

Venusian

Venusian is a library which allows you to defer the action of
decorators. Instead of taking actions when a function, method, or
class decorator is executed at import time, you can defer the action
until a separate “scan” phase.

This library is most useful for framework authors. It is compatible with
CPython versions 2.7, and 3.3+. It is also known to work on PyPy 1.5.

Note

The name “Venusian” is a riff on a library named Martian
(which had its genesis in the Grok web framework), from
which the idea for Venusian was stolen. Venusian is similar to
Martian, but it offers less functionality, making it slightly
simpler to use.

Overview

Offering a decorator that wraps a function, method, or class can be a
convenience to your framework’s users. But the very purpose of a
decorator makes it likely to impede testability of the function or
class it decorates: use of a decorator often prevents the function it
decorates from being called with the originally passed arguments, or a
decorator may modify the return value of the decorated function. Such
modifications to behavior are “hidden” in the decorator code itself.

For example, let’s suppose your framework defines a decorator function
named jsonify which can wrap a function that returns an arbitrary
Python data structure and renders it to a JSON serialization:

	1
2
3
4
5
6
7
8

	 import json

 def jsonify(wrapped):
 def json_wrapper(request):
 result = wrapped(request)
 dumped = json.dumps(result)
 return dumped
 return json_wrapper

Let’s also suppose a user has written an application using your
framework, and he has imported your jsonify decorator function, and
uses it to decorate an application function:

	1
2
3
4
5

	 from theframework import jsonify

 @jsonify
 def logged_in(request):
 return {'result':'Logged in'}

As a result of an import of the module containing the logged_in
function, a few things happen:

	The user’s logged_in function is replaced by the
json_wrapper function.

	The only reference left to the original logged_in function is
inside the frame stack of the call to the jsonify decorator.

This means, from the perspective of the application developer that the
original logged_in function has effectively “disappeared” when it
is decorated with your jsonify decorator. Without bothersome
hackery, it can no longer be imported or retrieved by its original
author.

More importantly, it also means that if the developer wants to unit
test the logged_in function, he’ll need to do so only indirectly:
he’ll need to call the json_wrapper wrapper decorator function and
test that the json returned by the function contains the expected
values. This will often imply using the json.loads function to
turn the result of the function back into a Python dictionary from
the JSON representation serialized by the decorator.

If the developer is a stickler for unit testing, however, he’ll want
to test only the function he has actually defined, not the wrapper
code implied by the decorator your framework has provided. This is
the very definition of unit testing (testing a “unit” without any
other integration with other code). In this case, it is also more
convenient for him to be able to test the function without the
decorator: he won’t need to use the json.loads function to turn
the result back into a dictionary to make test assertions against.
It’s likely such a developer will try to find ways to get at the
original function for testing purposes.

To do so, he might refactor his code to look like this:

	1
2
3
4
5
6
7
8

	 from theframework import jsonify

 @jsonify
 def logged_in(request):
 return _logged_in(request)

 def _logged_in(request):
 return {'result':'Logged in'}

Then in test code he might import only the _logged_in function
instead of the decorated logged_in function for purposes of unit
testing. In such a scenario, the concentious unit testing app
developer has to define two functions for each decorated function. If
you’re thinking “that looks pretty tedious”, you’re right.

To give the intrepid tester an “out”, you might be tempted as a
framework author to leave a reference to the original function around
somewhere that the unit tester can import and use only for testing
purposes. You might modify the jsonify decorator like so in order
to do that:

	1
2
3
4
5
6
7
8

	 import json
 def jsonify(wrapped):
 def json_wrapper(request):
 result = wrapped(request)
 dumped = json.dumps(result)
 return dumped
 json_wrapper.original_function = wrapped
 return json_wrapper

The line json_wrapper.original_function = wrapped is the
interesting one above. It means that the application developer has a
chance to grab a reference to his original function:

	1
2
3

	 from myapp import logged_in
 result = logged_in.original_func(None)
 self.assertEqual(result['result'], 'Logged in')

That works. But it’s just a little weird. Since the jsonify
decorator function has been imported by the developer from a module in
your framework, the developer probably shouldn’t really need to know
how it works. If he needs to read its code, or understand
documentation about how the decorator functions for testing purposes,
your framework might be less valuable to him on some level. This is
arguable, really. If you use some consistent pattern like this for
all your decorators, it might be a perfectly reasonable solution.

However, what if the decorators offered by your framework were passive
until activated explicitly? This is the promise of using Venusian
within your decorator implementations. You may use Venusian within
your decorators to associate a wrapped function, class, or method with
a callback. Then you can return the originally wrapped function.
Instead of your decorators being “active”, the callback associated
with the decorator is passive until a “scan” is initiated.

Using Venusian

The most basic use of Venusian within a decorator implementation is
demonstrated below.

	1
2
3
4
5
6
7

	import venusian

def jsonify(wrapped):
 def callback(scanner, name, ob):
 print 'jsonified'
 venusian.attach(wrapped, callback)
 return wrapped

As you can see, this decorator actually calls into venusian, but then
simply returns the wrapped object. Effectively this means that this
decorator is “passive” when the module is imported.

Usage of the decorator:

	1
2
3
4
5

	from theframework import jsonify

@jsonify
def logged_in(request):
 return {'result':'Logged in'}

Note that when we import and use the function, the fact that it is
decorated with the jsonify decorator is immaterial. Our decorator
doesn’t actually change its behavior.

	1
2
3
4

	>>> from theapp import logged_in
>>> logged_in()
{'result':'Logged in'}
>>>

This is the intended result. During unit testing, the original
function can be imported and tested despite the fact that it has been
wrapped with a decorator.

However, we can cause something to happen when we invoke a scan.

	1
2
3
4
5

	import venusian
import theapp

scanner = venusian.Scanner()
scanner.scan(theapp)

Above we’ve imported a module named theapp. The logged_in
function which we decorated with our jsonify decorator lives in
this module. We’ve also imported the venusian module, and
we’ve created an instance of the venusian.Scanner class.
Once we’ve created the instance of venusian.Scanner, we
invoke its venusian.Scanner.scan() method, passing the
theapp module as an argument to the method.

Here’s what happens as a result of invoking the
venusian.Scanner.scan() method:

	Every object defined at module scope within the theapp Python
module will be inspected to see if it has had a Venusian callback
attached to it.

	For every object that does have a Venusian callback attached to
it, the callback is called.

We could have also passed the scan method a Python package
instead of a module. This would recursively import each module in the
package (as well as any modules in subpackages), looking for
callbacks.

Note

During scan, the only Python files that are processed are
Python source (.py) files. Compiled Python files (.pyc,
.pyo files) without a corresponding source file are ignored.

In our case, because the callback we defined within the jsonify
decorator function prints jsonified when it is invoked, which
means that the word jsonified will be printed to the console when
we cause venusian.Scanner.scan() to be invoked. How is this
useful? It’s not! At least not yet. Let’s create a more realistic
example.

Let’s change our jsonify decorator to perform a more useful action
when a scan is invoked by changing the body of its callback.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import venusian

def jsonify(wrapped):
 def callback(scanner, name, ob):
 def jsonified(request):
 result = wrapped(request)
 return json.dumps(result)
 scanner.registry.add(name, jsonified)
 venusian.attach(wrapped, callback)
 return wrapped

Now if we invoke a scan, we’ll get an error:

	1
2
3
4
5
6
7

	import venusian
import theapp

scanner = venusian.Scanner()
scanner.scan(theapp)

AttributeError: Scanner has no attribute 'registry'.

The venusian.Scanner class constructor accepts any key-value
pairs; for each key/value pair passed to the scanner’s constructor, an
attribute named after the key which points at the value is added to
the scanner instance. So when you do:

	1
2

	import venusian
scanner = venusian.Scanner(a=1)

Thereafter, scanner.a will equal the integer 1.

Any number of key-value pairs can be passed to a scanner. The purpose
of being able to pass arbitrary key/value pairs to a scanner is to
allow cooperating decorator callbacks to access these values: each
callback is passed the scanner constructed when a scan is invoked.

Let’s fix our example by creating an object named registry that
we’ll pass to our scanner’s constructor:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	import venusian
import theapp

class Registry(object):
 def __init__(self):
 self.registered = []

 def add(self, name, ob):
 self.registered.append((name, ob))

registry = Registry()
scanner = venusian.Scanner(registry=registry)
scanner.scan(theapp)

At this point, we have a system which, during a scan, for each object
that is wrapped with a Venusian-aware decorator, a tuple will be
appended to the registered attribute of a Registry object.
The first element of the tuple will be the decorated object’s name,
the second element of the tuple will be a “truly” decorated object.
In our case, this will be a jsonify-decorated callable.

Our framework can then use the information in the registry to decide
which view function to call when a request comes in.

Venusian callbacks must accept three arguments:

scanner

This will be the instance of the scanner that has had its scan
method invoked.

name

This is the module-level name of the object being decorated.

ob

This is the object being decorated if it’s a function or an
instance; if the object being decorated is a method, however, this
value will be the class.

If you consider that the decorator and the scanner can cooperate, and
can perform arbitrary actions together, you can probably imagine a
system where a registry will be populated that informs some
higher-level system (such as a web framework) about the available
decorated functions.

Scan Categories

Because an application may use two separate Venusian-using frameworks,
Venusian allows for the concept of “scan categories”.

The venusian.attach() function accepts an additional argument
named category.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import venusian

def jsonify(wrapped):
 def callback(scanner, name, ob):
 def jsonified(request):
 result = wrapped(request)
 return json.dumps(result)
 scanner.registry.add(name, jsonified)
 venusian.attach(wrapped, callback, category='myframework')
 return wrapped

Note the category='myframework' argument in the call to
venusian.attach(). This tells Venusian to attach the callback
to the wrapped object under the specific scan category
myframework. The default scan category is None.

Later, during venusian.Scanner.scan(), a user can choose to
activate all the decorators associated only with a particular set of
scan categories by passing a categories argument. For example:

	1
2
3

	import venusian
scanner = venusian.Scanner(a=1)
scanner.scan(theapp, categories=('myframework',))

The default categories argument is None, which means activate
all Venusian callbacks during a scan regardless of their category.

onerror Scan Callback

New in version 1.0.

By default, when Venusian scans a package, it will propagate all exceptions
raised while attempting to import code. You can use an onerror callback
argument to venusian.Scanner.scan() to change this behavior.

The onerror argument should either be None or a callback function
which behaves the same way as the onerror callback function described in
http://docs.python.org/library/pkgutil.html#pkgutil.walk_packages .

Here’s an example onerror callback that ignores all ImportError
exceptions:

	1
2
3
4

	 import sys
 def onerror(name):
 if not issubclass(sys.exc_info()[0], ImportError):
 raise # reraise the last exception

Here’s how we’d use this callback:

	1
2
3

	import venusian
scanner = venusian.Scanner()
scanner.scan(theapp, onerror=onerror)

The onerror callback should execute raise at some point if any
exception is to be propagated, otherwise it can simply return. The name
passed to onerror is the module or package dotted name that could not be
imported due to an exception.

ignore Scan Argument

New in version 1.0a3.

The ignore to scan allows you to ignore certain modules, packages, or
global objects during a scan. It should be a sequence containing strings
and/or callables that will be used to match against the full dotted name of
each object encountered during the scanning process. If the ignore value you
provide matches a package name, global objects contained by that package as
well any submodules and subpackages of the package (and any global objects
contained by them) will be ignored. If the ignore value you provide matches
a module name, any global objects in that module will be ignored. If the
ignore value you provide matches a global object that lives in a package or
module, only that particular global object will be ignored.

The sequence can contain any of these three types of objects:

	A string representing a full dotted name. To name an object by dotted
name, use a string representing the full dotted name. For example, if you
want to ignore the my.package package and any of its subobjects during
the scan, pass ignore=['my.package']. If the string matches a global
object (e.g. ignore=['my.package.MyClass']), only that object will be
ignored and the rest of the objects in the module or package that contains
the object will be processed.

	A string representing a relative dotted name. To name an object relative
to the package passed to this method, use a string beginning with a
dot. For example, if the package you’ve passed is imported as
my.package, and you pass ignore=['.mymodule'], the
my.package.mymodule module and any of its subobjects will be omitted
during scan processing. If the string matches a global object
(e.g. ignore=['my.package.MyClass']), only that object will be ignored
and the rest of the objects in the module or package that contains the
object will be processed.

	A callable that accepts a full dotted name string of an object as its
single positional argument and returns True or False. If the
callable returns True or anything else truthy, the module, package, or
global object is ignored, if it returns False or anything else falsy,
it is not ignored. If the callable matches a package name, the package as
well as any of that package’s submodules and subpackages (recursively) will
be ignored. If the callable matches a module name, that module and any of
its contained global objects will be ignored. If the callable matches a
global object name, only that object name will be ignored. For example, if
you want to skip all packages, modules, and global objects that have a full
dotted name that ends with the word “tests”, you can use
ignore=[re.compile('tests$').search].

Here’s an example of how we might use the ignore argument to scan to
ignore an entire package (and any of its submodules and subpackages) by
absolute dotted name:

	1
2
3

	import venusian
scanner = venusian.Scanner()
scanner.scan(theapp, ignore=['theapp.package'])

Here’s an example of how we might use the ignore argument to scan to
ignore an entire package (and any of its submodules and subpackages) by
relative dotted name (theapp.package):

	1
2
3

	import venusian
scanner = venusian.Scanner()
scanner.scan(theapp, ignore=['.package'])

Here’s an example of how we might use the ignore argument to scan to
ignore a particular class object:

	1
2
3

	import venusian
scanner = venusian.Scanner()
scanner.scan(theapp, ignore=['theapp.package.MyClass'])

Here’s an example of how we might use the ignore argument to scan to
ignore any module, package, or global object that has a name which ends
with the string tests:

	1
2
3
4

	import re
import venusian
scanner = venusian.Scanner()
scanner.scan(theapp, ignore=[re.compile('tests$').search])

You can mix and match the three types in the list. For example,
scanner.scan(my, ignore=['my.package', '.someothermodule',
re.compile('tests$').search]) would cause my.package (and all its
submodules and subobjects) to be ignored, my.someothermodule to be
ignored, and any modules, packages, or global objects found during the scan
that have a full dotted path that ends with the word tests to be ignored
beneath the my package.

Packages and modules matched by any ignore in the list will not be imported,
and their top-level code will not be run as a result.

Limitations and Audience

Venusian is not really a tool that is maximally useful to an
application developer. It would be a little silly to use it every
time you needed a decorator. Instead, it’s most useful for framework
authors, in order to be able to say to their users “the frobozz
decorator doesn’t change the output of your function at all” in
documentation. This is a lot easier than telling them how to test
methods/functions/classes decorated by each individual decorator
offered by your frameworks.

API Documentation / Glossary

	API Documentation for Venusian

	Glossary

Indices and tables

	Glossary

	Module Index

	Search Page

API Documentation for Venusian

	
class venusian.Scanner(**kw)

	
	
scan(package, categories=None, onerror=None, ignore=None)

	Scan a Python package and any of its subpackages. All
top-level objects will be considered; those marked with
venusian callback attributes related to category will be
processed.

The package argument should be a reference to a Python
package or module object.

The categories argument should be sequence of Venusian
callback categories (each category usually a string) or the
special value None which means all Venusian callback
categories. The default is None.

The onerror argument should either be None or a callback
function which behaves the same way as the onerror callback
function described in
http://docs.python.org/library/pkgutil.html#pkgutil.walk_packages .
By default, during a scan, Venusian will propagate all errors that
happen during its code importing process, including
ImportError. If you use a custom onerror callback, you
can change this behavior.

Here’s an example onerror callback that ignores
ImportError:

import sys
def onerror(name):
 if not issubclass(sys.exc_info()[0], ImportError):
 raise # reraise the last exception

The name passed to onerror is the module or package dotted
name that could not be imported due to an exception.

New in version 1.0: the onerror callback

The ignore argument allows you to ignore certain modules,
packages, or global objects during a scan. It should be a sequence
containing strings and/or callables that will be used to match
against the full dotted name of each object encountered during a
scan. The sequence can contain any of these three types of objects:

	A string representing a full dotted name. To name an object by
dotted name, use a string representing the full dotted name. For
example, if you want to ignore the my.package package and any
of its subobjects or subpackages during the scan, pass
ignore=['my.package'].

	A string representing a relative dotted name. To name an object
relative to the package passed to this method, use a string
beginning with a dot. For example, if the package you’ve
passed is imported as my.package, and you pass
ignore=['.mymodule'], the my.package.mymodule mymodule and
any of its subobjects or subpackages will be omitted during scan
processing.

	A callable that accepts a full dotted name string of an object as
its single positional argument and returns True or False.
For example, if you want to skip all packages, modules, and global
objects with a full dotted path that ends with the word “tests”, you
can use ignore=[re.compile('tests$').search]. If the callable
returns True (or anything else truthy), the object is ignored,
if it returns False (or anything else falsy) the object is not
ignored. Note that unlike string matches, ignores that use a
callable don’t cause submodules and subobjects of a module or
package represented by a dotted name to also be ignored, they match
individual objects found during a scan, including packages,
modules, and global objects.

You can mix and match the three types of strings in the list. For
example, if the package being scanned is my,
ignore=['my.package', '.someothermodule',
re.compile('tests$').search] would cause my.package (and all
its submodules and subobjects) to be ignored, my.someothermodule
to be ignored, and any modules, packages, or global objects found
during the scan that have a full dotted name that ends with the word
tests to be ignored.

Note that packages and modules matched by any ignore in the list will
not be imported, and their top-level code will not be run as a result.

A string or callable alone can also be passed as ignore without a
surrounding list.

New in version 1.0a3: the ignore argument

	
class venusian.AttachInfo(**kw)

	An instance of this class is returned by the
venusian.attach() function. It has the following
attributes:

scope

One of exec, module, class, function call or
unknown (each a string). This is the scope detected while
executing the decorator which runs the attach function.

module

The module in which the decorated function was defined.

locals

A dictionary containing decorator frame’s f_locals.

globals

A dictionary containing decorator frame’s f_globals.

category

The category argument passed to attach (or None, the
default).

codeinfo

A tuple in the form (filename, lineno, function, sourceline)
representing the context of the venusian decorator used. Eg.
('/home/chrism/projects/venusian/tests/test_advice.py', 81,
'testCallInfo', 'add_handler(foo, bar)')

	
venusian.attach(wrapped, callback, category=None, name=None)

	Attach a callback to the wrapped object. It will be found
later during a scan. This function returns an instance of the
venusian.AttachInfo class.

category should be None or a string representing a decorator
category name.

name should be None or a string representing a subcategory within
the category. This will be used by the lift class decorator to
determine if decorations of a method should be inherited or overridden.

	
class venusian.lift(categories=None)

	A class decorator which ‘lifts’ superclass venusian configuration
decorations into subclasses. For example:

from venusian import lift
from somepackage import venusian_decorator

class Super(object):
 @venusian_decorator()
 def boo(self): pass

 @venusian_decorator()
 def hiss(self): pass

 @venusian_decorator()
 def jump(self): pass

@lift()
class Sub(Super):
 def boo(self): pass

 def hiss(self): pass

 @venusian_decorator()
 def smack(self): pass

The above configuration will cause the callbacks of seven venusian
decorators. The ones attached to Super.boo, Super.hiss, and Super.jump
plus ones attached to Sub.boo, Sub.hiss, Sub.hump and Sub.smack.

If a subclass overrides a decorator on a method, its superclass decorators
will be ignored for the subclass. That means that in this configuration:

from venusian import lift
from somepackage import venusian_decorator

class Super(object):
 @venusian_decorator()
 def boo(self): pass

 @venusian_decorator()
 def hiss(self): pass

@lift()
class Sub(Super):

 def boo(self): pass

 @venusian_decorator()
 def hiss(self): pass

Only four, not five decorator callbacks will be run: the ones attached to
Super.boo and Super.hiss, the inherited one of Sub.boo and the
non-inherited one of Sub.hiss. The inherited decorator on Super.hiss will
be ignored for the subclass.

The lift decorator takes a single argument named ‘categories’. If
supplied, it should be a tuple of category names. Only decorators
in this category will be lifted if it is suppled.

	
class venusian.onlyliftedfrom

	A class decorator which marks a class as ‘only lifted from’. Decorations
made on methods of the class won’t have their callbacks called directly,
but classes which inherit from only-lifted-from classes which also use the
lift class decorator will use the superclass decoration callbacks.

For example:

from venusian import lift, onlyliftedfrom
from somepackage import venusian_decorator

@onlyliftedfrom()
class Super(object):
 @venusian_decorator()
 def boo(self): pass

 @venusian_decorator()
 def hiss(self): pass

@lift()
class Sub(Super):

 def boo(self): pass

 def hiss(self): pass

Only two decorator callbacks will be run: the ones attached to Sub.boo and
Sub.hiss. The inherited decorators on Super.boo and Super.hiss will be
not be registered.

Glossary

	Grok

	A Zope-based web framework <http://grok.zope.org>.

	Martian

	The package venusian was inspired by, part of the Grok
project.

	scan

	Walk a module or package executing callbacks defined by
venusian-aware decorators along the way.

 Python Module Index

 v

 		 	

 		
 v	

 	
 	
 venusian	

Index

 A
 | G
 | L
 | M
 | O
 | S
 | V

A

 	
 	attach() (in module venusian)

 	
 	AttachInfo (class in venusian)

G

 	
 	Grok

L

 	
 	lift (class in venusian)

M

 	
 	Martian

O

 	
 	onlyliftedfrom (class in venusian)

S

 	
 	scan

 	
 	scan() (venusian.Scanner method)

 	Scanner (class in venusian)

V

 	
 	venusian (module)

 nav.xhtml

 Table of Contents

 		
 Venusian

 		
 API Documentation for Venusian

 		
 Glossary

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

