
waitress Documentation
Release 2.0.0

Pylons Project Developers

March 08, 2021

Contents

1 Extended Documentation 3

2 Change History 21

3 2.0.0 (2021-03-07) 23

4 1.4.4 (2020-06-01) 25

5 1.4.3 (2020-02-02) 27

6 1.4.2 (2020-01-02) 29

7 1.4.1 (2019-12-24) 31

8 1.4.0 (2019-12-20) 33

9 1.3.1 (2019-08-27) 35

10 1.3.0 (2019-04-22) 37

11 1.2.1 (2019-01-25) 39

12 1.2.0 (2019-01-15) 41

13 1.2.0b3 (2019-01-07) 43

14 1.2.0b2 (2019-02-02) 45

15 1.2.0b1 (2018-12-31) 47

16 1.1.0 (2017-10-10) 49

17 1.0.2 (2017-02-04) 51

18 1.0.1 (2016-10-22) 53

19 1.0.0 (2016-08-31) 55

20 0.9.0 (2016-04-15) 57

i

21 0.8.10 (2015-09-02) 59

22 0.8.9 (2014-05-16) 61

23 0.8.8 (2013-11-30) 63

24 0.8.7 (2013-08-29) 65

25 0.8.6 (2013-08-12) 67

26 0.8.5 (2013-05-27) 69

27 0.8.4 (2013-05-24) 71

28 0.8.3 (2013-04-28) 73

29 0.8.2 (2012-11-14) 75

30 0.8.1 (2012-02-13) 77

31 0.8 (2012-01-31) 79

32 0.7 (2012-01-11) 81

33 0.6.1 (2012-01-08) 83

34 0.6 (2012-01-07) 85

35 0.5 (2012-01-03) 87

36 0.4 (2012-01-02) 89

37 0.3 (2012-01-02) 91

38 0.2 (2011-12-31) 93

39 0.1 (2011-12-30) 95

40 Known Issues 97

41 Support and Development 99

42 Why? 101

Python Module Index 103

Index 105

ii

waitress Documentation, Release 2.0.0

Waitress is meant to be a production-quality pure-Python WSGI server with very acceptable performance. It has no
dependencies except ones which live in the Python standard library. It runs on CPython on Unix and Windows under
Python 3.6+. It is also known to run on PyPy 7.3.2 (PyPy3) on UNIX. It supports HTTP/1.0 and HTTP/1.1.

Contents 1

waitress Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Extended Documentation

1.1 Usage

The following code will run waitress on port 8080 on all available IP addresses, both IPv4 and IPv6.

from waitress import serve
serve(wsgiapp, listen='*:8080')

Press Ctrl-C (or Ctrl-Break on Windows) to exit the server.

The following will run waitress on port 8080 on all available IPv4 addresses, but not IPv6.

from waitress import serve
serve(wsgiapp, host='0.0.0.0', port=8080)

By default Waitress binds to any IPv4 address on port 8080. You can omit the host and port arguments and just
call serve with the WSGI app as a single argument:

from waitress import serve
serve(wsgiapp)

If you want to serve your application through a UNIX domain socket (to serve a downstream HTTP server/proxy such
as nginx, lighttpd, and so on), call serve with the unix_socket argument:

from waitress import serve
serve(wsgiapp, unix_socket='/path/to/unix.sock')

Needless to say, this configuration won’t work on Windows.

Exceptions generated by your application will be shown on the console by default. See Access Logging to change this.

There’s an entry point for PasteDeploy (egg:waitress#main) that lets you use Waitress’s WSGI gateway from a
configuration file, e.g.:

3

waitress Documentation, Release 2.0.0

[server:main]
use = egg:waitress#main
listen = 127.0.0.1:8080

Using host and port is also supported:

[server:main]
host = 127.0.0.1
port = 8080

The PasteDeploy syntax for UNIX domain sockets is analagous:

[server:main]
use = egg:waitress#main
unix_socket = /path/to/unix.sock

You can find more settings to tweak (arguments to waitress.serve or equivalent settings in PasteDeploy) in
Arguments to waitress.serve.

Additionally, there is a command line runner called waitress-serve, which can be used in development and in
situations where the likes of PasteDeploy is not necessary:

Listen on both IPv4 and IPv6 on port 8041
waitress-serve --listen=*:8041 myapp:wsgifunc

Listen on only IPv4 on port 8041
waitress-serve --port=8041 myapp:wsgifunc

1.1.1 Heroku

Waitress can be used to serve WSGI apps on Heroku, include waitress in your requirements.txt file a update the Procfile
as following:

web: waitress-serve \
--listen "*:$PORT" \
--trusted-proxy '*' \
--trusted-proxy-headers 'x-forwarded-for x-forwarded-proto x-forwarded-port' \
--log-untrusted-proxy-headers \
--clear-untrusted-proxy-headers \
--threads ${WEB_CONCURRENCY:-4} \
myapp:wsgifunc

The proxy config informs Waitress to trust the forwarding headers set by the Heroku load balancer. It also allows for
setting the standard WEB_CONCURRENCY environment variable to tweak the number of requests handled by Waitress
at a time.

Note that Waitress uses a thread-based model and careful effort should be taken to ensure that requests do not take
longer than 30 seconds or Heroku will inform the client that the request failed even though the request is still being
processed by Waitress and occupying a thread until it completes.

For more information on this, see waitress-serve.

4 Chapter 1. Extended Documentation

https://devcenter.heroku.com/articles/http-routing#heroku-headers

waitress Documentation, Release 2.0.0

1.2 Access Logging

The WSGI design is modular. Waitress logs error conditions, debugging output, etc., but not web traffic. For web
traffic logging, Paste provides TransLogger middleware. TransLogger produces logs in the Apache Combined Log
Format.

1.2.1 Logging to the Console Using Python

waitress.serve calls logging.basicConfig() to set up logging to the console when the server starts up.
Assuming no other logging configuration has already been done, this sets the logging default level to logging.
WARNING. The Waitress logger will inherit the root logger’s level information (it logs at level WARNING or above).

Waitress sends its logging output (including application exception renderings) to the Python logger object named
waitress. You can influence the logger level and output stream using the normal Python logging module API.
For example:

import logging
logger = logging.getLogger('waitress')
logger.setLevel(logging.INFO)

Within a PasteDeploy configuration file, you can use the normal Python logging module .ini file format to change
similar Waitress logging options. For example:

[logger_waitress]
level = INFO

1.2.2 Logging to the Console Using PasteDeploy

TransLogger will automatically setup a logging handler to the console when called with no arguments. It "just
works" in environments that don’t configure logging. This is by virtue of its default configuration setting of
setup_console_handler = True.

1.2.3 Logging to a File Using PasteDeploy

TransLogger does not write to files, and the Python logging system must be configured to do this. The Python
class FileHandler logging handler can be used alongside TransLogger to create an access.log file similar
to Apache’s.

Like any standard middleware with a Paste entry point, TransLogger can be configured to wrap your application using
.ini file syntax. First add a [filter:translogger] section, then use a [pipeline:main] section file to
form a WSGI pipeline with both the translogger and your application in it. For instance, if you have this:

[app:wsgiapp]
use = egg:mypackage#wsgiapp

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 8080

Add this:

1.2. Access Logging 5

https://web.archive.org/web/20160707041338/http://pythonpaste.org/modules/translogger.html
https://httpd.apache.org/docs/current/logs.html#combined
https://httpd.apache.org/docs/current/logs.html#combined

waitress Documentation, Release 2.0.0

[filter:translogger]
use = egg:Paste#translogger
setup_console_handler = False

[pipeline:main]
pipeline = translogger

wsgiapp

Using PasteDeploy this way to form and serve a pipeline is equivalent to wrapping your app in a TransLogger instance
via the bottom of the main function of your project’s __init__ file:

from mypackage import wsgiapp
from waitress import serve
from paste.translogger import TransLogger
serve(TransLogger(wsgiapp, setup_console_handler=False))

Note: TransLogger will automatically set up a logging handler to the console when called with no arguments, so it
"just works" in environments that don’t configure logging. Since our logging handlers are configured, we disable the
automation via setup_console_handler = False.

With the filter in place, TransLogger’s logger (named the wsgi logger) will propagate its log messages to the parent
logger (the root logger), sending its output to the console when we request a page:

00:50:53,694 INFO [wsgiapp] Returning: Hello World!
(content-type: text/plain)

00:50:53,695 INFO [wsgi] 192.168.1.111 - - [11/Aug/2011:20:09:33 -0700] "GET /hello
HTTP/1.1" 404 - "-"
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6) Gecko/20070725
Firefox/2.0.0.6"

To direct TransLogger to an access.log FileHandler, we need the following to add a FileHandler (named
accesslog) to the list of handlers, and ensure that the wsgi logger is configured and uses this handler accord-
ingly:

Begin logging configuration

[loggers]
keys = root, wsgiapp, wsgi

[handlers]
keys = console, accesslog

[logger_wsgi]
level = INFO
handlers = accesslog
qualname = wsgi
propagate = 0

[handler_accesslog]
class = FileHandler
args = ('%(here)s/access.log','a')
level = INFO
formatter = generic

As mentioned above, non-root loggers by default propagate their log records to the root logger’s handlers (currently
the console handler). Setting propagate to 0 (False) here disables this; so the wsgi logger directs its records

6 Chapter 1. Extended Documentation

waitress Documentation, Release 2.0.0

only to the accesslog handler.

Finally, there’s no need to use the generic formatter with TransLogger, as TransLogger itself provides all the
information we need. We’ll use a formatter that passes-through the log messages as is. Add a new formatter called
accesslog by including the following in your configuration file:

[formatters]
keys = generic, accesslog

[formatter_accesslog]
format = %(message)s

Finally alter the existing configuration to wire this new accesslog formatter into the FileHandler:

[handler_accesslog]
class = FileHandler
args = ('%(here)s/access.log','a')
level = INFO
formatter = accesslog

1.3 Using Behind a Reverse Proxy

Often people will set up "pure Python" web servers behind reverse proxies, especially if they need TLS support
(Waitress does not natively support TLS). Even if you don’t need TLS support, it’s not uncommon to see Waitress and
other pure-Python web servers set up to only handle requests behind a reverse proxy; these proxies often have lots of
useful deployment knobs.

If you’re using Waitress behind a reverse proxy, you’ll almost always want your reverse proxy to pass along the Host
header sent by the client to Waitress, in either case, as it will be used by most applications to generate correct URLs.
You may also use the proxy headers if passing Host directly is not possible, or there are multiple proxies involved.

For example, when using nginx as a reverse proxy, you might add the following lines in a location section.

proxy_set_header Host $host;

The Apache directive named ProxyPreserveHost does something similar when used as a reverse proxy.

Unfortunately, even if you pass the Host header, the Host header does not contain enough information to regenerate
the original URL sent by the client. For example, if your reverse proxy accepts HTTPS requests (and therefore URLs
which start with https://), the URLs generated by your application when used behind a reverse proxy served by
Waitress might inappropriately be http://foo rather than https://foo. To fix this, you’ll want to change the
wsgi.url_scheme in the WSGI environment before it reaches your application. You can do this in one of three
ways:

1. You can pass a url_scheme configuration variable to the waitress.serve function.

2. You can pass certain well known proxy headers from your proxy server and use waitress’s trusted_proxy
support to automatically configure the WSGI environment.

1.3.1 Using url_scheme to set wsgi.url_scheme

You can have the Waitress server use the https url scheme by default.:

from waitress import serve
serve(wsgiapp, listen='0.0.0.0:8080', url_scheme='https')

1.3. Using Behind a Reverse Proxy 7

waitress Documentation, Release 2.0.0

This works if all URLs generated by your application should use the https scheme.

1.3.2 Passing the proxy headers to setup the WSGI environment

If your proxy accepts both HTTP and HTTPS URLs, and you want your application to generate the appropriate
url based on the incoming scheme, you’ll want to pass waitress X-Forwarded-Proto, however Waitress is also
able to update the environment using X-Forwarded-Proto, X-Forwarded-For, X-Forwarded-Host, and
X-Forwarded-Port:

proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $host:$server_port;
proxy_set_header X-Forwarded-Port $server_port;

when using Apache, mod_proxy automatically forwards the following headers:

X-Forwarded-For
X-Forwarded-Host
X-Forwarded-Server

You will also want to add to Apache:

RequestHeader set X-Forwarded-Proto https

Configure waitress’s trusted_proxy_headers as appropriate:

trusted_proxy_headers = "x-forwarded-for x-forwarded-host x-forwarded-proto x-
→˓forwarded-port"

At this point waitress will set up the WSGI environment using the information specified in the trusted proxy headers.
This will setup the following variables:

HTTP_HOST
SERVER_NAME
SERVER_PORT
REMOTE_ADDR
REMOTE_PORT (if available)
wsgi.url_scheme

Waitress also has support for the Forwarded (RFC7239) HTTP header which is better defined than the ad-hoc
X-Forwarded-*, however support is not nearly as widespread yet. Forwarded supports similar functionality
as the different individual headers, and is mutually exclusive to using the X-Forwarded-* headers.

To configure waitress to use the Forwarded header, set:

trusted_proxy_headers = "forwarded"

Note: You must also configure the Waitress server’s trusted_proxy to contain the IP address of the proxy.

1.3.3 Using url_prefix to influence SCRIPT_NAME and PATH_INFO

You can have the Waitress server use a particular url prefix by default for all URLs generated by downstream applica-
tions that take SCRIPT_NAME into account.:

8 Chapter 1. Extended Documentation

https://tools.ietf.org/html/rfc7239

waitress Documentation, Release 2.0.0

from waitress import serve
serve(wsgiapp, listen='0.0.0.0:8080', url_prefix='/foo')

Setting this to any value except the empty string will cause the WSGI SCRIPT_NAME value to be that value, minus
any trailing slashes you add, and it will cause the PATH_INFO of any request which is prefixed with this value to be
stripped of the prefix. This is useful in proxying scenarios where you wish to forward all traffic to a Waitress server
but need URLs generated by downstream applications to be prefixed with a particular path segment.

1.4 Design

Waitress uses a combination of asynchronous and synchronous code to do its job. It handles I/O to and from clients
using the wasyncore, which is asyncore vendored into Waitress. It services requests via threads.

Note: asyncore has been deprecated since Python 3.6. Work continues on its inevitable removal from the Python
standard library. Its recommended replacement is asyncio.

Although asyncore has been vendored into Waitress as wasyncore, you may see references to "asyncore" in this
documentation’s code examples and API. The terms are effectively the same and may be used interchangeably.

The wasyncore module:

• Uses the select.select function to wait for connections from clients and determine if a connected client is
ready to receive output.

• Creates a channel whenever a new connection is made to the server.

• Executes methods of a channel whenever it believes data can be read from or written to the channel.

A "channel" is created for each connection from a client to the server. The channel handles all requests over the same
connection from that client. A channel will handle some number of requests during its lifetime: zero to how ever
many HTTP requests are sent to the server by the client over a single connection. For example, an HTTP/1.1 client
may issue a theoretically infinite number of requests over the same connection; each of these will be handled by the
same channel. An HTTP/1.0 client without a "Connection: keep-alive" header will request usually only one over a
single TCP connection, however, and when the request has completed, the client disconnects and reconnects (which
will create another channel). When the connection related to a channel is closed, the channel is destroyed and garbage
collected.

When a channel determines the client has sent at least one full valid HTTP request, it schedules a "task" with a "thread
dispatcher". The thread dispatcher maintains a fixed pool of worker threads available to do client work (by default, 4
threads). If a worker thread is available when a task is scheduled, the worker thread runs the task. The task has access
to the channel, and can write back to the channel’s output buffer. When all worker threads are in use, scheduled tasks
will wait in a queue for a worker thread to become available.

I/O is always done asynchronously (by wasyncore) in the main thread. Worker threads never do any I/O. This means
that

1. a large number of clients can be connected to the server at once, and

2. worker threads will never be hung up trying to send data to a slow client.

No attempt is made to kill a "hung thread". It’s assumed that when a task (application logic) starts that it will eventually
complete. If for some reason WSGI application logic never completes and spins forever, the worker thread related to
that WSGI application will be consumed "forever", and if enough worker threads are consumed like this, the server
will stop responding entirely.

1.4. Design 9

https://docs.python.org/3/library/asyncio.html#module-asyncio

waitress Documentation, Release 2.0.0

Periodic maintenance is done by the main thread (the thread handling I/O). If a channel hasn’t sent or received any
data in a while, the channel’s connection is closed, and the channel is destroyed.

1.5 Differences from zope.server

• Has no non-stdlib dependencies.

• No support for non-WSGI servers (no FTP, plain-HTTP, etc); refactorings and slight interface changes as a
result. Non-WSGI-supporting code removed.

• Slight cleanup in the way application response headers are handled (no more "accumulated headers").

• Supports the HTTP 1.1 "expect/continue" mechanism (required by WSGI spec).

• Calls "close()" on the app_iter object returned by the WSGI application.

• Allows trusted proxies to override wsgi.url_scheme for particular requests by supplying the
X_FORWARDED_PROTO header.

• Supports an explicit wsgi.url_scheme parameter for ease of deployment behind SSL proxies.

• Different adjustment defaults (less conservative).

• Python 3 compatible.

• More test coverage (unit tests added, functional tests refactored and more added).

• Supports convenience waitress.serve function (e.g. from waitress import serve;
serve(app) and convenience server.run() function.

• Returns a "real" write method from start_response.

• Provides a getsockname method of the server FBO figuring out which port the server is listening on when it’s
bound to port 0.

• Warns when app_iter bytestream numbytes less than or greater than specified Content-Length.

• Set content-length header if len(app_iter) == 1 and none provided.

• Raise an exception if start_response isnt called before any body write.

• channel.write does not accept non-byte-sequences.

• Put maintenance check on server rather than channel to avoid a class of DOS.

• wsgi.multiprocess set (correctly) to False.

• Ensures header total can not exceed a maximum size.

• Ensures body total can not exceed a maximum size.

• Broken chunked encoding request bodies don’t crash the server.

• Handles keepalive/pipelining properly (no out of order responses, no premature channel closes).

• Send a 500 error to the client when a task raises an uncaught exception (with optional traceback rendering via
"expose_traceback" adjustment).

• Supports HTTP/1.1 chunked responses when application doesn’t set a Content-Length header.

• Dont hang a thread up trying to send data to slow clients.

• Supports wsgi.file_wrapper protocol.

10 Chapter 1. Extended Documentation

waitress Documentation, Release 2.0.0

1.6 waitress API

serve(app, listen=’0.0.0.0:8080’, unix_socket=None, unix_socket_perms=’600’, threads=4,
url_scheme=’http’, url_prefix=”, ident=’waitress’, backlog=1024, recv_bytes=8192,
send_bytes=1, outbuf_overflow=104856, outbuf_high_watermark=16777216, in-
buf_overflow=52488, connection_limit=1000, cleanup_interval=30, channel_timeout=120,
log_socket_errors=True, max_request_header_size=262144, max_request_body_size=1073741824,
expose_tracebacks=False)

See Arguments to waitress.serve for more information.

1.7 Arguments to waitress.serve

Here are the arguments you can pass to the waitress.serve function or use in PasteDeploy configuration (inter-
changeably):

host Hostname or IP address (string) on which to listen, default 0.0.0.0, which means "all IP addresses on this
host".

Warning: May not be used with listen

port TCP port (integer) on which to listen, default 8080

Warning: May not be used with listen

listen Tell waitress to listen on combinations of host:port arguments. Combinations should be a quoted, space-
delimited list, as in the following examples.

listen="127.0.0.1:8080 [::1]:8080"
listen="*:8080 *:6543"

A wildcard for the hostname is also supported and will bind to both IPv4/IPv6 depending on whether they are
enabled or disabled.

IPv6 IP addresses are supported by surrounding the IP address with brackets.

New in version 1.0.

server_name This is the value that will be placed in the WSGI environment as SERVER_NAME, the only time that
this value is used in the WSGI environment for a request is if the client sent a HTTP/1.0 request without a Host
header set, and no other proxy headers.

The default is value is waitress.invalid, if your WSGI application is creating URL’s that include this
as the hostname and you are using a reverse proxy setup, you may want to validate that your reverse proxy is
sending the appropriate headers.

In most situations you will not need to set this value.

Default: waitress.invalid

New in version 2.0.

ipv4 Enable or disable IPv4 (boolean)

ipv6 Enable or disable IPv6 (boolean)

1.6. waitress API 11

waitress Documentation, Release 2.0.0

unix_socket Path of Unix socket (string). If a socket path is specified, a Unix domain socket is made instead of the
usual inet domain socket.

Not available on Windows.

Default: None

unix_socket_perms Octal permissions to use for the Unix domain socket (string). Only used if unix_socket is
not None.

Default: '600'

sockets A list of sockets. The sockets can be either Internet or UNIX sockets and have to be bound. Internet and
UNIX sockets cannot be mixed. If the socket list is not empty, waitress creates one server for each socket.

Default: []

New in version 1.1.1.

Warning: May not be used with listen, host, port or unix_socket

threads The number of threads used to process application logic (integer).

Default: 4

trusted_proxy IP address of a remote peer allowed to override various WSGI environment variables using proxy
headers.

For unix sockets, set this value to localhost instead of an IP address.

Default: None

trusted_proxy_count How many proxies we trust when chained. For example,

X-Forwarded-For: 192.0.2.1, "[2001:db8::1]"

or

Forwarded: for=192.0.2.1, For="[2001:db8::1]"

means there were (potentially), two proxies involved. If we know there is only 1 valid proxy, then that initial IP
address "192.0.2.1" is not trusted and we completely ignore it.

If there are two trusted proxies in the path, this value should be set to 2. If there are more proxies, this value
should be set higher.

Default: 1

New in version 1.2.0.

trusted_proxy_headers Which of the proxy headers should we trust, this is a set where you either specify "for-
warded" or one or more of "x-forwarded-host", "x-forwarded-for", "x-forwarded-proto", "x-forwarded-port",
"x-forwarded-by".

This list of trusted headers is used when trusted_proxy is set and will allow waitress to modify the WSGI
environment using the values provided by the proxy.

New in version 1.2.0.

Warning: If trusted_proxy is set, the default is x-forwarded-proto to match older versions of
Waitress. Users should explicitly opt-in by selecting the headers to be trusted as future versions of waitress
will use an empty default.

12 Chapter 1. Extended Documentation

waitress Documentation, Release 2.0.0

Warning: It is an error to set this value without setting trusted_proxy.

log_untrusted_proxy_headers Should waitress log warning messages about proxy headers that are being sent
from upstream that are not trusted by trusted_proxy_headers but are being cleared due to
clear_untrusted_proxy_headers?

This may be useful for debugging if you expect your upstream proxy server to only send specific headers.

Default: False

New in version 1.2.0.

Warning: It is a no-op to set this value without also setting clear_untrusted_proxy_headers and
trusted_proxy

clear_untrusted_proxy_headers This tells Waitress to remove any untrusted proxy headers ("Forwarded", "X-
Forwared-For", "X-Forwarded-By", "X-Forwarded-Host", "X-Forwarded-Port", "X-Forwarded-Proto") not ex-
plicitly allowed by trusted_proxy_headers.

Default: False

New in version 1.2.0.

Warning: The default value is set to False for backwards compatibility. In future versions of Waitress
this default will be changed to True. Warnings will be raised unless the user explicitly provides a value for
this option, allowing the user to opt-in to the new safety features automatically.

Warning: It is an error to set this value without setting trusted_proxy.

url_scheme The value of wsgi.url_scheme in the environ. This can be overridden per-request by the value of
the X_FORWARDED_PROTO header, but only if the client address matches trusted_proxy.

Default: http

ident Server identity (string) used in "Server:" header in responses.

Default: waitress

backlog The value waitress passes to pass to socket.listen() (integer). This is the maximum number of in-
coming TCP connections that will wait in an OS queue for an available channel. From listen(1): "If a connection
request arrives when the queue is full, the client may receive an error with an indication of ECONNREFUSED
or, if the underlying protocol supports retransmission, the request may be ignored so that a later reattempt at
connection succeeds."

Default: 1024

recv_bytes The argument waitress passes to socket.recv() (integer).

Default: 8192

send_bytes The number of bytes to send to socket.send() (integer). Multiples of 9000 should avoid partly-filled
TCP packets, but don’t set this larger than the TCP write buffer size. In Linux, /proc/sys/net/ipv4/
tcp_wmem controls the minimum, default, and maximum sizes of TCP write buffers.

Default: 1

1.7. Arguments to waitress.serve 13

waitress Documentation, Release 2.0.0

Deprecated since version 1.3.

outbuf_overflow A tempfile should be created if the pending output is larger than outbuf_overflow, which is measured
in bytes. The default is conservative.

Default: 1048576 (1MB)

outbuf_high_watermark The app_iter will pause when pending output is larger than this value and will resume once
enough data is written to the socket to fall below this threshold.

Default: 16777216 (16MB)

inbuf_overflow A tempfile should be created if the pending input is larger than inbuf_overflow, which is measured in
bytes. The default is conservative.

Default: 524288 (512K)

connection_limit Stop creating new channels if too many are already active (integer). Each channel consumes at least
one file descriptor, and, depending on the input and output body sizes, potentially up to three, plus whatever file
descriptors your application logic happens to open. The default is conservative, but you may need to increase
the number of file descriptors available to the Waitress process on most platforms in order to safely change it
(see ulimit -a "open files" setting). Note that this doesn’t control the maximum number of TCP connections
that can be waiting for processing; the backlog argument controls that.

Default: 100

cleanup_interval Minimum seconds between cleaning up inactive channels (integer). See also
channel_timeout.

Default: 30

channel_timeout Maximum seconds to leave an inactive connection open (integer). "Inactive" is defined as "has
received no data from a client and has sent no data to a client".

Default: 120

log_socket_errors Set to False to not log premature client disconnect tracebacks.

Default: True

max_request_header_size Maximum number of bytes of all request headers combined (integer).

Default: 262144 (256K)

max_request_body_size Maximum number of bytes in request body (integer).

Default: 1073741824 (1GB)

expose_tracebacks Set to True to expose tracebacks of unhandled exceptions to client.

Default: False

asyncore_loop_timeout The timeout value (seconds) passed to asyncore.loop to run the mainloop.

Default: 1

New in version 0.8.3.

asyncore_use_poll Set to True to switch from using select() to poll() in asyncore.loop. By default
asyncore.loop() uses select() which has a limit of 1024 file descriptors. select() and poll()
provide basically the same functionality, but poll() doesn’t have the file descriptors limit.

Default: False

New in version 0.8.6.

14 Chapter 1. Extended Documentation

waitress Documentation, Release 2.0.0

url_prefix String: the value used as the WSGI SCRIPT_NAME value. Setting this to anything except the empty string
will cause the WSGI SCRIPT_NAME value to be the value passed minus any trailing slashes you add, and it
will cause the PATH_INFO of any request which is prefixed with this value to be stripped of the prefix.

Default: ''

1.8 Support for wsgi.file_wrapper

Waitress supports the Python Web Server Gateway Interface v1.0 as specified in PEP 3333. Here’s a usage example:

import os

here = os.path.dirname(os.path.abspath(__file__))

def myapp(environ, start_response):
f = open(os.path.join(here, 'myphoto.jpg'), 'rb')
headers = [('Content-Type', 'image/jpeg')]
start_response(

'200 OK',
headers
)

return environ['wsgi.file_wrapper'](f, 32768)

The file wrapper constructor is accessed via environ['wsgi.file_wrapper']. The signature of the file wrap-
per constructor is (filelike_object, block_size). Both arguments must be passed as positional (not key-
word) arguments. The result of creating a file wrapper should be returned as the app_iter from a WSGI application.

The object passed as filelike_object to the wrapper must be a file-like object which supports at least the
read() method, and the read() method must support an optional size hint argument and the read() method
must return bytes objects (never unicode). It should support the seek() and tell() methods. If it does not, normal
iteration over the filelike_object using the provided block_size is used (and copying is done, negating any
benefit of the file wrapper). It should support a close() method.

The specified block_size argument to the file wrapper constructor will be used only when the
filelike_object doesn’t support seek and/or tell methods. Waitress needs to use normal iteration to serve
the file in this degenerate case (as per the WSGI pec), and this block size will be used as the iteration chunk size. The
block_size argument is optional; if it is not passed, a default value 32768 is used.

Waitress will set a Content-Length header on behalf of an application when a file wrapper with a sufficiently
file-like object is used if the application hasn’t already set one.

The machinery which handles a file wrapper currently doesn’t do anything particularly special using fancy system
calls (it doesn’t use sendfile for example); using it currently just prevents the system from needing to copy data to
a temporary buffer in order to send it to the client. No copying of data is done when a WSGI app returns a file wrapper
that wraps a sufficiently file-like object. It may do something fancier in the future.

1.9 waitress-serve

New in version 0.8.4: Waitress comes bundled with a thin command-line wrapper around the waitress.serve
function called waitress-serve. This is useful for development, and in production situations where serving of
static assets is delegated to a reverse proxy, such as nginx or Apache.

waitress-serve takes the very same arguments as the waitress.serve function, but where the function’s
arguments have underscores, waitress-serve uses hyphens. Thus:

1.8. Support for wsgi.file_wrapper 15

https://www.python.org/dev/peps/pep-3333

waitress Documentation, Release 2.0.0

import myapp

waitress.serve(myapp.wsgifunc, port=8041, url_scheme='https')

Is equivalent to:

waitress-serve --port=8041 --url-scheme=https myapp:wsgifunc

The full argument list is given below.

Boolean arguments are represented by flags. If you wish to explicitly set a flag, simply use it by its name. Thus the
flag:

--expose-tracebacks

Is equivalent to passing expose_tracebacks=True to waitress.serve.

All flags have a negative equivalent. These are prefixed with no-; thus using the flag:

--no-expose-tracebacks

Is equivalent to passing expose_tracebacks=False to waitress.serve.

If at any time you want the full argument list, use the --help flag.

Applications are specified similarly to PasteDeploy, where the format is myapp.mymodule:wsgifunc. As
some application frameworks use application objects, you can use dots to resolve attributes like so: myapp.
mymodule:appobj.wsgifunc.

A number of frameworks, web.py being an example, have factory methods on their application objects that return
usable WSGI functions when called. For cases like these, waitress-serve has the --call flag. Thus:

waitress-serve --call myapp.mymodule.app.wsgi_factory

Would load the myapp.mymodule module, and call app.wsgi_factory to get a WSGI application function to
be passed to waitress.server.

Note: As of 0.8.6, the current directory is automatically included on sys.path.

1.9.1 Invocation

Usage:

waitress-serve [OPTS] MODULE:OBJECT

Common options:

--help Show this information.

--call Call the given object to get the WSGI application.

--host=ADDR Hostname or IP address on which to listen, default is ’0.0.0.0’, which means "all IP addresses on this
host".

--port=PORT TCP port on which to listen, default is ’8080’

16 Chapter 1. Extended Documentation

waitress Documentation, Release 2.0.0

--listen=host:port Tell waitress to listen on an ip port combination.

Example:

–listen=127.0.0.1:8080 –listen=[::1]:8080 –listen=*:8080

This option may be used multiple times to listen on multipe sockets. A wildcard for the hostname is also
supported and will bind to both IPv4/IPv6 depending on whether they are enabled or disabled.

--[no-]ipv4 Toggle on/off IPv4 support.

This affects wildcard matching when listening on a wildcard address/port combination.

--[no-]ipv6 Toggle on/off IPv6 support.

This affects wildcard matching when listening on a wildcard address/port combination.

--unix-socket=PATH Path of Unix socket. If a socket path is specified, a Unix domain socket is made instead
of the usual inet domain socket.

Not available on Windows.

--unix-socket-perms=PERMS Octal permissions to use for the Unix domain socket, default is ’600’.

--url-scheme=STR Default wsgi.url_scheme value, default is ’http’.

--url-prefix=STR The SCRIPT_NAME WSGI environment value. Setting this to anything except the empty
string will cause the WSGI SCRIPT_NAME value to be the value passed minus any trailing slashes you add,
and it will cause the PATH_INFO of any request which is prefixed with this value to be stripped of the prefix.
Default is the empty string.

--ident=STR Server identity used in the ’Server’ header in responses. Default is ’waitress’.

Tuning options:

--threads=INT Number of threads used to process application logic, default is 4.

--backlog=INT Connection backlog for the server. Default is 1024.

--recv-bytes=INT Number of bytes to request when calling socket.recv(). Default is 8192.

--send-bytes=INT Number of bytes to send to socket.send(). Default is 1. Multiples of 9000 should avoid
partly-filled TCP packets.

Deprecated since version 1.3.

--outbuf-overflow=INT A temporary file should be created if the pending output is larger than this. Default is
1048576 (1MB).

--outbuf-high-watermark=INT The app_iter will pause when pending output is larger than this value and
will resume once enough data is written to the socket to fall below this threshold. Default is 16777216 (16MB).

--inbuf-overflow=INT A temporary file should be created if the pending input is larger than this. Default is
524288 (512KB).

--connection-limit=INT Stop creating new channels if too many are already active. Default is 100.

--cleanup-interval=INT Minimum seconds between cleaning up inactive channels. Default is 30. See
--channel-timeout.

--channel-timeout=INT Maximum number of seconds to leave inactive connections open. Default is 120.
’Inactive’ is defined as ’has received no data from the client and has sent no data to the client’.

--[no-]log-socket-errors Toggle whether premature client disconnect tracebacks ought to be logged. On
by default.

1.9. waitress-serve 17

waitress Documentation, Release 2.0.0

--max-request-header-size=INT Maximum size of all request headers combined. Default is 262144
(256KB).

--max-request-body-size=INT Maximum size of request body. Default is 1073741824 (1GB).

--[no-]expose-tracebacks Toggle whether to expose tracebacks of unhandled exceptions to the client. Off
by default.

--asyncore-loop-timeout=INT The timeout value in seconds passed to asyncore.loop(). Default is 1.

--asyncore-use-poll The use_poll argument passed to asyncore.loop(). Helps overcome open file de-
scriptors limit. Default is False.

1.10 Socket Activation

While waitress does not support the various implementations of socket activation, for example using systemd or
launchd, it is prepared to receive pre-bound sockets from init systems, process and socket managers, or other launchers
that can provide pre-bound sockets.

The following shows a code example starting waitress with two pre-bound Internet sockets.

import socket
import waitress

def app(environ, start_response):
content_length = environ.get('CONTENT_LENGTH', None)
if content_length is not None:

content_length = int(content_length)
body = environ['wsgi.input'].read(content_length)
content_length = str(len(body))
start_response(

'200 OK',
[('Content-Length', content_length), ('Content-Type', 'text/plain')]

)
return [body]

if __name__ == '__main__':
sockets = [

socket.socket(socket.AF_INET, socket.SOCK_STREAM),
socket.socket(socket.AF_INET, socket.SOCK_STREAM)]

sockets[0].bind(('127.0.0.1', 8080))
sockets[1].bind(('127.0.0.1', 9090))
waitress.serve(app, sockets=sockets)
for socket in sockets:

socket.close()

Generally, to implement socket activation for a given init system, a wrapper script uses the init system specific libraries
to retrieve the sockets from the init system. Afterwards it starts waitress, passing the sockets with the parameter
sockets. Note that the sockets have to be bound, which all init systems supporting socket activation do.

1.11 Glossary

asyncore A Python standard library module for asynchronous communications. See asyncore.

18 Chapter 1. Extended Documentation

https://docs.python.org/3/library/asyncore.html#module-asyncore

waitress Documentation, Release 2.0.0

Changed in version 1.2.0: Waitress has now "vendored" asyncore into itself as waitress.wasyncore.
This is to cope with the eventuality that asyncore will be removed from the Python standard library in Python
3.8 or so.

middleware Middleware is a WSGI concept. It is a WSGI component that acts both as a server and an application.
Interesting uses for middleware exist, such as caching, content-transport encoding, and other functions. See
WSGI.org or PyPI to find middleware for your application.

PasteDeploy A system for configuration of WSGI web components in declarative .ini format. See https://docs.
pylonsproject.org/projects/pastedeploy/en/latest/.

wasyncore Changed in version 1.2.0: Waitress has now "vendored" asyncore into itself as waitress.wasyncore.
This is to cope with the eventuality that asyncore will be removed from the Python standard library in Python
3.8 or so.

WSGI Web Server Gateway Interface. This is a Python standard for connecting web applications to web servers,
similar to the concept of Java Servlets. Waitress requires that your application be served as a WSGI application.

1.11. Glossary 19

https://wsgi.readthedocs.io/en/latest/
https://pypi.org/search/?c=Topic+%3A%3A+Internet+%3A%3A+WWW%2FHTTP+%3A%3A+WSGI+%3A%3A+Middleware
https://docs.pylonsproject.org/projects/pastedeploy/en/latest/
https://docs.pylonsproject.org/projects/pastedeploy/en/latest/
https://wsgi.readthedocs.io/en/latest/

waitress Documentation, Release 2.0.0

20 Chapter 1. Extended Documentation

CHAPTER 2

Change History

21

waitress Documentation, Release 2.0.0

22 Chapter 2. Change History

CHAPTER 3

2.0.0 (2021-03-07)

3.1 Friendly Reminder

This release still contains a variety of deprecation notices about defaults that can be set for a variety of options.

Please note that this is your last warning, and you should update your configuration if you do NOT want to use the
new defaults.

See the arguments documentation page for all supported options, and pay attention to the warnings:

https://docs.pylonsproject.org/projects/waitress/en/stable/arguments.html

Without further ado, here’s a short list of great changes thanks to our contributors!

3.2 Bugfixes/Features

• Fix a crash on startup when listening to multiple interfaces. See https://github.com/Pylons/waitress/pull/332

• Waitress no longer attempts to guess at what the server_name should be for a listen socket, instead it always
use a new adjustment/argument named server_name.

Please see the documentation for server_name in https://docs.pylonsproject.org/projects/waitress/en/latest/
arguments.html and see https://github.com/Pylons/waitress/pull/329

• Allow tasks to notice if the client disconnected.

This inserts a callable waitress.client_disconnected into the environment that allows the task to
check if the client disconnected while waiting for the response at strategic points in the execution and to cancel
the operation.

It requires setting the new adjustment channel_request_lookahead to a value larger than 0, which
continues to read requests from a channel even if a request is already being processed on that channel, up to
the given count, since a client disconnect is detected by reading from a readable socket and receiving an empty
result.

See https://github.com/Pylons/waitress/pull/310

23

https://docs.pylonsproject.org/projects/waitress/en/stable/arguments.html
https://github.com/Pylons/waitress/pull/332
https://docs.pylonsproject.org/projects/waitress/en/latest/arguments.html
https://docs.pylonsproject.org/projects/waitress/en/latest/arguments.html
https://github.com/Pylons/waitress/pull/329
https://github.com/Pylons/waitress/pull/310

waitress Documentation, Release 2.0.0

• Drop Python 2.7 and 3.5 support

• The server now issues warning output when it there are enough open connections (controlled by "connec-
tion_limit"), that it is no longer accepting new connections. This situation was previously difficult to diagnose.
See https://github.com/Pylons/waitress/pull/322

24 Chapter 3. 2.0.0 (2021-03-07)

https://github.com/Pylons/waitress/pull/322

CHAPTER 4

1.4.4 (2020-06-01)

• Fix an issue with keep-alive connections in which memory usage was higher than expected because output
buffers were being reused across requests on a long-lived connection and each buffer would not be freed until it
was full or the connection was closed. Buffers are now rotated per-request to stabilize their behavior.

See https://github.com/Pylons/waitress/pull/300

• Waitress threads have been updated to contain their thread number. This will allow loggers that use that infor-
mation to print the thread that the log is coming from.

See https://github.com/Pylons/waitress/pull/302

25

https://github.com/Pylons/waitress/pull/300
https://github.com/Pylons/waitress/pull/302

waitress Documentation, Release 2.0.0

26 Chapter 4. 1.4.4 (2020-06-01)

CHAPTER 5

1.4.3 (2020-02-02)

5.1 Security Fixes

• In Waitress version 1.4.2 a new regular expression was added to validate the headers that Waitress receives to
make sure that it matches RFC7230. Unfortunately the regular expression was written in a way that with invalid
input it leads to catastrophic backtracking which allows for a Denial of Service and CPU usage going to a 100%.

This was reported by Fil Zembowicz to the Pylons Project. Please see https://github.com/Pylons/waitress/
security/advisories/GHSA-73m2-3pwg-5fgc for more information.

27

https://github.com/Pylons/waitress/security/advisories/GHSA-73m2-3pwg-5fgc
https://github.com/Pylons/waitress/security/advisories/GHSA-73m2-3pwg-5fgc

waitress Documentation, Release 2.0.0

28 Chapter 5. 1.4.3 (2020-02-02)

CHAPTER 6

1.4.2 (2020-01-02)

6.1 Security Fixes

• This is a follow-up to the fix introduced in 1.4.1 to tighten up the way Waitress strips whitespace from header
values. This makes sure Waitress won’t accidentally treat non-printable characters as whitespace and lead to a
potental HTTP request smuggling/splitting security issue.

Thanks to ZeddYu Lu for the extra test cases.

Please see the security advisory for more information: https://github.com/Pylons/waitress/security/advisories/
GHSA-m5ff-3wj3-8ph4

CVE-ID: CVE-2019-16789

6.2 Bugfixes

• Updated the regex used to validate header-field content to match the errata that was published for RFC7230.

See: https://www.rfc-editor.org/errata_search.php?rfc=7230&eid=4189

29

https://github.com/Pylons/waitress/security/advisories/GHSA-m5ff-3wj3-8ph4
https://github.com/Pylons/waitress/security/advisories/GHSA-m5ff-3wj3-8ph4
https://www.rfc-editor.org/errata_search.php?rfc=7230&eid=4189

waitress Documentation, Release 2.0.0

30 Chapter 6. 1.4.2 (2020-01-02)

CHAPTER 7

1.4.1 (2019-12-24)

7.1 Security Fixes

• Waitress did not properly validate that the HTTP headers it received were properly formed, thereby potentially
allowing a front-end server to treat a request different from Waitress. This could lead to HTTP request smug-
gling/splitting.

Please see the security advisory for more information: https://github.com/Pylons/waitress/security/advisories/
GHSA-m5ff-3wj3-8ph4

CVE-ID: CVE-2019-16789

31

https://github.com/Pylons/waitress/security/advisories/GHSA-m5ff-3wj3-8ph4
https://github.com/Pylons/waitress/security/advisories/GHSA-m5ff-3wj3-8ph4

waitress Documentation, Release 2.0.0

32 Chapter 7. 1.4.1 (2019-12-24)

CHAPTER 8

1.4.0 (2019-12-20)

8.1 Bugfixes

• Waitress used to slam the door shut on HTTP pipelined requests without setting the Connection: close
header as appropriate in the response. This is of course not very friendly. Waitress now explicitly sets the header
when responding with an internally generated error such as 400 Bad Request or 500 Internal Server Error to
notify the remote client that it will be closing the connection after the response is sent.

• Waitress no longer allows any spaces to exist between the header field-name and the colon. While waitress did
not strip the space and thereby was not vulnerable to any potential header field-name confusion, it should have
sent back a 400 Bad Request. See https://github.com/Pylons/waitress/issues/273

8.2 Security Fixes

• Waitress implemented a "MAY" part of the RFC7230 (https://tools.ietf.org/html/rfc7230#section-3.5) which
states:

Although the line terminator for the start-line and header fields is the sequence CRLF, a recipient
MAY recognize a single LF as a line terminator and ignore any preceding CR.

Unfortunately if a front-end server does not parse header fields with an LF the same way as it does those with
a CRLF it can lead to the front-end and the back-end server parsing the same HTTP message in two different
ways. This can lead to a potential for HTTP request smuggling/splitting whereby Waitress may see two requests
while the front-end server only sees a single HTTP message.

For more information I can highly recommend the blog post by ZeddYu Lu https://blog.zeddyu.info/2019/12/
08/HTTP-Smuggling-en/

Please see the security advisory for more information: https://github.com/Pylons/waitress/security/advisories/
GHSA-pg36-wpm5-g57p

CVE-ID: CVE-2019-16785

33

https://github.com/Pylons/waitress/issues/273
https://tools.ietf.org/html/rfc7230#section-3.5
https://blog.zeddyu.info/2019/12/08/HTTP-Smuggling-en/
https://blog.zeddyu.info/2019/12/08/HTTP-Smuggling-en/
https://github.com/Pylons/waitress/security/advisories/GHSA-pg36-wpm5-g57p
https://github.com/Pylons/waitress/security/advisories/GHSA-pg36-wpm5-g57p

waitress Documentation, Release 2.0.0

• Waitress used to treat LF the same as CRLF in Transfer-Encoding: chunked requests, while the
maintainer doesn’t believe this could lead to a security issue, this is no longer supported and all chunks are now
validated to be properly framed with CRLF as required by RFC7230.

• Waitress now validates that the Transfer-Encoding header contains only transfer codes that it is able to
decode. At the moment that includes the only valid header value being chunked.

That means that if the following header is sent:

Transfer-Encoding: gzip, chunked

Waitress will send back a 501 Not Implemented with an error message stating as such, as while Waitress supports
chunked encoding it does not support gzip and it is unable to pass that to the underlying WSGI environment
correctly.

Waitress DOES NOT implement support for Transfer-Encoding: identity eventhough identity
was valid in RFC2616, it was removed in RFC7230. Please update your clients to remove the
Transfer-Encoding header if the only transfer coding is identity or update your client to use
Transfer-Encoding: chunked instead of Transfer-Encoding: identity, chunked.

Please see the security advisory for more information: https://github.com/Pylons/waitress/security/advisories/
GHSA-g2xc-35jw-c63p

CVE-ID: CVE-2019-16786

• While validating the Transfer-Encoding header, Waitress now properly handles line-folded
Transfer-Encoding headers or those that contain multiple comma seperated values. This closes a po-
tential issue where a front-end server may treat the request as being a chunked request (and thus ignoring the
Content-Length) and Waitress using the Content-Length as it was looking for the single value chunked and
did not support comma seperated values.

• Waitress used to explicitly set the Content-Length header to 0 if it was unable to parse it as an integer (for
example if the Content-Length header was sent twice (and thus folded together), or was invalid) thereby allowing
for a potential request to be split and treated as two requests by HTTP pipelining support in Waitress. If Waitress
is now unable to parse the Content-Length header, a 400 Bad Request is sent back to the client.

Please see the security advisory for more information: https://github.com/Pylons/waitress/security/advisories/
GHSA-4ppp-gpcr-7qf6

34 Chapter 8. 1.4.0 (2019-12-20)

https://github.com/Pylons/waitress/security/advisories/GHSA-g2xc-35jw-c63p
https://github.com/Pylons/waitress/security/advisories/GHSA-g2xc-35jw-c63p
https://github.com/Pylons/waitress/security/advisories/GHSA-4ppp-gpcr-7qf6
https://github.com/Pylons/waitress/security/advisories/GHSA-4ppp-gpcr-7qf6

CHAPTER 9

1.3.1 (2019-08-27)

9.1 Bugfixes

• Waitress won’t accidentally throw away part of the path if it starts with a double slash (GET //testing/
whatever HTTP/1.0). WSGI applications will now receive a PATH_INFO in the environment that contains
//testing/whatever as required. See https://github.com/Pylons/waitress/issues/260 and https://github.
com/Pylons/waitress/pull/261

35

https://github.com/Pylons/waitress/issues/260
https://github.com/Pylons/waitress/pull/261
https://github.com/Pylons/waitress/pull/261

waitress Documentation, Release 2.0.0

36 Chapter 9. 1.3.1 (2019-08-27)

CHAPTER 10

1.3.0 (2019-04-22)

10.1 Deprecations

• The send_bytes adjustment now defaults to 1 and is deprecated pending removal in a future release. and
https://github.com/Pylons/waitress/pull/246

10.2 Features

• Add a new outbuf_high_watermark adjustment which is used to apply backpressure on the app_iter
to avoid letting it spin faster than data can be written to the socket. This stabilizes responses that iterate quickly
with a lot of data. See https://github.com/Pylons/waitress/pull/242

• Stop early and close the app_iter when attempting to write to a closed socket due to a client disconnect. This
should notify a long-lived streaming response when a client hangs up. See https://github.com/Pylons/waitress/
pull/238 and https://github.com/Pylons/waitress/pull/240 and https://github.com/Pylons/waitress/pull/241

• Adjust the flush to output SO_SNDBUF bytes instead of whatever was set in the send_bytes adjustment.
send_bytes now only controls how much waitress will buffer internally before flushing to the kernel, whereas
previously it used to also throttle how much data was sent to the kernel. This change enables a streaming
app_iter containing small chunks to still be flushed efficiently. See https://github.com/Pylons/waitress/pull/
246

10.3 Bugfixes

• Upon receiving a request that does not include HTTP/1.0 or HTTP/1.1 we will no longer set the version to the
string value "None". See https://github.com/Pylons/waitress/pull/252 and https://github.com/Pylons/waitress/
issues/110

• When a client closes a socket unexpectedly there was potential for memory leaks in which data was written to
the buffers after they were closed, causing them to reopen. See https://github.com/Pylons/waitress/pull/239

37

https://github.com/Pylons/waitress/pull/246
https://github.com/Pylons/waitress/pull/242
https://github.com/Pylons/waitress/pull/238
https://github.com/Pylons/waitress/pull/238
https://github.com/Pylons/waitress/pull/240
https://github.com/Pylons/waitress/pull/241
https://github.com/Pylons/waitress/pull/246
https://github.com/Pylons/waitress/pull/246
https://github.com/Pylons/waitress/pull/252
https://github.com/Pylons/waitress/issues/110
https://github.com/Pylons/waitress/issues/110
https://github.com/Pylons/waitress/pull/239

waitress Documentation, Release 2.0.0

• Fix the queue depth warnings to only show when all threads are busy. See https://github.com/Pylons/waitress/
pull/243 and https://github.com/Pylons/waitress/pull/247

• Trigger the app_iter to close as part of shutdown. This will only be noticeable for users of the internal
server api. In more typical operations the server will die before benefiting from these changes. See https:
//github.com/Pylons/waitress/pull/245

• Fix a bug in which a streaming app_iter may never cleanup data that has already been sent. This would
cause buffers in waitress to grow without bounds. These buffers now properly rotate and release their data. See
https://github.com/Pylons/waitress/pull/242

• Fix a bug in which non-seekable subclasses of io.IOBase would trigger an exception when passed to the
wsgi.file_wrapper callback. See https://github.com/Pylons/waitress/pull/249

38 Chapter 10. 1.3.0 (2019-04-22)

https://github.com/Pylons/waitress/pull/243
https://github.com/Pylons/waitress/pull/243
https://github.com/Pylons/waitress/pull/247
https://github.com/Pylons/waitress/pull/245
https://github.com/Pylons/waitress/pull/245
https://github.com/Pylons/waitress/pull/242
https://github.com/Pylons/waitress/pull/249

CHAPTER 11

1.2.1 (2019-01-25)

11.1 Bugfixes

• When given an IPv6 address in X-Forwarded-For or Forwarded for= waitress was placing the IP
address in REMOTE_ADDR with brackets: [2001:db8::0], this does not match the requirements in
the CGI spec which REMOTE_ADDR was lifted from. Waitress will now place the bare IPv6 address in
REMOTE_ADDR: 2001:db8::0. See https://github.com/Pylons/waitress/pull/232 and https://github.com/
Pylons/waitress/issues/230

39

https://github.com/Pylons/waitress/pull/232
https://github.com/Pylons/waitress/issues/230
https://github.com/Pylons/waitress/issues/230

waitress Documentation, Release 2.0.0

40 Chapter 11. 1.2.1 (2019-01-25)

CHAPTER 12

1.2.0 (2019-01-15)

No changes since the last beta release. Enjoy Waitress!

41

waitress Documentation, Release 2.0.0

42 Chapter 12. 1.2.0 (2019-01-15)

CHAPTER 13

1.2.0b3 (2019-01-07)

13.1 Bugfixes

• Modified clear_untrusted_proxy_headers to be usable without a trusted_proxy. https://github.
com/Pylons/waitress/pull/228

• Modified trusted_proxy_count to error when used without a trusted_proxy. https://github.com/
Pylons/waitress/pull/228

43

https://github.com/Pylons/waitress/pull/228
https://github.com/Pylons/waitress/pull/228
https://github.com/Pylons/waitress/pull/228
https://github.com/Pylons/waitress/pull/228

waitress Documentation, Release 2.0.0

44 Chapter 13. 1.2.0b3 (2019-01-07)

CHAPTER 14

1.2.0b2 (2019-02-02)

14.1 Bugfixes

• Fixed logic to no longer warn on writes where the output is required to have a body but there may not be any
data to be written. Solves issue posted on the Pylons Project mailing list with 1.2.0b1.

45

waitress Documentation, Release 2.0.0

46 Chapter 14. 1.2.0b2 (2019-02-02)

CHAPTER 15

1.2.0b1 (2018-12-31)

Happy New Year!

15.1 Features

• Setting the trusted_proxy setting to '*' (wildcard) will allow all upstreams to be considered trusted prox-
ies, thereby allowing services behind Cloudflare/ELBs to function correctly whereby there may not be a singular
IP address that requests are received from.

Using this setting is potentially dangerous if your server is also available from anywhere on the internet, and
further protections should be used to lock down access to Waitress. See https://github.com/Pylons/waitress/pull/
224

• Waitress has increased its support of the X-Forwarded-* headers and includes Forwarded (RFC7239) support.
This may be used to allow proxy servers to influence the WSGI environment. See https://github.com/Pylons/
waitress/pull/209

This also provides a new security feature when using Waitress behind a proxy in that it is possible to remove
untrusted proxy headers thereby making sure that downstream WSGI applications don’t accidentally use those
proxy headers to make security decisions.

The documentation has more information, see the following new arguments:

– trusted_proxy_count

– trusted_proxy_headers

– clear_untrusted_proxy_headers

– log_untrusted_proxy_headers (useful for debugging)

Be aware that the defaults for these are currently backwards compatible with older versions of Waitress, this will
change in a future release of waitress. If you expect to need this behaviour please explicitly set these variables
in your configuration, or pin this version of waitress.

Documentation: https://docs.pylonsproject.org/projects/waitress/en/latest/reverse-proxy.html

47

https://github.com/Pylons/waitress/pull/224
https://github.com/Pylons/waitress/pull/224
https://github.com/Pylons/waitress/pull/209
https://github.com/Pylons/waitress/pull/209
https://docs.pylonsproject.org/projects/waitress/en/latest/reverse-proxy.html

waitress Documentation, Release 2.0.0

• Waitress can now accept a list of sockets that are already pre-bound rather than creating its own to allow for
socket activation. Support for init systems/other systems that create said activated sockets is not included. See
https://github.com/Pylons/waitress/pull/215

• Server header can be omitted by specifying ident=None or ident=''. See https://github.com/Pylons/
waitress/pull/187

15.2 Bugfixes

• Waitress will no longer send Transfer-Encoding or Content-Length for 1xx, 204, or 304 responses, and
will completely ignore any message body sent by the WSGI application, making sure to follow the HTTP
standard. See https://github.com/Pylons/waitress/pull/166, https://github.com/Pylons/waitress/issues/165, https:
//github.com/Pylons/waitress/issues/152, and https://github.com/Pylons/waitress/pull/202

15.3 Compatibility

• Waitress has now "vendored" asyncore into itself as waitress.wasyncore. This is to cope with the even-
tuality that asyncore will be removed from the Python standard library in 3.8 or so.

15.4 Documentation

• Bring in documentation of paste.translogger from Pyramid. Reorganize and clean up documentation.
See https://github.com/Pylons/waitress/pull/205 https://github.com/Pylons/waitress/pull/70 https://github.com/
Pylons/waitress/pull/206

48 Chapter 15. 1.2.0b1 (2018-12-31)

https://github.com/Pylons/waitress/pull/215
https://github.com/Pylons/waitress/pull/187
https://github.com/Pylons/waitress/pull/187
https://github.com/Pylons/waitress/pull/166
https://github.com/Pylons/waitress/issues/165
https://github.com/Pylons/waitress/issues/152
https://github.com/Pylons/waitress/issues/152
https://github.com/Pylons/waitress/pull/202
https://github.com/Pylons/waitress/pull/205
https://github.com/Pylons/waitress/pull/70
https://github.com/Pylons/waitress/pull/206
https://github.com/Pylons/waitress/pull/206

CHAPTER 16

1.1.0 (2017-10-10)

16.1 Features

• Waitress now has a __main__ and thus may be called with python -mwaitress

16.2 Bugfixes

• Waitress no longer allows lowercase HTTP verbs. This change was made to fall in line with most HTTP servers.
See https://github.com/Pylons/waitress/pull/170

• When receiving non-ascii bytes in the request URL, waitress will no longer abruptly close the connection,
instead returning a 400 Bad Request. See https://github.com/Pylons/waitress/pull/162 and https://github.com/
Pylons/waitress/issues/64

49

https://github.com/Pylons/waitress/pull/170
https://github.com/Pylons/waitress/pull/162
https://github.com/Pylons/waitress/issues/64
https://github.com/Pylons/waitress/issues/64

waitress Documentation, Release 2.0.0

50 Chapter 16. 1.1.0 (2017-10-10)

CHAPTER 17

1.0.2 (2017-02-04)

17.1 Features

• Python 3.6 is now officially supported in Waitress

17.2 Bugfixes

• Add a work-around for libc issue on Linux not following the documented standards. If getnameinfo() fails
because of DNS not being available it should return the IP address instead of the reverse DNS entry, however
instead getnameinfo() raises. We catch this, and ask getnameinfo() for the same information again, explicitly
asking for IP address instead of reverse DNS hostname. See https://github.com/Pylons/waitress/issues/149 and
https://github.com/Pylons/waitress/pull/153

51

https://github.com/Pylons/waitress/issues/149
https://github.com/Pylons/waitress/pull/153

waitress Documentation, Release 2.0.0

52 Chapter 17. 1.0.2 (2017-02-04)

CHAPTER 18

1.0.1 (2016-10-22)

18.1 Bugfixes

• IPv6 support on Windows was broken due to missing constants in the socket module. This has been resolved by
setting the constants on Windows if they are missing. See https://github.com/Pylons/waitress/issues/138

• A ValueError was raised on Windows when passing a string for the port, on Windows in Python 2 using service
names instead of port numbers doesn’t work with getaddrinfo. This has been resolved by attempting to convert
the port number to an integer, if that fails a ValueError will be raised. See https://github.com/Pylons/waitress/
issues/139

53

https://github.com/Pylons/waitress/issues/138
https://github.com/Pylons/waitress/issues/139
https://github.com/Pylons/waitress/issues/139

waitress Documentation, Release 2.0.0

54 Chapter 18. 1.0.1 (2016-10-22)

CHAPTER 19

1.0.0 (2016-08-31)

19.1 Bugfixes

• Removed AI_ADDRCONFIG from the call to getaddrinfo, this resolves an issue whereby getaddrinfo wouldn’t
return any addresses to bind to on hosts where there is no internet connection but localhost is requested to be
bound to. See https://github.com/Pylons/waitress/issues/131 for more information.

19.2 Deprecations

• Python 2.6 is no longer supported.

19.3 Features

• IPv6 support

• Waitress is now able to listen on multiple sockets, including IPv4 and IPv6. Instead of passing in a host/port
combination you now provide waitress with a space delineated list, and it will create as many sockets as required.

from waitress import serve
serve(wsgiapp, listen='0.0.0.0:8080 [::]:9090 *:6543')

19.4 Security

• Waitress will now drop HTTP headers that contain an underscore in the key when received from a client. This is
to stop any possible underscore/dash conflation that may lead to security issues. See https://github.com/Pylons/
waitress/pull/80 and https://www.djangoproject.com/weblog/2015/jan/13/security/

55

https://github.com/Pylons/waitress/issues/131
https://github.com/Pylons/waitress/pull/80
https://github.com/Pylons/waitress/pull/80
https://www.djangoproject.com/weblog/2015/jan/13/security/

waitress Documentation, Release 2.0.0

56 Chapter 19. 1.0.0 (2016-08-31)

CHAPTER 20

0.9.0 (2016-04-15)

20.1 Deprecations

• Python 3.2 is no longer supported by Waitress.

• Python 2.6 will no longer be supported by Waitress in future releases.

20.2 Security/Protections

• Building on the changes made in pull request 117, add in checking for line feed/carriage return HTTP Response
Splitting in the status line, as well as the key of a header. See https://github.com/Pylons/waitress/pull/124 and
https://github.com/Pylons/waitress/issues/122.

• Waitress will no longer accept headers or status lines with newline/carriage returns in them, thereby disallowing
HTTP Response Splitting. See https://github.com/Pylons/waitress/issues/117 for more information, as well as
https://www.owasp.org/index.php/HTTP_Response_Splitting.

20.3 Bugfixes

• FileBasedBuffer and more important ReadOnlyFileBasedBuffer no longer report False when tested with bool(),
instead always returning True, and becoming more iterator like. See: https://github.com/Pylons/waitress/pull/82
and https://github.com/Pylons/waitress/issues/76

• Call prune() on the output buffer at the end of a request so that it doesn’t continue to grow without bounds. See
https://github.com/Pylons/waitress/issues/111 for more information.

57

https://github.com/Pylons/waitress/pull/124
https://github.com/Pylons/waitress/issues/122
https://github.com/Pylons/waitress/issues/117
https://www.owasp.org/index.php/HTTP_Response_Splitting
https://github.com/Pylons/waitress/pull/82
https://github.com/Pylons/waitress/issues/76
https://github.com/Pylons/waitress/issues/111

waitress Documentation, Release 2.0.0

58 Chapter 20. 0.9.0 (2016-04-15)

CHAPTER 21

0.8.10 (2015-09-02)

• Add support for Python 3.4, 3.5b2, and PyPy3.

• Use a nonglobal asyncore socket map by default, trying to prevent conflicts with apps and libs that use the
asyncore global socket map ala https://github.com/Pylons/waitress/issues/63. You can get the old use-global-
socket-map behavior back by passing asyncore.socket_map to the create_server function as the
map argument.

• Waitress violated PEP 3333 with respect to reraising an exception when start_response was called with
an exc_info argument. It would reraise the exception even if no data had been sent to the client. It now only
reraises the exception if data has actually been sent to the client. See https://github.com/Pylons/waitress/pull/52
and https://github.com/Pylons/waitress/issues/51

• Add a docs section to tox.ini that, when run, ensures docs can be built.

• If an application value of None is supplied to the create_server constructor function, a ValueError is
now raised eagerly instead of an error occuring during runtime. See https://github.com/Pylons/waitress/pull/60

• Fix parsing of multi-line (folded) headers. See https://github.com/Pylons/waitress/issues/53 and https://github.
com/Pylons/waitress/pull/90

• Switch from the low level Python thread/_thread module to the threading module.

• Improved exception information should module import go awry.

59

https://github.com/Pylons/waitress/issues/63
https://github.com/Pylons/waitress/pull/52
https://github.com/Pylons/waitress/issues/51
https://github.com/Pylons/waitress/pull/60
https://github.com/Pylons/waitress/issues/53
https://github.com/Pylons/waitress/pull/90
https://github.com/Pylons/waitress/pull/90

waitress Documentation, Release 2.0.0

60 Chapter 21. 0.8.10 (2015-09-02)

CHAPTER 22

0.8.9 (2014-05-16)

• Fix tests under Windows. NB: to run tests under Windows, you cannot run "setup.py test" or "setup.py
nosetests". Instead you must run python.exe -c "import nose; nose.main()". If you try to
run the tests using the normal method under Windows, each subprocess created by the test suite will attempt to
run the test suite again. See https://github.com/nose-devs/nose/issues/407 for more information.

• Give the WSGI app_iter generated when wsgi.file_wrapper is used (ReadOnlyFileBasedBuffer) a
close method. Do not call close on an instance of such a class when it’s used as a WSGI app_iter, how-
ever. This is part of a fix which prevents a leakage of file descriptors; the other part of the fix was in WebOb
(https://github.com/Pylons/webob/commit/951a41ce57bd853947f842028bccb500bd5237da).

• Allow trusted proxies to override wsgi.url_scheme via a request header, X_FORWARDED_PROTO. Allows
proxies which serve mixed HTTP / HTTPS requests to control signal which are served as HTTPS. See https:
//github.com/Pylons/waitress/pull/42.

61

https://github.com/nose-devs/nose/issues/407
https://github.com/Pylons/webob/commit/951a41ce57bd853947f842028bccb500bd5237da
https://github.com/Pylons/waitress/pull/42
https://github.com/Pylons/waitress/pull/42

waitress Documentation, Release 2.0.0

62 Chapter 22. 0.8.9 (2014-05-16)

CHAPTER 23

0.8.8 (2013-11-30)

• Fix some cases where the creation of extremely large output buffers (greater than 2GB, suspected to be buffers
added via wsgi.file_wrapper) might cause an OverflowError on Python 2. See https://github.com/Pylons/
waitress/issues/47.

• When the url_prefix adjustment starts with more than one slash, all slashes except one will be stripped
from its beginning. This differs from older behavior where more than one leading slash would be preserved in
url_prefix.

• If a client somehow manages to send an empty path, we no longer convert the empty path to a single slash
in PATH_INFO. Instead, the path remains empty. According to RFC 2616 section "5.1.2 Request-URI", the
scenario of a client sending an empty path is actually not possible because the request URI portion cannot be
empty.

• If the url_prefix adjustment matches the request path exactly, we now compute SCRIPT_NAME and
PATH_INFO properly. Previously, if the url_prefix was /foo and the path received from a client was
/foo, we would set both SCRIPT_NAME and PATH_INFO to /foo. This was incorrect. Now in such a case
we set PATH_INFO to the empty string and we set SCRIPT_NAME to /foo. Note that the change we made
has no effect on paths that do not match the url_prefix exactly (such as /foo/bar); these continue to
operate as they did. See https://github.com/Pylons/waitress/issues/46

• Preserve header ordering of headers with the same name as per RFC 2616. See https://github.com/Pylons/
waitress/pull/44

• When waitress receives a Transfer-Encoding: chunked request, we no longer send the
TRANSFER_ENCODING nor the HTTP_TRANSFER_ENCODING value to the application in the environment.
Instead, we pop this header. Since we cope with chunked requests by buffering the data in the server, we also
know when a chunked request has ended, and therefore we know the content length. We set the content-length
header in the environment, such that applications effectively never know the original request was a T-E: chunked
request; it will appear to them as if the request is a non-chunked request with an accurate content-length.

• Cope with the fact that the Transfer-Encoding value is case-insensitive.

• When the --unix-socket-perms option was used as an argument to waitress-serve, a TypeError
would be raised. See https://github.com/Pylons/waitress/issues/50.

63

https://github.com/Pylons/waitress/issues/47
https://github.com/Pylons/waitress/issues/47
https://github.com/Pylons/waitress/issues/46
https://github.com/Pylons/waitress/pull/44
https://github.com/Pylons/waitress/pull/44
https://github.com/Pylons/waitress/issues/50

waitress Documentation, Release 2.0.0

64 Chapter 23. 0.8.8 (2013-11-30)

CHAPTER 24

0.8.7 (2013-08-29)

• The HTTP version of the response returned by waitress when it catches an exception will now match the HTTP
request version.

• Fix: CONNECTION header will be HTTP_CONNECTION and not CONNECTION_TYPE (see https://github.
com/Pylons/waitress/issues/13)

65

https://github.com/Pylons/waitress/issues/13
https://github.com/Pylons/waitress/issues/13

waitress Documentation, Release 2.0.0

66 Chapter 24. 0.8.7 (2013-08-29)

CHAPTER 25

0.8.6 (2013-08-12)

• Do alternate type of checking for UNIX socket support, instead of checking for platform == windows.

• Functional tests now use multiprocessing module instead of subprocess module, speeding up test suite and
making concurrent execution more reliable.

• Runner now appends the current working directory to sys.path to support running WSGI applications from
a directory (i.e., not installed in a virtualenv).

• Add a url_prefix adjustment setting. You can use it by passing script_name='/foo' to waitress.
serve or you can use it in a PasteDeploy ini file as script_name = /foo. This will cause the
WSGI SCRIPT_NAME value to be the value passed minus any trailing slashes you add, and it will cause the
PATH_INFO of any request which is prefixed with this value to be stripped of the prefix. You can use this
instead of PasteDeploy’s prefixmiddleware to always prefix the path.

67

waitress Documentation, Release 2.0.0

68 Chapter 25. 0.8.6 (2013-08-12)

CHAPTER 26

0.8.5 (2013-05-27)

• Fix runner multisegment imports in some Python 2 revisions (see https://github.com/Pylons/waitress/pull/34).

• For compatibility, WSGIServer is now an alias of TcpWSGIServer. The signature of BaseWSGIServer is now
compatible with WSGIServer pre-0.8.4.

69

https://github.com/Pylons/waitress/pull/34

waitress Documentation, Release 2.0.0

70 Chapter 26. 0.8.5 (2013-05-27)

CHAPTER 27

0.8.4 (2013-05-24)

• Add a command-line runner called waitress-serve to allow Waitress to run WSGI applications without
any addional machinery. This is essentially a thin wrapper around the waitress.serve() function.

• Allow parallel testing (e.g., under detox or nosetests --processes) using PID-dependent port / socket
for functest servers.

• Fix integer overflow errors on large buffers. Thanks to Marcin Kuzminski for the patch. See: https://github.
com/Pylons/waitress/issues/22

• Add support for listening on Unix domain sockets.

71

https://github.com/Pylons/waitress/issues/22
https://github.com/Pylons/waitress/issues/22

waitress Documentation, Release 2.0.0

72 Chapter 27. 0.8.4 (2013-05-24)

CHAPTER 28

0.8.3 (2013-04-28)

28.1 Features

• Add an asyncore_loop_timeout adjustment value, which controls the timeout value passed to
asyncore.loop; defaults to 1.

28.2 Bug Fixes

• The default asyncore loop timeout is now 1 second. This prevents slow shutdown on Windows. See https:
//github.com/Pylons/waitress/issues/6 . This shouldn’t matter to anyone in particular, but it can be changed via
the asyncore_loop_timeout adjustment (it used to previously default to 30 seconds).

• Don’t complain if there’s a response to a HEAD request that contains a Content-Length > 0. See https://github.
com/Pylons/waitress/pull/7.

• Fix bug in HTTP Expect/Continue support. See https://github.com/Pylons/waitress/issues/9 .

73

https://github.com/Pylons/waitress/issues/6
https://github.com/Pylons/waitress/issues/6
https://github.com/Pylons/waitress/pull/7
https://github.com/Pylons/waitress/pull/7
https://github.com/Pylons/waitress/issues/9

waitress Documentation, Release 2.0.0

74 Chapter 28. 0.8.3 (2013-04-28)

CHAPTER 29

0.8.2 (2012-11-14)

29.1 Bug Fixes

• https://corte.si/posts/code/pathod/pythonservers/index.html pointed out that sending a bad header resulted in an
exception leading to a 500 response instead of the more proper 400 response without an exception.

• Fix a race condition in the test suite.

• Allow "ident" to be used as a keyword to serve() as per docs.

• Add py33 to tox.ini.

75

https://corte.si/posts/code/pathod/pythonservers/index.html

waitress Documentation, Release 2.0.0

76 Chapter 29. 0.8.2 (2012-11-14)

CHAPTER 30

0.8.1 (2012-02-13)

30.1 Bug Fixes

• A brown-bag bug prevented request concurrency. A slow request would block subsequent the responses of
subsequent requests until the slow request’s response was fully generated. This was due to a "task lock" being
declared as a class attribute rather than as an instance attribute on HTTPChannel. Also took the opportunity to
move another lock named "outbuf lock" to the channel instance rather than the class. See https://github.com/
Pylons/waitress/pull/1 .

77

https://github.com/Pylons/waitress/pull/1
https://github.com/Pylons/waitress/pull/1

waitress Documentation, Release 2.0.0

78 Chapter 30. 0.8.1 (2012-02-13)

CHAPTER 31

0.8 (2012-01-31)

31.1 Features

• Support the WSGI wsgi.file_wrapper protocol as per https://www.python.org/dev/peps/pep-0333/
#optional-platform-specific-file-handling. Here’s a usage example:

import os

here = os.path.dirname(os.path.abspath(__file__))

def myapp(environ, start_response):
f = open(os.path.join(here, 'myphoto.jpg'), 'rb')
headers = [('Content-Type', 'image/jpeg')]
start_response(

'200 OK',
headers
)

return environ['wsgi.file_wrapper'](f, 32768)

The signature of the file wrapper constructor is (filelike_object, block_size). Both arguments
must be passed as positional (not keyword) arguments. The result of creating a file wrapper should be returned
as the app_iter from a WSGI application.

The object passed as filelike_object to the wrapper must be a file-like object which supports at least
the read() method, and the read() method must support an optional size hint argument. It should support
the seek() and tell() methods. If it does not, normal iteration over the filelike object using the provided
block_size is used (and copying is done, negating any benefit of the file wrapper). It should support a close()
method.

The specified block_size argument to the file wrapper constructor will be used only when the
filelike_object doesn’t support seek and/or tell methods. Waitress needs to use normal iteration
to serve the file in this degenerate case (as per the WSGI spec), and this block size will be used as the iteration
chunk size. The block_size argument is optional; if it is not passed, a default value‘‘32768‘‘ is used.

79

https://www.python.org/dev/peps/pep-0333/#optional-platform-specific-file-handling
https://www.python.org/dev/peps/pep-0333/#optional-platform-specific-file-handling

waitress Documentation, Release 2.0.0

Waitress will set a Content-Length header on the behalf of an application when a file wrapper with a
sufficiently filelike object is used if the application hasn’t already set one.

The machinery which handles a file wrapper currently doesn’t do anything particularly special using fancy
system calls (it doesn’t use sendfile for example); using it currently just prevents the system from needing
to copy data to a temporary buffer in order to send it to the client. No copying of data is done when a WSGI app
returns a file wrapper that wraps a sufficiently filelike object. It may do something fancier in the future.

80 Chapter 31. 0.8 (2012-01-31)

CHAPTER 32

0.7 (2012-01-11)

32.1 Features

• Default send_bytes value is now 18000 instead of 9000. The larger default value prevents asyncore from
needing to execute select so many times to serve large files, speeding up file serving by about 15%-20% or so.
This is probably only an optimization for LAN communications, and could slow things down across a WAN
(due to higher TCP overhead), but we’re likely to be behind a reverse proxy on a LAN anyway if in production.

• Added an (undocumented) profiling feature to the serve() command.

81

waitress Documentation, Release 2.0.0

82 Chapter 32. 0.7 (2012-01-11)

CHAPTER 33

0.6.1 (2012-01-08)

33.1 Bug Fixes

• Remove performance-sapping call to pull_trigger in the channel’s write_soon method added mistak-
enly in 0.6.

83

waitress Documentation, Release 2.0.0

84 Chapter 33. 0.6.1 (2012-01-08)

CHAPTER 34

0.6 (2012-01-07)

34.1 Bug Fixes

• A logic error prevented the internal outbuf buffer of a channel from being flushed when the client could not
accept the entire contents of the output buffer in a single succession of socket.send calls when the channel was
in a "pending close" state. The socket in such a case would be closed prematurely, sometimes resulting in
partially delivered content. This was discovered by a user using waitress behind an Nginx reverse proxy, which
apparently is not always ready to receive data. The symptom was that he received "half" of a large CSS file
(110K) while serving content via waitress behind the proxy.

85

waitress Documentation, Release 2.0.0

86 Chapter 34. 0.6 (2012-01-07)

CHAPTER 35

0.5 (2012-01-03)

35.1 Bug Fixes

• Fix PATH_INFO encoding/decoding on Python 3 (as per PEP 3333, tunnel bytes-in-unicode-as-latin-1-after-
unquoting).

87

waitress Documentation, Release 2.0.0

88 Chapter 35. 0.5 (2012-01-03)

CHAPTER 36

0.4 (2012-01-02)

36.1 Features

• Added "design" document to docs.

36.2 Bug Fixes

• Set default connection_limit back to 100 for benefit of maximal platform compatibility.

• Normalize setting of last_activity during send.

• Minor resource cleanups during tests.

• Channel timeout cleanup was broken.

89

waitress Documentation, Release 2.0.0

90 Chapter 36. 0.4 (2012-01-02)

CHAPTER 37

0.3 (2012-01-02)

37.1 Features

• Dont hang a thread up trying to send data to slow clients.

• Use self.logger to log socket errors instead of self.log_info (normalize).

• Remove pointless handle_error method from channel.

• Queue requests instead of tasks in a channel.

37.2 Bug Fixes

• Expect: 100-continue responses were broken.

91

waitress Documentation, Release 2.0.0

92 Chapter 37. 0.3 (2012-01-02)

CHAPTER 38

0.2 (2011-12-31)

38.1 Bug Fixes

• Set up logging by calling logging.basicConfig() when serve is called (show tracebacks and other warnings to
console by default).

• Disallow WSGI applications to set "hop-by-hop" headers (Connection, Transfer-Encoding, etc).

• Don’t treat 304 status responses specially in HTTP/1.1 mode.

• Remove out of date interfaces.py file.

• Normalize logging (all output is now sent to the waitress logger rather than in degenerate cases some output
being sent directly to stderr).

38.2 Features

• Support HTTP/1.1 Transfer-Encoding: chunked responses.

• Slightly better docs about logging.

93

waitress Documentation, Release 2.0.0

94 Chapter 38. 0.2 (2011-12-31)

CHAPTER 39

0.1 (2011-12-30)

• Initial release.

95

waitress Documentation, Release 2.0.0

96 Chapter 39. 0.1 (2011-12-30)

CHAPTER 40

Known Issues

• Does not support TLS natively. See Using Behind a Reverse Proxy for more information.

97

waitress Documentation, Release 2.0.0

98 Chapter 40. Known Issues

CHAPTER 41

Support and Development

The Pylons Project web site is the main online source of Waitress support and development information.

To report bugs, use the issue tracker.

If you’ve got questions that aren’t answered by this documentation, contact the Pylons-discuss maillist or join the
#pyramid IRC channel.

Browse and check out tagged and trunk versions of Waitress via the Waitress GitHub repository. To check out the
trunk via git, use this command:

git clone git@github.com:Pylons/waitress.git

To find out how to become a contributor to Waitress, please see the guidelines in contributing.md and How to Con-
tribute Source Code and Documentation.

99

https://pylonsproject.org/
https://github.com/Pylons/waitress/issues
https://groups.google.com/forum/#!forum/pylons-discuss
https://webchat.freenode.net/?channels=pyramid
https://github.com/Pylons/waitress/
https://github.com/Pylons/waitress/blob/master/contributing.md
https://pylonsproject.org/community-how-to-contribute.html
https://pylonsproject.org/community-how-to-contribute.html

waitress Documentation, Release 2.0.0

100 Chapter 41. Support and Development

CHAPTER 42

Why?

At the time of the release of Waitress, there are already many pure-Python WSGI servers. Why would we need
another?

Waitress is meant to be useful to web framework authors who require broad platform support. It’s neither the fastest
nor the fanciest WSGI server available but using it helps eliminate the N-by-M documentation burden (e.g. production
vs. deployment, Windows vs. Unix, Python 3 vs. Python 2, PyPy vs. CPython) and resulting user confusion imposed
by spotty platform support of the current (2012-ish) crop of WSGI servers. For example, gunicorn is great, but
doesn’t run on Windows. paste.httpserver is perfectly serviceable, but doesn’t run under Python 3 and has no
dedicated tests suite that would allow someone who did a Python 3 port to know it worked after a port was completed.
wsgiref works fine under most any Python, but it’s a little slow and it’s not recommended for production use as it’s
single-threaded and has not been audited for security issues.

At the time of this writing, some existing WSGI servers already claim wide platform support and have serviceable
test suites. The CherryPy WSGI server, for example, targets Python 2 and Python 3 and it can run on UNIX or
Windows. However, it is not distributed separately from its eponymous web framework, and requiring a non-CherryPy
web framework to depend on the CherryPy web framework distribution simply for its server component is awkward.
The test suite of the CherryPy server also depends on the CherryPy web framework, so even if we forked its server
component into a separate distribution, we would have still needed to backfill for all of its tests. The CherryPy team
has started work on Cheroot, which should solve this problem, however.

Waitress is a fork of the WSGI-related components which existed in zope.server. zope.server had passable
framework-independent test coverage out of the box, and a good bit more coverage was added during the fork. zope.
server has existed in one form or another since about 2001, and has seen production usage since then, so Waitress
is not exactly "another" server, it’s more a repackaging of an old one that was already known to work fairly well.

101

https://bitbucket.org/cherrypy/cheroot/src/default/

waitress Documentation, Release 2.0.0

102 Chapter 42. Why?

Python Module Index

w
waitress, 11

103

waitress Documentation, Release 2.0.0

104 Python Module Index

Index

A
asyncore, 18

H
https, 7

M
middleware, 19

P
PasteDeploy, 19
proxy, 7
Python Enhancement Proposals

PEP 3333, 15

R
reverse, 7

S
serve() (in module waitress), 11
SSL, 7

T
TLS, 7

W
waitress (module), 11
wasyncore, 19
WSGI, 19

105

	Extended Documentation
	Change History
	2.0.0 (2021-03-07)
	1.4.4 (2020-06-01)
	1.4.3 (2020-02-02)
	1.4.2 (2020-01-02)
	1.4.1 (2019-12-24)
	1.4.0 (2019-12-20)
	1.3.1 (2019-08-27)
	1.3.0 (2019-04-22)
	1.2.1 (2019-01-25)
	1.2.0 (2019-01-15)
	1.2.0b3 (2019-01-07)
	1.2.0b2 (2019-02-02)
	1.2.0b1 (2018-12-31)
	1.1.0 (2017-10-10)
	1.0.2 (2017-02-04)
	1.0.1 (2016-10-22)
	1.0.0 (2016-08-31)
	0.9.0 (2016-04-15)
	0.8.10 (2015-09-02)
	0.8.9 (2014-05-16)
	0.8.8 (2013-11-30)
	0.8.7 (2013-08-29)
	0.8.6 (2013-08-12)
	0.8.5 (2013-05-27)
	0.8.4 (2013-05-24)
	0.8.3 (2013-04-28)
	0.8.2 (2012-11-14)
	0.8.1 (2012-02-13)
	0.8 (2012-01-31)
	0.7 (2012-01-11)
	0.6.1 (2012-01-08)
	0.6 (2012-01-07)
	0.5 (2012-01-03)
	0.4 (2012-01-02)
	0.3 (2012-01-02)
	0.2 (2011-12-31)
	0.1 (2011-12-30)
	Known Issues
	Support and Development
	Why?
	Python Module Index
	Index

