
pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.5

Repoze Developers

August 16, 2017

Contents

1 Overview 1

2 Installation 3

3 Setup 5

4 Handler Registration Using add_handler() 7

5 View Setup in the Handler Class 9

6 Handler __action_decorator__ Attribute 11

7 Configuration Knobs 13

8 More Information 15

9 Reporting Bugs / Development Versions 21

10 Indices and tables 23

Python Module Index 25

i

ii

CHAPTER 1

Overview

pyramid_handlers is a package which allows Pyramid to largely emulate the functionality of Pylons “con-
trollers”. Handlers are a synthesis of Pyramid url dispatch and method introspection of a view class that makes it
easier to create bundles of view logic which reacts to particular route patterns.

pyramid_handlers works under Python 2.6 and 2.7. It also works under Python 3.2, but ZCML support is not
available under Python 3.2.

1

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

2 Chapter 1. Overview

CHAPTER 2

Installation

Install using setuptools, e.g. (within a virtualenv):

$ easy_install pyramid_handlers

3

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

4 Chapter 2. Installation

CHAPTER 3

Setup

Once pyramid_handlers is installed, you must use the config.include mechanism to include it into your
Pyramid project’s configuration. In your Pyramid project’s __init__.py:

1 config = Configurator(.....)
2 config.include('pyramid_handlers')

At this point, it will be possible to use the pyramid_handlers.add_handler() function as a method of the
configurator, ala:

1 config.add_handler(....)

5

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

6 Chapter 3. Setup

CHAPTER 4

Handler Registration Using add_handler()

pyramid_handlers provides the special concept of a view handler. View handlers are view classes that implement
a number of methods, each of which is a view callable as a convenience for URL dispatch users.

Note: View handlers are not useful when using traversal, only when using url dispatch.

Using a view handler instead of a plain function or class view callable makes it unnecessary to call pyramid.
config.Configurator.add_route() (and/or pyramid.config.Configurator.add_view()) “by
hand” multiple times, making it more pleasant to register a collection of views as a single class when using url dispatch.
The view handler machinery also introduces the concept of an action, which is used as a view predicate to control
which method of the handler is called. The method name is the default action name of a handler view callable.

The concept of a view handler is analogous to a “controller” in Pylons 1.0.

The view handler class is initialized by Pyramid in the same manner as a “plain” view class. Its __init__ is called
with a request object (see class_as_view). It implements methods, each of which is a view callable. When a request
enters the system which corresponds with an action related to one of its view callable methods, this method is called,
and it is expected to return a response.

Here’s an example view handler class:

1 from pyramid_handlers import action
2

3 from pyramid.response import Response
4

5 class Hello(object):
6 def __init__(self, request):
7 self.request = request
8

9 def index(self):
10 return Response('Hello world!')
11

12 @action(renderer="mytemplate.mak")
13 def bye(self):
14 return {}

7

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

The pyramid_handlers.action decorator is used to fine-tune the view parameters for each potential view
callable which is a method of the handler.

Handlers are added to application configuration via the pyramid_handlers.add_handler() API, which is
accessible after configuration as the method pyramid.config.Configurator.add_handler. This function
will scan a view handler class and automatically set up view configurations for its methods that represent “auto-
exposed” view callable, or those that were decorated explicitly with the action decorator. This decorator is used to
setup additional view configuration information for individual methods of the class, and can be used repeatedly for a
single view method to register multiple view configurations for it.

1 from myapp.handlers import Hello
2 config.add_handler('hello', '/hello/{action}', handler=Hello)

This example will result in a route being added for the pattern /hello/{action}, and each method of the Hello
class will then be examined to see if it should be registered as a potential view callable when the /hello/{action}
pattern matches. The value of {action} in the route pattern will be used to determine which view should be called,
and each view in the class will be setup with a view predicate that requires a specific action name. By default, the
action name for a method of a handler is the method name.

If the URL was /hello/index, the above example pattern would match, and, by default, the index method of the
Hello class would be called.

Alternatively, the action can be declared specifically for a URL to be registered for a specific action name:

1 from myapp.handlers import Hello
2 config.add_handler('hello_index', '/hello/index',
3 handler=Hello, action='index')

This will result one of the methods that are configured for the action of ‘index’ in the Hello handler class to be
called. In this case the name of the method is the same as the action name: index. However, this need not be the
case, as we will see below.

When calling pyramid_handlers.add_handler(), an action is required in either the route pattern or as
a keyword argument, but cannot appear in both places. A handler argument must also be supplied, which can
be either a asset specification or a Python reference to the handler class. Additional keyword arguments are passed
directly through to pyramid.config.Configurator.add_route().

For example:

1 config.add_handler('hello', '/hello/{action}',
2 handler='mypackage.handlers.MyHandler')

Multiple add_handler() calls can specify the same handler, to register specific route names for different han-
dler/action combinations. For example:

1 config.add_handler('hello_index', '/hello/index',
2 handler=Hello, action='index')
3 config.add_handler('bye_index', '/hello/bye',
4 handler=Hello, action='bye')

Note: Handler configuration may also be added to the system via ZCML (see Configuring a Handler via ZCML).

8 Chapter 4. Handler Registration Using add_handler()

CHAPTER 5

View Setup in the Handler Class

A handler class can have a single class level attribute called __autoexpose__ which should be a regular expression
or the value None. It’s used to determine which method names will result in additional view configurations being
registered.

When pyramid_handlers.add_handler() runs, every method in the handler class will be searched and a view
registered if the method name matches the __autoexpose__ regular expression, or if the method was decorated
with action.

Every method in the handler class that has a name meeting the __autoexpose__ regular expression will have a
view registered for an action name corresponding to the method name. This functionality can be disabled by setting
the __autoexpose__ attribute to None:

1 from pyramid_handlers import action
2

3 class Hello(object):
4 __autoexpose__ = None
5

6 def __init__(self, request):
7 self.request = request
8

9 @action()
10 def index(self):
11 return Response('Hello world!')
12

13 @action(renderer="mytemplate.mak")
14 def bye(self):
15 return {}

With auto-expose effectively disabled, no views will be registered for a method unless it is specifically decorated with
action.

9

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

Action Decorators in a Handler

The action decorator registers view configuration information on the handler method, which is used by
add_handler() to setup the view configuration.

All keyword arguments are recorded, and passed to add_view(). Any valid keyword arguments for add_view()
can thus be used with the action decorator to further restrict when the view will be called.

One important difference is that a handler method can respond to an action name that is different from the method
name by passing in a name argument.

Example:

1 from pyramid_handlers import action
2

3 class Hello(object):
4 def __init__(self, request):
5 self.request = request
6

7 @action(name='index', renderer='created.mak', request_method='POST')
8 def create(self):
9 return {}

10

11 @action(renderer="view_all.mak", request_method='GET')
12 def index(self):
13 return {}

This will register two views that require the action to be index, with the additional view predicate requiring a
specific request method.

It can be useful to decorate a single method multiple times with action. Each action decorator will register a new
view for the method. By specifying different names and renderers for each action, the same view logic can be exposed
and rendered differently on multiple URLs.

Example:

1 from pyramid_handlers import action
2

3 class Hello(object):
4 def __init__(self, request):
5 self.request = request
6

7 @action(name='home', renderer='home.mak')
8 @action(name='about', renderer='about.mak')
9 def show_template(self):

10 # prep some template vars
11 return {}
12

13 # in the config
14 config.add_handler('hello', '/hello/{action}', handler=Hello)

With this configuration, the url /hello/home will find a view configuration that results in calling the
show_template method, then rendering the template with home.mak, and the url /hello/about will call
the same method and render the about.mak template.

10 Chapter 5. View Setup in the Handler Class

CHAPTER 6

Handler __action_decorator__ Attribute

Note: In a Pylons 1.0 controller, it was possible to override the __call__() method, which allowed a developer
to “wrap” the entire action invocation, with a try/except or any other arbitrary code. In Pyramid, this can be emulated
with the use of an __action_decorator__ classmethod on your handler class.

If a handler class has an __action_decorator__ attribute, then the value of the class attribute will be passed
in as the decorator argument every time a handler action is registered as a view callable. This means that, like
anything passed to add_view() as the decorator argument, __action_decorator__ must be a callable
accepting a single argument. This argument will itself be a callable accepting (context, request) arguments,
and __action_decorator__ must return a replacement callable with the same call signature.

Note that, since handler actions are registered as views against the handler class and not a handler in-
stance, any __action_decorator__ attribute must not be a regular instance method. Defining an
__action_decorator__ instance method on a handler class will result in a ConfigurationError. Instead,
__action_decorator__ can be any other type of callable: a staticmethod, classmethod, function, or some sort
of callable instance.

The below example uses an __action_decorator__ which is a staticmethod of the handler class. It wraps every
view callable implied by the handler in a decorator function which calls the original view callable, but catches a special
exception and returns a response.

1 from pyramid_handlers import action
2 from pyramid.response import Response
3

4 class MySpecialException(Exception):
5 pass
6

7 class MyHandler(object):
8 def __init__(self, request):
9 self.request = request

10

11 @staticmethod
12 def __action_decorator__(view):
13 def decorated_view(context, request):

11

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

14 try:
15 return view(context, request)
16 except MySpecialException:
17 return Response('Something bad happened', status=500)
18 return decorated_view
19

20 @action(renderer='index.html')
21 def index(self):
22 raise MySpecialException

When the index method of the above example handler is invoked, it will raise MySpecialException. As a
result, the action decorator will cath this exception and turn it into a response.

12 Chapter 6. Handler __action_decorator__ Attribute

CHAPTER 7

Configuration Knobs

If your handler action methods that have characters in them (such as underscores) that you don’t find appropriate in a
URL, such as a_method_with_underscores:

1 # in a module named mypackage.handlers
2

3 from pyramid_handlers import action
4

5 class AHandler(object):
6 def __init__(self, request):
7 self.request = request
8

9 @action(renderer='some/renderer.pt')
10 def a_method_with_underscores(self):
11 return {}

And there is some regular transform you can perform against all action method registrations (such as converting the
underscores to dashes), you can define a “method name transformer”:

1 # in the same module named mypackage.handlers
2

3 def transformer(method_name):
4 return method_name.replace('_', '-')

You can then use the method name transformer in your Pyramid settings via the .ini‘ file:

1 [app:myapp]
2 ...
3 pyramid_handlers.method_name_xformer = mypackage.handlers.transformer

Or directly in your main() function:

1 # in a module named mypackage.handlers
2

3 from mypackage.handlers import transformer
4

13

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

5 def main(global_conf, *settings):
6 settings['pyramid_handlers.method_name_xformer'] = transformer
7 config = Configurator(settings=settings)
8 # .. rest of configuration ...

Once you’ve set up a method name transformer, any {action} substitution in the pattern associated with a handler
will be matched against the transformed method name value instead of the untransformed method name value:

1 # in a module named mypackage.handlers
2

3 from mypackage.handlers import transformer
4 from mypackage.handlers import AHandler
5

6 def main(global_conf, *settings):
7 settings['pyramid_handlers.method_name_xformer'] = transformer
8 config = Configurator(settings=settings)
9 config.add_handler('ahandler', '/ahandler/{action}', handler=AHandler)

10 # .. rest of configuration ...

Now, when /ahandler/a-method-with-underscores is visited, it will invoke the AHandler.
a_method_with_underscores method. Note that /ahandler/a_method_with_underscores will
however no longer work to invoke the method.

14 Chapter 7. Configuration Knobs

CHAPTER 8

More Information

pyramid_handlers API

pyramid_handlers.add_handler(self, route_name, pattern, handler, action=None, **kw)
Add a Pylons-style view handler. This function adds a route and some number of views based on a handler
object (usually a class).

This function should never be called directly; instead the pyramid_handlers.includeme function should
be used to include this function into an application; the function will thereafter be available as a method of the
resulting configurator.

route_name is the name of the route (to be used later in URL generation).

pattern is the matching pattern, e.g. '/blog/{action}'.

handler is a dotted name of (or direct reference to) a Python handler class, e.g. 'my.package.
handlers.MyHandler'.

If {action} or :action is in the pattern, the exposed methods of the handler will be used as views.

If action is passed, it will be considered the method name of the handler to use as a view.

Passing both action and having an {action} in the route pattern is disallowed.

Any extra keyword arguments are passed along to add_route.

See views_chapter for more explanatory documentation.

class pyramid_handlers.action(**kw)
Decorate a method for registration by add_handler().

Keyword arguments are identical to view_config, with the exception to how the name argument is used.

name Designate an alternate action name, rather than the default behavior of registering a view with the action
name being set to the methods name.

15

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

Configuring a Handler via ZCML

Instead of using the imperative pyramid.config.Configurator.add_handler() method to add a new
route, you can alternately use ZCML.

Warning: ZCML works under Python 2.6 and 2.7; it, however, does not work under Python 3.2 or any other
version of Python 3.

Using The handler ZCML Directive statements in a ZCML file used by your application is a sign that you’re using
URL dispatch. For example, the following ZCML declaration causes a route to be added to the application.

1 <handler
2 route_name="myroute"
3 pattern="/prefix/{action}"
4 handler=".handlers.MyHandler"
5 />

Note: Values prefixed with a period (.) within the values of ZCML attributes such as the handler attribute of a
handler directive mean “relative to the Python package directory in which this ZCML file is stored”. So if the above
handler declaration was made inside a configure.zcml file that lived in the hello package, you could replace
the relative .views.MyHandler with the absolute hello.views.MyHandler Either the relative or absolute
form is functionally equivalent. It’s often useful to use the relative form, in case your package’s name changes. It’s
also shorter to type.

The order that the routes attached to handlers are evaluated when declarative configuration is used is the order that
they appear relative to each other in the ZCML file.

See Using The handler ZCML Directive for full handler ZCML directive documentation.

Using The handler ZCML Directive

The handler directive adds the configuration of a view handler to the application registry. It is a declarative analogue
of the pyramid_handlers.add_handler() directive.

Example

Do the following from within a Pyramid application to use the handler ZCML directive.

1 <include package="pyramid_handlers" file="meta.zcml"/>
2

3 <handler
4 route_name="foo"
5 pattern="/foo/{action}"
6 handler="some.module.SomeClass"/>

Attributes

route_name The name of the route, e.g. myroute. This attribute is required. It must be unique among all defined
handler and route names in a given configuration.

16 Chapter 8. More Information

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

pattern The pattern of the route e.g. ideas/{idea}. This attribute is required. See route_pattern_syntax for
information about the syntax of route patterns. The name {action} is treated specially in handler patterns.
See Handler Registration Using add_handler() for a discussion of how {action} in handler patterns is treated.

handler A dotted Python name to the handler class.

action If the action name is not specified in the pattern, use this name as the handler action (method name).

factory The dotted Python name to a function that will generate a Pyramid context object when the associated
route matches. e.g. mypackage.resources.MyResource. If this argument is not specified, a default
root factory will be used.

xhr This value should be either True or False. If this value is specified and is True, the request must possess an
HTTP_X_REQUESTED_WITH (aka X-Requested-With) header for this route to match. This is useful for
detecting AJAX requests issued from jQuery, Prototype and other Javascript libraries. If this predicate returns
false, route matching continues.

traverse If you would like to cause the context to be something other than the root object when this route matches,
you can spell a traversal pattern as the traverse argument. This traversal pattern will be used as the traversal
path: traversal will begin at the root object implied by this route (either the global root, or the object returned by
the factory associated with this route).

The syntax of the traverse argument is the same as it is for pattern. For example, if the pattern
provided to the route directive is articles/{article}/edit, and the traverse argument provided
to the route directive is /{article}, when a request comes in that causes the route to match in such a way
that the article match value is ‘1’ (when the request URI is /articles/1/edit), the traversal path will
be generated as /1. This means that the root object’s __getitem__ will be called with the name 1 during
the traversal phase. If the 1 object exists, it will become the context of the request. traversal_chapter has more
information about traversal.

If the traversal path contains segment marker names which are not present in the pattern argument, a runtime
error will occur. The traverse pattern should not contain segment markers that do not exist in the pattern.

A similar combining of routing and traversal is available when a route is matched which contains a *traverse
remainder marker in its pattern (see using_traverse_in_a_route_pattern). The traverse argument to
the route directive allows you to associate route patterns with an arbitrary traversal path without using a a
*traverse remainder marker; instead you can use other match information.

Note that the traverse argument to the handler directive is ignored when attached to a route that has a
*traverse remainder marker in its pattern.

request_method A string representing an HTTP method name, e.g. GET, POST, HEAD, DELETE, PUT. If this
argument is not specified, this route will match if the request has any request method. If this predicate returns
false, route matching continues.

path_info The value of this attribute represents a regular expression pattern that will be tested against the
PATH_INFO WSGI environment variable. If the regex matches, this predicate will be true. If this predicate
returns false, route matching continues.

request_param This value can be any string. A view declaration with this attribute ensures that the associated
route will only match when the request has a key in the request.params dictionary (an HTTP GET or POST
variable) that has a name which matches the supplied value. If the value supplied to the attribute has a = sign
in it, e.g. request_params="foo=123", then the key (foo) must both exist in the request.params
dictionary, and the value must match the right hand side of the expression (123) for the route to “match” the
current request. If this predicate returns false, route matching continues.

header The value of this attribute represents an HTTP header name or a header name/value pair. If the value
contains a : (colon), it will be considered a name/value pair (e.g. User-Agent:Mozilla/.* or
Host:localhost). The value of an attribute that represent a name/value pair should be a regular expres-
sion. If the value does not contain a colon, the entire value will be considered to be the header name (e.g.

8.2. Configuring a Handler via ZCML 17

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

If-Modified-Since). If the value evaluates to a header name only without a value, the header specified by
the name must be present in the request for this predicate to be true. If the value evaluates to a header name/value
pair, the header specified by the name must be present in the request and the regular expression specified as the
value must match the header value. Whether or not the value represents a header name or a header name/value
pair, the case of the header name is not significant. If this predicate returns false, route matching continues.

accept The value of this attribute represents a match query for one or more mimetypes in the Accept HTTP
request header. If this value is specified, it must be in one of the following forms: a mimetype match token
in the form text/plain, a wildcard mimetype match token in the form text/* or a match-all wildcard
mimetype match token in the form */*. If any of the forms matches the Accept header of the request, this
predicate will be true. If this predicate returns false, route matching continues.

custom_predicates This value should be a sequence of references to custom predicate callables. Use custom
predicates when no set of predefined predicates does what you need. Custom predicates can be combined
with predefined predicates as necessary. Each custom predicate callable should accept two arguments: info
and request and should return either True or False after doing arbitrary evaluation of the info and/or
the request. If all custom and non-custom predicate callables return True the associated route will be con-
sidered viable for a given request. If any predicate callable returns False, route matching continues. Note
that the value info passed to a custom route predicate is a dictionary containing matching information; see
custom_route_predicates for more information about info.

Alternatives

You can also add a route configuration via:

• Using the pyramid.config.Configurator.add_handler() method.

See Also

See also views_chapter.

Glossary

application registry A registry of configuration information consulted by Pyramid while servicing an application.
An application registry maps resource types to views, as well as housing other application-specific component
registrations. Every Pyramid application has one (and only one) application registry.

asset Any file contained within a Python package which is not a Python source code file.

asset specification A colon-delimited identifier for an asset. The colon separates a Python package name from a
package subpath. For example, the asset specification my.package:static/baz.css identifies the file
named baz.css in the static subdirectory of the my.package Python package. See asset_specifications
for more info.

asset specification A colon-delimited identifier for an asset. The colon separates a Python package name from a
package subpath. For example, the asset specification my.package:static/baz.css identifies the file
named baz.css in the static subdirectory of the my.package Python package. See asset_specifications
for more info.

configuration declaration An individual method call made to an instance of a Pyramid Configurator object which
performs an arbitrary action, such as registering a view configuration (via the add_view method of the config-
urator) or route configuration (via the add_route method of the configurator).

configuration decoration Metadata implying one or more configuration declaration invocations. Often set by con-
figuration Python decorator attributes, such as pyramid.view.view_config, aka @view_config.

18 Chapter 8. More Information

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

configurator An object used to do configuration declaration within an application. The most common configurator
is an instance of the pyramid.config.Configurator class.

decorator A wrapper around a Python function or class which accepts the function or class as its first argument and
which returns an arbitrary object. Pyramid provides several decorators, used for configuration and return value
modification purposes. See also PEP 318.

dotted Python name A reference to a Python object by name using a string, in the form path.to.
modulename:attributename. Often used in Paste and setuptools configurations. A variant is used in
dotted names within configurator method arguments that name objects (such as the “add_view” method’s “view”
and “context” attributes): the colon (:) is not used; in its place is a dot.

imperative configuration The configuration mode in which you use Python to call methods on a Configurator in
order to add each configuration declaration required by your application.

module A Python source file; a file on the filesystem that typically ends with the extension .py or .pyc. Modules
often live in a package.

package A directory on disk which contains an __init__.py file, making it recognizable to Python as a location
which can be import -ed. A package exists to contain module files.

Pylons A lightweight Python web framework.

Pyramid A web framework.

request A WebOb request object. See webob_chapter (narrative) and request_module (API documentation) for
information about request objects.

root factory The “root factory” of an Pyramid application is called on every request sent to the application. The root
factory returns the traversal root of an application. It is conventionally named get_root. An application may
supply a root factory to Pyramid during the construction of a Configurator. If a root factory is not supplied,
the application uses a default root object. Use of the default root object is useful in application which use URL
dispatch for all URL-to-view code mappings.

route A single pattern matched by the url dispatch subsystem, which generally resolves to one or more view callable
objects. See also url dispatch.

route configuration Route configuration is the act of using imperative configuration or a ZCML <route> statement
to associate request parameters with a particular route using pattern matching and route predicate statements.
See urldispatch_chapter for more information about route configuration.

route predicate An argument to a route configuration which implies a value that evaluates to True or False for a
given request. All predicates attached to a route configuration must evaluate to True for the associated route to
“match” the current request. If a route does not match the current request, the next route (in definition order) is
attempted.

router The WSGI application created when you start a Pyramid application. The router intercepts requests, invokes
traversal and/or URL dispatch, calls view functions, and returns responses to the WSGI server on behalf of your
Pyramid application.

scan The term used by Pyramid to define the process of importing and examining all code in a Python package or
module for configuration decoration.

traversal The act of descending “up” a tree of resource objects from a root resource in order to find a context
resource. The Pyramid router performs traversal of resource objects when a root factory is specified. See the
traversal_chapter chapter for more information. Traversal can be performed instead of URL dispatch or can be
combined with URL dispatch. See hybrid_chapter for more information about combining traversal and URL
dispatch (advanced).

URL dispatch An alternative to traversal as a mechanism for locating a a view callable. When you use a route in
your Pyramid application via a route configuration, you are using URL dispatch. See the urldispatch_chapter
for more information.

8.3. Glossary 19

http://www.python.org/dev/peps/pep-0318/
http://pylonshq.com
http://pylonshq.com/pyramid

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

view Common vernacular for a view callable.

view callable A “view callable” is a callable Python object which is associated with a view configuration; it returns a
response object . A view callable accepts a single argument: request, which will be an instance of a request
object. A view callable is the primary mechanism by which a developer writes user interface code within
Pyramid. See views_chapter for more information about Pyramid view callables.

view configuration View configuration is the act of associating a view callable with configuration information. This
configuration information helps map a given request to a particular view callable and it can influence the re-
sponse of a view callable. Pyramid views can be configured via imperative configuration, ZCML or by a special
@view_config decorator coupled with a scan. See view_config_chapter for more information about view
configuration.

View handler A view handler ties together pyramid.config.Configurator.add_route() and
pyramid.config.Configurator.add_view() to make it more convenient to register a collection of
views as a single class when using url dispatch. See also views_chapter.

view predicate An argument to a view configuration which evaluates to True or False for a given request. All
predicates attached to a view configuration must evaluate to true for the associated view to be considered as a
possible callable for a given request.

WSGI Web Server Gateway Interface. This is a Python standard for connecting web applications to web servers,
similar to the concept of Java Servlets. Pyramid requires that your application be served as a WSGI application.

ZCML Zope Configuration Markup Language, an XML dialect used by Zope and Pyramid for configuration tasks.
ZCML is capable of performing different types of configuration declaration, but its primary purpose in Pyra-
mid is to perform view configuration and route configuration within the configure.zcml file in a Pyramid
application. You can use ZCML as an alternative to imperative configuration.

ZCML declaration The concrete use of a ZCML directive within a ZCML file.

ZCML directive A ZCML “tag” such as <view>, <route>, or <handler>.

20 Chapter 8. More Information

http://wsgi.org/
http://www.muthukadan.net/docs/zca.html#zcml

CHAPTER 9

Reporting Bugs / Development Versions

Visit http://github.com/Pylons/pyramid_handlers to download development or tagged versions.

Visit http://github.com/Pylons/pyramid_handlers/issues to report bugs.

21

http://github.com/Pylons/pyramid_handlers
http://github.com/Pylons/pyramid_handlers/issues

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

22 Chapter 9. Reporting Bugs / Development Versions

CHAPTER 10

Indices and tables

• Glossary

• genindex

• modindex

• search

23

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

24 Chapter 10. Indices and tables

Python Module Index

p
pyramid_handlers, 15

25

pyramidℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.5

26 Python Module Index

Index

A
action (class in pyramid_handlers), 15
add_handler() (in module pyramid_handlers), 15
application registry, 18
asset, 18
asset specification, 18

C
configuration declaration, 18
configuration decoration, 18
configurator, 19

D
decorator, 19
dotted Python name, 19

I
imperative configuration, 19

M
module, 19

P
package, 19
Pylons, 19
Pyramid, 19
pyramid_handlers (module), 15

R
request, 19
root factory, 19
route, 19
route configuration, 19
route predicate, 19
router, 19

S
scan, 19

T
traversal, 19

U
URL dispatch, 19

V
view, 20
view callable, 20
view configuration, 20
View handler, 20
view predicate, 20

W
WSGI, 20

Z
ZCML, 20
ZCML declaration, 20
ZCML directive, 20

27

	Overview
	Installation
	Setup
	Handler Registration Using add_handler()
	View Setup in the Handler Class
	Handler __action_decorator__ Attribute
	Configuration Knobs
	More Information
	Reporting Bugs / Development Versions
	Indices and tables
	Python Module Index

