

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pyramid Layout 0.4 documentation

Pyramid Layout: Composable UX for Pyramid

Making an attractive, efficient user-experience (UX) is hard. Pyramid Layout
provides a layout-based approach to building your global look-and-feel
then re-using it across your site. You can then manage your global UX
layout as a unit, just like models, views, static resources, and
other parts of Pyramid.

If you are OCD, and want the same ways to organize and override your UX
that you get in your Python code, this layout approach is your
cup of tea.

Approach

	Make one (or more) layout objects of template and template logic

	Do useful things with this unit of layout: registration,
dynamic association with a view, pluggability via Pyramid overrides,
testing in isolation

	Layouts can share lightweight units called panels which are
objects of template and code, sharing the same useful things

	Use of any of the common Pyramid templating engines (Chameleon ZPT, Mako,
Jinja2) is tested and supported with examples.

Contents

	About Layouts, Panels
	About Layouts

	About Panels

	Using Pyramid Layout
	Using Layouts

	Using Panels

	Using the Main Template

	Demo App With Pyramid Layout
	Installation

	Registration

	Layout

	Connecting Views to a Layout

	Re-Usable Snippets with Panels

	API Reference
	pyramid_layout.config

	pyramid_layout.layout

	pyramid_layout.panel

	Glossary

Indices and tables

	Index

	Module Index

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyramid Layout 0.4 documentation

About Layouts, Panels

If you have a large project with lots of views and templates,
you most likely have a lot of repetition. The header is the same,
the footer is the same. A lot of CSS/JS is pulled in, etc.

Lots of template systems have ways to share templating between
templates. But how do you get the data into the master template? You
can put it in the view and pass it in, but then it is hard to know what
parts belong to the view versus the main template. Then there’s
testing, overriding, cases where you have multiple main templates.

Wouldn’t it be nice to have a formal concept called “Layout” that
gained many of the benefits of Pyramid machinery like views?

This section introduces the concepts of layout and “panel”.

About Layouts

Most projects have a global look-and-feel and each view plugs into it.
In ZPT-based systems, this is usually done with a main template that
uses METAL to wrap each view’s template.

Having the template, though, isn’t enough. The template usually has
logic in it and needs data. Usually each view had to pass in
that data. Later, Pyramid’s
renderer globals [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#beforerender-event]
provided an elegant
facility for always having certain data available in all renderings.

In Pyramid Layout, these ideas are brought together and given a name:
layout. A layout is a combination of templating and logic to which a
view template can point. With Pyramid Layout, layout becomes a
first-class citizen with helper config machinery and defined plug points.

In more complex projects, different parts of the same site need different
layouts. Pyramid Layout provides a way for managing the use of different
layouts in different places in your application.

About Panels

In your project you might have a number of layouts and certainly many
view templates. Reuse is probably needed for little boxes on the
screen. Or, if you are using someone else’s layout, you might want to
change one small part without forking the entire template.

In ZPT, macros provide this functionality. That is, re-usable snippets of
templating with a marginal amount of overidability. Like main templates,
though, they also have logic and data that need to be schlepped into the
template.

Pyramid Layout addresses these re-usable snippets with panels. A panel
is a box on the screen driven by templating and logic. You make panels,
register them, and you can then use them in your view templates or main
templates.

Moreover, making and using them is a very Pythonic, Pyramid-like process. For
example, you call your panel as a normal Python callable and can pass
it arguments. Registration of panels, like layouts, is very
similar to registration of views in Pyramid.

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyramid Layout 0.4 documentation

Using Pyramid Layout

To get started with Pyramid Layout, include pyramid_layout in your
application’s config:

config = Configurator(...)
config.include('pyramid_layout')

Alternately, instead of using the
the Configurator’s [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/configuration.html#configuration-narr]
include method, you can
activate Pyramid Layout by changing your application’s .ini file,
using the following line:

pyramid.includes = pyramid_layout

Including pyramid_layout in your application adds two new directives
to your configurator [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-configurator]: add_layout and add_panel. These directives work very much like
add_view [http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view], but add
registrations for layouts and panels. Including pyramid_layout will
also add an attribute, layout_manager, to the request object of each
request, which is an instance of LayoutManager.

Finally, three renderer globals are added which will be available to all
templates: layout, main_template, and panel. layout is an
instance of the layout class of the current layout. main_template
is the template object that provides the main template (aka, o-wrap)
for the view. panel, a shortcut for LayoutManager.render_panel, is a callable used to
render panels in your templates.

Using Layouts

A layout consists of a layout class and main template.
The layout class will be instantiated on a per request basis with the context
and request as arguments. The layout class can be omitted, in which case a
default layout class will be used, which only assigns context and request
to the layout instance. Generally, though, you will provide your own layout
class which can serve as a place to provide API that will be available to your
templates. A simple layout class might look like:

class MyLayout(object):
 page_title = 'Hooray! My App!'

 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.home_url = request.application_url

 def is_user_admin(self):
 return has_permission(self.request, 'manage')

A layout instance will be available in templates as the
renderer global, layout. For example, if you are using Mako or ZPT
for templating, you can put something like this in a template:

<title>${layout.page_title}</title>

For Jinja2:

<title>{{layout.page_title}}</title>

All layouts must have an associated template which is the
main template for the layout and will be present as main_template
in renderer globals.

To register a layout, use the add_layout method of the configurator:

config.add_layout('myproject.layout.MyLayout',
 'myproject.layout:templates/default_layout.pt')

The above registered layout will be the default layout. Layouts can also be
named:

config.add_layout('myproject.layout.MyLayout',
 'myproject.layout:templates/admin_layout.pt',
 name='admin')

Now that you have a layout, time to use it on a particular view. Layouts can
be defined declaratively, next to your renderer, in the view configuration:

@view_config(..., layout='admin')
def myview(context, request):
 ...

In Pyramid < 1.4, to use a named layout, call
LayoutManager.use_layout method in your view:

def myview(context, request):
 request.layout_manager.use_layout('admin')
 ...

If you are using traversal [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-traversal] you may find that in most cases it
is unnecessary to name your layouts. Use of the context argument to the
layout configuration can allow you to use a particular layout whenever the
context [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] is of a particular type:

from ..models.wiki import WikiPage

config.add_layout('myproject.layout.MyLayout',
 'myproject.layout:templates/wiki_layout.pt',
 context=WikiPage)

Similarly, the containment argument allows you to use a particular layout for
an entire branch of your resource tree [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-resource-tree]:

from ..models.admin import AdminFolder

config.add_layout('myproject.layout.MyLayout',
 'myproject.layout:templates/admin_layout.pt',
 containment=AdminFolder)

The decorator layout_config can
be used in conjuction with Configurator.scan [http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan] to register layouts declaratively:

from pyramid_layout.layout import layout_config

@layout_config(template='templates/default_layout.pt')
@layout_config(name='admin', template='templates/admin_layout.pt')
class MyLayout(object):
 ...

Layouts can also be registered for specific context types and
containments. See the api docs for more info.

Using Panels

A panel is similar to a view but is responsible for rendering only a
part of a page. A panel is a callable which can accept arbitrary arguments
(the first two are always context and request) and either returns an
html string or uses a Pyramid renderer to render the html to insert in the
page.

Note

You can mix-and-match template languages in a project. Some panels
can be implemented in Jinja2, some in Mako, some in ZPT. All can
work in layouts implemented in any template language supported by
Pyramid Layout.

A panel can be configured using the method, add_panel of the
Configurator instance:

config.add_panel('myproject.layout.siblings_panel', 'siblings',
 renderer='myproject.layout:templates/siblings.pt')

Because panels can be called with arguments, they can be
parameterized when used in different ways. The panel callable might look
something like:

def siblings_panel(context, request, n_siblings=5):
 return [sibling for sibling in context.__parent__.values()
 if sibling is not context][:n_siblings]

And could be called from a template like this:

${panel('siblings', 8)} <!-- Show 8 siblings -->

If using Configurator.scan [http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan],
you can also register the panel declaratively:

from pyramid_layout.panel import panel_config

@panel_config('siblings', renderer='templates/siblings.pt')
def siblings_panel(context, request, n_siblings=5):
 return [sibling for sibling in context.__parent__.values()
 if sibling is not context][:n_siblings]

Like layouts, panels can also be registered
for a context type:

from pyramid_layout.panel import panel_config

@panel_config(name='see-also'
 context='myproject.models.Document',
 renderer='templates/see-also.pt')
def see_also(context, request):
 return {'title': context.title,
 'url': request.resource_url(context)}

The context to use to look up a panel defaults to the context [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context]
found during traversal [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-traversal]. A different context may be provided by
passing a context keyword argument to panel call. In this hypothetical
template, each related_content item can potentially be a different type and
wind up invoking a different panel:

<h2>Related Content</h2>

 <li tal:repeat="item releated_content">
 ${panel('see-also', context=item)}

When registering panels by context, the name part of the registration becomes
optional. In the example above, we could make the see-also panels the
default panels for any registered contexts by simply omitting name:

from pyramid_layout.panel import panel_config

@panel_config(context='myproject.models.Document',
 renderer='templates/see-also.pt')
def see_also(context, request):
 return {'title': context.title,
 'url': request.resource_url(context)}

Also in the template:

<h2>Related Content</h2>

 <li tal:repeat="item releated_content">
 ${panel(context=item)}

See the api docs for more info.

Using the Main Template

The precise syntax for hooking into the main template from a view
template varies depending on the templating language you’re using.

ZPT

If you are a ZPT user, connecting your view template to the layout and
its main template is pretty easy. Just make this the outermost element
in your view template:

<metal:block use-macro="main_template">
...
</metal:block>

You’ll note that we’re taking advantage of a feature in Chameleon that allows
us to use a template instance as a macro [http://chameleon.repoze.org/docs/latest/reference.html#id46] without having
to explicitly define a macro in the main template.

After that, it’s about what you’d expect. The main template has to
define at least one slot. The view template has to fill at least one slot.

Mako

In Mako, to use the main template from your layout, use this as
the first line in your view template:

<%inherit file="${context['main_template'].uri}"/>

In your main template, insert this line at the point where you’d like
for the view template to be inserted:

${next.body()}

Jinja2

For Jinja2, to use the main template for your layout, use this
as the first line in your view template:

{% extends main_template %}

From there, blocks defined in your main template can be overridden by
blocks defined in your view template, per normal usage.

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyramid Layout 0.4 documentation

Demo App With Pyramid Layout

Let’s see Pyramid Layout in action with the demo application provided
in demo.

Installation

Normal Pyramid stuff:

	Make a virtualenv

	env/bin/python demo/setup.py develop

	env/bin/pserve demo/development.ini

	Open http://0.0.0.0:6543/ in a browser

	Click on the Home Mako, Home Chameleon, and
Home Jinja2 links in the header to see views for that use each.

Now let’s look at some of the code.

Registration

Pyramid Layout defines configuration directives and decorators you can
use in your project. We need those loaded into our code. The demo does
this in the etc/development.ini file:

pyramid.includes =
 pyramid_debugtoolbar

mako.directories = demo:templates

The development.ini entry point starts in demo/__init__.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from pyramid.config import Configurator

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(settings=settings)
 config.include('pyramid_chameleon')
 config.include('pyramid_jinja2')
 config.include('pyramid_mako')
 config.include('pyramid_layout')
 config.add_static_view('static', 'static', cache_max_age=3600)
 config.add_route('home.mako', '/')
 config.add_route('home.chameleon', '/chameleon')
 config.add_route('home.jinja2', '/jinja2')
 config.scan('.layouts')
 config.scan('.panels')
 config.scan('.views')
 return config.make_wsgi_app()

This is all Configurator action. We register a route for each view. We
then scan our demo/layouts.py, demo/panels.py, and
demo/views.py for registrations.

Layout

Let’s start with the big picture: the global look-and-feel via a layout:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	from pyramid_layout.layout import layout_config

@layout_config(template='demo:templates/layouts/layout.mako')
@layout_config(
 name='chameleon',
 template='demo:templates/layouts/layout.pt'
)
@layout_config(
 name='jinja2',
 template='demo:templates/layouts/layout.jinja2'
)
class AppLayout(object):

 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.home_url = request.application_url
 self.headings = []
 self.portlets = (Thing1(), Thing2(), LittleCat("A"))

 @property
 def project_title(self):
 return 'Pyramid Layout App!'

 def add_heading(self, name, *args, **kw):
 self.headings.append((name, args, kw))

class Thing1(object):
 title = "Thing 1"
 content = "I am Thing 1!"

class Thing2(object):
 title = "Thing 2"
 content = "I am Thing 2!"

class LittleCat(object):
 talent = "removing pink spots"

 def __init__(self, name):
 self.name = name

The @layout_config decorator comes from Pyramid Layout and allows
us to define and register a layout. In this case we’ve stacked 3
decorators, thus making 3 layouts, one for each template language.

Note

The first @layout_config doesn’t have a name and is thus
the layout that you will get if your view doesn’t specifically
choose which layout it wants.

Lines 21-24 illustrates the concept of keeping templates and the template
logic close together. All views need to show the project_title.
It’s part of the global look-and-feel main template. So we put this
logic on the layout, in one place as part of the global contract,
rather than having each view supply that data/logic.

Let’s next look at where this is used in the template for one of the
3 layouts. In this case, the Mako template at
demo/templates/layouts/layout.mako:

<title>${layout.project_title}, from Pylons Project</title>

Here we see an important concept and some important magic: the template
has a top-level variable layout available. This is an instance of
your layout class.

For the ZPT crowd, if you look at the master template in
demo/templates/layouts/layout.pt, you might notice something weird
at the top: there’s no metal:define-macro. Since Chameleon allows a
template to be a top-level macro, Pyramid Layout automatically binds
the entire template to the macro named main_template.

How does your view know to use a layout? Let’s take a look.

Connecting Views to a Layout

Our demo app has a very simple set of views:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from pyramid.view import view_config

@view_config(
 route_name='home.mako',
 renderer='demo:templates/home.mako'
)
@view_config(
 route_name='home.chameleon',
 renderer='demo:templates/home.pt',
 layout='chameleon'
)
@view_config(
 route_name='home.jinja2',
 renderer='demo:templates/home.jinja2',
 layout='jinja2'
)
def home(request):
 lm = request.layout_manager
 lm.layout.add_heading('heading-mako')
 lm.layout.add_heading('heading-chameleon')
 lm.layout.add_heading('heading-jinja2')
 return {}

We again have one callable with 3 stacked decorators. The decorators
are all normal Pyramid @view_config stuff.

The second one points at a Chameleon template in
demo/templates/home.pt:

<metal:block use-macro="main_template">

 <div metal:fill-slot="content">
 <!-- Main hero unit for a primary marketing message or call to action -->
 ${panel('hero', title='Chameleon')}

 <!-- Example row of columns -->
 <div class="row">
 <p>${panel('headings')}</p>
 </div>
 <div class="row">
 <p>${panel('contextual_panels')}</p>
 </div>
 <div class="row">
 <h2>User Info</h2>
 <p>${panel('usermenu',
 user_info={
 'first_name': 'Jane',
 'last_name': 'Doe',
 'username': 'jdoe'}
)}</p>
 </div>
 </div>

</metal:block>

The first line is the one that opts the template into the layout. In
home.jinja2 that line looks like:

{% extends main_template %}

For both of these, main_template is inserted by Pyramid Layout,
via a Pyramid renderer global, into the template’s global namespace.
After that, it’s normal semantics for that template language.

Back to views.py. The view function grabs the Layout Manager,
which Pyramid Layout conveniently stashes on the request. The
LayoutManager‘s primary job is getting/setting the current layout.
Which, of course, we do in this function.

Our function then grabs the layout instance and manipulates some state
that is needed in the global look and feel. This, of course, could have been
done in our AppLayout class, but in some cases, different views have
different values for the headings.

Re-Usable Snippets with Panels

Our main template has something interesting in it:

 <body>

 ${panel('navbar')}

 <div class="container">

 ${next.body()}

 <hr>

 <footer>
 ${panel('footer')}
 </footer>

 </div> <!-- /container -->

 <!-- Le javascript
 == -->
 <!-- Placed at the end of the document so the pages load faster -->
 <script src="${request.static_url('demo:static/js/jquery-1.8.0.min.js')}"></script>
 <script src="${request.static_url('demo:static/js/bootstrap.min.js')}"></script>

 </body>

Here we break our global layout into reusable parts via panels.
Where do these come from? @panel_config decorators, as shown in
panels.py. For example, this:

${panel('navbar')}

...comes from this:

@panel_config(
 name='navbar',
 renderer='demo:templates/panels/navbar.mako'
)
def navbar(context, request):
 def nav_item(name, url):
 active = request.current_route_url() == url
 item = dict(
 name=name,
 url=url,
 active=active
)
 return item
 nav = [
 nav_item('Mako', request.route_url('home.mako')),
 nav_item('Chameleon', request.route_url('home.chameleon')),
 nav_item('Jinja2', request.route_url('home.jinja2'))
]
 return {
 'title': 'Demo App',

The @panel_config registered a panel under the name navbar,
which our template could then use or override.

The home.mako view template has a more interesting panel:

${panel('hero', title='Mako')}

...which calls:

	1
2
3
4
5
6

	

@panel_config(
 name='hero',
 renderer='demo:templates/panels/hero.mako'
)

This shows that a panel can be parameterized and used in different
places in different ways.

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyramid Layout 0.4 documentation

API Reference

pyramid_layout.config

	
pyramid_layout.config.add_layout(config, layout=None, template=None, name='', context=None, containment=None)

	Add a layout configuration to the current configuration state.

Arguments

layout

A layout class or dotted Python name which refers to a layout class.
This argument is not required. If the layout argument is not provided,
a default layout class is used which merely has context and
request as instance attributes.

template

A string implying a path or an asset specification for a template file.
The file referred to by this argument must have a suffix that maps to a
known renderer. This template will be available to other templates as
the renderer global main_template. This argument is required.

name

The layout name.

context

An object or a dotted Python name referring to an
interface or class object that the context must be
an instance of, or the interface that the
context must provide in order for this layout to be
found and used. This predicate is true when the
context is an instance of the represented class or
if the context provides the represented interface;
it is otherwise false.

containment

This value should be a Python class or interface (or a
dotted Python name) that an object in the
lineage of the context must provide in order for this view
to be found and called. The nodes in your object graph must be
“location-aware” to use this feature.

	
pyramid_layout.config.add_panel(config, panel=None, name='', context=None, renderer=None, attr=None)

	Add a panel configuration to the current
configuration state.

Arguments

panel

A panel callable or a dotted Python name
which refers to a panel callable. This argument is required
unless a renderer argument also exists. If a
renderer argument is passed, and a panel argument is
not provided, the panel callable defaults to a callable that
returns an empty dictionary.

attr

The panel machinery defaults to using the __call__ method
of the panel callable (or the function itself, if the
panel callable is a function) to obtain a response. The
attr value allows you to vary the method attribute used
to obtain the response. For example, if your panel was a
class, and the class has a method named index and you
wanted to use this method instead of the class’ __call__
method to return the response, you’d say attr="index" in the
panel configuration for the panel. This is
most useful when the panel definition is a class.

renderer

This is either a single string term (e.g. json) or a
string implying a path or asset specification
(e.g. templates/panels.pt) naming a renderer
implementation. If the renderer value does not contain
a dot ., the specified string will be used to look up a
renderer implementation, and that renderer implementation
will be used to construct a response from the panel return
value. If the renderer value contains a dot (.),
the specified term will be treated as a path, and the
filename extension of the last element in the path will be
used to look up the renderer implementation, which will be
passed the full path. The renderer implementation will be
used to construct a response from the panel return
value.

Note that if the panel itself returns an instance of basestring (or just
str in Python 3), the specified renderer implementation is never
called.

When the renderer is a path, although a path is usually just
a simple relative pathname (e.g. templates/foo.pt,
implying that a template named “foo.pt” is in the
“templates” directory relative to the directory of the
current package of the Configurator), a path can be
absolute, starting with a slash on UNIX or a drive letter
prefix on Windows. The path can alternately be an
asset specification in the form
some.dotted.package_name:relative/path, making it
possible to address template assets which live in a
separate package.

The renderer attribute is optional. If it is not
defined, the “null” renderer is assumed (no rendering is
performed and the value is passed back to the upstream
Pyramid machinery unmodified).

name

The optional panel name, which defaults to an empty string.

context

An object or a dotted Python name referring to an
interface or class object that the context must be
an instance of, or the interface that the
context must provide in order for this panel to be
found and called. This predicate is true when the
context is an instance of the represented class or
if the context provides the represented interface;
it is otherwise false.

pyramid_layout.layout

	
class pyramid_layout.layout.LayoutManager(context, request)

	An instance of LayoutManager will be available as the layout_manager
attribute of the request object in views and allows the view to access
or change the current layout.

	
layout

	Property which gets the current layout.

	
render_panel(name='', *args, **kw)

	Renders the named panel, returning a unicode object that is the
rendered HTML for the panel. The panel is looked up using the current
context (or the context given as keyword argument, to override the
context in which the panel is called) and an optional given name
(which defaults to an empty string).
The panel is called passing in the current
context, request and any additional parameters passed into the
render_panel call. In case a panel isn’t found, None is returned.

	
use_layout(name)

	Makes a layout with the given name the current layout. By default an
unnamed layout which matches the current context and containment will be
the current layout. By specifying a named layout using
LayoutManager.use_layout(), a named view matching the current
context, containment, and given name will be used.

	
pyramid_layout.layout.layout_config(name='', context=None, template=None, containment=None)

	A class decorator which allows a developer to create layout
registrations.

For example, this code in a module layout.py:

@layout_config(name='my_layout', template='mypackage:templates/layout.pt')
class MyLayout(object):

 def __init__(self, context, request):
 self.context = context
 self.request = request

The following arguments are supported as arguments to
pyramid_layout.layout.layout_config: context, name,
template, containment.

The meanings of these arguments are the same as the arguments passed to
pyramid_layout.config.add_layout().

pyramid_layout.panel

	
pyramid_layout.panel.panel_config(name='', context=None, renderer=None, attr=None)

	A function, class or method decorator which allows a
developer to create panel registrations.

For example, this code in a module panels.py:

from resources import MyResource

@panel_config(name='my_panel', context=MyResource):
def my_panel(context, request):
 return 'OK'

The following arguments are supported as arguments to
pyramid_layout.panel.panel_config: context, name,
renderer, attr.

The meanings of these arguments are the same as the arguments passed to
pyramid_layout.config.add_panel().

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pyramid Layout 0.4 documentation

Glossary

	layout

	The basic unit of reusable look and feel, a layout consists of a
main template and a layout class.

	layout class

	A class registered with a layout that can be used as a place to consolidate
API that is common to all or many templates across a project.

	layout instance

	An instance of a layout class. For each view, a layout is
selected and that layout’s layout class is instantiated for the
current request [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-request] and context [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] and made
available to templates as the renderer global [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-renderer-globals], layout.

	main template

	Also known as the o-wrap or outer wrapper, this is a template which
contains HTML that is common to all views that share a particular layout.
View templates are derived from the main template and inject their own
HTML into the HTML defined by the main template.

	panel

	A panel is a reusable component that defines the HTML for small piece of an
entire page. Panels are callables, like views [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-callable], and may either return an HTML string or use a
renderer [http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-renderer] for generating HTML to embed in the page.

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pyramid Layout 0.4 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyramid_layout	

 	
 	
 pyramid_layout.config	

 	
 	
 pyramid_layout.layout	

 	
 	
 pyramid_layout.panel	

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pyramid Layout 0.4 documentation

Index

 A
 | L
 | M
 | P
 | R
 | U

A

 	

 	add_layout() (in module pyramid_layout.config)

 	

 	add_panel() (in module pyramid_layout.config)

L

 	

 	layout

 	

 	(pyramid_layout.layout.LayoutManager attribute)

 	layout class

 	layout instance

 	

 	layout_config() (in module pyramid_layout.layout)

 	LayoutManager (class in pyramid_layout.layout)

M

 	

 	main template

P

 	

 	panel

 	panel_config() (in module pyramid_layout.panel)

 	pyramid_layout.config (module)

 	

 	pyramid_layout.layout (module)

 	pyramid_layout.panel (module)

R

 	

 	render_panel() (pyramid_layout.layout.LayoutManager method)

U

 	

 	use_layout() (pyramid_layout.layout.LayoutManager method)

 Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_themes/README.html

 Navigation

 		
 index

 		
 modules |

 		Pyramid Layout 0.4 documentation »

Pylons Sphinx Theme

This repository contains Pylons themes for Pylons related projects.
To use a theme in your Sphinx documentation, follow this guide:

		put this directory as _themes into your docs folder. Alternatively
you can also use git submodules to check out the contents there
or symlink this directory as _themes.

		add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'pylons'

		(optional) set a canonical root url in conf.py:

html_theme_options = dict(
 canonical_url='http://the_root_domain/latest/docs/'
)

The url points to the root of the documentation. Requires a trailing slash.

The following themes exist:

		pylons - the generic Pylons Project documentation theme

		pyramid - the specific Pyramid documentation theme

		pylonsfw - the specific Pylons Framework documentation theme

 © Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		Pyramid Layout 0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Chris Rossi, Paul Everitt.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

