguments represent neither predicates nor view con-
figuration information.

366

0.2. NARRATIVE DOCUMENTATION

Route Matching

The main purpose of route configuration is to match (or not match) the PATH_INFO present in the WSGI
environment provided during a request against a URL path pattern. PATH_INFO represents the path
portion of the URL that was requested.

The way that Pyramid does this is very simple. When a request enters the system, for each route config-
uration declaration present in the system, Pyramid checks the request’s PATH_INFO against the pattern
declared. This checking happens in the order that the routes were declared via pyramid.config.
Configurator.add_route ().

When a route configuration is declared, it may contain route predicate arguments. All route predicates
associated with a route declaration must be True for the route configuration to be used for a given request
during a check. If any predicate in the set of route predicate arguments provided to a route configuration
returns False during a check, that route is skipped and route matching continues through the ordered set
of routes.

If any route matches, the route matching process stops and the view lookup subsystem takes over to find
the most reasonable view callable for the matched route. Most often, there’s only one view that will
match (a view configured with a route_name argument matching the matched route). To gain a better
understanding of how routes and views are associated in a real application, you can use the pviews
command, as documented in Displaying Matching Views for a Given URL.

If no route matches after all route patterns are exhausted, Pyramid falls back to traversal to do resource
location and view lookup.

The Matchdict

When the URL pattern associated with a particular route configuration is matched by a request, a dictio-
nary named mat chdict is added as an attribute of the request object. Thus, request .matchdict
will contain the values that match replacement patterns in the pat tern element. The keys in a matchdict
will be strings. The values will be Unicode objects.

O If no route URL pattern matches, the mat chdict object attached to the request will be None.

367

CONTENTS

The Matched Route

When the URL pattern associated with a particular route configuration is matched by a request, an
object named matched_route is added as an attribute of the request object. Thus, request.
matched_route will be an object implementing the TRoute interface which matched the request.
The most useful attribute of the route object is name, which is the name of the route that matched.

O If no route URL pattern matches, the matched_route object attached to the request will be
None.

Routing Examples

Let’s check out some examples of how route configuration statements might be commonly declared, and
what will happen if they are matched by the information present in a request.

Example 1

The simplest route declaration which configures a route match to directly result in a particular view
callable being invoked:

config.add_route('idea', 'site/{id}")
config.scan()

)

When a route configuration with a view attribute is added to the system, and an incoming request matches
the pattern of the route configuration, the view callable named as the view attribute of the route config-
uration will be invoked.

Recall that the @view_config is equivalent to calling config.add_view, because the config.
scan () call will import mypackage.views, shown below, and execute config.add_view under
the hood. Each view then maps the route name to the matching view callable. In the case of the above
example, when the URL of a request matches /site/{id}, the view callable at the Python dotted
path name mypackage.views.site_view will be called with the request. In other words, we’ve
associated a view callable directly with a route pattern.

When the /site/ {id} route pattern matches during a request, the site_view view callable is in-
voked with that request as its sole argument. When this route matches, a matchdict will be gener-
ated and attached to the request as request .matchdict. If the specific URL matched is /site/
1, the matchdict will be a dictionary with a single key, id; the value will be the string '1"', ex.:
{'id':'1"}.

The mypackage . views module referred to above might look like so:

368

0.2. NARRATIVE DOCUMENTATION

1 | from pyramid.view import view_config
2 | from pyramid.response import Response

4| @view_config(route_name="idea')
s |def site_view (request) :
6 return Response (request.matchdict['id'])

The view has access to the matchdict directly via the request, and can access variables within it that match
keys present as a result of the route pattern.

See Views, and View Configuration for more information about views.

Example 2

Below is an example of a more complicated set of route statements you might add to your application:

1 |config.add_route('idea', 'ideas/{idea}")
> |config.add_route ('user', 'users/{user}')
3 |config.add_route ('tag', 'tags/{tag}')

4| config.scan()

Here is an example of a corresponding mypackage . views module:

1 | from pyramid.view import view_config
2 | from pyramid.response import Response

4| @view_config(route_name="'idea')
s |def idea_view (request) :
6 return Response (request.matchdict['idea'])

s | @view_config (route_name="user')

9 |def user_view(request):

10 user = request.matchdict['user']

1 return Response (u'The user is {}.'.format (user))

13 |@view_config (route_name='tag')

1 |def tag_view(request) :

15 tag = request.matchdict['tag']

16 return Response (u'The tag is {}.'.format (tag))

The above configuration will allow Pyramid to service URLSs in these forms:

369

CONTENTS

/ideas/{idea}
/users/{user}
/tags/{tag}

e When a URL matches the pattern /ideas/{idea}, the view callable available at the dot-
ted Python pathname mypackage.views.idea_view will be called. For the specific
URL /ideas/1, the matchdict generated and attached to the request will consist of
{'idea':"'1"}.

* When a URL matches the pattern /users/{user}, the view callable available at the dot-
ted Python pathname mypackage.views.user_view will be called. For the specific
URL /users/1, the matchdict generated and attached to the request will consist of
{'user':"1"'}.

* When a URL matches the pattern /tags/ {tag}, the view callable available at the dotted Python
pathname mypackage.views.tag_view will be called. For the specific URL /tags/1, the
matchdict generated and attached to the request will consist of { 'tag':"'1"'}.

In this example we’ve again associated each of our routes with a view callable directly. In all cases,
the request, which will have a matchdict attribute detailing the information found in the URL by the
process will be passed to the view callable.

Example 3

The context resource object passed in to a view found as the result of URL dispatch will, by default, be
an instance of the object returned by the root factory configured at startup time (the root_factory
argument to the Configurator used to configure the application).

You can override this behavior by passing in a factory argument to the add_route () method for a
particular route. The factory should be a callable that accepts a request and returns an instance of a

class that will be the context resource used by the view.

An example of using a route with a factory:

config.add_route('idea', 'ideas/{idea}', factory='myproject.resources.Idea
o)

config.scan()

)

The above route will manufacture an Idea resource as a contfext, assuming that mypackage.
resources. Idea resolves to a class that accepts a request inits __init__ . For example:

370

0.2. NARRATIVE DOCUMENTATION

class Idea (object):
2 def __init__ (self, request):
3 pass

In a more complicated application, this root factory might be a class representing a SQLAlchemy model.
The view mypackage.views.idea_view might look like this:

@view_config(route_name='idea')
def idea_view(request):

idea = request.context
4 return Response (idea)

[P SR

Here, request .context is an instance of Idea. If indeed the resource object is a SQLAlchemy
model, you do not even have to perform a query in the view callable, since you have access to the resource
via request.context.

See Route Factories for more details about how to use route factories.

Matching the Root URL

It’s not entirely obvious how to use a route pattern to match the root URL (“/””). To do so, give the empty
string as a pattern in a call to add_route ():

1’config.add_route('root', ')

Or provide the literal string / as the pattern:

1

config.add_route ('root', '/") ‘

Generating Route URLs

Use the pyramid. request.Request.route_url () method to generate URLs based on route
patterns. For example, if you’ve configured a route with the name “foo” and the pattern
“{a}/{b}/{c}”, you might do this.

371

CONTENTS

1 |url = request.route_url('foo', a="'1", b='2', c="'3")

This would return something like the string http://example.com/1/2/3 (at least if the current
protocol and hostname implied http://example.com).

To generate only the path portion of a URL from a route, use the pyramid. request.Request.
route_path () APl instead of route_url ().

url = request.route_path('foo', a='1", b="'2", c='3")

This will return the string /1/2/ 3 rather than a full URL.

Replacement values passed to route_url or route_path must be Unicode or bytestrings encoded
in UTF-8. One exception to this rule exists: if you’re trying to replace a “remainder” match value (a
xstararg replacement value), the value may be a tuple containing Unicode strings or UTF-8 strings.

Note that URLs and paths generated by route_url and route_path are always URL-quoted string
types (they contain no non-ASCII characters). Therefore, if you’ve added a route like so:

’config.add_route('la', u'/La Pefia/{city}") ‘

And you later generate a URL using route_path or route_url like so:

’url = request.route_path('la', city=u'Québec') ‘

You will wind up with the path encoded to UTF-8 and URL-quoted like so:

’/La%2OPe%C3%B1a/Qu%C3%A9bec ‘

If you have a * stararg remainder dynamic part of your route pattern:

’config.add_route('abc', 'a/b/c/+xfoo') ‘

And you later generate a URL using route_path or route_url using a string as the replacement
value:

372

0.2. NARRATIVE DOCUMENTATION

’url = request.route_path('abc', foo=u'Québec/biz") ‘

The value you pass will be URL-quoted except for embedded slashes in the result:

’ /a/b/c/QusC3%A%bec/biz ‘

You can get a similar result by passing a tuple composed of path elements:

’url = request.route_path('abc', foo=(u'Québec', u'biz')) ‘

Each value in the tuple will be URL-quoted and joined by slashes in this case:

’ /a/b/c/QusC3%A%bec/biz ‘

Static Routes

Routes may be added with a stat ic keyword argument. For example:

config = Configurator ()
config.add_route ('page', '/page/{action}', static=True)

[S)

Routes added with a True static keyword argument will never be considered for matching at request
time. Static routes are useful for URL generation purposes only. As a result, it is usually nonsensical to
provide other non-name and non-pattern arguments to add_route () when static is passed as
True, as none of the other arguments will ever be employed. A single exception to this rule is use of the
pregenerator argument, which is not ignored when staticis True.

External routes are implicitly static.

New in version 1.1: the static argument to add_route ().

External Routes

New in version 1.5.

Route patterns that are valid URLs, are treated as external routes. Like static routes they are useful for
URL generation purposes only and are never considered for matching at request time.

373

CONTENTS

1 |>>> config = Configurator()
2 |>>> config.add_route ('youtube', 'https://youtube.com/watch/{video_id}")

4|>>> request.route_url ('youtube', video_id='oHg5SJYRHAO")
5 [>>> "https://youtube.com/watch/oHg5SJYRHAO"

Most pattern replacements and calls to pyramid. request.Request.route_url () will work as
expected. However, calls to pyramid. request.Request.route_path () against external pat-
terns will raise an exception, and passing _app_url to route_url () to generate a URL against a
route that has an external pattern will also raise an exception.

Redirecting to Slash-Appended Routes

For behavior like Django’s APPEND__SLASH=True, use the append_slash argument to pyramid.
config.Configurator.add _notfound_view () or the equivalent append_slash argument
to the pyramid. view.not found_view_config decorator.

Adding append_slash=True is a way to automatically redirect requests where the URL lacks a trail-
ing slash, but requires one to match the proper route. When configured, along with at least one other
route in your application, this view will be invoked if the value of PATH_INFO does not already end
in a slash, and if the value of PATH_INFO plus a slash matches any route’s pattern. In this case it
does an HTTP redirect to the slash-appended PATH_INFO. In addition you may pass anything that im-
plements pyramid.interfaces.IResponse which will then be used in place of the default class
(pyramid. httpexceptions.HTTPFound).

Let’s use an example. If the following routes are configured in your application:

from pyramid.httpexceptions import HTTPNotFound

©

3 |def notfound(request) :
4 return HTTPNotFound ()

¢ |def no_slash (request) :
7 return Response ('No slash')

9 |def has_slash (request) :
10 return Response ('Has slash')

12 |def main (g, xxsettings):
13 config = Configurator()
14 config.add_route('noslash', 'no_slash'")

374

0.2. NARRATIVE DOCUMENTATION

15 config.add_route ('hasslash', 'has_slash/")

16 config.add_view(no_slash, route_name='noslash')

17 config.add_view (has_slash, route_name='hasslash')

18 config.add_notfound_view (notfound, append_slash=True)

If a request enters the application with the PATH_INFO value of /no_slash, the first route will match
and the browser will show “No slash”. However, if a request enters the application with the PATH_INFO
value of /no_slash/, no route will match, and the slash-appending not found view will not find a
matching route with an appended slash. As a result, the not found view will be called and it will return
a “Not found” body.

If a request enters the application with the PATH_INFO value of /has_slash/, the second route will
match. If a request enters the application with the PATH_INFO value of /has_slash, a route will be
found by the slash-appending Not Found View. An HTTP redirect to /has_slash/ will be returned to
the user’s browser. As a result, the not found view will never actually be called.

The following application uses the pyramid.view.notfound view_config and pyramid.
view.view_config decorators and a scan to do exactly the same job:

i1 | from pyramid.httpexceptions import HTTPNotFound
2 | from pyramid.view import notfound_view_config, view_config

4 | @notfound_view_config(append_slash=True)
s |def notfound(request) :
6 return HTTPNotFound ()

8 | @view_config (route_name='noslash')
9 |def no_slash(request) :
10 return Response ('No slash')

12 | @view_config(route_name='hasslash')
13 |def has_slash (request) :

14 return Response ('Has slash')

16 |def main (g, =**settings):

17 config = Configurator()

18 config.add_route('noslash', 'no_slash')

19 config.add_route('hasslash', 'has_slash/")
20 config.scan()

&% You should not rely on this mechanism to redirect POST requests. The redirect of the slash-
appending Not Found View will turn a POST request into a GET, losing any POST data in the original
request.

375

CONTENTS

See pyramid.view and Changing the Not Found View for a more general description of how to configure a
view and/or a Not Found View.

Debugging Route Matching

It’s useful to be able to take a peek under the hood when requests that enter your applica-
tion aren’t matching your routes as you expect them to. To debug route matching, use the
PYRAMID_DEBUG_ROUTEMATCH environment variable or the pyramid.debug_routematch
configuration file setting (set either to true). Details of the route matching decision for a particular
request to the Pyramid application will be printed to the stderr of the console which you started the
application from. For example:

$ PYRAMID_DEBUG_ROUTEMATCH=true $VENV/bin/pserve development.ini
2| Starting server in PID 13586.

3|serving on 0.0.0.0:6543 view at http://127.0.0.1:6543
412010-12-16 14:45:19,956 no route matched for url \

5 http://localhost:6543/wontmatch
6|12010-12-16 14:45:20,010 no route matched for url \

7 http://localhost:6543/favicon.ico
§[2010-12-16 14:41:52,084 route matched for url \

9 http://localhost:6543/static/logo.png; \
10 route_name: 'static/',

See Environment Variables and .ini File Settings for more information about how and where to set these
values.

You can also use the proutes command to see a display of all the routes configured in your application.
For more information, see Displaying All Application Routes.

Using a Route Prefix to Compose Applications

New in version 1.2.

The pyramid.config.Configurator.include () method allows configuration statements to
be included from separate files. See Rules for Building an Extensible Application for information about
this method. Using pyramid.config.Configurator.include () allows you to build your ap-
plication from small and potentially reusable components.

The pyramid.config.Configurator.include () method accepts an argument named
route_prefix which can be useful to authors of URL-dispatch-based applications. If

376

0.2. NARRATIVE DOCUMENTATION

route_prefix is supplied to the include method, it must be a string. This string represents a route
prefix that will be prepended to all route patterns added by the included configuration. Any calls to
pyramid.config.Configurator.add_route () within the included callable will have their
pattern prefixed with the value of route_prefix. This can be used to help mount a set of routes
at a different location than the included callable’s author intended while still maintaining the same route
names. For example:

from pyramid.config import Configurator

def users_include (confiqg) :
4 config.add_route('show_users', '/show')

w

¢ |def main(global_config, =**settings):
7 config = Configurator()
8 config.include (users_include, route_prefix='/users')

In the above configuration, the show_users route will have an effective route pattern of /users/
show instead of /show because the route_prefix argument will be prepended to the pattern. The
route will then only match if the URL path is /users/show, and when the pyramid. request.
Request.route_url () function is called with the route name show_users, it will generate a
URL with that same path.

Route prefixes are recursive, so if a callable executed via an include itself turns around and includes
another callable, the second-level route prefix will be prepended with the first:

from pyramid.config import Configurator

w

def timing_include (configqg) :
4 config.add_route('show_times', '/times')

¢ |def users_include (configqg) :
7 config.add_route('show_users', '/show')
8 config.include (timing_include, route_prefix='/timing')

10 |def main(global_config, xxsettings):
11 config = Configurator ()
12 config.include (users_include, route_prefix='/users')

In the above configuration, the show_users route will still have an effective route pattern of /users/
show. The show_t imes route, however, will have an effective pattern of /users/timing/times.

Route prefixes have no impact on the requirement that the set of route names in any given Pyramid
configuration must be entirely unique. If you compose your URL dispatch application out of many small

377

CONTENTS

subapplications using pyramid.config.Configurator.include (), it’s wise to use a dotted
name for your route names so they’ll be unlikely to conflict with other packages that may be added in the
future. For example:

1 | from pyramid.config import Configurator

3 |def timing_ include (config):
4 config.add_route ('timing.show_times', '/times")

¢ |def users_include (configqg) :
7 config.add_route ('users.show_users', '/show')
8 config.include (timing_include, route_prefix='/timing")

10 |def main(global_config, =xxsettings):
1 config = Configurator ()
12 config.include (users_include, route_prefix='/users')

Custom Route Predicates

Each of the predicate callables fed to the custom_predicates argument of add_route () must
be a callable accepting two arguments. The first argument passed to a custom predicate is a dictionary
conventionally named info. The second argument is the current request object.

The info dictionary has a number of contained values, including match and route. match is a
dictionary which represents the arguments matched in the URL by the route. route is an object rep-
resenting the route which was matched (see pyramid. interfaces. IRoute for the API of such a
route object).

info['match'] is useful when predicates need access to the route match. For example:

def any_of (segment_name, xallowed):

2 def predicate(info, request):

3 if info['match'] [segment_name] in allowed:

4 return True

5 return predicate

6

7 |num_one_two_or_three = any_of('num', 'one', 'two', 'three')

9 |config.add_route ('route_to_num', '/{num}"',
10 custom_predicates=(num_one_two_or_three,))

378

0.2. NARRATIVE DOCUMENTATION

The above any_of function generates a predicate which ensures that the match value named
segment_name is in the set of allowable values represented by allowed. We use this any_of func-
tion to generate a predicate function named num_one_two_or_three, which ensures that the num
segment is one of the values one, two, or three, and use the result as a custom predicate by feeding it
inside a tuple to the custom_predicates argument to add_route ().

A custom route predicate may also modify the mat ch dictionary. For instance, a predicate might do some
type conversion of values:

1 |def integers (xsegment_names) :

2 def predicate(info, request):

3 match = info['match']

4 for segment_name in segment_names:

5 try:

6 match[segment_name] = int (match[segment_name])
7 except (TypeError, ValueError):

8 pass

9 return True

10 return predicate

11

2 |ymd_to_int = integers('year', 'month', 'day')

13

14| config.add_route ('ymd', '/{year}/{month}/{day}',
15 custom_predicates=(ymd_to_int,))

Note that a conversion predicate is still a predicate, so it must return True or False. A predicate that
does only conversion, such as the one we demonstrate above, should unconditionally return True.

To avoid the try/except uncertainty, the route pattern can contain regular expressions specifying require-
ments for that marker. For instance:

1 |def integers (xsegment_names) :

2 def predicate(info, request):

3 match = info['match']

4 for segment_name in segment_names:

5 match[segment_name] = int (match[segment_name])
6 return True

7 return predicate

8

9 |ymd_to_int = integers('year', 'month', 'day')

10

n|config.add_route('ymd', '/{year:\d+}/{month:\d+}/{day:\d+}",
12 custom_predicates=(ymd_to_int,))

379

CONTENTS

Now the try/except is no longer needed because the route will not match at all unless these markers match
\d+ which requires them to be valid digits for an int type conversion.

The match dictionary passed within info to each predicate attached to a route will be the same dictio-
nary. Therefore, when registering a custom predicate which modifies the mat ch dict, the code registering
the predicate should usually arrange for the predicate to be the last custom predicate in the custom predi-
cate list. Otherwise, custom predicates which fire subsequent to the predicate which performs the match
modification will receive the modified match dictionary.

A Lisa poor idea to rely on ordering of custom predicates to build a conversion pipeline, where
one predicate depends on the side effect of another. For instance, it’s a poor idea to register two custom
predicates, one which handles conversion of a value to an int, the next which handles conversion of
that integer to some custom object. Just do all that in a single custom predicate.

The route object in the info dict is an object that has two useful attributes: name and pattern. The
name attribute is the route name. The pattern attribute is the route pattern. Here’s an example of using
the route in a set of route predicates:

1 |def twenty_ten(info, request):
2 if info['route'].name in ('ymd', 'ym', 'y'):
3 return info['match']['year'] == '2010"

s |config.add_route('y', '/{year}', custom_predicates=(twenty_ten,))

¢ |config.add_route('ym', '/{year}/{month}', custom_predicates=(twenty_ten,))
7 |config.add_route ('ymd', '/{year}/{month}/{day}",

8 custom_predicates=(twenty_ten,))

The above predicate, when added to a number of route configurations ensures that the year match argu-
ment is ‘2010’ if and only if the route name is ‘ymd’, ‘ym’, or ‘y’.

You can also caption the predicates by setting the __ text__ attribute. This will help you with the
pviews command (see Displaying All Application Routes) and the pyramid_debugtoolbar.

If a predicate is a class, just add __text___ property in a standard manner.

class DummyCustomPredicatel (object) :
2 def _ init_ (self):
3 self.__text_ = 'my custom class predicate'

5 |class DummyCustomPredicate2 (object):
6 __text_ = 'my custom class predicate'’

380

0.2. NARRATIVE DOCUMENTATION

If a predicate is a method, you’ll need to assign it after method declaration (see PEP 232).

def custom_predicate():
2 pass
custom_predicate.__text__ = 'my custom method predicate'

w

If a predicate is a classmethod, using @classmethod will not work, but you can still easily do it by
wrapping it in a classmethod call.

def classmethod_predicate() :

2 pass
3| classmethod_predicate.__text_ = 'my classmethod predicate'
4| classmethod_predicate = classmethod(classmethod_predicate)

The same will work with staticmethod, using staticmethod instead of classmethod.
See also:

See also pyramid. interfaces. IRoute for more APl documentation about route objects.

Route Factories

Although it is not a particularly common need in basic applications, a “route” configuration declaration
can mention a “factory”’. When a route matches a request, and a factory is attached to the route, the root
factory passed at startup time to the Configurator is ignored. Instead the factory associated with the route
is used to generate a root object. This object will usually be used as the context resource of the view
callable ultimately found via view lookup.

config.add_route('abc', '/abc',
2 factory='myproject.resources.root_factory')
config.add_view ('myproject.views.theview', route_name='abc')

w

The factory can either be a Python object or a dotted Python name (a string) which points to such a Python
object, as it is above.

In this way, each route can use a different factory, making it possible to supply a different context resource
object to the view related to each particular route.

A factory must be a callable which accepts a request and returns an arbitrary Python object. For example,
the below class can be used as a factory:

381

https://www.python.org/dev/peps/pep-0232/

CONTENTS

class Mine (object) :
2 def __init__ (self, request):
3 pass

A route factory is actually conceptually identical to the root factory described at The Resource Tree.

Supplying a different resource factory for each route is useful when you’re trying to use a Pyramid au-
thorization policy to provide declarative, “context sensitive” security checks. Each resource can maintain
a separate ACL, as documented in Using Pyramid Security with URL Dispatch. It is also useful when
you wish to combine URL dispatch with traversal as documented within Combining Traversal and URL
Dispatch.

Using Pyramid Security with URL Dispatch

Pyramid provides its own security framework which consults an authorization policy before allowing any
application code to be called. This framework operates in terms of an access control list, which is stored
asan__acl___ attribute of a resource object. A common thing to want to do is to attachan __acl__ to
the resource object dynamically for declarative security purposes. You can use the factory argument
that points at a factory which attaches a custom __acl___ to an object at its creation time.

Such a factory might look like so:

class Article (object):

2 def _ _init__ (self, request):

3 matchdict = request.matchdict

4 article matchdict.get ('article', None)

5 if article == '1"'":

6 self.__acl___ = [(Allow, 'editor', 'wview')]

If the route archives/{article} is matched, and the article number is 1, Pyramid will generate an
Article context resource with an ACL on it that allows the editor principal the view permission.
Obviously you can do more generic things than inspect the route’s match dict to see if the article
argument matches a particular string. Our sample Article factory class is not very ambitious.

O See Security for more information about Pyramid security and ACLs.

382

0.2. NARRATIVE DOCUMENTATION

Route View Callable Registration and Lookup Details

When a request enters the system which matches the pattern of the route, the usual result is simple: the
view callable associated with the route is invoked with the request that caused the invocation.

For most usage, you needn’t understand more than this. How it works is an implementation detail. In the
interest of completeness, however, we’ll explain how it does work in this section. You can skip it if you’re
uninterested.

When a view is associated with a route configuration, Pyramid ensures that a view configuration is regis-
tered that will always be found when the route pattern is matched during a request. To do so:

* A special route-specific inferface is created at startup time for each route configuration declaration.

e When an add_view statement mentions a route name attribute, a view configuration is regis-
tered at startup time. This view configuration uses a route-specific interface as a request type.

* At runtime, when a request causes any route to match, the request object is decorated with the
route-specific interface.

* The fact that the request is decorated with a route-specific interface causes the view lookup ma-
chinery to always use the view callable registered using that interface by the route configuration to
service requests that match the route pattern.

As we can see from the above description, technically, URL dispatch doesn’t actually map a URL pattern
directly to a view callable. Instead URL dispatch is a resource location mechanism. A Pyramid resource
location subsystem (i.e., URL dispatch or traversal) finds a resource object that is the context of a request.
Once the context is determined, a separate subsystem named view lookup is then responsible for finding
and invoking a view callable based on information available in the context and the request. When URL
dispatch is used, the resource location and view lookup subsystems provided by Pyramid are still being
utilized, but in a way which does not require a developer to understand either of them in detail.

If no route is matched using URL dispatch, Pyramid falls back to traversal to handle the request.

References

A tutorial showing how URL dispatch can be used to create a Pyramid application exists in SQLAlchemy
+ URL dispatch wiki tutorial.

383

CONTENTS

Views

One of the primary jobs of Pyramid is to find and invoke a view callable when a request reaches your
application. View callables are bits of code which do something interesting in response to a request made
to your application. They are the “meat” of any interesting web application.

O A Pyramid view callable is often referred to in conversational shorthand as a view. In this docu-
mentation, however, we need to use less ambiguous terminology because there are significant differences
between view configuration, the code that implements a view callable, and the process of view lookup.

This chapter describes how view callables should be defined. We’ll have to wait until a following chap-
ter (entitled View Configuration) to find out how we actually tell Pyramid to wire up view callables to
particular URL patterns and other request circumstances.

View Callables

View callables are, at the risk of sounding obvious, callable Python objects. Specifically, view callables
can be functions, classes, or instances that implement a _ _call__ method (making the instance
callable).

View callables must, at a minimum, accept a single argument named request. This argument represents
a Pyramid Request object. A request object represents a WSGI environment provided to Pyramid by the
upstream WSGI server. As you might expect, the request object contains everything your application
needs to know about the specific HTTP request being made.

A view callable’s ultimate responsibility is to create a Pyramid Response object. This can be done by
creating a Response object in the view callable code and returning it directly or by raising special kinds
of exceptions from within the body of a view callable.

Defining a View Callable as a Function

One of the easiest ways to define a view callable is to create a function that accepts a single argument
named request, and which returns a Response object. For example, this is a “hello world” view callable
implemented as a function:

from pyramid.response import Response

1

2

3 |def hello_world(request) :

4 return Response('Hello world!")

384

0.2. NARRATIVE DOCUMENTATION

Defining a View Callable as a Class

A view callable may also be represented by a Python class instead of a function. When a view callable is
a class, the calling semantics are slightly different than when it is a function or another non-class callable.
When a view callable is a class, the class’s __init___ method is called with a request parameter. As
a result, an instance of the class is created. Subsequently, that instance’s ___call__ method is invoked
with no parameters. Views defined as classes must have the following traits.

e an__init__ method that accepts a request argument

e a__call__ (orother) method that accepts no parameters and which returns a response

For example:

from pyramid.response import Response

w

class MyView (object):

4 def _ _init__ (self, request):
5 self.request = request

6

7 def _ call__ (self):

8 return Response('hello")

The request object passed to __init__is the same type of request object described in Defining a View
Callable as a Function.

If you’d like to use a different attribute than __call___ to represent the method expected to return a
response, you can use an attr value as part of the configuration for the view. See View Configuration
Parameters. The same view callable class can be used in different view configuration statements with

different at t r values, each pointing at a different method of the class if you’d like the class to represent
a collection of related view callables.

View Callable Responses

A view callable may return an object that implements the Pyramid Response interface. The easiest
way to return something that implements the Response interface is to return a pyramid. response.
Response object instance directly. For example:

from pyramid.response import Response

3 |def view (request) :
4 return Response ('OK")

385

CONTENTS

Pyramid provides a range of different “exception” classes which inherit from pyramid. response.
Response. For example, an instance of the class pyramid. httpexceptions.HTTPFound is
also a valid response object because it inherits from Response. For examples, see HTTP Exceptions
and Using a View Callable to do an HTTP Redirect.

ﬁ You can also return objects from view callables that aren’t instances of pyramid. response.
Response in various circumstances. This can be helpful when writing tests and when attempting to
share code between view callables. See Renderers for the common way to allow for this. A much less
common way to allow for view callables to return non-Response objects is documented in Changing How
Pyramid Treats View Responses.

Using Special Exceptions in View Callables

Usually when a Python exception is raised within a view callable, Pyramid allows the exception to prop-
agate all the way out to the WSGI server which invoked the application. It is usually caught and logged
there.

However, for convenience, a special set of exceptions exists. When one of these exceptions is raised
within a view callable, it will always cause Pyramid to generate a response. These are known as HTTP
exception objects.

HTTP Exceptions

All pyramid. httpexceptions classes which are documented as inheriting from the pyramid.
httpexceptions.HTTPException are http exception objects. Instances of an HTTP exception
object may either be returned or raised from within view code. In either case (return or raise) the instance
will be used as the view’s response.

For example, the pyramid. httpexceptions.HTTPUnauthorized exception can be raised. This
will cause a response to be generated witha 401 Unauthorized status:

from pyramid.httpexceptions import HTTPUnauthorized

def aview(request):
raise HTTPUnauthorized()

w

~

An HTTP exception, instead of being raised, can alternately be returned (HTTP exceptions are also valid
response objects):

386

0.2. NARRATIVE DOCUMENTATION

from pyramid.httpexceptions import HTTPUnauthorized

w

def aview(request):
4 return HTTPUnauthorized ()

A shortcut for creating an HTTP exception is the pyramid.httpexceptions.
exception_response () function. This function accepts an HTTP status code and returns the corre-
sponding HTTP exception. For example, instead of importing and constructing a HTTPUnauthorized
response object, you can use the exception_response () function to construct and return the same
object.

from pyramid.httpexceptions import exception_response

w

def aview(request):
4 raise exception_response (401)

This is the case because 401 is the HTTP status code for “HTTP Unauthorized”. Therefore, raise
exception_response (401) is functionally equivalent to raise HTTPUnauthorized().
Documentation which maps each HTTP response code to its purpose and its associated HTTP excep-
tion object is provided within pyramid. httpexceptions.

New in version 1.1: The exception_response () function.

How Pyramid Uses HTTP Exceptions

HTTP exceptions are meant to be used directly by application developers. However, Pyramid itself will
raise two HTTP exceptions at various points during normal operations.

e HTTPNotFound gets raised when a view to service a request is not found.
* HTTPForbidden gets raised when authorization was forbidden by a security policy.

If HTTPNotFound is raised by Pyramid itself or within view code, the result of the Not Found View will
be returned to the user agent which performed the request.

If HTTPForbidden is raised by Pyramid itself within view code, the result of the Forbidden View will
be returned to the user agent which performed the request.

387

CONTENTS

Custom Exception Views

The machinery which allows HTTP exceptions to be raised and caught by specialized views as described
in Using Special Exceptions in View Callables can also be used by application developers to convert
arbitrary exceptions to responses.

To register a view that should be called whenever a particular exception is raised from within Pyramid
view code, use the exception class (or one of its superclasses) as the context of a view configuration which

points at a view callable for which you’d like to generate a response.

For example, given the following exception class in a module named helloworld.exceptions:

1 |class ValidationFailure (Exception) :
2 def _ _init__ (self, msqg):
3 self.msg = msg

You can wire a view callable to be called whenever any of your other code raises a helloworld.
exceptions.ValidationFailure exception:

1 | from pyramid.view import view_config
2 | from helloworld.exceptions import ValidationFailure

4| @view_config(context=ValidationFailure)
s|def failed_validation (exc, request):

6 response = Response('Failed validation: ' % exc.msqg)
7 response.status_int = 500
8 return response

Assuming that a scan was run to pick up this view registration, this view callable will be invoked whenever
a helloworld.exceptions.ValidationFailure is raised by your application’s view code.
The same exception raised by a custom root factory, a custom traverser, or a custom view or route predicate
is also caught and hooked.

Other normal view predicates can also be used in combination with an exception view registration:

i1 | from pyramid.view import view_config
2 | from helloworld.exceptions import ValidationFailure

4| @view_config(context=ValidationFailure, route_name='home')
s|def failed_validation (exc, request):

6 response = Response('Failed validation: ' % exc.msQg)
7 response.status_int = 500
8 return response

388

0.2. NARRATIVE DOCUMENTATION

The above exception view names the route_name of home, meaning that it will only be called when
the route matched has a name of home. You can therefore have more than one exception view for any
given exception in the system: the “most specific” one will be called when the set of request circumstances
match the view registration.

The only view predicate that cannot be used successfully when creating an exception view configuration
is name. The name used to look up an exception view is always the empty string. Views registered as
exception views which have a name will be ignored.

O Normal (i.e., non-exception) views registered against a context resource type which inherits from
Exception will work normally. When an exception view configuration is processed, two views are
registered. One as a “normal” view, the other as an “exception” view. This means that you can use an
exception as context for a normal view.

Exception views can be configured with any view registration mechanism: @view_config decorator
or imperative add_view styles.

O Pyramid’s exception view handling logic is implemented as a tween factory function: pyramid.
tweens.excview_tween_factory (). If Pyramid exception view handling is desired, and tween
factories are specified via the pyramid.tweens configuration setting, the pyramid. tweens.
excview_tween_factory () function must be added to the pyramid. tweens configuration set-
ting list explicitly. If it is not present, Pyramid will not perform exception view handling.

Using a View Callable to do an HTTP Redirect

You can issue an HTTP redirect by using the pyramid. ht tpexceptions.HTTPFound class. Rais-
ing or returning an instance of this class will cause the client to receive a “302 Found” response.

To do so, you can return a pyramid. httpexceptions.HTTPFound instance.

from pyramid.httpexceptions import HTTPFound

w

def myview (request) :
4 return HTTPFound (location="http://example.com")

Alternately, you can raise an HTTPFound exception instead of returning one.

389

https://docs.python.org/3/library/exceptions.html#Exception

CONTENTS

from pyramid.httpexceptions import HTTPFound

def myview (request) :
raise HTTPFound (location='http://example.com')

TR -

When the instance is raised, it is caught by the default exception response handler and turned into a
response.

Handling Form Submissions in View Callables (Unicode and Character Set Issues)

Most web applications need to accept form submissions from web browsers and various other clients.
In Pyramid, form submission handling logic is always part of a view. For a general overview of how to
handle form submission data using the WebOb API, see Request and Response Objects and “Query and
POST variables” within the WebOb documentation. Pyramid defers to WebOb for its request and re-
sponse implementations, and handling form submission data is a property of the request implementation.
Understanding WebOb’s request API is the key to understanding how to process form submission data.

There are some defaults that you need to be aware of when trying to handle form submission data in a
Pyramid view. Having high-order (i.e., non-ASCII) characters in data contained within form submissions
is exceedingly common, and the UTF-8 encoding is the most common encoding used on the web for
character data. Since Unicode values are much saner than working with and storing bytestrings, Pyramid
configures the WebOb request machinery to attempt to decode form submission values into Unicode from
UTF-8 implicitly. This implicit decoding happens when view code obtains form field values via the
request .params, request .GET, or request .POST APIs (see pyramid.request for details about
these APIs).

O Many people find the difference between Unicode and UTF-8 confusing. Unicode is a standard for
representing text that supports most of the world’s writing systems. However, there are many ways that
Unicode data can be encoded into bytes for transit and storage. UTF-8 is a specific encoding for Unicode
that is backwards-compatible with ASCII. This makes UTF-8 very convenient for encoding data where a
large subset of that data is ASCII characters, which is largely true on the web. UTF-8 is also the standard
character encoding for URLs.

As an example, let’s assume that the following form page is served up to a browser client, and its act ion
points at some Pyramid view code:

390

http://docs.webob.org/en/latest/reference.html#query-post-variables
http://docs.webob.org/en/latest/reference.html#query-post-variables

0.2. NARRATIVE DOCUMENTATION

1 | <html xmlns="http://www.w3.0rg/1999/xhtml">
2 <head>

3 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
4 </head>

5 <form method="POST" action="myview">

6 <div>

7 <input type="text" name="firstname"/>
8 </div>

9 <div>

10 <input type="text" name="lastname"/>
1 </div>

12 <input type="submit" value="Submit"/>
13 </form>

14 | </html>

The myview view code in the Pyramid application must expect that the values returned by request.
params will be of type unicode, as opposed to type str. The following will work to accept a form
post from the above form:

def myview (request) :
2 firstname = request.params|['firstname']
3 lastname = request.params|['lastname']

But the following myview view code may not work, as it tries to decode already-decoded (unicode)
values obtained from request .params:

1 |def myview (request) :

2 # the .decode('utf-8') will break below 1f there are any high-order
3 # characters in the firstname or lastname

4 firstname = request.params['firstname'].decode ('utf-8")

5 lastname = request.params|['lastname'].decode ('utf-8")

For implicit decoding to work reliably, you should ensure that every form you render that posts to a
Pyramid view explicitly defines a charset encoding of UTF-8. This can be done via a response that has a ;
charset=UTF-8inits Content—-Type header; or, as in the form above, withameta http-equiv
tag that implies that the charset is UTF-8 within the HTML head of the page containing the form. This
must be done explicitly because all known browser clients assume that they should encode form data in
the same character set implied by the Content -Type value of the response containing the form when
subsequently submitting that form. There is no other generally accepted way to tell browser clients which
charset to use to encode form data. If you do not specify an encoding explicitly, the browser client will
choose to encode form data in its default character set before submitting it, which may not be UTF-8
as the server expects. If a request containing form data encoded in a non-UTF-8 charset is handled

391

CONTENTS

by your view code, eventually the request code accessed within your view will throw an error when it
can’t decode some high-order character encoded in another character set within form data, e.g., when
request.params ['somename'] is accessed.

If you are using the Response class to generate a response, or if you use the render_template_«
templating APIs, the UTF-8 charset is set automatically as the default via the Content-Type
header. If you return a Content-Type header without an explicit charset, a request will add a
; charset=ut £-8 trailer to the Content-Type header value for you for response content types that
are textual (e.g., text /html or application/xml) as it is rendered. If you are using your own
response object, you will need to ensure you do this yourself.

O Only the values of request params obtained via request.params, request.GET or
request .POST are decoded to Unicode objects implicitly in the Pyramid default configuration. The
keys are still (byte) strings.

Alternate View Callable Argument/Calling Conventions

Usually view callables are defined to accept only a single argument: request. However, view callables
may alternately be defined as classes, functions, or any callable that accept two positional arguments: a
context resource as the first argument and a request as the second argument.

The context and request arguments passed to a view function defined in this style can be defined as
follows:

context The resource object found via tree traversal or URL dispatch.
request A Pyramid Request object representing the current WSGI request.
The following types work as view callables in this style:

1. Functions that accept two arguments: context and request, e.g.:

from pyramid.response import Response

S

def view(context, request):
4 return Response ('OK")

w

2. Classes that have an __init__ method that accepts context, request,anda__call_
method which accepts no arguments, e.g.:

392

0.2. NARRATIVE DOCUMENTATION

from pyramid.response import Response

3| class view (object) :

4 def _ init__ (self, context, request):
5 self.context = context

6 self.request = request

7

8 def = call (self):

9 return Response ('OK")

3. Arbitrary callables that have a___call__ method that accepts context, request,e.g.:

from pyramid.response import Response

w

class View (object):

4 def _ call (self, context, request):
5 return Response ('OK'")
6| view = View() # this is the view callable

This style of calling convention is most useful for fraversal based applications, where the context object
is frequently used within the view callable code itself.

No matter which view calling convention is used, the view code always has access to the context via
request.context.

Passing Configuration Variables to a View

For information on passing a variable from the configuration .ini files to a view, see Deployment Settings.

Pylons-1.0-Style “Controller” Dispatch

A package named pyramid_handlers (available from PyPI) provides an analogue of Pylons-style “con-
trollers”, which are a special kind of view class which provides more automation when your application
uses URL dispatch solely.

Renderers

A view callable needn’t always return a Response object. If a view happens to return something which
does not implement the Pyramid Response interface, Pyramid will attempt to use a renderer to construct
a response. For example:

393

CONTENTS

from pyramid.view import view_config

w

@view_config(renderer='json')
def hello_world(request) :
5 return {'content':'Hello!'}

~

The above example returns a dictionary from the view callable. A dictionary does not implement the Pyra-
mid response interface, so you might believe that this example would fail. However, since a renderer
is associated with the view callable through its view configuration (in this case, using a renderer ar-
gument passed to view_config()), if the view does not return a Response object, the renderer will
attempt to convert the result of the view to a response on the developer’s behalf.

Of course, if no renderer is associated with a view’s configuration, returning anything except an object
which implements the Response interface will result in an error. And, if a renderer is used, whatever is
returned by the view must be compatible with the particular kind of renderer used, or an error may occur
during view invocation.

One exception exists: it is always OK to return a Response object, even when a renderer is configured.
In such cases, the renderer is bypassed entirely.

Various types of renderers exist, including serialization renderers and renderers which use templating
systems.

Writing View Callables Which Use a Renderer

As we’ve seen, a view callable needn’t always return a Response object. Instead, it may return an arbitrary
Python object, with the expectation that a renderer will convert that object into a response instance on
your behalf. Some renderers use a templating system, while other renderers use object serialization
techniques. In practice, renderers obtain application data values from Python dictionaries so, in practice,
view callables which use renderers return Python dictionaries.

View callables can explicitly call renderers, but typically don’t. Instead view configuration declares the
renderer used to render a view callable’s results. This is done with the renderer attribute. For example,
this call to add_view () associates the json renderer with a view callable:

config.add_view ('myproject.views.my_view', renderer='json')

394

0.2. NARRATIVE DOCUMENTATION

When this configuration is added to an application, the myproject.views.my_view view callable
will now use a json renderer, which renders view return values to a JSON response serialization.

Pyramid defines several Built-in Renderers, and additional renderers can be added by developers to the
system as necessary. See Adding and Changing Renderers.

Views which use a renderer and return a non-Response value can vary non-body response attributes (such
as headers and the HTTP status code) by attaching a property to the request . response attribute.
See Varying Attributes of Rendered Responses.

As already mentioned, if the view callable associated with a view configuration returns a Response object
(or its instance), any renderer associated with the view configuration is ignored, and the response is passed
back to Pyramid unchanged. For example:

1 | from pyramid.response import Response
2 | from pyramid.view import view_config

4 | @view_config(renderer="'json')
s |def view (request) :
6 return Response ('OK') # json renderer avoided

Likewise for an HTTP exception response:

i | from pyramid.httpexceptions import HTTPFound
2 | from pyramid.view import view_config

4 | @view_config(renderer="'json')
s |def view (request) :
6 return HTTPFound (location='http://example.com') # json renderer avoided

You can of course also return the request . response attribute instead to avoid rendering:

from pyramid.view import view_config

w

@view_config(renderer='json')

def view (request):

5 request.response.body = 'OK'

6 return request.response # json renderer avoided

IS

395

CONTENTS

Built-in Renderers

Several built-in renderers exist in Pyramid. These renderers can be used in the renderer attribute of
view configurations.

O Bindings for officially supported templating languages can be found at Available Add-On Template
System Bindings.

string: String Renderer

The st ring renderer renders a view callable result to a string. If a view callable returns a non-Response
object, and the st ring renderer is associated in that view’s configuration, the result will be to run the
object through the Python st r function to generate a string. Note that if a Unicode object is returned by
the view callable, it is not st r () -ified.

Here’s an example of a view that returns a dictionary. If the st ring renderer is specified in the con-
figuration for this view, the view will render the returned dictionary to the str () representation of the
dictionary:

from pyramid.view import view_config

w

@view_config(renderer='string')
def hello_world(request) :
5 return {'content':'Hello!'}

~

The body of the response returned by such a view will be a string representing the st r () serialization of
the return value:

{'content': 'Hello!'}

Views which use the string renderer can vary non-body response attributes by using the API of the
request.response attribute. See Varying Attributes of Rendered Responses.

396

0.2. NARRATIVE DOCUMENTATION

JSON Renderer

The json renderer renders view callable results to JSON. By default, it passes the return value through
the json.dumps standard library function, and wraps the result in a response object. It also sets the
response content-type to application/json.

Here’s an example of a view that returns a dictionary. Since the json renderer is specified in the config-
uration for this view, the view will render the returned dictionary to a JSON serialization:

from pyramid.view import view_config

I SR

@view_config(renderer='json')
def hello_world(request) :
5 return {'content':'Hello!'}

=

The body of the response returned by such a view will be a string representing the JSON serialization of
the return value:

{"content": "Hello!"}

The return value needn’t be a dictionary, but the return value must contain values serializable by the
configured serializer (by default json.dumps).

You can configure a view to use the JSON renderer by naming json as the renderer argument of a
view configuration, e.g., by using add_view():

i1 |config.add_view('myproject.views.hello_world',

2 name='hello"',
3 context="'myproject.resources.Hello"',
4 renderer="'json'")

Views which use the JSON renderer can vary non-body response attributes by using the API of the
request .response attribute. See Varying Attributes of Rendered Responses.

Serializing Custom Objects

Some objects are not, by default, JSON-serializable (such as datetimes and other arbitrary Python objects).
You can, however, register code that makes non-serializable objects serializable in two ways:

e Definea__ json__ method on objects in your application.

* For objects you don’t “own”, you can register a JSON renderer that knows about an adapter for
that kind of object.

397

CONTENTS

Using a Custom __json___ Method

Custom objects can be made easily JSON-serializable in Pyramid by defining a ___json___ method
on the object’s class. This method should return values natively JSON-serializable (such as ints, lists,
dictionaries, strings, and so forth). It should accept a single additional argument, request, which will

be the active request object at render time.

i1 | from pyramid.view import view_config

3 |class MyObject (object) :

4 def _ init_ (self, x):

5 self.x = x

6

7 def __ _json__(self, request):
8 return {'x':self.x}

10 | @view_config (renderer="'json')
n |def objects (request):
12 return [MyObject (1), MyObject (2)]

| # the JSON value returned by "~ ‘objects' will be:
15 | # [{"x": 1}, {"x": 2}]

Using the add_adapter Method of a Custom JSON Renderer

If you aren’t the author of the objects being serialized, it won’t be possible (or at least not reasonable) to
add a custom ___json___ method to their classes in order to influence serialization. If the object passed
to the renderer is not a serializable type and has no __json___ method, usually a TypeError will be
raised during serialization. You can change this behavior by creating a custom JSON renderer and adding
adapters to handle custom types. The renderer will attempt to adapt non-serializable objects using the

registered adapters. A short example follows:

1 | from pyramid.renderers import JSON

2

3|1if _ name_ == '_ main_ ':

4 config = Configurator()

5 json_renderer = JSON ()

6 def datetime_adapter (obj, request):

7 return obj.isoformat ()

8 json_renderer.add_adapter (datetime.datetime,
9 config.add_renderer ('json', Jjson_renderer)

datetime_adapter)

398

https://docs.python.org/3/library/exceptions.html#TypeError

0.2. NARRATIVE DOCUMENTATION

The add_adapter method should accept two arguments: the class of the object that you want this
adapter to run for (in the example above, datet ime.datet ime), and the adapter itself.

The adapter should be a callable. It should accept two arguments: the object needing to be serialized
and request, which will be the current request object at render time. The adapter should raise a
TypeError if it can’t determine what to do with the object.

See pyramid. renderers.JSON and Adding and Changing Renderers for more information.

New in version 1.4: Serializing custom objects.

JSONP Renderer

New in version 1.1.

pyramid.renderers.JSONP is a JSONP renderer factory helper which implements a hybrid
JSON/JSONP renderer. JSONP is useful for making cross-domain AJAX requests.

Unlike other renderers, a JSONP renderer needs to be configured at startup time “by hand”. Configure a
JSONP renderer using the pyramid.config.Configurator.add_renderer () method:

from pyramid.config import Configurator
from pyramid.renderers import JSONP

config = Configurator ()
config.add_renderer ('jsonp', JSONP (param_name='callback'))

Once this renderer is registered via add_renderer () as above, you can use jsonp
as the renderer= parameter to @view_config or pyramid.config.Configurator.
add_view():

from pyramid.view import view_config

@view_config(renderer="'jsonp')
def myview (request) :
return {'greeting':'Hello world'}

When a view is called that uses a JSONP renderer:

o If there is a parameter in the request’s HTTP query string (aka request . GET) that matches the
param_name of the registered JSONP renderer (by default, callback), the renderer will return
a JSONP response.

399

https://docs.python.org/3/library/exceptions.html#TypeError
https://en.wikipedia.org/wiki/JSONP

CONTENTS

* If there is no callback parameter in the request’s query string, the renderer will return a “plain”
JSON response.

Javscript library AJAX functionality will help you make JSONP requests. For example, JQuery has a
getJSON function, and has equivalent (but more complicated) functionality in its ajax function.

For example (JavaScript):

var api_url = 'http://api.geonames.org/timezoneJSON' +
'21at=38.301733840000004" +
'&¢1lng=-77.45869621" +
'&username=fred' +
'§callback=?";

Jjghxr = $.getJSON (api_url);

The string callback=7? above in the url param to the JQuery get JSON function indicates to jQuery
that the query should be made as a JSONP request; the callback parameter will be automatically filled
in for you and used.

The same custom-object serialization scheme defined used for a “normal” JSON renderer in Serializing

Custom Objects can be used when passing values to a JSONP renderer too.

Varying Attributes of Rendered Responses

Before a response constructed by a renderer is returned to Pyramid, several attributes of the request are
examined which have the potential to influence response behavior.

View callables that don’t directly return a response should use the API of the pyramid. response.
Response attribute, available as request . response during their execution, to influence associated
response behavior.

For example, if you need to change the response status from within a view callable that uses a renderer,
assign the status attribute to the response attribute of the request before returning a result:

from pyramid.view import view_config

w

@view_config(name='gone', renderer='templates/gone.pt")
def nmyview (request) :

5 request.response.status = '404 Not Found'

6 return {'URL':request.URL}

I

400

http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/jQuery.ajax/

0.2. NARRATIVE DOCUMENTATION

Note that mutations of request.response in views which return a Response object directly will
have no effect unless the response object returned is request . response. For example, the following
example calls request . response. set_cookie, but this call will have no effect because a different
Response object is returned.

from pyramid.response import Response

w

def view(request):
4 request .response.set_cookie('abc', '123') # this has no effect
5 return Response ('OK') # because we're returning a different response

If you mutate request .response and you’d like the mutations to have an effect, you must return
request.response:

def view(request):
2 request.response.set_cookie('abc', '123")
return request.response

w

For more information on attributes of the request, see the API documentation in pyramid.request.
For more information on the API of request.response, see pyramid. request.Request.
response.

Adding and Changing Renderers

New templating systems and serializers can be associated with Pyramid renderer names. To this end,
configuration declarations can be made which change an existing renderer factory, and which add a new
renderer factory.

Renderers can be registered imperatively using the pyramid.config.Configurator.
add _renderer () APL

For example, to add a renderer which renders views which have a renderer attribute that is a path that
endsin . jinja2:

config.add_renderer('.jinja2', 'mypackage.MyJinja2Renderer')

The first argument is the renderer name. The second argument is a reference to an implementation of a
renderer factory or a dotted Python name referring to such an object.

401

CONTENTS

Adding a New Renderer

You may add a new renderer by creating and registering a renderer factory.

A renderer factory implementation should conform to the pyramid.interfaces.
IRendererFactory interface. It should be capable of creating an object that conforms to the
pyramid.interfaces.IRenderer interface. A typical class that follows this setup is as follows:

1 |class RendererFactory:

2 def _ init_ (self, info):

3 "mr Constructor: info will be an object having the

4 following attributes: name (the renderer name), package
5 (the package that was 'current' at the time the

6 renderer was registered), type (the renderer type

7 name), registry (the current application registry) and
8 settings (the deployment settings dictionary). """

9

10 def _ _call (self, value, system):

1 "m"r Call the renderer implementation with the value

12 and the system value passed in as arguments and return
13 the result (a string or unicode object). The value 1s
14 the return value of a view. The system value 1is a

15 dictionary containing available system values

16 (e.g., view, context, and request). """

The formal interface definition of the i nfo object passed to a renderer factory constructor is available as
pyramid.interfaces.IRendererInfo.

There are essentially two different kinds of renderer factories:

A renderer factory which expects to accept an asset specification, or an absolute path, as the name
attribute of the info object fed to its constructor. These renderer factories are registered with a
name value that begins with a dot (.). These types of renderer factories usually relate to a file on
the filesystem, such as a template.

* A renderer factory which expects to accept a token that does not represent a filesystem path or an
asset specification in the name attribute of the info object fed to its constructor. These renderer
factories are registered with a name value that does not begin with a dot. These renderer factories
are typically object serializers.

402

0.2. NARRATIVE DOCUMENTATION

Asset Specifications

An asset specification is a colon-delimited identifier for an asset. The colon separates a Python package
name from a package subpath. For example, the asset specification my . package:static/baz.
css identifies the file named baz.css in the static subdirectory of the my.package Python
package.

Here’s an example of the registration of a simple renderer factory via add_renderer (), where
configisaninstance of pyramid.config.Configurator ():

config.add_renderer (name='amf', factory='my.package.MyAMFRenderer')

Adding the above code to your application startup configuration will allow you to use the my . package.
MyAMFRenderer renderer factory implementation in view configurations. Your application can use this
renderer by specifying amf in the renderer attribute of a view configuration:

from pyramid.view import view_config

w

@view_config(renderer="amf')
def myview (request) :
return {'Hello':'world'}

IS

wn

At startup time, when a view configuration is encountered which has a name attribute that does not contain
a dot, the full name value is used to construct a renderer from the associated renderer factory. In this case,
the view configuration will create an instance of an MyAMFRenderer for each view configuration which
includes amf as its renderer value. The name passed to the MyAMFRenderer constructor will always
be amf.

Here’s an example of the registration of a more complicated renderer factory, which expects to be passed
a filesystem path:

config.add_renderer (name='.7jinja2', factory='my.package.MyJinja2Rend