

pyramid_tm

Overview

pyramid_tm is a package which allows Pyramid requests to join
the active transaction as provided by the Python transaction [https://pypi.org/project/transaction/] package. (See the documentation
for the transaction package [https://transaction.readthedocs.io/en/latest/] for an
explanation of what "joining the active transaction" means).

Installation

Install using pip, e.g. (within a virtualenv):

$ pip install pyramid_tm

Setup

Once pyramid_tm is installed, you must use the config.include
mechanism to include it into your Pyramid project's configuration. In your
Pyramid project's __init__.py:

	1
2

	config = Configurator(.....)
config.include('pyramid_tm')

Or use the pyramid.includes configuration setting in your .ini file:

	1
2

	[app:myapp]
pyramid.includes = pyramid_tm

After the package is included, whenever a new request enters the application,
a new transaction is associated with that request.

Note

When the repoze.tm or repoze.tm2 middleware is in the WSGI
pipeline, pyramid_tm becomes inactive.

transaction Usage

At the beginning of a request a new transaction is started
using the request.tm.begin() function. Once the request has
finished all of its works (ie views have finished running), a few checks
are tested:

	Did some a transaction.doom() cause the transaction to become "doomed"?
if so, request.tm.abort().

	Did an exception occur in the underlying code? if so,
request.tm.abort()

	If the tm.commit_veto configuration setting was used, did
the commit veto callback, called with the response generated by the
application, return a result that evaluates to True? if so,
request.tm.abort().

If none of these checks calls request.tm.abort() then the transaction is
instead committed using request.tm.commit().

By itself, this transaction machinery doesn't do much. It is up to
third-party code to join the active transaction to benefit. See
repoze.filesafe [https://pypi.org/project/repoze.filesafe/] for an
example of how files creation can be committed or rolled back based on
transaction and the pyramid_mailer [https://docs.pylonsproject.org/projects/pyramid_mailer/en/latest/] package to see
how you can prevent emails from being sent until a transaction succeeds.
ZODB database connections are automatically joined to the transaction, as
well as SQLAlchemy connections which are configured with
zope.sqlalchemy.register(session) from the zope.sqlalchemy [https://pypi.org/project/zope.sqlalchemy/] package.

Savepoints

When using sessions / data managers joined to the transaction,
it's important to synchronize changes across those managers. This means that
it's usually incorrect to use your backend's session lifecycle functions
directly such as sqlalchemy.orm.Session.begin_nested. Instead, synchronize
a savepoint across all joined data managers via
sp = request.tm.savepoint(). The savepoint can be rolled back via
sp.rollback(). For example:

def my_view(request):
 sp = request.tm.savepoint()
 try:
 page = WikiPage()
 page.id = 5 # maybe the id 5 violates a unique constraint
 request.dbsession.add(page)
 request.dbsession.flush()
 except sqlalchemy.exc.IntegrityError:
 # page already exists!
 sp.rollback()
 # continue with or without the data added in the try-clause
 ...

Note

Not every data manager supports savepoints and as such some changes
may not be able to be rolled back.

Error Handling

pyramid_tm is positioned OVER the EXCVIEW tween. The implication
of this is that the transaction may still be open and alive during the
execution of your exception views. This is not guaranteed. If you write
an exception view that expects an open transaction then you should declare
your intent using the tm_active=True view predicate otherwise it may be
executed later in the pipeline after the transaction has already been
completed. For example:

from pyramid.view import exception_view_config

log = __import__('logging').getLogger(__name__)

@exception_view_config(Exception, tm_active=True)
def transactional_error_view(exc, request):
 # depending on your AuthenticationPolicy the authenticated
 # userid likely requires a lookup in your database which would
 # require an active transaction
 if request.authenticated_userid is not None:
 log.exception('authenticated user caused an exception')
 else:
 log.exception('unknown user caused an exception')
 response = request.response
 response.status_code = 500
 return response

@exception_view_config(Exception)
def default_error_view(exc, request):
 log.exception('unknown user caused an exception')
 response = request.response
 response.status_code = 500
 return response

In the above example, transactional_error_view will be invoked only
when an exception occurs during the pyramid_tm lifecycle. Otherwise,
default_error_view will be invoked as a fallback.

The transaction created and completed by pyramid_tm should be used for
operations directly related to processing the request. Very often it is
desirable to perform operations on the database and other backends in a failure
scenario. This should be done using a separate transaction / connection,
possibly in autocommit mode. Do not use request.tm and
request.dbsession and such for these cases as the work added to that
transaction is expected to be aborted upon any failures.

Retries

pyramid_tm ships with support for pyramid_retry [https://docs.pylonsproject.org/projects/pyramid-retry/en/latest/] which is an
execution policy that will retry requests when they fail with exceptions
marked as retryable. By default, retrying is turned off. In order to turn it
on you must update your app's configuration:

from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator(settings=settings)
 config.include('pyramid_retry')
 config.include('pyramid_tm')

Finally, ensure that your application's settings have retry.attempts
set to a value greater than 1.

When the transaction manager calls the downstream handler, if the handler
raises a retryable exception, pyramid_tm will mark the exception
as retryable by pyramid_retry. The execution policy will detect a
retryable error and create a new copy of the request with new state.

Retryable exceptions include ZODB.POSException.ConflictError, and
certain exceptions raised by various data managers, such as
psycopg2.extensions.TransactionRollbackError, cx_Oracle.DatabaseError
where the exception's code is 8877. Any exception which inherits from
transaction.interfaces.TransientError will be marked as retryable.

Read more about retrying requests in the pyramid_retry documentation [https://docs.pylonsproject.org/projects/pyramid-retry/en/latest/].

Custom Transaction Managers

By default pyramid_tm will use the threadlocal transaction.manager
to associate one transaction manager per thread. If you wish to override this
and provide your own transaction manager you can create your own manager hook
that will return the manager it should use.

	1
2
3
4

	import transaction

def manager_hook(request):
 return transaction.TransactionManager(explicit=True)

To enable this hook, add it as the tm.manager_hook setting in your app.

	1
2
3
4
5
6
7

	from pyramid.config import Configurator

def app(global_conf, **settings):
 settings['tm.manager_hook'] = manager_hook
 config = Configurator(settings=settings)
 config.include('pyramid_tm')
 # ...

This specific example, using an explicit mode non-threadlocal manager, is
highly recommended and is shipped as pyramid_tm.explicit_manager().
Simply set tm.manager_hook = pyramid_tm.explicit_manager in your settings
to enable it.

The current transaction manager being used for any particular request can
always be accessed on the request as request.tm so long as it is accessed
while the pyramid_tm tween is active. If you try to access request.tm
outside of the tween or during a request in which pyramid_tm was disabled,
request.tm will raise an AttributeError.

Note

It is recommended to use a custom transaction manager with
explicit=True, as in the example above, instead of the threadlocal
transaction.manager to give greater control over the transaction's
lifecycle and to weed out potential bugs in your application. For example,
you may have some parts of your app that access the manager after it has
already been committed. This will open an implicit transaction that is
never committed, and will even hang around until a subsequent request
aborts the implicit transaction. Instead, if you set explicit=True,
any code affecting the manager outside of the lifecycle of the transaction
will cause an error and will be noticed quickly.

Adding an Activation Hook

It may not always be desirable to have every request managed by the
transaction manager automatically. It is possible to configure pyramid_tm
with an "activate" hook. The callback function receives the request. It
can then examine it and return False if the transaction manager should
be disabled for that request.

	1
2
3
4
5
6

	def activate_hook(request):
 if request.path_info.startswith('/long-poll'):
 # Allow the long-poll class to manage its own connections to avoid
 # long-lived transactions.
 return False
 return True

To enable this hook, add it as the tm.activate_hook setting in your app.

	1
2
3
4
5
6
7

	from pyramid.config import Configurator

def app(global_conf, **settings):
 settings['tm.activate_hook'] = activate_hook
 config = Configurator(settings=settings)
 config.include('pyramid_tm')
 # ...

Or via PasteDeploy:

	1
2

	[app:myapp]
tm.activate_hook = myapp.activate_hook

In either configuration the value for tm.activate_hook is a
dotted Python name.

Adding a Commit Veto Hook

It is possible to configure pyramid_tm with a "commit veto" hook. The
commit veto hook receives the request and the response. It can examine both
of them, and return True if the transaction should be vetoed. If the
transaction is vetoed, it will be aborted instead of committed. By default,
pyramid_tm does not configure a commit veto into the system; you must do
it explicitly.

pyramid_tm contains a pyramid_tm.default_commit_veto() that is
suitable for use when you want to abort when the response's status code
indicates non-success or if you'd like to signal that the transaction should
be aborted or committed using a response header. The default commit veto
vetoes a commit if the status code starts with 4 or 5 or there is a
X-Tm response header with a value that does not equal commit.

	1
2
3
4
5

	def default_commit_veto(request, response):
 xtm = response.headers.get('x-tm')
 if xtm is not None:
 return xtm != 'commit'
 return response.status.startswith(('4', '5'))

If you'd like to use this commit veto in your system, you can do it via
Python:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator

def app(global_conf, **settings):
 settings['tm.commit_veto'] = 'pyramid_tm.default_commit_veto'
 config = Configurator(settings=settings)
 config.include('pyramid_tm')
 # ...

Or via PasteDeploy:

	1
2

	[app:myapp]
tm.commit_veto = pyramid_tm.default_commit_veto

If you'd like to use a different "commit veto" callback, create a function
with the same signature (request, response) and return value
(True or False), then pass a tm.commit_veto key/value
pair in your settings which points at the Python dotted name of this commit
veto.

Via Python:

	1
2
3
4
5
6

	from pyramid.config import Configurator

def app(global_conf, settings):
 settings['tm.commit_veto'] = 'my.package.commit_veto'
 config = Configurator(settings=settings)
 config.include('pyramid_tm')

Via PasteDeploy:

	1
2

	[app:myapp]
tm.commit_veto = my.package.commit_veto

In the PasteDeploy example, the path is a dotted Python name, where
the dots separate module and package names, and the colon separates a module
from its contents. In the above example, the code would be implemented as a
"commit_veto" function which lives in the "package" submodule of the "my"
package.

View Predicates

pyramid_tm registers a view predicate named tm_active which accepts
a value of True or False. This can be useful for declaring intent
when defining exception views that require access to the transaction controlled
by pyramid_tm. For specific examples, see Error Handling.

If the request is manually completed via request.tm.abort() or
request.tm.commit(), this predicate may be incorrect depending on the
specific transaction manager being used. After completing a transaction
controlled by the transaction manager in explicit mode it is necessary to
invoke request.tm.begin() to start a new one or any subsequent uses of
the transaction manager will fail.

Explicit Tween Configuration

Note that the transaction manager is a Pyramid "tween", and it can be used in
the explicit tween list if its implicit position in the tween chain is
incorrect (see the output of ptweens):

[app:myapp]
pyramid.tweens = someothertween
 pyramid_tm.tm_tween_factory
 pyramid.tweens.excview_tween_factory

It usually belongs directly above the
"pyramid.tweens.excview_tween_factory" entry in the `` ptweens``
output, and will attempt to sort there by default as the result of having
config.include('pyramid_tm') invoked.

Avoid Accessing the Authentication Policy

By default the tween will access
pyramid.request.Request.authenticated_userid [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request.authenticated_userid] in order to annotate
the transaction with information about the user. This can be turned off
by setting the ini option tm.annotate_user = false.

Testing

You can partially disable or override pyramid_tm in your test suite.
This can be helpful if you want to handle transactions externally - allowing you to rollback or keep them open across multiple requests.

	Tell pyramid_tm that something else is handling transactions by setting tm.active in the WSGI environ.

	Provide your own transaction manager to the app to override request.tm by setting tm.manager to your own object.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	import pytest
import transaction
from webtest import TestApp

@pytest.fixture
def testapp():
 app = ...
 tm = transaction.TransactionManager(explicit=True)
 tm.begin()
 tm.doom() # ensure no one can call tm.commit() manually

 testapp = TestApp(app, extra_environ={
 'tm.active': True, # disable pyramid_tm
 'tm.manager': tm, # pass in our own tm for the app to use
 })

 yield testapp

 tm.abort()

More Information

	pyramid_tm API

	Glossary

	Changes

Reporting Bugs / Development Versions

Visit https://github.com/Pylons/pyramid_tm to download development or
tagged versions.

Visit https://github.com/Pylons/pyramid_tm/issues to report bugs.

Indices and tables

	Glossary

	Index

	Module Index

	Search Page

pyramid_tm API

	
pyramid_tm.includeme(config)

	Set up an implicit 'tween' to do transaction management using the
transaction package. The tween will be slotted between the Pyramid
request ingress and the Pyramid exception view handler.

For every request it handles, the tween will begin a transaction by
calling request.tm.begin(), and will then call the downstream
handler (usually the main Pyramid application request handler) to obtain
a response. When attempting to call the downstream handler:

	If an exception is raised by downstream handler while attempting to
obtain a response, the transaction will be rolled back
(request.tm.abort() will be called).

	If no exception is raised by the downstream handler, but the
transaction is doomed (request.tm.doom() has been called), the
transaction will be rolled back.

	If the deployment configuration specifies a tm.commit_veto setting,
and the transaction management tween receives a response from the
downstream handler, the commit veto hook will be called. If it returns
True, the transaction will be rolled back. If it returns False, the
transaction will be committed.

	If none of the above conditions are true, the transaction will be
committed (via request.tm.commit()).

	
pyramid_tm.is_tm_active(request)

	Return True if the request is currently being managed by
the pyramid_tm tween. If False then it may be necessary to manage
transactions yourself.

Note

This does not indicate that there is a current transaction. For
example, request.tm.get() may raise a NoTransaction error even
though is_tm_active returns True. This would be caused by user
code that manually completed a transaction and did not begin a new one.

	
pyramid_tm.default_commit_veto(request, response)

	When used as a commit veto, the logic in this function will cause the
transaction to be aborted if:

	An X-Tm response header with the value abort (or any value
other than commit) exists.

	The response status code starts with 4 or 5.

Otherwise the transaction will be allowed to commit.

	
pyramid_tm.tm_tween_factory(handler, registry)

	

	
pyramid_tm.create_tm(request)

	

	
pyramid_tm.explicit_manager(request)

	Create a new transaction.TransactionManager in explicit mode.

This is recommended transaction manager and will help to weed out errors
caused by code that tweaks the transaction before it has begun or after
it has ended.

	
class pyramid_tm.TMActivePredicate(val, config)

	A view predicate [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-view-predicate] registered as tm_active. Can be used
to determine if an exception view should execute based on whether it's
the last retry attempt before aborting the request.

See also

See pyramid_tm.is_tm_active().

Glossary

	data manager

	The transaction package wraps data managers implemented for
different transactional backends, such as SQLAlchemy
(zope.sqlalchemy), but also many others.

	dotted Python name

	A reference to a Python object by name using a string, in the form
path.to.modulename:attributename. Often used in Pyramid and
Setuptools configurations. A variant is used in dotted names within
configurator method arguments that name objects (such as the "add_view"
method's "view" and "context" attributes): the colon (:) is not
used; in its place is a dot.

	Pyramid

	A web framework [https://docs.pylonsproject.org/projects/pyramid/en/latest/].

	retryable

	A retryable exception is any exception that is recognized as retryable
by an active data manager. These errors usually inherit from
transaction.interfaces.TransientError. These errors are temporary
and thus marked as retryable. For example, a serialization error in a
database resulting from concurrent transactions.

	transaction

	A database transaction comprises a unit of work performed within a
database management system. In the context of the Pyramid documentation,
"transaction" is also the name of a Python package [https://pypi.org/project/transaction/] used by pyramid_tm.

Changes

2.5 (2022-03-12)

	Drop support for Python 2.7, 3.4, 3.5, and 3.6.

	Add support for Python 3.8, 3.9, and 3.10.

	Blackify project source.

2.4 (2020-01-06)

	Allow overriding pyramid_tm via the environ for testing purposes.
See https://github.com/Pylons/pyramid_tm/pull/72

	When tm.annotate_user is enabled, use request.authenticated_userid
instead of request.unauthenticated_userid. The latter is deprecated in
Pyramid 2.0.
See https://github.com/Pylons/pyramid_tm/pull/72

2.3 (2019-09-30)

	Mark all transaction.interfaces.TransientError exceptions
automatically as retryable by pyramid_retry if it is installed.
See https://github.com/Pylons/pyramid_tm/pull/71

2.2.1 (2018-10-23)

	Support Python 3.7.

	Fix error handling when using transaction >= 2.4.0.
See https://github.com/Pylons/pyramid_tm/pull/68

2.2 (2017-07-03)

Backward Incompatibilities

	This is a backward-incompatible change for anyone using the
tm.commit_veto hook. Anyone else is unaffected.

The tm.commit_veto hook will now be consulted for any squashed
exceptions instead of always aborting. Previously, if an exception
was handled by an exception view, the transaction would always be aborted.
Now, the commit_veto can inspect request.exception and the generated
response to determine whether to commit or abort.

The new behavior when using the pyramid_tm.default_commit_veto is that
a squashed exception may be committed if either of the following conditions
are true:

	The response contains the x-tm header set to commit.

	The response's status code does not start with 4 or 5.

In most cases the response would result in 4xx or 5xx exception and would
be aborted - this behavior remains the same. However, if the squashed
exception rendered a response that is 3xx or 2xx (such as raising
pyramid.httpexceptions.HTTPFound), then the transaction will be
committed instead of aborted.

See https://github.com/Pylons/pyramid_tm/pull/65

2.1 (2017-06-07)

	On Pyramid >= 1.7 any errors raised from pyramid_tm invoking
request.tm.abort and request.tm.commit will be caught and used
to lookup and execute an exception view to return an error response. This
exception view will be executed with an inactive transaction manager.
See https://github.com/Pylons/pyramid_tm/pull/61

2.0 (2017-04-11)

Major Features

	The pyramid_tm tween has been moved over the EXCVIEW tween.
This means the transaction is open during exception view execution.
See https://github.com/Pylons/pyramid_tm/pull/55

	Added a pyramid_tm.is_tm_active and a tm_active view predicate
which may be useful in exception views that require access to the database.
See https://github.com/Pylons/pyramid_tm/pull/60

Backward Incompatibilities

	The tm.attempts setting has been removed and retry support has been moved
into a new package named pyramid_retry. If you want retry support then
please look at that library for more information about installing and
enabling it. See https://github.com/Pylons/pyramid_tm/pull/55

	The pyramid_tm tween has been moved over the EXCVIEW tween.
If you have any hacks in your application that are opening a new transaction
inside your exception views then it's likely you will want to remove them
or re-evaluate when upgrading.
See https://github.com/Pylons/pyramid_tm/pull/55

	Drop support for Pyramid < 1.5.

Minor Features

	Support for Python 3.6.

1.1.1 (2016-11-21)

	pyramid_tm 1.1.0 failed to fix a unicode issue related to undecodable
request paths. The placeholder message was not unicode.
See https://github.com/Pylons/pyramid_tm/pull/52

	Include Changes in the main docs.

1.1.0 (2016-11-19)

	Support transaction 2.x.

	The transaction's request path and userid are now coerced to unicode by
first decoding as utf-8 and falling back to latin-1. If the userid
does not conform to these restrictions then set tm.annotate_user = no
in your settings. See https://github.com/Pylons/pyramid_tm/pull/50

1.0.2 (2016-11-18)

	Pin to transaction < 1.99 as pyramid_tm is currently incompatible with
the new 2.x release of transaction.
See https://github.com/Pylons/pyramid_tm/issues/49

1.0.1 (2016-10-24)

	Removes the AttributeError when request.tm is accessed outside the
tween. It turns out this broke subrequests as well as pshell and
pyramid.paster.bootstrapp CLI scripts, especially when using the
global transaction manager which can be tracked outside of the tween.
See https://github.com/Pylons/pyramid_tm/pull/48

1.0 (2016-09-12)

	Drop Python 2.6, 3.2 and 3.3 support.

	Add Python 3.5 support.

	Subtle bugs can occur if you use the transaction manager during a request
in which pyramid_tm is disabled via an activate_hook. To combat these
types of errors, attempting to access request.tm will now raise an
AttributeError when pyramid_tm is inactive.
See https://github.com/Pylons/pyramid_tm/pull/46

0.12.1 (2015-11-25)

	Fix compatibility with 1.2 and 1.3 again. This wasn't fully fixed in the
0.12 release as the tween was relying on request properties working (which
they do not inside tweens in older versions).
See https://github.com/Pylons/pyramid_tm/pull/39

0.12 (2015-05-20)

	Expose a tm.annotate_user option to avoid computing
request.unauthenticated_userid on every request.
See https://github.com/Pylons/pyramid_tm/pull/36

	Restore compatibility with Pyramid 1.2 and 1.3.

0.11 (2015-02-04)

	Add a hook to override creation of the transaction manager (the default
remains the thread-local one accessed through transaction.manager).
See: https://github.com/Pylons/pyramid_tm/pull/31

0.10 (2015-01-06)

	Fix recording transactions with non-text, non-bytes userids.
See: https://github.com/Pylons/pyramid_tm/issues/28

0.9 (2014-12-30)

	Work around recording transaction userid containing unicode.
See https://github.com/Pylons/pyramid_tm/pull/15, although the fix
is different, to ensure Python3 compatibility.

	Work around recording transaction notes containing unicode.
https://github.com/Pylons/pyramid_tm/pull/25

0.8 (2014-11-12)

	Add a new tm.activate_hook hook which can control when the
transaction manager is active. For example, this may be useful in
situations where the manager should be disabled for a particular URL.
https://github.com/Pylons/pyramid_tm/pull/12

	Fix unit tests under Pyramid 1.5.

	Fix a bug preventing retryable exceptions from actually being retried.
https://github.com/Pylons/pyramid_tm/pull/8

	Don't call setUser on transaction if there is no user logged in.
This could cause the username set on the transaction to be a strange
string: " None". https://github.com/Pylons/pyramid_tm/pull/9

	Avoid crash when the path_info cannot be decoded from the request
object. https://github.com/Pylons/pyramid_tm/pull/19

0.7 (2012-12-30)

	Write unauthenticated userid and request.path_info as transaction
metadata via t.setUser and t.note respectively during a commit.

0.6 (2012-12-26)

	Disuse the confusing and bug-ridden generator-plus-context-manager "attempts"
mechanism from the transaction package for retrying retryable exceptions
(e.g. ZODB ConflictError). Use a simple while loop plus a counter and
imperative logic instead.

0.5 (2012-06-26)

Bug Fixes

	When a non-retryable exception was raised as the result of a call to
transaction.manager.commit, the exception was not reraised properly.
Symptom: an unrecoverable exception such as Unsupported: Storing blobs in
<somestorage> is not supported. would be swallowed inappropriately.

0.4 (2012-03-28)

Bug Fixes

	Work around failure to retry ConflictError properly at commit time by the
transaction 1.2.0 package. See
https://mail.zope.org/pipermail/zodb-dev/2012-March/014603.html for
details.

Testing

	No longer tested under Python 2.5 by tox.ini (and therefore no longer
tested under 2.5 by the Pylons Jenkins server). The package may still work
under 2.5, but automated tests will no longer show breakage when it changes
in ways that break 2.5 support.

	Squash test deprecation warnings under Python 3.2.

0.3 (2011-09-27)

Features

	The transaction manager has been converted to a Pyramid 1.2 "tween"
(instead of an event subscriber). It will be slotted directly "below" the
exception view handler, meaning it will have a chance to handle exceptions
before they are turned into responses. This means it's best to "raise
HTTPFound(...)" instead of "return HTTPFound(...)" if you want an HTTP
exception to abort the transaction.

	The transaction manager will now retry retryable exceptions (such as a ZODB
conflict error) if tm.attempts is configured to be more than the
default of 1. See the Retrying section of the documentation.

	Python 3.2 compatibility (requires Pyramid 1.3dev+).

Backwards Incompatibilities

	Incompatible with Pyramid < 1.2a1. Use pyramid_tm version 0.2 if you
need compatibility with an older Pyramid installation.

	The default_commit_veto commit veto callback is no longer configured
into the system by default. Use tm.commit_veto =
pyramid_tm.default_commit_veto in the deployment settings to add it.
This is for parity with repoze.tm2, which doesn't configure in a commit
veto by default either.

	The default_commit_veto no longer checks for the presence of the
X-Tm-Abort header when attempting to figure out whether the transaction
should be aborted (although it still checks for the X-Tm header). Use
version 0.2 or a custom commit veto function if your application depends on
the X-Tm-Abort header.

	A commit veto is now called with two arguments: request and
response. The request is the webob request that caused the
transaction manager to become active. The response is the response
returned by the Pyramid application. This call signature is incompatible
with older versions. The call signature of a pyramid_tm 0.2 and older
commit veto accepted three arguments: environ, status, and
headers. If you're using a custom commit_veto function, you'll
need to either convert your existing function to use the new calling
convention or use a wrapper to make it compatible with the new calling
convention. Here's a simple wrapper function
(bwcompat_commit_veto_wrapper) that will allow you to use your existing
custom commit veto function:

def bwcompat_commit_veto_wrapper(request, response):
 return my_custom_commit_veto(request.environ, response.status,
 response.headerlist)

Deprecations

	The pyramid_tm.commit_veto configuration setting is now canonically
spelled as tm.commit_veto. The older spelling will continue to work,
but may raise a deprecation error when used.

0.2 (2011-07-18)

	A new header X-Tm is now honored by the default_commit_veto commit
veto hook. If this header exists in the headerlist, its value must be a
string. If its value is commit, the transaction will be committed
regardless of the status code or the value of X-Tm-Abort. If the value
of the X-Tm header is abort (or any other string value except
commit), the transaction will be aborted, regardless of the status code
or the value of X-Tm-Abort.

0.1 (2011-02-23)

	Initial release, based on repoze.tm2

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyramid_tm	

Index

 C
 | D
 | E
 | I
 | P
 | R
 | T

C

 	
 	create_tm() (in module pyramid_tm)

D

 	
 	data manager

 	
 	default_commit_veto() (in module pyramid_tm)

 	dotted Python name

E

 	
 	explicit_manager() (in module pyramid_tm)

I

 	
 	includeme() (in module pyramid_tm)

 	
 	is_tm_active() (in module pyramid_tm)

P

 	
 	Pyramid

 	
 	pyramid_tm (module)

R

 	
 	retryable

T

 	
 	tm_tween_factory() (in module pyramid_tm)

 	
 	TMActivePredicate (class in pyramid_tm)

 	transaction

 _static/up.png

nav.xhtml

 Table of Contents

 		
 pyramid_tm

 		
 pyramid_tm API

 		
 Glossary

 		
 Changes

 		
 2.5 (2022-03-12)

 		
 2.4 (2020-01-06)

 		
 2.3 (2019-09-30)

 		
 2.2.1 (2018-10-23)

 		
 2.2 (2017-07-03)

 		
 Backward Incompatibilities

 		
 2.1 (2017-06-07)

 		
 2.0 (2017-04-11)

 		
 Major Features

 		
 Backward Incompatibilities

 		
 Minor Features

 		
 1.1.1 (2016-11-21)

 		
 1.1.0 (2016-11-19)

 		
 1.0.2 (2016-11-18)

 		
 1.0.1 (2016-10-24)

 		
 1.0 (2016-09-12)

 		
 0.12.1 (2015-11-25)

 		
 0.12 (2015-05-20)

 		
 0.11 (2015-02-04)

 		
 0.10 (2015-01-06)

 		
 0.9 (2014-12-30)

 		
 0.8 (2014-11-12)

 		
 0.7 (2012-12-30)

 		
 0.6 (2012-12-26)

 		
 0.5 (2012-06-26)

 		
 Bug Fixes

 		
 0.4 (2012-03-28)

 		
 Bug Fixes

 		
 Testing

 		
 0.3 (2011-09-27)

 		
 Features

 		
 Backwards Incompatibilities

 		
 Deprecations

 		
 0.2 (2011-07-18)

 		
 0.1 (2011-02-23)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/logo_hi.gif
Repoze

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

