

Pyramid Community Cookbook

The Pyramid Community Cookbook presents topical, practical "recipes" of using
Pyramid. It supplements the main documentation [https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index].

To contribute your recipe to the Pyramid Community Cookbook, read Contributing [https://github.com/Pylons/pyramid_cookbook/blob/master/contributing.md].

Table of contents

	Authentication and Authorization
	HTTP Basic Authentication Policy

	Custom Authentication Policy

	Making A "User Object" Available as a Request Attribute

	Wiki Flow of Authentication

	Pyramid Auth Demo

	Google, Facebook, Twitter, and any OpenID Authentication

	Integration with Enterprise Systems

	Automating the Development Process
	What is pyramid_starter_seed

	Prerequisites

	How it works pyramid_starter_seed

	Configuration
	A Whirlwind Tour of Advanced Pyramid Configuration Tactics

	Django-Style "settings.py" Configuration

	Databases
	SQLAlchemy

	CouchDB and Pyramid

	MongoDB and Pyramid

	Debugging
	Using PDB to Debug Your Application

	Debugging Pyramid

	Debugging with PyDev

	Deployment
	Introduction
	Deploying Your Pyramid Application

	Web Servers
	Apache + mod_wsgi

	ASGI (Asynchronous Server Gateway Interface)

	Forked and Threaded Servers

	gevent

	gunicorn

	nginx + pserve + supervisord

	uWSGI

	uWSGI with cookiecutter Pyramid application Part 1: Basic uWSGI + nginx

	uWSGI with cookiecutter Pyramid Application Part 2: Adding Emperor and systemd

	uWSGI + nginx + systemd

	Cloud Providers
	Amazon Web Services via Elastic Beanstalk

	DotCloud

	Google App Engine Standard and Pyramid

	Google App Engine (using buildout) and Pyramid

	Google App Engine Flexible with Datastore and Pyramid

	Heroku

	OpenShift Express Cloud

	Windows
	Windows

	Development Tools
	Using PyCharm with Pyramid

	Forms
	Articles

	Logging
	Logging Exceptions To Your SQLAlchemy Database

	Porting Applications to Pyramid
	Porting a Legacy Pylons Application Piecemeal

	Porting an Existing WSGI Application to Pyramid

	Pyramid for Pylons Users
	Introduction and Creating an Application

	Launching the Application

	INI File

	The Main Function

	Models

	Views

	Route and View Examples

	Request and Response

	Templates

	Exceptions, HTTP Errors, and Redirects

	Static Files

	Sessions

	Deployment

	Authentication and Authorization

	Other Pyramid Features

	Migrating an Existing Pylons Application

	Routing: Traversal and URL Dispatch
	Comparing and Combining Traversal and URL Dispatch

	Using Traversal in Pyramid Views

	Traversal with SQLAlchemy

	Sample Pyramid Applications
	Todo List Application in One File

	Static Assets (Static Files)
	Serving Static Assets

	Uploading Files

	Bundling static assets via a Pyramid console script

	Templates and Renderers
	Using a Before Render Event to Expose an h Helper Object

	Using a BeforeRender Event to Expose a Mako base Template

	Using a BeforeRender Event to Expose Chameleon base Template

	Using Building Blocks with Chameleon

	Rendering None as the Empty String in Mako Templates

	Mako Internationalization

	Chameleon Internationalization

	Custom Renderers

	Render into xlsx

	Testing
	Testing a POST request using cURL

	Traversal Tutorial
	Requirements

	1: Template Layout Preparation

	2: Basic Traversal With Site Roots

	3: Traversal Hierarchies

	4: Type-Specific Views

	5: Adding Resources To Hierarchies

	6: Storing Resources In ZODB

	7: RDBMS Root Factories

	8: SQL Traversal and Adding Content

	Views
	Chaining Decorators

	Using a View Mapper to Pass Query Parameters as Keyword Arguments

	Conditional HTTP

	Miscellaneous
	Interfaces

	Using Object Events in Pyramid

	Pyramid Tutorial and Informational Videos

	TODO

Pyramid Glossary [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#glossary]

Indices and tables

	Index

	Search Page

Authentication and Authorization

	HTTP Basic Authentication Policy

	Custom Authentication Policy

	Making A "User Object" Available as a Request Attribute

	Wiki Flow of Authentication

	Pyramid Auth Demo

	Google, Facebook, Twitter, and any OpenID Authentication

	Integration with Enterprise Systems

For basic information on authentication and authorization, see the
security [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html]
section of the Pyramid documentation.

HTTP Basic Authentication Policy

To adopt basic HTTP authentication, you can use Pyramid's built-in authentication policy, pyramid.authentication.BasicAuthAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.BasicAuthAuthenticationPolicy].

This is a complete working example with very simple authentication and authorization:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	from pyramid.authentication import BasicAuthAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy
from pyramid.config import Configurator
from pyramid.httpexceptions import HTTPForbidden
from pyramid.httpexceptions import HTTPUnauthorized
from pyramid.security import ALL_PERMISSIONS
from pyramid.security import Allow
from pyramid.security import Authenticated
from pyramid.security import forget
from pyramid.view import forbidden_view_config
from pyramid.view import view_config

@view_config(route_name='home', renderer='json', permission='view')
def home_view(request):
 return {
 'page': 'home',
 'userid': request.authenticated_userid,
 'principals': request.effective_principals,
 'context_type': str(type(request.context)),
 }

@forbidden_view_config()
def forbidden_view(request):
 if request.authenticated_userid is None:
 response = HTTPUnauthorized()
 response.headers.update(forget(request))

 # user is logged in but doesn't have permissions, reject wholesale
 else:
 response = HTTPForbidden()
 return response

def check_credentials(username, password, request):
 if username == 'admin' and password == 'admin':
 # an empty list is enough to indicate logged-in... watch how this
 # affects the principals returned in the home view if you want to
 # expand ACLs later
 return []

class Root:
 # dead simple, give everyone who is logged in any permission
 # (see the home_view for an example permission)
 __acl__ = (
 (Allow, Authenticated, ALL_PERMISSIONS),
)

def main(global_conf, **settings):
 config = Configurator(settings=settings)

 authn_policy = BasicAuthAuthenticationPolicy(check_credentials)
 config.set_authentication_policy(authn_policy)
 config.set_authorization_policy(ACLAuthorizationPolicy())
 config.set_root_factory(lambda request: Root())

 config.add_route('home', '/')

 config.scan(__name__)
 return config.make_wsgi_app()

if __name__ == '__main__':
 from waitress import serve
 app = main({})
 serve(app, listen='localhost:8000')

Custom Authentication Policy

Here is an example of a custom AuthenticationPolicy, based off of
the native AuthTktAuthenticationPolicy, but with added groups support.
This example implies you have a user attribute on your request
(see Making A "User Object" Available as a Request Attribute) and that the user should have a
groups relation on it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	from pyramid.authentication import AuthTktCookieHelper
from pyramid.security import Everyone, Authenticated

class MyAuthenticationPolicy(object):

 def __init__(self, settings):
 self.cookie = AuthTktCookieHelper(
 settings.get('auth.secret'),
 cookie_name=settings.get('auth.token') or 'auth_tkt',
 secure=asbool(settings.get('auth.secure')),
 timeout=asint(settings.get('auth.timeout')),
 reissue_time=asint(settings.get('auth.reissue_time')),
 max_age=asint(settings.get('auth.max_age')),
)

 def remember(self, request, principal, **kw):
 return self.cookie.remember(request, principal, **kw)

 def forget(self, request):
 return self.cookie.forget(request)

 def unauthenticated_userid(self, request):
 result = self.cookie.identify(request)
 if result:
 return result['userid']

 def authenticated_userid(self, request):
 if request.user:
 return request.user.id

 def effective_principals(self, request):
 principals = [Everyone]
 user = request.user
 if user:
 principals += [Authenticated, 'u:%s' % user.id]
 principals.extend(('g:%s' % g.name for g in user.groups))
 return principals

Thanks to raydeo for this one.

Making A "User Object" Available as a Request Attribute

This is you: your application wants a "user object".
Pyramid is only willing to supply you with a user id
(via pyramid.security.authenticated_userid()).
You don't want to create a
function that accepts a request object and returns a user object from
your domain model for efficiency reasons, and you want the user object to be
omnipresent as request.user.

You've tried using a NewRequest subscriber to attach a user object to the
request, but the NewRequest susbcriber is called on every request, even
ones for static resources, and this bothers you (which it should).

A lazy property can be registered to the request via the
pyramid.config.Configurator.add_request_method() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_request_method] API
(introduced in Pyramid 1.4; see below for older releases).
This allows you to specify a
callable that will be available on the request object, but will not actually
execute the function until accessed. The result of this function can also
be cached per-request, to eliminate the overhead of running the function
multiple times (this is done by setting reify=True:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.security import unauthenticated_userid

def get_user(request):
 # the below line is just an example, use your own method of
 # accessing a database connection here (this could even be another
 # request property such as request.db, implemented using this same
 # pattern).
 dbconn = request.registry.settings['dbconn']
 userid = unauthenticated_userid(request)
 if userid is not None:
 # this should return None if the user doesn't exist
 # in the database
 return dbconn['users'].query({'id':userid})

Here's how you should add your new request property in configuration code:

config.add_request_method(get_user, 'user', reify=True)

Then in your view code, you should be able to happily do request.user to
obtain the "user object" related to that request. It will return None if
there aren't any user credentials associated with the request, or if there
are user credentials associated with the request but the userid doesn't exist
in your database. No inappropriate execution of authenticated_userid is
done (as would be if you used a NewRequest subscriber).

After doing such a thing, if your user object has a groups attribute,
which returns a list of groups that have name attributes, you can use the
following as a callback (aka groupfinder) argument to most builtin
authentication policies. For example:

	1
2
3
4
5
6
7
8
9

	from pyramid.authentication import AuthTktAuthenticationPolicy

def groupfinder(userid, request):
 user = request.user
 if user is not None:
 return [group.name for group in request.user.groups]
 return None

authn_policy = AuthTktAuthenticationPolicy('seekrITT', callback=groupfinder)

Prior to Pyramid 1.4

If you are using version 1.3, you can follow the same procedure as above,
except use this instead of add_request_method:

config.set_request_property(get_user, 'user', reify=True)

Deprecated since version 1.4: set_request_property()

Prior to set_request_property and add_request_method,
a similar pattern could be used, but it required registering
a new request factory [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-request-factory]
via set_request_factory() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.set_request_factory]. This works
in the same way, but each application can only have one request factory
and so it is not very extensible for arbitrary properties.

The code for this method is below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from pyramid.decorator import reify
from pyramid.request import Request
from pyramid.security import unauthenticated_userid

class RequestWithUserAttribute(Request):
 @reify
 def user(self):
 # <your database connection, however you get it, the below line
 # is just an example>
 dbconn = self.registry.settings['dbconn']
 userid = unauthenticated_userid(self)
 if userid is not None:
 # this should return None if the user doesn't exist
 # in the database
 return dbconn['users'].query({'id':userid})

Here's how you should use your new request factory in configuration code:

config.set_request_factory(RequestWithUserAttribute)

Wiki Flow of Authentication

Warning

This recipe has not received significant updates since its creation around
the time Pyramid 1.0 was released. Since then, the wiki tutorial to which
this recipe refers has received numerous significant updates. Pyramid 1.6.1
was released on 2016-02-02, and a major update to the wiki tutorial has been
merged for the Pyramid 1.7 release. Upon the release of Pyramid 1.7, this
recipe will be removed as obsolete.

This tutorial describes the "flow of authentication" of the result of the
completing the Adding authorization [https://docs.pylonsproject.org/projects/pyramid/en/latest/tutorials/wiki2/authorization.html#wiki2-adding-authorization] tutorial chapter from the
main Pyramid documentation.

This text was contributed by John Shipman.

Overall flow of an authentication

Now that you have seen all the pieces of the authentication
mechanism, here are some examples that show how they all work
together.

	Failed login: The user requests /FrontPage/edit_page. The
site presents the login form. The user enters editor as
the login, but enters an invalid password bad.
The site redisplays the login form with the message "Failed
login". See Failed login.

	The user again requests /FrontPage/edit_page. The site
presents the login form, and this time the user enters
login editor and password editor. The site presents
the edit form with the content of /FrontPage. The user
makes some changes and saves them. See Successful login.

	The user again revisits /FrontPage/edit_page. The site
goes immediately to the edit form without requesting
credentials. See Revisiting after authentication.

	The user clicks the Logout link. See Logging out.

Failed login

The process starts when the user enters URL
http://localhost:6543/FrontPage/edit_page. Let's assume that
this is the first request ever made to the application and the
page database is empty except for the Page instance created
for the front page by the initialize_sql function in
models.py.

This process involves two complete request/response cycles.

	From the front page, the user clicks Edit page.
The request is to /FrontPage/edit_page. The view callable
is login.login. The response is the login.pt template
with blank fields.

	The user enters invalid credentials and clicks Log
in. A POST request is sent to /FrontPage/edit_page.
The view callable is again login.login. The response is
the login.pt template showing the message "Failed login",
with the entry fields displaying their former values.

Cycle 1:

	During URL dispatch, the route '/{pagename}/edit_page' is
considered for matching. The associated view has a
view_permission='edit' permission attached, so the
dispatch logic has to verify that the user has that permission
or the route is not considered to match.

The context for all route matching comes from the configured
root factory, RootFactory() in models.py.
This class has an __acl__ attribute that defines the
access control list for all routes:

__acl__ = [(Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'edit')]

In practice, this means that for any route that requires the
edit permission, the user must be authenticated and
have the group:editors principal or the route is not
considered to match.

	To find the list of the user's principals, the authorization
first policy checks to see if the user has a
paste.auth.auth_tkt cookie. Since the user has never been
to the site, there is no such cookie, and the user is
considered to be unauthenticated.

	Since the user is unauthenticated, the groupfinder
function in security.py is called with None as its
userid argument. The function returns an empty list of
principals.

	Because that list does not contain the group:editors
principal, the '/{pagename}/edit_page' route's edit
permission fails, and the route does not match.

	Because no routes match, the forbidden view callable is
invoked: the login function in module login.py.

	Inside the login function, the value of login_url is
http://localhost:6543/login, and the value of
referrer is http://localhost:6543/FrontPage/edit_page.

Because request.params has no key for 'came_from', the
variable came_from is also set to
http://localhost:6543/FrontPage/edit_page. Variables
message, login, and password are set to the empty
string.

Because request.params has no key for
'form.submitted', the login function returns this
dictionary:

{'message': '', 'url':'http://localhost:6543/login',
 'came_from':'http://localhost:6543/FrontPage/edit_page',
 'login':'', 'password':''}

	This dictionary is used to render the login.pt template.
In the form, the action attribute is
http://localhost:6543/login, and the value of
came_from is included in that form as a hidden field
by this line in the template:

<input type="hidden" name="came_from" value="${came_from}"/>

Cycle 2:

	The user enters incorrect credentials and clicks the
Log in button, which does a POST request to
URL http://localhost:6543/login. The name of the
Log in button in this form is form.submitted.

	The route with pattern '/login' matches this URL, so
control is passed again to the login view callable.

	The login_url and referrer have the same value
this time (http://localhost:6543/login), so variable
referrer is set to '/'.

Since request.params does have a key 'form.submitted',
the values of login and password are retrieved from
request.params.

Because the login and password do not match any of the entries
in the USERS dictionary in security.py, variable
message is set to 'Failed login'.

The view callable returns this dictionary:

{'message':'Failed login',
 'url':'http://localhost:6543/login', 'came_from':'/',
 'login':'editor', 'password':'bad'}

	The login.pt template is rendered using those values.

Successful login

In this scenario, the user again requests URL
/FrontPage/edit_page.

This process involves four complete request/response cycles.

	The user clicks Edit page. The view callable is
login.login. The response is template login.pt,
with all the fields blank.

	The user enters valid credentials and clicks Log in.
The view callable is login.login. The response is a
redirect to /FrontPage/edit_page.

	The view callable is views.edit_page. The response
renders template edit.pt, displaying the current page
content.

	The user edits the content and clicks Save.
The view callable is views.edit_page. The response
is a redirect to /FrontPage.

Execution proceeds as in Failed login, up to the point
where the password editor is successfully matched against the
value from the USERS dictionary.

Cycle 2:

	Within the login.login view callable, the value of
login_url is http://localhost:6543/login, and the
value of referrer is '/', and came_from is
http://localhost:6543/FrontPage/edit_page when this block
is executed:

if USERS.get(login) == password:
 headers = remember(request, login)
 return HTTPFound(location=came_from, headers=headers)

	Because the password matches this time,
pyramid.security.remember returns a sequence of header
tuples that will set a paste.auth.auth_tkt authentication
cookie in the user's browser for the login 'editor'.

	The HTTPFound exception returns a response that redirects
the browser to http://localhost:6543/FrontPage/edit_page,
including the headers that set the authentication cookie.

Cycle 3:

	Route pattern '/{pagename}/edit_page' matches this URL,
but the corresponding view is restricted by an 'edit'
permission.

	Because the user now has an authentication cookie defining
their login name as 'editor', the groupfinder function
is called with that value as its userid argument.

	The groupfinder function returns the list
['group:editors']. This satisfies the access control
entry (Allow, 'group:editors', 'edit'), which grants the
edit permission. Thus, this route matches, and control
passes to view callable edit_page.

	Within edit_page, name is set to 'FrontPage', the
page name from request.matchdict['pagename'], and
page is set to an instance of models.Page
that holds the current content of FrontPage.

	Since this request did not come from a form,
request.params does not have a key for
'form.submitted'.

	The edit_page function calls
pyramid.security.authenticated_userid() to find out
whether the user is authenticated. Because of the cookies
set previously, the variable logged_in is set to
the userid 'editor'.

	The edit_page function returns this dictionary:

{'page':page, 'logged_in':'editor',
 'save_url':'http://localhost:6543/FrontPage/edit_page'}

	Template edit.pt is rendered with those values.
Among other features of this template, these lines
cause the inclusion of a Logout link:

 Logout

For the example case, this link will refer to
http://localhost:6543/logout.

These lines of the template display the current page's
content in a form whose action attribute is
http://localhost:6543/FrontPage/edit_page:

<form action="${save_url}" method="post">
 <textarea name="body" tal:content="page.data" rows="10" cols="60"/>
 <input type="submit" name="form.submitted" value="Save"/>
</form>

Cycle 4:

	The user edits the page content and clicks
Save.

	URL http://localhost:6543/FrontPage/edit_page goes through
the same routing as before, up until the line that checks
whether request.params has a key 'form.submitted'.
This time, within the edit_page view callable, these
lines are executed:

page.data = request.params['body']
session.add(page)
return HTTPFound(location = route_url('view_page', request,
 pagename=name))

The first two lines replace the old page content with the
contents of the body text area from the form, and then
update the page stored in the database. The third line
causes a response that redirects the browser to
http://localhost:6543/FrontPage.

Revisiting after authentication

In this case, the user has an authentication cookie set in their
browser that specifies their login as 'editor'. The
requested URL is http://localhost:6543/FrontPage/edit_page.

This process requires two request/response cycles.

	The user clicks Edit page. The view callable is
views.edit_page. The response is edit.pt, showing
the current page content.

	The user edits the content and clicks Save.
The view callable is views.edit_page. The response is
a redirect to /Frontpage.

Cycle 1:

	The route with pattern /{pagename}/edit_page matches the
URL, and because of the authentication cookie, groupfinder
returns a list containing the group:editors principal,
which models.RootFactory.__acl__ uses to grant the
edit permission, so this route matches and dispatches
to the view callable views.edit_page().

	In edit_page, because the request did not come from a form
submission, request.params has no key for
'form.submitted'.

	The variable logged_in is set to the login name
'editor' by calling authenticated_userid, which
extracts it from the authentication cookie.

	The function returns this dictionary:

{'page':page,
 'save_url':'http://localhost:6543/FrontPage/edit_page',
 'logged_in':'editor'}

	Template edit.pt is rendered with the values from
that dictionary. Because of the presence of the
'logged_in' entry, a Logout link appears.

Cycle 2:

	The user edits the page content and clicks Save.

	The POST operation works as in Successful login.

Logging out

This process starts with a request URL
http://localhost:6543/logout.

	The route with pattern '/logout' matches and dispatches
to the view callable logout in login.py.

	The call to pyramid.security.forget() returns a list of
header tuples that will, when returned with the response,
cause the browser to delete the user's authentication cookie.

	The view callable returns an HTTPFound exception that
redirects the browser to named route view_wiki, which
will translate to URL http://localhost:6543. It
also passes along the headers that delete the
authentication cookie.

Pyramid Auth Demo

See Michael Merickel's article Pyramid Auth Demo [https://michael.merickel.org/projects/pyramid_auth_demo/] with its code on
GitHub [https://github.com/mmerickel/pyramid_auth_demo] for a demonstration
of Pyramid authentication and authorization.

Google, Facebook, Twitter, and any OpenID Authentication

See Wayne Witzel III's blog post [http://pieceofpy.com/blog/2011/07/24/pyramid-and-velruse-for-google-authentication/]
about using Velruse and Pyramid together to do Google OAuth authentication.

See Matthew Housden and Chris Davies apex project for any basic and
openid authentication such as Google, Facebook, Twitter and more at
https://github.com/cd34/apex.

Integration with Enterprise Systems

When using Pyramid within an "enterprise" (or an intranet), it is often desirable to
integrate with existing authentication and authorization (entitlement) systems.
For example, in Microsoft Network environments, the user database is typically
maintained in Active Directory. At present, there is no ready-to-use recipe, but we
are listing places that may be worth looking at for ideas when developing one:

Authentication

	adpasswd project on pypi [https://pypi.org/project/adpasswd/]

	Tim Golden's Active Directory Cookbook [http://timgolden.me.uk/python/ad_cookbook.html]

	python-ad [https://code.google.com/archive/p/python-ad/]

	python-ldap.org [https://www.python-ldap.org/en/latest/]

	python-ntmlm [https://github.com/mullender/python-ntlm]

	Blog post on managing AD from Python in Linux [http://marcitland.blogspot.com/2011/02/python-active-directory-linux.html]

Authorization

	Microsoft Authorization Manager [https://msdn.microsoft.com/en-us/library/aa480244.aspx]

	Fundamentals of WCF Security [https://www.codemag.com/article/0611051]

	Calling WCF Services from C++ using gSOAP [https://coab.wordpress.com/2009/10/15/calling-wcf-services-from-a-linux-c-client-using-gsoap/]

Automating the Development Process

	What is pyramid_starter_seed

	Prerequisites
	Python and Pyramid

	NodeJS

	How to install pyramid_starter_seed

	Run pyramid_starter_seed

	How it works pyramid_starter_seed
	.ini configurations

	View callables

	Templates

	How to fork pyramid_starter_seed

	How pyramid_starter_seed works under the hood

Based on Davide Moro [http://davidemoro.blogspot.com] articles (how to
integrate the Yeoman workflow with Pyramid):

	Pyramid starter seed template powered by Yeoman (part 1) [http://davidemoro.blogspot.com/2014/09/pyramid-starter-seed-yeomam-part-1.html]

	Pyramid starter seed template powered by Yeoman (part 2) [http://davidemoro.blogspot.com/2014/09/pyramid-starter-seed-yeoman-part-2.html]

	Pyramid starter seed template powered by Yeoman (part 3) [http://davidemoro.blogspot.com/2014/09/pyramid-starter-seed-yeoman-part-3.html]

What is pyramid_starter_seed

This tutorial should help you to start developing with the Pyramid web
framework using a very minimal starter seed project based on:

	a Pyramid's pcreate -t starter project

	a Yeoman [http://yeoman.io] generator-webapp project

You can find the Pyramid starter seed code here on Github:

	pyramid_starter_seed [https://github.com/davidemoro/pyramid_starter_seed]

Thanks to Yeoman you can improve your developer experience when you are in
development or production mode thanks to:

	Javascript testing setup

	Javascript code linting

	Javascript/CSS concat and minification

	image assets optimization

	html template minification

	switch to CDN versions of you vendor plugins in production mode

	uncss

	much more (you can add features adding new Grunt tasks)

We will see later how you can clone pyramid_starter_seed from github, add
new features (eg: authentication, SQLAlchemy support, user models, a json
REST API, add a modern Javascript framework as AngularJS, etc) and then
launch a console script that helps you to rename the entire project with
your more opinionated modifications, for example
pyramid_yourawesomeproduct.

Based on Davide Moro [http://davidemoro.blogspot.com] articles (how to
integrate the Yeoman workflow with Pyramid):

	Pyramid starter seed template powered by Yeoman (part 1) [http://davidemoro.blogspot.com/2014/09/pyramid-starter-seed-yeomam-part-1.html]

	Pyramid starter seed template powered by Yeoman (part 2) [http://davidemoro.blogspot.com/2014/09/pyramid-starter-seed-yeoman-part-2.html]

	Pyramid starter seed template powered by Yeoman (part 3) [http://davidemoro.blogspot.com/2014/09/pyramid-starter-seed-yeoman-part-3.html]

Prerequisites

If you want to play with pyramid_starter_seed you'll need to install
NodeJS [https://nodejs.org/en/] and, obviously, Python.
Once installed Python and Pyramid, you'll have to clone the
pyramid_starter_seed repository from github and initialize the Yeoman stuff.

Python and Pyramid

pyramid_starter_seed was tested with Python 2.7.
Create an isolated Python environment as explained in the official Pyramid
documentation and install Pyramid.

Official Pyramid installation documentation

	https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/install.html#installing-chapter

NodeJS

You won't use NodeJS at all in your code, you just need to install
development dependencies required by the Yeoman tools.

Once installed NodeJS (if you want to easily install different versions
on your system and manage them you can use the NodeJS Version Manager
utility: NVM [https://github.com/creationix/nvm]), you need to
enable the following tools:

$ npm install -g bower
$ npm install -g grunt-cli
$ npm install -g karma

Tested with NodeJS version 0.10.31.

How to install pyramid_starter_seed

Clone pyramid_starter_seed from github:

$ git clone git@github.com:davidemoro/pyramid_starter_seed.git
$ cd pyramid_starter_seed
$ YOUR_VIRTUALENV_PYTHON_PATH/bin/python setup.py develop

Yeoman initialization

Go to the folder where it lives our Yeoman project and initialize it.

These are the standard commands (but, wait a moment, see the "Notes and
known issues" subsection):

$ cd pyramid_starter_seed/webapp
$ bower install
$ npm install

Known issues

You'll need to perform these additional steps in order to get a working
environment (the generator-webapp's version used by pyramid_starter_seed
has a couple of known issues).

Avoid imagemin errors on build:

$ npm cache clean
$ npm install grunt-contrib-imagemin

Avoid Mocha/PhantomJS issue (see
issues #446 [https://github.com/yeoman/generator-webapp/issues/446]):

$ cd test
$ bower install

Build

Run:

$ grunt build

Run pyramid_starter_seed

Now can choose to run Pyramid in development or production mode.

Go to the root of your project directory, where the files development.ini
and production.ini are located.

cd ../../..

Just type:

$ YOUR_VIRTUALENV_PYTHON_PATH/bin/pserve development.ini

or:

$ YOUR_VIRTUALENV_PYTHON_PATH/bin/pserve production.ini

How it works pyramid_starter_seed

Note well that if you want to integrate a Pyramid application with the
Yeoman workflow you can choose different strategies.
So the pyramid_starter_seed's way is just one of the possible
implementations.

.ini configurations

Production vs development .ini configurations.

Production:

[app:main]
use = egg:pyramid_starter_seed

PRODUCTION = true
minify = dist

Development:

[app:main]
use = egg:pyramid_starter_seed

PRODUCTION = false
minify = app

View callables

The view callable gets a different renderer depending on the production
vs development settings:

from pyramid.view import view_config

@view_config(route_name='home', renderer='webapp/%s/index.html')
def my_view(request):
 return {'project': 'pyramid_starter_seed'}

Since there is no .html renderer, pyramid_starter_seed register a custom
Pyramid renderer based on ZPT/Chameleon.
See .html renderer [https://github.com/davidemoro/pyramid_starter_seed/blob/master/pyramid_starter_seed/renderer.py]

Templates

Css and javascript

<tal:production tal:condition="production">
 <script src="${request.static_url('pyramid_starter_seed:webapp/%s/scripts/plugins.js' % minify)}">
 </script>
</tal:production>
<tal:not_production tal:condition="not:production">
 <script src="${request.static_url('pyramid_starter_seed:webapp/%s/bower_components/bootstrap/js/alert.js' % minify)}">
 </script>
 <script src="${request.static_url('pyramid_starter_seed:webapp/%s/bower_components/bootstrap/js/dropdown.js' % minify)}">
 </script>
</tal:not_production>
<!-- build:js scripts/plugins.js -->
<tal:comment replace="nothing">
 <!-- DO NOT REMOVE this block (minifier) -->
 <script src="./bower_components/bootstrap/js/alert.js"></script>
 <script src="./bower_components/bootstrap/js/dropdown.js"></script>
</tal:comment>
<!-- endbuild -->

Note: the above verbose syntax could be avoided hacking with the
grunt-bridge task.
See grunt-bridge [https://github.com/palazzem/grunt-bridge].

Images

<img class="logo img-responsive"
 src="${request.static_url('pyramid_starter_seed:webapp/%s/images/pyramid.png' % minify)}"
 alt="pyramid web framework" />

How to fork pyramid_starter_seed

Fetch pyramid_starter_seed, personalize it and then clone it!

Pyramid starter seed can be fetched, personalized and released with another
name. So other developer can bootstrap, build, release and distribute their
own starter templates without having to write a new package template
generator. For example you could create a more opinionated starter seed
based on SQLAlchemy, ZODB nosql or powered by a javascript framework like
AngularJS and so on.

The clone method should speed up the process of creation of new more
evoluted packages based on Pyramid, also people that are not keen on
writing their own reusable scaffold templates.

So if you want to release your own customized template based on
pyramid_starter_seed you'll have to call a console script named
pyramid_starter_seed_clone with the following syntax (obviously
you'll have to call this command outside the root directory of
pyramid_starter_seed):

$ YOUR_VIRTUALENV_PYTHON_PATH/bin/pyramid_starter_seed_clone new_template

and you'll get as a result a perfect renamed clone new_template.

The clone console script it might not work in some corner cases just in case
you choose a new package name that contains reserved words or the name of a
dependency of your plugin, but it should be quite easy to fix by hand or
improving the console script.
But if you provide tests you can check immediately if something went wrong
during the cloning process and fix.

How pyramid_starter_seed works under the hood

More details explained on the original article (part 3):

	How pyramid_starter_seed works under the hood [http://davidemoro.blogspot.com/2014/09/pyramid-starter-seed-yeoman-part-3.html]

Configuration

	A Whirlwind Tour of Advanced Pyramid Configuration Tactics
	Concepts: Configuration, Directives, and Statements

	Sanity Checks

	Configuration Conflicts

	Resolving Conflicts

	Including Configuration from Other Modules

	The includeme() Convention

	Nested Includes

	Automatic Resolution via Includes

	Custom Configuration Directives

	Why This Is Great

	Django-Style "settings.py" Configuration

For more information on configuration see the following sections of the Pyramid documentation:

	basic configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/configuration.html]

	advanced configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/advconfig.html]

	configuration introspection [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/introspector.html]

	extending configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/extconfig.html]

	PasteDeploy configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/paste.html]

A Whirlwind Tour of Advanced Pyramid Configuration Tactics

Concepts: Configuration, Directives, and Statements

This article attempts to demonstrate some of Pyramid's more advanced
startup-time configuration features. The stuff below talks about
"configuration", which is a shorthand word I'll use to mean the state that is
changed when a developer adds views, routes, subscribers, and other bits. A
developer adds configuration by calling configuration directives. For
example, config.add_route() is a configuration directive. A particular
use of config.add_route() is a configuration statement. In the below
code block, the execution of the add_route() directive is a configuration
statement. Configuration statements change pending configuration state:

config = pyramid.config.Configurator()
config.add_route('home', '/')

Here are a few core concepts related to Pyramid startup configuration:

	Due to the way the configuration statements work, statement ordering is
usually irrelevant. For example, calling add_view, then add_route
has the same outcome as calling add_route, then add_view. There
are some important exceptions to this, but in general, unless the
documentation for a given configuration directive states otherwise, you
don't need to care in what order your code adds configuration statements.

	When a configuration statement is executed, it usually doesn't do much
configuration immediately. Instead, it generates a discriminator and
produces a callback. The discriminator is a hashable value that
represents the configuration statement uniquely amongst all other
configuration statements. The callback, when eventually called, actually
performs the work related to the configuration statement. Pyramid adds
the discriminator and the callback into a list of pending actions that may
later be committed.

	Pending configuration actions can be committed at any time. At commit
time, Pyramid compares each of the discriminators generated by a
configuration statement to every other discriminator generated by other
configuration statements in the pending actions list. If two or more
configuration statements have generated the same discriminator, this is a
conflict. Pyramid will attempt to resolve the conflict automatically;
if it cannot, startup will exit with an error. If all conflicts are
resolved, each callback associated with a configuration statement is
executed. Per-action sanity-checking is also performed as the result of a
commit.

	Pending actions can be committed more than once during startup in order to
avoid a configuration state that contains conflicts. This is useful if
you need to perform configuration overrides in a brute-force,
deployment-specific way.

	An application can be created via configuration statements (for example,
calls to add_route or add_view) composed from logic defined in
multiple locations. The configuration statements usually live within
Python functions. Those functions can live anywhere, as long as they can
be imported. If the config.include() API is used to stitch these
configuration functions together, some configuration conflicts can be
automatically resolved.

	Developers can add directives which participate in Pyramid's phased
configuration process. These directives can be made to work exactly like
"built-in" directives like add_route and add_view.

	Application configuration is never added as the result of someone or
something just happening to import a Python module. Adding configuration
is always more explicit than that.

Let's see some of those concepts in action. Here's one of the simplest
possible Pyramid applications:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

If we run this application via python app.py, we'll get a Hello world!
printed when we visit http://localhost:8080/ in a browser. Not very
exciting.

What happens when we reorder our configuration statements? We'll change the
relative ordering of add_view() and add_route() configuration
statements. Instead of adding a route, then a view, we'll add a view then a
route:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world, route_name='home') # moved this up
 config.add_route('home', '/')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

If you start this application, you'll note that, like before, visiting /
serves up Hello world!. In other words, it works exactly like it did
before we switched the ordering around. You might not expect this
configuration to work, because we're referencing the name of a route
(home) within our add_view statement (config.add_view(hello_world,
route_name='home') that hasn't been added yet. When we execute
add_view, add_route('home', '/') has not yet been executed. This
out-of-order execution works because Pyramid defers configuration execution
until a commit is performed as the result of config.make_wsgi_app()
being called. Relative ordering between config.add_route() and
config.add_view() calls is not important. Pyramid implicitly commits the
configuration state when make_wsgi_app() gets called; only when it's
committed is the configuration state sanity-checked. In particular, in this
case, we're relying on the fact that Pyramid makes sure that all route
configuration happens before any view configuration at commit time. If a
view references a nonexistent route, an error will be raised at commit time
rather than at configuration statement execution time.

Sanity Checks

We can see this sanity-checking feature in action in a failure case. Let's
change our application, commenting out our call to config.add_route()
temporarily within app.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world, route_name='home') # moved this up
 # config.add_route('home', '/') # we temporarily commented this line
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

When we attempt to run this Pyramid application, we get a traceback:

Traceback (most recent call last):
 File "app.py", line 12, in <module>
 app = config.make_wsgi_app()
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 955, in make_wsgi_app
 self.commit()
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 629, in commit
 self.action_state.execute_actions(introspector=self.introspector)
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 1083, in execute_actions
 tb)
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 1075, in execute_actions
 callable(*args, **kw)
 File "/home/chrism/projects/pyramid/pyramid/config/views.py", line 1124, in register
 route_name)
pyramid.exceptions.ConfigurationExecutionError: <class 'pyramid.exceptions.ConfigurationError'>: No route named home found for view registration
 in:
 Line 10 of file app.py:
 config.add_view(hello_world, route_name='home')

It's telling us that we attempted to add a view which references a
nonexistent route. Configuration directives sometimes introduce
sanity-checking to startup, as demonstrated here.

Configuration Conflicts

Let's change our application once again. We'll undo our last change, and add
a configuration statement that attempts to add another view:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def hi_world(request): # added
 return Response('Hi world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.add_view(hi_world, route_name='home') # added
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

If you notice above, we're now calling add_view twice with two
different view callables. Each call to add_view names the same route
name. What happens when we try to run this program now?:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	Traceback (most recent call last):
 File "app.py", line 17, in <module>
 app = config.make_wsgi_app()
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 955, in make_wsgi_app
 self.commit()
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 629, in commit
 self.action_state.execute_actions(introspector=self.introspector)
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 1064, in execute_actions
 for action in resolveConflicts(self.actions):
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 1192, in resolveConflicts
 raise ConfigurationConflictError(conflicts)
pyramid.exceptions.ConfigurationConflictError: Conflicting configuration actions
 For: ('view', None, '', 'home', 'd41d8cd98f00b204e9800998ecf8427e')
 Line 14 of file app.py:
 config.add_view(hello_world, route_name='home')
 Line 15 of file app.py:
 config.add_view(hi_world, route_name='home')

This traceback is telling us that there was a configuration conflict
between two configuration statements: the add_view statement on line 14
of app.py and the add_view statement on line 15 of app.py. This happens
because the discriminator generated by add_view statement on line 14
turned out to be the same as the discriminator generated by the add_view
statement on line 15. The discriminator is printed above the line conflict
output: For: ('view', None, '', 'home',
'd41d8cd98f00b204e9800998ecf8427e') .

Note

The discriminator itself has to be opaque in order to service all of the
use cases required by add_view. It's not really meant to be parsed by
a human, and is kinda really printed only for consumption by core Pyramid
developers. We may consider changing things in future Pyramid versions so
that it doesn't get printed when a conflict exception happens.

Why is this exception raised? Pyramid couldn't work out what you wanted to
do. You told it to serve up more than one view for exactly the same set of
request-time circumstances ("when the route name matches home, serve this
view"). This is an impossibility: Pyramid needs to serve one view or the
other in this circumstance; it can't serve both. So rather than trying to
guess what you meant, Pyramid raises a configuration conflict error and
refuses to start.

Resolving Conflicts

Obviously it's necessary to be able to resolve configuration conflicts.
Sometimes these conflicts are done by mistake, so they're easy to resolve.
You just change the code so that the conflict is no longer present. We can
do that pretty easily:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def hi_world(request):
 return Response('Hi world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.add_view(hi_world, route_name='home', request_param='use_hi')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

In the above code, we've gotten rid of the conflict. Now the hello_world
view will be called by default when / is visited without a query string,
but if / is visted when the URL contains a use_hi query string,
the hi_world view will be executed instead. In other words, visiting
/ in the browser produces Hello world!, but visiting /?use_hi=1
produces Hi world!.

There's an alternative way to resolve conflicts that doesn't change the
semantics of the code as much. You can issue a config.commit() statement
to flush pending configuration actions before issuing more. To see this in
action, let's change our application back to the way it was before we added
the request_param predicate to our second add_view statement:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def hi_world(request): # added
 return Response('Hi world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.add_view(hi_world, route_name='home') # added
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

If we try to run this application as-is, we'll wind up with a configuration
conflict error. We can actually sort of brute-force our way around that by
adding a manual call to commit between the two add_view statements
which conflict:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def hi_world(request): # added
 return Response('Hi world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.commit() # added
 config.add_view(hi_world, route_name='home') # added
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

If we run this application, it will start up. And if we visit / in our
browser, we'll see Hi world!. Why doesn't this application throw a
configuration conflict error at the time it starts up? Because we flushed
the pending configuration action impled by the first call to add_view by
calling config.commit() explicitly. When we called the add_view the
second time, the discriminator of the first call to add_view was no
longer in the pending actions list to conflict with. The conflict was
resolved because the pending actions list got flushed. Why do we see Hi
world! in our browser instead of Hello world!? Because the call to
config.make_wsgi_app() implies a second commit. The second commit caused
the second add_view configuration callback to be called, and this
callback overwrote the view configuration added by the first commit.

Calling config.commit() is a brute-force way to resolve configuration
conflicts.

Including Configuration from Other Modules

Now that we have played around a bit with configuration that exists all in
the same module, let's add some code to app.py that causes configuration
that lives in another module to be included. We do that by adding a call
to config.include() within app.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.include('another.moreconfiguration') # added
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

We added the line config.include('another.moreconfiguration') above.
If we try to run the application now, we'll receive a traceback:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	Traceback (most recent call last):
 File "app.py", line 12, in <module>
 config.include('another')
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 744, in include
 c = self.maybe_dotted(callable)
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 844, in maybe_dotted
 return self.name_resolver.maybe_resolve(dotted)
 File "/home/chrism/projects/pyramid/pyramid/path.py", line 318, in maybe_resolve
 return self._resolve(dotted, package)
 File "/home/chrism/projects/pyramid/pyramid/path.py", line 325, in _resolve
 return self._zope_dottedname_style(dotted, package)
 File "/home/chrism/projects/pyramid/pyramid/path.py", line 368, in _zope_dottedname_style
 found = __import__(used)
ImportError: No module named another

That's exactly as we expected, because we attempted to include a module
that doesn't yet exist. Let's add a module named another.py right next
to our app.py module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	# another.py

from pyramid.response import Response

def goodbye(request):
 return Response('Goodbye world!')

def moreconfiguration(config):
 config.add_route('goodbye', '/goodbye')
 config.add_view(goodbye, route_name='goodbye')

Now what happens when we run the application via python app.py? It
starts. And, like before, if we visit / in a browser, it still show
Hello world!. But, unlike before, now if we visit /goodbye in a
browser, it will show us Goodbye world!.

When we called include('another.moreconfiguration') within app.py,
Pyramid interpreted this call as "please find the function named
moreconfiguration in a module or package named another and call it
with a configurator as the only argument". And that's indeed what happened:
the moreconfiguration function within another.py was called; it
accepted a configurator as its first argument and added a route and a view,
which is why we can now visit /goodbye in the browser and get a response.
It's the same effective outcome as if we had issued the add_route and
add_view statements for the "goodbye" view from within app.py. An
application can be created via configuration statements composed from
multiple locations.

You might be asking yourself at this point "So what?! That's just a function
call hidden under an API that resolves a module name to a function. I could
just import the moreconfiguration function from another and call it directly with
the configurator!" You're mostly right. However, config.include() does
more than that. Please stick with me, we'll get to it.

The includeme() Convention

Now, let's change our app.py slightly. We'll change the
config.include() line in app.py to include a slightly different
name:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.include('another') # <-- changed
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

And we'll edit another.py, changing the name of the
moreconfiguration function to includeme:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	# another.py

from pyramid.response import Response

def goodbye(request):
 return Response('Goodbye world!')

def includeme(config): # <-- previously named moreconfiguration
 config.add_route('goodbye', '/goodbye')
 config.add_view(goodbye, route_name='goodbye')

When we run the application, it works exactly like our last iteration. You
can visit / and /goodbye and get the exact same results. Why is this
so? We didn't tell Pyramid the name of our new includeme function like
we did before for moreconfiguration by saying
config.include('another.includeme'), we just pointed it at the module in
which includeme lived by saying config.include('another'). This is a
Pyramid convenience shorthand: if you tell Pyramid to include a Python
module or package, it will assume that you're telling it to include the
includeme function from within that module/package. Effectively,
config.include('amodule') always means
config.include('amodule.includeme').

Nested Includes

Something which is included can also do including. Let's add a file named
yetanother.py next to app.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	# yetanother.py

from pyramid.response import Response

def whoa(request):
 return Response('Whoa')

def includeme(config):
 config.add_route('whoa', '/whoa')
 config.add_view(whoa, route_name='whoa')

And let's change our another.py file to include it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	# another.py

from pyramid.response import Response

def goodbye(request):
 return Response('Goodbye world!')

def includeme(config): # <-- previously named moreconfiguration
 config.add_route('goodbye', '/goodbye')
 config.add_view(goodbye, route_name='goodbye')
 config.include('yetanother')

When we start up this application, we can visit /, /goodbye and
/whoa and see responses on each. app.py includes another.py
which includes yetanother.py. You can nest configuration includes within
configuration includes ad infinitum. It's turtles all the way down.

Automatic Resolution via Includes

As we saw previously, it's relatively easy to manually resolve configuration
conflicts that are produced by mistake. But sometimes configuration
conflicts are not injected by mistake. Sometimes they're introduced on
purpose in the desire to override one configuration statement with another.
Pyramid anticipates this need in two ways: by offering automatic conflict
resolution via config.include(), and the ability to manually commit
configuration before a conflict occurs.

Let's change our another.py to contain a hi_world view function, and
we'll change its includeme to add that view that should answer when /
is visited:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	# another.py

from pyramid.response import Response

def goodbye(request):
 return Response('Goodbye world!')

def hi_world(request): # added
 return Response('Hi world!')

def includeme(config):
 config.add_route('goodbye', '/goodbye')
 config.add_view(goodbye, route_name='goodbye')
 config.add_view(hi_world, route_name='home') # added

When we attempt to start the application, it will start without a conflict
error. This is strange, because we have what appears to be the same
configuration that caused a conflict error before when all of the same
configuration statements were made in app.py. In particular,
hi_world and hello_world are both being registered as the view that
should be called when the home route is executed. When the application
runs, when you visit / in your browser, you will see Hello world!
(not Hi world!). The registration for the hello_world view in
app.py "won" over the registration for the hi_world view in
another.py.

Here's what's going on: Pyramid was able to automatically resolve a
conflict for us. Configuration statements which generate the same
discriminator will conflict. But if one of those configuration statements
was performed as the result of being included "below" the other one, Pyramid
will make an assumption: it's assuming that the thing doing the including
(app.py) wants to override configuration statements done in the thing
being included (another.py). In the above code configuration, even
though the discriminator generated by config.add_view(hello_world,
route_name='home') in app.py conflicts with the discriminator generated
by config.add_view(hi_world, route_name='home') in another.py,
Pyramid assumes that the former should override the latter, because
app.py includes another.py.

Note that the same conflict resolution behavior does not occur if you simply
import another.includeme from within app.py and call it, passing it a
config object. This is why using config.include is different than
just factoring your configuration into functions and arranging to call those
functions at startup time directly. Using config.include() makes
automatic conflict resolution work properly.

Custom Configuration Directives

A developer needn't satisfy himself with only the directives provided by
Pyramid like add_route and add_view. He can add directives to the
Configurator. This makes it easy for him to allow other developers to add
application-specific configuration. For example, let's pretend you're
creating an extensible application, and you'd like to allow developers to
change the "site name" of your application (the site name is used in some web
UI somewhere). Let's further pretend you'd like to do this by allowing
people to call a set_site_name directive on the Configurator. This is a
bit of a contrived example, because it would probably be a bit easier in this
particular case just to use a deployment setting, but humor me for the
purpose of this example. Let's change our app.py to look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.include('another')
 config.set_site_name('foo')
 app = config.make_wsgi_app()
 print app.registry.site_name
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

And change our another.py to look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	# another.py

from pyramid.response import Response

def goodbye(request):
 return Response('Goodbye world!')

def hi_world(request):
 return Response('Hi world!')

def set_site_name(config, site_name):
 def callback():
 config.registry.site_name = site_name
 discriminator = ('set_site_name',)
 config.action(discriminator, callable=callback)

def includeme(config):
 config.add_route('goodbye', '/goodbye')
 config.add_view(goodbye, route_name='goodbye')
 config.add_view(hi_world, route_name='home')
 config.add_directive('set_site_name', set_site_name)

When this application runs, you'll see printed to the console foo.
You'll notice in the app.py above, we call config.set_site_name.
This is not a Pyramid built-in directive. It was added as the result of the
call to config.add_directive in another.includeme. We added a
function that uses the config.action method to register a discriminator
and a callback for a custom directive. Let's change app.py again,
adding a second call to set_site_name:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.include('another')
 config.set_site_name('foo')
 config.set_site_name('bar') # added this
 app = config.make_wsgi_app()
 print app.registry.site_name
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

When we try to start the application, we'll get this traceback:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	Traceback (most recent call last):
 File "app.py", line 15, in <module>
 app = config.make_wsgi_app()
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 955, in make_wsgi_app
 self.commit()
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 629, in commit
 self.action_state.execute_actions(introspector=self.introspector)
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 1064, in execute_actions
 for action in resolveConflicts(self.actions):
 File "/home/chrism/projects/pyramid/pyramid/config/__init__.py", line 1192, in resolveConflicts
 raise ConfigurationConflictError(conflicts)
pyramid.exceptions.ConfigurationConflictError: Conflicting configuration actions
 For: ('site-name',)
 Line 13 of file app.py:
 config.set_site_name('foo')
 Line 14 of file app.py:
 config.set_site_name('bar')

We added a custom directive that made use of Pyramid's configuration conflict
detection. When we tried to set the site name twice, Pyramid detected a
conflict and told us. Just like built-in directives, Pyramid custom
directives will also participate in automatic conflict resolution. Let's see
that in action by moving our first call to set_site_name into another
included function. As a result, our app.py will look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	# app.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

def moarconfig(config):
 config.set_site_name('foo')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('home', '/')
 config.add_view(hello_world, route_name='home')
 config.include('another')
 config.include('.moarconfig')
 config.set_site_name('bar')
 app = config.make_wsgi_app()
 print app.registry.site_name
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

If we start this application up, we'll see bar printed to the console.
No conflict will be raised, even though we have two calls to
set_site_name being executed. This is because our custom directive is
making use of automatic conflict resolution: Pyramid determines that the call
to set_site_name('bar') should "win" because it's "closer to the top of
the application" than the other call which sets it to "bar".

Why This Is Great

Now for some general descriptions of what makes the way all of this works
great.

You'll note that a mere import of a module in our tiny application doesn't
cause any sort of configuration state to be added, nor do any of our existing
modules rely on some configuration having occurred before they can be
imported. Application configuration is never added as the result of someone
or something just happening to import a module. This seems like an obvious
design choice, but it's not true of all web frameworks. Some web frameworks
rely on a particular import ordering: you might not be able to successfully
import your application code until some other module has been initialized via
an import. Some web frameworks depend on configuration happening as a side
effect of decorator execution: as a result, you might be required to import
all of your application's modules for it to be configured in its entirety.
Our application relies on neither: importing our code requires no prior
import to have happened, and no configuration is done as the side effect of
importing any of our code. This explicitness helps you build larger systems
because you're never left guessing about the configuration state: you are
entirely in charge at all times.

Most other web frameworks don't have a conflict detection system, and when
they're fed two configuration statements that are logically conflicting,
they'll choose one or the other silently, leaving you sometimes to wonder why
you're not seeing the output you expect. Likewise, the execution ordering of
configuration statements in most other web frameworks matters deeply; Pyramid
doesn't make you care much about it.

A third party developer can override parts of an existing application's
configuration as long as that application's original developer anticipates it
minimally by factoring his configuration statements into a function that is
includable. He doesn't necessarily have to anticipate what bits of his
application might be overridden, just that something might be overridden.
This is unlike other web frameworks, which, if they allow for application
extensibility at all, indeed tend to force the original application developer
to think hard about what might be overridden. Under other frameworks, an
application developer that wants to provide application extensibility is
usually required to write ad-hoc code that allows a user to override various
parts of his application such as views, routes, subscribers, and templates.
In Pyramid, he is not required to do this: everything is overridable, and he
just refers anyone who wants to change the way it works to the Pyramid docs.
The config.include() system even allows a third-party developer who wants
to change an application to not think about the mechanics of overriding at
all; he just adds statements before or after including the original
developer's configuration statements, and he relies on automatic conflict
resolution to work things out for him.

Configuration logic can be included from anywhere, and split across multiple
packages and filesystem locations. There is no special set of Pyramid-y
"application" directories containing configuration that must exist all in one
place. Other web frameworks introduce packages or directories that are "more
special than others" to offer similar features. To extend an application
written using other web frameworks, you sometimes have to add to the set of
them by changing a central directory structure.

The system is meta-configurable. You can extend the set of configuration
directives offered to users by using config.add_directive(). This means
that you can effectively extend Pyramid itself without needing to rewrite or
redocument a solution from scratch: you just tell people the directive exists
and tell them it works like every other Pyramid directive. You'll get all
the goodness of conflict detection and resolution too.

All of the examples in this article use the "imperative" Pyramid
configuration API, where a user calls methods on a Configurator object to
perform configuration. For developer convenience, Pyramid also exposes a
declarative configuration mechanism, usually by offering a function, class,
and method decorator that is activated via a scan. Such decorators simply
attach a callback to the object they're decorating, and during the scan
process these callbacks are called: the callbacks just call methods on a
configurator on the behalf of the user as if he had typed them himself.
These decorators participate in Pyramid's configuration scheme exactly like
imperative method calls.

For more information about config.include() and creating extensible
applications, see Advanced Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/advconfig.html#advconfig-narr] and Extending an Existing Pyramid Application [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/extending.html#extending-chapter] in the
Pyramid narrative documenation. For more information about creating
directives, see Extending Pyramid Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/extconfig.html#extconfig-narr].

Django-Style "settings.py" Configuration

If you enjoy accessing global configuration via import statements ala
Django's settings.py, you can do something similar in Pyramid.

	Create a settings.py file in your application's package (for example,
if your application is named "myapp", put it in the filesystem directory
named myapp; the one with an __init__.py in it.

	Add values to it at its top level.

For example:

settings.py
import pytz

timezone = pytz('US/Eastern')

Then simply import the module into your application:

	1
2
3
4
5

	from myapp import settings

def myview(request):
 timezone = settings.timezone
 return Response(timezone.zone)

This is all you really need to do if you just want some global configuration
values for your application.

However, more frequently, values in your settings.py file need to be
conditionalized based on deployment settings. For example, the timezone
above is different between development and deployment. In order to
conditionalize the values in your settings.py you can use other values
from the Pyramid development.ini or production.ini. To do so,
your settings.py might instead do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	import os

ini = os.environ['PYRAMID_SETTINGS']
config_file, section_name = ini.split('#', 1)

from paste.deploy.loadwsgi import appconfig
config = appconfig('config:%s' % config_file, section_name)

import pytz

timezone = pytz.timezone(config['timezone'])

The value of config in the above snippet will be a dictionary
representing your application's development.ini configuration section.
For example, for the above code to work, you'll need to add a timezone
key/value pair to a section of your development.ini:

[app:myapp]
use = egg:MyApp
timezone = US/Eastern

If your settings.py is written like this, before starting Pyramid, ensure
you have an OS environment value (akin to Django's DJANGO_SETTINGS) in
this format:

export PYRAMID_SETTINGS=/place/to/development.ini#myapp

/place/to/development.ini is the full path to the ini file. myapp is
the section name in the config file that represents your app
(e.g. [app:myapp]). In the above example, your application will refuse
to start without this environment variable being present.

Databases

	SQLAlchemy
	Basic Usage

	Using a Non-Global Session

	Importing all SQLAlchemy Models

	Writing Tests For Pyramid + SQLAlchemy

	CouchDB and Pyramid
	CouchDB Views

	CouchDB Documents

	MongoDB and Pyramid
	Basics

	Scaffolds

	Video

	Other Information

SQLAlchemy

Basic Usage

You can get basic application template to use with SQLAlchemy by using
alchemy scaffold. Check the narrative docs [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/project.html#creating-a-project]
for more information.

Alternatively, you can try to follow
wiki tutorial [https://docs.pylonsproject.org/projects/pyramid/en/latest/tutorials/wiki2/index.html#bfg-sql-wiki-tutorial] or
blogr tutorial [https://docs.pylonsproject.org/projects/pyramid-blogr/en/latest/].

Using a Non-Global Session

It's sometimes advantageous to not use SQLAlchemy's thread-scoped sessions
(such as when you need to use Pyramid in an asynchronous system).
Thankfully, doing so is easy. You can store a session factory in the
application's registry, and have the session factory called as a
side effect of asking the request object for an attribute. The session
object will then have a lifetime matching that of the request.

We are going to use Configurator.add_request_method to add SQLAlchemy
session to request object and Request.add_finished_callback to close
said session.

Note

Configurator.add_request_method has been available since Pyramid 1.4.
You can use Configurator.set_request_property for Pyramid 1.3.

We'll assume you have an .ini file with sqlalchemy. settings that
specify your database properly:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	# __init__.py

from pyramid.config import Configurator
from sqlalchemy import engine_from_config
from sqlalchemy.orm import sessionmaker

def db(request):
 maker = request.registry.dbmaker
 session = maker()

 def cleanup(request):
 if request.exception is not None:
 session.rollback()
 else:
 session.commit()
 session.close()
 request.add_finished_callback(cleanup)

 return session

def main(global_config, **settings):
 config = Configurator(settings=settings)
 engine = engine_from_config(settings, prefix='sqlalchemy.')
 config.registry.dbmaker = sessionmaker(bind=engine)
 config.add_request_method(db, reify=True)

 # .. rest of configuration ...

The SQLAlchemy session is now available in view code as request.db or
config.registry.dbmaker().

Importing all SQLAlchemy Models

If you've created a Pyramid project using a paster template, your SQLAlchemy
models will, by default, reside in a single file. This is just by
convention. If you'd rather have a directory for SQLAlchemy models rather
than a file, you can of course create a Python package full of model modules,
replacing the models.py file with a models directory which is a
Python package (a directory with an __init__.py in it), as per
Modifying Package Structure [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/project.html#modifying-package-structure]. However, due to the behavior of
SQLAlchemy's "declarative" configuration mode, all modules which hold active
SQLAlchemy models need to be imported before those models can successfully be
used. So, if you use model classes with a declarative base, you need to
figure out a way to get all your model modules imported to be able to use
them in your application.

You might first create a models directory, replacing the models.py
file, and within it a file named models/__init__.py. At that point, you
can add a submodule named models/mymodel.py that holds a single
MyModel model class. The models/__init__.py will define the
declarative base class and the global DBSession object, which each model
submodule (like models/mymodel.py) will need to import. Then all you
need is to add imports of each submodule within models/__init__.py.

However, when you add models package submodule import statements to
models/__init__.py, this will lead to a circular import dependency. The
models/__init__.py module imports mymodel and models/mymodel.py
imports the models package. When you next try to start your application,
it will fail with an import error due to this circular dependency.

Pylons 1 solves this by creating a models/meta.py module, in which the
DBSession and declarative base objects are created. The
models/__init__.py file and each submodule of models imports
DBSession and declarative_base from it. Whenever you create a .py
file in the models package, you're expected to add an import for it to
models/__init__.py. The main program imports the models package,
which has the side effect of ensuring that all model classes have been
imported. You can do this too, it works fine.

However, you can alternately use config.scan() for its side effects.
Using config.scan() allows you to avoid a circdep between
models/__init__.py and models/themodel.py without creating a special
models/meta.py.

For example, if you do this in myapp/models/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import scoped_session, sessionmaker

DBSession = scoped_session(sessionmaker())
Base = declarative_base()

def initialize_sql(engine):
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine
 Base.metadata.create_all(engine)

And this in myapp/models/mymodel.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from myapp.models import Base
from sqlalchemy import Column
from sqlalchemy import Unicode
from sqlalchemy import Integer

class MyModel(Base):
 __tablename__ = 'models'
 id = Column(Integer, primary_key=True)
 name = Column(Unicode(255), unique=True)
 value = Column(Integer)

 def __init__(self, name, value):
 self.name = name
 self.value = value

And this in myapp/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from sqlalchemy import engine_from_config

from myapp.models import initialize_sql

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings)
 config.scan('myapp.models') # the "important" line
 engine = engine_from_config(settings, 'sqlalchemy.')
 initialize_sql(engine)
 # other statements here
 config.add_handler('main', '/{action}',
 'myapp.handlers:MyHandler')
 return config.make_wsgi_app()

The important line above is config.scan('myapp.models'). config.scan
has a side effect of performing a recursive import of the package name it is
given. This side effect ensures that each file in myapp.models is
imported without requiring that you import each "by hand" within
models/__init__.py. It won't import any models that live outside the
myapp.models package, however.

Writing Tests For Pyramid + SQLAlchemy

	pyramid_sqlalchemy - Writing Tests [https://pyramid-sqlalchemy.readthedocs.io/en/latest/tests.html]

	Pyramid SQLAlchemy + URL Dispatch wiki tutorial [https://docs.pylonsproject.org/projects/pyramid/en/latest/tutorials/wiki2/tests.html]

CouchDB and Pyramid

If you want to use CouchDB (via the
couchdbkit package [https://pypi.org/project/couchdbkit/])
in Pyramid, you can use the following pattern to make your CouchDB database
available as a request attribute. This example uses the starter scaffold.
(This follows the same pattern as the MongoDB and Pyramid example.)

First add configuration values to your development.ini file, including your
CouchDB URI and a database name (the CouchDB database name, can be anything).

	1
2
3
4

	 [app:main]
 # ... other settings ...
 couchdb.uri = http://localhost:5984/
 couchdb.db = mydb

Then in your __init__.py, set things up such that the database is
attached to each new request:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from pyramid.config import Configurator
from couchdbkit import *

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings)
 config.registry.db = Server(uri=settings['couchdb.uri'])

 def add_couchdb(request):
 db = config.registry.db.get_or_create_db(settings['couchdb.db'])
 return db

 config.add_request_method(add_couchdb, 'db', reify=True)

 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('home', '/')
 config.scan()
 return config.make_wsgi_app()

Note

Configurator.add_request_method has been available since Pyramid 1.4.
You can use Configurator.set_request_property for Pyramid 1.3.

At this point, in view code, you can use request.db as the CouchDB database
connection. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.view import view_config

@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request):
 """ Get info for server
 """
 return {
 'project': 'pyramid_couchdb_example',
 'info': request.db.info()
 }

Add info to home template:

	1

	 <p>${info}</p>

CouchDB Views

First let's create a view for our page data in CouchDB. We will use the
ApplicationCreated event and make sure our view containing our page data.
For more information on views in CouchDB see
Introduction to Views [http://docs.couchdb.org/en/latest/ddocs/views/intro.html].
In __init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from pyramid.events import subscriber, ApplicationCreated

@subscriber(ApplicationCreated)
def application_created_subscriber(event):
 registry = event.app.registry
 db = registry.db.get_or_create_db(registry.settings['couchdb.db'])

 pages_view_exists = db.doc_exist('lists/pages')
 if pages_view_exists == False:
 design_doc = {
 '_id': '_design/lists',
 'language': 'javascript',
 'views': {
 'pages': {
 'map': '''
 function(doc) {
 if (doc.doc_type === 'Page') {
 emit([doc.page, doc._id], null)
 }
 }
 '''
 }
 }
 }
 db.save_doc(design_doc)

CouchDB Documents

Now we can let's add some data to a document for our home page in a CouchDB
document in our view code if it doesn't exist:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	import datetime

from couchdbkit import *

class Page(Document):
 author = StringProperty()
 page = StringProperty()
 content = StringProperty()
 date = DateTimeProperty()

@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request):

 def get_data():
 return list(request.db.view('lists/pages', startkey=['home'], \
 endkey=['home', {}], include_docs=True))

 page_data = get_data()

 if not page_data:
 Page.set_db(request.db)
 home = Page(
 author='Wendall',
 content='Using CouchDB via couchdbkit!',
 page='home',
 date=datetime.datetime.utcnow()
)
 # save page data
 home.save()
 page_data = get_data()

 doc = page_data[0].get('doc')

 return {
 'project': 'pyramid_couchdb_example',
 'info': request.db.info(),
 'author': doc.get('author'),
 'content': doc.get('content'),
 'date': doc.get('date')
 }

Then update your home template again to add your custom values:

	1
2
3
4
5

	 <p>
 ${author}

 ${content}

 ${date}

 </p>

MongoDB and Pyramid

Basics

If you want to use MongoDB (via PyMongo and perhaps GridFS) via Pyramid, you
can use the following pattern to make your Mongo database available as a
request attribute.

First add the MongoDB URI to your development.ini file. (Note: user, password and port are not required.)

	1
2
3

	 [app:myapp]
 # ... other settings ...
 mongo_uri = mongodb://user:password@host:port/database

Then in your __init__.py, set things up such that the database is
attached to each new request:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	from pyramid.config import Configurator

try:
 # for python 2
 from urlparse import urlparse
except ImportError:
 # for python 3
 from urllib.parse import urlparse

from gridfs import GridFS
from pymongo import MongoClient

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings)
 config.add_static_view('static', 'static', cache_max_age=3600)

 db_url = urlparse(settings['mongo_uri'])
 config.registry.db = MongoClient(
 host=db_url.hostname,
 port=db_url.port,
)

 def add_db(request):
 db = config.registry.db[db_url.path[1:]]
 if db_url.username and db_url.password:
 db.authenticate(db_url.username, db_url.password)
 return db

 def add_fs(request):
 return GridFS(request.db)

 config.add_request_method(add_db, 'db', reify=True)
 config.add_request_method(add_fs, 'fs', reify=True)

 config.add_route('dashboard', '/')
 # other routes and more config...
 config.scan()
 return config.make_wsgi_app()

Note

Configurator.add_request_method has been available since Pyramid 1.4.
You can use Configurator.set_request_property for Pyramid 1.3.

At this point, in view code, you can use request.db as the PyMongo database
connection. For example:

	1
2
3
4
5

	@view_config(route_name='dashboard',
 renderer="myapp:templates/dashboard.pt")
def dashboard(request):
 vendors = request.db['vendors'].find()
 return {'vendors':vendors}

Scaffolds

Niall O'Higgins provides a pyramid_mongodb [https://pypi.org/project/pyramid_mongodb/] scaffold for Pyramid that
provides an easy way to get started with Pyramid and MongoDB.

Video

Niall O'Higgins provides a presentation he gave at a Mongo conference in San
Francisco at https://www.mongodb.com/presentations/weather-century

Other Information

	Pyramid, Aket and MongoDB:
http://niallohiggins.com/2011/05/18/mongodb-python-pyramid-akhet/

Debugging

	Using PDB to Debug Your Application

	Debugging Pyramid
	Introducing PDB

	PDB Commands

	Debugging Our buggy App

	Huh?

	Debugging with PyDev
	Configuring PyDev for a virtualenv

	Running/Debugging Pyramid under Pydev

Using PDB to Debug Your Application

pdb is an interactive tool that comes with Python, which allows you to
break your program at an arbitrary point, examine values, and step through
code. It's often much more useful than print statements or logging
statements to examine program state. You can place a pdb.set_trace()
statement in your Pyramid application at a place where you'd like to examine
program state. When you issue a request to the application, and that point
in your code is reached, you will be dropped into the pdb debugging
console within the terminal that you used to start your application.

There are lots of great resources that can help you learn PDB.

	Doug Hellmann's PyMOTW blog entry entitled "pdb - Interactive Debugger" at
https://pymotw.com/3/pdb/ is the canonical text resource to learning PDB.

	The PyCon video presentation by Chris McDonough entitled "Introduction to
PDB" at https://pyvideo.org/video/644/introduction-to-pdb is a good place to
start learning PDB.

	The video at https://pyvideo.org/pycon-us-2012/introduction-to-pdb.html shows you
how to start how to start to using pdb. The video describes using pdb
in a command-line program.

Debugging Pyramid

This tutorial provides a brief introduction to using the python
debugger (pdb) for debugging pyramid applications.

This scenario assume you've created a Pyramid project already. The scenario
assumes you've created a Pyramid project named buggy using the
alchemy scaffold.

Introducing PDB

	This single line of python is your new friend:

import pdb; pdb.set_trace()

	As valid python, that can be inserted practically anywhere in a Python
source file. When the python interpreter hits it - execution will be
suspended providing you with interactive control from the parent TTY.

PDB Commands

	pdb exposes a number of standard interactive debugging
commands, including:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	Documented commands (type help <topic>):
==
EOF bt cont enable jump pp run unt
a c continue exit l q s until
alias cl d h list quit step up
args clear debug help n r tbreak w
b commands disable ignore next restart u whatis
break condition down j p return unalias where

Miscellaneous help topics:
==========================
exec pdb

Undocumented commands:
======================
retval rv

Debugging Our buggy App

	Back to our demo buggy application we generated from the alchemy
scaffold, lets see if we can learn anything debugging it.

	The traversal documentation describes how pyramid first acquires a root
object, and then descends the resource tree using the __getitem__ for
each respective resource.

Huh?

	Let's drop a pdb statement into our root factory object's __getitem__
method and have a look. Edit the project's models.py and add the
aforementioned pdb line in MyModel.__getitem__:

def __getitem__(self, key):
 import pdb; pdb.set_trace()
 session = DBSession()
 # ...

	Restart the Pyramid application, and request a page. Note the request
requires a path to hit our break-point:

http://localhost:6543/ <- misses the break-point, no traversal
http://localhost:6543/1 <- should find an object
http://localhost:6543/2 <- does not

	For a very simple case, attempt to insert a missing key by default. Set
item to a valid new MyModel in MyRoot.__getitem__ if a match isn't
found in the database:

item = session.query(MyModel).get(id)
if item is None:
 item = MyModel(name='test %d'%id, value=str(id)) # naive insertion

	Move the break-point within the if clause to avoid the false positive hits:

if item is None:
 import pdb; pdb.set_trace()
 item = MyModel(name='test %d'%id, value=str(id)) # naive insertion

	Run again, note multiple request to the same id continue to create
new MyModel instances. That's not right!

	Ah, of course, we forgot to add the new item to the session. Another line
added to our __getitem__ method:

if item is None:
 import pdb; pdb.set_trace()
 item = MyModel(name='test %d'%id, value=str(id))
 session.add(item)

	Restart and test. Observe the stack; debug again. Examine the item
returning from MyModel:

(pdb) session.query(MyModel).get(id)

	Finally, we realize the item.id needs to be set as well before adding:

if item is None:
 item = MyModel(name='test %d'%id, value=str(id))
 item.id = id
 session.add(item)

	Many great resources can be found describing the details of using
pdb. Try the interactive help (hit 'h') or a search engine near
you.

Note

There is a well known bug in PDB in UNIX, when user cannot
see what he is typing in terminal window after any interruption during
PDB session (it can be caused by CTRL-C or when the server restarts
automatically). This can be fixed by launching any of this commands in broken
terminal: reset, stty sane. Also one can add one of this commands into
~/.pdbrc file, so they will be launched before PDB session:

from subprocess import Popen
Popen(["stty", "sane"])

Debugging with PyDev

pdb is a great tool for debugging python scripts, but it has some
limitations to its usefulness. For example, you must modify your code
to insert breakpoints, and its command line interface can be somewhat obtuse.

Many developers use custom text editors that that allow them to add wrappers
to the basic command line environment, with support for git and other
development tools. In many cases, however, debugging support basically
ends up being simply a wrapper around basic pdb functionality.

PyDev [http://www.pydev.org/] is an Eclipse [http://www.eclipse.org/] plugin
for the Python language, providing an integrated development environment
that includes a built in python interpreter, Git support, integration with
task management, and other useful development functionality.

The PyDev debugger allows you to execute code without modifying the source
to set breakpoints, and has a gui interface that allows you to inspect
and modify internal state.

Lars Vogella has provided a clear tutorial [http://www.vogella.com/tutorials/Python/article.html]
on setting up pydev and getting started with the PyDev debugger. Full
documentation on using the PyDev debugger may be found here [http://www.pydev.org/manual_adv_debugger.html]. You can also debug
programs not running under Eclipse using the Remote Debugging [http://www.pydev.org/manual_adv_remote_debugger.html] feature.

PyDev allows you to configure the system to use any python intepreter you
have installed on your machine, and with proper configuration you can support
both 2.x and 3.x syntax.

Configuring PyDev for a virtualenv

Most of the time you want to be running your code in a virtualenv in order
to be sure that your code is isolated and all the right versions of your
package dependencies are available. You can pip install virtualenv if
you like, but I recommend virtualenvwrapper [https://bitbucket.org/dhellmann/virtualenvwrapper]
which eliminates much of the busywork of setting up virtualenvs.

PyDev will look through all the libraries on your PYTHONPATH to resolve all
your external references, such as imports, etc. So you will want the virtualenv
libraries on your PYTHONPATH to avoid unnecessary name-resolution problems.

To use PyDev with virtualenv takes some additional configuration that isn't
covered in the above tutorial. Basically, you just need to make sure your
virtualenv libraries are in the PYTHONPATH.

Note

If you have never configured a python interpreter for your workspace,
you will not be able to create a project without doing so. You should follow
the steps below to configure python, but you should NOT include any
virtualenv libraries for it. Then you will be able to create projects using
this primary python interpreter. After you create your project, you should
then follow the steps below to configure a new interpreter specifically for
your project which does include the virtualenv libraries. This way, each
project can be related to a specific virtualenv without confusion.

First, open the project properties by right clicking over the project name
and selecting Properties.

In the Properties dialog, select PyDev - Interpreter/Grammar, and make
sure that the project type Python is selected. Click on the "Click here
to configure an interpreter not listed" link. The Preferences dialog will
come up with Python Interpreters page, and your current interpreter
selected. Click on the New... button.

Enter a name (e.g. pytest_python) and browse to your virtualenv bin
directory (e.g. ~/.virtual_envs/pytest/bin/python) to select
the python interpreter in that location, then select OK.

A dialog will then appear asking you to choose the libraries that should
be on the PYTHONPATH. Most of the necessary libraries should be automatically
selected. Hit OK, and your virtualenv python is now configured.

Note

On the Mac, the system libraries are not selected. Select them all.

You will finally be back on the dialog for configuring your project python
interpreter/grammar. Choose the interpreter you just configured and click
OK. You may also choose the grammar level (2.7, 3.0, etc.) at this time.

At this point, formerly unresolved references to libraries installed in your
virtualenv should no longer be called out as errors. (You will have to
close and reopen any python modules before the new interpreter will take
effect.)

Remember also when using the PyDev console, to choose the interpreter
associated with the project so that references in the console will
be properly resolved.

Running/Debugging Pyramid under Pydev

(Thanks to Michael Wilson for much of this - see Setting up Eclipse
(PyDev) for Pyramid [http://mikeiz404-terminal.blogspot.com/2012/05/setting-up-eclipse-pydev-for-pyramid.html])

Note

This section assumes you have created a virtualenv with Pyramid installed,
and have configured your PyDev as above for this virtualenv.
We further assume you are using virtualenvwrapper (see above) so that
$WORKON_HOME is the location of your .virtualenvs directory
and proj_venv is the name of your virtualenv.
$WORKSPACE is the name of the PyDev workspace containing your project

To create a working example, copy the pyramid tutorial step03 [https://docs.pylonsproject.org/projects/pyramid/en/latest/quick_tutorial/ini.html]
code into $WORKSPACE/tutorial.

After copying the code, cd to $WORKSPACE/tutorial and run
python setup.py develop

You should now be ready to setup PyDev to run the tutorial step03 code.

We will set up PyDev to run pserve as part of a run or debug configuration.

First, copy pserve.py from your virtualenv to a location outside of your
project library path:

$ cp $WORKON_HOME/proj_venv/bin/pserve.py $WORKSPACE

Note

IMPORTANT: Do not put this in your project library path!

Now we need to have PyDev run this by default. To create a new run
configuration, right click on the project and select
Run As -> Run Configurations.... Select Python Run as your
configuration type, and click on the new configuration icon. Add your
project name (or browse to it), in this case "tutorial".

Add these values to the Main tab:

	Project: RunPyramid

	Main Module: ${workspace_loc}/pserve.py

Add these values to the Arguments tab:

	Program arguments: ${workspace_loc:tutorial/development.ini} --reload

Note

Do not add --reload if you are trying to debug with
Eclipse. It has been reported that this causes problems.

We recommend you create a separate debug configuration
without the --reload, and instead of checking "Run"
in the "Display in favorites menu", check "Debug".

On the Common tab:

	Uncheck "Launch in background"

	In the box labeled "Display in favorites menu", check "Run"

Hit Run (Debug) to run (debug) your configuration immediately,
or Apply to create the configuration without running it.

You can now run your application at any time by selecting the Run/Play
button and selecting the RunPyramid command. Similarly, you can
debug your application by selecting the Debug button and selecting
the DebugPyramid command (or whatever you called it!).

The console should show that the server has started. To verify, open
your browser to 127.0.0.1:6547. You should see the hello world text.

Note that when debugging, breakpoints can be set as with ordinary code,
but they will only be hit when the view containing the breakpoint
is served.

Deployment

Introduction

	Deploying Your Pyramid Application

Web Servers

	Apache + mod_wsgi

	ASGI (Asynchronous Server Gateway Interface)

	Forked and Threaded Servers

	gevent

	gunicorn

	nginx + pserve + supervisord

	uWSGI

	uWSGI with cookiecutter Pyramid application Part 1: Basic uWSGI + nginx

	uWSGI with cookiecutter Pyramid Application Part 2: Adding Emperor and systemd

	uWSGI + nginx + systemd

Cloud Providers

	Amazon Web Services via Elastic Beanstalk

	DotCloud

	Google App Engine Standard and Pyramid

	Google App Engine (using buildout) and Pyramid

	Google App Engine Flexible with Datastore and Pyramid

	Heroku

	OpenShift Express Cloud

Windows

	Windows

Deploying Your Pyramid Application

So you've written a sweet application and you want to deploy it outside of
your local machine. We're not going to cover caching here, but suffice it to
say that there are a lot of things to consider when optimizing your pyramid
application.

At a high level, you need to expose a server on ports 80 (HTTP) and 443
(HTTPS). Underneath this layer, however, is
a plethora of different configurations that can be used to get a request
from a client, into your application, and return the response.

Client <---> WSGI Server <---> Your Application

Due to the beauty of standards, many different configurations can be used to
generate this basic setup, injecting caching layers, load balancers, and so on into
the basic workflow.

Disclaimer

It's important to note that the setups discussed here are meant to give some
direction to newer users. Deployment is almost always highly dependent on
the application's specific purposes. These setups have been used for many
different projects in production with much success, but never verbatim.

What is WSGI?

WSGI is a Python standard [https://www.python.org/dev/peps/pep-0333/]
dictating the interface between a server and an
application. The entry point to your pyramid application is an object
implementing the WSGI interface. Thus, your application can be served by any
server supporting WSGI.

There are many different servers implementing the WSGI standard in existence.
A short list includes:

	waitress

	paste.httpserver

	CherryPy

	uWSGI

	gevent

	mod_wsgi

For more information on WSGI, see the WSGI home [http://wsgi.readthedocs.io/en/latest/].

Special Considerations

Certain environments and web servers require special considerations when
deploying your Pyramid application due to implementation details of Python, the
web server, or popular packages.

Forked and threaded servers share some common gotchas and solutions.

Forked and Threaded Servers

Apache + mod_wsgi

Pyramid mod_wsgi tutorial [https://docs.pylonsproject.org/projects/pyramid/en/latest/tutorials/modwsgi/index.html]

ASGI (Asynchronous Server Gateway Interface)

This chapter contains information about using ASGI with Pyramid.
Read about the ASGI specification [https://asgi.readthedocs.io/en/latest/index.html].

The example app below uses the WSGI to ASGI wrapper from the asgiref library [https://pypi.org/project/asgiref/] to transform normal WSGI requests into ASGI responses.
This allows the application to be run with an ASGI server, such as uvicorn [https://www.uvicorn.org/] or daphne [https://github.com/django/daphne/].

WSGI -> ASGI application

This example uses the wrapper provided by asgiref to convert a WSGI application to ASGI, allowing it to be run by an ASGI server.

Please note that not all extended features of WSGI may be supported, such as file handles for incoming POST bodies.

app.py

from asgiref.wsgi import WsgiToAsgi
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response("Hello")

Configure a normal WSGI app then wrap it with WSGI -> ASGI class

with Configurator() as config:
 config.add_route("hello", "/")
 config.add_view(hello_world, route_name="hello")
 wsgi_app = config.make_wsgi_app()

app = WsgiToAsgi(wsgi_app)

Extended WSGI -> ASGI WebSocket application

This example extends the asgiref wrapper to enable routing ASGI consumers alongside the converted WSGI application.
This is just one potential solution for routing ASGI consumers.

app.py

from asgiref.wsgi import WsgiToAsgi

from pyramid.config import Configurator
from pyramid.response import Response

class ExtendedWsgiToAsgi(WsgiToAsgi):

 """Extends the WsgiToAsgi wrapper to include an ASGI consumer protocol router"""

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.protocol_router = {"http": {}, "websocket": {}}

 async def __call__(self, scope, *args, **kwargs):
 protocol = scope["type"]
 path = scope["path"]
 try:
 consumer = self.protocol_router[protocol][path]
 except KeyError:
 consumer = None
 if consumer is not None:
 await consumer(scope, *args, **kwargs)
 await super().__call__(scope, *args, **kwargs)

 if consumer is not None:
 await consumer(scope, *args, **kwargs)
 try:
 await super().__call__(scope, *args, **kwargs)
 except ValueError as e:
 # The developer may wish to improve handling of this exception.
 # See https://github.com/Pylons/pyramid_cookbook/issues/225 and
 # https://asgi.readthedocs.io/en/latest/specs/www.html#websocket
 pass
 except Exception as e:
 raise e

 def route(self, rule, *args, **kwargs):
 try:
 protocol = kwargs["protocol"]
 except KeyError:
 raise Exception("You must define a protocol type for an ASGI handler")

 def _route(func):
 self.protocol_router[protocol][rule] = func

 return _route

HTML_BODY = """<!DOCTYPE html>
<html>
 <head>
 <title>ASGI WebSocket</title>
 </head>
 <body>
 <h1>ASGI WebSocket Demo</h1>
 <form action="" onsubmit="sendMessage(event)">
 <input type="text" id="messageText" autocomplete="off"/>
 <button>Send</button>
 </form>
 <ul id='messages'>

 <script>
 var ws = new WebSocket("ws://127.0.0.1:8000/ws");
 ws.onmessage = function(event) {
 var messages = document.getElementById('messages')
 var message = document.createElement('li')
 var content = document.createTextNode(event.data)
 message.appendChild(content)
 messages.appendChild(message)
 };
 function sendMessage(event) {
 var input = document.getElementById("messageText")
 ws.send(input.value)
 input.value = ''
 event.preventDefault()
 }
 </script>
 </body>
</html>
"""

Define normal WSGI views
def hello_world(request):
 return Response(HTML_BODY)

Configure a normal WSGI app then wrap it with WSGI -> ASGI class
with Configurator() as config:
 config.add_route("hello", "/")
 config.add_view(hello_world, route_name="hello")
 wsgi_app = config.make_wsgi_app()

app = ExtendedWsgiToAsgi(wsgi_app)

Define ASGI consumers
@app.route("/ws", protocol="websocket")
async def hello_websocket(scope, receive, send):
 while True:
 message = await receive()
 if message["type"] == "websocket.connect":
 await send({"type": "websocket.accept"})
 elif message["type"] == "websocket.receive":
 text = message.get("text")
 if text:
 await send({"type": "websocket.send", "text": text})
 else:
 await send({"type": "websocket.send", "bytes": message.get("bytes")})
 elif message["type"] == "websocket.disconnect":
 break

Running & Deploying

The application can be run using an ASGI server:

$ uvicorn app:app

or

$ daphne app:app

There are several potential deployment options, one example would be to use nginx [https://nginx.org/] and supervisor [http://supervisord.org/].
Below are example configuration files that run the application using uvicorn, however daphne may be used as well.

Example nginx configuration

upstream app {
 server unix:/tmp/uvicorn.sock;
}

server {

 listen 80;
 server_name <server-name>;

 location / {
 proxy_pass http://app;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_buffering off;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "Upgrade";
 proxy_redirect off;
 }

 location /static {
 root </path-to-static>;
 }
}

Example Supervisor configuration

[program:asgiapp]
directory=/path/to/app/
command=</path-to-virtualenv>/bin/uvicorn app:app --uds /tmp/uvicorn.sock --workers 2 --access-log --log-level error
user=<app-user>
autostart=true
autorestart=true
redirect_stderr=True

[supervisord]

Forked and Threaded Servers

Forked and threaded servers share common "gotchas" and solutions when
using Pyramid and some popular packages.

Forked and threaded servers tend to use a "copy on write" implementation detail
to optimize how they work and share memory. This can create problems when
certain actions happen before the fork or thread dispatch, such as when files or
file-descriptors are opened or random number generators are initialized.

Many servers have built-in hooks or events which allow you to easily handle
these situations.

Servers

The following servers are known to have built-in hooks or events to handle
problems arising from "copy on write" issues. This listing is not complete; an
omission from the below does not suggest a given server is immune from these
issues or that a server does not offer the necessary hooks/events.

Gunicorn

Gunicorn offers several hooks during an application lifecycle.

The postfork routine is provided as a function in a configuration python script.

For example a script config.py might look like the following.

def post_fork(server, worker):
 log.debug("gunicorn - post_fork")

Invoking the script would look like the following.

gunicorn --paste production.ini -c config.py

See documentation for the post_fork hook [http://docs.gunicorn.org/en/latest/settings.html#post-fork].

uWSGI

uWSGI offers a decorator to handle forking.

Your application should include code like the following.

from uwsgidecorators import postfork

@postfork
def my_setup():
 log.debug("uwsgi - postfork")

See documentation for the postfork decorator [https://uwsgi-docs.readthedocs.io/en/latest/PythonDecorators.html#uwsgidecorators.postfork].

Waitress

Waitress is not a forking server, but its threads can create issues similar to
those of forking servers.

Known Packages

The following packages are known to have potential issues when deploying on
forked or threaded servers. This listing is not complete; an omission from the
below does not suggest a given package is immune from these types of deployment
concerns.

SQLAlchemy

Many people use SQLAlchemy as part of their Pyramid application stack.

The database connections and the connection pools in SQLAlchemy are not safe to
share across process boundaries (forks or threads). The connections and
connection pools are lazily created on their first use, so most Pyramid users
will not encounter an issue as database interaction usually happens on a
per-request basis.

If your Pyramid application connects to a database during the application
startup however, then you must use Engine.dispose to reset the connections.
It would look like the following.

@postfork
def reset_sqlalchemy():
 models.engine.dispose()

Additional documentation on this topic is available from SQLAlchemy's documentation.

	Using Connection Pools with Multiprocessing [https://docs.sqlalchemy.org/en/latest/core/pooling.html#using-connection-pools-with-multiprocessing]

	Engine Disposal [https://docs.sqlalchemy.org/en/latest/core/connections.html#engine-disposal]

PyCrypto

The PyCrypto [https://www.dlitz.net/software/pycrypto/] library provides for
a Crypto.Random.atfork function to reseed the pseudo-random number generator
when a process forks.

gevent

gevent + pyramid_socketio

Alexandre Bourget explains how he uses gevent + socketio to add functionality to a Pyramid application at https://pyvideo.org/pycon-ca-2012/gevent-socketio-cross-framework-real-time-web-li.html

gevent + long polling

https://michael.merickel.org/2011/6/21/tictactoe-and-long-polling-with-pyramid/

https://github.com/mmerickel/tictactoe

For more information on gevent see the gevent home page [http://www.gevent.org/]

gunicorn

The short story

Running your pyramid based application with gunicorn can be as easy as:

$ gunicorn --paste production.ini

The long story

Similar to the pserve command that comes with Pyramid, gunicorn can also
directly use your project's INI files, such as production.ini, to launch
your application. Just supply the --paste command line option together with
the path of your configuration file to the gunicorn command, and it will
try to load the app.

As documented in the section Paste Deployment [http://docs.gunicorn.org/en/stable/run.html#paste-deployment], you
may also add gunicorn specific settings to the [server:main] section of
your INI file and continue using the pserve command.

The following configuration will cause gunicorn to listen on a unix socket, use
four workers, preload the application, output accesslog lines to stderr and use
the debug loglevel.

[server:main]
use = egg:gunicorn#main
bind = unix:/var/run/app.sock
workers = 4
preload = true
accesslog = -
loglevel = debug

For all configuration options that may be used, have a look at the available
settings [http://docs.gunicorn.org/en/stable/settings.html].

Keep in mind that settings defined within a gunicorn configuration file
take precedence over the settings established within the INI file.

For all of this to work, the Python interpreter used by gunicorn also needs to
be able to load your application. In other words, gunicorn and your application
need to be installed and used inside the same virtualenv.

Naturally, the paste option can also be combined with other gunicorn
options that might be applicable for your deployment situation. Also you might
want to put something like nginx [https://www.nginx.com/resources/wiki/] in
front of gunicorn and have gunicorn supervised by some process manager. Please
have a look at the gunicorn website [http://gunicorn.org/] and the gunicorn
documentation on deployment [http://docs.gunicorn.org/en/latest/deploy.html]
for more information on those topics.

nginx + pserve + supervisord

This setup can be accomplished simply and is capable of serving a large amount
of traffic. The advantage in deployment is that by using pserve, it is not
unlike the basic development environment you're probably using on your local
machine.

nginx [https://www.nginx.com/resources/wiki/] is a highly optimized HTTP server, very
capable of serving
static content as well as acting as a proxy between other applications and the
outside world. As a proxy, it also has good support for basic load balancing
between multiple instances of an application.

Client <---> nginx [0.0.0.0:80] <---> (static files)
 /|\
 |-------> WSGI App [localhost:5000]
 `-------> WSGI App [localhost:5001]

Our target setup is going to be an nginx server listening on port 80 and
load-balancing between 2 pserve processes. It will also serve the static files
from our project's directory.

Let's assume a basic project setup:

/home/example/myapp
 |
 |-- env (your virtualenv)
 |
 |-- myapp
 | |
 | |-- __init__.py (defining your main entry point)
 | |
 | `-- static (your static files)
 |
 |-- production.ini
 |
 `-- supervisord.conf (optional)

Step 1: Configuring nginx

nginx needs to be configured as a proxy for your application. An example
configuration is shown here:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	# nginx.conf

user www-data;
worker_processes 4;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
 # multi_accept on;
}

http {

 ##
 # Basic Settings
 ##

 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 keepalive_timeout 65;
 types_hash_max_size 2048;
 # server_tokens off;

 # server_names_hash_bucket_size 64;
 # server_name_in_redirect off;

 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 ##
 # Logging Settings
 ##

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 ##
 # Gzip Settings
 ##

 gzip on;
 gzip_disable "msie6";

 ##
 # Virtual Host Configs
 ##

 include /etc/nginx/conf.d/*.conf;
 include /etc/nginx/sites-enabled/*;
}

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	# myapp.conf

upstream myapp-site {
 server 127.0.0.1:5000;
 server 127.0.0.1:5001;
}

server {
 listen 80;

 # optional ssl configuration

 listen 443 ssl;
 ssl_certificate /path/to/ssl/pem_file;
 ssl_certificate_key /path/to/ssl/certificate_key;

 # end of optional ssl configuration

 server_name example.com;

 access_log /home/example/env/access.log;

 location / {
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $host:$server_port;
 proxy_set_header X-Forwarded-Port $server_port;

 client_max_body_size 10m;
 client_body_buffer_size 128k;
 proxy_connect_timeout 60s;
 proxy_send_timeout 90s;
 proxy_read_timeout 90s;
 proxy_buffering off;
 proxy_temp_file_write_size 64k;
 proxy_pass http://myapp-site;
 proxy_redirect off;
 }
}

Note

myapp.conf is actually included into the http {} section of the main
nginx.conf file.

The optional listen directive, as well as the 2 following lines,
are the only configuration changes required to enable SSL from the Client
to nginx. You will need to have already created your SSL certificate and
key for this to work. More details on this process can be found in
the OpenSSL wiki for Command Line Utilities [https://wiki.openssl.org/index.php/Command_Line_Utilities].
You will also need to update the paths that are shown to match the actual
path to your SSL certificates.

The upstream directive sets up a round-robin load-balancer between two
processes. The proxy is then configured to pass requests through the balancer
with the proxy_pass directive. It's important to investigate the
implications of many of the other settings as they are likely
application-specific.

The proxy_set_header directives inform our application of the exact deployment
setup. They will help the WSGI server configure our environment's
SCRIPT_NAME, HTTP_HOST, and the actual IP address of the client.

Step 2: Starting pserve

Warning

Be sure to create a production.ini file to use for
deployment that has debugging turned off and removing the
pyramid_debugtoolbar.

This configuration uses
waitress [https://docs.pylonsproject.org/projects/waitress/en/latest/reverse-proxy.html]
to automatically convert the X-Forwarded-Proto into the correct HTTP scheme in the WSGI
environment. This is important so that the URLs generated by the application
can distinguish between different domains, HTTP vs. HTTPS.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	#---------- App Configuration ----------
[app:main]
use = egg:myapp#main

pyramid.reload_templates = false
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.default_locale_name = en

#---------- Server Configuration ----------
[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = %(http_port)s

trusted_proxy = 127.0.0.1
trusted_proxy_count = 1
trusted_proxy_headers = x-forwarded-for x-forwarded-host x-forwarded-proto x-forwarded-port
clear_untrusted_proxy_headers = yes

#---------- Logging Configuration ----------
...

Running the pserve processes:

$ pserve production.ini\?http_port=5000
$ pserve production.ini\?http_port=5001

Note

Daemonization of pserve was deprecated in
Pyramid 1.6 [https://docs.pylonsproject.org/projects/pyramid/en/latest/whatsnew-1.6.html#deprecations],
then removed in Pyramid 1.8 [https://docs.pylonsproject.org/projects/pyramid/en/latest/whatsnew-1.8.html#backwards-incompatibilities].

Step 3: Serving Static Files with nginx (Optional)

Assuming your static files are in a subdirectory of your pyramid application,
they can be easily served using nginx's highly optimized web server. This will
greatly improve performance because requests for this content will not need to
be proxied to your WSGI application and can be served directly.

Warning

This is only a good idea if your static content is intended
to be public. It will not respect any view permissions you've placed on
this directory.

location / {
 # all of your proxy configuration
}

location /static {
 root /home/example/myapp/myapp;
 expires 30d;
 add_header Cache-Control public;
 access_log off;
}

It's somewhat odd that the root doesn't point to the static directory,
but it works because nginx will append the actual URL to the specified path.

Step 4: Managing Your pserve Processes with Supervisord (Optional)

Turning on all of your pserve processes manually and daemonizing them
works for the simplest setups, but for a really robust server, you're going
to want to automate the startup and shutdown of those processes, as well as
have some way of managing failures.

Enter supervisord:

$ pip install supervisor

This is a great program that will manage arbitrary processes, restarting them
when they fail, providing hooks for sending emails, etc when things change,
and even exposing an XML-RPC interface for determining the status of your
system.

Below is an example configuration that starts up two instances of the pserve
process, automatically filling in the http_port based on the
process_num, thus 5000 and 5001.

This is just a stripped down version of supervisord.conf, read the docs
for a full breakdown of all of the great options provided.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	[unix_http_server]
file=%(here)s/env/supervisor.sock

[supervisord]
pidfile=%(here)s/env/supervisord.pid
logfile=%(here)s/env/supervisord.log
logfile_maxbytes=50MB
logfile_backups=10
loglevel=info
nodaemon=false
minfds=1024
minprocs=200

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix://%(here)s/env/supervisor.sock

[program:myapp]
autorestart=true
command=%(here)s/env/bin/pserve %(here)s/production.ini?http_port=50%(process_num)02d
process_name=%(program_name)s-%(process_num)01d
numprocs=2
numprocs_start=0
redirect_stderr=true
stdout_logfile=%(here)s/env/%(program_name)s-%(process_num)01d.log

uWSGI

This brief chapter covers how to configure a uWSGI [https://uwsgi-docs.readthedocs.io/en/latest/] server for Pyramid.

Pyramid is a Paste-compatible web application framework. As such, you can use the uWSGI --paste option to conveniently deploy your application.

For example, if you have a virtual environment in /opt/env containing a Pyramid application called wiki configured in /opt/env/wiki/development.ini:

uwsgi --paste config:/opt/env/wiki/development.ini --socket :3031 -H /opt/env

The example is modified from the original example for Turbogears [https://uwsgi-docs.readthedocs.io/en/latest/Python.html#paste-support].

uWSGI with cookiecutter Pyramid application Part 1: Basic uWSGI + nginx

uWSGI is a software application for building hosting services.
It is named after the Web Server Gateway Interface (the WSGI [https://wsgi.readthedocs.io/en/latest/] specification
to which many Python web frameworks conform).

This guide will outline broad steps that can be used to get a cookiecutter
Pyramid application running under uWSGI and nginx. This particular
tutorial was developed and tested on Ubuntu 18.04, but the instructions should be
largely the same for all systems, where you may adjust specific path information
for commands and files.

Note

For those of you with your hearts set on running your Pyramid
application under uWSGI, this is your guide.

However, if you are simply looking for a decent-performing
production-grade server with auto-start capability, Waitress + systemd
has a much gentler learning curve.

With that said, let's begin.

	Install prerequisites.

$ sudo apt install -y uwsgi-core uwsgi-plugin-python3 python3-cookiecutter \
 python3-pip python3-venv nginx

	Create a Pyramid application. For this tutorial we'll use the
starter cookiecutter [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-cookiecutter]. See Creating a Pyramid Project [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/project.html#project-narr] for more
in-depth information about creating a new project.

$ cd ~
$ python3 -m cookiecutter gh:Pylons/pyramid-cookiecutter-starter

If prompted for the first item, accept the default yes by hitting return.

You've cloned ~/.cookiecutters/pyramid-cookiecutter-starter before.
Is it okay to delete and re-clone it? [yes]: yes
project_name [Pyramid Scaffold]: myproject
repo_name [myproject]: myproject
Select template_language:
1 - jinja2
2 - chameleon
3 - mako
Choose from 1, 2, 3 [1]: 1

	Create a virtual environment [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-virtual-environment] which we'll use to install our
application.

$ cd myproject
$ python3 -m venv env

	Install your Pyramid application and its dependencies.

$ env/bin/pip install -e ".[testing]"

	Create a new directory at ~/myproject/tmp to house a pidfile and a unix
socket. However, you'll need to make sure that two users have access to
change into the ~/myproject/tmp directory: your current user (mine is
ubuntu), and the user that nginx will run as (often named www-data or
nginx).

	Add a [uwsgi] section to production.ini. Here are the lines
to include:

[uwsgi]
proj = myproject
chdir = /home/ubuntu/%(proj)
processes = 2
threads = 2
offload-threads = 2
stats = 127.0.0.1:9191
max-requests = 5000
master = True
vacuum = True
enable-threads = true
harakiri = 60
chmod-socket = 020
plugin = python3
pidfile=%(chdir)/tmp/%(proj).pid
socket = %(chdir)/tmp/%(proj).sock
virtualenv = %(chdir)/env
uid = ubuntu
gid = www-data
Uncomment `wsgi-file`, `callable`, and `logto` during Part 2 of this tutorial
#wsgi-file = wsgi.py
#callable = app
#logto = /var/log/uwsgi/%(proj).log

And here is an explanation of the salient options:

Explanation of Options
#
proj = myproject # Set a variable named "proj"
so we can use it elsewhere in this
block of config.
#
chmod-socket = 020 # Change permissions on socket to
at least 020 so that, in combination
with "--gid www-data", nginx will be able
to write to it after uWSGI creates it.
#
enable-threads # Execute threads that are in your app
#
plugin = python3 # Use the python3 plugin
#
socket = %(chdir)/tmp/%(proj).sock # Where to put the unix socket
pidfile=%(chdir)/tmp/%(proj).pid # Where to put PID file
#
uid = ubuntu # Masquerade as the ubuntu user.
This grants you permissions to use
python packages installed in your
home directory.
#
gid = www-data # Masquerade as the www-data group.
This makes it easy to allow nginx
(which runs as the www-data group)
access to the socket file.
#
virtualenv = (chdir)/env # Use packages installed in your
virtual environment.

	Invoke uWSGI with --ini-paste-logged.

There are multiple ways to invoke uWSGI. Using --ini-paste-logged
is the easiest, as it does not require an explicit entry point.

$ cd ~/myproject
$ sudo uwsgi --plugin python3 --ini-paste-logged production.ini

Explanation of Options
#
sudo uwsgi # Invoke as sudo so you can masquerade
as the users specfied by ``uid`` and
``gid``
#
--plugin=python3 # Use the python3 plugin
#
--ini-paste-logged # Implicitly defines a wsgi entry point
so that you don't have to.
Also enables logging.

	Verify that the output of the previous step includes a line that looks
approximately like this:

WSGI app 0 (mountpoint='/') ready in 1 seconds on interpreter 0x5615894a69a0 pid: 8827 (default app)

If any errors occurred, you will need to correct them. If you get a
uwsgi: unrecognized option '--ini-paste-logged', make sure you are
specifying the python3 plugin.

If you get an error like this:

Fatal Python error: Py_Initialize: Unable to get the locale encoding
ModuleNotFoundError: No module named 'encodings'

check that the virtualenv option in the [uwsgi] section of your
.ini file points to the correct directory. Specifically, it should
end in env, not bin.

For any other import errors, it probably means that the package either
is not installed or is not accessible by the user. That's why
we chose to masquerade as the normal user that you log in as, so you would
for sure have access to installed packages.

If you get almost no output at all, yet the process still appears to
be running, make sure that logto is commented out in production.ini.

	Add a new file at /etc/nginx/sites-enabled/myproject.conf with
the following contents. Also change any occurrences of the word ubuntu
to your actual username.

server{
 server_name _;

 root /home/ubuntu/myproject/;

 location / {
 include uwsgi_params;
 # The socket location must match that used by uWSGI
 uwsgi_pass unix:/home/ubuntu/myproject/tmp/myproject.sock;
 }
}

	If there is a file at /var/nginx/sites-enabled/default,
remove it so your new nginx config file will catch all traffic.
(If default is in use and important, simply add a real
server_name to /etc/nginx/sites-enabled/myproject.conf
to disambiguate them.)

	Reload nginx.

$ sudo nginx -s reload

	Visit http://localhost in a browser. Alternatively call curl localhost
from a terminal. You should see the sample application rendered.

	If the application does not render, tail the nginx logs, then
refresh the browser window (or call curl localhost) again to determine
the cause. (uWSGI should still be running in a separate terminal window.)

$ cd /var/log/nginx
$ tail -f error.log access.log

If you see a No such file or directory error in the nginx error log,
verify the name of the socket file specified in
/etc/nginx/sites-enabled/myproject.conf. Verify that the file
referenced there actually exists. If it does not, check what location is
specified for socket in your .ini file, and verify that the
specified file actually exists. Once both uWSGI and nginx both point to the
same file and both have access to its containing directory, you will be
past this error. If all else fails, put your sockets somewhere writable by
all, such as /tmp.

If you see an upstream prematurely closed connection while reading
response header from upstream error in the nginx error log, something is wrong
with your application or the way uWSGI is calling it. Check the output from the
window where uWSGI is still running to see what error messages it gives
when you curl localhost.

If you see a Connection refused error in the nginx error log, check the
permissions on the socket file that nginx says it is attempting to connect
to. The socket file is expected to be owned by the user ubuntu and the
group www-data because those are the uid and gid options we
specified in the .ini file. If the socket file is owned by a different
user or group than these, correct the uWSGI parameters in your .ini file.

If you are still getting a Connection refused error in the nginx error log,
check permissions on the socket file. Permissions are expected to be
020 as set by your .ini file. The 2 in the middle of 020
means group-writable, which is required because uWSGI first creates the
socket file, then nginx (running as the group www-data) must have write
permissions to it or it will not be able to connect. You can use
permissions more open than 020, but in testing this tutorial 020
was all that was required.

	Once your application is accessible via nginx, you have cause to celebrate.

If you wish to also add the
uWSGI Emperor [https://uwsgi-docs.readthedocs.io/en/latest/Emperor.html]
and systemd [https://freedesktop.org/wiki/Software/systemd/] to the mix, proceed
to part 2 of this tutorial: uWSGI with cookiecutter Pyramid Application Part 2: Adding Emperor and systemd.

uWSGI has many knobs and a great variety of deployment modes. This
is just one representation of how you might use it to serve up a cookiecutter Pyramid
application. See the uWSGI documentation [https://uwsgi-docs.readthedocs.io/en/latest/]
for more in-depth configuration information.

This tutorial is modified from the original tutorial Running a Pyramid Application under mod_wsgi [https://docs.pylonsproject.org/projects/pyramid/en/latest/tutorials/modwsgi/index.html#modwsgi-tutorial].

uWSGI with cookiecutter Pyramid Application Part 2: Adding Emperor and systemd

This guide will outline broad steps that can be used to add the
uWSGI Emperor [https://uwsgi-docs.readthedocs.io/en/latest/Emperor.html]
and systemd [https://freedesktop.org/wiki/Software/systemd/]
to our cookiecutter application that is being served by uWSGI.

This is Part 2 of a two-part tutorial, and assumes that you have already
completed Part 1: uWSGI with cookiecutter Pyramid application Part 1: Basic uWSGI + nginx.

This tutorial was developed under Ubuntu 18.04, but the instructions should be
largely the same for all systems, where you may adjust specific path information
for commands and files.

Conventional Invocation of uWSGI

In Part 1 we used --init-paste-logged which got us two things almost
for free: logging and an implicit WSGI entry point.

In order to run our cookiecutter [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-cookiecutter] application with the
uWSGI Emperor [https://uwsgi-docs.readthedocs.io/en/latest/Emperor.html],
we will need to follow the conventional route of providing an (explicit)
WSGI entry point.

	Within the project directory (~/myproject), create a script
named wsgi.py with the following code. This script is our WSGI entry point.

Adapted from PServeCommand.run in site-packages/pyramid/scripts/pserve.py
from pyramid.scripts.common import get_config_loader
app_name = 'main'
config_vars = {}
config_uri = 'production.ini'

loader = get_config_loader(config_uri)
loader.setup_logging(config_vars)
app = loader.get_wsgi_app(app_name, config_vars)

config_uri is the project configuration file name. It's best to use
the production.ini file provided by your cookiecutter, as it contains
settings appropriate for production. app_name is the name of the section
within the .ini file that should be loaded by uWSGI. The
assignment to the variable app is important: we will reference app and
the name of the file, wsgi.py when we invoke uWSGI.

The call to loader.setup_logging initializes the standard library's
logging [https://docs.python.org/3/library/logging.html#module-logging] module through pyramid.paster.setup_logging() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/paster.html#pyramid.paster.setup_logging]
to allow logging within your application. See
Logging Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html#logging-config].

	Create a directory for your project's log files, and set ownership on the
directory.

$ cd /var/log
$ sudo mkdir uwsgi
$ sudo chown ubuntu:www-data uwsgi

	Uncomment these three lines of your production.ini file.

[uwsgi]
Uncomment `wsgi-file`, `callable`, and `logto` during Part 2 of this tutorial
wsgi-file = wsgi.py
callable = app
logto = /var/log/uwsgi/%(proj).log

wsgi-file points to the explicit entry point that we created in the
previous step. callable is the name of the callable symbol
(the variable app) exposed in wsgi.py. logto specifies
where your application's logs will be written, which means logs will no longer be
written to STDOUT.

	Invoke uWSGI with --ini.

Invoking uWSGI with --ini and passing it an .ini file is the
conventional way of invoking uWSGI. (uWSGI can also be invoked
with all configuration options specified as command-line arguments,
but that method does not lend itself to easy configuration with Emperor,
so we will not present that method here.)

$ cd ~/myproject
$ sudo uwsgi --ini production.ini

Make sure you call it with sudo, or your application will not be
able to masquerade as the users we specified for uid and gid.

Also note that since we specified the logto parameter to be in
/var/log/uwsgi, we will see only limited output in this terminal
window. If it starts up correctly, all you will see is this:

$ sudo uwsgi --ini production.ini
[uWSGI] getting INI configuration from production.ini

	Tail the log file at var/log/uwsgi/myproject.log.

$ tail -f /var/log/uwsgi/myproject.log

and verify that the output of the previous step includes a line that looks
approximately like this:

WSGI app 0 (mountpoint='/') ready in 1 seconds on interpreter 0x5615894a69a0 pid: 8827 (default app)

If any errors occurred, you will need to correct them. If you get a
callable not found or import error, make sure that your production.ini
properly sets wsgi-file to wsgi.py, and that ~/myproject/wsgi.py exists
and contains the contents provided in a previous step. Also make sure that your
production.ini properly sets callable to app, and that app is
the name of the callable symbol in wsgi.py.

An import error that looks like ImportError: No module named 'wsgi'
probably indicates that your wsgi-file specified in production.ini
does not match the wsgi.py file that you actually created.

For any other import errors, it probably means that the package either is not installed or is not accessible by the user. That's why
we chose to masquerade as the normal user that you log in as, so you would
for sure have access to installed packages.

	Visit http://localhost in a browser. Alternatively call curl localhost
from a terminal. You should see the sample application rendered.

	If the application does not render, follow the same steps you followed in
uWSGI with cookiecutter Pyramid application Part 1: Basic uWSGI + nginx to get the nginx connection flowing.

	Stop your application. Now that we've demonstrated that your application can run
with an explicit WSGI entry point, your application is ready to be
managed by the uWSGI Emperor.

Running Your application via the Emperor

	Create two new directories in /etc.

$ sudo mkdir /etc/uwsgi/
$ sudo mkdir /etc/uwsgi/vassals

	Create an .ini file for the uWSGI emperor and place it in /etc/uwsgi/emperor.ini.

/etc/uwsgi/emperor.ini
[uwsgi]
emperor = /etc/uwsgi/vassals
limit-as = 1024
logto = /var/log/uwsgi/emperor.log
uid = ubuntu
gid = www-data

Your application is going to run as a vassal. The emperor line in
emperor.ini specifies a directory where the Emperor will look for
vassal config files. That is, for any vassal config file (an .ini file) that
appears in /etc/uwsgi/vassals, the Emperor will attempt to start and manage
that vassal.

	Invoke the uWSGI Emperor.

$ cd /etc/uwsgi
$ sudo uwsgi --ini emperor.ini

Since we specified logto in emperor.ini, a successful start will only
show you this output:

$ sudo uwsgi --ini emperor.ini
[uWSGI] getting INI configuration from emperor.ini

	In a new terminal window, start tailing the emperor's log.

$ sudo tail -f /var/log/uwsgi/emperor.log

Verify that you see this line in the emperor's output:

*** starting uWSGI Emperor ***

Keep this window open so you can see new entries in the Emperor's log
during the next steps.

	From the vassals directory, create a symbolic link that points to your
applications's production.ini.

$ cd /etc/uwsgi/vassals
$ sudo ln -s ~/myproject/production.ini

As soon as you create that symbolic link, you should see traffic in the
Emperor log that looks like this:

[uWSGI] getting INI configuration from production.ini
Sun Jul 15 13:34:15 2018 - [emperor] vassal production.ini has been spawned
Sun Jul 15 13:34:15 2018 - [emperor] vassal production.ini is ready to accept requests

	Tail your vassal's log to be sure that it started correctly.

$ tail -f /var/log/uwsgi/myproject.log

A line similar to this one indicates success:

WSGI app 0 (mountpoint='') ready in 0 seconds on interpreter 0x563aa0193bf0 pid: 14984 (default app)

	Verify that your vassal is available via nginx. As in Part 1, you can do this
by opening http://localhost in a browser, or by curling localhost in a terminal
window.

$ curl localhost

	Stop the uWSGI Emperor, as now we will start it via systemd.

Running the Emperor via systemd

	Create a systemd unit file for the Emperor with the following code,
and place it in /lib/systemd/system/emperor.uwsgi.service.

/lib/systemd/system/emperor.uwsgi.service
[Unit]
Description=uWSGI Emperor
After=syslog.target

[Service]
ExecStart=/usr/bin/uwsgi --ini /etc/uwsgi/emperor.ini
Requires systemd version 211 or newer
RuntimeDirectory=uwsgi
Restart=always
KillSignal=SIGQUIT
Type=notify
StandardError=syslog
NotifyAccess=all

[Install]
WantedBy=multi-user.target

	Start and enable the systemd unit.

$ sudo systemctl start emperor.uwsgi.service
$ sudo systemctl enable emperor.uwsgi.service

	Verify that the uWSGI Emperor is running, and that your application is running and
available on localhost. Here are some commands that you can use to verify:

$ sudo journalctl -u emperor.uwsgi.service # System logs for emperor

$ tail -f /var/log/nginx/access.log /var/log/nginx/error.log

$ tail -f /var/log/uwsgi/myproject.log

$ sudo tail -f /var/log/uwsgi/emperor.log

	Verify that the Emperor starts up when you reboot your machine.

$ sudo reboot

After it reboots:

$ curl localhost

	Congratulations! You've just deployed your application in robust fashion.

uWSGI has many knobs and a great variety of deployment modes. This
is just one representation of how you might use it to serve up a cookiecutter Pyramid
application. See the uWSGI documentation [https://uwsgi-docs.readthedocs.io/en/latest/]
for more in-depth configuration information.

This tutorial is modified from the original tutorial Running a Pyramid Application under mod_wsgi [https://docs.pylonsproject.org/projects/pyramid/en/latest/tutorials/modwsgi/index.html#modwsgi-tutorial].

uWSGI + nginx + systemd

This chapter provides an example for configuring uWSGI [https://uwsgi-docs.readthedocs.io/en/latest/], nginx [https://nginx.org/en/docs/], and systemd [https://www.freedesktop.org/wiki/Software/systemd/] for a Pyramid application.

Below you can find an almost production ready configuration. "Almost" because some uwsgi parameters might need tweaking to fit your needs.

An example systemd configuration file is shown here:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	# /etc/systemd/system/pyramid.service

[Unit]
Description=pyramid app

Requirements
Requires=network.target

Dependency ordering
After=network.target

[Service]
TimeoutStartSec=0
RestartSec=10
Restart=always

path to app
WorkingDirectory=/opt/env/wiki
the user that you want to run app by
User=app

KillSignal=SIGQUIT
Type=notify
NotifyAccess=all

Main process
ExecStart=/opt/env/bin/uwsgi --ini-paste-logged /opt/env/wiki/development.ini

[Install]
WantedBy=multi-user.target

Note

In order to use the --ini-paste-logged parameter (and have logs from an application), PasteScript [https://pypi.org/project/PasteScript/] is required. To install, run:

pip install PasteScript

uWSGI can be configured in .ini files, for example:

	1
2
3
4
5
6
7

	# development.ini
...

[uwsgi]
socket = /tmp/pyramid.sock
chmod-socket = 666
protocol = http

Save the files and run the below commands to start the process:

systemctl enable pyramid.service
systemctl start pyramid.service

Verify that the file /tmp/pyramid.sock was created.

Here are a few useful commands:

systemctl restart pyramid.service # restarts app
journalctl -fu pyramid.service # tail logs

Next we need to configure a virtual host in nginx. Below is an example configuration:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	# myapp.conf

upstream pyramid {
 server unix:///tmp/pyramid.sock;
}

server {
 listen 80;

 # optional ssl configuration

 listen 443 ssl;
 ssl_certificate /path/to/ssl/pem_file;
 ssl_certificate_key /path/to/ssl/certificate_key;

 # end of optional ssl configuration

 server_name example.com;

 access_log /opt/env/access.log;

 location / {
 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;

 client_max_body_size 10m;
 client_body_buffer_size 128k;
 proxy_connect_timeout 60s;
 proxy_send_timeout 90s;
 proxy_read_timeout 90s;
 proxy_buffering off;
 proxy_temp_file_write_size 64k;
 proxy_pass http://pyramid;
 proxy_redirect off;
 }
}

A better explanation for some of the above nginx directives can be found in the cookbook recipe nginx + pserve + supervisord.

Amazon Web Services via Elastic Beanstalk

Dan Clark published two tutorials for deploying Pyramid applications on Amazon Web Services (AWS) [https://aws.amazon.com/] via Elastic Beanstalk [https://aws.amazon.com/elasticbeanstalk/].

How-to: Hello Pyramid on AWS [https://web.archive.org/web/20190504183134/https://bruisedthumb.com/post/2017-03-05] shows how to deploy the Hello World application [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/firstapp.html].

How-to: Pyramid Starter on AWS [https://web.archive.org/web/20190504195842/https://bruisedthumb.com/post/2017-03-07] shows how to deploy a project generated from the pyramid-cookiecutter-starter [https://github.com/Pylons/pyramid-cookiecutter-starter].

DotCloud

Note

This cookbook recipe is obsolete because DotCloud has been acquired by Docker. Please submit a pull request [https://github.com/Pylons/pyramid_cookbook/] to update this recipe.

DotCloud [https://cloud.docker.com/] offers support for all WSGI frameworks.
Below is a quickstart guide for Pyramid apps. You can also read the DotCloud
Python documentation [https://docs.docker.com/samples/library/python/] for
a complete overview.

Step 0: Install DotCloud

Install DotCloud's CLI [https://docs.docker.com/docker-cloud/installing-cli/] by running:

$ pip install dotcloud

Step 1: Add files needed for DotCloud

DotCloud expects Python applications to have a few files in the root of the
project. First, you need a pip requirements.txt file to instruct DotCloud
which Python library dependencies to install for your app. Secondly you need a
dotcloud.yaml file which informs DotCloud that your application has (at a minimum)
a Python service. You may also want additional services such as a MongoDB
database or PostgreSQL database and so on - these things are all specified in
YAML.

Finally, you will need a file named wsgi.py which is what the DotCloud
uWSGI server is configured to look for. This wsgi.py script needs to create a
WSGI callable for your Pyramid app which must be present in a global named
"application".

You'll need to add a requirements.txt, dotcloud.yml, and wsgi.py file to the
root directory of your app. Here are some samples for a basic Pyramid app:

requirements.txt:

cherrypy
Pyramid==1.3
Add any other dependencies that should be installed as well

dotcloud.yml:

www:
 type: python
db:
 type: postgresql

Learn more about the DotCloud buildfile [https://docs.docker.com/engine/reference/builder/].

wsgi.py:

Your WSGI callable should be named “application”, be located in a
"wsgi.py" file, itself located at the top directory of the service.
#
For example, to load the app from your "production.ini" file in the same
directory:
import os.path
from pyramid.scripts.pserve import cherrypy_server_runner
from pyramid.paster import get_app

application = get_app(os.path.join(os.path.dirname(__file__), 'production.ini'))

if __name__ == "__main__":
 cherrypy_server_runner(application, host="0.0.0.0")

Step 2: Configure your database

If you specified a database service in your dotcloud.yml, the connection info
will be made available to your service in a JSON file at
/home/dotcloud/environment.json. For example, the following code would read
the environment.json file and add the PostgreSQL URL to the settings of
your pyramid app:

import json

if dotcloud, read PostgreSQL URL from environment.json
db_uri = settings['postgresql.url']
DOTCLOUD_ENV_FILE = "/home/dotcloud/environment.json"
if os.path.exists(DOTCLOUD_ENV_FILE):
 with open(DOTCLOUD_ENV_FILE) as f:
 env = json.load(f)
 db_uri = env["DOTCLOUD_DATA_POSTGRESQL_URL"]

Step 3: Deploy your app

Now you can deploy your app. Remember to commit your changes if you're
using Mercurial or Git, then run these commands in the top directory
of your app:

$ dotcloud create your_app_name
$ dotcloud push your_app_name

At the end of the push, you'll see the URL(s) for your new app. Have fun!

Google App Engine Standard and Pyramid

It is possible to run a Pyramid application on Google App Engine [https://cloud.google.com/appengine/]. This tutorial is written in terms of using the command line on a UNIX system. It should be possible to perform similar actions on a Windows system. This tutorial also assumes you've already installed and created a Pyramid application, and that you have a Google App Engine account.

Setup

First we'll need to create a few files so that App Engine can communicate with our project properly.

Create the files with content as follows.

	requirements.txt

Pyramid
waitress
pyramid_debugtoolbar
pyramid_chameleon

	main.py

from pyramid.paster import get_app, setup_logging
ini_path = 'production.ini'
setup_logging(ini_path)
application = get_app(ini_path, 'main')

	appengine_config.py

from google.appengine.ext import vendor
vendor.add('lib')

	app.yaml

application: application-id
version: version
runtime: python27
api_version: 1
threadsafe: false

handlers:
- url: /static
 static_dir: pyramid_project/static
- url: /.*
 script: main.application

Configure this file with the following values:

	Replace "application-id" with your App Engine application's ID.

	Replace "version" with the version you want to deploy.

	Replace "pyramid_project" in the definition for static_dir with the parent directory name of your static assets. If your static assets are in the root directory, you can just put "static".

For more details about app.yaml, see app.yaml Reference [https://cloud.google.com/appengine/docs/standard/python/config/appref].

	Install dependencies.

$ pip install -t lib -r requirements.txt

Running locally

At this point you should have everything you need to run your Pyramid application locally using dev_appserver. Assuming you have appengine in your $PATH:

$ dev_appserver.py app.yaml

And voilà! You should have a perfectly-running Pyramid application via Google App Engine on your local machine.

Deploying

If you've successfully launched your application locally, deploy with a single command.

$ appcfg.py update app.yaml

Your Pyramid application is now live to the world! You can access it by navigating to your domain name, by "<applicationid>.appspot.com", or if you've specified a version outside of your default then it would be "<version-dot-applicationid>.appspot.com".

Google App Engine (using buildout) and Pyramid

This is but one way to develop applications to run on Google's App
Engine [https://cloud.google.com/appengine/]. This one uses buildout [http://www.buildout.org/en/latest/] . For a different approach, you may want
to look at Google App Engine Standard and Pyramid.

Install the pyramid_appengine scaffold

Let's take it step by step.

You can get pyramid_appengine [https://pypi.org/project/pyramid_appengine/] from pypi via pip [https://pypi.org/project/pip/]
just as you typically would any other python package, however to reduce the
chances of the system installed python packages intefering with tools
you use for your own development you should install it in a local
virtual environment [https://pypi.org/project/virtualenv/]

Creating a virtual environment

Update distribute

$ sudo pip install --upgrade distribute

Install virtualenv

$ sudo pip install virtualenv

create a virtual environment

$ virtualenv -p /usr/bin/python2.7 --no-site-packages --distribute myenv

install pyramid_appengine into your virtual environment

$ myenv/bin/pip install pyramid_appengine

Once successfully installed a new project template is available to use
named "appengine_starter".

To get a list of all available templates.

$ myenv/bin/pcreate -l

Create the skeleton for your project

You create your project skeleton using the "appengine_starter" project
scaffold just as you would using any other project scaffold.

$ myenv/bin/pcreate -t appengine_starter newproject

Once successfully ran, you will have a new buildout [http://www.buildout.org/en/latest/] directory for your project. The app engine
application source is located at newproject/src/newproject.

This buildout directory can be added to version control if you like,
using any of the available version control tools available to you.

Bootstrap the buildout

Before you do anything with a new buildout directory you need to
bootstrap it, which installs buildout locally and everything necessary
to manage the project dependencies.

As with all buildouts, it can be bootstrapped running the following
commands.

~/ $ cd newproject
~/newproject $../bin/python2.7 bootstrap.py

You typically only need to do this once to generate your
buildout command. See the buildout documentation [http://www.buildout.org/en/latest/getting-started.html] for more information.

Run buildout

As with all buildouts, after it has been bootstrapped, a "bin"
directory is created with a new buildout command. This command is run
to install things based on the newproject/buildout.cfg which you can
edit to suit your needs.

~/newproject $./bin/buildout

In the case of this particular buildout, when run, it will take care
of several things that you need to do....

	install the app engine SDK in parts/google_appengine more info [https://pypi.org/project/rod.recipe.appengine/]

	Place tools from the appengine SDK in the buildout's "bin" directory.

	Download/install the dependencies for your project including pyramid and all it's
dependencies not already provided by the app engine SDK.
more info [https://pypi.org/project/rod.recipe.appengine/]

	A directory structure appropriate for deploying to app engine at
newproject/parts/newproject. more info [https://pypi.org/project/rod.recipe.appengine/]

	Download/Install tools to support unit testing including pytest [https://docs.pytest.org/en/latest/], and coverage [http://coverage.readthedocs.io/en/latest/].

Run your tests

Your project is configured to run all tests found in files that begin with "test_"(example: newproject/src/newproject/newproject/test_views.py).

~/newproject/ $ cd src/newproject
~/newproject/src/newproject/ $../../bin/python setup.py test

Your project incorporates the unit testing tools [https://cloud.google.com/appengine/docs/standard/python/tools/localunittesting?csw=1] provided by the app engine SDK to setUp and tearDown the app engine environment for each of your tests. In addition to that, running the unit tests will keep your projects index.yaml [https://cloud.google.com/appengine/docs/standard/python/config/indexconfig?csw=1] up to date. As a result, maintaining a thorough test suite will be your best chance at insuring that your application is ready for deployment.

You can adjust how the app engine api's are initialized for your tests by editing newproject/src/newproject/newproject/conftest.py.

Run your application locally

You can run your application using the app engine SDK's Development Server [https://cloud.google.com/appengine/docs/standard/python/tools/using-local-server?csw=1]

~/newproject/ $./bin/devappserver parts/newproject

Point your browser at http://localhost:8080
to see it working.

Deploy to App Engine

Note: Before you can upload any appengine application you must create an application ID [https://cloud.google.com/appengine/docs/standard/python/console/] for it.

To upload your application to app engine, run the following command. For more information see App Engine Documentation for appcfg [https://cloud.google.com/appengine/docs/standard/python/tools/uploadinganapp?csw=1]

~/newproject/ $./bin/appcfg update parts/newproject -A newproject -V dev

Point your browser at http://dev.newproject.appspot.com to see it working.

The above command will most likely not work for you, it is just an
example. the "-A" switch indicates an Application ID [https://cloud.google.com/appengine/docs/standard/python/console/] to deploy to and overrides the setting in the app.yaml, use the Application ID you created when you registered the application instead. The "-V" switch specifies the version and overrides the setting in your app.yaml.

You can set which version of your application handles requests by
default in the admin console [https://accounts.google.com/ServiceLogin?service=cloudconsole&passive=1209600&osid=1&continue=https://console.cloud.google.com/appengine&followup=https://console.cloud.google.com/appengine]. However you can also specify a version of your application to hit in the URL like so...

http://<app-version>.<application-id>.appspot.com

This can come in pretty handy in a variety of scenarios that become obvious once you start managing the development of your application while supporting a current release.

Google App Engine Flexible with Datastore and Pyramid

It is possible to run a Pyramid application on Google App Engine [https://cloud.google.com/appengine/].
This tutorial is written "environment agnostic", meaning the commands here should work on Linux, macOS or Windows.
This tutorial also assumes you've already installed and created a Pyramid application, and that you have a Google App Engine account.

Setup

First we'll need to set up a few things in App Engine.
If you don't need Datastore access for your project or any other GCP service, you can skip the Credentials section.

Credentials

Navigate to App Engine's IAM And Admin section and click on Service Accounts in the left sidebar, then create a Service Account [https://cloud.google.com/iam/docs/service-accounts].

Once a service account is created, you will be given a .json key file.
This will be used to allow your Pyramid application to communicate with GCP services.
Move this file to your Pyramid project.
A best practice here would be to make sure this file is listed in .gitignore so that it's not checked in with the rest of your code.

Now that we have a service account, we'll need to give it a couple of roles.
Click IAM in the left sidebar of IAM And Admin.
Find the service account you've just created and click the Edit button.
Give this account the Cloud Datastore User role for read/write access.
For read-only access, give it Cloud Datastore Viewer.

Project Files

Create the files with content as follows.

	requirements.txt

Pyramid
waitress
pyramid_debugtoolbar
pyramid_chameleon
google-cloud-ndb

If you are not using Datastore, you can exclude google-cloud-ndb.

	dockerfile

FROM gcr.io/google-appengine/python
Create a virtualenv for dependencies. This isolates these packages from
system-level packages.
Use -p python3 or -p python3.7 to select python version. Default is version 2.
RUN virtualenv /env -p python3

Setting these environment variables are the same as running
source /env/bin/activate.
ENV VIRTUAL_ENV /env
ENV PATH /env/bin:$PATH
ENV PYTHONUNBUFFERED 0

Copy the application's requirements.txt and run pip to install all
dependencies into the virtualenv.
ADD requirements.txt /app/requirements.txt
ADD my-gcp-key.json /app/my-gcp-key.json
ENV GOOGLE_APPLICATION_CREDENTIALS /app/my-gcp-key.json
RUN pip install -r /app/requirements.txt

Add the application source code.
ADD . /app

Run a WSGI server to serve the application. waitress must be declared as
a dependency in requirements.txt.
RUN pip install -e .

CMD pserve production.ini

Replace my-gcp-key.json filename with the JSON file you were provided when you created the Service Account.

	datastore_tween.py

from my_project import datastore_client

class datastore_tween_factory(object):
 def __init__(self, handler, registry):
 self.handler = handler
 self.registry = registry

 def __call__(self, request):

 with datastore_client.context():
 response = self.handler(request)

 return response

	app.yaml

runtime: custom
env: flex
service: default
runtime_config:
 python_version: 3.7

manual_scaling:
 instances: 1
resources:
 cpu: 1
 memory_gb: 0.5
 disk_size_gb: 10

For more details about app.yaml, see app.yaml Reference [https://cloud.google.com/appengine/docs/flexible/python/reference/app-yaml].

	__init__.py

This file should already exist in your project at the root level as it would've been generated by Pyramid's cookiecutters [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/project.html].
Add the following line within the main method's config context:

config.add_tween('my_project.datastore_tween.datastore_tween_factory')

This allows you to communicate with Datastore within every request.

	production.ini

Your Pyramid application should already contain both a development.ini and a production.ini.
For App Engine to communicate with your application, it will need to be listening on port 8080.
Assuming you are using the Waitress WSGI server, modify the listen variable within the server:main block.

listen = *:8080

Now let's assume you have the following model defined somewhere in your code that relates to a Datastore "kind":

from google.cloud import ndb

class Accounts(ndb.Model):

 email = ndb.StringProperty()
 password = ndb.StringProperty()

 def __init__(self, **kwds):
 super(Accounts, self).__init__(**kwds)

You could then query this model within any handler/endpoint like so:

Accounts.query().filter(Accounts.email == user_email).get()

Running locally

Unlike App Engine's Standard environment, we're running Pyramid in a pretty typical fashion.
You can run this locally on your machine using the same line in the dockerfile we created earlier as pserve development.ini, or you can run in a Docker container using the same dockerfile that Flexible will be using.
No changes need to be made there.
This is useful for debugging any issues you may run in to under Flexible, without needing to deploy to it.

Deploying

Using the Google Cloud SDK, deploying is pretty straightforward.

$ gcloud app deploy app.yaml --version my-version --project my-gcp-project

Replace my-version with some kind of identifier so you know what code is deployed. This can pretty much be anything.

Replace my-gcp-project with your App Engine application's ID.

Your Pyramid application is now live to the world!
You can access it by navigating to your domain name, by "<applicationid>.appspot.com", or if you've specified a version outside of your default then it would be "<version-dot-applicationid>.appspot.com".

Heroku

Heroku [https://www.heroku.com/] recently added support for a process model [https://blog.heroku.com/celadon_cedar] which allows
deployment of Pyramid applications.

This recipe assumes that you have a Pyramid application setup using a Paste
INI file, inside a package called myapp. This type of structure is found in
the pyramid_starter scaffold, and other Paste scaffolds (previously called
project templates). It can be easily modified to work with other Python web
applications as well by changing the command to run the application as
appropriate.

Step 0: Install Heroku

Install the heroku gem per their instructions [https://devcenter.heroku.com/start].

Step 1: Add files needed for Heroku

You will need to add the following files with the contents as shown to the
root of your project directory (the directory containing the setup.py).

requirements.txt

You can autogenerate this file with the following command.

$ pip freeze > requirements.txt

In your requirements.txt file, you will probably have a line with your
project's name in it. It might look like either of the following two lines
depending on how you setup your project. If either of these lines exist,
delete them.

project-name=0.0

or

-e git+git@xxxx:<git username>/xxxxx.git....#egg=project-name

Note

You can only use packages that can be installed with pip (e.g., those on
PyPI, those in a git repo, using a git+git:// url, etc.). If you have any
that you need to install in some special way, you will have to do that in
your run file (see below). Also note that this will be done for every
instance startup, so it needs to complete quickly to avoid being killed by
Heroku (there's a 60-second instance startup timeout). Never include
editable references when deploying to Heroku.

Procfile

Generate Procfile with the following command.

$ echo "web: ./run" > Procfile

run

Create run with the following command.

#!/bin/bash
set -e
python setup.py develop
python runapp.py

Note

Make sure to chmod +x run before continuing. The develop step is
necessary because the current package must be installed before Paste can
load it from the INI file.

runapp.py

If using a version greater than or equal to 1.3 (e.g. >= 1.3), use the
following for runapp.py.

import os

from paste.deploy import loadapp
from waitress import serve

if __name__ == "__main__":
 port = int(os.environ.get("PORT", 5000))
 app = loadapp('config:production.ini', relative_to='.')

 serve(app, host='0.0.0.0', port=port)

For versions of Pyramid prior to 1.3 (e.g. < 1.3), use the following for
runapp.py.

import os

from paste.deploy import loadapp
from paste import httpserver

if __name__ == "__main__":
 port = int(os.environ.get("PORT", 5000))
 app = loadapp('config:production.ini', relative_to='.')

 httpserver.serve(app, host='0.0.0.0', port=port)

Note

We assume the INI file to use is named production.ini, so change the
content of runapp.py as necessary. The server section of the INI will
be ignored as the server needs to listen on the port supplied in the OS
environment.

Step 2: Setup git repo and Heroku app

Navigate to your project directory (directory with setup.py) if not
already there. If your project is already under git version control, skip to
the "Initialize the Heroku stack" section.

Inside your project's directory, if this project is not tracked under git, it
is recommended yet optional to create a good .gitignore file. You can get
the recommended python one by running the following command.

$ wget -O .gitignore https://raw.github.com/github/gitignore/master/Python.gitignore

Once that is done, run the following command.

$ git init
$ git add .
$ git commit -m "initial commit"

Step 3: Initialize the Heroku stack

$ heroku create --stack cedar

Step 4: Deploy

To deploy a new version, push it to Heroku.

$ git push heroku master

Make sure to start one worker.

$ heroku scale web=1

Check to see if your app is running.

$ heroku ps

Take a look at the logs to debug any errors if necessary.

$ heroku logs -t

Tips and Tricks

The CherryPy WSGI server is fast, efficient, and multi-threaded to easily
handle many requests at once. If you want to use it you can add cherrpy
and pastescript to your setup.py:requires section (be sure to re-run
pip freeze to update the requirements.txt file as explained above) and
setup your runapp.py to look like the following.

import os

from paste.deploy import loadapp
from paste.script.cherrypy_server import cpwsgi_server

if __name__ == "__main__":
 port = int(os.environ.get("PORT", 5000))
 wsgi_app = loadapp('config:production.ini', relative_to='.')
 cpwsgi_server(wsgi_app, host='0.0.0.0', port=port,
 numthreads=10, request_queue_size=200)

Heroku add-ons generally communicate their settings via OS environment
variables. These can be easily incorporated into your applications settings as
show in the following example.

In your pyramid apps main init
import os

from pyramid.config import Configurator
from myproject.resources import Root

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """

 # Look at the environment to get the memcache server settings
 memcache_server = os.environ.get('MEMCACHE_SERVERS')

 settings['beaker.cache.url'] = memcache_server
 config = Configurator(root_factory=Root, settings=settings)
 config.add_view('myproject.views.my_view',
 context='myproject.resources.Root',
 renderer='myproject:templates/mytemplate.pt')
 config.add_static_view('static', 'myproject:static')
 return config.make_wsgi_app()

OpenShift Express Cloud

This blog entry [https://blog.openshift.com/how-to-deploy-a-pyramid-application-on-openshift/]
describes deploying a Pyramid application to RedHat's OpenShift Express Cloud
platform.

Luke Macken's OpenShift Quickstarter [https://github.com/lmacken/openshift-quickstarter] also provides an easy
way to get started using OpenShift.

Windows

There are four possible deployment options for Windows:

	Run as a Windows service with a Python based web server like CherryPy or
Twisted

	Run as a Windows service behind another web server (either IIS or Apache)
using a reverse proxy

	Inside IIS using the WSGI bridge with ISAPI-WSGI

	Inside IIS using the WSGI bridge with PyISAPIe

Options 1 and 2: run as a Windows service

Both Options 1 and 2 are quite similar to running the development server,
except that debugging info is turned off and you want to run the process as a
Windows service.

Install dependencies

Running as a Windows service depends on the PyWin32 [https://sourceforge.net/projects/pywin32/] project. You will need
to download the pre-built binary that matches your version of Python.

You can install directly into the virtualenv if you run easy_install on
the downloaded installer. For example:

easy_install pywin32-217.win32-py2.7.exe

Since the web server for CherryPy [https://cherrypy.org] has good
Windows support, is available for Python 2 and 3, and can be gracefully
started and stopped on demand from the service, we'll use that as the web
server. You could also substitute another web server, like the one from
Twisted [https://twistedmatrix.com/trac/].

To install CherryPy run:

pip install cherrypy

Create a Windows service

Create a new file called pyramidsvc.py with the following code to define
your service:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	# uncomment the next import line to get print to show up or see early
exceptions if there are errors then run
python -m win32traceutil
to see the output
#import win32traceutil
import win32serviceutil

PORT_TO_BIND = 80
CONFIG_FILE = 'production.ini'
SERVER_NAME = 'www.pyramid.example'

SERVICE_NAME = "PyramidWebService"
SERVICE_DISPLAY_NAME = "Pyramid Web Service"
SERVICE_DESCRIPTION = """This will be displayed as a description \
of the serivice in the Services snap-in for the Microsoft \
Management Console."""

class PyWebService(win32serviceutil.ServiceFramework):
 """Python Web Service."""

 _svc_name_ = SERVICE_NAME
 _svc_display_name_ = SERVICE_DISPLAY_NAME
 _svc_deps_ = None # sequence of service names on which this depends
 # Only exists on Windows 2000 or later, ignored on Windows NT
 _svc_description_ = SERVICE_DESCRIPTION

 def SvcDoRun(self):
 from cheroot import wsgi
 from pyramid.paster import get_app
 import os, sys

 path = os.path.dirname(os.path.abspath(__file__))

 os.chdir(path)

 app = get_app(CONFIG_FILE)

 self.server = wsgi.Server(
 ('0.0.0.0', PORT_TO_BIND), app,
 server_name=SERVER_NAME)

 self.server.start()

 def SvcStop(self):
 self.server.stop()

if __name__ == '__main__':
 win32serviceutil.HandleCommandLine(PyWebService)

The if __name__ == '__main__' block provides an interface to register the
service. You can register the service with the system by running:

python pyramidsvc.py install

Your service is now ready to start, you can do this through the normal service
snap-in for the Microsoft Management Console or by running:

python pyramidsvc.py start

If you want your service to start automatically you can run:

python pyramidsvc.py update --start=auto

Reverse proxy (optional)

If you want to run many Pyramid applications on the same machine you will need
to run each of them on a different port and in a separate Service. If you want
to be able to access each one through a different host name on port 80, then
you will need to run another web server (IIS or Apache) up front and proxy
back to the appropriate service.

There are several options available for reverse proxy with IIS. In versions
starting with IIS 7, you can install and use the Application Request Routing [https://docs.microsoft.com/en-us/iis/extensions/planning-for-arr/using-the-application-request-routing-module]
if you want to use a Microsoft-provided solution. Another option is one of the
several solutions from Helicon Tech [http://www.helicontech.com/]. Helicon
Ape is available without cost for up to 3 sites.

If you aren't already using IIS, Apache is available for Windows and works
well. There are many reverse proxy tutorials available for Apache, and they
are all applicable to Windows.

Options 3 and 4: Inside IIS using the WSGI bridge with ISAPI-WSGI

IIS configuration

Turn on Windows feature for IIS.

Control panel -> "Turn Windows features on off" and select:

	Internet Information service (all)

	World Wide Web Services (all)

Create website

Go to Internet Information Services Manager and add website.

	Site name (your choice)

	Physical path (point to the directory of your Pyramid porject)

	select port

	select the name of your website

Python

	Install PyWin32 [https://sourceforge.net/projects/pywin32/], according to your 32- or 64-bit installation

	Install isapi-wsgi [https://code.google.com/archive/p/isapi-wsgi/downloads]

Create bridging script

Create a file install_website.py, and place it in your pyramid project:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	# path to your site packages in your environment
needs to be put in here
import site
site.addsitedir('/path/to/your/site-packages')

this is used for debugging
after everything was installed and is ready to meka a http request
run this from the command line:
python -m python -m win32traceutil
It will give you debug output from this script
(remove the 3 lines for production use)
import sys
if hasattr(sys, "isapidllhandle"):
 import win32traceutil

this is for setting up a path to a temporary
directory for egg cache.
import os
os.environ['PYTHON_EGG_CACHE'] = '/path/to/writable/dir'

The entry point for the ISAPI extension.
def __ExtensionFactory__():
 from paste.deploy import loadapp
 import isapi_wsgi
 from logging.config import fileConfig

 appdir = '/path/to/your/pyramid/project'
 configfile = 'production.ini'
 con = appdir + configfile

 fileConfig(con)
 application = loadapp('config:' + configfile, relative_to=appdir)
 return isapi_wsgi.ISAPIThreadPoolHandler(application)

ISAPI installation
if __name__ == '__main__':
 from isapi.install import ISAPIParameters, ScriptMapParams, VirtualDirParameters, HandleCommandLine

 params = ISAPIParameters()
 sm = [
 ScriptMapParams(Extension="*", Flags=0)
]

 # if name = "/" then it will install on root
 # if any other name then it will install on virtual host for that name
 vd = VirtualDirParameters(Name="/",
 Description="Description of your proj",
 ScriptMaps=sm,
 ScriptMapUpdate="replace"
)

 params.VirtualDirs = [vd]
 HandleCommandLine(params)

Install your Pyramid project as Virtual Host or root feature

Activate your virtual env and run the stript:

python install_website.py install --server=<name of your website>

Restart your website from IIS.

Development Tools

This section is a collection of development tools and tips, resource files, and
other things that help make writing code in Python for Pyramid easier and more
fun.

	Using PyCharm with Pyramid
	Install Python

	Install PyCharm

	Configure PyCharm

	Clone the Pyramid repository

	Install development and documentation requirements

	Template languages

	Creating a Pyramid project

	Debugging

Using PyCharm with Pyramid

This tutorial is a very brief overview of how to use PyCharm with Pyramid.
PyCharm [https://www.jetbrains.com/pycharm/] is an Integrated Development
Environment (IDE) for Python programmers. It has numerous features including
code completion, project management, version control system (git, Subversion,
etc.), debugger, and more.

See also

See also Paul Everitt's video, Python 3 Web Development with
Pyramid and PyCharm [https://blog.jetbrains.com/blog/2013/10/21/webinar-recording-production-python-3-web-development-with-pyramid-and-pycharm/]
(about 1 hour in length).

This tutorial is a continually evolving document. Both PyCharm and Pyramid are
under active development, and changes to either may necessitate changes to
this document. In addition, there may be errors or omissions in this
document, and corrections and improvements through a pull request are most
welcome.

Note

This guide was written for PyCharm 2.7.3, although many of the
topics apply for current versions of PyCharm [https://www.jetbrains.com/pycharm/]. There
are now two editions for PyCharm [https://www.jetbrains.com/pycharm/features/editions_comparison_matrix.html]:
Professional Edition and a free Community Edition. PyCharm Professional
Edition includes support for Pyramid, making installation and configuration
of Pyramid much easier. Pyramid integration is not available in the free
edition, so this tutorial will help you get started with Pyramid in that
version.

There is also a free PyCharm Edu [https://www.jetbrains.com/pycharm-edu/] which is designed to help
programmers learn Python programming and for educators to create lessons in
Python programming.

To get started with Pyramid in PyCharm, we need to install prerequisite
software.

	Python

	PyCharm and certain Python packages

	Pyramid and its requirements

Install Python

You can download installers for Mac OS X and Windows, or source tarballs for
Linux, Unix, or Mac OS X from python.org Download [https://www.python.org/downloads/]. Follow the instructions in the README files.

Install PyCharm

PyCharm is a commercial application that requires a license. Several license
types are available depending on your usage [https://www.jetbrains.com/pycharm/buy/index.jsp].

Pyramid is an open source project, and on an annual basis fulfills the terms of
the Free Open Source License [https://www.jetbrains.com/buy/opensource/?product=pycharm] with JetBrains
for the use of PyCharm to develop for Pyramid and other projects under the
Pylons Project. If you are a contributor to Pyramid or the Pylons Project, and
would like to use our annual license, please contact the license maintainer
stevepiercy in the #pyramid channel on irc.freenode.net.

Alternatively you can download a 30-day trial of PyCharm or purchase a license [http://www.jetbrains.com/pycharm/buy/index.jsp] for development or training
purposes under any other license.

Download PyCharm [http://www.jetbrains.com/pycharm/download/index.html] and
follow the installation instructions on that web page.

Configure PyCharm

Create a New Project

Launch the PyCharm application.

From the Start Up screen, click Create New Project.

[image: ../_images/start_up_screen.png]
If the Start Up screen does not appear, you probably have an existing project
open. Close the existing project and the Start Up screen will appear.

[image: ../_images/create_new_project.png]
In the Create New Project dialog window do the following.

	Enter a Project name. The Location should automatically populate as you
type. You can change the path as you wish. It is common practice to use the
path ~/projects/ to contain projects. This location shall be referred to
as your "project directory" throughout the rest of this document.

	Project type should be Empty project.

	For Interpreter, click the ellipsis button to create a new virtual
environment.

A new window appears, "Python Interpreters".

Create or Select a Python Interpreter

[image: ../_images/python_interpreters_1.png]

	Either click the + button to add a new Python interpreter for Python
2.7 (the Python 2.7 installer uses the path
/Library/Frameworks/Python.framework/Versions/2.7/bin), or use an existing
Python interpreter for Python 2.7. PyCharm will take a few seconds to add a
new interpreter.

[image: ../_images/python_interpreters_2.png]

Create a Virtual Environment

	Click the button with the Python logo and a green "V". A new window appears,
"Create Virtual Environment".

[image: ../_images/create_virtual_environment.png]

	Enter a Virtual Environment name.

	The Location should automatically populate as you type. You can change the
path as you wish.

	The Base interpreter should be already selected, but if not, select
/Library/Frameworks/Python.framework/Versions/2.7/bin or other Python 2.7
interpreter.

	Leave the box unchecked for "Inherit global site packages".

	Click "OK". PyCharm will set up libraries and packages, and return you to
the Python Interpreters window.

Install setuptools and pyramid Packages

If you already have setuptools installed, you can skip this step.

In the Python Interpreters window with the just-created virtual environment
selected in the top pane, in the lower pane select the Packages tab, and click
the Install button. The Available Packages window appears.

[image: ../_images/install_package.png]
In the Available Packages window, in the search bar, enter "setuptools".
Select the plain old "setuptools" package, and click the Install Package button
and wait for the status message to disappear. PyCharm will install the package
and any dependencies.

[image: ../_images/install_package_setuptools.png]
Repeat the previous step, except use "pyramid" for searching and selecting.

[image: ../_images/install_package_pyramid.png]
When PyCharm finishes installing the packages, close the Available Packages
window.

In the Python Interpreters window, click the OK button.

In the Create New Project window, click the OK button.

If PyCharm displays a warning, click the Yes button. PyCharm opens the new
project.

Clone the Pyramid repository

By cloning the Pyramid repository, you can contribute changes to the code or
documentation. We recommend that you fork the Pyramid repository to your own
GitHub account, then clone your forked repository, so that you can commit your
changes to your GitHub repository and submit pull requests to the Pyramid
project.

In PyCharm, select VCS > Enable Version Control Integration..., then select
Git as your VCS and click the OK button.

See Cloning a Repository from GitHub [https://www.jetbrains.com/help/pycharm/cloning-a-repository-from-github.html]
in the PyCharm documentation for more information on using GitHub and git in
PyCharm.

We will refer to the cloned repository of Pyramid on your computer as your
"local Pyramid repository".

Install development and documentation requirements

In order to contribute bug fixes, features, and documentation changes to
Pyramid, you must install development and documentation requirements into your
virtual environment. Pyramid uses Sphinx and reStructuredText for
documentation.

	In PyCharm, select Run > Edit Configurations.... The Run/Debug
Configurations window appears.

[image: ../_images/edit_run_debug_configurations.png]

	Click the "+" button, then select Python to add a new Python run
configuration.

	Name the configuration "setup dev".

	Either manually enter the path to the setup.py script or click the ellipsis
button to navigate to the pyramid/setup.py path and select it.

	For Script parameters enter develop.

	Click the "Apply" button to save the run configuration.

While we're here, let's duplicate this run configuration for installing the
documentation requirements.

	Click the "Copy Configuration" button. Its icon looks like two dog-eared
pages, with a blue page on top of a grey page.

	Name the configuration "setup docs".

	Leave the path as is.

	For Script parameters enter docs.

	Click the "Apply" button to save the run configuration.

	Click the "OK" button to return to the project window.

In the PyCharm toolbar, you will see a Python icon and your run configurations.

[image: ../_images/run_configuration.png]
First select "setup dev", and click the "run" button (the green triangle). It
may take some time to install the requirements. Second select "setup docs",
and click the "run" button again.

To build docs, let's create a new run configuration.

	In PyCharm, select Run > Edit Configurations....

	Click the "+" button, then select Python docs > Sphinx Task to add a new
docs build run configuration.

	Select the command HTML.

	The Project and Project interpreter should already be selected.

	Enter appropriate values for the source, build, and current working
directories.

You will now be ready to hack in and contribute to Pyramid.

Template languages

To configure the template languages Mako, Jinja 2, and Chameleon first see the
PyCharm documentation Python Template Languages [https://www.jetbrains.com/help/pycharm/template-languages.html] to
select the template language for your project, then see Configuring Template
Languages [https://www.jetbrains.com/help/pycharm/configuring-template-languages.html]
to both configure the template language and mark folders as Sources and
Templates for your project.

Creating a Pyramid project

The information for this section is derived from Creating a Pyramid Project [https://docs.pylonsproject.org/projects/pyramid/en/master/narr/project.html]
and adapted for use in PyCharm.

Creating a Pyramid project using scaffolds

Within PyCharm, you can start a project using a scaffold by doing the
following.

	Select Run > Edit Configurations....

	Click the "+" button, then select Python to add a new Python run
configuration.

	Name the configuration "pcreate".

	Either manually enter the path to the pcreate script or click the ellipsis
button to navigate to the $VENV/bin/pcreate path and select it.

	For Script parameters enter -s starter MyProject. "starter" is the name of
one of the scaffolds included with Pyramid, but you can use any scaffold.
"MyProject" is the name of your project.

	Select the directory into which you want to place MyProject. A common
practice is ~/projects/.

	Click the OK button to save the run configuration.

	Select Run > Run 'pcreate' to run the run configuration. Your project will
be created.

	Select File > Open directory, select the directory where you created your
project MyProject, and click the Choose button. You will be prompted to
open the project, and you may find it convenient to select "Open in current
window", and check "Add to currently open projects".

	Finally set the Project Interpreter to your virtual environment or verify it
as such. Select PyCharm > Preferences... > Project Interpreter, and verify
that the project is using the same virtual environment as the parent project.

	If a yellow bar warns you to install requirements, then click link to do so.

Installing your newly created project for development

We will create another run configuration, just like before.

	In PyCharm, select the setup.py script in the MyProject folder. This
should populate some fields with the proper values.

	Select Run > Edit Configurations....

	Click the "+" button, then select Python to add a new Python run
configuration.

	Name the configuration "MyProject setup develop".

	Either manually enter the path to the setup.py script in the MyProject
folder or click the ellipsis button to navigate to the path and select it.

	For Script parameters enter develop.

	For Project, select "MyProject".

	For Working directory, enter or select the path to MyProject.

	Click the "Apply" button to save the run configuration.

	Finally run the run configuration "MyProject setup develop". Your project
will be installed.

Running the tests for your application

We will create yet another run configuration. [If you know of an easier method
while in PyCharm, please submit a pull request.]

	Select Run > Edit Configurations....

	Select the previous run configuration "MyProject setup develop", and click
the Copy Configuration button.

	Name the configuration "MyProject setup test".

	The path to the setup.py script in the MyProject folder should already be
entered.

	For Script parameters enter test -q.

	For Project "MyProject" should be selected.

	For Working directory, the path to MyProject should be selected.

	Click the "Apply" button to save the run configuration.

	Finally run the run configuration "MyProject setup test". Your project will
run its unit tests.

Running the project application

When will creation of run configurations end? Not today!

	Select Run > Edit Configurations....

	Select the previous run configuration "MyProject setup develop", and click
the Copy Configuration button.

	Name the configuration "MyProject pserve".

	Either manually enter the path to the pserve script or click the ellipsis
button to navigate to the $VENV/bin/pserve path and select it.

	For Script parameters enter development.ini.

	For Project "MyProject" should be selected.

	For Working directory, the path to MyProject should be selected.

	Click the "Apply" button to save the run configuration.

	Finally run the run configuration "MyProject pserve". Your project will run.
Click the link in the Python console or visit the URL http://0.0.0.0:6543/ in
a web browser.

You can also reload any changes to your project's .py or .ini files
automatically by using the Script parameters development.ini --reload.

Debugging

See the PyCharm documentation Working with Run/Debug Configurations [https://www.jetbrains.com/help/pycharm/run-debug-configuration.html] for
details on how to debug your Pyramid app in PyCharm.

First, you cannot simultaneously run and debug your app. Terminate your app if
it is running before you debug it.

To debug your app, open a file in your app that you want to debug and click on
the gutter (the space between line numbers and the code) to set a breakpoint.
Then select "MyProject pserve" in the PyCharm toolbar, then click the debug
icon (which looks like a green ladybug). Your app will run up to the first
breakpoint.

Forms

Pyramid does not include a form library because there are several good ones on
PyPI, but none that is obviously better than the others.

Deform [https://docs.pylonsproject.org/projects/deform/en/latest/] is a form library written for Pyramid, and maintained by the Pylons
Project. It has a demo [https://github.com/Pylons/deform].

You can use WebHelpers and FormEncode in Pyramid just like in Pylons. Use
pyramid_simpleform [https://pythonhosted.org/pyramid_simpleform/] to organize your view code. (This replaces Pylons'
@validate decorator, which has no equivalent in Pyramid.) FormEncode's
documentation is a bit obtuse and sparse, but it's so widely flexible that you
can do things in FormEncode that you can't in other libraries, and you can also
use it for non-HTML validation; e.g., to validate the settings in the INI file.

Some Pyramid users have had luck with WTForms, Formish, ToscaWidgets, etc.

There are also form packages tied to database records, most notably
FormAlchemy. These will publish a form to add/modify/delete records of a
certain ORM class.

Articles

	File Uploads

File Uploads

There are two parts necessary for handling file uploads. The first is to
make sure you have a form that's been setup correctly to accept files. This
means adding enctype attribute to your form element with the value of
multipart/form-data. A very simple example would be a form that accepts
an mp3 file. Notice we've setup the form as previously explained and also
added an input element of the file type.

	1
2
3
4
5
6
7
8

	<form action="/store_mp3_view" method="post" accept-charset="utf-8"
 enctype="multipart/form-data">

 <label for="mp3">Mp3</label>
 <input id="mp3" name="mp3" type="file" value="" />

 <input type="submit" value="submit" />
</form>

The second part is handling the file upload in your view callable (above,
assumed to answer on /store_mp3_view). The uploaded file is added to the
request object as a cgi.FieldStorage object accessible through the
request.POST multidict. The two properties we're interested in are the
file and filename and we'll use those to write the file to disk:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	import os
import uuid
import shutil
from pyramid.response import Response

def store_mp3_view(request):
 # ``filename`` contains the name of the file in string format.
 #
 # WARNING: this example does not deal with the fact that IE sends an
 # absolute file *path* as the filename. This example is naive; it
 # trusts user input.

 filename = request.POST['mp3'].filename

 # ``input_file`` contains the actual file data which needs to be
 # stored somewhere.

 input_file = request.POST['mp3'].file

 # Note that we are generating our own filename instead of trusting
 # the incoming filename since that might result in insecure paths.
 # Please note that in a real application you would not use /tmp,
 # and if you write to an untrusted location you will need to do
 # some extra work to prevent symlink attacks.

 file_path = os.path.join('/tmp', '%s.mp3' % uuid.uuid4())

 # We first write to a temporary file to prevent incomplete files from
 # being used.

 temp_file_path = file_path + '~'

 # Finally write the data to a temporary file
 input_file.seek(0)
 with open(temp_file_path, 'wb') as output_file:
 shutil.copyfileobj(input_file, output_file)

 # Now that we know the file has been fully saved to disk move it into place.

 os.rename(temp_file_path, file_path)

 return Response('OK')

Logging

	Logging Exceptions To Your SQLAlchemy Database

For more information on logging, see the Logging [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html]
section of the Pyramid documentation.

Logging Exceptions To Your SQLAlchemy Database

So you'd like to log to your database, rather than a file. Well, here's
a brief rundown of exactly how you'd do that.

First we need to define a Log model for SQLAlchemy (do this in
myapp.models):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	from sqlalchemy import Column
from sqlalchemy.types import DateTime, Integer, String
from sqlalchemy.sql import func
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Log(Base):
 __tablename__ = 'logs'
 id = Column(Integer, primary_key=True) # auto incrementing
 logger = Column(String) # the name of the logger. (e.g. myapp.views)
 level = Column(String) # info, debug, or error?
 trace = Column(String) # the full traceback printout
 msg = Column(String) # any custom log you may have included
 created_at = Column(DateTime, default=func.now()) # the current timestamp

 def __init__(self, logger=None, level=None, trace=None, msg=None):
 self.logger = logger
 self.level = level
 self.trace = trace
 self.msg = msg

 def __unicode__(self):
 return self.__repr__()

 def __repr__(self):
 return "<Log: %s - %s>" % (self.created_at.strftime('%m/%d/%Y-%H:%M:%S'), self.msg[:50])

Not too much exciting is occuring here. We've simply created a
new table named 'logs'.

Before we get into how we use this table for good, here's a quick review
of how logging works in a script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	# http://docs.python.org/howto/logging.html#configuring-logging
import logging

create logger
logger = logging.getLogger('simple_example')
logger.setLevel(logging.DEBUG)

create console handler and set level to debug
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)

create formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

add formatter to ch
ch.setFormatter(formatter)

add ch to logger
logger.addHandler(ch)

'application' code
logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')

What you should gain from the above intro is that your handler
uses a formatter and does the heavy lifting of executing the
output of the logging.LogRecord. The output actually comes
from logging.Handler.emit, a method we will now override as
we create our SQLAlchemyHandler.

Let's subclass Handler now (put this in myapp.handlers):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	import logging
import traceback

import transaction

from models import Log, DBSession

class SQLAlchemyHandler(logging.Handler):
 # A very basic logger that commits a LogRecord to the SQL Db
 def emit(self, record):
 trace = None
 exc = record.__dict__['exc_info']
 if exc:
 trace = traceback.format_exc()
 log = Log(
 logger=record.__dict__['name'],
 level=record.__dict__['levelname'],
 trace=trace,
 msg=record.__dict__['msg'],)
 DBSession.add(log)
 transaction.commit()

For a little more depth, logging.LogRecord, for which record
is an instance, contains all it's nifty log information in it's
__dict__ attribute.

Now, we need to add this logging handler to our .ini configuration files.
Before we add this, our production.ini file should contain something like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	[loggers]
keys = root, myapp, sqlalchemy

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = WARN
handlers = console

[logger_myapp]
level = WARN
handlers =
qualname = myapp

[logger_sqlalchemy]
level = WARN
handlers =
qualname = sqlalchemy.engine
"level = INFO" logs SQL queries.
"level = DEBUG" logs SQL queries and results.
"level = WARN" logs neither. (Recommended for production systems.)

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

We must add our SQLAlchemyHandler to the mix. So make the following
changes to your production.ini file.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	[handlers]
keys = console, sqlalchemy

[logger_myapp]
level = DEBUG
handlers = sqlalchemy
qualname = myapp

[handler_sqlalchemy]
class = myapp.handlers.SQLAlchemyHandler
args = ()
level = NOTSET
formatter = generic

The changes we made simply allow Paster to recognize a new handler -
sqlalchemy, located at [handler_sqlalchemy]. Most everything
else about this configuration should be straightforward. If anything
is still baffling, then use this as a good opportunity to read the
Python logging documentation.

Below is an example of how you might use the logger in myapp.views:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	import logging
from pyramid.view import view_config
from pyramid.response import Response

log = logging.getLogger(__name__)

@view_config(route_name='home')
def root(request):
 log.debug('exception impending!')
 try:
 1/0
 except:
 log.exception('1/0 error')
 log.info('test complete')
 return Response("test complete!")

When this view code is executed, you'll see up to three (depending
on the level of logging you allow in your configuation file) records!

For more power, match this up with pyramid_exclog at
https://docs.pylonsproject.org/projects/pyramid_exclog/en/latest/

Porting Applications to Pyramid

Note: Other articles about Pylons applications are in the
Pyramid for Pylons Users section.

	Porting a Legacy Pylons Application Piecemeal

	Porting an Existing WSGI Application to Pyramid

Porting a Legacy Pylons Application Piecemeal

You would like to move from Pylons 1.0 to Pyramid, but you're not going to be
able manage a wholesale port any time soon. You're wondering if it would be
practical to start using some parts of Pyramid within an existing Pylons
project.

One idea is to use a Pyramid "NotFound view" which delegates to the existing
Pylons application, and port piecemeal:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	# ... obtain pylons WSGI application object ...
from mypylonsproject import thepylonsapp

class LegacyView(object):
 def __init__(self, app):
 self.app = app
 def __call__(self, request):
 return request.get_response(self.app)

if __name__ == '__main__':
 legacy_view = LegacyView(thepylonsapp)
 config = Configurator()
 config.add_view(context='pyramid.exceptions.NotFound', view=legacy_view)
 # ... rest of config ...

At that point, whenever Pyramid cannot service a request because the URL
doesn't match anything, it will invoke the Pylons application as a fallback,
which will return things normally. At that point you can start moving logic
incrementally into Pyramid from the Pylons application until you've ported
everything.

Porting an Existing WSGI Application to Pyramid

Pyramid is cool, but already-working code is cooler. You may not have the
time, money or energy to port an existing Pylons, Django, Zope, or other
WSGI-based application to Pyramid wholesale. In such cases, it can be useful
to incrementally port an existing application to Pyramid.

The broad-brush way to do this is:

	Set up an exception view that will be called whenever a NotFound
exception is raised by Pyramid.

	In this exception view, delegate to your already-written WSGI application.

Here's an example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from pyramid.wsgi import wsgiapp2
from pyramid.exceptions import NotFound

if __name__ == '__main__':
 # during Pyramid configuration (usually in your Pyramid project's
 # __init__.py), get a hold of an instance of your existing WSGI
 # application.
 original_app = MyWSGIApplication()

 # using the pyramid.wsgi.wsgiapp2 wrapper function, wrap the
 # application into something that can be used as a Pyramid view.
 notfound_view = wsgiapp2(original_app)

 # in your configuration, use the wsgiapp2-wrapped application as
 # a NotFound exception view
 config = Configurator()

 # ... your other Pyramid configuration ...
 config.add_view(notfound_view, context=NotFound)
 # .. the remainder of your configuration ...

When Pyramid cannot resolve a URL to a view, it will raise a NotFound
exception. The add_view statement in the example above configures
Pyramid to use your original WSGI application as the NotFound view. This
means that whenever Pyramid cannot resolve a URL, your original application
will be called.

Incrementally, you can begin moving features from your existing WSGI
application to Pyramid; if Pyramid can resolve a request to a view, the
Pyramid "version" of the application logic will be used. If it cannot, the
original WSGI application version of the logic will be used. Over time, you
can move all of the logic into Pyramid without needing to do it all at
once.

Pyramid for Pylons Users

	Updated

	2012-06-12

	Versions

	Pyramid 1.3

	Author

	Mike Orr

	Contributors

	

This guide discusses how Pyramid 1.3 differs from Pylons 1, and a few ways to
make it more like Pylons. The guide may also be helpful to readers coming from
Django or another Rails-like framework. The author has been a Pylons developer
since 2007. The examples are based on Pyramid's default SQLAlchemy application
and on the Akhet [https://docs.pylonsproject.org/projects/akhet/en/latest/] demo.

If you haven't used Pyramid yet you can read this guide to get an overview of
the differences and the Pyramid API. However, to actually start using Pyramid
you'll want to read at least the first five chapters of the Pyramid
manual [https://docs.pylonsproject.org/projects/pyramid/en/latest/] (through Creating a Pyramid Project [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/project.html]) and go through the Tutorials [https://docs.pylonsproject.org/projects/pyramid/en/latest/#tutorials].
Then you can come back to this guide to start designing your application, and
skim through the rest of the manual to see which sections cover which topics.

	Introduction and Creating an Application

	Launching the Application

	INI File

	The Main Function

	Models

	Views

	Route and View Examples

	Request and Response

	Templates

	Exceptions, HTTP Errors, and Redirects

	Static Files

	Sessions

	Deployment

	Authentication and Authorization

	Other Pyramid Features

	Migrating an Existing Pylons Application

Introduction and Creating an Application

Following along with the examples

The examples in this guide are based on (A) Pyramid 1.3's default SQLAlchemy
application and (B) the Akhet [https://docs.pylonsproject.org/projects/akhet/en/latest/] demo. (Akhet [https://docs.pylonsproject.org/projects/akhet/en/latest/] is an add-on package containing
some Pylons-like support features for Pyramid.) Here are the basic steps to
install and run these applications on Linux Ubuntu 11.10, but you should
read Creating a Pyramid Project [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/project.html] in the Pyramid manual [https://docs.pylonsproject.org/projects/pyramid/en/latest/] before doing so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	# Prepare virtual Python environment.

$ cd ~/workspace
$ virtualenv myvenv
$ source myvenv/bin/activate
(myvenv)$ pip install 'Pyramid>=1.3'

Create a Pyramid "alchemy" application and run it.

(myvenv)$ pcreate -s alchemy PyramidApp
(myvenv)$ cd PyramidApp
(myvenv)$ pip install -e .
(myvenv)$ initialize_PyramidApp_db development.ini
(myvenv)$ pserve development.ini
Starting server in PID 3871.
serving on http://0.0.0.0:6543

Press ctrl-C to quit server

Check out the Akhet demo and run it.

(myvenv)$ git clone git://github.com/mikeorr/akhet_demo
(myvenv)$ cd akhet_demo
(myvenv)$ pip install -e .
(myvenv)$ pserve development.ini
Starting server in PID 3871.
serving on http://0.0.0.0:6543

Check out the Pyramid source and Akhet source to study.

(myvenv)$ git clone git://github.com/pylons/pyramid
(myvenv)$ git clone git://github.com/pylons/akhet

(myvenv)$ ls -F
akhet/
akhet_demo/
PyramidApp/
pyramid/
myvenv/

Things to look for: the "DT" icon at the top-right of the page is the debug
toolbar, which Pylons doesn't have. The "populate_PyramidApp" script (line 13)
creates the database. If you skip this step you'll get an exception on the home
page; you can "accidentally" do this to see Pyramid's interactive traceback.

The p* Commands

Pylons uses a third-party utility paster to create and run applications.
Pyramid replaces these subcommands with a series of top-level commands
beginning with "p":

	Pylons

	Pyramid

	Description

	Caveats

	paster create

	pcreate

	Create an app

	Option -s instead of -t

	paster serve

	pserve

	Run app based on INI file

	-

	paster shell

	pshell

	Load app in Python shell

	Fewer vars initialized

	paster setup-app

	populate_App

	Initialize database

	"App" is application name

	paster routes

	proutes

	List routes

	-

	-

	ptweens

	List tweens

	-

	-

	pviews

	List views

	-

In many cases the code is the same, just copied into Pyramid and made Python 3
compatible. Paste has not been ported to Python 3, and the Pyramid developers
decided it contained too much legacy code to make porting worth it. So they
just ported the parts they needed. Note, however, that PasteDeploy is ported
to Python 3 and Pyramid uses it, as we'll see in the next chapter. Likewise,
several other packages that were earlier spun out of Paste -- like WebOb --
have been ported to Python 3 and Pyramid still uses them. (They were ported
parly by Pyramid developers.)

Scaffolds

Pylons has one paster template that asks questions
about what kind of application you want to create. Pyramid does not ask
questions, but instead offers several scaffolds to choose from. Pyramid 1.3
includes the following scaffolds:

	Routing mechanism

	Database

	Pyramid scaffold

	URL dispatch

	SQLAlchemy

	alchemy

	URL dispatch

	-

	starter

	Traversal

	ZODB

	zodb

The first two scaffolds are the closest to Pylons because they use URL
dispatch, which is similar to Routes. The only difference between them is
whether a SQLAlchemy database is configured for you. The third scaffold uses Pyramid's other
routing mechanism, Traversal. We won't cover traversal in this guide, but it's
useful in applications that allow users to create URLs at arbitrary depths.
URL dispatch is more suited to applications with fixed-depth URL hierarchies.

To see what other kinds of Pyramid applications are possible, take a look at
the Kotti and Ptah distributions. Kotti is a content management system, and
serves as an example of traversal using SQLAlchemy.

Directory Layout

The default 'alchemy' application contains the following files after you create and install it:

PyramidApp
├── CHANGES.txt
├── MANIFEST.in
├── README.txt
├── development.ini
├── production.ini
├── setup.cfg
├── setup.py
├── pyramidapp
│ ├── __init__.py
│ ├── models.py
│ ├── scripts
│ │ ├── __init__.py
│ │ └── populate.py
│ ├── static
│ │ ├── favicon.ico
│ │ ├── pylons.css
│ │ ├── pyramid.png
│ ├── templates
│ │ └── mytemplate.pt
│ ├── tests.py
│ └── views.py
└── PyramidApp.egg-info
 ├── PKG-INFO
 ├── SOURCES.txt
 ├── dependency_links.txt
 ├── entry_points.txt
 ├── not-zip-safe
 ├── requires.txt
 └── top_level.txt

(We have omitted some static files.) As you see, the directory structure is
similar to Pylons but not identical.

Launching the Application

Pyramid and Pylons start up identically because they both use PasteDeploy and
its INI-format configuration file. This is true even though Pyramid 1.3
replaced "paster serve" with its own "pserve" command. Both "pserve" and
"paster serve" do the following:

	Read the INI file.

	Instantiate an application based on the "[app:main]" section.

	Instantiate a server based on the "[server:main]" section.

	Configure Python logging based on the logging sections.

	Call the server with the application.

Steps 1-3 and 5 are essentially wrappers around PasteDeploy. Only step 2 is
really "using Pyramid", because only the application depends on other parts of
Pyramid. The rest of the routine is copied directly from "paster serve" and
does not depend on other parts of Pyramid.

The way the launcher instantiates an application is often misunderstood so
let's stop for a moment and detail it. Here's part of the app section in the
Akhet Demo:

[app:main]
use = egg:akhet_demo#main
pyramid.reload_templates = true
pyramid.debug_authorization = false

The "use=" line indirectly names a Python callable to load. "egg:" says to look up a
Python object by entry point. (Entry points are a feature provided by
Setuptools, which is why Pyramid/Pylons require it or Distribute to be
installed.) "akhet_demo" is the name of the Python
distribution to look in (the Pyramid application), and "main" is the entry
point. The launcher calls
pkg_resources.require("akhet_demo#main") in Setuptools, and Setuptools
returns the Python object. Entry points are defined in the distribution's
setup.py, and the installer writes them to an entry points file. Here's the
akhet_demo.egg-info/entry_points.txt file:

[paste.app_factory]
main = akhet_demo:main

"paste.app_factory" is the entry point group, a name publicized in the
PasteDeploy docs for all applications that want to be compatible with it.
"main" (on the left side of the equal sign) is the entry point.
"akhet_demo:main" says to import the akhet_demo package and load a "main"
attribute. This is our main() function defined in
akhet_demo/__init__.py. The other options in the "[app:main]" section
become keyword arguments to this callable. These options are called "settings"
in Pyramid and "config variables" in Pylons. (The options in the "[DEFAULT]"
section are also passed as default values.) Both frameworks provide a way to
access these variables in application code. In Pyramid they're in the
request.registry.settings dict. In Pylons they're in the pylons.config
magic global.

The launcher loads the server in the same way, using the "[server:main]"
section.

More details: The heavy lifting is done by loadapp() and loadserver()
in paste.deploy.loadwsgi. Loadwsgi is obtuse and undocumented, but
pyramid.paster has some convenience functions that either call or mimic some of
its routines.

Alternative launchers such as mod_wsgi read only the "[app:main]" section and
ignore the server section, but they're still using PasteDeploy or the
equivalent. It's also possible to instantiate the application manually without an
INI file or PasteDeploy, as we'll see in the chapter called "The Main Function".

Now that we know more about how the launcher loads the application, let's look
closer at a Pyramid application itself.

INI File

The "[app:main]" section in Pyramid apps has different options than its Pylons
counterpart. Here's what it looks like in Pyramid's "alchemy" scaffold:

[app:main]
use = egg:{{project}}

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes =
 pyramid_debugtoolbar
 pyramid_tm

sqlalchemy.url = sqlite:///%(here)s/{{project}}.db

The "pyramid.includes=" variable lists a number of "tweens" to activate. A
tween is like a WSGI middleware but specific to Pyramid. "pyramid_debugtoolbar"
is the debug toolbar; it provides information on the request variables and
runtime state on every page.

"pyramid_tm" is a transaction manager. This has no equivalent in Pylons but is
used in TurboGears and BFG. It provides a request-wide transaction that manages
your SQLAlchemy session(s) and potentially other kinds of transactions like
email sending. This means you don't have to call DBSession.commit() in your
view. At the end of the request, it will automatically commit the database
session(s) and send any pending emails, unless an uncaught exception was raised
during the session, in which case it will roll them back. It has functions to
allow you to commit or roll back the request-wide transaction at any time, or
to "doom" it to prevent any other code from committing anything.

The other "pyramid.*" options are for debugging. Set any of these
to true to tell that subsystem to log what it's
doing. The messages will be logged at the DEBUG level. (The reason these aren't
in the logging configuration in the bottom part of the INI file is that they
were established early in Pyramid's history before it had adopted INI-style
logging configuration.)

If "pyramid.reload_templates=true", the template engine will check the
timestamp of the template source file every time it renders a template, and
recompile the template if its source has changed. This works only for template
engines and Pyramid-template adapaters that support this feature. Mako and
Chameleon do.

The "sqlalchemy.url=" line is for SQLAlchemy. "%(here)s" expands to the path
of the directory containing the INI file. You can add settings for any library
that understands them, including SQLAlchemy, Mako, and Beaker. You can also
define custom settings that your application code understands, so that you can
deploy it with different configurations without changing the code. This is all
the same as in Pylons.

production.ini has the same app settings as development.ini, except that
the "pyramid_debugtoolbar" tween is not present, and all the debug settings
are false. The debug toolbar must be disabled in production because it's a
potential security hole: anybody who can force an exception and get an
interactive traceback can run arbitrary Python commmands in the application
process, and thus read or modify files or execute programs. So never enable
the debug toolbar when the site is accessible on the Internet, except perhaps
in a wide-area development scenario where higher-level access restrictions
(Apache) allow only trusted developers and beta testers to get to the site.

Pyramid no longer uses WSGI middleware by default. In most cases you can find a
tween or Pyramid add-on package that does the equivalent. If you need to
activate your own middleware, do it the same way as in Pylons; the syntax is in
the PasteDeploy manual [https://web.archive.org/web/20161013165027/http://pythonpaste.org/deploy/]. But first consider whether making a Pyramid tween
would be just as convenient. Tweens have a much simpler API than middleware,
and have access to the view's request and response objects. The WSGI protocol is
extraordinarily difficult to implement correctly due to edge cases, and many
existing middlewares are incorrect. Let server developers and framework
developers worry about those issues; you can just write a tween and be out on the
golf course by 3pm.

The Main Function

Both Pyramid and Pylons have a top-level function that returns a WSGI
application. The Pyramid function is main in pyramidapp/__init__.py.
The Pylons function is make_app in pylonsapp/config/middleware.py. Here's
the main function generated by Pyramid's 'starter' scaffold:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.config import Configurator

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings)
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('home', '/')
 config.scan()
 return config.make_wsgi_app()

Pyramid has less boilerplate code than Pylons, so the main function subsumes
Pylons' middleware.py, environment.py, and routing.py modules. Pyramid's
configuration code is just 5 lines long in the default application, while
Pylons' is 35.

Most of the function's body deals with the Configurator (config).
That isn't the application object; it's a helper that will instantiate the
application for us. You pass in the settings as a dict to the constructor (line
6), call various methods to set up routes and such, and finally call
config.make_wsgi_app() to get the application, which the main function
returns. The application is an instance of pyramid.router.Router. (A Pylons
application is an instance of a PylonsApp subclass.)

Dotted Python names and asset specifications

Several config methods accept either an object (e.g., a module or callable) or
a string naming the object. The latter is called a dotted Python name. It's a
dot-delimited string specifying the absolute name of a module or a top-level
object in a module: "module", "package.module",
"package.subpackage.module.attribute". Passing string names allows you to
avoid importing the object merely to pass it to a method.

If the string starts with a leading dot, it's relative to some parent package.
So in this main function defined in mypyramiapp/__init__.py, the
parent package is mypyramidapp. So the name ".views" refers to
mypyramidapp/views.py. (Note: in some cases it can sometimes be tricky to
guess what Pyramid thinks the parent package is.)

Closely associated with this is a static asset specification, which names a
non-Python file or directory inside a Python package. A colon
separates the package name from the non-Python subpath:
"myapp:templates/mytemplate.pt", "myapp:static", "myapp:assets/subdir1".
If you leave off the first part and the colon (e.g., "templates/mytemplate.pt",
it's relative to some current package.

An alternative syntax exists, with a colon between a module and an attribute:
"package.module:attribute". This usage is discouraged; it exists for
compatibility with Setuptools' resource syntax.

Configurator methods

The Configurator has several methods to customize the application. Below are
the ones most commonly used in Pylons-like applications, in order by how
widely they're used. The full list of methods is in Pyramid's Configurator
API [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html].

	
add_route(...)

	Register a route for URL dispatch.

	
add_view(...)

	Register a view. Views are equivalent to Pylons' controller actions.

	
scan(...)

	A wrapper for registering views and certain other things. Discussed in the
views chapter.

	
add_static_view(...)

	Add a special view that publishes a directory of static files. This is
somewhat akin to Pylons' public directory, but see the static fiels chapter
for caveats.

	
include(callable, route_prefix=None)

	Allow a function to customize the configuration further. This is a
wide-open interface which has become very popular in Pyramid. It has three
main use cases:

	To group related code together; e.g., to define your routes in a
separate module.

	To initialize a third-party add-on. Many add-ons provide an include
function that performs all the initialization steps for you.

	To mount a subapplication at a URL prefix. A subapplication is just any
bundle of routes, views and templates that work together. You can use this
to split your application into logical units. Or you can write generic
subapplications that can be used in several applications, or mount a
third-party subapplication.

If the add-on or subapplication has options, it will typically read them
from the settings, looking for settings with a certain prefix and
converting strings to their proper type. For instance, a session manager may
look for keys starting with "session." or "thesessionmanager." as in
"session.type". Consult the add-on's documentation to see what prefix it
uses and which options it recognizes.

The callable argument should be a function, a module, or a dotted Python
name. If it resolves to a module, the module should contain an includeme
function which will be called. The following are equivalent:

	1
2
3
4
5
6
7

	config.include("pyramid_beaker")

import pyramid_beaker
config.include(pyramid_beaker)

import pyramid_beaker
config.include(pyramid_beaker.includeme)

If route_prefix is specified, it should be a string that will be
prepended to any URLs generated by the subconfigurator's add_route
method. Caution: the route names must be unique across the main
application and all subapplications, and route_prefix does not touch the
names. So you'll want to name your routes "subapp1.route1" or
"subapp1_route1" or such.

	
add_subscriber(subscriber, iface=None)

	Insert a callback into Pyramid's event loop to customize how it processes
requests. The Renderers chapter has an example of its use.

	
add_renderer(name, factory)

	Add a custom renderer. An example is in the Renderers chapter.

	
set_authentication_policy, set_authorization_policy, set_default_permission

	Configure Pyramid's built-in authorization mechanism.

Other methods sometimes used: add_notfound_view, add_exception_view,
set_request_factory, add_tween, override_asset (used in theming).
Add-ons can define additional config methods by calling config.add_directive.

Route arguments

config.add_route accepts a large number of keyword
arguments. They are logically divided into predicate argumets and
non-predicate arguments. Predicate arguments determine whether the route matches the
current request. All predicates must succeed in order for the route to be
chosen. Non-predicate arguments do not affect whether the route matches.

name

[Non-predicate] The first positional arg; required. This must be a unique
name for the route. The name is used to identify the route when registering
views or generating URLs.

pattern

[Predicate] The second positional arg; required. This is the URL path with
optional "{variable}" placeholders; e.g., "/articles/{id}" or
"/abc/{filename}.html". The leading slash is optional. By default the
placeholder matches all characters up to a slash, but you can specify a
regex to make it match less (e.g., "{variable:d+}" for a numeric variable)
or more ("{variable:.*}" to match the entire rest of the URL including
slashes). The substrings matched by the placeholders will be available as
request.matchdict in the view.

A wildcard syntax "*varname" matches the rest of the URL and puts it into
the matchdict as a tuple of segments instead of a single string. So a
pattern "/foo/{action}/*fizzle" would match a URL "/foo/edit/a/1" and
produce a matchdict {'action': u'edit', 'fizzle': (u'a', u'1')}.

Two special wildcards exist, "*traverse" and "*subpath". These are used
in advanced cases to do traversal on the remainder of the URL.

XXX Should use raw string syntax for regexes with backslashes (d) ?

request_method

[Predicate] An HTTP method: "GET", "POST", "HEAD", "DELETE", "PUT". Only
requests of this type will match the route.

request_param

[Predicate] If the value doesn't contain "=" (e.g., "q"), the request must
have the specified parameter (a GET or POST variable). If it does contain
"=" (e.g., "name=value"), the parameter must also have the specified value.

This is especially useful when tunnelling other HTTP methods via
POST. Web browsers can't submit a PUT or DELETE method via a form, so it's
customary to use POST and to set a parameter _method="PUT". The
framework or application sees the "_method" parameter and pretends the
other HTTP method was requested. In Pyramid you can do this with
request_param="_method=PUT.

xhr

[Predicate] True if the request must have an "X-Requested-With" header. Some
Javascript libraries (JQuery, Prototype, etc) set this header in AJAX
requests to distinguish them from user-initiated browser requests.

custom_predicates

[Predicate] A sequence of callables which will be called to determine
whether the route matches the request. Use this feature if none of the
other predicate arguments do what you need. The request will match the route
only if all callables return True. Each callable will receive two
arguments, info and request. request is the current request.
info is a dict containing the following:

info["match"] => the match dict for the current route
info["route"].name => the name of the current route
info["route"].pattern => the URL pattern of the current route

You can modify the match dict to affect how the view will see it. For
instance, you can look up a model object based on its ID and put the object
in the match dict under another key. If the record is not found in the
model, you can return False.

Other arguments available: accept, factory, header, path_info, traverse.

Models

Models are essentially the same in Pyramid and Pylons because the framework
is only minimally involved with the model unlike, say, Django where the ORM
(object-relational mapper) is framework-specific and other parts of the
framework assume it's that specific kind. In Pyramid and Pylons, the
application skeleton merely suggests where to put the models and initializes a
SQLAlchemy database connection for you. Here's the
default Pyramid configuration (comments stripped and imports squashed):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	# pyramidapp/__init__.py
from sqlalchemy import engine_from_config
from .models import DBSession

def main(global_config, **settings):
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 ...

pyramidapp/models.py
from sqlalchemy import Column, Integer, Text
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import scoped_session, sessionmaker
from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

class MyModel(Base):
 __tablename__ = 'models'
 id = Column(Integer, primary_key=True)
 name = Column(Text, unique=True)
 value = Column(Integer)

 def __init__(self, name, value):
 self.name = name
 self.value = value

and its INI files:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# development.ini
[app:main]

Pyramid only
pyramid.includes =
 pyramid_tm

Pyramid and Pylons
sqlalchemy.url = sqlite:///%(here)s/PyramidApp.db

[logger_sqlalchemy]

Pyramid and Pylons
level = INFO
handlers =
qualname = sqlalchemy.engine
"level = INFO" logs SQL queries.
"level = DEBUG" logs SQL queries and results.
"level = WARN" logs neither. (Recommended for production systems.)

It has the following differences from Pylons:

	ZopeTransactionExtension and the "pyramid_tm" tween.

	"models" (plural) instead of "model" (singular).

	A module rather than a subpackage.

	"DBSession" instead of "Session".

	No init_model() function.

	Slightly different import style and variable naming.

Only the first one is an essential difference; the rest are just aesthetic
programming styles. So you can change them without harming anything.

The model-models difference is due to an ambiguity in how the word "model" is
used. Some people say "a model" to refer to an individual ORM class, while
others say "the model" to refer to the entire collection of ORM classes in an
application. This guide uses the word both ways.

What belongs in the model?

Good programming practice recommends keeping your data classes separate from
user-interface classes. That way the user interface can change without
affecting the data and vice-versa. The model is where the data classes go.
For instance, a Monopoly game has players, a board, squares, title deeds,
cards, etc, so a Monopoly program would likely have classes for each of these.
If the application requires saving data between runs (persistence), the data
will have to be stored in a database or equivalent. Pyramid can work with a
variety of database types: SQL database, object database, key-value database
("NoSQL"), document database (JSON or XML), CSV files, etc. The most common
choice is SQLAlchemy, so that's the first configuration provided by Pyramid and
Pylons.

At minimum you should define your ORM classes in the model. You can also add
any business logic in the form of functions, class methods, or regular methods.
It's sometimes difficult to tell whether a particular piece of code belongs in
the model or the view, but we'll leave that up to you.

Another principle is that the model should not depend on the rest of the
application so that it can be used on its own; e.g., in utility programs or in
other applications. That also allows you to extract the data if the framework
or application breaks. So the view knows about the model but not vice-versa. Not
everybody agrees with this but it's a good place to start.

Larger projects may share a common model between multiple web applications and
non-web programs. In that case it makes sense to put the model in a separate
top-level package and import it into the Pyramid application.

Transaction manger

Pylons has never used a transaction manager but it's common in TurboGears and
Zope. A transaction manager takes care of the commit-rollback cycle for you.
The database session in both applications above is a scoped session, meaning
it's a threadlocal global and must be cleared out at the end of every request.
The Pylons app has special code in the base controller to clear out the
session. A transaction manager takes this a step further by committing any
changes made during the request, or if an exception was raised during the
request, it rolls back the changes. The ZopeTransactionExtension provides a
module-level API in case the view wants to customize when/whether committing
occurs.

The upshot is that your view method does not have to call
DBSession.commit(): the transaction manager will do it for you. Also, it doesn't
have to put the changes in a try-except block because the transaction manager
will call DBSession.rollback() if an exception occurs. (Many Pylons actions don't
do this so they're technically incorrect.) A side effect is that you cannot
call DBSession.commit() or DBSession.rollback() directly. If you want
to precisely control when something is committed, you'll have to do it this way:

	1
2
3
4
5

	import transaction

transaction.commit()
Or:
transaction.rollback()

There's also a transaction.doom() function which you can call to prevent
any database writes during this request, including those performed by
other parts of the application. Of course, this doesn't affect changes that
have already been committed.

You can customize the circumstances under which an automatic rollback occurs by
defining a "commit veto" function. This is described in the pyramid_tm
documentation.

Using traversal as a model

Pylons doesn't have a traversal mode, so you have to fetch database objects in
the view code. Pyramid's traversal mode essentially does this for you,
delivering the object to the view as its context, and handling "not found"
for you. Traversal resource tree thus almost looks like a second kind of model,
separate from models. (It's typically defined in a resources module.)
This raises the question of, what's the difference between the two? Does it
make sense to convert my model to traversal, or to traversal under the control
of a route? The issue comes up further with authorization, because Pyramid's
default authorization mechanism is designed for permissions (an access-control
list or ACL) to be attached to the context object. These are advanced
questions so we won't cover them here. Traversal has a learning curve, and it
may or may not be appropriate for different kinds of applications.
Nevertheless, it's good to know it exists so that you can explore it gradually
over time and maybe find a use for it someday.

SQLAHelper and a "models" subpackage

Earlier versions of Akhet used the SQLAHelper library to organize engines and
sessions. This is no longer documented because it's not that much benefit. The
main thing to remember is that if you split models.py into a package, beware
of circular imports. If you define the Base and DBSession in
models/__ini__.py and import them into submodules, and the init module
imports the submodules, there will be a circular import of two modules
importing each other. One module will appear semi-empty while the other module
is running its global code, which could lead to exceptions.

Pylons dealt with this by putting the Base and Session in a submodule,
models/meta.py, which did not import any other model modules. SQLAHelper
deals with it by providing a third-party library to store engines, sessions,
and bases. The Pyramid developers decided to default to the simplest case of
the putting entire model in one module, and let you figure out how to split it
if you want to.

Model Examples

These examples were written a while ago so they don't use the transaction
manager, and they have yet at third importing syntax. They should work with
SQLAlchemy 0.6, 0.7, and 0.8.

A simple one-table model

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	import sqlalchemy as sa
import sqlalchemy.orm as orm
import sqlalchemy.ext.declarative as declarative
from zope.sqlalchemy import ZopeTransactionExtension as ZTE

DBSession = orm.scoped_session(orm.sessionmaker(extension=ZTE()))
Base = declarative.declarative_base()

class User(Base):
 __tablename__ = "users"

 id = sa.Column(sa.Integer, primary_key=True)
 name = sa.Column(sa.Unicode(100), nullable=False)
 email = sa.Column(sa.Unicode(100), nullable=False)

This model has one ORM class, User corresponding to a database table
users. The table has three columns: id, name, and user.

A three-table model

We can expand the above into a three-table model suitable for a medium-sized
application.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

	import sqlalchemy as sa
import sqlalchemy.orm as orm
import sqlalchemy.ext.declarative as declarative
from zope.sqlalchemy import ZopeTransactionExtension as ZTE

DBSession = orm.scoped_session(orm.sessionmaker(extension=ZTE()))
Base = declarative.declarative_base()

class User(Base):
 __tablename__ = "users"

 id = sa.Column(sa.Integer, primary_key=True)
 name = sa.Column(sa.Unicode(100), nullable=False)
 email = sa.Column(sa.Unicode(100), nullable=False)

 addresses = orm.relationship("Address", order_by="Address.id")
 activities = orm.relationship("Activity",
 secondary="assoc_users_activities")

 @classmethod
 def by_name(class_):
 """Return a query of users sorted by name."""
 User = class_
 q = DBSession.query(User)
 q = q.order_by(User.name)
 return q

class Address(Base):
 __tablename__ = "addresses"

 id = sa.Column(sa.Integer, primary_key=True)
 user_id = foreign_key_column(None, sa.Integer, "users.id")
 street = sa.Column(sa.Unicode(40), nullable=False)
 city = sa.Column(sa.Unicode(40), nullable=False)
 state = sa.Column(sa.Unicode(2), nullable=False)
 zip = sa.Column(sa.Unicode(10), nullable=False)
 country = sa.Column(sa.Unicode(40), nullable=False)
 foreign_extra = sa.Column(sa.Unicode(100, nullable=False))

 def __str__(self):
 """Return the address as a string formatted for a mailing label."""
 state_zip = u"{0} {1}".format(self.state, self.zip).strip()
 cityline = filterjoin(u", ", self.city, state_zip)
 lines = [self.street, cityline, self.foreign_extra, self.country]
 return filterjoin(u"|n", *lines) + u"\n"

class Activity(Base):
 __tablename__ = "activities"

 id = sa.Column(sa.Integer, primary_key=True)
 activity = sa.Column(sa.Unicode(100), nullable=False)

assoc_users_activities = sa.Table("assoc_users_activities", Base.metadata,
 foreign_key_column("user_id", sa.Integer, "users.id"),
 foreign_key_column("activities_id", sa.Unicode(100), "activities.id"))

Utility functions
def filterjoin(sep, *items):
 """Join the items into a string, dropping any that are empty.
 """
 items = filter(None, items)
 return sep.join(items)

def foreign_key_column(name, type_, target, nullable=False):
 """Construct a foreign key column for a table.

 ``name`` is the column name. Pass ``None`` to omit this arg in the
 ``Column`` call; i.e., in Declarative classes.

 ``type_`` is the column type.

 ``target`` is the other column this column references.

 ``nullable``: pass True to allow null values. The default is False
 (the opposite of SQLAlchemy's default, but useful for foreign keys).
 """
 fk = sa.ForeignKey(target)
 if name:
 return sa.Column(name, type_, fk, nullable=nullable)
 else:
 return sa.Column(type_, fk, nullable=nullable)

This model has a User class corresponding to a users table, an
Address class with an addresses table, and an Activity class with
activities table. users is in a 1:Many relationship with
addresses. users is also in a Many:Many`` relationship with
activities using the association table assoc_users_activities. This is
the SQLAlchemy "declarative" syntax, which defines the tables in terms of ORM
classes subclassed from a declarative Base class. Association tables do not
have an ORM class in SQLAlchemy, so we define it using the Table
constructor as if we weren't using declarative, but it's still tied to the
Base's "metadata".

We can add instance methods to the ORM classes and they will be valid for one
database record, as with the Address.__str__ method. We can also define
class methods that operate on several records or return a query object, as with
the User.by_name method.

There's a bit of disagreement on whether User.by_name works better as a
class method or static method. Normally with class methods, the first argument
is called class_ or cls or klass and you use it that way throughout
the method, but in ORM queries it's more normal to refer to the ORM class by
its proper name. But if you do that you're not using the class_ variable
so why not make it a static method? But the method does belong to the class in
a way that an ordinary static method does not. I go back and forth on this, and
sometimes assign User = class_ at the beginning of the method. But none of
these ways feels completely satisfactory, so I'm not sure which is best.

Common base class

You can define a superclass for all your ORM classes, with common class methods
that all of them can use. It will be the parent of the declarative base:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class ORMClass(object):
 @classmethod
 def query(class_):
 return DBSession.query(class_)

 @classmethod
 def get(class_, id):
 return Session.query(class_).get(id)

Base = declarative.declarative_base(cls=ORMClass)

class User(Base):
 __tablename__ = "users"

 # Column definitions omitted

Then you can do things like this in your views:

user_1 = models.User.get(1)
q = models.User.query()

Whether this is a good thing or not depends on your perspective.

Multiple databases

The default configuration in the main function configures one database. To
connect to multiple databases, list them all in
development.ini under distinct prefixes. You can put additional engine
arguments under the same prefixes. For instance:

Then modify the main function to add each engine. You can also pass even more
engine arguments that override any same-name ones in the INI file.

engine = sa.engine_from_config(settings, prefix="sqlalchemy.",
 pool_recycle=3600, convert_unicode=True)
stats = sa.engine_from_config(settings, prefix="stats.")

At this point you have a choice. Do you want to bind different tables to
different databases in the same DBSession? That's easy:

DBSession.configure(binds={models.Person: engine, models.Score: stats})

The keys in the binds dict can be SQLAlchemy ORM classes, table objects, or
mapper objects.

But some applications prefer multiple DBSessions, each connected to a different
database. Some applications prefer multiple declarative bases, so that
different groups of ORM classes have a different declarative base. Or perhaps
you want to bind the engine directly to the Base's metadata for low-level SQL
queries. Or you may be using a third-party package that defines
its own DBSession or Base. In these cases, you'll have to modify the model
itself, e.g., to add a DBSession2 or Base2. If the configuration is complex you
may want to define a model initialization function like Pylons does, so that
the top-level routine (the main function or a standalone utility) only has to
make one simple call. Here's a pretty elaborate init routine for a complex
application:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	DBSession1 = orm.scoped_session(orm.sessionmaker(extension=ZTE())
DBSession2 = orm.scoped_session(orm.sessionmaker(extension=ZTE())
Base1 = declarative.declarative_base()
Base2 = declarative.declarative_base()
engine1 = None
engine2 = None

def init_model(e1, e2):
 # e1 and e2 are SQLAlchemy engines. (We can't call them engine1 and
 # engine2 because we want to access globals with the same name.)
 global engine1, engine2
 engine1 = e1
 engine2 = e2
 DBSession1.configure(bind=e1)
 DBSession2.configure(bind=e2)
 Base1.metadata.bind = e1
 Base2.metadata.bind = e2

Reflected tables

Reflected tables pose a dilemma because they depend on a live database
connection in order to be initialized. But the engine is not known
when the model is imported. This situation pretty much requires an
initialization function; or at least we haven't found any way around it.
The ORM classes can still be defined as module globals (not using the
declarative syntax), but the table definitions and mapper calls will have to be
done inside the function when the engine is known. Here's how you'd do it
non-declaratively:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	DBSession = orm.scoped_session(orm.sessionmaker(extension=ZTE())
Not using Base; not using declarative syntax
md = sa.MetaData()
persons = None # Table, set in init_model().

class Person(object):
 pass

def init_model(engine):
 global persons
 DBSession.configure(bind=engine)
 md.bind = engine
 persons = sa.Table("persons", md, autoload=True, autoload_with=engine)
 orm.mapper(Person, persons)

With the declarative syntax, we think Michael Bayer has posted recipies for
this somewhere, but you'll have to poke around the SQLAlchmey planet to find
them. At worst you could put the entire declarative class inside the init_model
function and assign it to a global variable.

Views

The biggest difference between Pyramid and Pylons is how views are structured,
and how they invoke templates and access state variables. This is a large topic
because it touches on templates, renderers, request variables, URL generators,
and more, and several of these topics have many facets. So we'll just start
somewhere and keep going, and let it organize itself however it falls.

First let's review Pylons' view handling. In Pylons, a view is called an
"action", and is a method in a controller class. Pylons has specific rules
about the controller's module name, class name, and base class. When Pylons
matches a URL to a route, it uses the routes 'controller' and 'action'
variables to look up the controller and action. It instantiates the controller
and calls the action. The action may take arguments with the same name as
routing variables in the route; Pylons will pass in the current values from the
route. The action normally returns a string, usually by calling
render(template_name) to render a template. Alternatively, it can return a
WebOb Response. The request's state data is handled by magic global
variables which contain the values for the current request. (This includes
equest parameters, response attributes, template variables, session variables,
URL generator, cache object, and an "application globals" object.)

View functions and view methods

A Pyramid view callable can be a function or a method, and it can be in any
location. The most basic form is a function that takes a request and returns a
response:

from pyramid.response import Response

def my_view(request):
 return Response("Hello, world!")

A view method may be in any class. A class containing view methods is
conventionally called a "view class" or a "handler". If a view is a method, the
request is passed to the class constructor, and the method is called without
arguments.

	1
2
3
4
5
6

	class MyHandler(object):
 def __init__(self, request):
 self.request = request

 def my_view(self):
 return Response("Hello, classy world!")

The Pyramid structure has three major benefits.

	Most importantly, it's easier to test. A unit test can call a view with a
fake request, and get back the dict that would have been passed
to the template. It can inspect the data variables directly rather than
parsing them out of the HTML.

	It's simpler and more modular. No magic globals.

	You have the freedom to organize views however you like.

Typical view usage

Merely defining a view is not enough to make Pyramid use it. You have to
register the view, either by calling config.add_view() or using the
@view_config decorator.

The most common way to use views is with the @view_config decorator. This
both marks the callable as a view and allows you to specify a template. It's
also common to define a base class for common code shared by view classes. The
following is borrowed from the Akhet demo.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.view import view_config

class Handler(object):
 def __init__(self, request):
 self.request = request

class Main(Handler):

 @view_config(route_name="home", renderer="index.mako")
 def index(self):
 return {"project": "Akhet Demo"}

The application's main function has a config.scan() line, which imports all
application modules looking for @view_config decorators. For each one it calls
config.add_view(view) with the same keyword arguments. The scanner also
recognizes a few other decorators which we'll see later. If you know that all
your views are in a certain module or subpackage, you can scan only that one:
config.scan(".views").

The example's @view_config decorator has two arguments, 'route_name' and
'renderer'. The 'route_name' argument is required when using URL dispatch, to tell
Pyramid which route should invoke this view. The "renderer" argument names a
template to invoke. In this case, the view's return value is a dict of data
variables for the template. (This takes the place of Pylons' 'c' variable, and
mimics TurboGears' usage pattern.) The renderer takes care of creating a
Response object for you.

View configuration arguments

The following arguments can be passed to @view_config or
config.add_view. If you have certain argument values that are the same for
all of the views in a class, you can use @view_defaults on the class to
specify them in one place.

This list includes only arguments commonly used in Pylons-like applications.
The full list is in View Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#view-configuration-parameters] in the Pyramid manual. The arguments
have the same predicate/non-predicate distinction as add_route arguments.
It's possible to register multiple views for a route, each with different
predicate arguments, to invoke a different view in different circumstances.

Some of the arguments are common to add_route and add_view. In the
route's case it determines whether the route will match a URL. In the view's
case it determines whether the view will match the route.

route_name

[predicate] The route to attach this view to. Required when using URL
dispatch.

renderer

[non-predicate] The name of a renderer or template. Discussed in Renderers
below.

permission

[non-predicate] A string naming a permission that the current user must
have in order to invoke the view.

http_cache

[non-predicate] Affects the 'Expires' and 'Cache-Control' HTTP headers in
the response. This tells the browser whether to cache the response and for
how long. The value may be an integer specifying the number of seconds to
cache, a datetime.timedelta instance, or zero to prevent caching. This
is equivalent to calling request.response.cache_expires(value) within
the view code.

context

[predicate] This view will be chosen only if the context is an instance
of this class or implements this interface. This is used with traversal,
authorization, and exception views.

request_method

[predicate] One of the strings "GET", "POST", "PUT", "DELETE', "HEAD".
The request method must equal this in order for the view to be chosen.
REST applications often register multiple views for the same route, each
with a different request method.

request_param

[predicate] This can be a string such as "foo", indicating that the request
must have a query parameter or POST variable named "foo" in order for
this view to be chosen. Alternatively, if the string contains "=" such as
"foo=1", the request must both have this parameter and its value must be
as specified, or this view won't be chosen.

match_param

[predicate] Like request_param but refers to a routing variable in the
matchdict. In addition to the "foo" and "foo=1" syntax, you can also pass a
dict of key/value pairs: all these routing variables must be present and have
the specified values.

xhr, accept, header, path_info

[predicate] These work like the corresponding arguments to
config.add_route.

custom_predicates

[predicate] The value is a list of functions. Each function should take a
context and request argument, and return true or false whether the
arguments are acceptable to the view. The view will be chosen only if all
functions return true. Note that the function arguments are different than
the corresponding option to config.add_route.

One view option you will not use with URL dispatch is the "name" argument.
This is used only in traversal.

Renderers

A renderer is a post-processor for a view. It converts the view's return
value into a Response. This allows the view to avoid repetitive boilerplate
code. Pyramid ships with the following renderers: Mako, Chameleon, String,
JSON, and JSONP. The Mako and Chameleon renderers takes a dict, invoke the
specified template on it, and return a Response. The String renderer converts
any type to a string. The JSON and JSONP renderers convert any type to JSON or
JSONP. (They use Python's json serializer, which accepts a limited variety
of types.)

The non-template renderers have a constant name: renderer="string",
renderer="json", renderer="jsonp". The template renderers are invoked
by a template's filename extension, so renderer="mytemplate.mako" and
renderer="mytemplate.mak" go to Mako. Note that you'll need to specify a
Mako search path in the INI file or main function:

[app:main]
mako.directories = my_app_package:templates

Supposedly you can pass an asset spec rather than a relative path for the Mako
renderer, and thus avoid defining a Mako search path, but I couldn't get it to
work. Chameleon templates end in .pt and must be specified as an asset spec.

You can register third-party renderers for other template engines, and you can
also re-register a renderer under a different filename extension. The Akhet
demo has an example of making pyramid send templates ending in .html through Mako.

You can also invoke a renderer inside view code.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.renderers import render, render_to_response

variables = {"dear": "Mr A", "sincerely": "Miss Z",
 "date": datetime.date.today()}

Render a template to a string.
letter = render("form_letter.mako", variables, request=self.request)

Render a template to a Response object.
return render_to_response("mytemplate.mako", variables,
 request=self.request)

Debugging views

If you're having trouble with a route or view not being chosen when you think
it should be, try setting "pyramid.debug_notfound" and/or
"pyramid.debug_routematch" to true in development.ini. It will log its
reasoning to the console.

Multiple views using the same callable

You can stack multiple @view_config onto the same view method or
function, in cases where the templates differ but the view logic is the
same.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	@view_config(route_name="help", renderer="help.mak")
@view_config(route_name="faq", renderer="faq.mak")
@view_config(route_name="privacy", renderer="privacy_policy.mak")
def template(request):
 return {}

@view_config(route_name="info", renderer="info.mak")
@view-config(route_name="info_json", renderer="json")
def info(request):
 return {}

Route and View Examples

Here are the most common kinds of routes and views.

	Fixed controller and action.

	1
2
3
4
5

	# Pylons
map.connect("faq", "/help/faq", controller="help", action="faq")
class HelpController(Base):
 def faq(self):
 ...

	1
2
3
4
5

	# Pyramid
config.add_route("faq", "/help/faq")
@view_config(route_name="faq", renderer="...")
def faq(self): # In some arbitrary class.
 ...

.

	Fixed controller and action, plus other routing variables.

	1
2
3
4
5
6

	# Pylons
map.connect("article", "/article/{id}", controller="foo",
 action="article")
class FooController(Base):
 def article(self, id):
 ...

	1
2
3
4
5

	# Pyramid
config.add_route("article", "/article/{id}")
@view_config(route_name="article")
def article(self): # In some arbitrary class.
 id = self.request.matchdict["id"]

.

	Variable controller and action.

Pylons
map.connect("/{controller}/{action}")
map.connect("/{controller/{action}/{id}")

Pyramid
Not possible.

You can't choose a view class via a routing variable in Pyramid.

	Fixed controller, variable action.

Pylons
map.connect("help", "/help/{action}", controller="help")

	1
2
3
4
5
6

	# Pyramid
config.add_route("help", "/help/{action}")

@view_config(route_name="help", match_param="action=help", ...)
def help(self): # In some arbitrary class.
 ...

The 'pyramid_handlers' package provides an alternative for this.

Other Pyramid examples:

	1
2
3
4
5
6

	# Home route.
config.add_route("home", "/")

Multi-action route, excluding certain static URLs.
config.add_route("main", "/{action}",
 path_info=r"/(?!favicon\.ico|robots\.txt|w3c)")

pyramid_handlers

"pyramid_handlers [https://docs.pylonsproject.org/projects/pyramid-handlers/en/latest/]" is an add-on package that provides a possibly more
convenient way to handle case #4 above, a route with an 'action' variable
naming a view. It works like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	# In the top-level __init__.py
from .handlers import Hello
def main(global_config, **settings):
 ...
 config.include("pyramid_handlers")
 config.add_handler("hello", "/hello/{action}", handler=Hello)

In zzz/handlers.py
from pyramid_handlers import action
class Hello(object):
 __autoexpose__ = None

 def __init__(self, request):
 self.request = request

 @action
 def index(self):
 return Response('Hello world!')

 @action(renderer="mytemplate.mak")
 def bye(self):
 return {}

The add_handler method (line 6) registers the route and then scans the
Hello class. It registers as views all methods that have an @action
decorator, using the method name as a view predicate, so that when that method
name appears in the 'action' part of the URL, Pyramid calls this view.

The __autoexpose__ class attribute (line 11) can be a regex. If any method
name matches it, it will be registered as a view even if it doesn't have an
@action decorator. The default autoexpose regex matches all methods that
begin with a letter, so you'll have to set it to None to prevent methods from
being automatically exposed. You can do this in a base class if you wish.

Note that @action decorators are not recognized by config.scan().
They work only with config.add_hander.

User reaction to "pyramid_handlers" has been mixed. A few people are using it,
but most people use @view_config because it's "standard Pyramid".

Resouce routes

"pyramid_routehelper [https://github.com/Pylons/pyramid_routehelper/blob/master/pyramid_routehelper/__init__.py]" provides a config.add_resource method that behaves
like Pylons' map.resource. It adds a suite of routes to
list/view/add/modify/delete a resource in a RESTful manner (following the Atom
publishing protocol). See the source docstrings in the link for details.

Note: the word "resource" here is not related to traversal resources.

Request and Response

Pylons magic globals

Pylons has several magic globals that contain state data for the current
request. Here are the closest Pyramid equivalents:

pylons.request

The request URL, query parameters, etc. In Pyramid it's the request
argument to view functions and self.request in view methods (if your
class constructor follows the normal pattern). In templates it's
request or req (starting in Pyramid 1.3). In pshell or unit tests
where you can't get it any other way, use request =
pyramid.threadlocal.get_current_request().

pylons.response

The HTTP response status and document. Pyramid does not have a global
response object. Instead, your view should create a
pyramid.response.Response instance and return it. If you're using a
renderer, it will create a response object for you.

For convenience, there's a request.response object available which you
can set attributes on and return, but it will have effect only if you
return it. If you're using a renderer, it will honor changes you make to
request.response.

pylons.session

Session variables. See the Sessions chapter.

pylons.tmpl_context

A scratch object for request-local data, usually used to pass varables
to the template. In Pyramid, you return a dict of variables and let the
renderer apply them to a template. Or you can render a template yourself in
view code.

If the view is a method, you can also set instance variables. The view
instance is visible as view in templates. There are two main use cses
for this. One, to set variables for the site template that would otherwise
have to be in every return dict. Two, for variables that are specific to
HTML rendering, when the view is registered with both an HTML renderer and
a non-HTML renderer (e.g., JSON).

Pyramid does have a port of "tmpl_context" at
request.tmpl_context, which is visible in templates as c. However,
it never caught on among Pyramid-Pylons users and is no longer documented.

pylons.app_globals

Global variables shared across all requests. The nearest equivalent is
request.registry.settings. This normally contains the application
settings, but you can also store other things in it too. (The registery is
a singleton used internally by Pyramid.)

pylons.cache

A cache object, used to automatically save the results of expensive
calculations for a period of time, across multiple requests. Pyramid has no
built-in equivalent, but you can set up a cache using "pyramid_beaker".
You'll probably want to put the cache in the settings?

pylons.url

A URL generator. Pyramid's request object has methods that generate URLs.
See also the URL Generator chapter for a convenience object that reduces
boilerplate code.

Request and response API

Pylons uses WebOb's request and response objects. Pyramid uses subclasses of
these so all the familiar attributes and methods are there: params,
GET, POST, headers, method, charset, date, environ,
body, and body_file. The most commonly-used attribute is params,
which is the query parameters and POST variables.

Pyramid adds several attributes and methods. context, matchdict,
matched_route, registry, registry.settings, session, and
tmpl_context access the request's state data and global application data.
route_path, route_url, resource_url, and static_url generate
URLs.

Rather than repeating the existing documentation for these attributes and
methods, we'll just refer you to the original docs:

	Pyramd Request and Response Objects [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/webob.html]

	Pyramid Request API [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#request-module]

	Pyramid Response API [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html]

	WebOb Request API [https://docs.pylonsproject.org/projects/webob/en/latest/reference.html#id1]

	WebOb Response API [https://docs.pylonsproject.org/projects/webob/en/latest/reference.html#id2]

Response examples:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	response = request.response

-OR-
from pyramid.response import Response
response = Response

In either case.
response.status = "200 OK"
response.status_int = 200
response.content_type = "text/plain"
response.charset = "utf-8"
response_headerlist = [
 ("Set-Cookie", "abc=123"), ("X-My-Header", "foo")]
response_cache_for = 3600 # Seconds
return response

Templates

Pyramid includes adapters for two template engines, Mako and Chameleon. Mako is
Pylons' default engine so it will be familiar. Third-party adapters are
available for other engines: "pyramid_jinja2" (a Jinja2 adapter),
"pyramid_chameleon_gensi" (a partial Genshi emulator), etc.

Mako configuration

In order to use Mako as in Pylons, you must specify a template search path
in the settings:

[app:main]
mako.directories = pyramidapp:templates

This enables relative template paths like renderer="/mytemplate.mak" and
quasi-URL paths like renderer="/mytemplate.mak". It also allows templates
to inherit from other templates, import other templates, and include other
templates. Without this setting, the renderer arg will have to be in asset
spec syntax, and templates won't be able to invoke other templates.

All settings with the "mako." prefix are passed to Mako's TemplateLookup
constructor. E.g.,

mako.strict_undefined = true
mako.imports =
 from mypackage import myfilter
mako.filters = myfilter
mako.module_directory = %(here)s/data/templates
mako.preprocessor = mypackage.mako_preprocessor

Template filenames ending in ".mak" or ".mako" are sent to the Mako renderer.
If you prefer a different extension such as ".html", you can put this
in your main function:

config.add_renderer(".html", "pyramid.mako_templating.renderer_factory")

If you have further questions about exactly how the Mako renderer is
implemented, it's best to look at the source: pyramid.mako_templating. You
can reconcile that with the Mako documentation to confirm what argument values
cause what.

Caution: When I set "mako.strict_undefined" to true in an application that
didn't have Beacon sessons configured, it broke the debug toolbar. The toolbar
templates may have some sloppy placeholders not guarded by "% if".

Caution 2: Supposedly you can pass an asset spec instead of a template path
but I couldn't get it to work.

See also

See also Rendering None as the Empty String in Mako Templates.

Chameleon

Chameleon is an XML-based template language descended from Zope. It has some
similarities with Genshi. Its filename extension is .pt ("page template").

Advantages of Chameleon:

	XML-based syntax.

	Template must be well-formed XHTML, suggesting (but not guaranteeing) that the
output will be well-formed. If any variable placeholder is marked
"structure", it's possible to insert invalid XML into the template.

	Good internationalization support in Pyramid.

	Speed is as fast as Mako. (Unusual for XML template languages.)

	Placeholder syntax "${varname or expression}" is common to Chameleon, Mako,
and Genshi.

	Chameleon does have a text mode which accepts non-XML input, but you lose all
control structures except "${varname}".

Disadvantages of Chameleon:

	XML-based syntax.

	Filenames must be in asset spec syntax, not relative paths:
renderer="mypackage:templates/foo.pt", renderer="templates/foo.pt".
You can't get rid of that "templates/" prefix without writing a wrapper
view_config decorator.

	No template lookup, so you can't invoke one template from inside another
without pre-loading the template into a variable.

	If template is not well-formed XML, the user will get an unconditional
"Internal Server Error" rather than something that might look fine in the
browser and which the user can at least read some content from.

	It doesn't work on all platforms Mako and Pyramid do. (Only CPython and
Google App Engine.)

Renderer globals

Whenever a renderer invokes a template, the template namespace includes all the
variables in the view's return dict, plus the following system variables:

	
request, req

	The current request.

	
view

	The view instance (for class-based views) or function (for function-based
views). You can read instance attributes directly: view.foo.

	
context

	The context (same as request.context). (Not visible in Mako because
Mako has a built-in variable with this name; use request.context
instead.)

	
renderer_name

	The fully-qualified renderer name; e.g., "zzz:templates/foo.mako".

	
renderer_info

	An object with attributes name, package, and type.

The Akhet demo shows how to inject other variables into all templates, such as
a helpers module h, a URL generator url, the session variable
session, etc.

Site template

Most sites will use a site template combined with page templates to ensure
that all the pages have the same look and feel (header, sidebars, and footer).
Mako's inheritance makes it easy to make page templates inherit from a site
template. Here's a very simple site template:

<!DOCTYPE html>
<html>
 <head>
 <title>My Application</title>
 </head>
 <body>

<!-- *** BEGIN page content *** -->
${self.body()}
<!-- *** END page content ***-->

 </body>
</html>

... and a page template that uses it:

<%inherit file="/site.html" />

<p>
 Welcome to ${project}, an application ...
</p>

A more elaborate example is in the Akhet demo.

Exceptions, HTTP Errors, and Redirects

Issuing redirects and HTTP errors

Here's how to send redirects and HTTP errors in Pyramid compared to Pylons:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# Pylons -- in controller action
from pylons.controllers.util import abort, redirect
abort(404) # Not Found
abort(403) # Forbidden
abort(400) # Bad request; e.g., invalid query parameter
abort(500) # Internal server error
redirect(url("section1")) # Redirect (default 302 Found)

Pyramid -- in view code
import pyramid.httpexceptions as exc
raise exc.exception_response(404) # Not Found
raise exc.HTTPNotFound() # Same thing
return exc.HTTPNotFound() # Same thing
raise exc.HTTPForbidden()
raise exc.HTTPBadRequest()
raise exc.HTTPInternalServerError()
raise exc.HTTPFound(request.route_url("section1")) # Redirect

The pyramid.httpexceptions module has classes for all official HTTP
statuses. These classes inherit from both Response and Exception, so
you can either return them or raise them. Raising HTTP exceptions can make
your code structurally more readable. It's particularly useful in
subroutines where it can cut through several calling stack frames that would
otherwise each need an if to pass the error condition through.

Exception rules:

	Pyramid internally raises HTTPNotFound if no route matches the request,
or if no view matches the route and request. It raises HTTPForbidden if the
request is denied based on the current authorization policy.

	If an uncaught exception occurs during request processing, Pyramid will catch it
and look for an "exception view" that matches it. An exception view is one
whose context argument is the exception's class, an ancestor of it, or an
interface it implements. All other view predicates must also match;
e.g., if a 'route_name' argument is specified, it must match the actual route
name. (Thus an exception view is typically registered without a route
name.) The view is called with the exception object as its context, and
whatever response the view returns will be sent to the browser. You can thus
use an exception view to customize the error screen shown to the user.

	If no matching exception view is found, HTTP exceptions are their own
response so they are sent to the browser. Standard HTTPExceptions have a
simple error message and layout; subclasses can customize this.

	Non-HTTPException responses propagate to the WSGI server. If the debug
toolbar tween is enabled, it will catch the exception and display the
interactive traceback. Otherwise the WSGI server will catch it and send its
own "500 Internal Server Error" screen.

Here are the most popular HTTP exceptions:

	Class

	Code

	Location

	Meaning

	HTTPMovedPermanently

	301

	Y

	Permanent redirect; client should
change bookmarks.

	HTTPFound

	302

	Y

	Temporary redirect. 1

	HTTPSeeOther

	303

	Y

	Temporary redirect; client should use
GET. 1

	HTTPTemporaryRedirect

	307

	Y

	Temporary redirect. 1

	HTTPClientError

	400

	N

	General user error; e.g., invalid
query param.

	HTTPUnauthorized

	401

	N

	User must authenticate.

	HTTPForbidden

	403

	N

	Authorization failure, or general
refusal.

	HTTPNotFound

	404

	N

	The URL is not recognized.

	HTTPGone

	410

	N

	The resource formerly at this URL is
permanently gone; client should delete
bookmarks.

	HTTPInternalServerError

	500

	N

	The server could not process the
request due to an internal error.

The constructor args for classes with a "Y" in the location column are
(location="", detail=None, headers=None, comment=None, ...). Otherwise the
constructor args are (detail=None, headers=None, comment=None, ...).

The location argument is optional at the Python level, but the HTTP spec
requires a location that's an absolute URL, so it's effectively required.

The detail argument may be a plain-text string which will be incorporated
into the error screen. headers may be a list of HTTP headers (name-value
tuples) to add to the response. comment may be a plain-text string which is
not shown to the user. (XXX Is it logged?)

Exception views

You can register an exception view for any exception class, although it's most
commonly used with HTTPNotFound or HTTPForbidden. Here's an example of
an exception view with a custom exception, borrowed from the Pyramid manual:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.response import Response

class ValidationFailure(Exception):
 pass

@view_config(context=ValidationFailure)
def failed_validation(exc, request):
 # If the view has two formal arguments, the first is the context.
 # The context is always available as ``request.context`` too.
 msg = exc.args[0] if exc.args else ""
 response = Response('Failed validation: %s' % msg)
 response.status_int = 500
 return response

For convenience, Pyramid has special decorators and configurator methods to
register a "Not Found" view or a "Forbidden" view. @notfound_view_config
and @forbidden_view_config (defined in pyramid.view) takes care of the
context argument for you.

Additionally, @notfound_view_config accepts an append_slash argument,
which can be used to enforce a trailing-slash convention. If your site defines
all its routes to end in a slash and you set append_slash=True, then when
a slashless request doesn't match any route, Pyramid try again with a slash
appended to the request URL. If that matches a route, Pyramid will issue a
redirect to it. This is useful only for sites that prefer a trailing slash
("/dir/" and "/dir/a/"). Other sites prefer not to have a trailing slash
("/dir" and "/dir/a"), and there are no special features for this.

Reference

	HTTP exceptions [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/httpexceptions.html]

	HTTP exception usage and exception views [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html#using-special-exceptions-in-view-callables]

	1(1,2,3)

	The three temporary redirect statuses are largely interchangeable
but have slightly different purposes. Details in the HTTP status
reference.

Static Files

In Pylons, the application's "public" directory is configured as a static
overlay on "/", so that URL "/images/logo.png" goes to
"pylonsapp/public/images/logo.png". This is done using a middleware. Pyramid
does not have an exact equivalent but it does have a way to serve static files,
and add-on packages provide additional ways.

Static view

This is Pyramid's default way to serve static files. As you'll remember from
the main function in an earlier chapter:

config.add_static_view('static', 'static', cache_max_age=3600)

This tells Pyramid to publish the directory "pyramidapp/static" under URL
"/static", so that URL "/static/images/logo.png" goes to
"pyramidapp/static/images/logo.png".

It's implemented using traversal, which we haven't talked about much in this
Guide. Traversal-based views have a view name which serves as a URL prefix or
component. The first argument is the view name ("static"), which implies it
matches URL "/static". The second argument is the asset spec for the directory
(relative to the application's Python package). The keyword arg is an option
which sets the HTTP expire headers to 3600 seconds (1 hour) in the future.
There are other keyword args for permissions and such.

Pyramid's static view has the following advantages over Pylons:

	It encourages all static files to go under a single URL prefix, so they're
not scattered around the URL space.

	Methods to generate URLs are provided: request.static_url() and
request.static_path().

	The deployment configuration (INI file) can override the base URL ("/static")
to serve files from a separate static media server
("http://static.example.com/").

	The deployment configuration can also override items in the static directory,
pointing to other subdirectories or files instead. This is called "overriding
assets" in the Pyramid manual.

It has the following disadvantages compared to Pylons:

	Static URLs have the prefix "/static".

	It can't serve top-level file URLs such as "/robots.txt" and "/favicon.ico".

You can serve any URL directory with a static view, so you could have a
separate view for each URL directory like this:

config.add_static_view('images', 'static/images')
config.add_static_view('stylesheets', 'static/stylesheets')
config.add_static_view('javascript', 'static/javascript')

This configures URL "/images" pointing to directory "pyramidapp/static/images",
etc.

If you're using Pyramid's authorization system, you can also make a separate
view for files that require a certain permission:

config.add_static_view("private", "private", permission="admin")

Generating static URLs

You can generate a URL to a static file like this:

href="${request.static_url('static/images/logo.png')}

Top-level file URLs

So how do you get around the problem of top-level file URLs? You can register
normal views for them, as shown later below. For "/favicon.ico", you can
replace it with an HTTP header in your site template:

<link rel="shortcut icon" href="${request.static_url('pyramidapp:static/favicon.ico')}" />

The standard Pyramid scaffolds actually do this. For "/robots.txt", you may
decide that this actually belongs to the webserver rather than the application,
and so you might have Apache serve it directly like this:

Alias /robots.txt /var/www/static/norobots.txt

You can of course have Apache serve your static directory too:

Alias /static /PATH-TO/PyramidApp/pyramidapp/static

But if you're using mod_proxy you'll have to disable proxying that directory
early in the virtualhost configuration:

Alias ProxyPass /static !

If you're using RewriteRule in combination with other path directives like
Alias, read the RewriteRule flags documentation (especially "PT" and "F") to
ensure the directives cooperate as expected.

External static media server

To make your configuration flexible for a static media server:

In INI file
static_assets = "static"
-OR-
static_assets = "http://staticserver.com/"

Main function:

config.add_static_view(settings["static_assets"], "zzz:static")

Now it will generate "http://mysite.com/static/foo.jpg" or
"http://staticserver.com/foo.jpg" depending on the configuration.

Static route

This strategy is available in Akhet. It overlays the static directory on top of
"/" like Pylons does, so you don't have to change your URLs or worry about
top-level file URLs.

	1
2
3
4
5

	config.include('akhet')
Put your regular routes here.
config.add_static_route('zzz', 'static', cache_max_age=3600)
Arg 1 is the Python package containing the static files.
Arg 2 is the subdirectory in the package containing the files.

This registes a static route matching all URLs, and a view to serve it.
Actually, the route will have a predicate that checks whether the file exists,
and if it doesn't, the route won't match the URL. Still, it's good practice to
register the static route after your other routes.

If you have another catchall route before it that might match some static URLs,
you'll have to exclude those URLs from the route as in this example:

config.add_route("main", "/{action}",
 path_info=r"/(?!favicon\.ico|robots\.txt|w3c)")
config.add_static_route('zzz', 'static', cache_max_age=3600)

The static route implementation does not generate URLs to static files, so
you'll have to do that on your own. Pylons never did it very effectively
either.

Other ways to serve top-level file URLs

If you're using the static view and still need to serve top-level file URLs,
there are several ways to do it.

A manual file view

This is documented in the Pyramid manual in the Static Assets chapter.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	# Main function.
config.add_route("favicon", "/favicon.ico")

Views module.
import os
from pyramid.response import FileResponse

@view_config(route_name="favicon")
def favicon_view(request):
 here = os.path.dirname(__file__)
 icon = os.path.join(here, "static", "favicon.ico")
 return FileResponse(icon, request=request)

Or if you're really curious how to configure the view for traversal without a
route:

@view_config(name="favicon.ico")

pyramid_assetviews

"pyramid_assetviews [https://pyramid-assetviews.readthedocs.io/en/latest/]" is a third-party package for top-level file URLs.

	1
2
3
4
5
6
7

	# In main function.
config.include("pyramid_assetviews")
config.add_asset_views("static", "robots.txt") # Defines /robots.txt .

Or to register multiple files at once.
filenames = ["robots.txt", "humans.txt", "favicon.ico"]
config.add_asset_views("static", filenames=filenames, http_cache=3600)

Of course, if you have the files in the static directory they'll still be
visible as "/static/robots.txt" as well as "/robots.txt". If that bothers you,
make another directory outside the static directory for them.

Sessions

Pyramid uses Beaker sessions just like Pylons, but they're not enabled by
default. To use them you'll have to add the "pyramid_beaker" package as a
dependency, and put the following line in your main() function:

config.include("pyramid_beaker")

(To add a dependency, put it in the requires list in setup.py, and
reinstall the application.)

The default configuration is in-memory sessions and (I think) no caching. You
can customize this by putting configuration settings in your INI file or in the
settings dict at the beginning of the main() function (before the
Configurator is instantiated). The Akhet Demo configures Beaker with the
following settings, borrowed from the Pylons configuration:

Beaker cache
cache.regions = default_term, second, short_term, long_term
cache.type = memory
cache.second.expire = 1
cache.short_term.expire = 60
cache.default_term.expire = 300
cache.long_term.expire = 3600

Beaker sessions
#session.type = file
#session.data_dir = %(here)s/data/sessions/data
#session.lock_dir = %(here)s/data/sessions/lock
session.type = memory
session.key = akhet_demo
session.secret = 0cb243f53ad865a0f70099c0414ffe9cfcfe03ac

To use file-based sessions like in Pylons, uncomment the first three session
settings and comment out the "session.type = memory" line.

You should set the "session.secret=" setting to a random string. It's used to
digitally sign the session cookie to prevent session hijacking.

Beaker has several persistence backends available, including memory, files,
SQLAlchemy, memcached, and cookies (which stores each session variable in a
client-side cookie, and has size limitationss). The most popular
deployment backend nowadays is memcached, which can act as a shared storage
between several processes and servers, thus providing the speed of memory with
the ability to scale to a multi-server cluster. Pylons defaults to disk-based
sessions.

Beaker plugs into Pyramid's built-in session interface, which is accessed via
request.session. Use it like a dict. Unlike raw Beaker sessions, you don't
have to call session.save() every time you change something, but you should
call session.changed() if you've modified a mutable item in the session;
e.g., session["mylist"].append(1).

The Pyramid session interface also has some extra features. It can store a set
of "flash messages" to display on the next page view, which is useful when you
want to push a success/failure message and redirect, and the message will be
displayed on the target page. It's based on webhelpers.flash, which is
incompatible with Pyramid because it depends on Pylons' magic globals. There
are also methods to set a secure form token, which prevent form submissions
that didn't come from a form requested earlier in the session (and thus may be
a cross-site forgery attack). (Note: flash messages are not related to the Adobe
Flash movie player.)

See the Sessions [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/sessions.html#sessions-chapter] chapter in the Pyramid manual for the API of
all these features and other features. The Beaker [https://beaker.readthedocs.io/en/latest/sessions.html] manual will help you
configure a backend. The Akhet [https://docs.pylonsproject.org/projects/akhet/en/latest/] Demo is an example of using Pyramid with
Beaker, and has flash messages.

Note: I sometimes get an exception in the debug toolbar when sessions are
enabled. They may be a code discrepency between the distributions. If this
happens to you, you can disable the toolbar until the problem is fixed.

Deployment

Deployment is the same for Pyramid as for Pylons. Specify the desired WSGI
server in the "[server:main]" and run "pserve" with it. The default server in
Pyramid is Waitress, compared to PasteHTTPServer in Pylons.

Waitress' advantage is that it runs on Python 3. Its disadvantage is that it
doesn't seek and destroy stuck threads like PasteHTTPServer does. If you're
like me, that's enough reason not to use Waitress in production. You can switch
to PasteHTTPServer or CherryPy server if you wish, or use a method like
mod_wsgi that doesn't require a Python HTTP server.

Authentication and Authorization

This chapter is contributed by Eric Rasmussen.

Pyramid has built-in authentication and authorization capibalities that make it
easy to restrict handler actions. Here is an overview of the steps you'll
generally need to take:

	Create a root factory in your model that associates allow/deny directives
with groups and permissions

	Create users and groups in your model

	Create a callback function to retrieve a list of groups a user is subscribed to based on their user ID

	Make a "forbidden view" that will be invoked when a Forbidden exception is
raised.

	Create a login action that will check the username/password and remember the
user if successful

	Restrict access to handler actions by passing in a
permission='somepermission' argument to @view_config.

	Wire it all together in your config

You can get started by adding an import statement and custom root factory to
your model:

	1
2
3
4
5
6
7
8
9

	from pyramid.security import Allow, Everyone

class RootFactory(object):
 __acl__ = [(Allow, Everyone, "everybody"),
 (Allow, "basic", "entry"),
 (Allow, "secured", ("entry", "topsecret"))
]
 def __init__(self, request):
 pass

The custom root factory generates objects that will be used as the context of
requests sent to your web application. The first attribute of the root factory
is the ACL, or access control list. It's a list of tuples that contain a
directive to handle the request (such as Allow or Deny), the group that is
granted or denied access to the resource, and a permission (or optionally a
tuple of permissions) to be associated with that group.

The example access control list above indicates that we will allow everyone to
view pages with the 'everybody' permission, members of the basic group to view
pages restricted with the 'entry' permission, and members of the secured group
to view pages restricted with either the 'entry' or 'topsecret' permissions.
The special principal 'Everyone' is a built-in feature that allows any person
visiting your site (known as a principal) access to a given resource.

For a user to login, you can create a handler that validates the login and
password (or any additional criteria) submitted through a form. You'll
typically want to add the following imports:

from pyramid.httpexceptions import HTTPFound
from pyramid.security import remember, forget

Once you validate a user's login and password against the model, you can set
the headers to "remember" the user's ID, and then you can redirect the user to
the home page or url they were trying to access:

retrieve the userid from the model on valid login
headers = remember(self.request, userid)
return HTTPFound(location=someurl, headers=headers)

Note that in the call to the remember function, we're passing in the user ID we
retrieved from the database and stored in the variable 'userid' (an arbitrary
name used here as an example). However, you could just as easily pass in a
username or other unique identifier. Whatever you decide to "remember" is what
will be passed to the groupfinder callback function that returns a list of
groups a user belongs to. If you import authenticated_userid, which is a
useful way to retrieve user information in a handler action, it will return the
information you set the headers to "remember".

To log a user out, you "forget" them, and use HTTPFound to redirect to another
url:

headers = forget(self.request)
return HTTPFound(location=someurl, headers=headers)

Before you restrict a handler action with a permission, you will need a
callback function to return a list of groups that a user ID belongs to. Here is
one way to implement it in your model, in this case assuming you have a Groups
object with a groupname attribute and a Users object with a mygroups relation
to Groups:

def groupfinder(userid, request):
 user = Users.by_id(userid)
 return [g.groupname for g in user.mygroups]

As an example, you could now import and use the @action decorator to restrict
by permission, and authenticated_userid to retrieve the user's ID from the
request:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyramid_handlers import action
from pyramid.security import authenticated_userid
from models import Users

class MainHandler(object):
 def __init__(self, request):
 self.request = request

 @action(renderer="welcome.html", permission="entry")
 def index(self):
 userid = authenticated_userid(self.request)
 user = Users.by_id(userid)
 username = user.username
 return {"currentuser": username}

This gives us a very simple way to restrict handler actions and also obtain
information about the user. This example assumes we have a Users class with a
convenience class method called by_id to return the user object. You can then
access any of the object's attributes defined in your model (such as username,
email address, etc.), and pass those to a template as dictionary key/values in
your return statement.

If you would like a specific handler action to be called when a forbidden
exception is raised, you need to add a forbidden view. This was covered
earlier, but for completelness:

	1
2
3
4
5

	@view_config(renderer='myapp:templates/forbidden.html',
 context='pyramid.exceptions.Forbidden')
@action(renderer='forbidden.html')
def forbidden(request):
 ...

The last step is to configure __init__.py to use your auth policy. Make sure to
add these imports:

from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy
from .models import groupfinder

In your main function you'll want to define your auth policies so you can
include them in the call to Configurator:

	1
2
3
4
5
6
7
8

	authn_policy = AuthTktAuthenticationPolicy('secretstring',
 callback=groupfinder)
authz_policy = ACLAuthorizationPolicy()
config = Configurator(settings=settings,
 root_factory='myapp.models.RootFactory',
 authentication_policy=authn_policy,
 authorization_policy=authz_policy)
config.scan()

The capabilities for authentication and authorization in Pyramid are very easy
to get started with compared to using Pylons and repoze.what. The advantage is
easier to maintain code and built-in methods to handle common tasks like
remembering or forgetting users, setting permissions, and easily modifying the
groupfinder callback to work with your model. For cases where it's manageable
to set permissions in advance in your root factory and restrict individual
handler actions, this is by far the simplest way to get up and running while
still offering robust user and group management capabilities through your
model.

However, if your application requires the ability to create/edit/delete
permissions (not just access through group membership), or you require the use
of advanced predicates, you can either build your own auth system (see the
Pyramid docs for details) or integrate an existing system like repoze.what.

You can also use "repoze.who" with Pyramid's authorization system if you want to
use Who's authenticators and configuration.

Other Pyramid Features

Shell

Pyramid has a command to preload your application into an interactive Python
prompt. This can be useful for debugging or experimentation. The command is
"pshell", akin to "paster shell" in Pylons.

$ pshell development.ini
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help" for more information.

Environment:
 app The WSGI application.
 registry Active Pyramid registry.
 request Active request object.
 root Root of the default resource tree.
 root_factory Default root factory used to create `root`.

>>>

It doesn't initialize quite as many globals as Pylons, but app and
request will be the most useful.

Other commands

Other commands available:

	proutes: list the application's routes. (Akin to Pylons "paster routes".)

	pviews: list the application's views.

	ptweens: list the application's tweens.

	prequest: load the application, process a specified URL, and print the
response body on standard output.

Forms

Pyramid does not include a form library. Pylons includes WebHelpers for form
generation and FormEncode for validation and error messages. These work under
Pyramid too. However, there's no built-in equivalent to Pylons' @validate
decorator. Instead we recommend the "pyramid_simpleform [https://pythonhosted.org/pyramid_simpleform/]" package, which
replaces @validate with a more flexible structure.

There are several other form libraries people use with Pyramid. These are
discussed in the regular Forms section in the Pyramid Community Cookbook.

WebHelpers

WebHelpers is a third-party package containing HTML tag builders, text
functions, number formatting and statistical functions, and other generic
functions useful in templates and views. It's a Pylons dependency but is
optional in Pyramid.

The webhelpers.pylonslib subpackage does not work with Pyramid because it
depends on Pylons' special globals. webhelpers.mimehelper and
webhelpers.paginate have Pylons-specific features that are disabled under
other frameworks. WebHelpers has not been tested on Python 3.

The next version of WebHelpers may be released as a different distribution
(WebHelpers2) with a subset of the current helpers ported to Python 3. It will
probably spin off Paginate and the Feed Generator to separate distribitions.

Events

The events framework provides hooks where you can insert your own code into the
request-processing sequence, similar to how Apache modules work. It standarizes
some customizations that were provided ad-hoc in Pylons or not at all. To use
it, write a callback function for one of the event types in pyramid.events:
ApplicationCreated, ContextFound, NewResponse, BeforeRender.
The callback takes an event argument which is specific to the event type.
You can register the event with @asubscriber or
config.add_subscriber(). The Akhet demo has examples.

For more details see:

	Using Events * [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/events.html]

	Using The Before Render Event [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#using-the-before-render-event]

	pyramid.event API [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/events.html]

URL generation

Pyramid does not come with a URL generator equivalent to "pylons.url".
Individual methods are available on the Request object to generate specific
kinds of URLs. Of these, route_url covers the normal case of generating a route
by name:

request.route_url("route_name", variable1="value1")
request.route_path("route_name", variable1="value1")
request.route_url("search", _query={"q": "search term"}, _anchor="results")

As with all the *_url vs *_path methods, route_url generates an absolute
URL, while route_path generates a "slash" URL (without the scheme or host).
The _query argument is a dict of query parameters (or a sequence of
key-value pairs). The _anchor argument makes a URL with a "#results"
fragment. Other special keyword arguments are _scheme, _host,
_port, and _app_url.

The advantage of using these methods rather than hardcoding the URL, is that it
automatically adds the application prefix (which may be something more than
"/" if the application is mounted on a sub-URL).

You can also pass additional positional arguments, and they will be appended
to the URL as components. This is not very useful with URL dispatch, it's more
of a traversal thing.

If the route is defined with a pregenerator, it will be called with the
positional and keyword arguments, and can modify them before the URL is
generated.

Akhet has a URLGenerator class, which you can use as shown in the Akhet demo to
make a url variable for your templates, using an event subscriber. Then you
can do things like this:

	1
2
3
4
5
6

	url.route("route_name") # Generate URL by route name.
url("route_name") # The same.
url.app # The application's top-level URL.
url.current() # The current request URL. (Used to
 # link to the same URL with different
 # match variables or query params.)

You can also customize it to do things like this:

url.static("images/logo.png")
url.image("logo.png") # Serve an image from the images dir.
url.deform("...") # Static file in the Deform package.

If "url" is too long for you, you can even name it "u"!

Utility scripts

Pyramid has a documented way to write utility scripts for maintenance and the
like. See Writing a Script [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/commandline.html?highlight=pshell#writing-a-script].

Testing

Pyramid makes it easier to write unit tests for your views.

(XXX Need a comparison example.)

Internationalization

Pyramid has support for internationalization. At this time it's documented
mainly for Chameleon templates, not Mako.

Higher-level frameworks

Pyramid provides a flexible foundation to build higher-level frameworks on.
Several have already been written. There are also application scaffolds and
tarballs.

	Kotti [https://kotti.readthedocs.io/en/latest/] is a content management system that both works out of the box and can
be extended.

	Ptah [https://ptahproject.readthedocs.io/en/latest/] is a framework that aims to have as many features as Django. (But no
ponies, and no cowbells.) It has a minimal CMS component.

	Khufu [https://github.com/khufuproject] is a suite of scaffolds and utilities for Pyramid.

	The Akhet [https://docs.pylonsproject.org/projects/akhet/en/latest/] demo we have mentioned before. It's a working application in a
tarball that you can copy code from.

At the opposite extreme, you can make a tiny Pyramid application in 14 lines of
Python without a scaffold. The Pyramid manual has an example: Hello World [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/firstapp.html#hello-world].
This is not possible with Pylons -- at least, not without distorting it
severely.

Migrating an Existing Pylons Application

There are two general ways to port a Pylons application to Pyramid. One is to
start from scratch, expressing the application's behavior in Pyramid. Many
aspects such as the models, templates, and static files can be used unchanged
or mostly unchanged. Other aspects like such as the controllers and globals
will have to be rewritten. The route map can be ported to the new syntax, or
you can take the opportunity to restructure your routes.

The other way is to port one URL at a time, and let Pyramid serve the ported
URLs and Pylons serve the unported URLs. There are several ways to do this:

	Run both the Pyramid and Python applications in Apache, and use mod_rewrite
to send different URLs to different applications.

	Set up paste.cascade in the INI file, so that it will first try one
application and then the other if the URL returns "Not Found". (This is how
Pylons serves static files.)

	Wrap the Pylons application in a Pyramid view. See pyramid.wsgiapp.wsgiapp2 [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/wsgi.html#pyramid.wsgi.wsgiapp2].

Also see the Porting Applications to Pyramid section in the Cookbook.

Caution: running a Pyramid and a Pylons application simultaneously may bring up
some tricky issues such as coordiating database connections, sessions, data
files, etc. These are beyond the scope of this Guide.

You'll also have to choose whether to write the Pyramid application in Python 2
or 3. Pyramid 1.3 runs on Python 3, along with Mako and SQLAlchemy, and the
Waitress and CherryPy HTTP servers (but not PasteHTTPServer). But not all
optional libraries have been ported yet, and your application may depend on
libraries which haven't been.

Routing: Traversal and URL Dispatch

	Comparing and Combining Traversal and URL Dispatch
	See Also

	Using Traversal in Pyramid Views
	Optional: Using Interfaces

	See Also

	Traversal with SQLAlchemy
	Non-recursive

	Recursive

For more information on URL dispatch, see the URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html]
section of the Pyramid documentation.

For more information traversal, see the following sections of the Pyramid
documentation:

	Hello Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hellotraversal.html]

	Much Ado about Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/muchadoabouttraversal.html]

	Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html]

	Hybrid Dispatching [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hybrid.html]

	Virtual Hosting [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/vhosting.html]

Comparing and Combining Traversal and URL Dispatch

(adapted from Bayle Shank's contribution at
https://github.com/bshanks/pyramid/commit/c73b462c9671b5f2c3be26cf088ee983952ab61a).

Here's is an example which compares URL dispatch to traversal.

Let's say we want to map

/hello/login to a function login in the file myapp/views.py

/hello/foo to a function foo in the file myapp/views.py

/hello/listDirectory to a function listHelloDirectory in the file
myapp/views.py

/hello/subdir/listDirectory to a function listSubDirectory in the
file myapp/views.py

With URL dispatch, we might have:

	1
2
3
4
5
6
7
8
9

	config.add_route('helloLogin', '/hello/login')
config.add_route('helloFoo', '/hello/foo')
config.add_route('helloList', '/hello/listDirectory')
config.add_route('list', '/hello/{subdir}/listDirectory')

config.add_view('myapp.views.login', route_name='helloLogin')
config.add_view('myapp.views.foo', route_name='helloFoo')
config.add_view('myapp.views.listHelloDirectory', route_name='helloList')
config.add_view('myapp.views.listSubDirectory', route_name='list')

When the listSubDirectory function from myapp/views.py is called, it can
tell what the subdirectory's name was by checking
request.matchdict['subdir']. This is about all you need to know for
URL-dispatch-based apps.

With traversal, we have a more complex setup:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	class MyResource(dict):
 def __init__(self, name, parent):
 self.__name__ = name
 self.__parent__ = parent

class MySubdirResource(MyResource):
 def __init__(self, name, parent):
 self.__name__ = name
 self.__parent__ = parent

 # returns a MyResource object when the key is the name
 # of a subdirectory
 def __getitem__(self, key):
 return MySubdirResource(key, self)

class MyHelloResource(MySubdirResource):
 pass

def myRootFactory(request):
 rootResource = MyResource('', None)
 helloResource = MyHelloResource('hello', rootResource)
 rootResource['hello'] = helloResource
 return rootResource

config.add_view('myapp.views.login', name='login')
config.add_view('myapp.views.foo', name='foo')
config.add_view('myapp.views.listHelloDirectory', context=MyHelloResource,
 name='listDirectory')
config.add_view('myapp.views.listSubDirectory', name='listDirectory')

In the traversal example, when a request for /hello/@@login comes in, the
framework calls myRootFactory(request), and gets back the root
resource. It calls the MyResource instance's __getitem__('hello'), and
gets back a MyHelloResource. We don't traverse the next path segment
(@@login`), because the ``@@ means the text that follows it is an
explicit view name, and traversal ends. The view name 'login' is mapped to
the login function in myapp/views.py, so this view callable is
invoked.

When a request for /hello/@@foo comes in, a similar thing happens.

When a request for /hello/@@listDirectory comes in, the framework calls
myRootFactory(request), and gets back the root resource. It calls
MyRootResource's __getitem__('hello'), and gets back a
MyHelloResource instance. It does not call MyHelloResource's
__getitem__('listDirectory') (due to the @@ at the lead of
listDirectory). Instead, 'listDirectory' becomes the view name and
traversal ends. The view name 'listDirectory' is mapped to
myapp.views.listRootDirectory, because the context (the last resource
traversed) is an instance of MyHelloResource.

When a request for /hello/xyz/@@listDirectory comes in, the framework
calls myRootFactory(request), and gets back an instance of
MyRootResource. It calls MyRootResource's __getitem__('hello'), and
gets back a MyHelloResource instance. It calls MyHelloResource's
__getitem__('xyz'), and gets back another MySubdirResource
instance. It does not call __getitem__('listDirectory') on the
MySubdirResource instance. 'listDirectory' becomes the view name and
traversal ends. The view name 'listDirectory' is mapped to
myapp.views.listSubDirectory, because the context (the final traversed
resource object) is not an instance of MyHelloResource. The view can
access the MySubdirResource via request.context.

At we see, traversal is more complicated than URL dispatch. What's the
benefit? Well, consider the URL /hello/xyz/abc/listDirectory. This is
handled by the above traversal code, but the above URL dispatch code would
have to be modified to describe another layer of subdirectories. That is,
traversal can handle arbitrarily deep, dynamic hierarchies in a general way,
and URL dispatch can't.

You can, if you want to, combine URL dispatch and traversal (in that
order). So, we could rewrite the above as:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	class MyResource(dict):
 def __init__(self, name, parent):
 self.__name__ = name
 self.__parent__ = parent

 # returns a MyResource object unconditionally
 def __getitem__(self, key):
 return MyResource(key, self)

def myRootFactory(request):
 return MyResource('', None)

config = Configurator()

config.add_route('helloLogin', '/hello/login')
config.add_route('helloFoo', '/hello/foo')
config.add_route('helloList', '/hello/listDirectory')
config.add_route('list', '/hello/*traverse', factory=myRootFactory)

config.add_view('myapp.views.login', route_name='helloLogin')
config.add_view('myapp.views.foo', route_name='helloFoo')
config.add_view('myapp.views.listHelloDirectory', route_name='helloList')
config.add_view('myapp.views.listSubDirectory', route_name='list',
 name='listDirectory')

You will be able to visit
e.g. http://localhost:8080/hello/foo/bar/@@listDirectory to see the
listSubDirectory view.

This is simpler and more readable because we are using URL dispatch to take
care of the hardcoded URLs at the top of the tree, and we are using traversal
only for the arbitrarily nested subdirectories.

See Also

	Using Traversal in Pyramid Views

Using Traversal in Pyramid Views

A trivial example of how to use traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-traversal] in your view code.

You may remember that a Pyramid view [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view] is called with a
context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] argument.

def my_view(context, request):
 return render_view_to_response(context, request)

When using traversal, context will be the resource [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-resource] object
that was found by traversal. Configuring which resources a view
responds to can be done easily via either the @view.config
decorator.

from models import MyResource

@view_config(context=MyResource)
def my_view(context, request):
 return render_view_to_response(context, request)

or via config.add_view:

from models import MyResource
config = Configurator()
config.add_view('myapp.views.my_view', context=MyResource)

Either way, any request that triggers traversal and traverses to a
MyResource instance will result in calling this view with that
instance as the context argument.

Optional: Using Interfaces

If your resource classes implement interfaces [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface],
you can configure your views by interface. This is one way to decouple
view code from a specific resource implementation.

models.py
from zope.interface import implements
from zope.interface import Interface

class IMyResource(Interface):
 pass

class MyResource(object):
 implements(IMyResource)

views.py
from models import IMyResource

@view_config(context=IMyResource)
def my_view(context, request):
 return render_view_to_response(context, request)

See Also

	Much Ado About Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/muchadoabouttraversal.html#much-ado-about-traversal-chapter]

	Comparing and Combining Traversal and URL Dispatch

	The "Virginia" sample application: https://github.com/Pylons/virginia/blob/master/virginia/views.py

	ZODB and Traversal in Pyramid tutorial: https://docs.pylonsproject.org/projects/pyramid/en/latest/tutorials/wiki/index.html#bfg-wiki-tutorial

	Resources which implement interfaces: https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/resources.html#resources-which-implement-interfaces

Traversal with SQLAlchemy

This is a stub page, written by a non-expert. If you have expertise, please
verify the content, add recipes, and consider writing a tutorial on this.

Traversal works most naturally with an object database like ZODB because both
are naturally recursive. (I.e., "/a/b" maps naturally to root["a"]["b"].)
SQL tables are flat, not recursive. However, it's possible to use traversal
with SQLAlchemy, and it's becoming increasingly popular. To see how to do this,
it helps to consider recursive and non-recursive usage separately.

Non-recursive

A non-recursive use case is where a certain URL maps to a table, and the
following component is a record ID. For instance:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	# /persons/123 => root["persons"][123]

import myapp.model as model

class Resource(dict):
 def __init__(self, name, parent):
 self.__name__ = name
 self.__parent__ = parent

class Root(Resource):
 """The root resource."""

 def add_resource(self, name, orm_class):
 self[name] = ORMContainer(name, self, self.request, orm_class)

 def __init__(self, request):
 self.request = request
 self.add_resource('persons', model.Person)

root_factory = Root

class ORMContainer(dict):
 """Traversal component tied to a SQLAlchemy ORM class.

 Calling .__getitem__ fetches a record as an ORM instance, adds certain
 attributes to the object, and returns it.
 """
 def __init__(self, name, parent, request, orm_class):
 self.__name__ = name
 self.__parent__ = parent
 self.request = request
 self.orm_class = orm_class

 def __getitem__(self, key):
 try:
 key = int(key)
 except ValueError:
 raise KeyError(key)
 obj = model.DBSession.query(self.orm_class).get(key)
 # If the ORM class has a class method '.get' that performs the
 # query, you could do this: ``obj = self.orm_class.get(key)``
 if obj is None:
 raise KeyError(key)
 obj.__name__ = key
 obj.__parent__ = self
 return obj

Here, root["persons"] is a container object whose __getitem__ method
fetches the specified database record, sets name and parent attribues on it,
and returns it. (We've verified that SQLAlchemy does not define __name__ or
__parent__ attributes in ORM instances.) If the record is not found, raise
KeyError to indicate the resource doesn't exist.

TODO: Describe URL generation, access control lists, and other things needed in
a complete application.

One drawback of this approach is that you have to fetch the entire record in
order to generate a URL to it. This does not help if you have index views that
display links to records, by querying the database directly for the IDs that
match a criterion (N most recent records, all records by date, etc). You don't
want to fetch the entire record's body, or do something silly like asking
traversal for the resource at "/persons/123" and then generate the URL -- which
would be "/persons/123"! There are a few ways to generate URLs in this case:

	Define a generation-only route; e.g.,
config.add_route("person", "/persons/{id}", static=True)

	Instead of returning an ORM instance, return a proxy that lazily fetches the
instance when its attributes are accessed. This causes traversal to behave
somewhat incorrectly. It should raise KeyError if the record doesn't exist,
but it can't know whether the record exists without fetching it. If traversal
returns a possibly-invalid resource, it puts a burden on the view to check
whether its context is valid. Normally the view can just assume it is,
otherwise the view wouldn't have been invoked.

Recursive

The prototypical recursive use case is a content management system, where the
user can define URLs arbitrarily deep; e.g., "/a/b/c". It can also be useful
with "canned" data, where you want a small number of views to respond to a
large variety of URL hierarchies.

Kotti [https://kotti.readthedocs.io/en/latest/] is the best current example of using traversal with SQLAlchemy
recursively. Kotti is a content management system that, yes, lets users define
arbitrarily deep URLs. Specifically, Kotti allows users to define a page with
subpages; e.g., a "directory" of pages.

Kotti is rather complex and takes some time to study. It uses SQLAlchemy's
polymorphism to make tables "inherit" from other tables. This is an advanced
feature which can be complex to grok. On the other hand, if you have the time,
it's a great way to learn how to do recursive traversal and polymorphism.

The main characteristic of a recursive SQL setup is a self-referential table;
i.e., table with a foreign key colum pointing to the same table. This allows
each record to point to its parent. (The root record has NULL in the parent
field.)

Sample Pyramid Applications

This section is a collection of sample Pyramid applications.

If you know of other applications, please submit an issue or pull request via
the Pyramid Community Cookbook repo on GitHub [https://github.com/Pylons/pyramid_cookbook/issues] to add it to this list.

	Todo List Application in One File
	Step 1 - Organizing the project

	Step 2 - Application setup

	Step 3 - Database and schema

	Step 4 - View functions and routes

	Step 5 - View templates

	Step 6 - Styling your templates

	Step 7 - Running the application

	Conclusion

Todo List Application in One File

This tutorial is intended to provide you with a feel of how a Pyramid web
application is created. The tutorial is very short, and focuses on the creation
of a minimal todo list application using common idioms. For brevity, the
tutorial uses a "single-file" application development approach instead of the
more complex (but more common) "scaffolds" described in the main Pyramid
documentation [https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html#index].

At the end of the tutorial, you'll have a minimal application which:

	provides views to list, insert and close tasks

	uses route patterns to match your URLs to view code functions

	uses Mako Templates to render your views

	stores data in an SQLite database

Here's a screenshot of the final application:

[image: ../_images/single_file_tasks.png]

Step 1 - Organizing the project

Note

For help getting Pyramid set up, try the guide Installing Pyramid [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/install.html#installing-chapter].

To use Mako templates, you need to install the pyramid_mako add-on as
indicated under Major Backwards Incompatibilities under What's New In
Pyramid 1.5 [https://docs.pylonsproject.org/projects/pyramid/en/master/whatsnew-1.5.html#major-backwards-incompatibilities].

In short, you'll need to have both the pyramid and pyramid_mako
packages installed. Use easy_install pyramid pyramid_mako or pip
install pyramid and pip install pyramid_mako to install these
packages.

Before getting started, we will create the directory hierarchy needed for our
application layout. Create the following directory layout on your filesystem:

/tasks
 /static
 /templates

Note that the tasks directory will not be used as a Python package; it will
just serve as a container in which we can put our project.

Step 2 - Application setup

To begin our application, start by adding a Python source file named
tasks.py to the tasks directory. We'll add a few basic imports within
the newly created file.

	1
2
3
4
5
6
7

	 import os
 import logging

 from pyramid.config import Configurator
 from pyramid.session import UnencryptedCookieSessionFactoryConfig

 from wsgiref.simple_server import make_server

Then we'll set up logging and the current working directory path.

	 9
10
11
12

	 logging.basicConfig()
 log = logging.getLogger(__file__)

 here = os.path.dirname(os.path.abspath(__file__))

Finally, in a block that runs only when the file is directly executed (i.e.,
not imported), we'll configure the Pyramid application, establish rudimentary
sessions, obtain the WSGI app, and serve it.

	14
15
16
17
18
19
20
21
22
23
24
25
26

	 if __name__ == '__main__':
 # configuration settings
 settings = {}
 settings['reload_all'] = True
 settings['debug_all'] = True
 # session factory
 session_factory = UnencryptedCookieSessionFactoryConfig('itsaseekreet')
 # configuration setup
 config = Configurator(settings=settings, session_factory=session_factory)
 # serve app
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

We now have the basic project layout needed to run our application, but we
still need to add database support, routing, views, and templates.

Step 3 - Database and schema

To make things straightforward, we'll use the widely installed SQLite database
for our project. The schema for our tasks is simple: an id to uniquely
identify the task, a name not longer than 100 characters, and a closed
boolean to indicate whether the task is closed.

Add to the tasks directory a file named schema.sql with the following
content:

create table if not exists tasks (
 id integer primary key autoincrement,
 name char(100) not null,
 closed bool not null
);

insert or ignore into tasks (id, name, closed) values (0, 'Start learning Pyramid', 0);
insert or ignore into tasks (id, name, closed) values (1, 'Do quick tutorial', 0);
insert or ignore into tasks (id, name, closed) values (2, 'Have some beer!', 0);

Add a few more imports to the top of the tasks.py file as indicated by the
emphasized lines.

	1
2
3
4
5
6
7
8

	import os
import logging
import sqlite3

from pyramid.config import Configurator
from pyramid.events import ApplicationCreated
from pyramid.events import NewRequest
from pyramid.events import subscriber

To make the process of creating the database slightly easier, rather than
requiring a user to execute the data import manually with SQLite, we'll create
a function that subscribes to a Pyramid system event for this purpose. By
subscribing a function to the ApplicationCreated event, for each time we
start the application, our subscribed function will be executed. Consequently,
our database will be created or updated as necessary when the application is
started.

	21
22
23
24
25
26
27
28
29
30
31
32

	@subscriber(ApplicationCreated)
def application_created_subscriber(event):
 log.warning('Initializing database...')
 with open(os.path.join(here, 'schema.sql')) as f:
 stmt = f.read()
 settings = event.app.registry.settings
 db = sqlite3.connect(settings['db'])
 db.executescript(stmt)
 db.commit()

if __name__ == '__main__':

We also need to make our database connection available to the application.
We'll provide the connection object as an attribute of the application's
request. By subscribing to the Pyramid NewRequest event, we'll initialize a
connection to the database when a Pyramid request begins. It will be available
as request.db. We'll arrange to close it down by the end of the request
lifecycle using the request.add_finished_callback method.

	21
22
23
24
25
26
27
28
29
30
31
32
33

	@subscriber(NewRequest)
def new_request_subscriber(event):
 request = event.request
 settings = request.registry.settings
 request.db = sqlite3.connect(settings['db'])
 request.add_finished_callback(close_db_connection)

def close_db_connection(request):
 request.db.close()

@subscriber(ApplicationCreated)

To make those changes active, we'll have to specify the database location in
the configuration settings and make sure our @subscriber decorator is
scanned by the application at runtime using config.scan().

	44
45
46
47
48
49

	if __name__ == '__main__':
 # configuration settings
 settings = {}
 settings['reload_all'] = True
 settings['debug_all'] = True
 settings['db'] = os.path.join(here, 'tasks.db')

	54
55
56

	 # scan for @view_config and @subscriber decorators
 config.scan()
 # serve app

We now have the basic mechanism in place to create and talk to the database in
the application through request.db.

Step 4 - View functions and routes

It's now time to expose some functionality to the world in the form of view
functions. We'll start by adding a few imports to our tasks.py file. In
particular, we're going to import the view_config decorator, which will
let the application discover and register views:

	 8
 9
10
11

	from pyramid.events import subscriber
from pyramid.httpexceptions import HTTPFound
from pyramid.session import UnencryptedCookieSessionFactoryConfig
from pyramid.view import view_config

Note that our imports are sorted alphabetically within the pyramid
Python-dotted name which makes them easier to find as their number increases.

We'll now add some view functions to our application for listing, adding, and
closing todos.

List view

This view is intended to show all open entries, according to our tasks
table in the database. It uses the list.mako template available under the
templates directory by defining it as the renderer in the
view_config decorator. The results returned by the query are tuples, but we
convert them into a dictionary for easier accessibility within the template.
The view function will pass a dictionary defining tasks to the
list.mako template.

	19
20
21
22
23
24
25
26
27

	here = os.path.dirname(os.path.abspath(__file__))

views
@view_config(route_name='list', renderer='list.mako')
def list_view(request):
 rs = request.db.execute('select id, name from tasks where closed = 0')
 tasks = [dict(id=row[0], name=row[1]) for row in rs.fetchall()]
 return {'tasks': tasks}

When using the view_config decorator, it's important to specify a
route_name to match a defined route, and a renderer if the function is
intended to render a template. The view function should then return a
dictionary defining the variables for the renderer to use. Our list_view
above does both.

New view

This view lets the user add new tasks to the application. If a name is
provided to the form, a task is added to the database. Then an information
message is flashed to be displayed on the next request, and the user's browser
is redirected back to the list_view. If nothing is provided, a warning
message is flashed and the new_view is displayed again. Insert the
following code immediately after the list_view.

	30
31
32
33
34
35
36
37
38
39
40
41
42

	@view_config(route_name='new', renderer='new.mako')
def new_view(request):
 if request.method == 'POST':
 if request.POST.get('name'):
 request.db.execute(
 'insert into tasks (name, closed) values (?, ?)',
 [request.POST['name'], 0])
 request.db.commit()
 request.session.flash('New task was successfully added!')
 return HTTPFound(location=request.route_url('list'))
 else:
 request.session.flash('Please enter a name for the task!')
 return {}

Warning

Be sure to use question marks when building SQL statements via
db.execute, otherwise your application will be vulnerable to SQL
injection when using string formatting.

Close view

This view lets the user mark a task as closed, flashes a success message, and
redirects back to the list_view page. Insert the following code immediately
after the new_view.

	45
46
47
48
49
50
51
52

	@view_config(route_name='close')
def close_view(request):
 task_id = int(request.matchdict['id'])
 request.db.execute('update tasks set closed = ? where id = ?',
 (1, task_id))
 request.db.commit()
 request.session.flash('Task was successfully closed!')
 return HTTPFound(location=request.route_url('list'))

NotFound view

This view lets us customize the default NotFound view provided by Pyramid,
by using our own template. The NotFound view is displayed by Pyramid when
a URL cannot be mapped to a Pyramid view. We'll add the template in a
subsequent step. Insert the following code immediately after the
close_view.

	55
56
57
58

	@view_config(context='pyramid.exceptions.NotFound', renderer='notfound.mako')
def notfound_view(request):
 request.response.status = '404 Not Found'
 return {}

Adding routes

We finally need to add some routing elements to our application configuration
if we want our view functions to be matched to application URLs. Insert the
following code immediately after the configuration setup code.

	95
96
97
98

	 # routes setup
 config.add_route('list', '/')
 config.add_route('new', '/new')
 config.add_route('close', '/close/{id}')

We've now added functionality to the application by defining views exposed
through the routes system.

Step 5 - View templates

The views perform the work, but they need to render something that the web
browser understands: HTML. We have seen that the view configuration accepts a
renderer argument with the name of a template. We'll use one of the templating
engines, Mako, supported by the Pyramid add-on, pyramid_mako [https://docs.pylonsproject.org/projects/pyramid-mako/en/latest/].

We'll also use Mako template inheritance. Template inheritance makes it
possible to reuse a generic layout across multiple templates, easing layout
maintenance and uniformity.

Create the following templates in the templates directory with the
respective content:

layout.mako

This template contains the basic layout structure that will be shared with
other templates. Inside the body tag, we've defined a block to display flash
messages sent by the application, and another block to display the content of
the page, inheriting this master layout by using the mako directive
${next.body()}.

-*- coding: utf-8 -*-
<!DOCTYPE html>
<html>
<head>
	
 <meta charset="utf-8">
 <title>Pyramid Task's List Tutorial</title>
 <meta name="author" content="Pylons Project">
 <link rel="shortcut icon" href="/static/favicon.ico">
 <link rel="stylesheet" href="/static/style.css">

</head>

<body>

 % if request.session.peek_flash():
 <div id="flash">
 <% flash = request.session.pop_flash() %>
	% for message in flash:
	${message}

	% endfor
 </div>
 % endif

 <div id="page">

 ${next.body()}

 </div>

</body>
</html>

list.mako

This template is used by the list_view view function. This template
extends the master layout.mako template by providing a listing of tasks.
The loop uses the passed tasks dictionary sent from the list_view
function using Mako syntax. We also use the request.route_url function to
generate a URL based on a route name and its arguments instead of statically
defining the URL path.

-*- coding: utf-8 -*-
<%inherit file="layout.mako"/>

<h1>Task's List</h1>

<ul id="tasks">
% if tasks:
 % for task in tasks:

 ${task['name']}

 [close]

 % endfor
% else:
 There are no open tasks
% endif
 <li class="last">
 Add a new task

new.mako

This template is used by the new_view view function. The template extends
the master layout.mako template by providing a basic form to add new tasks.

-*- coding: utf-8 -*-
<%inherit file="layout.mako"/>

<h1>Add a new task</h1>

<form action="${request.route_url('new')}" method="post">
 <input type="text" maxlength="100" name="name">
 <input type="submit" name="add" value="ADD" class="button">
</form>

notfound.mako

This template extends the master layout.mako template. We use it as the
template for our custom NotFound view.

-*- coding: utf-8 -*-
<%inherit file="layout.mako"/>

<div id="notfound">
 <h1>404 - PAGE NOT FOUND</h1>
 The page you're looking for isn't here.
</div>

Configuring template locations

To make it possible for views to find the templates they need by renderer
name, we now need to specify where the Mako templates can be found by modifying
the application configuration settings in tasks.py. Insert the emphasized
lines as indicated in the following.

	90
91
92
93
94
95
96
97
98

	 settings['db'] = os.path.join(here, 'tasks.db')
 settings['mako.directories'] = os.path.join(here, 'templates')
 # session factory
 session_factory = UnencryptedCookieSessionFactoryConfig('itsaseekreet')
 # configuration setup
 config = Configurator(settings=settings, session_factory=session_factory)
 # add mako templating
 config.include('pyramid_mako')
 # routes setup

Step 6 - Styling your templates

It's now time to add some styling to the application templates by adding a CSS
file named style.css to the static directory with the following
content:

body {
 font-family: sans-serif;
 font-size: 14px;
 color: #3e4349;
}

h1, h2, h3, h4, h5, h6 {
 font-family: Georgia;
 color: #373839;
}

a {
 color: #1b61d6;
 text-decoration: none;
}

input {
 font-size: 14px;
 width: 400px;
 border: 1px solid #bbbbbb;
 padding: 5px;
}

.button {
 font-size: 14px;
 font-weight: bold;
 width: auto;
 background: #eeeeee;
 padding: 5px 20px 5px 20px;
 border: 1px solid #bbbbbb;
 border-left: none;
 border-right: none;
}

#flash, #notfound {
 font-size: 16px;
 width: 500px;
 text-align: center;
 background-color: #e1ecfe;
 border-top: 2px solid #7a9eec;
 border-bottom: 2px solid #7a9eec;
 padding: 10px 20px 10px 20px;
}

#notfound {
 background-color: #fbe3e4;
 border-top: 2px solid #fbc2c4;
 border-bottom: 2px solid #fbc2c4;
 padding: 0 20px 30px 20px;
}

#tasks {
 width: 500px;
}

#tasks li {
 padding: 5px 0 5px 0;
 border-bottom: 1px solid #bbbbbb;
}

#tasks li.last {
 border-bottom: none;
}

#tasks .name {
 width: 400px;
 text-align: left;
 display: inline-block;
}

#tasks .actions {
 width: 80px;
 text-align: right;
 display: inline-block;
}

To cause this static file to be served by the application, we must add a
"static view" directive to the application configuration.

	101
102
103
104

	 config.add_route('close', '/close/{id}')
 # static view setup
 config.add_static_view('static', os.path.join(here, 'static'))
 # scan for @view_config and @subscriber decorators

Step 7 - Running the application

We have now completed all steps needed to run the application in its final
version. Before running it, here's the complete main code for tasks.py for
review.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109

	import os
import logging
import sqlite3

from pyramid.config import Configurator
from pyramid.events import ApplicationCreated
from pyramid.events import NewRequest
from pyramid.events import subscriber
from pyramid.httpexceptions import HTTPFound
from pyramid.session import UnencryptedCookieSessionFactoryConfig
from pyramid.view import view_config

from wsgiref.simple_server import make_server

logging.basicConfig()
log = logging.getLogger(__file__)

here = os.path.dirname(os.path.abspath(__file__))

views
@view_config(route_name='list', renderer='list.mako')
def list_view(request):
 rs = request.db.execute('select id, name from tasks where closed = 0')
 tasks = [dict(id=row[0], name=row[1]) for row in rs.fetchall()]
 return {'tasks': tasks}

@view_config(route_name='new', renderer='new.mako')
def new_view(request):
 if request.method == 'POST':
 if request.POST.get('name'):
 request.db.execute(
 'insert into tasks (name, closed) values (?, ?)',
 [request.POST['name'], 0])
 request.db.commit()
 request.session.flash('New task was successfully added!')
 return HTTPFound(location=request.route_url('list'))
 else:
 request.session.flash('Please enter a name for the task!')
 return {}

@view_config(route_name='close')
def close_view(request):
 task_id = int(request.matchdict['id'])
 request.db.execute('update tasks set closed = ? where id = ?',
 (1, task_id))
 request.db.commit()
 request.session.flash('Task was successfully closed!')
 return HTTPFound(location=request.route_url('list'))

@view_config(context='pyramid.exceptions.NotFound', renderer='notfound.mako')
def notfound_view(request):
 request.response.status = '404 Not Found'
 return {}

subscribers
@subscriber(NewRequest)
def new_request_subscriber(event):
 request = event.request
 settings = request.registry.settings
 request.db = sqlite3.connect(settings['db'])
 request.add_finished_callback(close_db_connection)

def close_db_connection(request):
 request.db.close()

@subscriber(ApplicationCreated)
def application_created_subscriber(event):
 log.warning('Initializing database...')
 with open(os.path.join(here, 'schema.sql')) as f:
 stmt = f.read()
 settings = event.app.registry.settings
 db = sqlite3.connect(settings['db'])
 db.executescript(stmt)
 db.commit()

if __name__ == '__main__':
 # configuration settings
 settings = {}
 settings['reload_all'] = True
 settings['debug_all'] = True
 settings['db'] = os.path.join(here, 'tasks.db')
 settings['mako.directories'] = os.path.join(here, 'templates')
 # session factory
 session_factory = UnencryptedCookieSessionFactoryConfig('itsaseekreet')
 # configuration setup
 config = Configurator(settings=settings, session_factory=session_factory)
 # add mako templating
 config.include('pyramid_mako')
 # routes setup
 config.add_route('list', '/')
 config.add_route('new', '/new')
 config.add_route('close', '/close/{id}')
 # static view setup
 config.add_static_view('static', os.path.join(here, 'static'))
 # scan for @view_config and @subscriber decorators
 config.scan()
 # serve app
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

And now let's run tasks.py:

$ python tasks.py
WARNING:tasks.py:Initializing database...

It will be listening on port 8080. Open a web browser to the URL
http://localhost:8080/ to view and interact with the app.

Conclusion

This introduction to Pyramid was inspired by Flask and Bottle tutorials with
the same minimalistic approach in mind. Big thanks to Chris McDonough, Carlos
de la Guardia, and Casey Duncan for their support and friendship.

Static Assets (Static Files)

	Serving Static Assets
	Serving File Content Dynamically

	Serving a Single File from the Root

	Root-Relative Custom Static View (URL Dispatch Only)

	Uploading Files

	Bundling static assets via a Pyramid console script
	Demo

	Requirements

	Configure Pyramid

	Console script

	Install your app

	Compile static assets

For more information on static assets, see the Static Assets [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/assets.html#assets-chapter]
section of the Pyramid documentation.

Serving Static Assets

This collection of recipes describes how to serve static assets in a variety of manners.

Serving File Content Dynamically

Usually you'll use a static view (via "config.add_static_view") to
serve file content that lives on the filesystem. But sometimes files need to
be composed and read from a nonstatic area, or composed on the fly by view
code and served out (for example, a view callable might construct and return
a PDF file or an image).

By way of example, here's a Pyramid application which serves a single static
file (a jpeg) when the URL /test.jpg is executed:

from pyramid.view import view_config
from pyramid.config import Configurator
from pyramid.response import FileResponse
from paste.httpserver import serve

@view_config(route_name='jpg')
def test_page(request):
 response = FileResponse(
 '/home/chrism/groundhog1.jpg',
 request=request,
 content_type='image/jpeg'
)
 return response

if __name__ == '__main__':
 config = Configurator()
 config.add_route('jpg', '/test.jpg')
 config.scan('__main__')
 serve(config.make_wsgi_app())

Basically, use a pyramid.response.FileResponse as the response object and
return it. Note that the request and content_type arguments are
optional. If request is not supplied, any wsgi.file_wrapper
optimization supplied by your WSGI server will not be used when serving the
file. If content_type is not supplied, it will be guessed using the
mimetypes module (which uses the file extension); if it cannot be guessed
successfully, the application/octet-stream content type will be used.

Serving a Single File from the Root

If you need to serve a single file such as /robots.txt or
/favicon.ico that must be served from the root, you cannot use a
static view to do it, as static views cannot serve files from the
root (a static view must have a nonempty prefix such as /static). To
work around this limitation, create views "by hand" that serve up the raw
file data. Below is an example of creating two views: one serves up a
/favicon.ico, the other serves up /robots.txt.

At startup time, both files are read into memory from files on disk using
plain Python. A Response object is created for each. This response is
served by a view which hooks up the static file's URL.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	# this module = myapp.views

import os

from pyramid.response import Response
from pyramid.view import view_config

_here = /app/location/myapp

_here = os.path.dirname(__file__)

_icon = /app/location/myapp/static/favicon.ico

_icon = open(os.path.join(
 _here, 'static', 'favicon.ico')).read()
_fi_response = Response(content_type='image/x-icon',
 body=_icon)

_robots = /app/location/myapp/static/robots.txt

_robots = open(os.path.join(
 _here, 'static', 'robots.txt')).read()
_robots_response = Response(content_type='text/plain',
 body=_robots)

@view_config(name='favicon.ico')
def favicon_view(context, request):
 return _fi_response

@view_config(name='robots.txt')
def robotstxt_view(context, request):
 return _robots_response

Root-Relative Custom Static View (URL Dispatch Only)

The pyramid.static.static_view [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/static.html#pyramid.static.static_view] helper class generates a Pyramid view
callable. This view callable can serve static assets from a directory. An
instance of this class is actually used by the
pyramid.config.Configurator.add_static_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_static_view] configuration method, so
its behavior is almost exactly the same once it's configured.

Warning

The following example will not work for applications that use
traversal, it will only work if you use URL dispatch
exclusively. The root-relative route we'll be registering will always be
matched before traversal takes place, subverting any views registered via
add_view (at least those without a route_name). A
pyramid.static.static_view [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/static.html#pyramid.static.static_view] cannot be made root-relative when you
use traversal.

To serve files within a directory located on your filesystem at
/path/to/static/dir as the result of a "catchall" route hanging from the
root that exists at the end of your routing table, create an instance of the
pyramid.static.static_view [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/static.html#pyramid.static.static_view] class inside a static.py file in your
application root as below:

from pyramid.static import static_view
www = static_view('/path/to/static/dir', use_subpath=True)

Note

For better cross-system flexibility, use an asset
specification as the argument to pyramid.static.static_view [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/static.html#pyramid.static.static_view]
instead of a physical absolute filesystem path, e.g. mypackage:static
instead of /path/to/mypackage/static.

Subsequently, you may wire the files that are served by this view up to be
accessible as /<filename> using a configuration method in your
application's startup code:

.. every other add_route and/or add_handler declaration should come
before this one, as it will, by default, catch all requests

config.add_route('catchall_static', '/*subpath', 'myapp.static.www')

The special name *subpath above is used by the
pyramid.static.static_view [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/static.html#pyramid.static.static_view] view callable to signify the path of the
file relative to the directory you're serving.

Uploading Files

There are two parts necessary for handling file uploads. The first is to
make sure you have a form that's been setup correctly to accept files. This
means adding enctype attribute to your form element with the value of
multipart/form-data. A very simple example would be a form that accepts
an mp3 file. Notice we've setup the form as previously explained and also
added an input element of the file type.

	1
2
3
4
5
6
7
8

	<form action="/store_mp3_view" method="post" accept-charset="utf-8"
 enctype="multipart/form-data">

 <label for="mp3">Mp3</label>
 <input id="mp3" name="mp3" type="file" value="" />

 <input type="submit" value="submit" />
</form>

The second part is handling the file upload in your view callable (above,
assumed to answer on /store_mp3_view). The uploaded file is added to the
request object as a cgi.FieldStorage object accessible through the
request.POST multidict. The two properties we're interested in are the
file and filename and we'll use those to write the file to disk:

import os
import shutil

from pyramid.response import Response

def store_mp3_view(request):
 # ``filename`` contains the name of the file in string format.
 #
 # WARNING: Internet Explorer is known to send an absolute file
 # *path* as the filename. This example is naive; it trusts
 # user input.
 filename = request.POST['mp3'].filename

 # ``input_file`` contains the actual file data which needs to be
 # stored somewhere.
 input_file = request.POST['mp3'].file

 # Using the filename like this without cleaning it is very
 # insecure so please keep that in mind when writing your own
 # file handling.
 file_path = os.path.join('/tmp', filename)
 with open(file_path, 'wb') as output_file:
 shutil.copyfileobj(input_file, output_file)

 return Response('OK')

Bundling static assets via a Pyramid console script

Modern applications often require some kind of build step for bundling static assets for either a development or production environment.
This recipe illustrates how to build a console script that can help with this task.
It also tries to satisfy typical requirements:

	Frontend source code can be distributed as a Python package.

	The source code's repository and site-packages are not written to during the build process.

	Make it possible to provide a plug-in architecture within an application through multiple static asset packages.

	The application's home directory is the destination of the build process to facilitate HTTP serving by a web server.

	Flexible - Allows any frontend toolset (Yarn, Webpack, Rollup, etc.) for JavaScript, CSS, and image bundling to compose bigger pipelines.

Demo

This recipe includes a demo application.
The source files are located on GitHub:

https://github.com/Pylons/pyramid_cookbook/tree/master/docs/static_assets/bundling

The demo was generated from the Pyramid starter cookiecutter [https://github.com/Pylons/pyramid-cookiecutter-starter].

Inside the directory bundling are two directories:

	bundling_example is the Pyramid app generated from the cookiecutter with some additional files and modifications as described in this recipe.

	frontend contains the frontend source code and files.

You can generate a project from the starter cookiecutter, install it, then follow along with the rest of this recipe.
If you run into any problems, compare your project with the demo project source files to see what might be amiss.

Requirements

This recipe and the demo application both require Yarn [https://yarnpkg.com/en/docs/install] and NodeJS 8.x [https://nodejs.org/en/download/] packages to be installed.

Configure Pyramid

First we need to tell Pyramid to serve static content from an additional build directory.
This is useful for development.
In production, often this will be handled by Nginx.

In your configuration file, in the [app:main] section, add locations for the build process:

build result directory
statics.dir = %(here)s/static
intermediate directory for build process
statics.build_dir = %(here)s/static_build

In your application's routes, add a static asset view and an asset override configuration:

import pathlib
after default static view add bundled static support
config.add_static_view(
 "static_bundled", "static_bundled", cache_max_age=1
)
path = pathlib.Path(config.registry.settings["statics.dir"])
create the directory if missing otherwise pyramid will not start
path.mkdir(exist_ok=True)
config.override_asset(
 to_override="yourapp:static_bundled/",
 override_with=config.registry.settings["statics.dir"],
)

Now in your templates, reference the built and bundled static assets.

<script src="{{ request.static_url('yourapp:static_bundled/some-package.min.js') }}"></script>

Console script

Create a directory scripts at the root of your application.
Add an empty __init__.py file to this sub-directory so that it becomes a Python package.
Also in this sub-directory, create a file build_static_assets.py to serve as a console script to compile assets, with the following code.

import argparse
import json
import logging
import os
import pathlib
import shutil
import subprocess
import sys

import pkg_resources
from pyramid.paster import bootstrap, setup_logging

log = logging.getLogger(__name__)

def build_assets(registry, *cmd_args, **cmd_kwargs):
 settings = registry.settings
 build_dir = settings["statics.build_dir"]
 try:
 shutil.rmtree(build_dir)
 except FileNotFoundError as exc:
 log.warning(exc)
 # your application frontend source code and configuration directory
 # usually the containing main package.json
 assets_path = os.path.abspath(
 pkg_resources.resource_filename("bundling_example", "../../frontend")
)
 # copy package static sources to temporary build dir
 shutil.copytree(
 assets_path,
 build_dir,
 ignore=shutil.ignore_patterns(
 "node_modules", "bower_components", "__pycache__"
),
)
 # configuration files/variables can be picked up by webpack/rollup/gulp
 os.environ["FRONTEND_ASSSET_ROOT_DIR"] = settings["statics.dir"]
 worker_config = {'frontendAssetRootDir': settings["statics.dir"]}
 worker_config_file = pathlib.Path(build_dir) / 'pyramid_config.json'

 with worker_config_file.open('w') as f:
 f.write(json.dumps(worker_config))
 # your actual build commands to execute:

 # download all requirements
 subprocess.run(["yarn"], env=os.environ, cwd=build_dir, check=True)
 # run build process
 subprocess.run(["yarn", "build"], env=os.environ, cwd=build_dir, check=True)

def parse_args(argv):
 parser = argparse.ArgumentParser()
 parser.add_argument("config_uri", help="Configuration file, e.g., development.ini")
 return parser.parse_args(argv[1:])

def main(argv=sys.argv):
 args = parse_args(argv)
 setup_logging(args.config_uri)
 env = bootstrap(args.config_uri)
 request = env["request"]
 build_assets(request.registry)

Edit your application's setup.py to create a shell script when you install your application that you will use to start the compilation process.

setup(
 name='yourapp',

 install_requires=requires,
 entry_points={
 'paste.app_factory': [
 'main = channelstream_landing:main',
],
 'console_scripts': [
 'yourapp_build_statics = yourapp.scripts.build_static_assets:main',
]
 },
)

Install your app

Run pip install -e . again to register the console script.

Now you can configure/run your frontend pipeline with webpack/gulp/rollup or other solution.

Compile static assets

Finally we can compile static assets from the frontend and write them into our application.

Run the command:

yourapp_build_statics development.ini

This starts the build process.
It creates a fresh static directory in the same location as your application's ini file.
The directory should contain all the build process files ready to be served on the web.

You can retrieve variables from your Pyramid application in your Node build configuration files:

destinationRootDir = process.env.FRONTEND_ASSSET_ROOT_DIR

You can view a generated pyramid_config.json file in your Node script for additional information.

Templates and Renderers

	Using a Before Render Event to Expose an h Helper Object

	Using a BeforeRender Event to Expose a Mako base Template

	Using a BeforeRender Event to Expose Chameleon base Template

	Using Building Blocks with Chameleon

	Rendering None as the Empty String in Mako Templates

	Mako Internationalization

	Chameleon Internationalization
	Dependencies

	A Folder for the locales

	What to translate

	Commands for Translations

	Add locale directory to projects config

	Set a default locale

	Custom Renderers

	Render into xlsx

For more information on Templates and Renderers, see the following sections
of the Pyramid documentation:

	Templates [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/templates.html]

	Renderers [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html]

	Internationalization and Localization [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/i18n.html]

Using a Before Render Event to Expose an h Helper Object

Pylons 1.X exposed a module conventionally named helpers.py as an h
object in the top-level namespace of each Mako/Genshi/Jinja2 template which
it rendered. You can emulate the same behavior in Pyramid by using a
BeforeRender event subscriber.

First, create a module named helpers.py in your Pyramid package at the
top level (next to __init__.py). We'll import the Python standard
library string module to use later in a template:

helpers.py

import string

In the top of the main __init__ module of your Pyramid application
package, import the new helpers module you created, as well as the
BeforeRender event type. Underneath the imports create a function that
will act as an event subscriber:

	1
2
3
4
5
6
7

	# __init__.py

from pyramid.events import BeforeRender
from myapp import helpers

def add_renderer_globals(event):
 event['h'] = helpers

Within the main function in the same __init__, wire the subscriber up
so that it is called when the BeforeRender event is emitted:

	1
2
3
4
5

	def main(global_settings, **settings):
 config = Configurator(....) # existing code
 # .. existing config statements ... #
 config.add_subscriber(add_renderer_globals, BeforeRender)
 # .. other existing config statements and eventual config.make_app()

At this point, with in any view that uses any templating system as a Pyramid
renderer, you will have an omnipresent h top-level name that is a
reference to the helpers module you created. For example, if you have a
view like this:

@view_config(renderer='foo.pt')
def aview(request):
 return {}

In the foo.pt Chameleon template, you can do this:

	1

	 ${h.string.uppercase}

The value inserted into the template as the result of this statement will be
ABCDEFGHIJKLMNOPQRSTUVWXYZ (at least if you are using an English system).

You can add more imports and functions to helpers.py as necessary to make
features available in your templates.

Using a BeforeRender Event to Expose a Mako base Template

If you wanted to change templates using %inherit based on if a user was
logged in you could do the following:

@subscriber(BeforeRender)
def add_base_template(event):
 request = event.get('request')
 if request.user:
 base = 'myapp:templates/logged_in_layout.mako'
 event.update({'base': base})
 else:
 base = 'myapp:templates/layout.mako'
 event.update({'base': base})

And then in your mako file you can call %inherit like so:

<%inherit file="${context['base']}" />

You must call the variable this way because of the way Mako works.
It will not know about any other variable other than context until after
%inherit is called. Be aware that context here is not the Pyramid
context in the traversal sense (which is stored in request.context) but
rather the Mako rendering context.

Using a BeforeRender Event to Expose Chameleon base Template

To avoid defining the same basic things in each template in your application,
you can define one base template, and inherit from it in other templates.

Note

Pyramid example application - shootout [https://github.com/Pylons/shootout] using this approach.

First, add subscriber within your Pyramid project's __init__.py:

config.add_subscriber('YOURPROJECT.subscribers.add_base_template',
 'pyramid.events.BeforeRender')

Then add the subscribers.py module to your project's directory:

	1
2
3
4
5

	from pyramid.renderers import get_renderer

def add_base_template(event):
 base = get_renderer('templates/base.pt').implementation()
 event.update({'base': base})

After this has been done, you can use your base template to extend other
templates. For example, the base template looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 metal:define-macro="base">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>My page</title>
 </head>
 <body>
 <tal:block metal:define-slot="content">
 </tal:block>
 </body>
</html>

Each template using the base template will look like this:

	1
2
3
4
5
6
7
8

	<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 metal:use-macro="base.macros['base']">
 <tal:block metal:fill-slot="content">
 My awesome content.
 </tal:block>
</html>

The metal:use-macro="base.macros['base']" statement is essential here.
Content inside <tal:block metal:fill-slot="content"></tal:block> tags
will replace corresponding block in base template. You can define
as many slots in as you want. For more information please see
Macro Expansion Template Attribute Language [https://chameleon.readthedocs.io/en/latest/reference.html#macros-metal]
documentation.

Using Building Blocks with Chameleon

If you understood the base template chapter, using building blocks
is very simple and straight forward. In the subscribers.py module
extend the add_base_template function like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.events import subscriber
from pyramid.events import BeforeRender
from pyramid.renderers import get_renderer

@subscriber(BeforeRender)
def add_base_template(event):
 base = get_renderer('templates/base.pt').implementation()
 blocks = get_renderer('templates/blocks.pt').implementation()
 event.update({'base': base,
 'blocks': blocks,
 })

Make Pyramid scan the module so that it finds the BeforeRender event:

	1
2
3
4
5

	def main(global_settings, **settings):
 config = Configurator(....) # existing code
 # .. existing config statements ... #
 config.scan('subscriber')
 # .. other existing config statements and eventual config.make_app()

Now, define your building blocks in templates/blocks.pt. For
example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal">
 <tal:block metal:define-macro="base-paragraph">
 <p class="foo bar">
 <tal:block metal:define-slot="body">
 </tal:block>
 </p>
 </tal:block>

 <tal:block metal:define-macro="bold-paragraph"
 metal:extend-macro="macros['base-paragraph']">
 <tal:block metal:fill-slot="body">
 <b class="strong-class">
 <tal:block metal:define-slot="body"></tal:block>

 </tal:block>
 </tal:block>
</html>

You can now use these building blocks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal"
 metal:use-macro="base.macros['base']">
 <tal:block metal:fill-slot="content">
 <tal:block metal:use-macro="blocks.macros['base-paragraph']">
 <tal:block metal:fill-slot="body">
 My awesome paragraph.
 </tal:block>
 </tal:block>

 <tal:block metal:use-macro="blocks.macros['bold-paragraph']">
 <tal:block metal:fill-slot="body">
 My awesome paragraph in bold.
 </tal:block>
 </tal:block>

 </tal:block>
</html>

Rendering None as the Empty String in Mako Templates

For the following Mako template:

<p>${nunn}</p>

By default, Pyramid will render:

<p>None</p>

Some folks prefer the value None to be rendered as the empty string
in a Mako template. In other words, they'd rather the output be:

<p></p>

Use the following settings in your Pyramid configuration file to obtain this
behavior:

[app:myapp]
mako.imports = from markupsafe import escape_silent
mako.default_filters = escape_silent

Mako Internationalization

Note

This recipe is extracted, with permission, from a blog post made
by Alexandre Bourget [http://web.archive.org/web/20111216150257/http://blog.abourget.net/2011/1/13/pyramid-and-mako:-how-to-do-i18n-the-pylons-way/].

First, add subscribers within your Pyramid project's __init__.py.

def main(...):
 # ...
 config.add_subscriber('YOURPROJECT.subscribers.add_renderer_globals',
 'pyramid.events.BeforeRender')
 config.add_subscriber('YOURPROJECT.subscribers.add_localizer',
 'pyramid.events.NewRequest')

Then add, a subscribers.py module to your project's package directory.

subscribers.py

from pyramid.i18n import get_localizer, TranslationStringFactory

def add_renderer_globals(event):
 # ...
 request = event['request']
 event['_'] = request.translate
 event['localizer'] = request.localizer

tsf = TranslationStringFactory('YOUR_GETTEXT_DOMAIN')

def add_localizer(event):
 request = event.request
 localizer = get_localizer(request)
 def auto_translate(*args, **kwargs):
 return localizer.translate(tsf(*args, **kwargs))
 request.localizer = localizer
 request.translate = auto_translate

After this has been done, the next time you start your application, in your
Mako template, you'll be able to use the simple ${_(u"Translate this string
please")} without having to use get_localizer explicitly, as its
functionality will be enclosed in the _ function, which will be exposed
as a top-level template name. localizer will also be available for plural
forms and fancy stuff.

This will also allow you to use translation in your view code, using
something like:

def my_view(request):
 _ = request.translate
 request.session.flash(_("Welcome home"))

For all that to work, you'll need to:

	1

	(env)$ easy_install Babel

And you'll also need to run these commands in your project's directory:

	1
2
3
4
5
6
7

	(env)$ python setup.py extract_messages
(env)$ python setup.py init_catalog -l en
(env)$ python setup.py init_catalog -l fr
(env)$ python setup.py init_catalog -l es
(env)$ python setup.py init_catalog -l it
(env)$ python setup.py update_catalog
(env)$ python setup.py compile_catalog

Repeat the init_catalog step for each of the langauges you need.

Note

The gettext sub-directory of your project is locale/ in Pyramid, and
not i18n/ as it was in Pylons. You'll notice that in the default
setup.cfg of a Pyramid project.

At this point you'll also need to add your local directory to your
project's configuration.

def main(...):
 # ...
 config.add_translation_dirs('YOURPROJECT:locale')

Lastly, you'll want to have your Mako files extracted when you run
extract_messages, so add these to your setup.py (yes, you read me right, in
setup.py so that Babel can use it when invoking it's commands).

setup(
 # ...
 install_requires=[
 # ...
 Babel,
 # ...
],
 message_extractors = {'yourpackage': [
 ('**.py', 'python', None),
 ('templates/**.html', 'mako', None),
 ('templates/**.mako', 'mako', None),
 ('static/**', 'ignore', None)]},
 # ...
)

In the above triples the last element, None in this snippet, may be used
to pass an options dictionary to the specified extractor. For instance, you may
need to set Mako input encoding using the corresponding option.

...
 ('templates/**.mako', 'mako', {'input_encoding': 'utf-8'}),
...

See also

See also Pyramid Internationalization HowTo [http://danilodellaquila.com/en/blog/pyramid-internationalization-howto]

Chameleon Internationalization

Note

This recipe was created to document the process of internationalization
(i18n) and localization (l10n) of chameleon templates. There is not much to
it, really, but as the author was baffled by this fact, it seems a good idea
to describe the few necessary steps.

We start off with a virtualenv and a fresh Pyramid project created via paster:

	1
2
3

	$ virtualenv --no-site-packages env
$ env/bin/pip install pyramid
$ env bin/paster create -t pyramid_routesalchemy ChameleonI18n

Dependencies

First, add dependencies to your Pyramid project's setup.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	requires = [
 ...
 'Babel',
 'lingua',
]
...
message_extractors = { '.': [
 ('**.py', 'lingua_python', None),
 ('**.pt', 'lingua_xml', None),
]},

You will have to run ../env/bin/python setup.py develop after this to get
Babel and lingua into your virtualenv and make the message extraction work.

A Folder for the locales

Next, add a folder for the locales POT & PO files:

	1

	$ mkdir chameleoni18n/locale

What to translate

Well, let's translate some parts of the given template mytemplate.pt. Add a
namespace and an i18n:domain to the <html> tag:

-<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" xmlns:tal="http://xml.zope.org/namespaces/tal">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" xmlns:tal="http://xml.zope.org/namespaces/tal"
+ xmlns:i18n="http://xml.zope.org/namespaces/i18n"
+ i18n:domain="ChameleonI18n">

The important bit -- the one the author was missing -- is that the i18n:domain
must be spelled exactly like the POT/PO/MO files created later on, including
case. Without this, the translations will not be picked up.

If your templates are organized in a template hierarchy, you must include
i18n:domain in every file that contains messages to extract:

-<tal:block>
+<tal:block i18n:domain="ChameleonI18n">

So now we can mark a part of the template for translation:

- <h2>Search documentation</h2>
+ <h2 i18n:translate="search_documentation">Search documentation</h2>

The i18n:translate attribute tells lingua to extract the contents of the h2 tag
to the catalog POT. You don't have to add a description (like in this example
'search_documentation'), but it makes it easier for translators.

Commands for Translations

Now you need to run these commands in your project's directory:

	1
2
3
4
5
6
7

	(env)$ python setup.py extract_messages
(env)$ python setup.py init_catalog -l de
(env)$ python setup.py init_catalog -l fr
(env)$ python setup.py init_catalog -l es
(env)$ python setup.py init_catalog -l it
(env)$ python setup.py update_catalog
(env)$ python setup.py compile_catalog

Repeat the init_catalog step for each of the languages you need.

The first command will extract the strings for translation to your project's
locale/<project-name>.pot file, in this case ChameleonI18n.pot

The init commands create new catalogs for different languages and the
update command will sync entries from the main POT to the languages POs.

At this point you can tell your translators to go edit the po files :-)
Otherwise the translations will remain empty and defaults will be used.

Finally, the compile command will translate the POs to binary MO files
that are actually used to get the relevant translations.

Note

The gettext sub-directory of your project is locale/ in Pyramid, and
not i18n/ as it was in Pylons. You'll notice that in the default
setup.cfg of a Pyramid project, which has all the necessary settings to
make the above commands work without parameters.

Add locale directory to projects config

At this point you'll also need to add your local directory to your
project's configuration:

def main(...):
 ...
 config.add_translation_dirs('YOURPROJECT:locale')

where YOURPROJECT in our example would be 'chameleoni18n'.

Set a default locale

You can now change the default locale for your project in development.ini
and see if the translations are being picked up.

	1
2

	- pyramid.default_locale_name = en
+ pyramid.default_locale_name = de

Of course, you need to have edited your relevant PO file and added a
translation of the relevant string, in this example search_documentation
and have the PO file compiled to a MO file. Now you can fire up you app and
check out the translated headline.

Custom Renderers

Pyramid supports custom renderers, alongside the
default renderers [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#built-in-renderers] shipped with Pyramid.

Here's a basic comma-separated value (CSV) renderer to output a CSV file to
the browser. Add the following to a renderers.py module in your
application (or anywhere else you'd like to place such things):

import csv
try:
 from StringIO import StringIO # python 2
except ImportError:
 from io import StringIO # python 3

class CSVRenderer(object):
 def __init__(self, info):
 pass

 def __call__(self, value, system):
 """ Returns a plain CSV-encoded string with content-type
 ``text/csv``. The content-type may be overridden by
 setting ``request.response.content_type``."""

 request = system.get('request')
 if request is not None:
 response = request.response
 ct = response.content_type
 if ct == response.default_content_type:
 response.content_type = 'text/csv'

 fout = StringIO()
 writer = csv.writer(fout, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)

 writer.writerow(value.get('header', []))
 writer.writerows(value.get('rows', []))

 return fout.getvalue()

Now you have a renderer. Let's register with our application's
Configurator:

config.add_renderer('csv', 'myapp.renderers.CSVRenderer')

Of course, modify the dotted-string to point to the module location you
decided upon. To use the renderer, create a view:

@view_config(route_name='data', renderer='csv')
def my_view(request):
 query = DBSession.query(table).all()
 header = ['First Name', 'Last Name']
 rows = [[item.first_name, item.last_name] for item in query]

 # override attributes of response
 filename = 'report.csv'
 request.response.content_disposition = 'attachment;filename=' + filename

 return {
 'header': header,
 'rows': rows,
 }

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.add_route('data', '/data')
 config.scan()
 return config.make_wsgi_app()

Query your database in your query variable, establish your headers and initialize
rows.

Override attributes of response as required by your use case. We implement this aspect in view code to keep our custom renderer code focused to the task.

Lastly, we pass headers and rows to the CSV renderer.

For more information on how to add custom Renderers, see the following sections
of the Pyramid documentation:

	Adding a new Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#adding-a-new-renderer]

	Varying Attributes of Rendered Responses [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#varying-attributes-of-rendered-responses]

Render into xlsx

What if we want to have a renderer that always takes the
same data as our main renderer (such as mako or jinja2),
but renders them into something
else, for example xlsx. Then we could do something like this:

the first view_config for the xlsx renderer that
kicks in when there is a request parameter xlsx
@view_config(context="myapp.resources.DBContext",
 renderer="dbtable.xlsx",
 request_param="xlsx")
the second view_config for mako
@view_config(context="myapp.resources.DBContext",
 renderer="templates/dbtable.mako")
def dbtable(request):
 # any code that prepares the data
 # this time, the data have been loaded into context
 return {}

That means that the approach described in custom renderers is not enough. We have to define a template
system. Our renderer will have to lookup the template, render
it, and return as an xlsx document.

Let's define the template interface. Our templates will be plain
Python files placed into the project's xlsx subdirectory,
with two functions defined:

	get_header will return the table header cells

	iterate_rows will yield the table rows

Our renderer will have to:

	import the template

	run the functions to get the data

	put the data into an xlsx file

	return the file

As our templates will be python files, we will use a trick.
In the view_config we change the suffix of the template
to .xlsx so that we can configure our view. In the renderer
we look up that filename with the .py suffix instead
of .xlsx.

Add the following code into a file named xlsxrenderer.py in your application.

import importlib

import openpyxl
import openpyxl.styles
import openpyxl.writer.excel

class XLSXRenderer(object):
 XLSX_CONTENT_TYPE = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
 def __init__(self, info):
 self.suffix = info.type
 self.templates_pkg = info.package.__name__ + ".xlsx"

 def __call__(self, value, system):
 templ_name = system["renderer_name"][:-len(self.suffix)]
 templ_module = importlib.import_module("." + templ_name, self.templates_pkg)
 wb = openpyxl.Workbook()
 ws = wb.active
 if "get_header" in dir(templ_module):
 ws.append(getattr(templ_module, "get_header")(system, value))
 ws.row_dimensions[1].font = openpyxl.styles.Font(bold=True)
 if "iterate_rows" in dir(templ_module):
 for row in getattr(templ_module, "iterate_rows")(system, value):
 ws.append(row)

 request = system.get('request')
 if not request is None:
 response = request.response
 ct = response.content_type
 if ct == response.default_content_type:
 response.content_type = XLSXRenderer.XLSX_CONTENT_TYPE
 response.content_disposition = 'attachment;filename=%s.xlsx' % templ_name

 return openpyxl.writer.excel.save_virtual_workbook(wb)

Now you have a renderer. Let's register it with our application's
Configurator:

config.add_renderer('.xlsx', 'myapp.xlsxrenderer.XLSXRenderer')

Of course, you need to modify the dotted-string to point to the module location you
decided upon. You must also write the templates in the directory
myapp/xlsx, such as myapp/xlsx/dbtable.py. Here is an example
of a dummy template:

def get_header(system, value):
 # value is the dictionary returned from the view
 # request = system["request"]
 # context = system["context"]
 return ["Row number", "A number", "A string"]

def iterate_rows(system, value):
 for row in range(100):
 return [row, 100, "A string"]

To see a working example of this approach, visit:

	Pyramid Sample Application [https://github.com/petrblahos/pyrasample]

There is a Czech version of this recipe here:

	XLSX z Pyramid bezbolestně [https://www.blahos.com/blog/pyramid-render-xlsx/]

For more information on how to add custom renderers, see the following sections
of the Pyramid documentation and Pyramid Community Cookbook:

	Adding a New Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#adding-a-renderer]

	Varying Attributes of Rendered Responses [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#request-response-attr]

	Custom Renderers

Testing

	Testing a POST request using cURL

For more information on testing see the Testing [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/testing.html]
section of the Pyramid documentation.

For additional information on other testing packages see:

	WebTest [http://webtest.pythonpaste.org/en/latest/]

	nose [https://nose.readthedocs.io/en/latest/]

Testing a POST request using cURL

Using the following Pyramid application:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from wsgiref.simple_server import make_server
from pyramid.view import view_config
from pyramid.config import Configurator

@view_config(route_name='theroute', renderer='json',
 request_method='POST')
def myview(request):
 return {'POST': request.POST.items()}

if __name__ == '__main__':
 config = Configurator()
 config.add_route('theroute', '/')
 config.scan()
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 6543, app)
 print server.base_environ
 server.serve_forever()

Once you run the above application, you can test a POST request to the
application via curl (available on most UNIX systems).

$ python application.py
{'CONTENT_LENGTH': '', 'SERVER_NAME': 'Latitude-XT2', 'GATEWAY_INTERFACE': 'CGI/1.1',
 'SCRIPT_NAME': '', 'SERVER_PORT': '6543', 'REMOTE_HOST': ''}

To access POST request body values (provided as the argument to the
-d flag of curl) use request.POST.

$ curl -i -d "param1=value1¶m2=value2" http://localhost:6543/
HTTP/1.0 200 OK
Date: Tue, 09 Sep 2014 09:34:27 GMT
Server: WSGIServer/0.1 Python/2.7.5+
Content-Type: application/json; charset=UTF-8
Content-Length: 54

{"POST": [["param1", "value1"], ["param2", "value2"]]}

To access QUERY_STRING parameters as well, use request.GET.

@view_config(route_name='theroute', renderer='json',
 request_method='POST')
def myview(request):
 return {'GET':request.GET.items(),
 'POST':request.POST.items()}

Append QUERY_STRING parameters to previously used URL and query with curl.

$ curl -i -d "param1=value1¶m2=value2" http://localhost:6543/?param3=value3
HTTP/1.0 200 OK
Date: Tue, 09 Sep 2014 09:39:53 GMT
Server: WSGIServer/0.1 Python/2.7.5+
Content-Type: application/json; charset=UTF-8
Content-Length: 85

{"POST": [["param1", "value1"], ["param2", "value2"]], "GET": [["param3", "value3"]]}

Use request.params to have access to dictionary-like object
containing both the parameters from the query string and request body.

@view_config(route_name='theroute', renderer='json',
 request_method='POST')
def myview(request):
 return {'GET':request.GET.items(),
 'POST':request.POST.items(),
 'PARAMS':request.params.items()}

Another request with curl.

$ curl -i -d "param1=value1¶m2=value2" http://localhost:6543/?param3=value3
HTTP/1.0 200 OK
Date: Tue, 09 Sep 2014 09:53:16 GMT
Server: WSGIServer/0.1 Python/2.7.5+
Content-Type: application/json; charset=UTF-8
Content-Length: 163

{"POST": [["param1", "value1"], ["param2", "value2"]],
 "PARAMS": [["param3", "value3"], ["param1", "value1"], ["param2", "value2"]],
 "GET": [["param3", "value3"]]}

Here's a simple Python program that will do the same as the curl command above does.

import httplib
import urllib
from contextlib import closing

with closing(httplib.HTTPConnection("localhost", 6543)) as conn:
 headers = {"Content-type": "application/x-www-form-urlencoded"}
 params = urllib.urlencode({'param1': 'value1', 'param2': 'value2'})
 conn.request("POST", "?param3=value3", params, headers)
 response = conn.getresponse()
 print response.getheaders()
 print response.read()

Running this program on a console.

$ python request.py
[('date', 'Tue, 09 Sep 2014 10:18:46 GMT'), ('content-length', '163'), ('content-type', 'application/json; charset=UTF-8'), ('server', 'WSGIServer/0.1 Python/2.7.5+')]
{"POST": [["param2", "value2"], ["param1", "value1"]], "PARAMS": [["param3", "value3"], ["param2", "value2"], ["param1", "value1"]], "GET": [["param3", "value3"]]}

Traversal Tutorial

Traversal is an alternate, object-oriented approach to mapping incoming web
requests to objects and views in Pyramid.

Note

This tutorial presumes you have gone through the Pyramid
Quick Tutorial for Pyramid [https://docs.pylonsproject.org/projects/pyramid/en/latest/quick_tutorial/index.html#quick-tutorial].

	Requirements

	1: Template Layout Preparation
	Background

	Objectives

	Steps

	Analysis

	2: Basic Traversal With Site Roots
	Background

	Objectives

	Steps

	Analysis

	Extra Credit

	3: Traversal Hierarchies
	Background

	Objectives

	Steps

	Analysis

	Extra Credit

	4: Type-Specific Views
	Background

	Objectives

	Steps

	Analysis

	Extra Credit

	5: Adding Resources To Hierarchies
	Background

	Goals

	Steps

	Analysis

	Extra Credit

	6: Storing Resources In ZODB
	Background

	Objectives

	Steps

	Analysis

	Extra Credit

	7: RDBMS Root Factories
	Background

	Goals

	Steps

	Analysis

	Extra Credit

	8: SQL Traversal and Adding Content
	Background

	Goals

	Steps

	Analysis

Requirements

Let's get our tutorial environment setup. Most of the setup work is in standard
Python development practices: install Python, make an isolated environment, and
setup packaging tools.

The Quick Tutorial of Pyramid [https://docs.pylonsproject.org/projects/pyramid/en/latest/quick_tutorial/index.html#quick-tutorial] has an excellent
section covering the installation and setup requirements [https://docs.pylonsproject.org/projects/pyramid/en/latest/quick_tutorial/requirements.html#qtut-requirements]. Follow those instructions to get Python and
Pyramid setup.

For your workspace name, use quick_traversal in place of
quick_tutorial.

1: Template Layout Preparation

Get a Twitter Bootstrap-themed set of Jinja2 templates in place.

Background

In this traversal tutorial, we'll have a number of views and templates, each
with some styling and layout. Let's work efficiently and produce decent visual
appeal by getting some views and Jinja2 templates with our basic layout.

Objectives

	Get a basic Pyramid project in place with views and templates based on
pyramid_jinja2.

	Have a "layout" master template and some included subtemplates.

Steps

	Let's start with an empty hierarchy of directories. Starting in a tutorial
workspace (e.g., quick_traversal):

$ mkdir -p layout/tutorial/templates
$ cd layout

	Make a layout/setup.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from setuptools import setup

requires = [
 'pyramid',
 'pyramid_jinja2',
 'pyramid_debugtoolbar'
]

setup(name='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 """,
)

	You can now install the project in development mode:

$ $VENV/bin/python setup.py develop

	We need a configuration file at layout/development.ini:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.includes =
 pyramid_debugtoolbar

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root, tutorial

[logger_tutorial]
level = DEBUG
handlers =
qualname = tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

	In layout/tutorial/__init__.py wire up pyramid_jinja2 and scan for
views:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_jinja2')
 config.scan('.views')
 return config.make_wsgi_app()

	Our views in layout/tutorial/views.py just has a single view that will
answer an incoming request for /hello:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.view import view_config

class TutorialViews(object):
 def __init__(self, request):
 self.request = request

 @view_config(name='hello', renderer='templates/site.jinja2')
 def site(self):
 page_title = 'Quick Tutorial: Site View'
 return dict(page_title=page_title)

	The view's renderer points to a template at
layout/tutorial/templates/site.jinja2:

	1
2
3
4
5
6

	{% extends "templates/layout.jinja2" %}
{% block content %}

<p>Welcome to the site.</p>

{% endblock content %}

	That template asks to use a master "layout" template at
layout/tutorial/templates/layout.jinja2:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	<!DOCTYPE html>
<html lang="en">
<head>
 <title>{{ page_title }}</title>
 <link rel="stylesheet"
 href="http://netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">
</head>
<body>

<div class="navbar navbar-inverse">
 <div class="container">
 {% include "templates/header.jinja2" %}
 </div>
</div>

<div class="container">

 <div>
 {% include "templates/breadcrumbs.jinja2" %}
 </div>

 <h1>{{ page_title }}</h1>
 {% block content %}
 {% endblock content %}

</div>

</body>
</html>

	The layout includes a header at
layout/tutorial/templates/header.jinja2:

	1
2

	<a class="navbar-brand"
 href="{{ request.resource_url(request.root) }}">Tutorial

	The layout also includes a subtemplate for breadcrumbs at
layout/tutorial/templates/breadcrumbs.jinja2:

	1
2
3

	
 Home >>

	Simplified tests in layout/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	import unittest

from pyramid.testing import DummyRequest

class TutorialViewsUnitTests(unittest.TestCase):
 def _makeOne(self, request):
 from .views import TutorialViews
 inst = TutorialViews(request)
 return inst

 def test_site_view(self):
 request = DummyRequest()
 inst = self._makeOne(request)
 result = inst.site()
 self.assertIn('Site View', result['page_title'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp
 self.testapp = TestApp(app)

 def test_it(self):
 result = self.testapp.get('/hello', status=200)
 self.assertIn(b'Site View', result.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
.
--
Ran 2 tests in 0.141s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/hello in your browser.

Analysis

The @view_config uses a new attribute: name='hello'. This, as we'll see
in this traversal tutorial, makes a hello location available in URLs.

The view's renderer uses Jinja2's mechanism for pointing at a master layout and
filling certain areas from the view templates. The layout provides a basic HTML
layout and points at Twitter Bootstrap CSS on a content delivery network for
styling.

2: Basic Traversal With Site Roots

Model websites as a hierarchy of objects with operations.

Background

Web applications have URLs which locate data and make operations on that data.
Pyramid supports two ways of mapping URLs into Python operations:

	the more traditional approach of URL dispatch, or routes

	the more object-oriented approach of traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#traversal-chapter] popularized by Zope

In this section we will introduce traversal bit-by-bit. Along the way, we will
try to show how easy and Pythonic it is to think in terms of traversal.

Traversal is easy, powerful, and useful.

With traversal, you think of your website as a tree of Python objects, just
like a dictionary of dictionaries. For example:

http://example.com/company1/aFolder/subFolder/search

...is nothing more than:

>>> root['aFolder']['subFolder'].search()

To remove some mystery about traversal, we start with the smallest possible
step: an object at the top of our URL space. This object acts as the "root" and
has a view which shows some data on that object.

Objectives

	Make a factory for the root object.

	Pass it to the configurator.

	Have a view which displays an attribute on that object.

Steps

	We are going to use the previous step as our starting point:

$ cd ..; cp -r layout siteroot; cd siteroot
$ $VENV/bin/python setup.py develop

	In siteroot/tutorial/__init__.py, make a root factory that points to a
function in a module we are about to create:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.config import Configurator

from .resources import bootstrap

def main(global_config, **settings):
 config = Configurator(settings=settings,
 root_factory=bootstrap)
 config.include('pyramid_jinja2')
 config.scan('.views')
 return config.make_wsgi_app()

	We add a new file siteroot/tutorial/resources.py with a class for the
root of our site, and a factory that returns it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class Root(dict):
 __name__ = ''
 __parent__ = None
 def __init__(self, title):
 self.title = title

def bootstrap(request):
 root = Root('My Site')

 return root

	Our views in siteroot/tutorial/views.py are now very different:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from pyramid.view import view_config

class TutorialViews:
 def __init__(self, context, request):
 self.context = context
 self.request = request

 @view_config(renderer='templates/home.jinja2')
 def home(self):
 page_title = 'Quick Tutorial: Home'
 return dict(page_title=page_title)

 @view_config(name='hello', renderer='templates/hello.jinja2')
 def hello(self):
 page_title = 'Quick Tutorial: Hello'
 return dict(page_title=page_title)

	Rename the template siteroot/tutorial/templates/site.jinja2 to
siteroot/tutorial/templates/home.jinja2 and modify it:

	1
2
3
4
5
6
7
8

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <p>Welcome to {{ context.title }}. Visit
 hello
 </p>

{% endblock content %}

	Add a template in siteroot/tutorial/templates/hello.jinja2:

	1
2
3
4
5
6
7
8

	{% extends "templates/layout.jinja2" %}
{% block content %}

<p>Welcome to {{ context.title }}. Visit
home</p>

{% endblock content %}

	Modify the simple tests in siteroot/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	import unittest

from pyramid.testing import DummyRequest
from pyramid.testing import DummyResource

class TutorialViewsUnitTests(unittest.TestCase):
 def test_home(self):
 from .views import TutorialViews

 request = DummyRequest()
 title = 'Dummy Context'
 context = DummyResource(title=title)
 inst = TutorialViews(context, request)
 result = inst.home()
 self.assertIn('Home', result['page_title'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp
 self.testapp = TestApp(app)

 def test_hello(self):
 result = self.testapp.get('/hello', status=200)
 self.assertIn(b'Quick Tutorial: Hello', result.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
..
--
Ran 2 tests in 0.134s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/hello in your browser.

Analysis

Our __init__.py has a small but important change: we create the
configuration with a root factory. Our root factory is a simple function that
performs some work and returns the root object in the resource tree [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#the-resource-tree].

In the resource tree, Pyramid can match URLs to objects and subobjects,
finishing in a view as the operation to perform. Traversing through containers
is done using Python's normal __getitem__ dictionary protocol.

Pyramid provides services beyond simple Python dictionaries. These
location [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/resources.html#location-aware] services need a little bit more
protocol than just __getitem__. Namely, objects need to provide an
attribute/callable for __name__ and __parent__.

In this step, our tree has one object: the root. It is an instance of our
Root class. The next URL hop is hello. Our root instance does not have
an item in its dictionary named hello, so Pyramid looks for a view with a
name=hello, finding our view method.

Our home view is passed by Pyramid, with the instance of this folder as
context. The view can then grab attributes and other data from the object
that is the focus of the URL.

Now on to the most visible part: no more routes! Previously we wrote URL
"replacement patterns" which mapped to a route. The route extracted data from
the patterns and made this data available to views that were mapped to that
route.

Instead segments in URLs become object identifiers in Python.

Extra Credit

	Is the root factory called once on startup, or on every request? Do
a small change that answers this. What is the impact of the answer
on this?

See also

Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#traversal-chapter],
Location-Aware Resources [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/resources.html#location-aware],
The Resource Tree [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#the-resource-tree],
Much Ado About Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/muchadoabouttraversal.html#much-ado-about-traversal-chapter]

3: Traversal Hierarchies

Objects with subobjects and views, all via URLs.

Background

In 2: Basic Traversal With Site Roots we took the simplest possible step: a root object with
little need for the stitching together of a tree known as traversal.

In this step we remain simple, but make a basic hierarchy:

	1
2
3
4
5

	/
 doc1
 doc2
 folder1/
 doc1

Objectives

	Use a multi-level nested hierarchy of Python objects.

	Show how __name__ and __parent__ glue the hierarchy together.

	Use objects which last between requests.

Steps

	We are going to use the previous step as our starting point:

$ cd ..; cp -r siteroot hierarchy; cd hierarchy
$ $VENV/bin/python setup.py develop

	Provide a richer set of objects in hierarchy/tutorial/resources.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	class Folder(dict):
 def __init__(self, name, parent, title):
 self.__name__ = name
 self.__parent__ = parent
 self.title = title

class Root(Folder):
 pass

class Document(object):
 def __init__(self, name, parent, title):
 self.__name__ = name
 self.__parent__ = parent
 self.title = title

Done outside bootstrap to persist from request to request
root = Root('', None, 'My Site')

def bootstrap(request):
 if not root.values():
 # No values yet, let's make:
 # /
 # doc1
 # doc2
 # folder1/
 # doc1
 doc1 = Document('doc1', root, 'Document 01')
 root['doc1'] = doc1
 doc2 = Document('doc2', root, 'Document 02')
 root['doc2'] = doc2
 folder1 = Folder('folder1', root, 'Folder 01')
 root['folder1'] = folder1

 # Only has to be unique in folder
 doc11 = Document('doc1', folder1, 'Document 01')
 folder1['doc1'] = doc11

 return root

	Have hierarchy/tutorial/views.py show information about the resource
tree:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from pyramid.location import lineage
from pyramid.view import view_config

class TutorialViews:
 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.parents = reversed(list(lineage(context)))

 @view_config(renderer='templates/home.jinja2')
 def home(self):
 page_title = 'Quick Tutorial: Home'
 return dict(page_title=page_title)

 @view_config(name='hello', renderer='templates/hello.jinja2')
 def hello(self):
 page_title = 'Quick Tutorial: Hello'
 return dict(page_title=page_title)

	Update the hierarchy/tutorial/templates/home.jinja2 view template:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	{% extends "templates/layout.jinja2" %}
{% block content %}

 Site Folder
 Document 01
 Document 02
 Folder 01
 Document 01 in Folder 01

 <h2>{{ context.title }}</h2>

 <p>Welcome to {{ context.title }}. Visit
 hello
 </p>

{% endblock content %}

	The hierarchy/tutorial/templates/breadcrumbs.jinja2 template now has a
hierarchy to show:

	1
2
3
4
5

	{% for p in view.parents %}

 {{ p.title }}
>>
{% endfor %}

	Update the tests in hierarchy/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	import unittest

from pyramid.testing import DummyRequest
from pyramid.testing import DummyResource

class TutorialViewsUnitTests(unittest.TestCase):
 def test_home_view(self):
 from .views import TutorialViews

 request = DummyRequest()
 title = 'Dummy Context'
 context = DummyResource(title=title, __name__='dummy')
 inst = TutorialViews(context, request)
 result = inst.home()
 self.assertIn('Home', result['page_title'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp
 self.testapp = TestApp(app)

 def test_home(self):
 result = self.testapp.get('/', status=200)
 self.assertIn(b'Site Folder', result.body)

	Now run the tests:

$ $VENV/bin/nosetests tutorial
..
--
Ran 2 tests in 0.141s

OK

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser.

Analysis

In this example we have to manage our tree by assigning __name__ as an
identifier on each child, and __parent__ as a reference to the parent. The
template used now shows different information based on the object URL to which
you traversed.

We also show that @view_config can set a "default" view on a context by
omitting the @name attribute. Thus, if you visit
http://localhost:6543/folder1/ without providing anything after, the
configured default view is used.

Extra Credit

	In resources.py, we moved the instantiation of root out to global
scope. Why?

	If you go to a resource that doesn't exist, will Pyramid handle it
gracefully?

	If you ask for a default view on a resource and none is configured, will
Pyramid handle it gracefully?

4: Type-Specific Views

Type-specific views by registering a view against a class.

Background

In 3: Traversal Hierarchies we had 3 "content types" (Root, Folder, and
Document.) All, however, used the same view and template.

Pyramid traversal lets you bind a view to a particular content type. This
ability to make your URLs "object oriented" is one of the distinguishing
features of traversal, and makes crafting a URL space more natural. Once
Pyramid finds the context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] object in the URL path, developers have a lot
of flexibility in view predicates.

Objectives

	Use a decorator @view_config which uses the context attribute to
associate a particular view with context instances of a particular class.

	Create views and templates which are unique to a particular class (a.k.a.,
type).

	Learn patterns in test writing to handle multiple kinds of contexts.

Steps

	We are going to use the previous step as our starting point:

$ cd ..; cp -r hierarchy typeviews; cd typeviews
$ $VENV/bin/python setup.py develop

	Our views in typeviews/tutorial/views.py need type-specific
registrations:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	from pyramid.location import lineage
from pyramid.view import view_config

from .resources import (
 Root,
 Folder,
 Document
)

class TutorialViews:
 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.parents = reversed(list(lineage(context)))

 @view_config(renderer='templates/root.jinja2',
 context=Root)
 def root(self):
 page_title = 'Quick Tutorial: Root'
 return dict(page_title=page_title)

 @view_config(renderer='templates/folder.jinja2',
 context=Folder)
 def folder(self):
 page_title = 'Quick Tutorial: Folder'
 return dict(page_title=page_title)

 @view_config(renderer='templates/document.jinja2',
 context=Document)
 def document(self):
 page_title = 'Quick Tutorial: Document'
 return dict(page_title=page_title)

	We have a new contents subtemplate at
typeviews/tutorial/templates/contents.jinja2:

	1
2
3
4
5
6
7
8

	<h4>Contents</h4>

 {% for child in context.values() %}

 {{ child.title }}

 {% endfor %}

	Make a template for viewing the root at
typeviews/tutorial/templates/root.jinja2:

	1
2
3
4
5
6
7
8

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 <p>The root might have some other text.</p>
 {% include "templates/contents.jinja2" %}

{% endblock content %}

	Now make a template for viewing folders at
typeviews/tutorial/templates/folder.jinja2:

	1
2
3
4
5
6
7

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 {% include "templates/contents.jinja2" %}

{% endblock content %}

	Finally make a template for viewing documents at
typeviews/tutorial/templates/document.jinja2:

	1
2
3
4
5
6
7

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 <p>A document might have some body text.</p>

{% endblock content %}

	More tests are needed in typeviews/tutorial/tests.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

	import unittest

from pyramid.testing import DummyRequest
from pyramid.testing import DummyResource

class TutorialViewsUnitTests(unittest.TestCase):
 def _makeOne(self, context, request):
 from .views import TutorialViews

 inst = TutorialViews(context, request)
 return inst

 def test_site(self):
 request = DummyRequest()
 context = DummyResource()
 inst = self._makeOne(context, request)
 result = inst.root()
 self.assertIn('Root', result['page_title'])

 def test_folder_view(self):
 request = DummyRequest()
 context = DummyResource()
 inst = self._makeOne(context, request)
 result = inst.folder()
 self.assertIn('Folder', result['page_title'])

 def test_document_view(self):
 request = DummyRequest()
 context = DummyResource()
 inst = self._makeOne(context, request)
 result = inst.document()
 self.assertIn('Document', result['page_title'])

class TutorialFunctionalTests(unittest.TestCase):
 def setUp(self):
 from tutorial import main
 app = main({})
 from webtest import TestApp
 self.testapp = TestApp(app)

 def test_it(self):
 res = self.testapp.get('/', status=200)
 self.assertIn(b'Root', res.body)
 res = self.testapp.get('/folder1', status=200)
 self.assertIn(b'Folder', res.body)
 res = self.testapp.get('/doc1', status=200)
 self.assertIn(b'Document', res.body)
 res = self.testapp.get('/doc2', status=200)
 self.assertIn(b'Document', res.body)
 res = self.testapp.get('/folder1/doc1', status=200)
 self.assertIn(b'Document', res.body)

	$ $VENV/bin/nosetests should report running 4 tests.

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser.

Analysis

For the most significant change, our @view_config now matches on a
context view predicate. We can say "use this view when looking at this
kind of thing." The concept of a route as an intermediary step between URLs and
views has been eliminated.

Extra Credit

	Should you calculate the list of children on the Python side, or access it
on the template side by operating on the context?

	What if you need different traversal policies?

	In Zope, interfaces were used to register a view. How do you register a
Pyramid view against instances that support a particular interface? When
should you?

	Let's say you need a more specific view to be used on a particular instance
of a class, letting a more general view cover all other instances. What are
some of your options?

See also

Traversal Details [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#traversal-chapter]
Hybrid Traversal and URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hybrid.html#hybrid-chapter]

5: Adding Resources To Hierarchies

Multiple views per type allowing addition of content anywhere in a resource
tree.

Background

We now have multiple kinds of things, but only one view per resource type. We
need the ability to add things to containers, then view and edit resources.

We will use the previously mentioned concept of named views. A name is a part
of the URL that appears after the resource identifier. For example:

@view_config(context=Folder, name='add_document')

...means that this URL:

http://localhost:6543/some_folder/add_document

...will match the view being configured. It's as if you have an object-oriented
web with operations on resources represented by a URL.

Goals

	Allow adding and editing content in a resource tree.

	Create a simple form which POSTs data.

	Create a view which takes the POST data, creates a resource, and redirects to
the newly-added resource.

	Create per-type named views.

Steps

	We are going to use the previous step as our starting point:

$ cd ..; cp -r typeviews addcontent; cd addcontent
$ $VENV/bin/python setup.py develop

	Our views in addcontent/tutorial/views.py need type-specific
registrations:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	from random import randint

from pyramid.httpexceptions import HTTPFound
from pyramid.location import lineage
from pyramid.view import view_config

from .resources import (
 Root,
 Folder,
 Document
)

class TutorialViews(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.parents = reversed(list(lineage(context)))

 @view_config(renderer='templates/root.jinja2',
 context=Root)
 def root(self):
 page_title = 'Quick Tutorial: Root'
 return dict(page_title=page_title)

 @view_config(renderer='templates/folder.jinja2',
 context=Folder)
 def folder(self):
 page_title = 'Quick Tutorial: Folder'
 return dict(page_title=page_title)

 @view_config(name='add_folder', context=Folder)
 def add_folder(self):
 # Make a new Folder
 title = self.request.POST['folder_title']
 name = str(randint(0, 999999))
 new_folder = Folder(name, self.context, title)
 self.context[name] = new_folder

 # Redirect to the new folder
 url = self.request.resource_url(new_folder)
 return HTTPFound(location=url)

 @view_config(name='add_document', context=Folder)
 def add_document(self):
 # Make a new Document
 title = self.request.POST['document_title']
 name = str(randint(0, 999999))
 new_document = Document(name, self.context, title)
 self.context[name] = new_document

 # Redirect to the new document
 url = self.request.resource_url(new_document)
 return HTTPFound(location=url)

 @view_config(renderer='templates/document.jinja2',
 context=Document)
 def document(self):
 page_title = 'Quick Tutorial: Document'
 return dict(page_title=page_title)

	Make a re-usable snippet in addcontent/tutorial/templates/addform.jinja2
for adding content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	<p>
 <form class="form-inline"
 action="{{ request.resource_url(context, 'add_folder') }}"
 method="POST">
 <div class="form-group">
 <input class="form-control" name="folder_title"
 placeholder="New folder title..."/>
 </div>
 <input type="submit" class="btn" value="Add Folder"/>
 </form>
</p>
<p>
 <form class="form-inline"
 action="{{ request.resource_url(context, 'add_document') }}"
 method="POST">
 <div class="form-group">
 <input class="form-control" name="document_title"
 placeholder="New document title..."/>
 </div>
 <input type="submit" class="btn" value="Add Document"/>
 </form>
</p>

	Add this snippet to addcontent/tutorial/templates/root.jinja2:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 <p>The root might have some other text.</p>
 {% include "templates/contents.jinja2" %}

 {% include "templates/addform.jinja2" %}

{% endblock content %}

	Forms are needed in addcontent/tutorial/templates/folder.jinja2:

	1
2
3
4
5
6
7
8
9

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 {% include "templates/contents.jinja2" %}

 {% include "templates/addform.jinja2" %}

{% endblock content %}

	$ $VENV/bin/nosetests should report running 4 tests.

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser.

Analysis

Our views now represent a richer system, where form data can be processed to
modify content in the tree. We do this by attaching named views to resource
types, giving them a natural system for object-oriented operations.

To mimic uniqueness, we randomly choose a satisfactorily large number. For true
uniqueness, we would also need to check that the number does not already exist
at the same level of the resource tree.

We'll start to address a couple of issues brought up in the Extra Credit below
in the next step of this tutorial, 6: Storing Resources In ZODB.

Extra Credit

	What happens if you add folders and documents, then restart your app?

	What happens if you remove the pseudo-random, pseudo-unique naming
convention and replace it with a fixed value?

6: Storing Resources In ZODB

Store and retrieve resource tree containers and items in a database.

Background

We now have a resource tree that can go infinitely deep, adding items and
subcontainers along the way. We obviously need a database, one that can support
hierarchies. ZODB is a transaction-based Python database that supports
transparent persistence. We will modify our application to work with the ZODB.

Along the way we will add the use of pyramid_tm, a system for adding
transaction awareness to our code. With this we don't need to manually manage
our transaction begin/commit cycles in our application code. Instead,
transactions are setup transparently on request/response boundaries, outside
our application code.

Objectives

	Create a CRUD app that adds records to persistent storage.

	Setup pyramid_tm and pyramid_zodbconn.

	Make our "content" classes inherit from Persistent.

	Set up a database connection string in our application.

	Set up a root factory that serves the root from ZODB rather than from memory.

Steps

	We are going to use the previous step as our starting point:

$ cd ..; cp -r addcontent zodb; cd zodb

	Introduce some new dependencies in zodb/setup.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from setuptools import setup

requires = [
 'pyramid',
 'pyramid_jinja2',
 'ZODB3',
 'pyramid_zodbconn',
 'pyramid_tm',
 'pyramid_debugtoolbar'
]

setup(name='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 """,
)

	We can now install our project:

$ $VENV/bin/python setup.py develop

	Modify our zodb/development.ini to include some configuration and give
database connection parameters:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.includes =
 pyramid_debugtoolbar
 pyramid_zodbconn
 pyramid_tm
zodbconn.uri = file://%(here)s/Data.fs?connection_cache_size=20000

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root, tutorial

[logger_tutorial]
level = DEBUG
handlers =
qualname = tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

	Our startup code in zodb/tutorial/__init__.py gets some bootstrapping
changes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from pyramid.config import Configurator
from pyramid_zodbconn import get_connection

from .resources import bootstrap

def root_factory(request):
 conn = get_connection(request)
 return bootstrap(conn.root())

def main(global_config, **settings):
 config = Configurator(settings=settings,
 root_factory=root_factory)
 config.include('pyramid_jinja2')
 config.scan('.views')
 return config.make_wsgi_app()

	Our views in zodb/tutorial/views.py have modest changes in
add_folder and add_content for how new instances are made and put
into a container:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

	from random import randint

from pyramid.httpexceptions import HTTPFound
from pyramid.location import lineage
from pyramid.view import view_config

from .resources import (
 Root,
 Folder,
 Document
)

class TutorialViews(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.parents = reversed(list(lineage(context)))

 @view_config(renderer='templates/root.jinja2',
 context=Root)
 def root(self):
 page_title = 'Quick Tutorial: Root'
 return dict(page_title=page_title)

 @view_config(renderer='templates/folder.jinja2',
 context=Folder)
 def folder(self):
 page_title = 'Quick Tutorial: Folder'
 return dict(page_title=page_title)

 @view_config(name='add_folder', context=Folder)
 def add_folder(self):
 # Make a new Folder
 title = self.request.POST['folder_title']
 name = str(randint(0, 999999))
 new_folder = Folder(title)
 new_folder.__name__ = name
 new_folder.__parent__ = self.context
 self.context[name] = new_folder

 # Redirect to the new folder
 url = self.request.resource_url(new_folder)
 return HTTPFound(location=url)

 @view_config(name='add_document', context=Folder)
 def add_document(self):
 # Make a new Document
 title = self.request.POST['document_title']
 name = str(randint(0, 999999))
 new_document = Document(title)
 new_document.__name__ = name
 new_document.__parent__ = self.context
 self.context[name] = new_document

 # Redirect to the new document
 url = self.request.resource_url(new_document)
 return HTTPFound(location=url)

 @view_config(renderer='templates/document.jinja2',
 context=Document)
 def document(self):
 page_title = 'Quick Tutorial: Document'
 return dict(page_title=page_title)

	Make our resources persistent in zodb/tutorial/resources.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	from persistent import Persistent
from persistent.mapping import PersistentMapping
import transaction

class Folder(PersistentMapping):
 def __init__(self, title):
 PersistentMapping.__init__(self)
 self.title = title

class Root(Folder):
 __name__ = None
 __parent__ = None

class Document(Persistent):
 def __init__(self, title):
 Persistent.__init__(self)
 self.title = title

def bootstrap(zodb_root):
 if not 'tutorial' in zodb_root:
 root = Root('My Site')
 zodb_root['tutorial'] = root
 transaction.commit()
 return zodb_root['tutorial']

	No changes to any templates!

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser.

Analysis

We install pyramid_zodbconn to handle database connections to ZODB. This
pulls the ZODB3 package as well.

To enable pyramid_zodbconn:

	We activate the package configuration using pyramid.includes.

	We define a zodbconn.uri setting with the path to the Data.fs file.

In the root factory, instead of using our old root object, we now get a
connection to the ZODB and create the object using that.

Our resources need a couple of small changes. Folders now inherit from
persistent.PersistentMapping and document from persistent.Persistent.
Note that Folder now needs to call super() on the __init__ method,
or the mapping will not initialize properly.

On the bootstrap, note the use of transaction.commit() to commit the
change. This is because on first startup, we want a root resource in place
before continuing.

ZODB has many modes of deployment. For example, ZEO is a pure-Python object
storage service across multiple processes and hosts. RelStorage lets you use a
RDBMS for storage/retrieval of your Python pickles.

Extra Credit

	Create a view that deletes a document.

	Remove the configuration line that includes pyramid_tm. What happens
when you restart the application? Are your changes persisted across
restarts?

	What happens if you delete the files named Data.fs*?

7: RDBMS Root Factories

Using SQLAlchemy to provide a persistent root resource via a resource factory.

Background

In 6: Storing Resources In ZODB we used a Python object database, the ZODB, for storing our
resource tree information. The ZODB is quite helpful at keeping a graph
structure that we can use for traversal's "location awareness".

Relational databases, though, aren't hierarchical. We can, however, use
SQLAlchemy's adjacency list relationship [http://docs.sqlalchemy.org/en/latest/orm/self_referential.html]
to provide a tree-like structure. We will do this in the next two steps.

In the first step, we get the basics in place: SQLAlchemy, a SQLite table,
transaction-awareness, and a root factory that gives us a context. We will use
2: Basic Traversal With Site Roots as a starting point.

Note

This step presumes you are familiar with the material in
19: Databases Using SQLAlchemy [https://docs.pylonsproject.org/projects/pyramid/en/latest/quick_tutorial/databases.html#qtut-databases].

Note

Traversal's usage of SQLAlchemy's adjacency list relationship and polymorphic
table inheritance came from Kotti [https://pypi.org/project/Kotti/], a
Pyramid-based CMS inspired by Plone. Daniel Nouri has advanced the ideas of
first-class traversal in SQL databases with a variety of techniques and
ideas. Kotti is certainly the place to look for the most modern approach to
traversal hierarchies in SQL.

Goals

	Introduce SQLAlchemy and SQLite into the project, including transaction
awareness.

	Provide a root object that is stored in the RDBMS and use that as our
context.

Steps

	We are going to use the siteroot step as our starting point:

$ cd ..; cp -r siteroot sqlroot; cd sqlroot

	Introduce some new dependencies and a console script in
sqlroot/setup.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from setuptools import setup

requires = [
 'pyramid',
 'pyramid_jinja2',
 'pyramid_tm',
 'sqlalchemy',
 'zope.sqlalchemy',
 'pyramid_debugtoolbar'
]

setup(name='tutorial',
 install_requires=requires,
 entry_points="""\
 [paste.app_factory]
 main = tutorial:main
 [console_scripts]
 initialize_tutorial_db = tutorial.initialize_db:main
 """,
)

	Now we can initialize our project:

$ $VENV/bin/python setup.py develop

	Our configuration file at sqlroot/development.ini wires together some
new pieces:

[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.includes =
 pyramid_debugtoolbar
 pyramid_tm
sqlalchemy.url = sqlite:///%(here)s/sqltutorial.sqlite

[server:main]
use = egg:pyramid#wsgiref
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root, tutorial, sqlalchemy

[logger_tutorial]
level = DEBUG
handlers =
qualname = tutorial

[logger_sqlalchemy]
level = INFO
handlers =
qualname = sqlalchemy.engine

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

	The setup.py has an entry point for a console script at
sqlroot/tutorial/initialize_db.py, so let's add that script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	import os
import sys
import transaction

from sqlalchemy import engine_from_config

from pyramid.paster import (
 get_appsettings,
 setup_logging,
)

from .models import (
 DBSession,
 Root,
 Base,
)

def usage(argv):
 cmd = os.path.basename(argv[0])
 print('usage: %s <config_uri>\n'
 '(example: "%s development.ini")' % (cmd, cmd))
 sys.exit(1)

def main(argv=sys.argv):
 if len(argv) != 2:
 usage(argv)
 config_uri = argv[1]
 setup_logging(config_uri)
 settings = get_appsettings(config_uri)
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.create_all(engine)

 with transaction.manager:
 root = Root(title='My SQLTraversal Root')
 DBSession.add(root)

	Our startup code in sqlroot/tutorial/__init__.py gets
some bootstrapping changes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from pyramid.config import Configurator

from sqlalchemy import engine_from_config

from .models import (
 DBSession,
 Base,
 root_factory
)

def main(global_config, **settings):
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine

 config = Configurator(settings=settings,
 root_factory=root_factory)
 config.include('pyramid_jinja2')
 config.scan('.views')
 return config.make_wsgi_app()

	Create sqlroot/tutorial/models.py with our SQLAlchemy model for our
persistent root:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	from sqlalchemy import (
 Column,
 Integer,
 Text,
)

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
)

from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(
 sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

class Root(Base):
 __name__ = ''
 __parent__ = None
 __tablename__ = 'root'
 uid = Column(Integer, primary_key=True)
 title = Column(Text, unique=True)

def root_factory(request):
 return DBSession.query(Root).one()

	Let's run this console script, thus producing our database and table:

$ $VENV/bin/initialize_tutorial_db development.ini
2013-09-29 15:42:23,564 INFO [sqlalchemy.engine.base.Engine][MainThread] PRAGMA table_info("root")
2013-09-29 15:42:23,565 INFO [sqlalchemy.engine.base.Engine][MainThread] ()
2013-09-29 15:42:23,566 INFO [sqlalchemy.engine.base.Engine][MainThread]
CREATE TABLE root (
 uid INTEGER NOT NULL,
 title TEXT,
 PRIMARY KEY (uid),
 UNIQUE (title)
)

2013-09-29 15:42:23,566 INFO [sqlalchemy.engine.base.Engine][MainThread] ()
2013-09-29 15:42:23,569 INFO [sqlalchemy.engine.base.Engine][MainThread] COMMIT
2013-09-29 15:42:23,572 INFO [sqlalchemy.engine.base.Engine][MainThread] BEGIN (implicit)
2013-09-29 15:42:23,573 INFO [sqlalchemy.engine.base.Engine][MainThread] INSERT INTO root (title) VALUES (?)
2013-09-29 15:42:23,573 INFO [sqlalchemy.engine.base.Engine][MainThread] ('My SQLAlchemy Root',)
2013-09-29 15:42:23,576 INFO [sqlalchemy.engine.base.Engine][MainThread] COMMIT

	Nothing changes in our views or templates.

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser.

Analysis

We perform the same kind of SQLAlchemy setup work that we saw in
19: Databases Using SQLAlchemy [https://docs.pylonsproject.org/projects/pyramid/en/latest/quick_tutorial/databases.html#qtut-databases]. In this case, our root factory returns an object
from the database.

This models.Root instance is the context for our views and templates.
Rather than have our view and template code query the database, our root
factory gets the top and Pyramid does the rest by passing in a context.

This point is illustrated by the fact that we didn't have to change our view
logic or our templates. They depended on a context. Pyramid found the context
and passed it into our views.

Extra Credit

	What will Pyramid do if the database doesn't have a Root that matches
the SQLAlchemy query?

8: SQL Traversal and Adding Content

Traverse through a resource tree of data stored in an RDBMS, adding folders and
documents at any point.

Background

We now have SQLAlchemy providing us a persistent root. How do we arrange an
infinitely-nested URL space where URL segments point to instances of our
classes, nested inside of other instances?

SQLAlchemy, as mentioned previously, uses the adjacency list relationship to
allow self-joining in a table. This allows a resource to store the identifier
of its parent. With this we can make a generic "Node" model in SQLAlchemy which
holds the parts needed by Pyramid's traversal.

In a nutshell, we are giving Python dictionary behavior to RDBMS data, using
built-in SQLAlchemy relationships. This lets us define our own kinds of
containers and types, nested in any way we like.

Goals

	Recreate the 5: Adding Resources To Hierarchies and 6: Storing Resources In ZODB steps, where you can
add folders inside folders.

	Extend traversal and dictionary behavior to SQLAlchemy models.

Steps

	We are going to use the previous step as our starting point:

$ cd ..; cp -r sqlroot sqladdcontent; cd sqladdcontent
$ $VENV/bin/python setup.py develop

	Make a Python module for a generic Node base class that gives us
traversal-like behavior in sqladdcontent/tutorial/sqltraversal.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

	from sqlalchemy import (
 Column,
 Integer,
 Unicode,
 ForeignKey,
 String
)
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
 relationship,
 backref
)
from sqlalchemy.orm.exc import NoResultFound
from sqlalchemy.util import classproperty
from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(
 sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

def u(s):
 # Backwards compatibility for Python 3 not having unicode()
 try:
 return unicode(s)
 except NameError:
 return str(s)

def root_factory(request):
 return DBSession.query(Node).filter_by(parent_id=None).one()

class Node(Base):
 __tablename__ = 'node'
 id = Column(Integer, primary_key=True)
 name = Column(Unicode(50), nullable=False)
 parent_id = Column(Integer, ForeignKey('node.id'))
 children = relationship("Node",
 backref=backref('parent', remote_side=[id])
)
 type = Column(String(50))

 @classproperty
 def __mapper_args__(cls):
 return dict(
 polymorphic_on='type',
 polymorphic_identity=cls.__name__.lower(),
 with_polymorphic='*',
)

 def __setitem__(self, key, node):
 node.name = u(key)
 if self.id is None:
 DBSession.flush()
 node.parent_id = self.id
 DBSession.add(node)
 DBSession.flush()

 def __getitem__(self, key):
 try:
 return DBSession.query(Node).filter_by(
 name=key, parent=self).one()
 except NoResultFound:
 raise KeyError(key)

 def values(self):
 return DBSession.query(Node).filter_by(parent=self)

 @property
 def __name__(self):
 return self.name

 @property
 def __parent__(self):
 return self.parent

	Update the import in __init__.py to use the new module we just created.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from pyramid.config import Configurator

from sqlalchemy import engine_from_config

from .sqltraversal import (
 DBSession,
 Base,
 root_factory,
)

def main(global_config, **settings):
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.bind = engine

 config = Configurator(settings=settings,
 root_factory=root_factory)
 config.include('pyramid_jinja2')
 config.scan('.views')
 return config.make_wsgi_app()

	sqladdcontent/tutorial/models.py is very simple, with the heavy lifting
moved to the common module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from sqlalchemy import (
 Column,
 Integer,
 Text,
 ForeignKey,
)

from .sqltraversal import Node

class Folder(Node):
 __tablename__ = 'folder'
 id = Column(Integer, ForeignKey('node.id'), primary_key=True)
 title = Column(Text)

class Document(Node):
 __tablename__ = 'document'
 id = Column(Integer, ForeignKey('node.id'), primary_key=True)
 title = Column(Text)

	Our sqladdcontent/tutorial/views.py is almost unchanged from the version
in the 5: Adding Resources To Hierarchies step:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

	from random import randint

from pyramid.httpexceptions import HTTPFound
from pyramid.location import lineage
from pyramid.view import view_config

from .models import (
 Folder,
 Document
)

class TutorialViews(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.parents = reversed(list(lineage(context)))

 @view_config(renderer='templates/root.jinja2',
 context=Folder, custom_predicates=[lambda c, r: c is r.root])
 def root(self):
 page_title = 'Quick Tutorial: Root'
 return dict(page_title=page_title)

 @view_config(renderer='templates/folder.jinja2',
 context=Folder)
 def folder(self):
 page_title = 'Quick Tutorial: Folder'
 return dict(page_title=page_title)

 @view_config(name='add_folder', context=Folder)
 def add_folder(self):
 # Make a new Folder
 title = self.request.POST['folder_title']
 name = str(randint(0, 999999))
 new_folder = self.context[name] = Folder(title=title)

 # Redirect to the new folder
 url = self.request.resource_url(new_folder)
 return HTTPFound(location=url)

 @view_config(name='add_document', context=Folder)
 def add_document(self):
 # Make a new Document
 title = self.request.POST['document_title']
 name = str(randint(0, 999999))
 new_document = self.context[name] = Document(title=title)

 # Redirect to the new document
 url = self.request.resource_url(new_document)
 return HTTPFound(location=url)

 @view_config(renderer='templates/document.jinja2',
 context=Document)
 def document(self):
 page_title = 'Quick Tutorial: Document'
 return dict(page_title=page_title)

	Our templates are all unchanged from 5: Adding Resources To Hierarchies. Let's bring them
back by copying them from the addcontent/tutorial/templates directory to
sqladdcontent/tutorial/templates/. Make a re-usable snippet in
sqladdcontent/tutorial/templates/addform.jinja2 for adding content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	<p>
 <form class="form-inline"
 action="{{ request.resource_url(context, 'add_folder') }}"
 method="POST">
 <div class="form-group">
 <input class="form-control" name="folder_title"
 placeholder="New folder title..."/>
 </div>
 <input type="submit" class="btn" value="Add Folder"/>
 </form>
</p>
<p>
 <form class="form-inline"
 action="{{ request.resource_url(context, 'add_document') }}"
 method="POST">
 <div class="form-group">
 <input class="form-control" name="document_title"
 placeholder="New document title..."/>
 </div>
 <input type="submit" class="btn" value="Add Document"/>
 </form>
</p>

	Create this snippet in sqladdcontent/tutorial/templates/root.jinja2:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 <p>The root might have some other text.</p>
 {% include "templates/contents.jinja2" %}

 {% include "templates/addform.jinja2" %}

{% endblock content %}

	Add a view template for folder at
sqladdcontent/tutorial/templates/folder.jinja2:

	1
2
3
4
5
6
7
8
9

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 {% include "templates/contents.jinja2" %}

 {% include "templates/addform.jinja2" %}

{% endblock content %}

	Add a view template for document at
sqladdcontent/tutorial/templates/document.jinja2:

	1
2
3
4
5
6
7

	{% extends "templates/layout.jinja2" %}
{% block content %}

 <h2>{{ context.title }}</h2>
 <p>A document might have some body text.</p>

{% endblock content %}

	Add a view template for contents at
sqladdcontent/tutorial/templates/contents.jinja2:

	1
2
3
4
5
6
7
8

	<h4>Contents</h4>

 {% for child in context.values() %}

 {{ child.title }}

 {% endfor %}

	Update breadcrumbs at
sqladdcontent/tutorial/templates/breadcrumbs.jinja2:

	1
2
3
4
5

	{% for p in view.parents %}

 {{ p.title }} >>

{% endfor %}

	Modify the initialize_db.py script.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	import os
import sys
import transaction

from sqlalchemy import engine_from_config

from pyramid.paster import (
 get_appsettings,
 setup_logging,
)

from .sqltraversal import (
 DBSession,
 Node,
 Base,
)

from .models import (
 Document,
 Folder,
)

def usage(argv):
 cmd = os.path.basename(argv[0])
 print('usage: %s <config_uri>\n'
 '(example: "%s development.ini")' % (cmd, cmd))
 sys.exit(1)

def main(argv=sys.argv):
 if len(argv) != 2:
 usage(argv)
 config_uri = argv[1]
 setup_logging(config_uri)
 settings = get_appsettings(config_uri)
 engine = engine_from_config(settings, 'sqlalchemy.')
 DBSession.configure(bind=engine)
 Base.metadata.create_all(engine)

 with transaction.manager:
 root = Folder(name='', title='My SQLTraversal Root')
 DBSession.add(root)
 f1 = root['f1'] = Folder(title='Folder 1')
 f1['da'] = Document(title='Document A')

	Update the database by running the script.

$ $VENV/bin/initialize_tutorial_db development.ini

	Run your Pyramid application with:

$ $VENV/bin/pserve development.ini --reload

	Open http://localhost:6543/ in your browser.

Analysis

If we consider our views and templates as the bulk of our business
logic when handling web interactions, then this was an intriguing step.
We had no changes to our templates from the addcontent and
zodb steps, and almost no change to the views. We made a one-line
change when creating a new object. We also had to "stack" an extra
@view_config (although that can be solved in other ways.)

We gained a resource tree that gave us hierarchies. And for the most
part, these are already full-fledged "resources" in Pyramid:

	Traverse through a tree and match a view on a content type

	Know how to get to the parents of any resource (even if outside the
current URL)

	All the traversal-oriented view predicates apply

	Ability to generate full URLs for any resource in the system

Even better, the data for the resource tree is stored in a table
separate from the core business data. Equally, the ORM code for moving
through the tree is in a separate module. You can stare at the data and
the code for your business objects and ignore the the Pyramid part.

This is most useful for projects starting with a blank slate,
with no existing data or schemas they have to adhere to. Retrofitting a
tree on non-tree data is possible, but harder.

Views

	Chaining Decorators

	Using a View Mapper to Pass Query Parameters as Keyword Arguments

	Conditional HTTP

For more information on views, see the Views [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html]
section of the Pyramid documentation.

Chaining Decorators

Pyramid has a decorator= argument to its view configuration. It accepts
a single decorator that will wrap the mapped view callable represented by
the view configuration. That means that, no matter what the signature and
return value of the original view callable, the decorated view callable will
receive two arguments: context and request and will return a response
object:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	# the decorator

def decorator(view_callable):
 def inner(context, request):
 return view_callable(context, request)
 return inner

the view configuration

@view_config(decorator=decorator, renderer='json')
def myview(request):
 return {'a':1}

But the decorator argument only takes a single decorator. What happens
if you want to use more than one decorator? You can chain them together:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	def combine(*decorators):
 def floo(view_callable):
 for decorator in decorators:
 view_callable = decorator(view_callable)
 return view_callable
 return floo

def decorator1(view_callable):
 def inner(context, request):
 return view_callable(context, request)
 return inner

def decorator2(view_callable):
 def inner(context, request):
 return view_callable(context, request)
 return inner

def decorator3(view_callable):
 def inner(context, request):
 return view_callable(context, request)
 return inner

alldecs = combine(decorator1, decorator2, decorator3)
two_and_three = combine(decorator2, decorator3)
one_and_three = combine(decorator1, decorator3)

@view_config(decorator=alldecs, renderer='json')
def myview(request):
 return {'a':1}

Using a View Mapper to Pass Query Parameters as Keyword Arguments

Pyramid supports a concept of a "view mapper". See
Using a View Mapper [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#using-a-view-mapper] for general information about view mappers. You
can use a view mapper to support an alternate convenience calling convention
in which you allow view callables to name extra required and optional
arguments which are taken from the request.params dictionary. So, for
example, instead of:

	1
2
3
4
5

	@view_config()
def aview(request):
 name = request.params['name']
 value = request.params.get('value', 'default')
 ...

With a special view mapper you can define this as:

@view_config(mapper=MapplyViewMapper)
def aview(request, name, value='default'):
 ...

The below code implements the MapplyViewMapper. It works as a mapper for
function view callables and method view callables:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109

	import inspect
import sys

from pyramid.view import view_config
from pyramid.response import Response
from pyramid.config import Configurator
from waitress import serve

PY3 = sys.version_info[0] == 3

if PY3:
 im_func = '__func__'
 func_defaults = '__defaults__'
 func_code = '__code__'
else:
 im_func = 'im_func'
 func_defaults = 'func_defaults'
 func_code = 'func_code'

def mapply(ob, positional, keyword):

 f = ob
 im = False

 if hasattr(f, im_func):
 im = True

 if im:
 f = getattr(f, im_func)
 c = getattr(f, func_code)
 defaults = getattr(f, func_defaults)
 names = c.co_varnames[1:c.co_argcount]
 else:
 defaults = getattr(f, func_defaults)
 c = getattr(f, func_code)
 names = c.co_varnames[:c.co_argcount]

 nargs = len(names)
 args = []
 if positional:
 positional = list(positional)
 if len(positional) > nargs:
 raise TypeError('too many arguments')
 args = positional

 get = keyword.get
 nrequired = len(names) - (len(defaults or ()))
 for index in range(len(args), len(names)):
 name = names[index]
 v = get(name, args)
 if v is args:
 if index < nrequired:
 raise TypeError('argument %s was omitted' % name)
 else:
 v = defaults[index-nrequired]
 args.append(v)

 args = tuple(args)
 return ob(*args)

class MapplyViewMapper(object):
 def __init__(self, **kw):
 self.attr = kw.get('attr')

 def __call__(self, view):
 def wrapper(context, request):
 keywords = dict(request.params.items())
 if inspect.isclass(view):
 inst = view(request)
 meth = getattr(inst, self.attr)
 response = mapply(meth, (), keywords)
 else:
 # it's a function
 response = mapply(view, (request,), keywords)
 return response

 return wrapper

@view_config(name='function', mapper=MapplyViewMapper)
def view_function(request, one, two=False):
 return Response('one: %s, two: %s' % (one, two))

class ViewClass(object):
 __view_mapper__ = MapplyViewMapper
 def __init__(self, request):
 self.request = request

 @view_config(name='method')
 def view_method(self, one, two=False):
 return Response('one: %s, two: %s' % (one, two))

if __name__ == '__main__':
 config = Configurator()
 config.scan('.')
 app = config.make_wsgi_app()
 serve(app)

http://localhost:8080/function --> (exception; no "one" arg supplied)

http://localhost:8080/function?one=1 --> one: '1', two: False

http://localhost:8080/function?one=1&two=2 --> one: '1', two: '2'

http://localhost:8080/method --> (exception; no "one" arg supplied)

http://localhost:8080/method?one=1 --> one: '1', two: False

http://localhost:8080/method?one=1&two=2 --> one: '1', two: '2'

Conditional HTTP

Pyramid requests and responses support conditional HTTP requests via the
ETag and Last-Modified header. It is useful to enable this for an
entire site to save on bandwidth for repeated requests. Enabling ETag
support for an entire site can be done using a tween:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	def conditional_http_tween_factory(handler, registry):
 def conditional_http_tween(request):
 response = handler(request)

 # If the Last-Modified header has been set, we want to enable the
 # conditional response processing.
 if response.last_modified is not None:
 response.conditional_response = True

 # We want to only enable the conditional machinery if either we
 # were given an explicit ETag header by the view or we have a
 # buffered response and can generate the ETag header ourself.
 if response.etag is not None:
 response.conditional_response = True
 elif (isinstance(response.app_iter, collections.abc.Sequence) and
 len(response.app_iter) == 1):
 response.conditional_response = True
 response.md5_etag()

 return response
 return conditional_http_tween

The effect of this tween is that it will first check the response to determine
if it already has a Last-Modified or ETag header set. If it does, then
it will enable the conditional response processing. If the response does not
have an ETag header set, then it will attempt to determine if the response
is already loaded entirely into memory (to avoid loading what might be a very
large object into memory). If it is already loaded into memory, then it will
generate an ETag header from the MD5 digest of the response body, and
again enable the conditional response processing.

Miscellaneous

	Interfaces
	Dynamically Compute the Interfaces Provided by an Object

	Using Object Events in Pyramid

	Pyramid Tutorial and Informational Videos

Interfaces

This chapter contains information about using zope.interface with
Pyramid.

Dynamically Compute the Interfaces Provided by an Object

(Via Marius Gedminas)

When persisting the interfaces that are provided by an object in a pickle or
in ZODB is not reasonable for your application, you can use this trick to
dynamically return the set of interfaces provided by an object based on other
data in an instance of the object:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from zope.interface.declarations import Provides

from mypackage import interfaces

class MyClass(object):

 color = None

 @property
 def __provides__(self):
 # black magic happens here: we claim to provide the right IFrob
 # subinterface depending on the value of the ``color`` attribute.
 iface = getattr(interfaces, 'I%sFrob' % self.color.title(),
 interfaces.IFrob))
 return Provides(self.__class__, iface)

If you need the object to implement more than one interface, use
Provides(self.__class__, iface1, iface2, ...).

Using Object Events in Pyramid

Warning

This code works only in Pyramid 1.1a4+. It will also make your
brain explode.

Zope's Component Architecture supports the concept of "object events", which
are events which call a subscriber with an context object and the event
object.

Here's an example of using an object event subscriber via the @subscriber
decorator:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	from zope.component.event import objectEventNotify
from zope.component.interfaces import ObjectEvent

from pyramid.events import subscriber
from pyramid.view import view_config

class ObjectThrownEvent(ObjectEvent):
 pass

class Foo(object):
 pass

@subscriber([Foo, ObjectThrownEvent])
def objectevent_listener(object, event):
 print object, event

@view_config(renderer='string')
def theview(request):
 objectEventNotify(ObjectThrownEvent(Foo()))
 objectEventNotify(ObjectThrownEvent(None))
 objectEventNotify(ObjectEvent(Foo()))
 return 'OK'

if __name__ == '__main__':
 from pyramid.config import Configurator
 from paste.httpserver import serve
 config = Configurator(autocommit=True)
 config.hook_zca()
 config.scan('__main__')
 serve(config.make_wsgi_app())

The objectevent_listener listener defined above will only be called when
the object of the ObjectThrownEvent is of class Foo. We can tell
that's the case because only the first call to objectEventNotify actually
invokes the subscriber. The second and third calls to objectEventNotify do
not call the subscriber. The second call doesn't invoke the subscriber
because its object type is None (and not Foo). The third call
doesn't invoke the subscriber because its objectevent type is ObjectEvent
(and not ObjectThrownEvent). Clear as mud?

Pyramid Tutorial and Informational Videos

	Six Feet Up's Intro to Basic Pyramid [https://sixfeetup.com/blog/intro-to-the-python-framework-pyramid-and-a-sample-app].

	Daniel Nouri's "Writing A Pyramid Application" (long, 3+ hours), from
EuroPython 2012:

	Part 1 [https://www.youtube.com/watch?v=dKZjbm_qLUM]

	Part 2 [https://www.youtube.com/watch?v=vNvMAOko6ME]

See also the related blog post [http://danielnouri.org/notes/2012/08/16/pyramid-europython-tutorial-video/].

	Carlos de la Guardia's Writing a Pyramid Application [https://www.youtube.com/watch?v=NBSosX8xiRk]
tutorial from PyCon 2012 (long, 3+ hours).

	Dylan Jay's Pyramid: Lighter, faster, better web apps [https://www.youtube.com/watch?v=DBV0MsRu72M] from PyCon AU 2011 (~37 mins).

	Carlos de la Guardia's Patterns for building large Pyramid applications [https://www.youtube.com/watch?v=NUQMr5R3dlk] (~25 minutes).

	Eric Bieschke's Pyramid Turbo Start Tutorial [https://www.youtube.com/watch?v=PscYR_4sQCU] (very short, 2 mins, 2011).

	Chris McDonough presentation [https://www.youtube.com/watch?v=XKYuKWqr_do&feature=youtu.be]
to Helsinki Python User's Group about Pyramid (2012), about 30 mins.

	Chris McDonough at DjangoCon 2012, About Django from the Pyramid Guy [https://www.youtube.com/watch?v=eN7h6ZbzMy0] (about 30 mins).

	Chris McDonough and Mark Ramm: FLOSS Weekly 151: The Pylons Project [https://www.youtube.com/watch?v=_A8kDHozPoM] (about 40 mins, 2010).

	Kevin Gill's What is Pyramid and where is it with respect to Django [https://vimeo.com/23771511] (~43 mins) via Python Ireland May 2011.

	Saiju M's Create Pyramid Application With SQLAlchemy [https://www.youtube.com/watch?v=L2KSsqwwH9M] (~ 17 mins).

	George Dubus' Pyramid advanced configuration tactics for nice apps and libs [https://www.youtube.com/watch?v=VmfWkeUOuYY&feature=youtu.be] from
EuroPython 2013 (~34 mins).

	Chris McDonough at PyCon 2013, Pyramid Auth Is Hard, Let's Ride Bikes [https://pyvideo.org/video/1691/pyramid-auth-is-hard-lets-ride-bikes] (~30
mins).

	Dylan Jay's DjangoCon AU 2013 Keynote, The myth of goldilocks and the three
frameworks, Pyramid, Django, and Plone [https://www.youtube.com/watch?v=vW1ZhO-_ZQk] (~45 mins).

	Paul Everitt: Python 3 Web Development with Pyramid and PyCharm [https://blog.jetbrains.com/blog/2013/10/21/webinar-recording-production-python-3-web-development-with-pyramid-and-pycharm/]
(~1 hr).

TODO

	Provide an example of using a newrequest subscriber to mutate the request,
providing additional user data from a database based on the current
authenticated userid.

	Provide an example of adding a database connection to settings in
__init__ and using it from a view.

	Provide an example of a catchall 500 error view.

	Redirecting to a URL with Parameters:

[22:04] <AGreatJewel> How do I redirect to a url and set some GET params?
some thing like return HTTPFound(location="whatever", params={ params here })
[22:05] <mcdonc> return HTTPFound(location="whatever?a=1&b=2")
[22:06] <AGreatJewel> ok. and I would need to urlencode the entire string?
[22:06] <AGreatJewel> or is that handled automatically
[22:07] <mcdonc> its a url
[22:07] <mcdonc> like you'd type into the browser

	Add an example of using a cascade to serve static assets from the root.

	Explore static file return from handler action using wsgiapp2 + fileapp.

	https://dannynavarro.net/2011/01/14/async-web-apps-with-pyramid/

	http://alexmarandon.com/articles/zodb_bfg_pyramid_notes/

	https://groups.google.com/forum/#!msg/pylons-devel/0QxHTgeswrw/yTWxlDU1WKsJ
(pyramid_jinja2 i18n), also
https://github.com/Pylons/pyramid_jinja2/pull/14

	Simple asynchronous task queue: https://dannynavarro.net/2011/01/23/async-pyramid-example-done-right/

	Installing Pyramid on Red Hat Enterprise Linux 6 [http://fultonj.xen.prgmr.com/?page=Code&file=pyramid1-rhel6-install.php] (John Fulton).

	Chameleon main template injected via BeforeRender.

	Hybrid authorization: https://github.com/mmerickel/pyramid_auth_demo

	http://whippleit.blogspot.com/2011/04/pyramid-on-google-app-engine-take-1-for.html

	Custom events: https://dannynavarro.net/2011/06/12/using-custom-events-in-pyramid/

	TicTacToe and Long Polling With Pyramid: https://michael.merickel.org/2011/6/21/tictactoe-and-long-polling-with-pyramid/

	Jim Penny's rolodex tutorial: http://jpenny.im/

	Thorsten Lockert's formhelpers/Pyramid example: https://github.com/tholo/formhelpers2

	The Python Ecosystem, an Introduction: http://mirnazim.org/writings/python-ecosystem-introduction/

	Outgrowing Pyramid Handlers: https://michael.merickel.org/2011/8/23/outgrowing-pyramid-handlers/

	Incorporate Custom Configuration (Google Analytics) into a Pyramid Application: https://russell.ballestrini.net/how-to-incorporate-custom-configuration-in-a-pyramid-application/

	Cookbook docs reorg

	Move tutorials/overviews to tutorial project and replace with links

Index

 A
 | I
 | S
 | V

A

 	
 	add_renderer()

 	add_route()

 	
 	add_static_view()

 	add_subscriber()

 	add_view()

I

 	
 	include()

S

 	
 	scan()

V

 	
 	view

 _images/single_file_tasks.png
(<] (] [+]6 nupiocaostsosor c

New task was successfully added!

Task's List
« Start learning Pyramid [close]
« Do quick tutorial [close]
« Have some beer! [close]
+ Do more Pyramid! [close]

« Add anew task

_images/start_up_screen.png
8600 PyCharm

"J: Welcome to PyCharm

Recent Projects Quick Start

Create New Project
" Open Directory

Check out from Version Control
No matches found

Configure

Docs and How-Tos.

PyCharm 2.

Build 129.782. Check for updates now.

_images/python_interpreters_2.png
Nothing to show

Create Virtual Environment

Nothing to show

@ [Cancel] [apaly] (0K

_images/run_configuration.png
| @ sewpdevv| P @ K3
% Edit Configurations... |

o @ pcreate

1 pycharm_pyramid | 1 pyramid | & setup.py

g Bleoject - 0 %
£ v [pycharm_pyramid (~/projects/pycharm_pyral setup dev.
s > Cibin @ setup docs

2 » Minclude

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Pyramid Community Cookbook

 		
 Authentication and Authorization

 		
 HTTP Basic Authentication Policy

 		
 Custom Authentication Policy

 		
 Making A “User Object” Available as a Request Attribute

 		
 Prior to Pyramid 1.4

 		
 Wiki Flow of Authentication

 		
 Overall flow of an authentication

 		
 Pyramid Auth Demo

 		
 Google, Facebook, Twitter, and any OpenID Authentication

 		
 Integration with Enterprise Systems

 		
 Authentication

 		
 Authorization

 		
 Automating the Development Process

 		
 What is pyramid_starter_seed

 		
 Prerequisites

 		
 Python and Pyramid

 		
 NodeJS

 		
 How to install pyramid_starter_seed

 		
 Run pyramid_starter_seed

 		
 How it works pyramid_starter_seed

 		
 .ini configurations

 		
 View callables

 		
 Templates

 		
 How to fork pyramid_starter_seed

 		
 How pyramid_starter_seed works under the hood

 		
 Configuration

 		
 A Whirlwind Tour of Advanced Pyramid Configuration Tactics

 		
 Concepts: Configuration, Directives, and Statements

 		
 Sanity Checks

 		
 Configuration Conflicts

 		
 Resolving Conflicts

 		
 Including Configuration from Other Modules

 		
 The includeme() Convention

 		
 Nested Includes

 		
 Automatic Resolution via Includes

 		
 Custom Configuration Directives

 		
 Why This Is Great

 		
 Django-Style “settings.py” Configuration

 		
 Databases

 		
 SQLAlchemy

 		
 Basic Usage

 		
 Using a Non-Global Session

 		
 Importing all SQLAlchemy Models

 		
 Writing Tests For Pyramid + SQLAlchemy

 		
 CouchDB and Pyramid

 		
 CouchDB Views

 		
 CouchDB Documents

 		
 MongoDB and Pyramid

 		
 Basics

 		
 Scaffolds

 		
 Video

 		
 Other Information

 		
 Debugging

 		
 Using PDB to Debug Your Application

 		
 Debugging Pyramid

 		
 Introducing PDB

 		
 PDB Commands

 		
 Debugging Our buggy App

 		
 Huh?

 		
 Debugging with PyDev

 		
 Configuring PyDev for a virtualenv

 		
 Running/Debugging Pyramid under Pydev

 		
 Deployment

 		
 Introduction

 		
 Deploying Your Pyramid Application

 		
 Web Servers

 		
 Apache + mod_wsgi

 		
 ASGI (Asynchronous Server Gateway Interface)

 		
 Forked and Threaded Servers

 		
 gevent

 		
 gunicorn

 		
 nginx + pserve + supervisord

 		
 uWSGI

 		
 uWSGI with cookiecutter Pyramid application Part 1: Basic uWSGI + nginx

 		
 uWSGI with cookiecutter Pyramid Application Part 2: Adding Emperor and systemd

 		
 uWSGI + nginx + systemd

 		
 Cloud Providers

 		
 Amazon Web Services via Elastic Beanstalk

 		
 DotCloud

 		
 Google App Engine Standard and Pyramid

 		
 Google App Engine (using buildout) and Pyramid

 		
 Google App Engine Flexible with Datastore and Pyramid

 		
 Heroku

 		
 OpenShift Express Cloud

 		
 Windows

 		
 Windows

 		
 Development Tools

 		
 Using PyCharm with Pyramid

 		
 Install Python

 		
 Install PyCharm

 		
 Configure PyCharm

 		
 Clone the Pyramid repository

 		
 Install development and documentation requirements

 		
 Template languages

 		
 Creating a Pyramid project

 		
 Debugging

 		
 Forms

 		
 Articles

 		
 File Uploads

 		
 Logging

 		
 Logging Exceptions To Your SQLAlchemy Database

 		
 Porting Applications to Pyramid

 		
 Porting a Legacy Pylons Application Piecemeal

 		
 Porting an Existing WSGI Application to Pyramid

 		
 Pyramid for Pylons Users

 		
 Introduction and Creating an Application

 		
 Following along with the examples

 		
 The p* Commands

 		
 Scaffolds

 		
 Directory Layout

 		
 Launching the Application

 		
 INI File

 		
 The Main Function

 		
 Dotted Python names and asset specifications

 		
 Configurator methods

 		
 Route arguments

 		
 Models

 		
 What belongs in the model?

 		
 Transaction manger

 		
 Using traversal as a model

 		
 SQLAHelper and a “models” subpackage

 		
 Model Examples

 		
 Views

 		
 View functions and view methods

 		
 Typical view usage

 		
 View configuration arguments

 		
 Renderers

 		
 Debugging views

 		
 Multiple views using the same callable

 		
 Route and View Examples

 		
 pyramid_handlers

 		
 Resouce routes

 		
 Request and Response

 		
 Pylons magic globals

 		
 Request and response API

 		
 Templates

 		
 Mako configuration

 		
 Chameleon

 		
 Renderer globals

 		
 Site template

 		
 Exceptions, HTTP Errors, and Redirects

 		
 Issuing redirects and HTTP errors

 		
 Exception views

 		
 Reference

 		
 Static Files

 		
 Static view

 		
 Static route

 		
 Other ways to serve top-level file URLs

 		
 Sessions

 		
 Deployment

 		
 Authentication and Authorization

 		
 Other Pyramid Features

 		
 Shell

 		
 Other commands

 		
 Forms

 		
 WebHelpers

 		
 Events

 		
 URL generation

 		
 Utility scripts

 		
 Testing

 		
 Internationalization

 		
 Higher-level frameworks

 		
 Migrating an Existing Pylons Application

 		
 Routing: Traversal and URL Dispatch

 		
 Comparing and Combining Traversal and URL Dispatch

 		
 See Also

 		
 Using Traversal in Pyramid Views

 		
 Optional: Using Interfaces

 		
 See Also

 		
 Traversal with SQLAlchemy

 		
 Non-recursive

 		
 Recursive

 		
 Sample Pyramid Applications

 		
 Todo List Application in One File

 		
 Step 1 - Organizing the project

 		
 Step 2 - Application setup

 		
 Step 3 - Database and schema

 		
 Step 4 - View functions and routes

 		
 Step 5 - View templates

 		
 Step 6 - Styling your templates

 		
 Step 7 - Running the application

 		
 Conclusion

 		
 Static Assets (Static Files)

 		
 Serving Static Assets

 		
 Serving File Content Dynamically

 		
 Serving a Single File from the Root

 		
 Root-Relative Custom Static View (URL Dispatch Only)

 		
 Uploading Files

 		
 Bundling static assets via a Pyramid console script

 		
 Demo

 		
 Requirements

 		
 Configure Pyramid

 		
 Console script

 		
 Install your app

 		
 Compile static assets

 		
 Templates and Renderers

 		
 Using a Before Render Event to Expose an h Helper Object

 		
 Using a BeforeRender Event to Expose a Mako base Template

 		
 Using a BeforeRender Event to Expose Chameleon base Template

 		
 Using Building Blocks with Chameleon

 		
 Rendering None as the Empty String in Mako Templates

 		
 Mako Internationalization

 		
 Chameleon Internationalization

 		
 Dependencies

 		
 A Folder for the locales

 		
 What to translate

 		
 Commands for Translations

 		
 Add locale directory to projects config

 		
 Set a default locale

 		
 Custom Renderers

 		
 Render into xlsx

 		
 Testing

 		
 Testing a POST request using cURL

 		
 Traversal Tutorial

 		
 Requirements

 		
 1: Template Layout Preparation

 		
 Background

 		
 Objectives

 		
 Steps

 		
 Analysis

 		
 2: Basic Traversal With Site Roots

 		
 Background

 		
 Objectives

 		
 Steps

 		
 Analysis

 		
 Extra Credit

 		
 3: Traversal Hierarchies

 		
 Background

 		
 Objectives

 		
 Steps

 		
 Analysis

 		
 Extra Credit

 		
 4: Type-Specific Views

 		
 Background

 		
 Objectives

 		
 Steps

 		
 Analysis

 		
 Extra Credit

 		
 5: Adding Resources To Hierarchies

 		
 Background

 		
 Goals

 		
 Steps

 		
 Analysis

 		
 Extra Credit

 		
 6: Storing Resources In ZODB

 		
 Background

 		
 Objectives

 		
 Steps

 		
 Analysis

 		
 Extra Credit

 		
 7: RDBMS Root Factories

 		
 Background

 		
 Goals

 		
 Steps

 		
 Analysis

 		
 Extra Credit

 		
 8: SQL Traversal and Adding Content

 		
 Background

 		
 Goals

 		
 Steps

 		
 Analysis

 		
 Views

 		
 Chaining Decorators

 		
 Using a View Mapper to Pass Query Parameters as Keyword Arguments

 		
 Conditional HTTP

 		
 Miscellaneous

 		
 Interfaces

 		
 Dynamically Compute the Interfaces Provided by an Object

 		
 Using Object Events in Pyramid

 		
 Pyramid Tutorial and Informational Videos

 		
 TODO

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_images/install_package_pyramid.png
806

Available Packages

Q- pyramid

PyramidiiSApp.

pyramid-flatpages
pyramid-openid

pyramid-v'
pyramid_addons
pyramid_admin
pyramid_amdjs
pyramid_amon
pyramid_anthrax
pyramid_apitree
pyramid_appengine
pyramid_asbool
pyramid_assetgen
pyramid_assetviews
pyramid_basemodel
pyramid_basicauth
pyramid_beaker
pyramid_celery
pyramid_chameleon_genshi
pyramid_clearance
pyramid_command
pyramid_contextauth
pyramid_controllers

]

Description

Author

Chris McDonough, Agendaless Consulting

mailto;pylons-discusst
hitpipyionsprojectorg.

(] Specify version

(] Options

Install to user's site packages directory (/Users/stevepiercy/.local)

[Install Package | [Manage Repositories

leqrou

142

.com

_images/install_package_setuptools.png
800 Available Packages.

Q- setuptools

bamboo.setuptools_version Description

jarn.setuptoolsfixer
notsetuptools Download, build, install, upgrade, and uninstall Python packages — easily!

setuptools Version

setuptools-ci 05ctt
setuptools-clonedigger Author
setuptools-flakes Phillp 4 Eby
setuptools-git
setuptools-lint

mailtodistuts-sig@pvthon.ora
setuptools-sloccount hitpipypl python.oralpvpiisetubtools

setuptools_bzr
setuptools_cython

setuptools_darcs

setuptools_dummy

setuptools_hg a
setuptools_mtn

setuptools_pyflakes

setuptools_subversion

setuptools_trial

setuptools_webdav

23c.setuptools_mercurial

() Specify version | 0.8
7} (] Options

Install to user's site packages directory (/Users/stevepiercy/.local)

[Install Package | [Manage Repositories |

_images/edit_run_debug_configurations.png
806

Run/Debug Configurations

+ -DH ¥
v @ python
© sewp

» % Defaults

Name: [setup

(" Share [| Single instance only.

Script parameters:

~ Environment
Project:

Environment v

Python interpreter:
Interpreter options:

Working directory:

bles:

[Users|stevepiercy/ projects/pycharm_pyramid/ pyramid/ setup.py

|

| C# pyramid 5]

PYTHONUNBUFFERED=1

|__Project Default (Python 2.7.5 virtualenv at ~/projects/pycharm_pyramid) D

[Users|stevepiercy/ projects pycharm_pyramid/ pyramid

¥ Add content roots to PYTHONPATH

[Add source roots to PYTHONPATH

~ Before launch

+
(1] Show this page

There are no tasks to run before launch

Cancel | [Apply

_images/install_package.png
Python Interpreters

(/Library/Frameworks /Python. framework/ Versions /.
virtualenv at ~/projects/pycharm_pyramid

+| -2 &Y

oo
pip 131 Uninstall
wsgiref a.J.z 012

_images/python_interpreters_1.png
Nothing to show

Nothing to show

@ [Cancel] [apaly] (0K

_images/create_new_project.png
Create New Project

Project name: | pycharm_pyramid

Location: /Users|stevepiercy/ projects pycharm_pyramid

Project type: | Empty project -

Interpreter: <no interpreter>

% No Python interpreter selected

Cancel oK

_images/create_virtual_environment.png
806

Location: [/Users/stevepiercy/ pycharm_pyramid]

Base interpreter: | @ Python 2.7.5 (/Library/Frameworks/Python.framework/ Versions/2.7/bin/python) |

(] Inherit global site-packages

[cancel

o

