

pyramid_zcml

Overview

pyramid_zcml is a package which provides ZCML directives for all
built-in Pyramid configurator methods.

Installation

Install using setuptools, e.g. (within a virtualenv):

$ easy_install pyramid_zcml

Setup

Once pyramid_zcml is installed, you must use the config.include
mechanism to include it into your Pyramid project’s configuration. In your
Pyramid project’s __init__.py:

	1
2
3
4

	import pyramid_zcml

config = Configurator(.....)
config.include(pyramid_zcml)

Do this before trying to load any ZCML. After this step is taken, it will be
possible to use the pyramid_zcml.load_zcml() function as a method of
the configurator, ala:

	1

	config.load_zcml(....)

Paster Template

The pyramid_starter_zcml Paster template is included with this package.
You can use it via paster create -t pyramid_starter_zcml (on Pyramid 1.0,
1.1, or 1.2) or pcreate -s pyramid_starter_zcml (on Pyramid 1.3). It
creates a package skeleton which configures a Pyramid appliction via ZCML.
The application performs URL mapping via traversal and no persistence
mechanism.

Usage

	Declarative Configuration using ZCML
	ZCML Configuration

	Hello World, Goodbye World (Declarative)

	Scanning via ZCML

	Which Mode Should I Use?

	Configuring a Route via ZCML

	Serving Static Assets Using ZCML

	Enabling an Authorization Policy Via ZCML

	Built-In Authentication Policy ZCML Directives

	Built-In Authorization Policy ZCML Directives

	Adding and Changing Renderers via ZCML

	Adding a Translation Directory via ZCML

	Adding a Custom Locale Negotiator via ZCML

	Configuring an Event Listener via ZCML

	Configuring a Not Found View via ZCML

	Configuring a Forbidden View via ZCML

	Configuring an Alternate Traverser via ZCML

	Using features to make ZCML configurable

	Changing resource_url URL Generation via ZCML

	Changing the Request Factory via ZCML

	Changing the Renderer Globals Factory via ZCML

	Using Broken ZCML Directives

Directives and API

	ZCML Directives
	aclauthorizationpolicy

	adapter

	authtktauthenticationpolicy

	asset

	configure

	default_permission

	forbidden

	include

	localenegotiator

	notfound

	remoteuserauthenticationpolicy

	renderer

	repozewho1authenticationpolicy

	route

	scan

	static

	subscriber

	translationdir

	utility

	view

	pyramid_zcml API

	Glossary

Reporting Bugs / Development Versions

Visit http://github.com/Pylons/pyramid_zcml to download development or
tagged versions.

Visit http://github.com/Pylons/pyramid_zcml/issues to report bugs.

Indices and tables

	Glossary

	Index

	Module Index

	Search Page

Declarative Configuration using ZCML

The mode of configuration detailed in the examples within the Pyramid
documentation is “imperative” configuration. This is the configuration mode
in which a developer cedes the least amount of control to the framework; it’s
“imperative” because you express the configuration directly in Python code,
and you have the full power of Python at your disposal as you issue
configuration statements. However, another mode of configuration exists For
Pyramid within pyramid_zcml named ZCML which is declarative.
In ZCML, configuration statements are made via an domain specific language
implemented in XML. There is no opportunity for conditionals or loops.
Declarative languages are less powerful than their imperative counterparts;
this is attractive in environments where consistency is more important than
brevity.

A complete listing of ZCML directives is available within
ZCML Directives. This chapter provides an overview of how you might
get started with ZCML and highlights some common tasks performed when you use
ZCML.

ZCML Configuration

A Pyramid application can be configured “declaratively”, if so
desired. Declarative configuration relies on declarations made external to
the code in a configuration file format named ZCML (Zope
Configuration Markup Language), an XML dialect.

A Pyramid application configured declaratively requires not
one, but two files: a Python file and a ZCML file.

In a file named helloworld.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from paste.httpserver import serve
from pyramid.response import Response
from pyramid.config import Configurator

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.include('pyramid_zcml')
 config.load_zcml('configure.zcml')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

In a file named configure.zcml in the same directory as the
previously created helloworld.py:

	1
2
3
4
5
6
7
8
9

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid_zcml" />

 <view
 view="helloworld.hello_world"
 />

</configure>

This pair of files forms an application functionally equivalent to the
application we created earlier in Imperative Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/configuration.html#imperative-configuration].
Let’s examine the differences between that code listing and the code
above.

In Imperative Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/configuration.html#imperative-configuration], we had the following lines within
the if __name__ == '__main__' section of helloworld.py:

	1
2
3
4
5

	if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

In our “declarative” code, we’ve removed the call to add_view and
replaced it with a call to the pyramid_zcml.load_zcml() method so that
it now reads as:

	1
2
3
4
5
6

	if __name__ == '__main__':
 config = Configurator()
 config.include('pyramid_zcml')
 config.load_zcml('configure.zcml')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

Everything else is much the same.

The config.include('pyramid_zcml') line makes the load_zcml method
available on the configurator. The config.load_zcml('configure.zcml')
line tells the configurator to load configuration declarations from the file
named configure.zcml which sits next to helloworld.py on the
filesystem. Let’s take a look at that configure.zcml file again:

	1
2
3
4
5
6
7
8
9

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid_zcml" />

 <view
 view="helloworld.hello_world"
 />

</configure>

Note that this file contains some XML, and that the XML contains a
<view> configuration declaration tag that references a
dotted Python name. This dotted name refers to the
hello_world function that lives in our helloworld Python
module.

This <view> declaration tag performs the same function as the
add_view method that was employed within
Imperative Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/configuration.html#imperative-configuration]. In fact, the <view> tag is
effectively a “macro” which calls the
pyramid.config.Configurator.add_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view] method on your
behalf.

The <view> tag is an example of a Pyramid declaration
tag. Other such tags include <route> and <scan>. Each of
these tags is effectively a “macro” which calls methods of a
pyramid.config.Configurator [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator] object on your behalf.

Essentially, using a ZCML file and loading it from the
filesystem allows us to put our configuration statements within this
XML file rather as declarations, rather than representing them as
method calls to a Configurator object. Otherwise, declarative
and imperative configuration are functionally equivalent.

Using declarative configuration has a number of benefits, the primary
benefit being that applications configured declaratively can be
overridden and extended by third parties without requiring the
third party to change application code. If you want to build a
framework or an extensible application, using declarative
configuration is a good idea.

Declarative configuration has an obvious downside: you can’t use
plain-old-Python syntax you probably already know and understand to
configure your application; instead you need to use ZCML.

ZCML Conflict Detection

A minor additional feature of ZCML is conflict detection. If you
define two declaration tags within the same ZCML file which logically
“collide”, an exception will be raised, and the application will not
start. For example, the following ZCML file has two conflicting
<view> tags:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 <configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid_zcml" />

 <view
 view="helloworld.hello_world"
 />

 <view
 view="helloworld.hello_world"
 />

 </configure>

If you try to use this ZCML file as the source of ZCML for an
application, an error will be raised when you attempt to start the
application. This error will contain information about which tags
might have conflicted.

Hello World, Goodbye World (Declarative)

Another almost entirely equivalent mode of application configuration
exists named declarative configuration. Pyramid can be
configured for the same “hello world” application “declaratively”, if
so desired.

To do so, first, create a file named helloworld.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from pyramid.config import Configurator
from pyramid.response import Response
from paste.httpserver import serve

def hello_world(request):
 return Response('Hello world!')

def goodbye_world(request):
 return Response('Goodbye world!')

if __name__ == '__main__':
 config = Configurator()
 config.include('pyramid_zcml')
 config.load_zcml('configure.zcml')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

Then create a file named configure.zcml in the same directory as
the previously created helloworld.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid_zcml" />

 <view
 view="helloworld.hello_world"
 />

 <view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

</configure>

This pair of files forms an application functionally equivalent to the
application we created earlier in Hello World [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/firstapp.html#helloworld-imperative]. We can run
it the same way.

$ python helloworld.py
serving on 0.0.0.0:8080 view at http://127.0.0.1:8080

Let’s examine the differences between the code in that section and the code
above. In Application Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/firstapp.html#helloworld-imperative-appconfig], we had the following lines
within the if __name__ == '__main__' section of helloworld.py:

	1
2
3
4
5
6

	if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 config.add_view(goodbye_world, name='goodbye')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

In our “declarative” code, we’ve added a call to the
pyramid_zcml.load_zcml() method with the value configure.zcml, and
we’ve removed the lines which read config.add_view(hello_world) and
config.add_view(goodbye_world, name='goodbye'), so that it now reads as:

	1
2
3
4
5
6

	if __name__ == '__main__':
 config = Configurator()
 config.include('pyramid_zcml')
 config.load_zcml('configure.zcml')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

Everything else is much the same.

The config.load_zcml('configure.zcml') line tells the configurator
to load configuration declarations from the configure.zcml file
which sits next to helloworld.py. Let’s take a look at the
configure.zcml file now:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid_zcml" />

 <view
 view="helloworld.hello_world"
 />

 <view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

</configure>

We already understand what the view code does, because the application
is functionally equivalent to the application described in
Hello World [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/firstapp.html#helloworld-imperative], but use of ZCML is new. Let’s
break that down tag-by-tag.

The <configure> Tag

The configure.zcml ZCML file contains this bit of XML:

	1
2
3
4
5

	 <configure xmlns="http://pylonshq.com/pyramid">

 <!-- other directives -->

 </configure>

Because ZCML is XML, and because XML requires a single root
tag for each document, every ZCML file used by Pyramid must
contain a configure container directive, which acts as the root
XML tag. It is a “container” directive because its only job is to
contain other directives.

See also configure and A Word On XML Namespaces.

The <include> Tag

The configure.zcml ZCML file contains this bit of XML within the
<configure> root tag:

	1

	<include package="pyramid_zcml" />

This self-closing tag instructs Pyramid to load a ZCML file
from the Python package with the dotted Python name
pyramid_zcml, as specified by its package attribute.
This particular <include> declaration is required because it
actually allows subsequent declaration tags (such as <view>, which
we’ll see shortly) to be recognized. The <include> tag
effectively just includes another ZCML file, causing its declarations
to be executed. In this case, we want to load the declarations from
the file named configure.zcml within the
pyramid_zcml Python package. We know we want to load
the configure.zcml from this package because configure.zcml is
the default value for another attribute of the <include> tag named
file. We could have spelled the include tag more verbosely, but
equivalently as:

	1
2

	<include package="pyramid_zcml"
 file="configure.zcml"/>

The <include> tag that includes the ZCML statements implied by the
configure.zcml file from the Python package named
pyramid_zcml is basically required to come before any
other named declaration in an application’s configure.zcml. If it
is not included, subsequent declaration tags will fail to be
recognized, and the configuration system will generate an error at
startup. However, the <include package="pyramid_zcml"/>
tag needs to exist only in a “top-level” ZCML file, it needn’t also
exist in ZCML files included by a top-level ZCML file.

See also include.

The <view> Tag

The configure.zcml ZCML file contains these bits of XML after the
<include> tag, but within the <configure> root tag:

	1
2
3
4
5
6
7
8

	<view
 view="helloworld.hello_world"
 />

<view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

These <view> declaration tags direct Pyramid to create
two view configuration registrations. The first <view>
tag has an attribute (the attribute is also named view), which
points at a dotted Python name, referencing the
hello_world function defined within the helloworld package.
The second <view> tag has a view attribute which points at a
dotted Python name, referencing the goodbye_world function
defined within the helloworld package. The second <view> tag
also has an attribute called name with a value of goodbye.

These effect of the <view> tag declarations we’ve put into our
configure.zcml is functionally equivalent to the effect of lines
we’ve already seen in an imperatively-configured application. We’re
just spelling things differently, using XML instead of Python.

In our previously defined application, in which we added view
configurations imperatively, we saw this code:

	1
2

	config.add_view(hello_world)
config.add_view(goodbye_world, name='goodbye')

Each <view> declaration tag encountered in a ZCML file effectively
invokes the pyramid.config.Configurator.add_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view]
method on the behalf of the developer. Various attributes can be
specified on the <view> tag which influence the view
configuration it creates.

Since the relative ordering of calls to
pyramid.config.Configurator.add_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view] doesn’t matter
(see the sidebar entitled View Dispatch and Ordering within
Adding Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/firstapp.html#adding-configuration]), the relative order of <view> tags in
ZCML doesn’t matter either. The following ZCML orderings are
completely equivalent:

Hello Before Goodbye

	1
2
3
4
5
6
7
8

	<view
 view="helloworld.hello_world"
 />

<view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

Goodbye Before Hello

	1
2
3
4
5
6
7
8

	<view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

<view
 view="helloworld.hello_world"
 />

We’ve now configured a Pyramid helloworld application
declaratively. More information about this mode of configuration is
available in ZCML Configuration.

ZCML Granularity

It’s extremely helpful to third party application “extenders” (aka
“integrators”) if the ZCML that composes the configuration for an
application is broken up into separate files which do very specific things.
These more specific ZCML files can be reintegrated within the application’s
main configure.zcml via <include file="otherfile.zcml"/>
declarations. When ZCML files contain sets of specific declarations, an
integrator can avoid including any ZCML he does not want by including only
ZCML files which contain the declarations he needs. He is not forced to
“accept everything” or “use nothing”.

For example, it’s often useful to put all <route> declarations in a
separate ZCML file, as <route> statements have a relative ordering that
is extremely important to the application: if an extender wants to add a
route to the “middle” of the routing table, he will always need to disuse all
the routes and cut and paste the routing configuration into his own
application. It’s useful for the extender to be able to disuse just a
single ZCML file in this case, accepting the remainder of the configuration
from other ZCML files in the original application.

Granularizing ZCML is not strictly required. An extender can always disuse
all your ZCML, choosing instead to copy and paste it into his own package,
if necessary. However, doing so is considerate, and allows for the best
reusability. Sometimes it’s possible to include only certain ZCML files from
an application that contain only the registrations you really need, omitting
others. But sometimes it’s not. For brute force purposes, when you’re
getting view or route registrations that you don’t actually want in
your overridden application, it’s always appropriate to just not include
any ZCML file from the overridden application. Instead, just cut and paste
the entire contents of the configure.zcml (and any ZCML file included by
the overridden application’s configure.zcml) into your own package and
omit the <include package=""/> ZCML declaration in the overriding
package’s configure.zcml.

Scanning via ZCML

ZCML can invoke a scan via its <scan> directive. If a
ZCML file is processed that contains a scan directive, the package the ZCML
file points to is scanned.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# helloworld.py

from paste.httpserver import serve
from pyramid.response import Response
from pyramid.view import view_config

@view_config()
def hello(request):
 return Response('Hello')

if __name__ == '__main__':
 from pyramid.config import Configurator
 config = Configurator()
 config.include('pyramid_zcml')
 config.load_zcml('configure.zcml')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

	1
2
3
4
5
6
7
8

	<configure xmlns="http://pylonshq.com/pyramid">

 <!-- configure.zcml -->

 <include package="pyramid_zcml"/>
 <scan package="."/>

</configure>

See also scan.

Which Mode Should I Use?

A combination of imperative configuration, declarative configuration via ZCML
and scanning can be used to configure any application. They are not mutually
exclusive.

Declarative configuraton was the more traditional form of configuration used
in Pyramid applications; the first releases of Pyramid and all releases of
Pyramid’s predecessor named repoze.bfg included ZCML in the core. However,
by virtue of this package, it has been externalized from the Pyramid core
because it has proven that imperative mode configuration can be simpler to
understand and document.

However, you can choose to use imperative configuration, or declarative
configuration via ZCML. Use the mode that best fits your brain as necessary.

View Configuration Via ZCML

You may associate a view with a URL by adding view
declarations via ZCML in a configure.zcml file. An
example of a view declaration in ZCML is as follows:

	1
2
3
4
5

	<view
 context=".resources.Hello"
 view=".views.hello_world"
 name="hello.html"
 />

The above maps the .views.hello_world view callable function to
the following set of resource location results:

	A context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] object which is an instance (or subclass) of the
Python class represented by .resources.Hello

	A view name equalling hello.html.

Note

Values prefixed with a period (.) for the context and view
attributes of a view declaration (such as those above) mean “relative
to the Python package directory in which this ZCML file is
stored”. So if the above view declaration was made inside a
configure.zcml file that lived in the hello package, you could
replace the relative .resources.Hello with the absolute
hello.resources.Hello; likewise you could replace the relative
.views.hello_world with the absolute hello.views.hello_world.
Either the relative or absolute form is functionally equivalent. It’s
often useful to use the relative form, in case your package’s name
changes. It’s also shorter to type.

You can also declare a default view callable for a resource [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-resource] type:

	1
2
3
4

	<view
 context=".resources.Hello"
 view=".views.hello_world"
 />

A default view callable simply has no name attribute. For the above
registration, when a context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] is found that is of the type
.resources.Hello and there is no view name associated with the
result of resource location, the default view callable will be
used. In this case, it’s the view at .views.hello_world.

A default view callable can alternately be defined by using the empty
string as its name attribute:

	1
2
3
4
5

	<view
 context=".resources.Hello"
 view=".views.hello_world"
 name=""
 />

You may also declare that a view callable is good for any context type
by using the special * character as the value of the context
attribute:

	1
2
3
4
5

	<view
 context="*"
 view=".views.hello_world"
 name="hello.html"
 />

This indicates that when Pyramid identifies that the
view name is hello.html and the context is of any type,
the .views.hello_world view callable will be invoked.

A ZCML view declaration’s view attribute can also name a
class. In this case, the rules described in Defining a View Callable as a Class [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html#class-as-view]
apply for the class which is named.

See view for complete ZCML directive documentation.

Configuring a Route via ZCML

Instead of using the imperative pyramid.config.Configurator.add_route() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_route]
method to add a new route, you can alternately use ZCML.
route statements in a ZCML file. For example, the
following ZCML declaration causes a route to be added to the
application.

	1
2
3
4
5

	<route
 name="myroute"
 pattern="/prefix/{one}/{two}"
 view=".views.myview"
 />

Note

Values prefixed with a period (.) within the values of ZCML
attributes such as the view attribute of a route mean
“relative to the Python package directory in which this
ZCML file is stored”. So if the above route
declaration was made inside a configure.zcml file that lived in
the hello package, you could replace the relative
.views.myview with the absolute hello.views.myview Either
the relative or absolute form is functionally equivalent. It’s
often useful to use the relative form, in case your package’s name
changes. It’s also shorter to type.

The order that routes are evaluated when declarative configuration is used
is the order that they appear relative to each other in the ZCML file.

See route for full route ZCML directive
documentation.

Serving Static Assets Using ZCML

Use of the static ZCML directive makes static assets available at a name
relative to the application root URL, e.g. /static.

Note that the path provided to the static ZCML directive may be a
fully qualified asset specification, a package-relative path, or
an absolute path. The path with the value a/b/c/static of a
static directive in a ZCML file that resides in the “mypackage” package
will resolve to a package-qualified assets such as
some_package:a/b/c/static.

Here’s an example of a static ZCML directive that will serve files
up under the /static URL from the /var/www/static directory of
the computer which runs the Pyramid application using an
absolute path.

	1
2
3
4

	<static
 name="static"
 path="/var/www/static"
 />

Here’s an example of a static directive that will serve files up
under the /static URL from the a/b/c/static directory of the
Python package named some_package using a fully qualified
asset specification.

	1
2
3
4

	<static
 name="static"
 path="some_package:a/b/c/static"
 />

Here’s an example of a static directive that will serve files up
under the /static URL from the static directory of the Python
package in which the configure.zcml file lives using a
package-relative path.

	1
2
3
4

	<static
 name="static"
 path="static"
 />

Whether you use for path a fully qualified asset specification,
an absolute path, or a package-relative path, When you place your
static files on the filesystem in the directory represented as the
path of the directive, you will then be able to view the static
files in this directory via a browser at URLs prefixed with the
directive’s name. For instance if the static directive’s
name is static and the static directive’s path is
/path/to/static, http://localhost:6543/static/foo.js will
return the file /path/to/static/dir/foo.js. The static directory
may contain subdirectories recursively, and any subdirectories may
hold files; these will be resolved by the static view as you would
expect.

While the path argument can be a number of different things, the
name argument of the static ZCML directive can also be one of
a number of things: a view name or a URL. The above examples have
shown usage of the name argument as a view name. When name is
a URL (or any string with a slash (/) in it), static assets
can be served from an external webserver. In this mode, the name
is used as the URL prefix when generating a URL using
pyramid.url.static_url() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/url.html#pyramid.url.static_url].

For example, the static ZCML directive may be fed a name
argument which is http://example.com/images:

	1
2
3
4

	<static
 name="http://example.com/images"
 path="mypackage:images"
 />

Because the static ZCML directive is provided with a name argument
that is the URL prefix http://example.com/images, subsequent calls to
pyramid.url.static_url() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/url.html#pyramid.url.static_url] with paths that start with the path
argument passed to pyramid.url.static_url() will generate a URL
something like http://example.com/logo.png. The external webserver
listening on example.com must be itself configured to respond properly to
such a request. The pyramid.url.static_url() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/url.html#pyramid.url.static_url] API is discussed in more
detail later in this chapter.

The pyramid.config.Configurator.add_static_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_static_view] method offers
an imperative equivalent to the static ZCML directive. Use of the
add_static_view imperative configuration method is completely equivalent
to using ZCML for the same purpose. See Serving Static Assets [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/assets.html#static-assets-section] for
more information.

The asset ZCML Directive

Instead of using pyramid.config.Configurator.override_asset() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.override_asset] during
imperative configuration, an equivalent ZCML directive can be used.
The ZCML asset tag is a frontend to using
pyramid.config.Configurator.override_asset() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.override_asset].

An individual Pyramid asset ZCML statement can override a
single asset. For example:

	1
2
3
4

	 <asset
 to_override="some.package:templates/mytemplate.pt"
 override_with="another.package:othertemplates/anothertemplate.pt"
 />

The string value passed to both to_override and override_with
attached to an asset directive is called an “asset specification”. The
colon separator in a specification separates the package name from the
asset name. The colon and the following asset name are optional. If they
are not specified, the override attempts to resolve every lookup into a
package from the directory of another package. For example:

	1
2
3
4

	 <asset
 to_override="some.package"
 override_with="another.package"
 />

Individual subdirectories within a package can also be overridden:

	1
2
3
4

	 <asset
 to_override="some.package:templates/"
 override_with="another.package:othertemplates/"
 />

If you wish to override an asset directory with another directory, you must
make sure to attach the slash to the end of both the to_override
specification and the override_with specification. If you fail to attach
a slash to the end of an asset specification that points to a directory, you
will get unexpected results.

The package name in an asset specification may start with a dot, meaning that
the package is relative to the package in which the ZCML file resides. For
example:

	1
2
3
4

	 <asset
 to_override=".subpackage:templates/"
 override_with="another.package:templates/"
 />

See also asset.

Enabling an Authorization Policy Via ZCML

If you’d rather use ZCML to specify an authorization policy
than imperative configuration, modify the ZCML file loaded by your
application (usually named configure.zcml) to enable an
authorization policy.

For example, to enable a policy which compares the value of an “auth ticket”
cookie passed in the request’s environment which contains a reference to a
single principal [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-principal] against the principals present in any ACL
found in the resource tree when attempting to call some view, modify
your configure.zcml to look something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<configure xmlns="http://pylonshq.com/pyramid">

 <!-- views and other directives before this... -->

 <authtktauthenticationpolicy
 secret="iamsosecret"/>

 <aclauthorizationpolicy/>

 </configure>

“Under the hood”, these statements cause an instance of the class
pyramid.authentication.AuthTktAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.AuthTktAuthenticationPolicy] to be
injected as the authentication policy used by this application
and an instance of the class
pyramid.authorization.ACLAuthorizationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authorization.html#pyramid.authorization.ACLAuthorizationPolicy] to be
injected as the authorization policy used by this application.

Pyramid ships with a number of authorization and
authentication policy ZCML directives that should prove useful. See
Built-In Authentication Policy ZCML Directives and
Built-In Authorization Policy ZCML Directives for more information.

Built-In Authentication Policy ZCML Directives

Instead of configuring an authentication policy and authorization
policy imperatively, Pyramid ships with a few “pre-chewed”
authentication policy ZCML directives that you can make use of within
your application.

authtktauthenticationpolicy

When this directive is used, authentication information is obtained
from an “auth ticket” cookie value, assumed to be set by a custom
login form.

An example of its usage, with all attributes fully expanded:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	<authtktauthenticationpolicy
 secret="goshiamsosecret"
 callback=".somemodule.somefunc"
 cookie_name="mycookiename"
 secure="false"
 include_ip="false"
 timeout="86400"
 reissue_time="600"
 max_age="31536000"
 path="/"
 http_only="false"
 />

See authtktauthenticationpolicy for details about
this directive.

remoteuserauthenticationpolicy

When this directive is used, authentication information is obtained
from a REMOTE_USER key in the WSGI environment, assumed to
be set by a WSGI server or an upstream middleware component.

An example of its usage, with all attributes fully expanded:

	1
2
3
4

	<remoteuserauthenticationpolicy
 environ_key="REMOTE_USER"
 callback=".somemodule.somefunc"
 />

See remoteuserauthenticationpolicy for detailed
information.

repozewho1authenticationpolicy

When this directive is used, authentication information is obtained
from a repoze.who.identity key in the WSGI environment, assumed to
be set by repoze.who [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-repoze.who] middleware.

An example of its usage, with all attributes fully expanded:

	1
2
3
4

	<repozewho1authenticationpolicy
 identifier_name="auth_tkt"
 callback=".somemodule.somefunc"
 />

See repozewho1authenticationpolicy for detailed
information.

Built-In Authorization Policy ZCML Directives

aclauthorizationpolicy

When this directive is used, authorization information is obtained
from ACL objects attached to resources.

An example of its usage, with all attributes fully expanded:

	1

	<aclauthorizationpolicy/>

In other words, it has no configuration attributes; its existence in a
configure.zcml file enables it.

See aclauthorizationpolicy for detailed information.

Adding and Changing Renderers via ZCML

New templating systems and serializers can be associated with Pyramid
renderer names. To this end, configuration declarations can be made which
change an existing renderer factory and which add a new renderer
factory.

Adding or changing an existing renderer via ZCML is accomplished via the
renderer ZCML directive.

For example, to add a renderer which renders views which have a
renderer attribute that is a path that ends in .jinja2:

	1
2
3
4

	<renderer
 name=".jinja2"
 factory="my.package.MyJinja2Renderer"
 />

The factory attribute is a dotted Python name that must
point to an implementation of a renderer factory.

The name attribute is the renderer name.

Registering a Renderer Factory

See Adding a New Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#adding-a-renderer] for more information for the definition of a
renderer factory. Here’s an example of the registration of a simple
renderer factory via ZCML:

	1
2
3
4

	<renderer
 name="amf"
 factory="my.package.MyAMFRenderer"
 />

Adding the above ZCML to your application will allow you to use the
my.package.MyAMFRenderer renderer factory implementation in view
configurations by subseqently referring to it as amf in the renderer
attribute of a view configuration:

	1
2
3
4

	<view
 view="mypackage.views.my_view"
 renderer="amf"
 />

Here’s an example of the registration of a more complicated renderer
factory, which expects to be passed a filesystem path:

	1
2
3
4

	<renderer
 name=".jinja2"
 factory="my.package.MyJinja2Renderer"
 />

Adding the above ZCML to your application will allow you to use the
my.package.MyJinja2Renderer renderer factory implementation in
view configurations by referring to any renderer which ends in
.jinja in the renderer attribute of a view
configuration:

	1
2
3
4

	<view
 view="mypackage.views.my_view"
 renderer="templates/mytemplate.jinja2"
 />

When a view configuration which has a name attribute that does
contain a dot, such as templates/mytemplate.jinja2 above is encountered at
startup time, the value of the name attribute is split on its final dot. The
second element of the split is typically the filename extension. This
extension is used to look up a renderer factory for the configured view. Then
the value of renderer is passed to the factory to create a renderer for the
view. In this case, the view configuration will create an instance of a
Jinja2Renderer for each view configuration which includes anything ending
with .jinja2 as its renderer value. The name passed to the
Jinja2Renderer constructor will be whatever the user passed as
renderer= to the view configuration.

See also renderer and
pyramid.config.Configurator.add_renderer() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_renderer].

Changing an Existing Renderer

You can associate more than one filename extension with the same
existing renderer implementation as necessary if you need to use a
different file extension for the same kinds of templates. For
example, to associate the .zpt extension with the Chameleon ZPT
renderer factory, use:

	1
2
3
4

	<renderer
 name=".zpt"
 factory="pyramid.chameleon_zpt.renderer_factory"
 />

After you do this, Pyramid will treat templates ending in
both the .pt and .zpt filename extensions as Chameleon ZPT
templates.

To change the default mapping in which files with a .pt
extension are rendered via a Chameleon ZPT page template renderer, use
a variation on the following in your application’s ZCML:

	1
2
3
4

	<renderer
 name=".pt"
 factory="my.package.pt_renderer"
 />

After you do this, the renderer factory in
my.package.pt_renderer will be used to render templates which end
in .pt, replacing the default Chameleon ZPT renderer.

To ochange the default mapping in which files with a .txt
extension are rendered via a Chameleon text template renderer, use a
variation on the following in your application’s ZCML:

	1
2
3
4

	<renderer
 name=".txt"
 factory="my.package.text_renderer"
 />

After you do this, the renderer factory in
my.package.text_renderer will be used to render templates which
end in .txt, replacing the default Chameleon text renderer.

To associate a default renderer with all view configurations (even
ones which do not possess a renderer attribute), use a variation
on the following (ie. omit the name attribute to the renderer
tag):

	1
2
3

	<renderer
 factory="pyramid.renderers.json_renderer_factory"
 />

See also renderer and
pyramid.config.Configurator.add_renderer() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_renderer].

Adding a Translation Directory via ZCML

You can add a translation directory via ZCML by using the
translationdir ZCML directive:

	1

	<translationdir dir="my.application:locale/"/>

A message catalog in a translation directory added via
translationdir will be merged into translations from
a message catalog added earlier if both translation directories
contain translations for the same locale and translation
domain.

See also translationdir and
Adding a Translation Directory [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/i18n.html#adding-a-translation-directory].

Adding a Custom Locale Negotiator via ZCML

You can add a custom locale negotiator via ZCML by using the
localenegotiator ZCML directive:

	1
2
3

	 <localenegotiator
 negotiator="my_application.my_module.my_locale_negotiator"
 />

See also Using a Custom Locale Negotiator [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/i18n.html#custom-locale-negotiator] and
localenegotiator.

Configuring an Event Listener via ZCML

You can configure an subscriber [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-subscriber] by modifying your application’s
configure.zcml. Here’s an example of a bit of XML you can add to the
configure.zcml file which registers the above mysubscriber function,
which we assume lives in a subscribers.py module within your application:

	1
2
3
4

	<subscriber
 for="pyramid.events.NewRequest"
 handler=".subscribers.mysubscriber"
 />

See also subscriber and Using Events [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/events.html#events-chapter].

Configuring a Not Found View via ZCML

If your application uses ZCML, you can replace the Not Found view by
placing something like the following ZCML in your configure.zcml file.

	1
2
3
4

	<view
 view="helloworld.views.notfound_view"
 context="pyramid.exceptions.NotFound"
 />

Replace helloworld.views.notfound_view with the Python dotted name to the
notfound view you want to use.

See Changing the Not Found View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-notfound-view] for more information.

Configuring a Forbidden View via ZCML

If your application uses ZCML, you can replace the Forbidden view by
placing something like the following ZCML in your configure.zcml file.

	1
2
3
4

	<view
 view="helloworld.views.notfound_view"
 context="pyramid.exceptions.Forbidden"
 />

Replace helloworld.views.forbidden_view with the Python dotted name to
the forbidden view you want to use.

See Changing the Forbidden View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-forbidden-view] for more information.

Configuring an Alternate Traverser via ZCML

Use an adapter stanza in your application’s configure.zcml to
change the default traverser:

	1
2
3
4
5

	 <adapter
 factory="myapp.traversal.Traverser"
 provides="pyramid.interfaces.ITraverser"
 for="*"
 />

Or to register a traverser for a specific resource type:

	1
2
3
4
5

	 <adapter
 factory="myapp.traversal.Traverser"
 provides="pyramid.interfaces.ITraverser"
 for="myapp.resources.MyRoot"
 />

See Changing the Traverser [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-traverser] for more information.

Using features to make ZCML configurable

Using features you can make ZCML somewhat configurable. That is, you
can exclude or include parts of a ZCML configuration using the
features argument to pyramid_zcml.load_zcml(). For example:

	1

	config.load_zcml('configure.zcml', features=['my_feature'])

With this ZCML file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	<configure
 xmlns="http://pylonshq.com/pyramid"
 xmlns:zcml="http://namespaces.zope.org/zcml"
 >

 <include package="pyramid_zcml" />

 <view
 view="helloworld.always_configured"
 />

 <view
 zcml:condition="not-have my_feature"
 view="helloworld.hello_world"
 />

 <view
 zcml:condition="have my_feature"
 view="helloworld.alternate_hello_world"
 />

</configure>

Will configure the views always_configured and alternate_hello_world
but NOT hello_world.

Changing resource_url URL Generation via ZCML

You can change how pyramid.url.resource_url() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/url.html#pyramid.url.resource_url] generates a URL for a
specific type of resource by adding an adapter statement to your
configure.zcml.

	1
2
3
4
5

	 <adapter
 factory="myapp.traversal.URLGenerator"
 provides="pyramid.interfaces.IContextURL"
 for="myapp.resources.MyRoot *"
 />

See Changing How pyramid.request.Request.resource_url() Generates a URL [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-resource-url] for more information.

Changing the Request Factory via ZCML

A MyRequest class can be registered via ZCML as a request factory through
the use of the ZCML utility directive. In the below, we assume it lives
in a package named mypackage.mymodule.

	1
2
3
4

	<utility
 component="mypackage.mymodule.MyRequest"
 provides="pyramid.interfaces.IRequestFactory"
 />

See Changing the Request Factory [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-request-factory] for more information.

Changing the Renderer Globals Factory via ZCML

A renderer globals factory can be registered via ZCML as a through the use of
the ZCML utility directive. In the below, we assume a
renderers_globals_factory function lives in a package named
mypackage.mymodule.

	1
2
3
4

	<utility
 component="mypackage.mymodule.renderer_globals_factory"
 provides="pyramid.interfaces.IRendererGlobalsFactory"
 />

See adding_renderer_globals for more information.

Using Broken ZCML Directives

Some Zope and third-party ZCML directives use the
zope.component.getGlobalSiteManager API to get “the registry” when
they should actually be calling zope.component.getSiteManager.

zope.component.getSiteManager can be overridden by Pyramid via
pyramid.config.Configurator.hook_zca() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.hook_zca], while
zope.component.getGlobalSiteManager cannot. Directives that use
zope.component.getGlobalSiteManager are effectively broken; no ZCML
directive should be using this function to find a registry to populate.

You cannot use ZCML directives which use
zope.component.getGlobalSiteManager within a Pyramid application without
passing the ZCA global registry to the Configurator constructor at
application startup, as per Enabling the ZCA global API by using the ZCA global registry [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/zca.html#using-the-zca-global-registry].

One alternative exists: fix the ZCML directive to use
getSiteManager rather than getGlobalSiteManager. If a
directive disuses getGlobalSiteManager, the hook_zca method of
using a component registry as documented in Enabling the ZCA global API by using hook_zca [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/zca.html#hook-zca] will begin
to work, allowing you to make use of the ZCML directive without
also using the ZCA global registry.

ZCML Directives

Comprehensive reference material for every ZCML directive provided by Pyramid
is available within this chapter. The ZCML directive documentation is
organized alphabetically by directive name.

	aclauthorizationpolicy

	adapter

	authtktauthenticationpolicy

	asset

	configure

	default_permission

	forbidden

	include

	localenegotiator

	notfound

	remoteuserauthenticationpolicy

	renderer

	repozewho1authenticationpolicy

	route

	scan

	static

	subscriber

	translationdir

	utility

	view

aclauthorizationpolicy

When this directive is used, authorization information is obtained
from ACL objects attached to resource [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-resource] objects.

Attributes

None.

Example

	1

	<aclauthorizationpolicy/>

Alternatives

You may create an instance of the
pyramid.authorization.ACLAuthorizationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authorization.html#pyramid.authorization.ACLAuthorizationPolicy] and pass it
to the pyramid.config.Configurator [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator] constructor as
the authorization_policy argument during initial application
configuration.

See Also

See also Built-In Authorization Policy ZCML Directives and
Security [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html#security-chapter].

adapter

Register a Zope Component Architecture “adapter”.

Attributes

	factory

	The adapter factory (often a class).

	provides

	The interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface] that an adapter instance resulting from a
lookup will provide.

	for

	Interfaces or classes to be adapted, separated by spaces,
e.g. interfaces.IFoo interfaces.IBar.

	name

	The adapter name.

Example

	1
2
3
4
5

	<adapter
 for=".foo.IFoo .bar.IBar"
 provides=".interfaces.IMyAdapter"
 factory=".adapters.MyAdapter"
 />

Alternatives

Use the registerAdapter method of the registry attribute of a
Configurator instance during initial application setup.

See Also

None.

authtktauthenticationpolicy

When this directive is used, authentication information is obtained
from an paste.auth.auth_tkt cookie value, assumed to be set by
a custom login form.

Attributes

	secret

	The secret is a string that will be used to sign the data
stored by the cookie. It is required and has no default.

	callback

	The callback is a Python dotted name to a function passed the
string representing the userid stored in the cookie and the
request as positional arguments. The callback is expected to
return None if the user represented by the string doesn’t exist or
a sequence of group identifiers (possibly empty) if the user does
exist. If callback is None, the userid will be assumed to
exist with no groups. It defaults to None.

	cookie_name

	The cookie_name is the name used for the cookie that contains
the user information. It defaults to auth_tkt.

	secure

	secure is a boolean value. If it’s set to “true”, the cookie
will only be sent back by the browser over a secure (HTTPS)
connection. It defaults to “false”.

	include_ip

	include_ip is a boolean value. If it’s set to true, the
requesting IP address is made part of the authentication data in
the cookie; if the IP encoded in the cookie differs from the IP of
the requesting user agent, the cookie is considered invalid. It
defaults to “false”.

	timeout

	timeout is an integer value. It represents the maximum age in
seconds which the auth_tkt ticket will be considered valid. If
timeout is specified, and reissue_time is also specified,
reissue_time must be a smaller value than timeout. It
defaults to None, meaning that the ticket will be considered
valid forever.

	reissue_time

	reissue_time is an integer value. If reissue_time is
specified, when we encounter a cookie that is older than the
reissue time (in seconds), but younger that the timeout, a new
cookie will be issued. It defaults to None, meaning that
authentication cookies are never reissued. A value of 0 means
reissue a cookie in the response to every request that requires
authentication.

	max_age

	max_age is the maximum age of the auth_tkt cookie, in
seconds. This differs from timeout inasmuch as timeout
represents the lifetime of the ticket contained in the cookie,
while this value represents the lifetime of the cookie itself.
When this value is set, the cookie’s Max-Age and Expires
settings will be set, allowing the auth_tkt cookie to last between
browser sessions. It is typically nonsensical to set this to a
value that is lower than timeout or reissue_time, although
it is not explicitly prevented. It defaults to None, meaning
(on all major browser platforms) that auth_tkt cookies will last
for the lifetime of the user’s browser session.

	wild_domain

	A boolean value. If it’s set to “true”, a cookie with a “wild” domain
value will only be sent back by the browser during remember.
It defaults to “true”.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	<authtktauthenticationpolicy
 secret="goshiamsosecret"
 callback=".somemodule.somefunc"
 cookie_name="mycookiename"
 secure="false"
 include_ip="false"
 timeout="86400"
 reissue_time="600"
 max_age="31536000"
 wild_domain="true"
 />

Alternatives

You may create an instance of the
pyramid.authentication.AuthTktAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.AuthTktAuthenticationPolicy] and
pass it to the pyramid.config.Configurator [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator]
constructor as the authentication_policy argument during initial
application configuration.

See Also

See also Built-In Authentication Policy ZCML Directives and
pyramid.authentication.AuthTktAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.AuthTktAuthenticationPolicy].

asset

The asset directive adds an asset override for a single
static file/directory asset.

Attributes

	to_override

	A asset specification specifying the asset to be
overridden.

	override_with

	A asset specification specifying the asset which
is used as the override.

Examples

Overriding a Single Asset File

	1
2
3
4

	<asset
 to_override="some.package:templates/mytemplate.pt"
 override_with="another.package:othertemplates/anothertemplate.pt"
/>

Overriding all Assets in a Package

	1
2
3
4

	<asset
 to_override="some.package"
 override_with="another.package"
 />

Overriding all Assets in a Subdirectory of a Package

	1
2
3
4

	<asset
 to_override="some.package:templates/"
 override_with="another.package:othertemplates/"
 />

Alternatives

The pyramid.config.Configurator.override_asset() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.override_asset]
method can be used instead of the resource ZCML directive.

This directive can also be invoked as the resource ZCML directive for
backwards compatibility purposes.

See Also

See also The asset ZCML Directive.

configure

Because ZCML is XML, and because XML requires a single root tag for
each document, every ZCML file used by Pyramid must contain a configure
container directive, which acts as the root XML tag. It is a “container”
directive because its only job is to contain other directives.

Attributes

	xmlns

	The default XML namespace used for subdirectives.

Example

	1
2
3
4
5

	<configure xmlns="http://pylonshq.com/pyramid">

 <!-- other directives -->

</configure>

A Word On XML Namespaces

Usually, the start tag of the <configure> container tag has a
default XML namespace associated with it. This is usually
http://pylonshq.com/pyramid, named by the xmlns attribute of
the configure start tag.

Using the http://pylonshq.com/pyramid namespace as the default XML
namespace isn’t strictly necessary; you can use a different default namespace
as the default. However, if you do, the declaration tags which are defined
by Pyramid such as the view declaration tag will need to be defined in
such a way that the XML parser that Pyramid uses knows which namespace the
pyramid tags are associated with. For example, the following files
are all completely equivalent:

Use of A Non-Default XML Namespace

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 <configure xmlns="http://namespaces.zope.org/zope"
 xmlns:pyramid="http://pylonshq.com/pyramid">

 <include package="pyramid.includes" />

 <pyramid:view
 view="helloworld.hello_world"
 />

 </configure>

Use of A Per-Tag XML Namespace Without A Default XML Namespace

	1
2
3
4
5
6
7
8
9

	 <configure>

 <include package="pyramid.includes" />

 <view xmlns="http://pylonshq.com/pyramid"
 view="helloworld.hello_world"
 />

 </configure>

For more information about XML namespaces, see this older, but simple
XML.com article [http://www.xml.com/pub/a/1999/01/namespaces.html].

The conventions in this document assume that the default XML namespace
is http://pylonshq.com/pyramid.

Alternatives

None.

See Also

See also Hello World, Goodbye World (Declarative).

default_permission

Set the default permission to be used by all view
configuration registrations.

This directive accepts a single attribute ,``name``, which should be
used as the default permission string. An example of a permission
string: view. Adding a default permission makes it unnecessary to
protect each view configuration with an explicit permission, unless
your application policy requires some exception for a particular view.

If a default permission is not set, views represented by view
configuration registrations which do not explicitly declare a
permission will be executable by entirely anonymous users (any
authorization policy is ignored).

There can be only one default permission active at a time within an
application, thus the default_permission directive can only be
used once in any particular set of ZCML.

Attributes

	name

	Must be a string representing a permission [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-permission],
e.g. view.

Example

	1
2
3

	<default_permission
 name="view"
 />

Alternatives

Using the default_permission argument to the
pyramid.config.Configurator [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator] constructor can be used
to achieve the same purpose.

Using the
pyramid.config.Configurator.set_default_permission() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.set_default_permission]
method can be used to achieve the same purpose when using imperative
configuration.

See Also

See also Setting a Default Permission [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html#setting-a-default-permission].

forbidden

When Pyramid can’t authorize execution of a view based on the
authorization policy in use, it invokes a forbidden view.
The default forbidden response has a 401 status code and is very plain, but
it can be overridden as necessary using the forbidden ZCML directive.

Warning

The forbidden ZCML directive is deprecated in Pyramid
version 1.3. Instead, you should use the view
directive with a context that names the
pyramid.exceptions.Forbidden class. See
Changing the Forbidden View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-forbidden-view] form more information.

Attributes

	view

	The dotted Python name to a view callable. This
attribute is required unless a renderer attribute also exists.
If a renderer attribute exists on the directive, this attribute
defaults to a view that returns an empty dictionary (see
Writing View Callables Which Use a Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#views-which-use-a-renderer]).

	attr

	The attribute of the view callable to use if __call__ is not
correct (has the same meaning as in the context of
view; see the description of attr
there).

	renderer

	This is either a single string term (e.g. json) or a string
implying a path or asset specification
(e.g. templates/views.pt) used when the view returns a
non-response [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-response] object. This attribute has the same meaning as
it would in the context of view; see the
description of renderer there).

	wrapper

	The view name (not an object dotted name) of another view
declared elsewhere in ZCML (or via the @view_config decorator)
which will receive the response body of this view as the
request.wrapped_body attribute of its own request, and the
response returned by this view as the request.wrapped_response
attribute of its own request. This attribute has the same meaning
as it would in the context of view; see the
description of wrapper there). Note that the wrapper view
should not be protected by any permission; behavior is undefined
if it does.

Example

	1
2

	<forbidden
 view="helloworld.views.forbidden_view"/>

Alternatives

Use the view directive with a context that names
the pyramid.exceptions.Forbidden class.

Use the pyramid.config.Configurator.add_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view] method,
passing it a context which is the
pyramid.exceptions.Forbidden class.

See Also

See also Changing the Forbidden View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-forbidden-view].

include

The include directive includes configuration from an external ZCML
file. Use of the include tag allows a user to split configuration
across multiple ZCML files, and allows package distributors to provide
default ZCML configuration for specific purposes which can be
included by the integrator of the package as necessary.

Attributes

	package

	A dotted Python name which references a Python package.

	file

	An absolute or relative filename which references a ZCML file.

The package and file attributes can be used together or
separately as necessary.

Examples

Loading the File Named configure.zcml from a Package Implicitly

	1

	<include package="some.package" />

Loading the File Named other.zcml From the Current Package

	1

	<include file="other.zcml" />

Loading a File From a Subdirectory of the Current Package

	1

	<include file="subdir/other.zcml" />

Loading the File Named /absolute/path/other.zcml

	1

	<include file="/absolute/path/other.zcml" />

Loading the File Named other.zcml From a Package Explicitly

	1

	<include package="some.package" file="other.zcml" />

Alternatives

None.

See Also

See also Hello World, Goodbye World (Declarative).

localenegotiator

Set the locale negotiator for the current configurator to
support localization of text.

Attributes

negotiator

The dotted Python name to a locale negotiator
implementation. This attribute is required. If it begins with a
dot (.), the name will be considered relative to the directory
in which the ZCML file which contains this directive lives.

Example

	1
2
3

	<localenegotiator
 negotiator="some.package.module.my_locale_negotiator"
 />

Alternatives

Use pyramid.config.Configurator.set_locale_negotiator() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.set_locale_negotiator]
method instance during initial application setup.

See Also

See also Activating Translation [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/i18n.html#activating-translation].

notfound

Warning

The notfound ZCML directive is deprecated in Pyramid
version 1.0. Instead, you should use the view
directive with a context that names the
pyramid.exceptions.NotFound class. See
Changing the Not Found View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-notfound-view] form more information.

When Pyramid can’t map a URL to view code, it invokes a not found
view. The default not found view is very plain, but the view callable used
can be configured via the notfound ZCML tag.

Attributes

	view

	The dotted Python name to a view callable. This
attribute is required unless a renderer attribute also exists.
If a renderer attribute exists on the directive, this attribute
defaults to a view that returns an empty dictionary (see
Writing View Callables Which Use a Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#views-which-use-a-renderer]).

	attr

	The attribute of the view callable to use if __call__ is not
correct (has the same meaning as in the context of
view; see the description of attr
there).

	renderer

	This is either a single string term (e.g. json) or a string
implying a path or asset specification
(e.g. templates/views.pt) used when the view returns a
non-response [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-response] object. This attribute has the same meaning as
it would in the context of view; see the
description of renderer there).

	wrapper

	The view name (not an object dotted name) of another view
declared elsewhere in ZCML (or via the @view_config decorator)
which will receive the response body of this view as the
request.wrapped_body attribute of its own request, and the
response returned by this view as the request.wrapped_response
attribute of its own request. This attribute has the same meaning
as it would in the context of view; see
the description of wrapper there). Note that the wrapper view
should not be protected by any permission; behavior is undefined
if it does.

Example

	1
2

	<notfound
 view="helloworld.views.notfound_view"/>

Alternatives

Use the view directive with a context that names
the pyramid.exceptions.NotFound class.

Use the pyramid.config.Configurator.add_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view] method,
passing it a context which is the
pyramid.exceptions.NotFound class.

See Also

See also Changing the Not Found View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-notfound-view].

remoteuserauthenticationpolicy

When this directive is used, authentication information is obtained
from a REMOTE_USER key in the WSGI environment, assumed to
be set by a WSGI server or an upstream middleware component.

Attributes

	environ_key

	The environ_key is the name that will be used to obtain the
remote user value from the WSGI environment. It defaults to
REMOTE_USER.

	callback

	The callback is a Python dotted name to a function passed the
string representing the remote user and the request as positional
arguments. The callback is expected to return None if the user
represented by the string doesn’t exist or a sequence of group
identifiers (possibly empty) if the user does exist. If
callback is None, the userid will be assumed to exist with no
groups. It defaults to None.

Example

	1
2
3
4

	<remoteuserauthenticationpolicy
 environ_key="REMOTE_USER"
 callback=".somemodule.somefunc"
 />

Alternatives

You may create an instance of the
pyramid.authentication.RemoteUserAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.RemoteUserAuthenticationPolicy] and
pass it to the pyramid.config.Configurator [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator]
constructor as the authentication_policy argument during initial
application configuration.

See Also

See also Built-In Authentication Policy ZCML Directives and
pyramid.authentication.RemoteUserAuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.RemoteUserAuthenticationPolicy].

renderer

The renderer ZCML directive can be used to override an existing
existing renderer or to add a new renderer.

Attributes

	factory

	A dotted Python name referencing a callable object that
accepts a renderer name and returns a renderer object.

	name

	The renderer name, which is a string.

Examples

Registering a Non-Template Renderer

	1
2
3
4

	<renderer
 factory="some.renderer"
 name="mynewrenderer"
 />

Registering a Template Renderer

	1
2
3
4

	<renderer
 factory="some.jinja2.renderer"
 name=".jinja2"
 />

Alternatives

The pyramid.config.Configurator.add_renderer() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_renderer] method
is equivalent to the renderer ZCML directive.

See Also

See also Adding and Changing Renderers [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#adding-and-overriding-renderers].

repozewho1authenticationpolicy

When this directive is used, authentication information is obtained
from a repoze.who.identity key in the WSGI environment, assumed to
be set by repoze.who [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-repoze.who] middleware.

Attributes

	identifier_name

	The identifier_name controls the name used to look up the
repoze.who [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-repoze.who] “identifier” plugin within
request.environ['repoze.who.plugins'] which is used by this
policy to “remember” and “forget” credentials. It defaults to
auth_tkt.

	callback

	The callback is a Python dotted name to a function passed the
repoze.who identity and the request as positional arguments. The
callback is expected to return None if the user represented by the
identity doesn’t exist or a sequence of group identifiers
(possibly empty) if the user does exist. If callback is None,
the userid will be assumed to exist with no groups. It defaults
to None.

Example

	1
2
3
4

	<repozewho1authenticationpolicy
 identifier_name="auth_tkt"
 callback=".somemodule.somefunc"
 />

Alternatives

You may create an instance of the
pyramid.authentication.RepozeWho1AuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.RepozeWho1AuthenticationPolicy] and
pass it to the pyramid.config.Configurator [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator]
constructor as the authentication_policy argument during initial
application configuration.

See Also

See also Built-In Authentication Policy ZCML Directives and
pyramid.authentication.RepozeWho1AuthenticationPolicy [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.RepozeWho1AuthenticationPolicy].

route

The route directive adds a single route configuration to
the application registry.

Attributes

	pattern

	The pattern of the route e.g. ideas/{idea}. This attribute is
required. See Route Pattern Syntax [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#route-pattern-syntax] for information
about the syntax of route patterns.

Note

For backwards compatibility purposes, the path
attribute can also be used instead of pattern.

	name

	The name of the route, e.g. myroute. This attribute is
required. It must be unique among all defined routes in a given
configuration.

	factory

	The dotted Python name to a function that will generate a
Pyramid context object when this route matches.
e.g. mypackage.resources.MyResource. If this argument is not
specified, a default root factory will be used.

	view

	The dotted Python name to a function that will be used as a
view callable when this route matches.
e.g. mypackage.views.my_view.

	xhr

	This value should be either True or False. If this value is
specified and is True, the request must possess an
HTTP_X_REQUESTED_WITH (aka X-Requested-With) header for this
route to match. This is useful for detecting AJAX requests issued
from jQuery, Prototype and other Javascript libraries. If this
predicate returns false, route matching continues.

	traverse

	If you would like to cause the context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] to be something other
than the root [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-root] object when this route matches, you can spell
a traversal pattern as the traverse argument. This traversal
pattern will be used as the traversal path: traversal will begin at
the root object implied by this route (either the global root, or
the object returned by the factory associated with this route).

The syntax of the traverse argument is the same as it is for
pattern. For example, if the pattern provided to the
route directive is articles/{article}/edit, and the
traverse argument provided to the route directive is
/{article}, when a request comes in that causes the route to
match in such a way that the article match value is ‘1’ (when
the request URI is /articles/1/edit), the traversal path will be
generated as /1. This means that the root object’s
__getitem__ will be called with the name 1 during the
traversal phase. If the 1 object exists, it will become the
context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] of the request. Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#traversal-chapter] has more
information about traversal.

If the traversal path contains segment marker names which are not
present in the pattern argument, a runtime error will occur.
The traverse pattern should not contain segment markers that do
not exist in the pattern.

A similar combining of routing and traversal is available when a
route is matched which contains a *traverse remainder marker in
its pattern (see Using *traverse in a Route Pattern [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hybrid.html#using-traverse-in-a-route-pattern]). The
traverse argument to the route directive allows you to
associate route patterns with an arbitrary traversal path without
using a a *traverse remainder marker; instead you can use other
match information.

Note that the traverse argument to the route directive is
ignored when attached to a route that has a *traverse remainder
marker in its pattern.

	request_method

	A string representing an HTTP method name, e.g. GET, POST,
HEAD, DELETE, PUT. If this argument is not specified,
this route will match if the request has any request method. If
this predicate returns false, route matching continues.

	path_info

	The value of this attribute represents a regular expression pattern
that will be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will be true. If
this predicate returns false, route matching continues.

	request_param

	This value can be any string. A view declaration with this
attribute ensures that the associated route will only match when the
request has a key in the request.params dictionary (an HTTP
GET or POST variable) that has a name which matches the
supplied value. If the value supplied to the attribute has a =
sign in it, e.g. request_params="foo=123", then the key
(foo) must both exist in the request.params dictionary, and
the value must match the right hand side of the expression (123)
for the route to “match” the current request. If this predicate
returns false, route matching continues.

	header

	The value of this attribute represents an HTTP header name or a
header name/value pair. If the value contains a : (colon), it
will be considered a name/value pair (e.g. User-Agent:Mozilla/.*
or Host:localhost). The value of an attribute that represent
a name/value pair should be a regular expression. If the value does
not contain a colon, the entire value will be considered to be the
header name (e.g. If-Modified-Since). If the value evaluates to
a header name only without a value, the header specified by the name
must be present in the request for this predicate to be true. If
the value evaluates to a header name/value pair, the header
specified by the name must be present in the request and the
regular expression specified as the value must match the header
value. Whether or not the value represents a header name or a
header name/value pair, the case of the header name is not
significant. If this predicate returns false, route matching
continues.

	accept

	The value of this attribute represents a match query for one or more
mimetypes in the Accept HTTP request header. If this value is
specified, it must be in one of the following forms: a mimetype
match token in the form text/plain, a wildcard mimetype match
token in the form text/* or a match-all wildcard mimetype match
token in the form */*. If any of the forms matches the
Accept header of the request, this predicate will be true. If
this predicate returns false, route matching continues.

custom_predicates

This value should be a sequence of references to custom predicate
callables. Use custom predicates when no set of predefined
predicates does what you need. Custom predicates can be combined
with predefined predicates as necessary. Each custom predicate
callable should accept two arguments: info and request
and should return either True or False after doing arbitrary
evaluation of the info and/or the request. If all custom and
non-custom predicate callables return True the associated route
will be considered viable for a given request. If any predicate
callable returns False, route matching continues. Note that the
value info passed to a custom route predicate is a dictionary
containing matching information; see Custom Route Predicates [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#custom-route-predicates]
for more information about info.

Note

this argument is deprecated as of Pyramid 1.5.

	view_context

	The dotted Python name to a class or an interface that the
context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] of the view should match for the view named by the
route to be used. This attribute is only useful if the view
attribute is used. If this attribute is not specified, the default
(None) will be used.

If the view attribute is not provided, this attribute has no
effect.

This attribute can also be spelled as view_for or for_;
these are valid older spellings.

	view_permission

	The permission name required to invoke the view associated with this
route. e.g. edit. (see Using Pyramid Security with URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#using-security-with-urldispatch]
for more information about permissions).

If the view attribute is not provided, this attribute has no
effect.

This attribute can also be spelled as permission.

	view_renderer

	This is either a single string term (e.g. json) or a string
implying a path or asset specification
(e.g. templates/views.pt). If the renderer value is a single
term (does not contain a dot .), the specified term will be used
to look up a renderer implementation, and that renderer
implementation will be used to construct a response from the view
return value. If the renderer term contains a dot (.), the
specified term will be treated as a path, and the filename extension
of the last element in the path will be used to look up the renderer
implementation, which will be passed the full path. The renderer
implementation will be used to construct a response from the view
return value. See Writing View Callables Which Use a Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#views-which-use-a-renderer] for more
information.

If the view attribute is not provided, this attribute has no
effect.

This attribute can also be spelled as renderer.

	view_attr

	The view machinery defaults to using the __call__ method of the
view callable (or the function itself, if the view callable is a
function) to obtain a response dictionary. The attr value allows
you to vary the method attribute used to obtain the response. For
example, if your view was a class, and the class has a method named
index and you wanted to use this method instead of the class’
__call__ method to return the response, you’d say
attr="index" in the view configuration for the view. This is
most useful when the view definition is a class.

If the view attribute is not provided, this attribute has no
effect.

	use_global_views

	When a request matches this route, and view lookup cannot find a view
which has a ‘route_name’ predicate argument that matches the route,
try to fall back to using a view that otherwise matches the context,
request, and view name (but does not match the route name predicate).

Alternatives

You can also add a route configuration via:

	Using the pyramid.config.Configurator.add_route() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_route] method.

See Also

See also URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#urldispatch-chapter].

scan

To make use of configuration decoration decorators, you must
perform a scan. A scan finds these decorators in code. The
scan ZCML directive tells Pyramid to begin such a scan.

Attributes

	package

	The package to scan or the single dot (.), meaning the
“current” package (the package in which the ZCML file lives).

Example

	1

	<scan package="."/>

Alternatives

The pyramid.config.Configurator.scan() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan] method performs
the same job as the scan ZCML directive.

See Also

See also Adding View Configuration Using the @view_config Decorator [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#mapping-views-using-a-decorator-section].

static

Use of the static ZCML directive or allows you to serve static
resources (such as JavaScript and CSS files) within a
Pyramid application. This mechanism makes static files
available at a name relative to the application root URL.

Attributes

	name

	The (application-root-relative) URL prefix of the static directory.
For example, to serve static files from /static in most
applications, you would provide a name of static.

	path

	A path to a directory on disk where the static files live. This
path may either be 1) absolute (e.g. /foo/bar/baz) 2)
Python-package-relative (e.g. (packagename:foo/bar/baz) or 3)
relative to the package directory in which the ZCML file which
contains the directive (e.g. foo/bar/baz).

	cache_max_age

	The number of seconds that the static resource can be cached, as
represented in the returned response’s Expires and/or
Cache-Control headers, when any static file is served from this
directive. This defaults to 3600 (5 minutes). Optional.

	permission

	Used to specify the permission [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-permission] required by a user to execute
this static view. This value defaults to the string
__no_permission_required__. The __no_permission_required__
string is a special sentinel which indicates that, even if a
default permission exists for the current application, the
static view should be renderered to completely anonymous users.
This default value is permissive because, in most web apps, static
resources seldom need protection from viewing. You should use this
option only if you register a static view which points at a
directory that contains resources which should be shown only if the
calling user has (according to the authorization policy) a
particular permission.

Examples

Serving Static Files from an Absolute Path

	1
2
3
4

	<static
 name="static"
 path="/var/www/static"
 />

Serving Static Files from a Package-Relative Path

	1
2
3
4

	<static
 name="static"
 path="some_package:a/b/c/static"
 />

Serving Static Files from a Current-Package-Relative Path

	1
2
3
4

	<static
 name="static"
 path="static_files"
 />

Alternatives

pyramid.config.Configurator.add_static_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_static_view] can also
be used to add a static view.

See Also

See also Serving Static Assets [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/assets.html#static-assets-section] and
Generating Static Asset URLs [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/assets.html#generating-static-asset-urls].

subscriber

The subscriber ZCML directive configures an subscriber [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-subscriber]
callable to listen for events broadcast by the Pyramid web
framework.

Attributes

	for

	The class or interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface] that you are subscribing the listener for,
e.g. pyramid.events.NewRequest [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/events.html#pyramid.events.NewRequest]. Registering a subscriber for a
specific class or interface limits the event types that the subscriber
will receive to those specified by the interface or class. Default:
zope.interface.Interface (implying any event type).

	handler

	A dotted Python name which references an event handler
callable. The callable should accept a single argument: event.
The return value of the callable is ignored.

Examples

	1
2
3
4

	<subscriber
 for="pyramid.events.NewRequest"
 handler=".subscribers.handle_new_request"
 />

Alternatives

You can also register an event listener by using the
pyramid.config.Configurator.add_subscriber() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_subscriber] method.

See Also

See also Using Events [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/events.html#events-chapter].

translationdir

Add a gettext translation directory to the current
configuration for use in localization of text.

Attributes

	dir

	The path to the translation directory. This path may either be 1)
absolute (e.g. /foo/bar/baz) 2) Python-package-relative
(e.g. packagename:foo/bar/baz) or 3) relative to the package
directory in which the ZCML file which contains the directive
(e.g. foo/bar/baz).

Example 1

	1
2
3
4
5

	<!-- relative to configure.zcml file -->

<translationdir
 dir="locale"
 />

Example 2

	1
2
3
4
5

	<!-- relative to another package -->

<translationdir
 dir="another.package:locale"
 />

Example 3

	1
2
3
4
5

	<!-- an absolute directory name -->

<translationdir
 dir="/usr/share/locale"
 />

Alternatives

Use pyramid.config.Configurator.add_translation_dirs() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_translation_dirs]
method instance during initial application setup.

See Also

See also Activating Translation [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/i18n.html#activating-translation].

utility

Register a Zope Component Architecture “utility”.

Attributes

	component

	The utility component (cannot be specified if factory is
specified).

	factory

	A factory that creates a component (cannot be specified if
component is specified).

	provides

	The interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface] that an utility instance resulting from a
lookup will provide.

	name

	The utility name.

Example

	1
2
3
4

	<utility
 provides=".interfaces.IMyUtility"
 component=".utilities.MyUtility"
 />

Alternatives

Use the registerUtility method of the registry attribute of a
Configurator instance during initial application setup.

See Also

None.

view

A view declaration directs Pyramid to create a single
view configuration registration in the current
application registry.

The view ZCML directive has many possible attributes. Some of the
attributes are descriptive or influence rendering. Other attributes
are predicate [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-predicate] attributes, meaning that they imply an
evaluation to true or false when view lookup is performed.

All predicates named in a view configuration must evaluate to true
in order for the view callable it names to be considered “invokable”
for a given request. See View Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#view-lookup] for a description of how
a view configuration matches (or doesn’t match) during a request.

The possible attributes of the view ZCML directive are described
below. They are divided into predicate and non-predicate categories.

Attributes

Non-Predicate Attributes

	view

	The dotted Python name to a view callable. This
attribute is required unless a renderer attribute also exists.
If a renderer attribute exists on the directive, this attribute
defaults to a view that returns an empty dictionary (see
Writing View Callables Which Use a Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#views-which-use-a-renderer]).

	permission

	The name of a permission that the user must possess in order to
call the view. See Configuring View Security [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#view-security-section] for more
information about view security and permissions.

	attr

	The view machinery defaults to using the __call__ method of the
view callable (or the function itself, if the view callable is a
function) to obtain a response dictionary. The attr value
allows you to vary the method attribute used to obtain the response.
For example, if your view was a class, and the class has a method
named index and you wanted to use this method instead of the
class’ __call__ method to return the response, you’d say
attr="index" in the view configuration for the view. This is
most useful when the view definition is a class.

	renderer

	This is either a single string term (e.g. json) or a string
implying a path or asset specification
(e.g. templates/views.pt). If the renderer value is a single
term (does not contain a dot .), the specified term will be used
to look up a renderer implementation, and that renderer
implementation will be used to construct a response from the view
return value. If the renderer term contains a dot (.), the
specified term will be treated as a path, and the filename extension
of the last element in the path will be used to look up the renderer
implementation, which will be passed the full path. The renderer
implementation will be used to construct a response from the view
return value.

Note that if the view itself returns a response (see
View Callable Responses [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html#the-response]), the specified renderer implementation is never
called.

When the renderer is a path, although a path is usually just a
simple relative pathname (e.g. templates/foo.pt, implying that a
template named “foo.pt” is in the “templates” directory relative to
the directory in which the ZCML file is defined), a path can be
absolute, starting with a slash on UNIX or a drive letter prefix on
Windows. The path can alternately be a asset
specification in the form
some.dotted.package_name:relative/path, making it possible to
address template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the
“null” renderer is assumed (no rendering is performed and the value
is passed back to the upstream BFG machinery unmolested).

	wrapper

	The view name (not an object dotted name) of another view
declared elsewhere in ZCML (or via the @view_config decorator)
which will receive the response body of this view as the
request.wrapped_body attribute of its own request, and the
response returned by this view as the request.wrapped_response
attribute of its own request. Using a wrapper makes it possible to
“chain” views together to form a composite response. The response
of the outermost wrapper view will be returned to the user. The
wrapper view will be found as any view is found: see
View Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#view-lookup]. The “best” wrapper view will be found based on
the lookup ordering: “under the hood” this wrapper view is looked up
via pyramid.view.render_view_to_response(context, request,
'wrapper_viewname'). The context and request of a wrapper view is
the same context and request of the inner view. If this attribute
is unspecified, no view wrapping is done.

Predicate Attributes

	name

	The view name. Read the Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#traversal-chapter] to understand
the concept of a view name.

	context

	A dotted Python name representing the Python class that the
context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] must be an instance of, or the interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface]
that the context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] must provide in order for this view to be
found and called. This predicate is true when the context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context]
is an instance of the represented class or if the context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context]
provides the represented interface; it is otherwise false. An
alternate name for this attribute is for (this is an older
spelling).

	route_name

	This attribute services an advanced feature that isn’t often used
unless you want to perform traversal after a route has matched.
This value must match the name of a <route> declaration (see
URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#urldispatch-chapter]) that must match before this view will be
called. Note that the route configuration referred to by
route_name usually has a *traverse token in the value of its
path, representing a part of the path that will be used by
traversal against the result of the route’s root factory.
See Combining Traversal and URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hybrid.html#hybrid-chapter] for more information on using this
advanced feature.

	request_type

	This value should be a dotted Python name string
representing the interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface] that the request must
have in order for this view to be found and called. The presence of
this attribute is largely for backwards compatibility with
older iterations of this framework.

	request_method

	This value can either be one of the strings ‘GET’, ‘POST’, ‘PUT’,
‘DELETE’, or ‘HEAD’ representing an HTTP REQUEST_METHOD. A view
declaration with this attribute ensures that the view will only be
called when the request’s method (aka REQUEST_METHOD) string
matches the supplied value.

	request_param

	This value can be any string. A view declaration with this
attribute ensures that the view will only be called when the request
has a key in the request.params dictionary (an HTTP GET or
POST variable) that has a name which matches the supplied value.
If the value supplied to the attribute has a = sign in it,
e.g. request_params="foo=123", then the key (foo) must both
exist in the request.params dictionary, and the value must match
the right hand side of the expression (123) for the view to
“match” the current request.

	containment

	This value should be a dotted Python name string
representing the class that a graph traversal parent object of the
context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] must be an instance of (or interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface] that a
parent object must provide) in order for this view to be found and
called. Your resources must be “location-aware” to use this feature.
See Location-Aware Resources [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/resources.html#location-aware] for more information about
location-awareness.

	xhr

	This value should be either True or False. If this value is
specified and is True, the request must possess an
HTTP_X_REQUESTED_WITH (aka X-Requested-With) header that has
the value XMLHttpRequest for this view to be found and called.
This is useful for detecting AJAX requests issued from jQuery,
Prototype and other Javascript libraries.

	accept

	The value of this attribute represents a match query for one or more
mimetypes in the Accept HTTP request header. If this value is
specified, it must be in one of the following forms: a mimetype
match token in the form text/plain, a wildcard mimetype match
token in the form text/* or a match-all wildcard mimetype match
token in the form */*. If any of the forms matches the
Accept header of the request, this predicate will be true.

	header

	The value of this attribute represents an HTTP header name or a
header name/value pair. If the value contains a : (colon), it
will be considered a name/value pair (e.g. User-Agent:Mozilla/.*
or Host:localhost). The value of an attribute that represent
a name/value pair should be a regular expression. If the value does
not contain a colon, the entire value will be considered to be the
header name (e.g. If-Modified-Since). If the value evaluates to
a header name only without a value, the header specified by the name
must be present in the request for this predicate to be true. If
the value evaluates to a header name/value pair, the header
specified by the name must be present in the request and the
regular expression specified as the value must match the header
value. Whether or not the value represents a header name or a
header name/value pair, the case of the header name is not
significant.

	path_info

	The value of this attribute represents a regular expression pattern
that will be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will be true.

	custom_predicates

	This value should be a sequence of references to custom predicate
callables (e.g. dotted.name.one dotted.name.two, if used in
ZCML; a dotted Python name to each callable separated by a
space). Use custom predicates when no set of predefined predicates
do what you need. Custom predicates can be combined with predefined
predicates as necessary. Each custom predicate callable should
accept two arguments: context and request and should return
either True or False after doing arbitrary evaluation of the
context and/or the request. If all callables return True, the
associated view callable will be considered viable for a given
request.

Note

this argument is deprecated as of Pyramid 1.5.

	decorator

	A dotted Python name to a function that will be used to decorate
the registered view callable. The decorator function will be
called with the view callable as a single argument. The view callable it
is passed will accept (context, request). The decorator must return a
replacement view callable which also accepts (context, request).

	mapper

	A dotted Python name which refers to a view mapper, or
None. By default it is None, which indicates that the view should
use the default view mapper. This plug-point is useful for Pyramid
extension developers, but it’s not very useful for ‘civilians’ who are just
developing stock Pyramid applications.

Examples

Registering A Default View for a Class

	1
2
3
4

	 <view
 context=".resources.MyResource"
 view=".views.hello_world"
 />

Registering A View With a Predicate

	1
2
3
4
5

	 <view
 context=".resources.MyResource"
 view=".views.hello_world_post"
 request_method="POST"
 />

Alternatives

You can also add a view configuration via:

	Using the pyramid.view.view_config [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config] class as a decorator.

	Using the pyramid.config.Configurator.add_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view] method.

See Also

See also Views [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html#views-chapter].

pyramid_zcml API

	
pyramid_zcml.load_zcml(spec='configure.zcml', features=())

	Load configuration from a ZCML file into the
current configuration state. The spec argument is an
absolute filename, a relative filename, or a asset
specification, defaulting to configure.zcml (relative to
the package of the method’s caller).

The features argument can be any iterable of strings. These are useful
for conditionally including or excluding parts of a ZCML file.

	
pyramid_zcml.make_app(root_factory, package=None, filename='configure.zcml', settings=None)

	Return a Router object, representing a fully configured
Pyramid WSGI application.

Warning

Use of this function is deprecated as of Pyramid 1.0. You should
instead use a pyramid.config.Configurator [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator] instance to perform
startup configuration as shown in Application Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/configuration.html#configuration-narr].

root_factory must be a callable that accepts a request
object and which returns a traversal root object. The traversal
root returned by the root factory is the default traversal root;
it can be overridden on a per-view basis. root_factory may be
None, in which case a ‘default default’ traversal root is
used.

package is a Python package or module representing the
application’s package. It is optional, defaulting to None.
package may be None. If package is None, the
filename passed or the value in the options dictionary
named configure_zcml must be a) absolute pathname to a
ZCML file that represents the application’s configuration
or b) a asset specification to a ZCML file in
the form dotted.package.name:relative/file/path.zcml.

filename is the filesystem path to a ZCML file (optionally
relative to the package path) that should be parsed to create the
application registry. It defaults to configure.zcml. It can
also be a ;term:asset specification in the form
dotted_package_name:relative/file/path.zcml. Note that if any
value for configure_zcml is passed within the settings
dictionary, the value passed as filename will be ignored,
replaced with the configure_zcml value.

settings, if used, should be a dictionary containing runtime
settings (e.g. the key/value pairs in an app section of a
PasteDeploy file), with each key representing the option and the
key’s value representing the specific option value,
e.g. {'reload_templates':True}. Note that the keyword
parameter options is a backwards compatibility alias for the
settings keyword parameter.

	
pyramid_zcml.includeme(config)

	Function meant to be included via
pyramid.config.Configurator.include() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.include], which sets up the
Configurator with a load_zcml method.

Glossary

	application registry

	A registry of configuration information consulted by
Pyramid while servicing an application. An application
registry maps resource types to views, as well as housing other
application-specific component registrations. Every
Pyramid application has one (and only one) application
registry.

	asset

	Any file contained within a Python package which is not
a Python source code file.

	asset specification

	A colon-delimited identifier for an asset. The colon separates
a Python package name from a package subpath. For example, the
asset specification my.package:static/baz.css identifies the file
named baz.css in the static subdirectory of the my.package
Python package. See Understanding Asset Specifications [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/assets.html#asset-specifications] for more info.

	asset specification

	A colon-delimited identifier for an asset. The colon separates
a Python package name from a package subpath. For example, the
asset specification my.package:static/baz.css identifies the file
named baz.css in the static subdirectory of the my.package
Python package. See Understanding Asset Specifications [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/assets.html#asset-specifications] for more info.

	authentication policy

	An authentication policy in Pyramid terms is a bit of
code which has an API which determines the current
principal [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-principal] (or principals) associated with a request.

	authorization policy

	An authorization policy in Pyramid terms is a bit of
code which has an API which determines whether or not the
principals associated with the request can perform an action
associated with a permission, based on the information found on the
context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] resource.

	configuration declaration

	An individual method call made to an instance of a Pyramid
Configurator object which performs an arbitrary action, such as
registering a view configuration (via the add_view method of
the configurator) or route configuration (via the add_route
method of the configurator).

	configuration decoration

	Metadata implying one or more configuration declaration
invocations. Often set by configuration Python decorator
attributes, such as pyramid.view.view_config [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config], aka
@view_config.

	configurator

	An object used to do configuration declaration within an
application. The most common configurator is an instance of the
pyramid.config.Configurator class.

	decorator

	A wrapper around a Python function or class which accepts the function
or class as its first argument and which returns an arbitrary object.
Pyramid provides several decorators, used for configuration and return
value modification purposes. See also PEP 318 [http://www.python.org/dev/peps/pep-0318/].

	Default Locale Name

	The locale name used by an application when no explicit
locale name is set. See Localization-Related Deployment Settings [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/i18n.html#localization-deployment-settings].

	default permission

	A permission [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-permission] which is registered as the default for an
entire application. When a default permission is in effect,
every view configuration registered with the system will
be effectively amended with a permission argument that will
require that the executing user possess the default permission in
order to successfully execute the associated view
callable See also Setting a Default Permission [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html#setting-a-default-permission].

	Default view

	The default view of a resource [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-resource] is the view invoked when the
view name is the empty string (''). This is the case when
traversal exhausts the path elements in the PATH_INFO of a
request before it returns a context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] resource.

	dotted Python name

	A reference to a Python object by name using a string, in the form
path.to.modulename:attributename. Often used in Paste and
setuptools configurations. A variant is used in dotted names
within ZCML attributes that name objects (such as the ZCML
“view” directive’s “view” attribute): the colon (:) is not
used; in its place is a dot.

	Exception view

	An exception view is a view callable which may be
invoked by Pyramid when an exception is raised during
request processing. See Custom Exception Views [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html#exception-views] for more
information.

	Forbidden view

	An exception view invoked by Pyramid when the
developer explicitly raises a
pyramid.exceptions.Forbidden exception from within
view code or root factory code, or when the
view configuration and authorization policy
found for a request disallows a particular view invocation.
Pyramid provides a default implementation of a
forbidden view; it can be overridden. See
Changing the Forbidden View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-forbidden-view].

	imperative configuration

	The configuration mode in which you use Python to call methods on
a Configurator in order to add each configuration
declaration required by your application.

	Locale Name

	A string like en, en_US, de, or de_AT which
uniquely identifies a particular locale.

	Locale Negotiator

	An object supplying a policy determining which locale
name best represents a given request. It is used by the
pyramid.i18n.get_locale_name() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/i18n.html#pyramid.i18n.get_locale_name], and
pyramid.i18n.negotiate_locale_name() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/i18n.html#pyramid.i18n.negotiate_locale_name] functions, and
indirectly by pyramid.i18n.get_localizer() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/i18n.html#pyramid.i18n.get_localizer]. The
pyramid.i18n.default_locale_negotiator() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/i18n.html#pyramid.i18n.default_locale_negotiator] function
is an example of a locale negotiator.

	module

	A Python source file; a file on the filesystem that typically ends with
the extension .py or .pyc. Modules often live in a
package.

	Not Found view

	An exception view invoked by Pyramid when the
developer explicitly raises a pyramid.exceptions.NotFound
exception from within view code or root factory
code, or when the current request doesn’t match any view
configuration. Pyramid provides a default
implementation of a not found view; it can be overridden. See
Changing the Not Found View [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hooks.html#changing-the-notfound-view].

	package

	A directory on disk which contains an __init__.py file, making
it recognizable to Python as a location which can be import -ed.
A package exists to contain module files.

	Pylons

	A lightweight Python web framework [http://pylonshq.com].

	Pyramid

	A web framework [http://pylonshq.com/pyramid].

	renderer

	A serializer that can be referred to via view
configuration which converts a non-Response [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-response] return
values from a view into a string (and ultimately a
response). Using a renderer can make writing views that require
templating or other serialization less tedious. See
Writing View Callables Which Use a Renderer [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#views-which-use-a-renderer] for more information.

	renderer factory

	A factory which creates a renderer. See
Adding and Changing Renderers [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html#adding-and-overriding-renderers] for more information.

	request

	A WebOb request object. See Request and Response Objects [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/webob.html#webob-chapter] (narrative)
and pyramid.request [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#request-module] (API documentation) for information
about request objects.

	Resource Location

	The act of locating a context [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context] resource given a request.
Traversal and URL dispatch are the resource location
subsystems used by Pyramid.

	root factory

	The “root factory” of an Pyramid application is called
on every request sent to the application. The root factory
returns the traversal root of an application. It is
conventionally named get_root. An application may supply a
root factory to Pyramid during the construction of a
Configurator. If a root factory is not supplied, the
application uses a default root object. Use of the default root
object is useful in application which use URL dispatch for
all URL-to-view code mappings.

	route

	A single pattern matched by the url dispatch subsystem, which
generally resolves to one or more view callable objects. See
also url dispatch.

	route configuration

	Route configuration is the act of using imperative
configuration or a ZCML <route> statement to
associate request parameters with a particular route using
pattern matching and route predicate statements. See
URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#urldispatch-chapter] for more information about route
configuration.

	route predicate

	An argument to a route configuration which implies a value
that evaluates to True or False for a given
request. All predicates attached to a route
configuration must evaluate to True for the associated route
to “match” the current request. If a route does not match the
current request, the next route (in definition order) is
attempted.

	router

	The WSGI application created when you start a
Pyramid application. The router intercepts requests,
invokes traversal and/or URL dispatch, calls view functions, and
returns responses to the WSGI server on behalf of your
Pyramid application.

	scan

	The term used by Pyramid to define the process of
importing and examining all code in a Python package or module for
configuration decoration.

	Translation Directory

	A translation directory is a gettext translation
directory. It contains language folders, which themselves
contain LC_MESSAGES folders, which contain .mo files.
Each .mo file represents a set of translations for a language
in a translation domain. The name of the .mo file
(minus the .mo extension) is the translation domain name.

	Translation Domain

	A string representing the “context” in which a translation was
made. For example the word “java” might be translated
differently if the translation domain is “programming-languages”
than would be if the translation domain was “coffee”. A
translation domain is represnted by a collection of .mo files
within one or more translation directory directories.

	traversal

	The act of descending “up” a tree of resource objects from a root
resource in order to find a context resource. The Pyramid
router performs traversal of resource objects when a root
factory is specified. See the Traversal [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/traversal.html#traversal-chapter] chapter for
more information. Traversal can be performed instead of URL
dispatch or can be combined with URL dispatch. See
Combining Traversal and URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/hybrid.html#hybrid-chapter] for more information about combining traversal and
URL dispatch (advanced).

	URL dispatch

	An alternative to traversal as a mechanism for locating a a
view callable. When you use a route in your Pyramid
application via a route configuration, you are using URL
dispatch. See the URL Dispatch [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#urldispatch-chapter] for more information.

	view

	Common vernacular for a view callable.

	view callable

	A “view callable” is a callable Python object which is associated with a
view configuration; it returns a response [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-response] object . A
view callable accepts a single argument: request, which will be an
instance of a request object. A view callable is the primary
mechanism by which a developer writes user interface code within
Pyramid. See Views [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html#views-chapter] for more information about Pyramid
view callables.

	view configuration

	View configuration is the act of associating a view callable
with configuration information. This configuration information helps
map a given request to a particular view callable and it can
influence the response of a view callable. Pyramid views can be
configured via imperative configuration, ZCML or by a
special @view_config decorator coupled with a scan. See
View Configuration [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/viewconfig.html#view-config-chapter] for more information about view
configuration.

	View handler

	A view handler ties together
pyramid.config.Configurator.add_route() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_route] and
pyramid.config.Configurator.add_view() [https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view] to make it more
convenient to register a collection of views as a single class when
using url dispatch. See also Views [https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/views.html#views-chapter].

	view mapper

	A view mapper is a class which implements the
pyramid.interfaces.IViewMapperFactory interface, which performs
view argument and return value mapping. This is a plug point for
extension builders, not normally used by “civilians”.

	view name

	The “URL name” of a view, e.g index.html. If a view is
configured without a name, its name is considered to be the empty
string (which implies the default view).

	view predicate

	An argument to a view configuration which evaluates to
True or False for a given request. All predicates
attached to a view configuration must evaluate to true for the
associated view to be considered as a possible callable for a
given request.

	WSGI

	Web Server Gateway Interface [http://wsgi.org/]. This is a
Python standard for connecting web applications to web servers,
similar to the concept of Java Servlets. Pyramid requires
that your application be served as a WSGI application.

	ZCML

	Zope Configuration Markup Language [http://www.muthukadan.net/docs/zca.html#zcml], an XML dialect
used by Zope and Pyramid for configuration tasks. ZCML
is capable of performing different types of configuration
declaration, but its primary purpose in Pyramid is to
perform view configuration and route configuration
within the configure.zcml file in a Pyramid
application. You can use ZCML as an alternative to
imperative configuration.

	ZCML declaration

	The concrete use of a ZCML directive within a ZCML file.

	ZCML directive

	A ZCML “tag” such as <view> or <route>.

	Zope Component Architecture

	The Zope Component Architecture [http://www.muthukadan.net/docs/zca.html] (aka ZCA) is a system
which allows for application pluggability and complex dispatching
based on objects which implement an interface [https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-interface].
Pyramid uses the ZCA “under the hood” to perform view
dispatching and other application configuration tasks.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pyramid_zcml	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	application registry

 	asset

 	ZCML directive

 	asset specification, [1]

 	
 	authentication policy

 	ZCML directive

 	authorization policy

 	ZCML directive

C

 	
 	configuration declaration

 	
 	configuration decoration

 	configurator

D

 	
 	declarative configuration

 	decorator

 	Default Locale Name

 	
 	default permission

 	Default view

 	dotted Python name

E

 	
 	Exception view

F

 	
 	Forbidden view

 	
 	forbidden view

G

 	
 	getGlobalSiteManager

 	
 	getSiteManager

H

 	
 	helloworld (declarative)

I

 	
 	imperative configuration

 	
 	includeme() (in module pyramid_zcml)

L

 	
 	load_zcml() (in module pyramid_zcml)

 	
 	Locale Name

 	Locale Negotiator

M

 	
 	make_app() (in module pyramid_zcml)

 	
 	module

N

 	
 	Not Found view

 	
 	not found view

P

 	
 	package

 	Pylons

 	
 	Pyramid

 	pyramid_zcml (module)

R

 	
 	renderer

 	renderer factory

 	request

 	Resource Location

 	
 	root factory

 	route

 	route configuration

 	route predicate

 	router

S

 	
 	scan

 	
 static resource

 	view zcml

 	
 	
 subscriber

 	ZCML directive

T

 	
 	Translation Directory

 	
 	Translation Domain

 	traversal

U

 	
 	URL dispatch

 	
 	url generator

V

 	
 	view

 	zcml static resource

 	view callable

 	view configuration

 	
 	View handler

 	view mapper

 	view name

 	view predicate

W

 	
 	WSGI

Z

 	
 	ZCML

 	
 zcml

 	static resource, view

 	ZCML conflict detection

 	ZCML declaration

 	ZCML directive

 	asset

 	authentication policy

 	authorization policy

 	route

 	subscriber

 	
 	ZCML granularity

 	ZCML view configuration

 	Zope Component Architecture

 	Zope ZCML directives

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/logo_hi.gif
Repoze

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 pyramid_zcml

 		
 Declarative Configuration using ZCML

 		
 ZCML Configuration

 		
 ZCML Conflict Detection

 		
 Hello World, Goodbye World (Declarative)

 		
 The <configure> Tag

 		
 The <include> Tag

 		
 The <view> Tag

 		
 ZCML Granularity

 		
 Scanning via ZCML

 		
 Which Mode Should I Use?

 		
 View Configuration Via ZCML

 		
 Configuring a Route via ZCML

 		
 Serving Static Assets Using ZCML

 		
 The asset ZCML Directive

 		
 Enabling an Authorization Policy Via ZCML

 		
 Built-In Authentication Policy ZCML Directives

 		
 authtktauthenticationpolicy

 		
 remoteuserauthenticationpolicy

 		
 repozewho1authenticationpolicy

 		
 Built-In Authorization Policy ZCML Directives

 		
 Adding and Changing Renderers via ZCML

 		
 Registering a Renderer Factory

 		
 Changing an Existing Renderer

 		
 Adding a Translation Directory via ZCML

 		
 Adding a Custom Locale Negotiator via ZCML

 		
 Configuring an Event Listener via ZCML

 		
 Configuring a Not Found View via ZCML

 		
 Configuring a Forbidden View via ZCML

 		
 Configuring an Alternate Traverser via ZCML

 		
 Using features to make ZCML configurable

 		
 Changing resource_url URL Generation via ZCML

 		
 Changing the Request Factory via ZCML

 		
 Changing the Renderer Globals Factory via ZCML

 		
 Using Broken ZCML Directives

 		
 ZCML Directives

 		
 aclauthorizationpolicy

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 adapter

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 authtktauthenticationpolicy

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 asset

 		
 Attributes

 		
 Examples

 		
 Alternatives

 		
 See Also

 		
 configure

 		
 Attributes

 		
 Example

 		
 A Word On XML Namespaces

 		
 Alternatives

 		
 See Also

 		
 default_permission

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 forbidden

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 include

 		
 Attributes

 		
 Examples

 		
 Alternatives

 		
 See Also

 		
 localenegotiator

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 notfound

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 remoteuserauthenticationpolicy

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 renderer

 		
 Attributes

 		
 Examples

 		
 Alternatives

 		
 See Also

 		
 repozewho1authenticationpolicy

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 route

 		
 Attributes

 		
 Alternatives

 		
 See Also

 		
 scan

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 static

 		
 Attributes

 		
 Examples

 		
 Alternatives

 		
 See Also

 		
 subscriber

 		
 Attributes

 		
 Examples

 		
 Alternatives

 		
 See Also

 		
 translationdir

 		
 Attributes

 		
 Example 1

 		
 Example 2

 		
 Example 3

 		
 Alternatives

 		
 See Also

 		
 utility

 		
 Attributes

 		
 Example

 		
 Alternatives

 		
 See Also

 		
 view

 		
 Attributes

 		
 Examples

 		
 Alternatives

 		
 See Also

 		
 pyramid_zcml API

 		
 Glossary

_static/up-pressed.png

_static/up.png

