

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	WebHelpers 1.3 documentation

WebHelpers

	Version:	1.3, released 2011-03-23

	PyPI:	http://pypi.python.org/pypi/WebHelpers

	Docs:	http://sluggo.scrapping.cc/python/WebHelpers/index.html

	Source:	https://bitbucket.org/bbangert/webhelpers (Mercurial)

[image: WebHelpers Logo]
WebHelpers is a wide variety of utility functions for web applications and
other applications. It can be used with any web framework. See
What’s New for a list of changes and upgrading hints.

Version 1.3 improves Pyramid support in Paginate via URL generator classes.
(Note: 1.3b1 had a performance regression in Paginate. This is fixed in 1.3
final.)

WebHelpers includes the widely-used HTML tag builder with smart escaping and
convenience functions for common tags such as form fields. The common builder
ensures the tags are syntactically correct and prevent cross-site scripting
attacks and double-escaping.

Other helpers perform text processing, split a large number of records into
pages, generate Atom/RSS feeds with geographical (GIS) data, handle MIME types,
calculate numerica statistics, and more. There are also high-level container
types, including a value counter and accumulator. There are lists of country
names, country codes, US states, Canadian provinces, and UK counties.

WebHelpers itself depends only on MarkupSafe [http://pypi.python.org/pypi/MarkupSafe], which has an optional C
speedup for HTML escaping. However, a few individual helpers depend on
Routes [http://routes.groovie.org/], Unidecode [http://pypi.python.org/pypi/Unidecode/], WebOb [http://pythonpaste.org/webob/], or Pylons [http://pylonshq.com/]
as noted in their documentation. WebHelpers requires Python 2.4 or higher,
and has not yet been tested with Python 3. An extensive test suite for doctest
and Nose is included.

For support/questions/patches, please use the pylons-discuss [http://groups.google.com/group/pylons-discuss] mailing list.

	WebHelpers Documentation
	webhelpers.constants

	webhelpers.containers

	webhelpers.date

	webhelpers.feedgenerator

	webhelpers.html

	webhelpers.html.builder

	webhelpers.html.converters

	webhelpers.html.grid

	webhelpers.html.tags

	webhelpers.html.tools

	webhelpers.media

	webhelpers.mimehelper

	webhelpers.misc

	webhelpers.number

	webhelpers.paginate

	webhelpers.text

	webhelpers.util

	Pylons-specific subpackages

	Non-essential subpackages

	What’s New in WebHelpers

	Full Changelog

	Third-party helpers

	TODO

	Development

	TODO

	Index

	Module Index

	Search Page

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

WebHelpers Documentation

All helpers are organized into subpackages.

	webhelpers.constants

	webhelpers.containers

	webhelpers.date

	webhelpers.feedgenerator

	webhelpers.html

	webhelpers.html.builder

	webhelpers.html.converters

	webhelpers.html.grid

	webhelpers.html.tags

	webhelpers.html.tools

	webhelpers.media

	webhelpers.mimehelper

	webhelpers.misc

	webhelpers.number

	webhelpers.paginate

	webhelpers.text

	webhelpers.util

Pylons-specific subpackages

These work ONLY with the Pylons web framework and its derivatives (TurboGears 2).
They are NOT compatible with Pyramid; see the submodule pages for
alternatives.

	webhelpers.pylonslib

	webhelpers.pylonslib.flash

	webhelpers.pylonslib.grid

	webhelpers.pylonslib.minify

	webhelpers.pylonslib.secure_form

Non-essential subpackages

	webhelpers.markdown

	webhelpers.textile

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.constants

Place names and other constants often used in web forms.

Countries

	
webhelpers.constants.country_codes()

	Return a list of all country names as tuples. The tuple value is the
country’s 2-letter ISO code and its name; e.g.,
("GB", "United Kingdom"). The countries are in name order.

Can be used like this:

import webhelpers.constants as constants
from webhelpers.html.tags import select
select("country", country_codes(),
 prompt="Please choose a country ...")

See here for more information:
http://www.iso.org/iso/english_country_names_and_code_elements

States & Provinces

	
webhelpers.constants.us_states()

	List of USA states.

Return a list of (abbreviation, name) for all US states, sorted by name.
Includes the District of Columbia.

	
webhelpers.constants.us_territories()

	USA postal abbreviations for territories, protectorates, and military.

The return value is a list of (abbreviation, name) tuples. The
locations are sorted by name.

	
webhelpers.constants.canada_provinces()

	List of Canadian provinces.

Return a list of (abbreviation, name) tuples for all Canadian
provinces and territories, sorted by name.

	
webhelpers.constants.uk_counties()

	Return a list of UK county names.

Deprecations

The timezone helpers were removed in WebHelpers 0.6. Install the PyTZ
package if you need them.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.containers

Container objects, and helpers for lists and dicts.

This would have been called this “collections” except that Python 2 can’t
import a top-level module that’s the same name as a module in the current
package.

Classes

	
class webhelpers.containers.Counter

	I count the number of occurrences of each value registered with me.

Call the instance to register a value. The result is available as the
.result attribute. Example:

>>> counter = Counter()
>>> counter("foo")
>>> counter("bar")
>>> counter("foo")
>>> sorted(counter.result.items())
[('bar', 1), ('foo', 2)]

>> counter.result
{'foo': 2, 'bar': 1}

To see the most frequently-occurring items in order:

>>> counter.get_popular(1)
[(2, 'foo')]
>>> counter.get_popular()
[(2, 'foo'), (1, 'bar')]

Or if you prefer the list in item order:

>>> counter.get_sorted_items()
[('bar', 1), ('foo', 2)]

	
classmethod correlate(class_, iterable)

	Build a Counter from an iterable in one step.

This is the same as adding each item individually.

>>> counter = Counter.correlate(["A", "B", "A"])
>>> counter.result["A"]
2
>>> counter.result["B"]
1

	
get_popular(max_items=None)

	Return the results as as a list of (count, item) pairs, with the
most frequently occurring items first.

If max_items is provided, return no more than that many items.

	
get_sorted_items()

	Return the result as a list of (item, count) pairs sorted by item.

	
class webhelpers.containers.Accumulator

	Accumulate a dict of all values for each key.

Call the instance to register a value. The result is available as the
.result attribute. Example:

>>> bowling_scores = Accumulator()
>>> bowling_scores("Fred", 0)
>>> bowling_scores("Barney", 10)
>>> bowling_scores("Fred", 1)
>>> bowling_scores("Barney", 9)
>>> sorted(bowling_scores.result.items())
[('Barney', [10, 9]), ('Fred', [0, 1])]

>> bowling_scores.result
{'Fred': [0, 1], 'Barney': [10, 9]}

The values are stored in the order they’re registered.

Alternatives to this class include paste.util. multidict.MultiDict
in Ian Bicking’s Paste package.

	
classmethod correlate(class_, iterable, key)

	Create an Accumulator based on several related values.

key is a function to calculate the key for each item, akin to
list.sort(key=).

This is the same as adding each item individually.

	
class webhelpers.containers.UniqueAccumulator

	Accumulate a dict of unique values for each key.

The values are stored in an unordered set.

Call the instance to register a value. The result is available as the
.result attribute.

	
class webhelpers.containers.defaultdict(missing_func)

	A dict that automatically creates values for missing keys. This is the same
as collections.defaultdict in the Python standard library. It’s provided
here for Python 2.4, which doesn’t have that class.

When you try to read a key that’s missing, I call missing_func without
args to create a value. The result is inserted into the dict and returned.
Many Python type constructors can be used as missing_func. Passing
list or set creates an empty dict or set. Passing int creates
the integer 0. These are useful in the following ways:

>> d = defaultdict(list); d[ANYTHING].append(SOMEVALUE)
>> d = defaultdict(set); d[ANYTHING].include(SOMEVALUE)
>> d = defaultdict(int); d[ANYTHING] += 1

	
class webhelpers.containers.DumbObject(**kw)

	A container for arbitrary attributes.

Usage:

>>> do = DumbObject(a=1, b=2)
>>> do.b
2

Alternatives to this class include collections.namedtuple in Python
2.6, and formencode.declarative.Declarative in Ian Bicking’s FormEncode
package. Both alternatives offer more features, but DumbObject
shines in its simplicity and lack of dependencies.

Functions

	
webhelpers.containers.correlate_dicts(dicts, key)

	Correlate several dicts under one superdict.

If you have several dicts each with a ‘name’ key, this
puts them in a container dict keyed by name.

>>> d1 = {"name": "Fred", "age": 41}
>>> d2 = {"name": "Barney", "age": 31}
>>> flintstones = correlate_dicts([d1, d2], "name")
>>> sorted(flintstones.keys())
['Barney', 'Fred']
>>> flintstones["Fred"]["age"]
41

If you’re having trouble spelling this method correctly, remember:
“relate” has one ‘l’. The ‘r’ is doubled because it occurs after a prefix.
Thus “correlate”.

	
webhelpers.containers.correlate_objects(objects, attr)

	Correlate several objects under one dict.

If you have several objects each with a ‘name’ attribute, this
puts them in a dict keyed by name.

>>> class Flintstone(DumbObject):
... pass
...
>>> fred = Flintstone(name="Fred", age=41)
>>> barney = Flintstone(name="Barney", age=31)
>>> flintstones = correlate_objects([fred, barney], "name")
>>> sorted(flintstones.keys())
['Barney', 'Fred']
>>> flintstones["Barney"].age
31

If you’re having trouble spelling this method correctly, remember:
“relate” has one ‘l’. The ‘r’ is doubled because it occurs after a prefix.
Thus “correlate”.

	
webhelpers.containers.del_quiet(dic, keys)

	Delete several keys from a dict, ignoring those that don’t exist.

This modifies the dict in place.

>>> d ={"A": 1, "B": 2, "C": 3}
>>> del_quiet(d, ["A", "C"])
>>> d
{'B': 2}

	
webhelpers.containers.distribute(lis, columns, direction, fill=None)

	Distribute a list into a N-column table (list of lists).

lis is a list of values to distribute.

columns is an int greater than 1, specifying the number of columns in
the table.

direction is a string beginning with “H” (horizontal) or “V”
(vertical), case insensitive. This affects how values are distributed in
the table, as described below.

fill is a value that will be placed in any remaining cells if the data
runs out before the last row or column is completed. This must be an
immutable value such as None , "", 0, “ ”, etc. If you
use a mutable value like [] and later change any cell containing the
fill value, all other cells containing the fill value will also be changed.

The return value is a list of lists, where each sublist represents a row in
the table.
table[0] is the first row.
table[0][0] is the first column in the first row.
table[0][1] is the second column in the first row.

This can be displayed in an HTML table via the following Mako template:

<table>
% for row in table:
 <tr>
% for cell in row:
 <td>${cell}</td>
% endfor cell
 </tr>
% endfor row
</table>

In a horizontal table, each row is filled before going on to the next row.
This is the same as dividing the list into chunks:

>>> distribute([1, 2, 3, 4, 5, 6, 7, 8], 3, "H")
[[1, 2, 3], [4, 5, 6], [7, 8, None]]

In a vertical table, the first element of each sublist is filled before
going on to the second element. This is useful for displaying an
alphabetical list in columns, or when the entire column will be placed in
a single <td> with a
 between each element:

>>> food = ["apple", "banana", "carrot", "daikon", "egg", "fish", "gelato", "honey"]
>>> table = distribute(food, 3, "V", "")
>>> table
[['apple', 'daikon', 'gelato'], ['banana', 'egg', 'honey'], ['carrot', 'fish', '']]
>>> for row in table:
... for item in row:
... print "%-9s" % item,
... print "." # To show where the line ends.
...
apple daikon gelato .
banana egg honey .
carrot fish .

Alternatives to this function include a NumPy matrix of objects.

	
webhelpers.containers.except_keys(dic, keys)

	Return a copy of the dict without the specified keys.

>>> except_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
{'B': 2}

	
webhelpers.containers.extract_keys(dic, keys)

	Return two copies of the dict. The first has only the keys specified.
The second has all the other keys from the original dict.

>> extract_keys({"From": "F", "To": "T", "Received", R"}, ["To", "From"])
({"From": "F", "To": "T"}, {"Received": "R"})
>>> regular, extra = extract_keys({"From": "F", "To": "T", "Received": "R"}, ["To", "From"])
>>> sorted(regular.keys())
['From', 'To']
>>> sorted(extra.keys())
['Received']

	
webhelpers.containers.only_some_keys(dic, keys)

	Return a copy of the dict with only the specified keys present.

dic may be any mapping. The return value is always a Python dict.

>> only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
>>> sorted(only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"]).items())
[('A', 1), ('C', 3)]

	
webhelpers.containers.ordered_items(dic, key_order, other_keys=True, default=<class 'webhelpers.misc.NotGiven'>)

	Like dict.iteritems() but with a specified key order.

Arguments:

	dic is any mapping.

	key_order is a list of keys. Items will be yielded in this order.

	other_keys is a boolean.

	default is a value returned if the key is not in the dict.

This yields the items listed in key_order. If a key does not exist
in the dict, yield the default value if specified, otherwise skip the
missing key. Afterwards, if other_keys is true, yield the remaining
items in an arbitrary order.

Usage:

>>> dic = {"To": "you", "From": "me", "Date": "2008/1/4", "Subject": "X"}
>>> dic["received"] = "..."
>>> order = ["From", "To", "Subject"]
>>> list(ordered_items(dic, order, False))
[('From', 'me'), ('To', 'you'), ('Subject', 'X')]

	
webhelpers.containers.get_many(d, required=None, optional=None, one_of=None)

	Extract values from a dict for unpacking into simple variables.

d is a dict.

required is a list of keys that must be in the dict. The corresponding
values will be the first elements in the return list. Raise KeyError if any
of the keys are missing.

optional is a list of optional keys. The corresponding values will be
appended to the return list, substituting None for missing keys.

one_of is a list of alternative keys. Take the first key that exists
and append its value to the list. Raise KeyError if none of the keys exist.
This argument will append exactly one value if specified, or will do
nothing if not specified.

Example:

uid, action, limit, offset = get_many(request.params,
 required=['uid', 'action'], optional=['limit', 'offset'])

Contributed by Shazow.

	
webhelpers.containers.transpose(array)

	Turn a list of lists sideways, making columns into rows and vice-versa.

array must be rectangular; i.e., all elements must be the same
length. Otherwise the behavior is undefined: you may get IndexError
or missing items.

Examples:

>>> transpose([["A", "B", "C"], ["D", "E", "F"]])
[['A', 'D'], ['B', 'E'], ['C', 'F']]
>>> transpose([["A", "B"], ["C", "D"], ["E", "F"]])
[['A', 'C', 'E'], ['B', 'D', 'F']]
>>> transpose([])
[]

Here’s a pictoral view of the first example:

A B C => A D
D E F B E
 C F

This can be used to turn an HTML table into a group of div columns. An HTML
table is row major: it consists of several <tr> rows, each containing
several <td> cells. But a <div> layout consists of only one row, each
containing an entire subarray. The <div>s have style “float:left”, which
makes them appear horizontally. The items within each <div> are placed in
their own <div>’s or separated by
, which makes them appear
vertically. The point is that an HTML table is row major (array[0] is
the first row), while a group of div columns is column major (array[0]
is the first column). transpose() can be used to switch between the
two.

	
webhelpers.containers.unique(it)

	Return a list of unique elements in the iterable, preserving the order.

Usage:

>>> unique([None, "spam", 2, "spam", "A", "spam", "spam", "eggs", "spam"])
[None, 'spam', 2, 'A', 'eggs']

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.date

Date and time helpers.

	
webhelpers.date.distance_of_time_in_words(from_time, to_time=0, granularity='second', round=False)

	Return the absolute time-distance string for two datetime objects,
ints or any combination you can dream of.

If times are integers, they are interpreted as seconds from now.

granularity dictates where the string calculation is stopped.
If set to seconds (default) you will receive the full string. If
another accuracy is supplied you will receive an approximation.
Available granularities are:
‘century’, ‘decade’, ‘year’, ‘month’, ‘day’, ‘hour’, ‘minute’,
‘second’

Setting round to true will increase the result by 1 if the fractional
value is greater than 50% of the granularity unit.

Examples:

>>> distance_of_time_in_words(86399, round=True, granularity='day')
'1 day'
>>> distance_of_time_in_words(86399, granularity='day')
'less than 1 day'
>>> distance_of_time_in_words(86399)
'23 hours, 59 minutes and 59 seconds'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45))
'1 month, 15 days, 6 hours and 49 minutes'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45), granularity='decade')
'less than 1 decade'
>>> distance_of_time_in_words(datetime(2008,3,21, 16,34),
... datetime(2008,2,6,9,45), granularity='second')
'1 month, 15 days, 6 hours and 49 minutes'

	
webhelpers.date.time_ago_in_words(from_time, granularity='second', round=False)

	Return approximate-time-distance string for from_time till now.

Same as distance_of_time_in_words but the endpoint is now.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.feedgenerator

This is a port of Django’s feeed generator for creating RSS and Atom feeds.
The Geo classes for publishing geographical (GIS) data are also ported.

Syndication feed generation library – used for generating RSS, etc.

Sample usage:

>>> import webhelpers.feedgenerator as feedgenerator
>>> feed = feedgenerator.Rss201rev2Feed(
... title=u"Poynter E-Media Tidbits",
... link=u"http://www.poynter.org/column.asp?id=31",
... description=u"A group weblog by the sharpest minds in online media/journalism/publishing.",
... language=u"en",
...)
>>> feed.add_item(title="Hello", link=u"http://www.holovaty.com/test/", description="Testing.")
>>> fp = open('test.rss', 'w')
>>> feed.write(fp, 'utf-8')
>>> fp.close()

For definitions of the different versions of RSS, see:
http://diveintomark.org/archives/2004/02/04/incompatible-rss

Classes

	
class webhelpers.feedgenerator.SyndicationFeed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	Base class for all syndication feeds. Subclasses should provide write()

	
add_item(title, link, description, author_email=None, author_name=None, author_link=None, pubdate=None, comments=None, unique_id=None, enclosure=None, categories=(), item_copyright=None, ttl=None, **kwargs)

	Adds an item to the feed. All args are expected to be Python Unicode
objects except pubdate, which is a datetime.datetime object, and
enclosure, which is an instance of the Enclosure class.

	
add_item_elements(handler, item)

	Add elements on each item (i.e. item/entry) element.

	
add_root_elements(handler)

	Add elements in the root (i.e. feed/channel) element. Called
from write().

	
item_attributes(item)

	Return extra attributes to place on each item (i.e. item/entry) element.

	
latest_post_date()

	Returns the latest item’s pubdate. If none of them have a pubdate,
this returns the current date/time.

	
num_items()

	

	
root_attributes()

	Return extra attributes to place on the root (i.e. feed/channel) element.
Called from write().

	
write(outfile, encoding)

	Outputs the feed in the given encoding to outfile, which is a file-like
object. Subclasses should override this.

	
writeString(encoding)

	Returns the feed in the given encoding as a string.

	
class webhelpers.feedgenerator.Enclosure(url, length, mime_type)

	Represents an RSS enclosure

	
class webhelpers.feedgenerator.RssFeed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	
	
add_root_elements(handler)

	

	
endChannelElement(handler)

	

	
mime_type = 'application/rss+xml'

	

	
rss_attributes()

	

	
write(outfile, encoding)

	

	
write_items(handler)

	

	
class webhelpers.feedgenerator.RssUserland091Feed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	
	
add_item_elements(handler, item)

	

	
class webhelpers.feedgenerator.Rss201rev2Feed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	
	
add_item_elements(handler, item)

	

	
class webhelpers.feedgenerator.Atom1Feed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	
	
add_item_elements(handler, item)

	

	
add_root_elements(handler)

	

	
mime_type = 'application/atom+xml'

	

	
ns = u'http://www.w3.org/2005/Atom'

	

	
root_attributes()

	

	
write(outfile, encoding)

	

	
write_items(handler)

	

DefaultFeed is an alias for Rss201rev2Feed.

Functions

	
webhelpers.feedgenerator.rfc2822_date(date)

	

	
webhelpers.feedgenerator.rfc3339_date(date)

	

	
webhelpers.feedgenerator.get_tag_uri(url, date)

	Creates a TagURI. See http://diveintomark.org/archives/2004/05/28/howto-atom-id

GIS subclasses

These classes allow you to include geometries (e.g., latitude/longitude) in
your feed. The implementation is in a mixin class:

	
class webhelpers.feedgenerator.GeoFeedMixin

	This mixin provides the necessary routines for SyndicationFeed subclasses
to produce simple GeoRSS or W3C Geo elements.

Subclasses recognize a geometry keyword argument to .add_item().
The value may be any of several types:

	a 2-element tuple or list of floats representing latitude/longitude:
(X, Y). This is called a “point”.

	a 4-element tuple or list of floats representing a box:
(X0, Y0, X1, Y1).

	a tuple or list of two points: ((X0, Y0), (X1, Y1)).

	a Geometry instance. (Or any compatible class.) This provides
limited support for points, lines, and polygons. Read the Geometry
docstring and the source of GeoFeedMixin.add_georss_element()
before using this.

The mixin provides one class attribute:

	
is_input_latitude_first

	The default value False indicates that input data is in
latitude/longitude order. Change to True if the input data is
longitude/latitude. The output is always written latitude/longitude
to conform to the GeoRSS spec.

The reason for this attribute is that the Django original stores data
in longitude/latutude order and reverses the arguments before writing.
WebHelpers does not do this by default, but if you’re using Django data
or other data that has longitude first, you’ll have to set this.

Methods:

	
add_georss_element(handler, item, w3c_geo=False)

	This routine adds a GeoRSS XML element using the given item and handler.

	
add_georss_point(handler, coords, w3c_geo=False)

	Adds a GeoRSS point with the given coords using the given handler.
Handles the differences between simple GeoRSS and the more popular
W3C Geo specification.

	
georss_coords(coords)

	In GeoRSS coordinate pairs are ordered by lat/lon and separated by
a single white space. Given a tuple of coordinates, this will return
a unicode GeoRSS representation.

Two concrete subclasses are provided:

	
class webhelpers.feedgenerator.GeoAtom1Feed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	

	
class webhelpers.feedgenerator.W3CGeoFeed(title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs)

	

A minimal geometry class is included:

	
class webhelpers.feedgenerator.Geometry(geom_type, coords)

	A basic geometry class for GeoFeedMixin.

Instances have two public attributes:

	
geom_type

	“point”, “linestring”, “linearring”, “polygon”

	
coords

	For point, a tuple or list of two floats: (X, Y).

For linestring or linearring, a string: "X0 Y0 X1 Y1 ...".

For polygon, a list of strings: ["X0 Y0 X1 Y1 ..."]. Only the
first element is used because the Geo classes support only the exterior
ring.

The constructor does not check its argument types.

This class was created for WebHelpers based on the interface expected by
GeoFeedMixin.add_georss_element(). The class is untested. Please send
us feedback on whether it works for you.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.html

HTML generation helpers.

All public objects in the webhelpers.html.builder subpackage are also
available in the webhelpers.html namespace. Most programs will want
to put this line in their code:

from webhelpers.html import *

Or you can import the most frequently-used objects explicitly:

from webhelpers.html import HTML, escape, literal

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.html.builder

HTML/XHTML tag builder

HTML Builder provides:

	an HTML object that creates (X)HTML tags in a Pythonic way.

	a literal class used to mark strings containing intentional HTML markup.

	a smart escape() function that preserves literals but
escapes other strings that may accidentally contain markup characters (“<”,
“>”, “&”, ‘”’, “’”) or malicious Javascript tags. Escaped strings are
returned as literals to prevent them from being double-escaped later.

literal is a subclass of unicode, so it works with all string methods
and expressions. The only thing special about it is the .__html__ method,
which returns the string itself. The escape() function follows a simple
protocol: if the object has an .__html__ method, it calls that rather than
.__str__ to get the HTML representation. Third-party libraries that do not
want to import literal (and this create a dependency on WebHelpers) can put
an .__html__ method in their own classes returning the desired HTML
representation.

WebHelpers 1.2 uses MarkupSafe, a package which provides an enhanced
implementation of this protocol. Mako and Pylons have also switched to
MarkupSafe. Its advantages are a C speedup for escaping,
escaping single-quotes for security, and adding new methods to
literal. literal is now a subclass of markupsafe.Markup.
escape is markupsafe.escape_silent. (The latter does not exist yet in
MarkupSafe 0.9.3, but WebHelpers itself converts None to “” in the meantime).

Single-quote escaping affects HTML attributes that are written like this:
alt=’Some text.’ rather than the normal alt=”Some text.” If the text is a
replaceable parameter whose value contains a single quote, the browser would
think the value ends earlier than it does, thus enabling a potential cross-site
scripting (XSS) attack. WebHelpers 1.0 and earlier escaped double quotes but
not single quotes. MarkupSafe escapes both double and single quotes, preventing
this sort of attack.

MarkupSafe has some slight differences which should not cause compatibility
issues but may in the following edge cases. (A) The force argument to
escape() is gone. We doubt it was ever used. (B) The default encoding of
literal() is “ascii” instead of “utf-8”. (C) Double quotes are escaped as
“"” instead of “"”. Single quotes are escaped as “'”.

When literal is used in a mixed expression containing both literals and
ordinary strings, it tries hard to escape the strings and return a literal.
However, this depends on which value has “control” of the expression.
literal seems to be able to take control with all combinations of the +
operator, but with % and join it must be on the left side of the
expression. So these all work:

"A" + literal("B")
literal(", ").join(["A", literal("B")])
literal("%s %s") % (16, literal("kg"))

But these return an ordinary string which is prone to double-escaping later:

"\n".join([literal('Foo!'), literal('Bar!')])
"%s %s" % (literal("16"), literal("kg"))

Third-party libraries that don’t want to import literal and thus avoid a
dependency on WebHelpers can add an .__html__ method to any class, which
can return the same as .__str__ or something else. escape() trusts the
HTML method and does not escape the return value. So only strings that lack
an .__html__ method will be escaped.

The HTML object has the following methods for tag building:

	HTML(*strings)

	Escape the string args, concatenate them, and return a literal. This is
the same as escape(s) but accepts multiple strings. Multiple args are
useful when mixing child tags with text, such as:

html = HTML("The king is a >>", HTML.strong("fink"), "<<!")

	HTML.literal(*strings)

	Same as literal but concatenates multiple arguments.

	HTML.comment(*strings)

	Escape and concatenate the strings, and wrap the result in an HTML
comment.

	HTML.tag(tag, *content, **attrs)

	Create an HTML tag tag with the keyword args converted to attributes.
The other positional args become the content for the tag, and are escaped
and concatenated. If an attribute name conflicts with a Python keyword
(notably “class”), append an underscore. If an attribute value is
None, the attribute is not inserted. Two special keyword args are
recognized:

	c

	Specifies the content. This cannot be combined with content in
positional args. The purpose of this argument is to position the
content at the end of the argument list to match the native HTML
syntax more closely. Its use is entirely optional. The value can
be a string, a tuple, or a tag.

	_closed

	If present and false, do not close the tag. Otherwise the tag will be
closed with a closing tag or an XHTML-style trailing slash as described
below.

	_nl

	If present and true, insert a newline before the first content
element, between each content element, and at the end of the tag.

Example:

>>> HTML.tag("a", href="http://www.yahoo.com", name=None,
... c="Click Here")
literal(u'Click Here')

	HTML.__getattr__

	Same as HTML.tag but using attribute access. Example:

>>> HTML.a("Foo", href="http://example.com/", class_="important")
literal(u'Foo')

	HTML.cdata

	Wrap the text in a “<![CDATA[...]]>” section. Plain strings will not be
escaped because CDATA itself is an escaping syntax.

>>> HTML.cdata(u"Foo")
literal(u'<![CDATA[Foo]]>')

>>> HTML.cdata(u"<p>")
literal(u'<![CDATA[<p>]]>')

About XHTML and HTML

This builder always produces tags that are valid as both HTML and XHTML.
“Void” tags – those which can never have content like
 and <input>
– are written like
, with a space and a trailing /.

Only void tags get this treatment. The library will never, for
example, produce <script src="..." />, which is invalid HTML. Instead
it will produce <script src="..."></script>.

The W3C HTML validator [http://validator.w3.org/] validates these
constructs as valid HTML Strict. It does produce warnings, but those
warnings warn about the ambiguity if this same XML-style self-closing
tags are used for HTML elements that are allowed to take content (<script>,
<textarea>, etc). This library never produces markup like that.

Rather than add options to generate different kinds of behavior, we
felt it was better to create markup that could be used in different
contexts without any real problems and without the overhead of passing
options around or maintaining different contexts, where you’d have to
keep track of whether markup is being rendered in an HTML or XHTML
context.

If you _really_ want tags without training slashes (e.g.,
`)`, you can
abuse ``_closed=False to produce them.

Classes

	
class webhelpers.html.builder.literal(s, encoding=None, errors=strict')

	Represents an HTML literal.

This subclass of unicode has a .__html__() method that is
detected by the escape() function.

Also, if you add another string to this string, the other string
will be quoted and you will get back another literal object. Also
literal(...) % obj will quote any value(s) from obj. If
you do something like literal(...) + literal(...), neither
string will be changed because escape(literal(...)) doesn’t
change the original literal.

Changed in WebHelpers 1.2: the implementation is now now a subclass of
markupsafe.Markup. This brings some new methods: .escape (class
method), .unescape, and .striptags.

	
classmethod escape(s)

	Same as the escape function but return the proper subclass
in subclasses.

	
unescape()

	Unescape markup again into an text_type string. This also resolves
known HTML4 and XHTML entities:

>>> Markup("Main » About").unescape()
u'Main \xbb About'

	
striptags()

	Unescape markup into an text_type string and strip all tags. This
also resolves known HTML4 and XHTML entities. Whitespace is
normalized to one:

>>> Markup("Main » About").striptags()
u'Main \xbb About'

	
class webhelpers.html.builder.HTML

	Described above.

Functions

	
webhelpers.html.builder.lit_sub(*args, **kw)

	Literal-safe version of re.sub. If the string to be operated on is
a literal, return a literal result. All arguments are passed directly to
re.sub.

	
webhelpers.html.builder.url_escape(s, safe='/')

	Urlencode the path portion of a URL. This is the same function as
urllib.quote in the Python standard library. It’s exported here
with a name that’s easier to remember.

The markupsafe package has a function soft_unicode which converts a
string to Unicode if it’s not already. Unlike the Python builtin unicode(),
it will not convert Markup (literal) to plain Unicode, to avoid
overescaping. This is not included in WebHelpers but you may find it useful.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.html.converters

Functions that convert from text markup languages to HTML and back.

	
webhelpers.html.converters.format_paragraphs(text, preserve_lines=False)

	Convert text to HTML paragraphs.

	text:

	the text to convert. Split into paragraphs at blank lines (i.e.,
wherever two or more consecutive newlines appear), and wrap each
paragraph in a <p>.

	preserve_lines:

	If true, add
 before each single line break

	
webhelpers.html.converters.markdown(text, markdown=None, **kwargs)

	Format the text to HTML with Markdown formatting.

Markdown is a wiki-like text markup language, originally written by
John Gruber for Perl. The helper converts Markdown text to HTML.

There are at least two Python implementations of Markdown.
Markdown <http://www.freewisdom.org/projects/python-markdown/>`_is the
original port, and version 2.x contains extensions for footnotes, RSS, etc.
Markdown2 [http://code.google.com/p/python-markdown2/] is another port
which claims to be faster and to handle edge cases better.

You can pass the desired Markdown module as the markdown
argument, or the helper will try to import markdown. If neither is
available, it will fall back to webhelpers.markdown, which is
Freewisdom’s Markdown 1.7 without extensions.

IMPORTANT:
If your source text is untrusted and may contain malicious HTML markup,
pass safe_mode="escape" to escape it, safe_mode="replace" to
replace it with a scolding message, or safe_mode="remove" to strip it.

	
webhelpers.html.converters.nl2br(text)

	Insert a
 before each newline.

	
webhelpers.html.converters.textilize(text, sanitize=False)

	Format the text to HTML with Textile formatting.

This function uses the PyTextile library [http://dealmeida.net/]
which is included with WebHelpers.

Additionally, the output can be sanitized which will fix tags like
,
 and <hr /> for proper XHTML output.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.html.grid

A helper to make an HTML table from a list of dicts, objects, or sequences.

A set of CSS styles complementing this helper is in
“webhelpers/html/public/stylesheets/grid.css”. To use them, include the
stylesheet in your applcation and set your <table> class to “stylized”.

The documentation below is not very clear. This is a known bug. We need a
native English speaker who uses the module to volunteer to rewrite it.

This module is written and maintained by Ergo^.

A demo is available. Run the following command to produce some HTML tables:

python -m webhelpers.html.grid_demo OUTPUT_DIR

A subclass specialized for Pylons is in webhelpers.pylonslib.grid.

Grid class

	
class webhelpers.html.grid.Grid(itemlist, columns, column_labels=None, column_formats=None, start_number=1, order_column=None, order_direction=None, request=None, url=None, **kw)

	This class is designed to aid programmer in the task of creation of
tables/grids - structures that are mostly built from datasets.

To create a grid at minimum one one needs to pass a dataset,
like a list of dictionaries, or sqlalchemy proxy or query object:

grid = Grid(itemlist, ['_numbered','c1', 'c2','c4'])

where itemlist in this simple scenario is a list of dicts:

[{‘c1’:1,’c2’...}, {‘c1’...}, ...]

This helper also received the list that defines order in which
columns will be rendered - also keep note of special column name that can be
passed in list that defines order - _numbered - this adds additional
column that shows the number of item. For paging sql data there one can pass
start_number argument to the grid to define where to start counting.
Descendant sorting on _numbered column decrements the value, you can
change how numberign function behaves by overloading calc_row_no
property.

Converting the grid to a string renders the table rows. That’s just
the <tr> tags, not the <table> around them. The part outside the <tr>s
have too many variations for us to render it. In many template systems,
you can simply assign the grid to a template variable and it will be
automatically converted to a string. Example using a Mako template:

<table class="stylized">
<caption>My Lovely Grid</caption>
<col class="c1" />
${my_grid}
</table>

The names of the columns will get automatically converted for
humans ie. foo_bar becomes Foo Bar. If you want the title to be something
else you can change the grid.labels dict. If you want the column part_no
to become Catalogue Number just do:

grid.labels[``part_no``] = u'Catalogue Number'

It may be desired to exclude some or all columns from generation sorting
urls (used by subclasses that are sorting aware). You can use grids
exclude_ordering property to pass list of columns that should not support
sorting. By default sorting is disabled - this exclude_ordering contains
every column name.

Since various programmers have different needs, Grid is highly customizable.
By default grid attempts to read the value from dict directly by key.
For every column it will try to output value of current_row[‘colname’].

Since very often this behavior needs to be overridden like we need date
formatted, use conditionals or generate a link one can use
the column_formats dict and pass a rendering function/lambda to it.
For example we want to apppend foo to part number:

def custem_part_no_td(col_num, i, item):
 return HTML.td(`Foo %s` % item[``part_no``])

grid.column_formats[``part_no``] = custem_part_no_td

You can customize the grids look and behavior by overloading grids instance
render functions:

grid.default_column_format(self, column_number, i, record, column_name)
by default generates markup like:
<td class="cNO">VALUE</td>

grid.default_header_column_format(self, column_number, column_name,
 header_label)
by default generates markup like:
<td class="cNO COLUMN_NAME">VALUE</td>

grid.default_header_ordered_column_format(self, column_number, order,
 column_name, header_label)
Used by grids that support ordering of columns in the grid like,
webhelpers.pylonslib.grid.GridPylons.
by default generates markup like:
<td class="cNO ordering ORDER_DIRECTION COLUMN_NAME">LABEL</td>

grid.default_header_record_format(self, headers)
by default generates markup like:
<tr class="header">HEADERS_MARKUP</tr>

grid.default_record_format(self, i, record, columns)
Make an HTML table from a list of objects, and soon a list of
sequences, a list of dicts, and a single dict.
<tr class="ODD_OR_EVEN">RECORD_MARKUP</tr>

grid.generate_header_link(self, column_number, column, label_text)
by default just sets the order direction and column properties for grid.
Actual link generation is handled by sublasses of Grid.

grid.numbered_column_format(self, column_number, i, record)
by default generates markup like:
<td class="cNO">RECORD_NO</td>

	
generate_header_link(column_number, column, label_text)

	This handles generation of link and then decides to call
self.default_header_ordered_column_format
or
self.default_header_column_format
based on whether current column is the one that is used for sorting.

you need to extend Grid class and overload this method implementing
ordering here, whole operation consists of setting
self.order_column and self.order_dir to their CURRENT values,
and generating new urls for state that header should set set after its
clicked

(additional kw are passed to url gen. - like for webhelpers.paginate)
example URL generation code below:

GET = dict(self.request.copy().GET) # needs dict() for py2.5 compat
self.order_column = GET.pop("order_col", None)
self.order_dir = GET.pop("order_dir", None)
determine new order
if column == self.order_column and self.order_dir == "asc":
 new_order_dir = "dsc"
else:
 new_order_dir = "asc"
self.additional_kw['order_col'] = column
self.additional_kw['order_dir'] = new_order_dir
generate new url for example url_generator uses
pylons's url.current() or pyramid's current_route_url()
new_url = self.url_generator(**self.additional_kw)
set label for header with link
label_text = HTML.tag("a", href=new_url, c=label_text)

	
class webhelpers.html.grid.ObjectGrid(itemlist, columns, column_labels=None, column_formats=None, start_number=1, order_column=None, order_direction=None, request=None, url=None, **kw)

	A grid class for a sequence of objects.

This grid class assumes that the rows are objects rather than dicts, and
uses attribute access to retrieve the column values. It works well with
SQLAlchemy ORM instances.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.html.tags

Helpers that produce simple HTML tags.

Most helpers have an **attrs argument to specify additional HTML
attributes. A trailing underscore in the name will be deleted; this is
especially important for attributes that are identical to Python keywords;
e.g., class_. Some helpers handle certain keywords specially; these are
noted in the helpers’ docstrings.

To create your own custom tags, see webhelpers.html.builder.

A set of CSS styles complementing these helpers is in
webhelpers/public/stylesheets/webhelpers.css.

Form tags

	
webhelpers.html.tags.form(url, method='post', multipart=False, hidden_fields=None, **attrs)

	An open tag for a form that will submit to url.

You must close the form yourself by calling end_form() or outputting
</form>.

Options:

	method

	The method to use when submitting the form, usually either
“GET” or “POST”. If “PUT”, “DELETE”, or another verb is used, a
hidden input with name _method is added to simulate the verb
over POST.

	multipart

	If set to True, the enctype is set to “multipart/form-data”.
You must set it to true when uploading files, or the browser will
submit the filename rather than the file.

	hidden_fields

	Additional hidden fields to add to the beginning of the form. It may
be a dict or an iterable of key-value tuples. This is implemented by
calling the object’s .items() method if it has one, or just
iterating the object. (This will successfuly get multiple values for
the same key in WebOb MultiDict objects.)

Because input tags must be placed in a block tag rather than directly
inside the form, all hidden fields will be put in a
‘<div style=”display:none”>’. The style prevents the <div> from being
displayed or affecting the layout.

Examples:

>>> form("/submit")
literal(u'<form action="/submit" method="post">')
>>> form("/submit", method="get")
literal(u'<form action="/submit" method="get">')
>>> form("/submit", method="put")
literal(u'<form action="/submit" method="post"><div style="display:none">\n<input name="_method" type="hidden" value="put" />\n</div>\n')
>>> form("/submit", "post", multipart=True)
literal(u'<form action="/submit" enctype="multipart/form-data" method="post">')

Changed in WebHelpers 1.0b2: add <div> and hidden_fields arg.

Changed in WebHelpers 1.2: don’t add an “id” attribute to hidden tags
generated by this helper; they clash if there are multiple forms on the
page.

	
webhelpers.html.tags.end_form()

	Output “</form>”.

Example:

>>> end_form()
literal(u'</form>')

	
webhelpers.html.tags.text(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, type='text', **attrs)

	Create a standard text field.

value is a string, the content of the text field.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

type is the input field type, normally “text”. You can override it
for HTML 5 input fields that don’t have their own helper; e.g.,
“search”, “email”, “date”.

Options:

	
	disabled - If set to True, the user will not be able to use

	this input.

	
	size - The number of visible characters that will fit in the

	input.

	
	maxlength - The maximum number of characters that the browser

	will allow the user to enter.

The remaining keyword args will be standard HTML attributes for the tag.

Example, a text input field:

>>> text("address")
literal(u'<input id="address" name="address" type="text" />')

HTML 5 example, a color picker:

>>> text("color", type="color")
literal(u'<input id="color" name="color" type="color" />')

	
webhelpers.html.tags.textarea(name, content='', id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a text input area.

Example:

>>> textarea("body", "", cols=25, rows=10)
literal(u'<textarea cols="25" id="body" name="body" rows="10"></textarea>')

	
webhelpers.html.tags.hidden(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a hidden field.

	
webhelpers.html.tags.file(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a file upload field.

If you are using file uploads then you will also need to set the
multipart option for the form.

Example:

>>> file('myfile')
literal(u'<input id="myfile" name="myfile" type="file" />')

	
webhelpers.html.tags.password(name, value=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a password field.

Takes the same options as text().

	
webhelpers.html.tags.checkbox(name, value='1', checked=False, label=None, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a check box.

Arguments:
name – the widget’s name.

value – the value to return to the application if the box is checked.

checked – true if the box should be initially checked.

label – a text label to display to the right of the box.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

The following HTML attributes may be set by keyword argument:

	disabled - If true, checkbox will be grayed out.

	readonly - If true, the user will not be able to modify the checkbox.

To arrange multiple checkboxes in a group, see
webhelpers.containers.distribute().

Example:

>>> checkbox("hi")
literal(u'<input id="hi" name="hi" type="checkbox" value="1" />')

	
webhelpers.html.tags.radio(name, value, checked=False, label=None, **attrs)

	Create a radio button.

Arguments:
name – the field’s name.

value – the value returned to the application if the button is
pressed.

checked – true if the button should be initially pressed.

label – a text label to display to the right of the button.

The id of the radio button will be set to the name + ‘_’ + value to
ensure its uniqueness. An id keyword arg overrides this. (Note
that this behavior is unique to the radio() helper.)

To arrange multiple radio buttons in a group, see
webhelpers.containers.distribute().

	
webhelpers.html.tags.submit(name, value, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a submit button with the text value as the caption.

	
webhelpers.html.tags.select(name, selected_values, options, id=<class 'webhelpers.misc.NotGiven'>, **attrs)

	Create a dropdown selection box.

	name – the name of this control.

	selected_values – a string or list of strings or integers giving
the value(s) that should be preselected.

	options – an Options object or iterable of (value, label)
pairs. The label will be shown on the form; the option will be returned
to the application if that option is chosen. If you pass a string or int
instead of a 2-tuple, it will be used for both the value and the label.
If the value is a tuple or a list, it will be added as an optgroup,
with label as label.

id is the HTML ID attribute, and should be passed as a keyword
argument. By default the ID is the same as the name. filtered through
_make_safe_id_component(). Pass None to suppress the
ID attribute entirely.

CAUTION: the old rails helper options_for_select had the label first.
The order was reversed because most real-life collections have the value
first, including dicts of the form {value: label}. For those dicts
you can simply pass D.items() as this argument.

HINT: You can sort options alphabetically by label via:
sorted(my_options, key=lambda x: x[1])

The following options may only be keyword arguments:

	
	multiple – if true, this control will allow multiple

	selections.

	prompt – if specified, an extra option will be prepended to the
list: (“”, prompt). This is intended for those “Please choose ...”
pseudo-options. Its value is “”, equivalent to not making a selection.

Any other keyword args will become HTML attributes for the <select>.

Examples (call, result):

>>> select("currency", "$", [["$", "Dollar"], ["DKK", "Kroner"]])
literal(u'<select id="currency" name="currency">\n<option selected="selected" value="$">Dollar</option>\n<option value="DKK">Kroner</option>\n</select>')
>>> select("cc", "MasterCard", ["VISA", "MasterCard"], id="cc", class_="blue")
literal(u'<select class="blue" id="cc" name="cc">\n<option value="VISA">VISA</option>\n<option selected="selected" value="MasterCard">MasterCard</option>\n</select>')
>>> select("cc", ["VISA", "Discover"], ["VISA", "MasterCard", "Discover"])
literal(u'<select id="cc" name="cc">\n<option selected="selected" value="VISA">VISA</option>\n<option value="MasterCard">MasterCard</option>\n<option selected="selected" value="Discover">Discover</option>\n</select>')
>>> select("currency", None, [["$", "Dollar"], ["DKK", "Kroner"]], prompt="Please choose ...")
literal(u'<select id="currency" name="currency">\n<option selected="selected" value="">Please choose ...</option>\n<option value="$">Dollar</option>\n<option value="DKK">Kroner</option>\n</select>')
>>> select("privacy", 3L, [(1, "Private"), (2, "Semi-public"), (3, "Public")])
literal(u'<select id="privacy" name="privacy">\n<option value="1">Private</option>\n<option value="2">Semi-public</option>\n<option selected="selected" value="3">Public</option>\n</select>')
>>> select("recipients", None, [([("u1", "User1"), ("u2", "User2")], "Users"), ([("g1", "Group1"), ("g2", "Group2")], "Groups")])
literal(u'<select id="recipients" name="recipients">\n<optgroup label="Users">\n<option value="u1">User1</option>\n<option value="u2">User2</option>\n</optgroup>\n<optgroup label="Groups">\n<option value="g1">Group1</option>\n<option value="g2">Group2</option>\n</optgroup>\n</select>')

	
class webhelpers.html.tags.Options

	A tuple of Option objects for the select() helper.

select() calls this automatically so you don’t have to. However,
you may find it useful for organizing your code, and its methods can be
convenient.

This class has multiple jobs:

	Canonicalize the options given to select() into a consistent format.

	Avoid canonicalizing the same data multiple times. It subclasses tuple
rather than a list to guarantee that nonconformant elements won’t be
added after canonicalization.

	Provide convenience methods to iterate the values and labels separately.

>>> opts = Options(["A", 1, ("b", "B")])
>>> opts
Options([(u'A', u'A'), (u'1', u'1'), (u'b', u'B')])
>>> list(opts.values())
[u'A', u'1', u'b']
>>> list(opts.labels())
[u'A', u'1', u'B']
>>> opts[2].value
u'b'
>>> opts[2].label
u'B'

	
labels()

	Iterate the label element of each pair.

	
values()

	Iterate the value element of each pair.

	
class webhelpers.html.tags.Option(value, label)

	An option for an HTML select.

A simple container with two attributes, .value and .label.

	
class webhelpers.html.tags.OptGroup(label, options)

	A container for Options

	
webhelpers.html.tags.title(title, required=False, label_for=None)

	Format the user-visible title for a form field.

Use this for forms that have a text title above or next to each
field.

title – the name of the field; e.g., “First Name”.

required – if true, append a *” to the title and use the
‘required’ HTML format (see example); otherwise use the ‘not
required’ format.

label_for – if provided, put <label for="ID"> around the
title. The value should be the HTML ID of the input field related
to this title. Per the HTML standard, the ID should point to a
single control (input, select, textarea), not to multiple controls
(fieldset, group of checkboxes, group of radio buttons). ID’s are
set by passing the keyword arg id to the appropriate helper.

Note that checkboxes and radio buttions typically have their own
individual labels in addition to the title. You can set these with
the label argument to checkbox() and radio().

This helper does not accept other keyword arguments.

See webhepers/public/stylesheets/webhelpers.css for suggested styles.

>>> title("First Name")
literal(u'First Name')
>>> title("Last Name", True)
literal(u'Last Name *')
>>> title("First Name", False, "fname")
literal(u'<label for="fname">First Name</label>')
>>> title("Last Name", True, label_for="lname")
literal(u'<label for="lname">Last Name</label> *')

	
webhelpers.html.tags.required_legend()

	Return an inline HTML snippet explaining which fields are required.

See webhepers/public/stylesheets/webhelpers.css for suggested styles.

>>> required_legend()
literal(u'* = required')

ModelTags class

	
class webhelpers.html.tags.ModelTags(record, use_keys=False, date_format='%m/%d/%Y', id_format=None)

	A nice way to build a form for a database record.

ModelTags allows you to build a create/update form easily. (This is the
C and U in CRUD.) The constructor takes a database record, which can be
a SQLAlchemy mapped class, or any object with attributes or keys for the
field values. Its methods shadow the the form field helpers, but it
automatically fills in the value attribute based on the current value in
the record. (It also knows about the ‘checked’ and ‘selected’ attributes
for certain tags.)

You can also use the same form to input a new record. Pass None or
"" instead of a record, and it will set all the current values to a
default value, which is either the default keyword arg to the method, or
“” if not specified.

(Hint: in Pylons you can put mt = ModelTags(c.record) in your template,
and then if the record doesn’t exist you can either set c.record = None
or not set it at all. That’s because nonexistent c attributes resolve
to “” unless you’ve set config["pylons.strict_c"] = True. However,
having a c attribute that’s sometimes set and sometimes not is
arguably bad programming style.)

	
checkbox(name, value='1', label=None, **kw)

	Build a checkbox field.

The box will be initially checked if the value of the corresponding
database field is true.

The submitted form value will be “1” if the box was checked. If the
box is unchecked, no value will be submitted. (This is a downside of
the standard checkbox tag.)

To display multiple checkboxes in a group, see
webhelper.containers.distribute().

	
date(name, **kw)

	Same as text but format a date value into a date string.

The value can be a datetime.date, datetime.datetime, None,
or “”. The former two are converted to a string using the
date format passed to the constructor. The latter two are converted
to “”.

If there’s no database record, consult keyword arg default. It it’s
the string “today”, use todays’s date. Otherwise it can be any of the
values allowed above. If no default is specified, the text field is
initialized to “”.

Hint: you may wish to attach a Javascript calendar to the field.

	
file(name, **kw)

	Build a file upload field.

User agents may or may not respect the contents of the ‘value’ attribute.

	
hidden(name, **kw)

	Build a hidden HTML field.

	
password(name, **kw)

	Build a password field.

This is the same as a text box but the value will not be shown on the
screen as the user types.

	
radio(name, checked_value, label=None, **kw)

	Build a radio button.

The radio button will initially be selected if the database value
equals checked_value. On form submission the value will be
checked_value if the button was selected, or "" otherwise.

In case of a ModelTags object that is created from scratch
(e.g. new_employee=ModelTags(None)) the option that should
be checked can be set by the ‘default’ parameter. As in:
new_employee.radio('status', checked_value=7, default=7)

The control’s ‘id’ attribute will be modified as follows:

	If not specified but an ‘id_format’ was given to the constructor,
generate an ID based on the format.

	If an ID was passed in or was generated by step (1), append an
underscore and the checked value. Before appending the checked
value, lowercase it, change any spaces to "_", and remove any
non-alphanumeric characters except underscores and hyphens.

	If no ID was passed or generated by step (1), the radio button
will not have an ‘id’ attribute.

To display multiple radio buttons in a group, see
webhelper.containers.distribute().

	
select(name, options, **kw)

	Build a dropdown select box or list box.

See the select() function for the meaning of the arguments.

If the corresponding database value is not a list or tuple, it’s
wrapped in a one-element list. But if it’s “” or None, an empty
list is substituted. This is to accommodate multiselect lists, which
may have multiple values selected.

	
text(name, **kw)

	Build a text box.

	
textarea(name, **kw)

	Build a rectangular text area.

Hyperlinks

	
webhelpers.html.tags.link_to(label, url='', **attrs)

	Create a hyperlink with the given text pointing to the URL.

If the label is None or empty, the URL will be used as the label.

This function does not modify the URL in any way. The label will be
escaped if it contains HTML markup. To prevent escaping, wrap the label
in a webhelpers.html.literal().

	
webhelpers.html.tags.link_to_if(condition, label, url='', **attrs)

	Same as link_to but return just the label if the condition is false.

This is useful in a menu when you don’t want the current option to be a
link. The condition will be something like:
actual_value != value_of_this_menu_item.

	
webhelpers.html.tags.link_to_unless(condition, label, url='', **attrs)

	The opposite of link_to. Return just the label if the condition is
true.

Table tags

	
webhelpers.html.tags.th_sortable(current_order, column_order, label, url, class_if_sort_column='sort', class_if_not_sort_column=None, link_attrs=None, name='th', **attrs)

	<th> for a “click-to-sort-by” column.

Convenience function for a sortable column. If this is the current sort
column, just display the label and set the cell’s class to
class_if_sort_column.

current_order is the table’s current sort order. column_order is
the value pertaining to this column. In other words, if the two are equal,
the table is currently sorted by this column.

If this is the sort column, display the label and set the <th>’s class to
class_if_sort_column.

If this is not the sort column, display an <a> hyperlink based on
label, url, and link_attrs (a dict), and set the <th>’s class
to class_if_not_sort_column.

url is the literal href= value for the link. Pylons users would
typically pass something like url=h.url_for("mypage", sort="date").

**attrs are additional attributes for the <th> tag.

If you prefer a <td> tag instead of <th>, pass name="td".

To change the sort order via client-side Javascript, pass url=None and
the appropriate Javascript attributes in link_attrs.

Examples:

>>> sort = "name"
>>> th_sortable(sort, "name", "Name", "?sort=name")
literal(u'<th class="sort">Name</th>')
>>> th_sortable(sort, "date", "Date", "?sort=date")
literal(u'<th>Date</th>')
>>> th_sortable(sort, "date", "Date", None, link_attrs={"onclick": "myfunc()"})
literal(u'<th>Date</th>')

Other non-form tags

	
webhelpers.html.tags.ol(items, default=literal(u''), li_attrs=None, **attrs)

	Return an ordered list with each item wrapped in .

	items

	list of strings.

	default

	value returned _instead of the _ if there are no items in the list.
If None, return an empty .

	li_attrs

	dict of attributes for the tags.

Examples:

>>> ol(["foo", "bar"])
literal(u'\nfoo\nbar\n')
>>> ol(["A", "B"], li_attrs={"class_": "myli"}, class_="mylist")
literal(u'<ol class="mylist">\n<li class="myli">A\n<li class="myli">B\n')
>>> ol([])
literal(u'')

	
webhelpers.html.tags.ul(items, default=None, li_attrs=None, **attrs)

	Return an unordered list with each item wrapped in .

	items

	list of strings.

	default

	value returned _instead of the _ if there are no items in the list.
If None, return an empty .

	li_attrs

	dict of attributes for the tags.

Examples:

>>> ul(["foo", "bar"])
literal(u'\nfoo\nbar\n')
>>> ul(["A", "B"], li_attrs={"class_": "myli"}, class_="mylist")
literal(u'<ul class="mylist">\n<li class="myli">A\n<li class="myli">B\n')
>>> ul([])
literal(u'')
>>> ul([], default="")
''
>>> ul([], default=literal('No data'))
literal(u'No data')
>>> ul(["A"], default="NOTHING")
literal(u'\nA\n')

	
webhelpers.html.tags.image(url, alt, width=None, height=None, path=None, use_pil=False, **attrs)

	Return an image tag for the specified source.

	url

	The URL of the image. (This must be the exact URL desired. A
previous version of this helper added magic prefixes; this is
no longer the case.)

	alt

	The img’s alt tag. Non-graphical browsers and screen readers will
output this instead of the image. If the image is pure decoration
and uninteresting to non-graphical users, pass “”. To omit the
alt tag completely, pass None.

	width

	The width of the image, default is not included.

	height

	The height of the image, default is not included.

	path

	Calculate the width and height based on the image file at path if
possible. May not be specified if width or height is
specified. The results are also written to the debug log for
troubleshooting.

	use_pil

	If true, calcuate the image dimensions using the Python Imaging
Library, which must be installed. Otherwise use a pure Python
algorithm which understands fewer image formats and may be less
accurate. This flag controls whether
webhelpers.media.get_dimensions_pil or
webhelpers.media.get_dimensions is called. It has no effect if
path is not specified.

Examples:

>>> image('/images/rss.png', 'rss syndication')
literal(u'')

>>> image('/images/xml.png', "")
literal(u'')

>>> image("/images/icon.png", height=16, width=10, alt="Edit Entry")
literal(u'')

>>> image("/icons/icon.gif", alt="Icon", width=16, height=16)
literal(u'')

>>> image("/icons/icon.gif", None, width=16)
literal(u'')

	
webhelpers.html.tags.BR

	A break tag (“
”) followed by a newline. This is a literal
constant, not a function.

Head tags and document type

	
webhelpers.html.tags.stylesheet_link(*urls, **attrs)

	Return CSS link tags for the specified stylesheet URLs.

urls should be the exact URLs desired. A previous version of this
helper added magic prefixes; this is no longer the case.

Examples:

>>> stylesheet_link('/stylesheets/style.css')
literal(u'<link href="/stylesheets/style.css" media="screen" rel="stylesheet" type="text/css" />')

>>> stylesheet_link('/stylesheets/dir/file.css', media='all')
literal(u'<link href="/stylesheets/dir/file.css" media="all" rel="stylesheet" type="text/css" />')

	
webhelpers.html.tags.javascript_link(*urls, **attrs)

	Return script include tags for the specified javascript URLs.

urls should be the exact URLs desired. A previous version of this
helper added magic prefixes; this is no longer the case.

Specify the keyword argument defer=True to enable the script
defer attribute.

Examples:

>>> print javascript_link('/javascripts/prototype.js', '/other-javascripts/util.js')
<script src="/javascripts/prototype.js" type="text/javascript"></script>
<script src="/other-javascripts/util.js" type="text/javascript"></script>

>>> print javascript_link('/app.js', '/test/test.1.js')
<script src="/app.js" type="text/javascript"></script>
<script src="/test/test.1.js" type="text/javascript"></script>

	
webhelpers.html.tags.auto_discovery_link(url, feed_type='rss', **attrs)

	Return a link tag allowing auto-detecting of RSS or ATOM feed.

The auto-detection of feed for the current page is only for
browsers and news readers that support it.

	url

	The URL of the feed. (This should be the exact URLs desired. A
previous version of this helper added magic prefixes; this is no longer
the case.)

	feed_type

	The type of feed. Specifying ‘rss’ or ‘atom’ automatically
translates to a type of ‘application/rss+xml’ or
‘application/atom+xml’, respectively. Otherwise the type is
used as specified. Defaults to ‘rss’.

Examples:

>>> auto_discovery_link('http://feed.com/feed.xml')
literal(u'<link href="http://feed.com/feed.xml" rel="alternate" title="RSS" type="application/rss+xml" />')

>>> auto_discovery_link('http://feed.com/feed.xml', feed_type='atom')
literal(u'<link href="http://feed.com/feed.xml" rel="alternate" title="ATOM" type="application/atom+xml" />')

>>> auto_discovery_link('app.rss', feed_type='atom', title='atom feed')
literal(u'<link href="app.rss" rel="alternate" title="atom feed" type="application/atom+xml" />')

>>> auto_discovery_link('/app.html', feed_type='text/html')
literal(u'<link href="/app.html" rel="alternate" title="" type="text/html" />')

	
class webhelpers.html.tags.Doctype

	Document type declarations for HTML and XHTML.

	
html4(subtype='transitional', version='4.01')

	Create a <!DOCTYPE> for HTML 4.

Usage:

>>> Doctype().html4()
literal(u'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">')
>>> Doctype().html4("strict")
literal(u'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Strict//EN" "http://www.w3.org/TR/html4/strict.dtd">')
>>> Doctype().html4("frameset")
literal(u'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" "http://www.w3.org/TR/html4/frameset.dtd">')

	
html5()

	Create a <!DOCTYPE> for HTML 5.

Usage:

>>> Doctype().html5()
literal(u'<!doctype html>')

	
xhtml1(subtype='transitional', version='1.0')

	Create a <!DOCTYPE> for XHTML 1.

Usage:

>>> Doctype().xhtml1()
literal(u'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">')
>>> Doctype().xhtml1("strict")
literal(u'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">')
>>> Doctype().xhtml1("frameset")
literal(u'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">')

	
webhelpers.html.tags.xml_declaration(version='1.0', encoding='utf-8')

	Create an XML declaration.

Usage:

>>> xml_declaration()
literal(u'<?xml version="1.0" encoding="utf-8" ?>')

Utility functions

	
webhelpers.html.tags.css_classes(value_condition_pairs)

	Add CSS classes to a tag programmatically.

This helper is meant to be used as the class_ argument to a tag helper.

The argument is an iterable of (class, condition) pairs, where each
class is a string and condition is a boolean. The function
returns a space-separated list of classes whose conditions were true.

If all conditions are false, return None. This tells the caller to
suppress the “class” attribute entirely.

Examples:

>>> arg = [("first", False), ("even", True)]
>>> HTML.td("My content.", class_=css_classes(arg))
literal(u'<td class="even">My content.</td>')
>>> arg = [("first", True), ("even", True)]
>>> HTML.td("My content.", class_=css_classes(arg))
literal(u'<td class="first even">My content.</td>')
>>> arg = [("first", False), ("even", False)]
>>> HTML.td("My content.", class_=css_classes(arg))
literal(u'<td>My content.</td>')

	
webhelpers.html.tags.convert_boolean_attrs(attrs, bool_attrs)

	Convert boolean values into proper HTML attributes.

attrs is a dict of HTML attributes, which will be modified in
place.

bool_attrs is a list of attribute names.

For every element in bool_attrs, I look for a corresponding key in
attrs. If its value is true, I change the value to match the key.
For example, I convert selected=True into selected="selected". If
the value is false, I delete the key.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.html.tools

HTML helpers that are more than just simple tags.

There are no helpers to prettify HTML or canonicalize whitespace because
BeautifulSoup and HTMLTidy handle this well.

	
webhelpers.html.tools.auto_link(text, link='all', **href_attrs)

	Turn all urls and email addresses into clickable links.

	link

	Used to determine what to link. Options are “all”,
“email_addresses”, or “urls”

	href_attrs

	Additional attributes for generated <a> tags.

Example:

>>> auto_link("Go to http://www.planetpython.com and say hello to guido@python.org")
literal(u'Go to http://www.planetpython.com and say hello to guido@python.org')

	
webhelpers.html.tools.button_to(name, url='', **html_attrs)

	Generate a form containing a sole button that submits to
url.

Use this method instead of link_to for actions that do not have
the safe HTTP GET semantics implied by using a hypertext link.

The parameters are the same as for link_to. Any
html_attrs that you pass will be applied to the inner
input element. In particular, pass

disabled = True/False

as part of html_attrs to control whether the button is
disabled. The generated form element is given the class
‘button-to’, to which you can attach CSS styles for display
purposes.

The submit button itself will be displayed as an image if you
provide both type and src as followed:

type=’image’, src=’icon_delete.gif’

The src path should be the exact URL desired. A previous version of
this helper added magical prefixes but this is no longer the case.

Example 1:

inside of controller for "feeds"
>> button_to("Edit", url(action='edit', id=3))
<form method="post" action="/feeds/edit/3" class="button-to">
<div><input value="Edit" type="submit" /></div>
</form>

Example 2:

>> button_to("Destroy", url(action='destroy', id=3),
.. method='DELETE')
<form method="POST" action="/feeds/destroy/3"
 class="button-to">
<div>
 <input type="hidden" name="_method" value="DELETE" />
 <input value="Destroy" type="submit" />
</div>
</form>

Example 3:

Button as an image.
>> button_to("Edit", url(action='edit', id=3), type='image',
.. src='icon_delete.gif')
<form method="POST" action="/feeds/edit/3" class="button-to">
<div><input alt="Edit" src="/images/icon_delete.gif"
 type="image" value="Edit" /></div>
</form>

Note

This method generates HTML code that represents a form. Forms
are “block” content, which means that you should not try to
insert them into your HTML where only inline content is
expected. For example, you can legally insert a form inside of
a div or td element or in between p elements, but
not in the middle of a run of text, nor can you place a form
within another form.
(Bottom line: Always validate your HTML before going public.)

Changed in WebHelpers 1.2: Preserve case of “method” arg for XHTML
compatibility. E.g., “POST” or “PUT” causes method=”POST”; “post” or
“put” causes method=”post”.

	
webhelpers.html.tools.js_obfuscate(content)

	Obfuscate data in a Javascript tag.

Example:

>>> js_obfuscate("<input type='hidden' name='check' value='valid' />")
literal(u'<script type="text/javascript">\n//<![CDATA[\neval(unescape(\'%64%6f%63%75%6d%65%6e%74%2e%77%72%69%74%65%28%27%3c%69%6e%70%75%74%20%74%79%70%65%3d%27%68%69%64%64%65%6e%27%20%6e%61%6d%65%3d%27%63%68%65%63%6b%27%20%76%61%6c%75%65%3d%27%76%61%6c%69%64%27%20%2f%3e%27%29%3b\'))\n//]]>\n</script>')

	
webhelpers.html.tools.highlight(text, phrase, highlighter=None, case_sensitive=False, class_='highlight', **attrs)

	Highlight all occurrences of phrase in text.

This inserts “<strong class=”highlight”>...” around every
occurrence.

Arguments:

	text:

	The full text.

	phrase:

	A phrase to find in the text. This may be a string, a list of strings,
or a compiled regular expression. If a string, it’s regex-escaped and
compiled. If a list, all of the strings will be highlighted. This is
done by regex-escaping all elements and then joining them using the
regex “|” token.

	highlighter:

	Deprecated. A replacement expression for the regex substitution.
This was deprecated because it bypasses the HTML builder and creates
tags via string mangling. The previous default was ‘<strong
class=”highlight”>1’, which mimics the normal behavior of
this function. phrase must be a string if highlighter is
specified. Overrides class_ and attrs_ arguments.

	case_sensitive:

	If false (default), the phrases are searched in a case-insensitive
manner. No effect if phrase is a regex object.

	class_:

	CSS class for the tag.

	**attrs:

	Additional HTML attributes for the tag.

Changed in WebHelpers 1.0b2: new implementation using HTML builder.
Allow phrase to be list or regex. Deprecate highlighter and
change its default value to None. Add case_sensitive, class_,
and **attrs arguments.

	
webhelpers.html.tools.mail_to(email_address, name=None, cc=None, bcc=None, subject=None, body=None, replace_at=None, replace_dot=None, encode=None, **html_attrs)

	Create a link tag for starting an email to the specified
email_address.

This email_address is also used as the name of the link unless
name is specified. Additional HTML options, such as class or
id, can be passed in the html_attrs hash.

You can also make it difficult for spiders to harvest email address
by obfuscating them.

Examples:

>>> mail_to("me@domain.com", "My email", encode = "javascript")
literal(u'<script type="text/javascript">\n//<![CDATA[\neval(unescape(\'%64%6f%63%75%6d%65%6e%74%2e%77%72%69%74%65%28%27%3c%61%20%68%72%65%66%3d%22%6d%61%69%6c%74%6f%3a%6d%65%40%64%6f%6d%61%69%6e%2e%63%6f%6d%22%3e%4d%79%20%65%6d%61%69%6c%3c%2f%61%3e%27%29%3b\'))\n//]]>\n</script>')

>>> mail_to("me@domain.com", "My email", encode = "hex")
literal(u'My email')

You can also specify the cc address, bcc address, subject, and body
parts of the message header to create a complex e-mail using the
corresponding cc, bcc, subject, and body keyword
arguments. Each of these options are URI escaped and then appended
to the email_address before being output. Be aware that
javascript keywords will not be escaped and may break this feature
when encoding with javascript.

Examples:

>>> mail_to("me@domain.com", "My email", cc="ccaddress@domain.com", bcc="bccaddress@domain.com", subject="This is an example email", body= "This is the body of the message.")
literal(u'My email')

	
webhelpers.html.tools.strip_links(text)

	Strip link tags from text leaving just the link label.

Example:

>>> strip_links('else')
'else'

	
webhelpers.html.tools.strip_tags(text)

	Delete any HTML tags in the text, leaving their contents intact.
Convert newlines to spaces, and
 to newlines.

	Example::

	>>> strip_tags('Text emphasis <script>Javascript</script>.')
'Text emphasis Javascript.'
>>> strip_tags('Ordinary <!-- COMMENT! --> text.')
'Ordinary COMMENT! text.'
>>> strip_tags('Line\n1
Line 2')
'Line 1\nLine 2'

Implementation copied from WebOb.

webhelpers.html.converters contains more sophisticated versions of
this.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.media

Multimedia helpers for images, etc.

	
webhelpers.media.choose_height(new_width, width, height)

	Return the height corresponding to new_width that’s proportional
to the original size (width x height).

	
webhelpers.media.get_dimensions_pil(path, default=(None, None))

	Get an image’s size using the Python Imaging Library (PIL).

path is the path of the image file.

default is returned if the size could not be ascertained. This
usually means the file does not exist or is not in a format recognized by
PIL.

The normal return value is a tuple: (width, height).

Depends on the Python Imaging Library [http://pypi.python.org/pypi/PIL]. If your application is not
otherwise using PIL, see the get_dimensions() function, which does
not have external dependencies.

	
webhelpers.media.get_dimensions(path, default=(None, None))

	Get an image’s size using only the Python standard library.

path is the path of the image file.

default is returned if the size could not be ascertained. This
usually means the file does not exist or is not in a recognized format.
PIL. Only JPG, PNG, GIF, and BMP are supported at this time.

The normal return value is a tuple: (width, height).

The algorithms are based on a PyCode recipe [http://www.pycode.com/modules/?id=32&tab=download] by
Perenzo/Welch/Ray.

This helper recognizes fewer image formats and is potentially less
accurate than get_dimensions_pil().

Running this module as a script tests this helper. It will print the
size of each image file specified on the command line.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.mimehelper

MIME Type helpers

This helper depends on the WebOb package, and has optional Pylons support.

	
class webhelpers.mimehelper.MIMETypes(environ)

	MIMETypes registration mapping

The MIMETypes object class provides a single point to hold onto all
the registered mimetypes, and their association extensions. It’s
used by the mimetypes method to determine the appropriate content
type to return to a client.

	
classmethod add_alias(alias, mimetype)

	Create a MIMEType alias to a full mimetype.

Examples:

	add_alias('html', 'text/html')

	add_alias('xml', 'application/xml')

An alias may not contain the / character.

	
aliases = {}

	

	
classmethod init()

	Loads a default mapping of extensions and mimetypes

These are suitable for most web applications by default.
Additional types can be added by using the mimetypes module.

	
mimetype(content_type)

	Check the PATH_INFO of the current request and client’s HTTP Accept
to attempt to use the appropriate mime-type.

If a content-type is matched, return the appropriate response
content type, and if running under Pylons, set the response content
type directly. If a content-type is not matched, return False.

This works best with URLs that end in extensions that differentiate
content-type. Examples: http://example.com/example,
http://example.com/example.xml, http://example.com/example.csv

Since browsers generally allow for any content-type, but should be
sent HTML when possible, the html mimetype check should always come
first, as shown in the example below.

Example:

some code likely in environment.py
MIMETypes.init()
MIMETypes.add_alias('html', 'text/html')
MIMETypes.add_alias('xml', 'application/xml')
MIMETypes.add_alias('csv', 'text/csv')

code in a Pylons controller
def someaction(self):
 # prepare a bunch of data
 #

 # prepare MIMETypes object
 m = MIMETypes(request.environ)

 if m.mimetype('html'):
 return render('/some/template.html')
 elif m.mimetype('atom'):
 return render('/some/xml_template.xml')
 elif m.mimetype('csv'):
 # write the data to a csv file
 return csvfile
 else:
 abort(404)

Code in a non-Pylons controller.
m = MIMETypes(environ)
response_type = m.mimetype('html')
``response_type`` is a MIME type or ``False``.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.misc

Helpers that are neither text, numeric, container, or date.

Data processing

	
webhelpers.misc.all(seq[, pred])

	Is pred(elm) true for all elements?

With the default predicate, this is the same as Python 2.5’s all()
function; i.e., it returns true if all elements are true.

>>> all(["A", "B"])
True
>>> all(["A", ""])
False
>>> all(["", ""])
False
>>> all(["A", "B", "C"], lambda x: x <= "C")
True
>>> all(["A", "B", "C"], lambda x: x < "C")
False

From recipe in itertools docs.

	
webhelpers.misc.any(seq[, pred])

	Is pred(elm) is true for any element?

With the default predicate, this is the same as Python 2.5’s any()
function; i.e., it returns true if any element is true.

>>> any(["A", "B"])
True
>>> any(["A", ""])
True
>>> any(["", ""])
False
>>> any(["A", "B", "C"], lambda x: x <= "C")
True
>>> any(["A", "B", "C"], lambda x: x < "C")
True

From recipe in itertools docs.

	
webhelpers.misc.no(seq[, pred])

	Is pred(elm) false for all elements?

With the default predicate, this returns true if all elements are false.

>>> no(["A", "B"])
False
>>> no(["A", ""])
False
>>> no(["", ""])
True
>>> no(["A", "B", "C"], lambda x: x <= "C")
False
>>> no(["X", "Y", "Z"], lambda x: x <="C")
True

From recipe in itertools docs.

	
webhelpers.misc.count_true(seq[, pred])

	How many elements is pred(elm) true for?

With the default predicate, this counts the number of true elements.

>>> count_true([1, 2, 0, "A", ""])
3
>>> count_true([1, "A", 2], lambda x: isinstance(x, int))
2

This is equivalent to the itertools.quantify recipe, which I couldn’t
get to work.

	
webhelpers.misc.convert_or_none(value, type_)

	Return the value converted to the type, or None if error.

type_ may be a Python type or any function taking one argument.

>>> print convert_or_none("5", int)
5
>>> print convert_or_none("A", int)
None

	
webhelpers.misc.flatten(iterable)

	Recursively iterate lists and tuples.

Examples:

>>> list(flatten([1, [2, 3], 4]))
[1, 2, 3, 4]
>>> list(flatten([1, (2, 3, [4]), 5]))
[1, 2, 3, 4, 5]

Class-related and miscellaneous

	
class webhelpers.misc.NotGiven

	A default value for function args.

Use this when you need to distinguish between None and no value.

Example:

>>> def foo(arg=NotGiven):
... print arg is NotGiven
...
>>> foo()
True
>>> foo(None)
False

	
webhelpers.misc.subclasses_only(class_, it, exclude=None)

	Extract the subclasses of a class from a module, dict, or iterable.

Return a list of subclasses found. The class itself will not be included.
This is useful to collect the concrete subclasses of an abstract base
class.

class_ is a class.

it is a dict or iterable. If a dict is passed, examine its values,
not its keys. To introspect the current module, pass globals(). To
introspect another module or namespace, pass
vars(the_module_or_namespace).

exclude is an optional list of additional classes to ignore.
This is mainly used to exclude abstract subclasses.

Exceptions and deprecation

	
webhelpers.misc.deprecate(message, pending=False, stacklevel=2)

	Issue a deprecation warning.

message: the deprecation message.

pending: if true, use PendingDeprecationWarning. If false (default),
use DeprecationWarning. Python displays deprecations and ignores
pending deprecations by default.

stacklevel: passed to warnings.warn. The default level 2 makes the
traceback end at the caller’s level. Higher numbers make it end at higher
levels.

	
webhelpers.misc.format_exception(exc=None)

	Format the exception type and value for display, without the traceback.

This is the function you always wished were in the traceback module but
isn’t. It’s different from traceback.format_exception, which includes
the traceback, returns a list of lines, and has a trailing newline.

If you don’t provide an exception object as an argument, it will call
sys.exc_info() to get the current exception.

	
class webhelpers.misc.DeclarativeException(message=None)

	A simpler way to define an exception with a fixed message.

Subclasses have a class attribute .message, which is used if no
message is passed to the constructor. The default message is the empty
string.

Example:

>>> class MyException(DeclarativeException):
... message="can't frob the bar when foo is enabled"
...
>>> try:
... raise MyException()
... except Exception, e:
... print e
...
can't frob the bar when foo is enabled

	
message = ''

	

	
class webhelpers.misc.OverwriteError(filename, message="not overwriting '%s'")

	Refusing to overwrite an existing file or directory.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.number

Number formatting, numeric helpers, and numeric statistics.

Calculations

	
webhelpers.number.percent_of(part, whole)

	What percent of whole is part?

>>> percent_of(5, 100)
5.0
>>> percent_of(13, 26)
50.0

Statistics

	
webhelpers.number.mean(r)

	Return the mean (i.e., average) of a sequence of numbers.

>>> mean([5, 10])
7.5

	
webhelpers.number.average(r)

	Another name for mean(r).

	
webhelpers.number.median(r)

	Return the median of an iterable of numbers.

The median is the point at which half the numbers are lower than it and
half the numbers are higher. This gives a better sense of the majority
level than the mean (average) does, because the mean can be skewed by a few
extreme numbers at either end. For instance, say you want to calculate
the typical household income in a community and you’ve sampled four
households:

>>> incomes = [18000] # Fast food crew
>>> incomes.append(24000) # Janitor
>>> incomes.append(32000) # Journeyman
>>> incomes.append(44000) # Experienced journeyman
>>> incomes.append(67000) # Manager
>>> incomes.append(9999999) # Bill Gates
>>> median(incomes)
49500.0
>>> mean(incomes)
1697499.8333333333

The median here is somewhat close to the majority of incomes, while the
mean is far from anybody’s income.

This implementation makes a temporary list of all numbers in memory.

	
webhelpers.number.standard_deviation(r, sample=True)

	Standard deviation.

From the Python Cookbook [http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/442412].
Population mode contributed by Lorenzo Catucci.

Standard deviation shows the variability within a sequence of numbers.
A small standard deviation means the numbers are close to each other. A
large standard deviation shows they are widely different. In fact it
shows how far the numbers tend to deviate from the average. This can be
used to detect whether the average has been skewed by a few extremely high
or extremely low values.

Most natural and random phenomena follow the normal distribution (aka the
bell curve), which says that most values are close to average but a few are
extreme. E.g., most people are close to 5‘9” tall but a few are very tall
or very short. If the data does follow the bell curve, 68% of the values
will be within 1 standard deviation (stdev) of the average, and 95% will be
within 2 standard deviations. So a university professor grading exams on a
curve might give a “C” (mediocre) grade to students within 1 stdev of the
average score, “B” (better than average) to those within 2 stdevs above,
and “A” (perfect) to the 0.25% higher than 2 stdevs. Those between 1 and 2
stdevs below get a “D” (poor), and those below 2 stdevs... we won’t talk
about them.

By default the helper computes the unbiased estimate
for the population standard deviation, by applying an unbiasing
factor of sqrt(N/(N-1)).

If you’d rather have the function compute the population standard
deviation, pass sample=False.

The following examples are taken from Wikipedia.
http://en.wikipedia.org/wiki/Standard_deviation

>>> standard_deviation([0, 0, 14, 14])
8.082903768654761...
>>> standard_deviation([0, 6, 8, 14])
5.773502691896258...
>>> standard_deviation([6, 6, 8, 8])
1.1547005383792515
>>> standard_deviation([0, 0, 14, 14], sample=False)
7.0
>>> standard_deviation([0, 6, 8, 14], sample=False)
5.0
>>> standard_deviation([6, 6, 8, 8], sample=False)
1.0

(The results reported in Wikipedia are those expected for whole
population statistics and therefore are equal to the ones we get
by setting sample=False in the later tests.)

Fictitious average monthly temperatures in Southern California.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
>>> standard_deviation([70, 70, 70, 75, 80, 85, 90, 95, 90, 80, 75, 70])
9.003366373785...
>>> standard_deviation([70, 70, 70, 75, 80, 85, 90, 95, 90, 80, 75, 70], sample=False)
8.620067027323...

Fictitious average monthly temperatures in Montana.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
>>> standard_deviation([-32, -10, 20, 30, 60, 90, 100, 80, 60, 30, 10, -32])
45.1378360405574...
>>> standard_deviation([-32, -10, 20, 30, 60, 90, 100, 80, 60, 30, 10, -32], sample=False)
43.2161878106906...

	
webhelpers.number.format_number(n, thousands=', ', decimal='.')

	Format a number with a thousands separator and decimal delimiter.

n may be an int, long, float, or numeric string.
thousands is a separator to put after each thousand.
decimal is the delimiter to put before the fractional portion if any.

The default style has a thousands comma and decimal point per American
usage:

>>> format_number(1234567.89)
'1,234,567.89'
>>> format_number(123456)
'123,456'
>>> format_number(-123)
'-123'

Various European and international styles are also possible:

>>> format_number(1234567.89, " ")
'1 234 567.89'
>>> format_number(1234567.89, " ", ",")
'1 234 567,89'
>>> format_number(1234567.89, ".", ",")
'1.234.567,89'

	
class webhelpers.number.SimpleStats(numeric=False)

	Calculate a few simple statistics on data.

This class calculates the minimum, maximum, and count of all the values
given to it. The values are not saved in the object. Usage:

>>> stats = SimpleStats()
>>> stats(2) # Add one data value.
>>> stats.extend([6, 4]) # Add several data values at once.

The statistics are available as instance attributes:

>>> stats.count
3
>>> stats.min
2
>>> stats.max
6

Non-numeric data is also allowed:

>>> stats2 = SimpleStats()
>>> stats2("foo")
>>> stats2("bar")
>>> stats2.count
2
>>> stats2.min
'bar'
>>> stats2.max
'foo'

.min and .max are None until the first data value is
registered.

Subclasses can override ._init_stats and ._update_stats to add
additional statistics.

The constructor accepts one optional argument, numeric. If true, the
instance accepts only values that are int, long, or float.
The default is false, which accepts any value. This is meant for instances
or subclasses that don’t want non-numeric values.

	
__call__(value)

	Add a data value.

	
extend(values)

	Add several data values at once, akin to list.extend.

	
class webhelpers.number.Stats

	A container for data and statistics.

This class extends SimpleStats by calculating additional statistics,
and by storing all data seen. All values must be numeric (int,
long, and/or float), and you must call .finish() to generate
the additional statistics. That’s because the statistics here cannot be
calculated incrementally, but only after all data is known.

>>> stats = Stats()
>>> stats.extend([5, 10, 10])
>>> stats.count
3
>>> stats.finish()
>>> stats.mean
8.33333333333333...
>>> stats.median
10
>>> stats.standard_deviation
2.8867513459481287

All data is stored in a list and a set for later use:

>>> stats.list
[5, 10, 10]

>> stats.set
set([5, 10])

(The double prompt “>>” is used to hide the example from doctest.)

The stat attributes are None until you call .finish(). It’s
permissible – though not recommended – to add data after calling
.finish() and then call .finish() again. This recalculates the
stats over the entire data set.

In addition to the hook methods provided by SimpleStats, subclasses
can override ._finish-stats to provide additional statistics.

	
__call__(value)

	Add a data value.

	
extend(values)

	Add several data values at once, akin to list.extend.

	
finish()

	Finish calculations. (Call after adding all data values.)

Call this after adding all data values, or the results will be
incomplete.

Number formatting

	
webhelpers.number.format_data_size(size, unit, precision=1, binary=False, full_name=False)

	Format a number using SI units (kilo, mega, etc.).

size: The number as a float or int.

unit: The unit name in plural form. Examples: “bytes”, “B”.

precision: How many digits to the right of the decimal point. Default
is 1. 0 suppresses the decimal point.

binary: If false, use base-10 decimal prefixes (kilo = K = 1000).
If true, use base-2 binary prefixes (kibi = Ki = 1024).

full_name: If false (default), use the prefix abbreviation (“k” or
“Ki”). If true, use the full prefix (“kilo” or “kibi”). If false,
use abbreviation (“k” or “Ki”).

Examples:

>>> format_data_size(1024, "B")
'1.0 kB'
>>> format_data_size(1024, "B", 2)
'1.02 kB'
>>> format_data_size(1024, "B", 2, binary=True)
'1.00 KiB'
>>> format_data_size(54000, "Wh", 0)
'54 kWh'
>>> format_data_size(85000, "m/h", 0)
'85 km/h'
>>> format_data_size(85000, "m/h", 0).replace("km/h", "klicks")
'85 klicks'

	
webhelpers.number.format_byte_size(size, precision=1, binary=False, full_name=False)

	Same as format_data_size but specifically for bytes.

Examples:

>>> format_byte_size(2048)
'2.0 kB'
>>> format_byte_size(2048, full_name=True)
'2.0 kilobytes'

	
webhelpers.number.format_bit_size(size, precision=1, binary=False, full_name=False)

	Same as format_data_size but specifically for bits.

Examples:

>>> format_bit_size(2048)
'2.0 kb'
>>> format_bit_size(2048, full_name=True)
'2.0 kilobits'

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.paginate

paginate: a module to help split up lists or results from ORM queries

What is pagination?

This module helps dividing large lists of items into pages. The user
is shown one page at a time and can navigate to other pages. Imagine you
are offering a company phonebook and let the user search the entries. If
the search result contains 23 entries but you may want to display no
more than 10 entries at once. The first page contains entries 1-10, the
second 11-20 and the third 21-23. See the documentation of the “Page”
class for more information.

How do I use it?

One page of items is represented by the Page object. A Page gets
initialized with at least two arguments and usually three:

	The collection of items to pick a range from.

	The page number we want to display. (Default is 1: the first page.)

	A URL generator callback. (This tells what the URLs to other pages are.
It’s required if using the pager() method, although it may be omitted
under Pylons for backward compatibility. It is required for Pyramid.)

Here’s an interactive example.

First we’ll create a URL generator using the basic PageURL class, which
works with all frameworks and has no dependencies. It creates URLs by
overriding the ‘page’ query parameter.

Instantiate the URL generator, and call it to see what it does.
>>> url_for_page = PageURL("/articles/2013", {"page": "3"})
>>> url_for_page(page=2)
'/articles/2013?page=2'

Now we can create a collection and instantiate the Page:

Create a sample collection of 1000 items
>>> my_collection = range(1000)

Create a Page object for the 3rd page (20 items per page is the default)
>>> my_page = Page(my_collection, page=3, url=url_for_page)

The page object can be printed directly to get its details
>>> my_page
Page:
Collection type: <type 'list'>
(Current) page: 3
First item: 41
Last item: 60
First page: 1
Last page: 50
Previous page: 2
Next page: 4
Items per page: 20
Number of items: 1000
Number of pages: 50
<BLANKLINE>

Print a list of items on the current page
>>> my_page.items
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]

The *Page* object can be used as an iterator:
>>> for my_item in my_page: print my_item,
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

The .pager() method returns an HTML fragment with links to surrounding
pages.
[The ">>" prompt is to hide untestable examples from doctest.]
>> my_page.pager()
1 2 [3] 4 5 .. 50 (this is actually HTML)

The pager can be customized:
>> my_page.pager('$link_previous ~3~ $link_next (Page $page of $page_count)')
1 2 [3] 4 5 6 .. 50 > (Page 3 of 50)

There are many parameters that customize the Page’s behavor. See the
documentation on Page and Page.pager().

URL generator

The constructor’s url argument is a callback that returns URLs to other
pages. It’s required when using the Page.pager() method except under
Pylons, where it will fall back to pylons.url.current (Pylons 1) and then
routes.url_for (Pylons 0.9.7). If none of these are available, you’ll get
an exception “NotImplementedError: no URL generator available”.

WebHelpers 1.3 introduces a few URL generators for convenience. PageURL is
described above. PageURL_WebOb takes a webobb.Request object, and is
suitable for Pyramid, Pylons, TurboGears, and other frameworks that have a
WebOb-compatible Request object. Both of these classes assume that the page
number is in the ‘page’ query parameter.

Here’s an example for Pyramid and other WebOb-compatible frameworks:

Assume ``request`` is the current request.
import webhelpers.paginate as paginate
current_page = int(request.params["page"])
q = SOME_SQLALCHEMY_QUERY
page_url = paginate.PageURL_WebOb(request)
records = paginate.Page(q, current_page, url=page_url)

If the page number is in the URL path, you’ll have to use a framework-specific
URL generator. For instance, in Pyramid if the current route is
“/articles/{id}/page/{page}” and the current URL is
“/articles/ABC/page/3?print=1”, you can use Pyramid’s “current_route_url”
function as follows:

Assume ``request`` is the current request.
import webhelpers.paginate as paginate
from pyramid.url import current_route_url
def page_url(page):
 return current_route_url(request, page=page, _query=request.GET)
q = SOME_SQLALCHEMY_QUERY
current_page = int(request.matchdict["page"])
records = Page(q, current_page, url=page_url)

This overrides the ‘page’ path variable, while leaving the ‘id’ variable and
the query string intact.

The callback API is simple.

	It must accept an integer argument ‘page’, which will be passed by name.

	It should return the URL for that page.

	If you’re using AJAX ‘partial’ functionality described in the Page.pager
docstring, the callback should also accept a ‘partial’ argument and, if
true, set a query parameter ‘partial=1’.

	If you use the ‘page_param’ or ‘partial_param’ argument to Page.pager,
the ‘page’ and ‘partial’ arguments will be renamed to whatever you specify.
In this case, the callback would also have to expect these other argument
names.

The supplied classes adhere to this API in their
.__call__ method, all except the fourth condition. So you can use their
instances as callbacks as long as you don’t use ‘page_param’ or ‘partial_param’.

For convenience in writing callbacks that update the ‘page’ query parameter, a
make_page_url function is available that assembles the pieces into a
complete URL. Other callbacks may find webhelpers.utl.update_params useful,
which overrides query parameters on a more general basis.

Can I use AJAX / AJAH?

Yes. See partial_param and onclick in Page.pager().

Notes

Page numbers and item numbers start at 1. This concept has been used
because users expect that the first page has number 1 and the first item
on a page also has number 1. So if you want to use the page’s items by
their index number please note that you have to subtract 1.

This module is the successor to the obsolete webhelpers.pagination
module. It is NOT API compatible.

This module is based on the code from
http://workaround.org/cgi-bin/hg-paginate that is known at the
“Paginate” module on PyPI. It was written by Christoph Haas
<email@christoph-haas.de>, and modified by Christoph Haas and Mike Orr for
WebHelpers. (c) 2007-2011.

Page Objects

	
class webhelpers.paginate.Page(collection, page=1, items_per_page=20, item_count=None, sqlalchemy_session=None, presliced_list=False, url=None, **kwargs)

	A list/iterator of items representing one page in a larger
collection.

An instance of the “Page” class is created from a collection of things.
The instance works as an iterator running from the first item to the
last item on the given page. The collection can be:

	a sequence

	an SQLAlchemy query - e.g.: Session.query(MyModel)

	an SQLAlchemy select - e.g.: sqlalchemy.select([my_table])

A “Page” instance maintains pagination logic associated with each
page, where it begins, what the first/last item on the page is, etc.
The pager() method creates a link list allowing the user to go to
other pages.

WARNING: Unless you pass in an item_count, a count will be
performed on the collection every time a Page instance is created.
If using an ORM, it’s advised to pass in the number of items in the
collection if that number is known.

Instance attributes:

	original_collection

	Points to the collection object being paged through

	item_count

	Number of items in the collection

	page

	Number of the current page

	items_per_page

	Maximal number of items displayed on a page

	first_page

	Number of the first page - starts with 1

	last_page

	Number of the last page

	page_count

	Number of pages

	items

	Sequence/iterator of items on the current page

	first_item

	Index of first item on the current page - starts with 1

	last_item

	Index of last item on the current page

	
pager(format='~2~', page_param='page', partial_param='partial', show_if_single_page=False, separator=' ', onclick=None, symbol_first='<<', symbol_last='>>', symbol_previous='<', symbol_next='>', link_attr={'class': 'pager_link'}, curpage_attr={'class': 'pager_curpage'}, dotdot_attr={'class': 'pager_dotdot'}, **kwargs)

	Return string with links to other pages (e.g. “1 2 [3] 4 5 6 7”).

	format:

	Format string that defines how the pager is rendered. The string
can contain the following $-tokens that are substituted by the
string.Template module:

	$first_page: number of first reachable page

	$last_page: number of last reachable page

	$page: number of currently selected page

	$page_count: number of reachable pages

	$items_per_page: maximal number of items per page

	$first_item: index of first item on the current page

	$last_item: index of last item on the current page

	$item_count: total number of items

	$link_first: link to first page (unless this is first page)

	$link_last: link to last page (unless this is last page)

	$link_previous: link to previous page (unless this is first page)

	$link_next: link to next page (unless this is last page)

To render a range of pages the token ‘~3~’ can be used. The
number sets the radius of pages around the current page.
Example for a range with radius 3:

‘1 .. 5 6 7 [8] 9 10 11 .. 500’

Default: ‘~2~’

	symbol_first

	String to be displayed as the text for the %(link_first)s
link above.

Default: ‘<<’

	symbol_last

	String to be displayed as the text for the %(link_last)s
link above.

Default: ‘>>’

	symbol_previous

	String to be displayed as the text for the %(link_previous)s
link above.

Default: ‘<’

	symbol_next

	String to be displayed as the text for the %(link_next)s
link above.

Default: ‘>’

	separator:

	String that is used to separate page links/numbers in the
above range of pages.

Default: ‘ ‘

	page_param:

	The name of the parameter that will carry the number of the
page the user just clicked on. The parameter will be passed
to a url_for() call so if you stay with the default
‘:controller/:action/:id’ routing and set page_param=’id’ then
the :id part of the URL will be changed. If you set
page_param=’page’ then url_for() will make it an extra
parameters like ‘:controller/:action/:id?page=1’.
You need the page_param in your action to determine the page
number the user wants to see. If you do not specify anything
else the default will be a parameter called ‘page’.

Note: If you set this argument and are using a URL generator
callback, the callback must accept this name as an argument instead
of ‘page’.
callback, becaust the callback requires its argument to be ‘page’.
Instead the callback itself can return any URL necessary.

	partial_param:

	When using AJAX/AJAH to do partial updates of the page area the
application has to know whether a partial update (only the
area to be replaced) or a full update (reloading the whole
page) is required. So this parameter is the name of the URL
parameter that gets set to 1 if the ‘onclick’ parameter is
used. So if the user requests a new page through a Javascript
action (onclick) then this parameter gets set and the application
is supposed to return a partial content. And without
Javascript this parameter is not set. The application thus has
to check for the existence of this parameter to determine
whether only a partial or a full page needs to be returned.
See also the examples in this modules docstring.

Default: ‘partial’

Note: If you set this argument and are using a URL generator
callback, the callback must accept this name as an argument instead
of ‘partial’.

	show_if_single_page:

	if True the navigator will be shown even if there is only
one page

Default: False

	link_attr (optional)

	A dictionary of attributes that get added to A-HREF links
pointing to other pages. Can be used to define a CSS style
or class to customize the look of links.

Example: { ‘style’:’border: 1px solid green’ }

Default: { ‘class’:’pager_link’ }

	curpage_attr (optional)

	A dictionary of attributes that get added to the current
page number in the pager (which is obviously not a link).
If this dictionary is not empty then the elements
will be wrapped in a SPAN tag with the given attributes.

Example: { ‘style’:’border: 3px solid blue’ }

Default: { ‘class’:’pager_curpage’ }

	dotdot_attr (optional)

	A dictionary of attributes that get added to the ‘..’ string
in the pager (which is obviously not a link). If this
dictionary is not empty then the elements will be wrapped in
a SPAN tag with the given attributes.

Example: { ‘style’:’color: #808080’ }

Default: { ‘class’:’pager_dotdot’ }

	onclick (optional)

	This paramter is a string containing optional Javascript code
that will be used as the ‘onclick’ action of each pager link.
It can be used to enhance your pager with AJAX actions loading another
page into a DOM object.

In this string the variable ‘$partial_url’ will be replaced by
the URL linking to the desired page with an added ‘partial=1’
parameter (or whatever you set ‘partial_param’ to).
In addition the ‘$page’ variable gets replaced by the
respective page number.

Note that the URL to the destination page contains a ‘partial_param’
parameter so that you can distinguish between AJAX requests (just
refreshing the paginated area of your page) and full requests (loading
the whole new page).

[Backward compatibility: you can use ‘%s’ instead of ‘$partial_url’]

	jQuery example:

	“$(‘#my-page-area’).load(‘$partial_url’); return false;”

	Yahoo UI example:

	
	“YAHOO.util.Connect.asyncRequest(‘GET’,’$partial_url’,{

	success:function(o){YAHOO.util.Dom.get(‘#my-page-area’).innerHTML=o.responseText;}
},null); return false;”

	scriptaculous example:

	
	“new Ajax.Updater(‘#my-page-area’, ‘$partial_url’,

	{asynchronous:true, evalScripts:true}); return false;”

	ExtJS example:

	“Ext.get(‘#my-page-area’).load({url:’$partial_url’}); return false;”

	Custom example:

	“my_load_page($page)”

Additional keyword arguments are used as arguments in the links.
Otherwise the link will be created with url_for() which points
to the page you are currently displaying.

URL generators

	
class webhelpers.paginate.PageURL(path, params)

	A simple page URL generator for any framework.

	
__call__(page, partial=False)

	Generate a URL for the specified page.

	
class webhelpers.paginate.PageURL_WebOb(request, qualified=False)

	A page URL generator for WebOb-compatible Request objects.

I derive new URLs based on the current URL but overriding the ‘page’
query parameter.

I’m suitable for Pyramid, Pylons, and TurboGears, as well as any other
framework whose Request object has ‘application_url’, ‘path’, and ‘GET’
attributes that behave the same way as webob.Request‘s.

	
__call__(page, partial=False)

	Generate a URL for the specified page.

	
webhelpers.paginate.make_page_url(path, params, page, partial=False, sort=True)

	A helper function for URL generators.

I assemble a URL from its parts. I assume that a link to a certain page is
done by overriding the ‘page’ query parameter.

path is the current URL path, with or without a “scheme://host” prefix.

params is the current query parameters as a dict or dict-like object.

page is the target page number.

If partial is true, set query param ‘partial=1’. This is to for AJAX
calls requesting a partial page.

If sort is true (default), the parameters will be sorted. Otherwise
they’ll be in whatever order the dict iterates them.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.text

Functions that output text (not HTML).

Helpers for filtering, formatting, and transforming strings.

	
webhelpers.text.chop_at(s, sub, inclusive=False)

	Truncate string s at the first occurrence of sub.

If inclusive is true, truncate just after sub rather than at it.

>>> chop_at("plutocratic brats", "rat")
'plutoc'
>>> chop_at("plutocratic brats", "rat", True)
'plutocrat'

	
webhelpers.text.collapse(string, character=' ')

	Removes specified character from the beginning and/or end of the
string and then condenses runs of the character within the string.

Based on Ruby’s stringex package
(http://github.com/rsl/stringex/tree/master)

	
webhelpers.text.convert_accented_entities(string)

	Converts HTML entities into the respective non-accented letters.

Examples:

>>> convert_accented_entities("á")
'a'
>>> convert_accented_entities("ç")
'c'
>>> convert_accented_entities("è")
'e'
>>> convert_accented_entities("î")
'i'
>>> convert_accented_entities("ø")
'o'
>>> convert_accented_entities("ü")
'u'

Note: This does not do any conversion of Unicode/ASCII
accented-characters. For that functionality please use unidecode.

Based on Ruby’s stringex package
(http://github.com/rsl/stringex/tree/master)

	
webhelpers.text.convert_misc_entities(string)

	Converts HTML entities (taken from common Textile formattings)
into plain text formats

Note: This isn’t an attempt at complete conversion of HTML
entities, just those most likely to be generated by Textile.

Based on Ruby’s stringex package
(http://github.com/rsl/stringex/tree/master)

	
webhelpers.text.excerpt(text, phrase, radius=100, excerpt_string='...')

	Extract an excerpt from the text, or ‘’ if the phrase isn’t
found.

	phrase

	Phrase to excerpt from text

	radius

	How many surrounding characters to include

	excerpt_string

	Characters surrounding entire excerpt

Example:

>>> excerpt("hello my world", "my", 3)
'...lo my wo...'

	
webhelpers.text.lchop(s, sub)

	Chop sub off the front of s if present.

>>> lchop("##This is a comment.##", "##")
'This is a comment.##'

The difference between lchop and s.lstrip is that lchop strips
only the exact prefix, while s.lstrip treats the argument as a set of
leading characters to delete regardless of order.

	
webhelpers.text.plural(n, singular, plural, with_number=True)

	Return the singular or plural form of a word, according to the number.

If with_number is true (default), the return value will be the number
followed by the word. Otherwise the word alone will be returned.

Usage:

>>> plural(2, "ox", "oxen")
'2 oxen'
>>> plural(2, "ox", "oxen", False)
'oxen'

	
webhelpers.text.rchop(s, sub)

	Chop sub off the end of s if present.

>>> rchop("##This is a comment.##", "##")
'##This is a comment.'

The difference between rchop and s.rstrip is that rchop strips
only the exact suffix, while s.rstrip treats the argument as a set of
trailing characters to delete regardless of order.

	
webhelpers.text.remove_formatting(string)

	Simplify HTML text by removing tags and several kinds of formatting.

If the unidecode package is installed, it will also transliterate
non-ASCII Unicode characters to their nearest pronunciation equivalent in
ASCII.

Based on Ruby’s stringex package
(http://github.com/rsl/stringex/tree/master)

	
webhelpers.text.replace_whitespace(string, replace=' ')

	Replace runs of whitespace in string

Defaults to a single space but any replacement string may be
specified as an argument. Examples:

>>> replace_whitespace("Foo bar")
'Foo bar'
>>> replace_whitespace("Foo bar", "-")
'Foo-bar'

Based on Ruby’s stringex package
(http://github.com/rsl/stringex/tree/master)

	
webhelpers.text.series(items, conjunction='and', strict_commas=True)

	Join strings using commas and a conjunction such as “and” or “or”.

Examples:

>>> series(["A", "B", "C"])
'A, B, and C'
>>> series(["A", "B", "C"], "or")
'A, B, or C'
>>> series(["A", "B", "C"], strict_commas=False)
'A, B and C'
>>> series(["A", "B"])
'A and B'
>>> series(["A"])
'A'
>>> series([])
''

	
webhelpers.text.strip_leading_whitespace(s)

	Strip the leading whitespace in all lines in s.

This deletes all leading whitespace. textwrap.dedent deletes only
the whitespace common to all lines.

	
webhelpers.text.truncate(text, length=30, indicator='...', whole_word=False)

	Truncate text with replacement characters.

	length

	The maximum length of text before replacement

	indicator

	If text exceeds the length, this string will replace
the end of the string

	whole_word

	If true, shorten the string further to avoid breaking a word in the
middle. A word is defined as any string not containing whitespace.
If the entire text before the break is a single word, it will have to
be broken.

Example:

>>> truncate('Once upon a time in a world far far away', 14)
'Once upon a...'

	
webhelpers.text.urlify(string)

	Create a URI-friendly representation of the string

Can be called manually in order to generate an URI-friendly version
of any string.

If the unidecode package is installed, it will also transliterate
non-ASCII Unicode characters to their nearest pronounciation equivalent in
ASCII.

	Examples::

	>>> urlify("Mighty Mighty Bosstones")
'mighty-mighty-bosstones'

Based on Ruby’s stringex package
(http://github.com/rsl/stringex/tree/master)

Changed in WebHelpers 1.2: urlecode the result in case it contains special
characters like ”?”.

	
webhelpers.text.wrap_paragraphs(text, width=72)

	Wrap all paragraphs in a text string to the specified width.

width may be an int or a textwrap.TextWrapper instance.
The latter allows you to set other options besides the width, and is more
efficient when wrapping many texts.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.util

Utility functions used by various web helpers.

This module contains support functions used by other helpers, and functions for
URL manipulation. Most of these helpers predate the 0.6 reorganization; they
would have been put in other subpackages if they have been created later.

	
webhelpers.util.update_params(_url, _debug=False, **params)

	Update query parameters in a URL.

_url is any URL, with or without a query string.

**params are query parameters to add or replace. Each value may be a
string, a list of strings, or None. Passing a list generates multiple
values for the same parameter. Passing None deletes the corresponding
parameter if present.

Return the new URL.

Debug mode: if a pseudo-parameter _debug=True is passed,
return a tuple: [0] is the URL without query string or fragment,
[1] is the final query parameters as a dict, and [2] is the
fragment part of the original URL or the empty string.

Usage:

>>> update_params("foo", new1="NEW1")
'foo?new1=NEW1'
>>> update_params("foo?p=1", p="2")
'foo?p=2'
>>> update_params("foo?p=1", p=None)
'foo'
>>> update_params("http://example.com/foo?new1=OLD1#myfrag", new1="NEW1")
'http://example.com/foo?new1=NEW1#myfrag'
>>> update_params("http://example.com/foo?new1=OLD1#myfrag", new1="NEW1", _debug=True)
('http://example.com/foo', {'new1': 'NEW1'}, 'myfrag')
>>> update_params("http://www.mau.de?foo=2", brrr=3)
'http://www.mau.de?foo=2&brrr=3'
>>> update_params("http://www.mau.de?foo=A&foo=B", foo=["C", "D"])
'http://www.mau.de?foo=C&foo=D'

	
webhelpers.util.cgi_escape(s, quote=False)

	Replace special characters ‘&’, ‘<’ and ‘>’ by SGML entities.

This is a slightly more efficient version of the cgi.escape by
using ‘in’ membership to test if the replace is needed.

This function returns a plain string. Programs using the HTML builder
should call webhelpers.html.builder.escape() instead of this to prevent
double-escaping.

Changed in WebHelpers 1.2: escape single-quote as well as double-quote.

	
webhelpers.util.html_escape(s)

	HTML-escape a string or object.

This converts any non-string objects passed into it to strings
(actually, using unicode()). All values returned are
non-unicode strings (using &#num; entities for all non-ASCII
characters).

None is treated specially, and returns the empty string.

This function returns a plain string. Programs using the HTML builder
should wrap the result in literal() to prevent double-escaping.

	
webhelpers.util.iri_to_uri(iri)

	Convert an IRI portion to a URI portion suitable for inclusion in a URL.

(An IRI is an Internationalized Resource Identifier.)

This is the algorithm from section 3.1 of RFC 3987. However, since
we are assuming input is either UTF-8 or unicode already, we can
simplify things a little from the full method.

Returns an ASCII string containing the encoded result.

	
class webhelpers.util.Partial(*args, **kw)

	A partial function object.

Equivalent to functools.partial, which was introduced in Python 2.5.

	
class webhelpers.util.SimplerXMLGenerator(out=None, encoding='iso-8859-1')

	A subclass of Python’s SAX XMLGenerator.

	
addQuickElement(name, contents=None, attrs=None)

	Add an element with no children.

	
class webhelpers.util.UnicodeMultiDict(multi=None, encoding=None, errors='strict', decode_keys=False)

	A MultiDict wrapper that decodes returned values to unicode on the fly.

Decoding is not applied to assigned values.

The key/value contents are assumed to be str/strs or
str/FieldStorages (as is returned by the paste.request.parse()
functions).

Can optionally also decode keys when the decode_keys argument is
True.

FieldStorage instances are cloned, and the clone’s filename
variable is decoded. Its name variable is decoded when decode_keys
is enabled.

	
add(key, value)

	Add the key and value, not overwriting any previous value.

	
clear()

	

	
copy()

	

	
dict_of_lists()

	Return dict where each key is associated with a list of values.

	
getall(key)

	Return list of all values matching the key (may be an empty list).

	
getone(key)

	Return one value matching key. Raise KeyError if multiple matches.

	
has_key(key)

	

	
items()

	

	
iteritems()

	

	
iterkeys()

	

	
itervalues()

	

	
keys()

	

	
mixed()

	Return dict where values are single values or a list of values.

The value is a single value if key appears just once. It is
a list of values when a key/value appears more than once in this
dictionary. This is similar to the kind of dictionary often
used to represent the variables in a web request.

	
pop(key, *args)

	

	
popitem()

	

	
setdefault(key, default=None)

	

	
values()

	

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.pylonslib

Helpers for the Pylons [http://pylonshq.com] web framework

These helpers depend on Pylons’ request, response, session
objects or some other aspect of Pylons. Most of them can be easily ported to
another framework by changing the API calls.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.pylonslib.flash

Accumulate messages to show on the next page request.

The Flash class is useful when you want to redirect to another page and also
show a status message on that page, such as “Changes saved” or
“No previous search found; returning to home page”.

THE IMPLEMENTATION DEPENDS ON PYLONS. However, it can easily be adapted
for another web framework.

PYRAMID USERS: use the flash methods built into Pyramid’s Session object.
This implementation is incompatible with Pyramid.

A typical Pylons application instantiates a Flash object in
myapp/lib/helpers.py:

from webhelpers.pylonslib.flash import Flash as _Flash
flash = _Flash()

The helpers module is then imported into your controllers and
templates as h. Whenever you want to set a message, call the instance:

h.flash("Record deleted.")

You can set additional messages too:

h.flash("Hope you didn't need it.")

Now make a place in your site template for the messages. In Mako you
might do:

<% messages = h.flash.pop_messages() %>
% if messages:
<ul id="flash-messages">
 % for message in messages:
 ${message}
 % endfor

% endif

You can style this to look however you want:

ul#flash-messages {
 color: red;
 background-color: #FFFFCC;
 font-size: larger;
 font-style: italic;
 margin-left: 40px;
 padding: 4px;
 list-style: none;
 }

Multiple flash objects

You can define multiple flash objects in your application to display
different kinds of messages at different places on the page. For instance,
you might use the main flash object for general messages, and a second
flash object for “Added dookickey” / “Removed doohickey” messages next to a
doohickey manager.

Message categories

WebHelpers 1.0 adds message categories, contributed by Wichert Akkerman.
These work like severity levels in Python’s logging system. The standard
categories are “warning”, “notice”, “error”, and “success”, with
the default being “notice”. The category is available in the message’s
.category attribute, and is normally used to set the container’s CSS
class.

This is the only thing it does. Calling .pop_messages() pops all messages
in the order registered, regardless of category. It is not possible to pop
only a certain category, or all levels above a certain level, or to group
messages by category. If you want to group different kinds of messages
together, or pop only certain categories while leaving other categories, you
should use multiple Flash objects.

You can change the standard categories by overriding the .categories
and .default_category class attributes, or by providing alternate
values using constructor keywords.

Category example

Let’s show a standard way of using flash messages in your site: we will
demonstrate self-healing messages (similar to what Growl does on OSX)
to show messages in a site.

To send a message from python just call the flash helper method:

h.flash(u"Settings have been saved")

This will tell the system to show a message in the rendered page. If you need
more control you can specify a message category as well: one of warning,
notice, error or success. The default category is notice. For example:

h.flash(u"Failed to send confirmation email", "warning")

We will use a very simple markup style: messages will be placed in a div
with id selfHealingFeedback at the end of the document body. The messages
are standard paragraphs with a class indicating the message category. For
example:

<html>
 <body>
 <div id="content">
 ...
 ...
 </div>
 <div id="selfHealingFeedback">
 <p class="success">Succesfully updated your settings</p>
 <p class="warning">Failed to send confirmation email</p>
 </div>
 </body>
</html>

This can easily created from a template. If you are using Genshi this
should work:

The needed CSS is very simple:

Choosing different colours for the categories is left as an exercise
for the reader.

Next we create the javascript that will manage the needed behaviour (this
implementation is based on jQuery):

function _SetupMessage(el) {
 var remover = function () {
 msg.animate({opacity: 0}, "slow")
 .slideUp("slow", function() { msg.remove() }); };

 msg.data("healtimer", setTimeout(remover, 10000))
 .click(function() { clearTimeout(msg.data("healtimer")); remover(); });
}

function ShowMessage(message, category) {
 if (!category)
 category="notice";

 var container = $("#selfHealingFeedback");

 if (!container.length)
 container=$("<div id='selfHealingFeedback'/>").appendTo("body");

 var msg = $("<p/>").addClass(category).html(message);
 SetupMessage(msg);
 msg.appendTo(container);
}

$(document).ready(function() {
 $("#selfHealingFeedback p").each(function() { SetupMessage($(this)); });
}

The SetupMessage function configures the desired behaviour: a message
disappears after 10 seconds, or if you click on it. Removal is done using
a simple animation to avoid messages jumping around on the screen.

This function is called for all messages as soon as the document has fully
loaded. The ShowMessage function works exactly like the flash method
in python: you can call it with a message and optionally a category and it
will pop up a new message.

JSON integration

It is not unusual to perform a remote task using a JSON call and show a
result message to the user. This can easily be done using a simple wrapper
around the ShowMessage method:

function ShowJSONResponse(info) {
 if (!info.message)
 return;

 ShowMessage(info.message, info.message_category);
}

You can use this direct as the success callback for the jQuery AJAX method:

$.ajax({type: "POST",
 url: "http://your.domain/call/json",
 dataType: "json",
 success: ShowJSONResponse
});

if you need to perform extra work in your callback method you can call
it yourself as well, for example:

<form action="http://your.domain/call/form">
 <input type="hidden" name="json_url" value="http://your.domain/call/json">
 <button>Submit</button>
</form>

<sript type="text/javascript">
 $(document).ready(function() {
 $("button").click(function() {
 var button = $(this);

 button.addClass("processing");
 $.ajax({type: "POST",
 url: this.form["json_url"].value,
 dataType: "json",
 success: function(data, status) {
 button.removeClass("processing");
 ShowJSONResponse(data);
 },
 error: function(request, status, error) {
 button.removeClass("processing");
 ShowMessage("JSON call failed", "error");
 }
 });

 return false;
 });
 });
</script>

This sets up a simple form which can be submitted normally by non-javascript
enabled browsers. If a user does have javascript an AJAX call will be made
to the server and the result will be shown in a message. While the call is
active the button will be marked with a processing class.

The server can return a message by including a message field in its
response. Optionally a message_category field can also be included
which will be used to determine the message category. For example:

@jsonify
def handler(self):
 ..
 ..
 return dict(message=u"Settings successfully updated")

Classes

	
class webhelpers.pylonslib.flash.Flash(session_key='flash', categories=None, default_category=None)

	Accumulate a list of messages to show at the next page request.

	
__call__(message, category=None, ignore_duplicate=False)

	Add a message to the session.

message is the message text.

category is the message’s category. If not specified, the default
category will be used. Raise ValueError if the category is not
in the list of allowed categories.

If ignore_duplicate is true, don’t add the message if another
message with identical text has already been added. If the new
message has a different category than the original message, change the
original message to the new category.

	
pop_messages()

	Return all accumulated messages and delete them from the session.

The return value is a list of Message objects.

	
class webhelpers.pylonslib.flash.Message(category, message)

	A message returned by Flash.pop_messages().

Converting the message to a string returns the message text. Instances
also have the following attributes:

	message: the message text.

	category: the category specified when the message was created.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.pylonslib.grid

This module is DEPRECATED. Please use webhelpers.html.grid in new
applications. Support for paged grids has been added to that module in a
framework-neutral way.

PYRAMID USERS: This implementation is incompatible with Pyramid. Use
webhelpers.html.grid instead.

	
class webhelpers.pylonslib.grid.PylonsGrid(request, *args, **kw)

	Subclass of Grid that can handle header link generation for quick building
of tables that support ordering of their contents, paginated results etc.

	
generate_header_link(column_number, column, label_text)

	This handles generation of link and then decides to call
self.default_header_ordered_column_format
or
self.default_header_column_format
based on if current column is the one that is used for sorting or not

	
class webhelpers.pylonslib.grid.PylonsObjectGrid(request, *args, **kw)

	This grid will work well with sqlalchemy row instances

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.pylonslib.minify

Minification helpers.

This module provides enhanced versions of the javascript_link and
stylesheet_link helpers in webhelpers.html.tags. These versions add
three additional arguments:

	minified: If true, reduce the file size by squeezing out
whitespace and other characters insignificant to the Javascript or CSS syntax.

	combined: If true, concatenate the specified files into one file to
reduce page load time.

	beaker_kwargs (dict): arguments to pass to beaker_cache.

Dependencies: Pylons, Beaker, jsmin, and cssutils (all
available in PyPI). If “jsmin” is not installed, the helper issues a warning
and passes Javascript through unchanged. (Changed in WebHelpers 1.1: removed
built-in “_jsmin” package due to licensing issues; details in
webhelpers/pylonslib/_jsmin.py .)

PYRAMID USERS: this implementation is incompatible with Pyramid. No
Pyramid-compatible implementation is currently known.

Contributed by Pedro Algarvio and Domen Kozar <ufs@ufsoft.org>.
URL: http://docs.fubar.si/minwebhelpers/

	
webhelpers.pylonslib.minify.javascript_link(*sources, **options)

	

	
webhelpers.pylonslib.minify.stylesheet_link(*sources, **options)

	

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.pylonslib.secure_form

Secure Form Tag Helpers – For prevention of Cross-site request forgery (CSRF)
attacks.

Generates form tags that include client-specific authorization tokens to be
verified by the destined web app.

PYRAMID USERS: Use the csrf_token methods built into Pyramid’s Session
object. This implementation is incompatible with Pyramid.

Authorization tokens are stored in the client’s session. The web app can then
verify the request’s submitted authorization token with the value in the
client’s session.

This ensures the request came from the originating page. See
http://en.wikipedia.org/wiki/Cross-site_request_forgery for more information.

Pylons provides an authenticate_form decorator that does this verification
on the behalf of controllers.

These helpers depend on Pylons’ session object. Most of them can be easily
ported to another framework by changing the API calls.

The helpers are implemented in such a way that it should be easy to create your
own helpers if you are using helpers for AJAX calls.

authentication_token() returns the current authentication token, creating one
and storing it in the session if it doesn’t already exist.

auth_token_hidden_field() creates a hidden field (wrapped in an invisible div;
I don’t know if this is necessary, but the old WebHelpers had it like this)
containing the authentication token.

secure_form() is form() plus auth_token_hidden_field().

	
webhelpers.pylonslib.secure_form.authentication_token()

	Return the current authentication token, creating one if one doesn’t
already exist.

	
webhelpers.pylonslib.secure_form.auth_token_hidden_field()

	

	
webhelpers.pylonslib.secure_form.secure_form(url, method='POST', multipart=False, **attrs)

	Start a form tag that points the action to an url. This
form tag will also include the hidden field containing
the auth token.

The url options should be given either as a string, or as a
url() function. The method for the form defaults to POST.

Options:

	multipart

	If set to True, the enctype is set to “multipart/form-data”.

	method

	The method to use when submitting the form, usually either
“GET” or “POST”. If “PUT”, “DELETE”, or another verb is used, a
hidden input with name _method is added to simulate the verb
over POST.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.markdown

webhelpers.markdown is a copy of Markdown 1.7, used as a fallback for
webhelpers.html.converters.markdown() if the full Markdown package is not
installed. See the Markdown [http://markdown.org/] website for documentation on the Markdown
format and this module. Markdown is now at version 2.x and contains new
features and plugins which are too big to include in WebHelpers. There is also
an alternate implementation called Markdown2. Both are available on PyPI. See
the markdown() documentation for how to use them with WebHelpers.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

 	WebHelpers Documentation

webhelpers.textile

webhelpers.textile is a copy of Textile, used by
webhelpers.html.converters.textilize(). See the Textile [http://textile.org/] site for
documentation on the Textile format and this module.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

What’s New in WebHelpers

This is a high-level overview of recent changes. Incompatible changes are
in boldface; these may require modifying your application. See Changelog for the full changelog.

Version 1.3

webhelpers.paginate: Add URL generator classes for new frameworks like
Pyramid.

webhelpers.html.grid: Add ability to use URL generator classes for paged
display.

webhelpers.pylonslib.grid: Deprecated. Use webhelpers.html.grid, which now
supports paged display.

Version 1.2

webhelpers.html: The HTML builder now uses Armin Ronacher’s
“MarkupSafe” package, which Mako and Pylons have also switched to. MarkupSafe
has a C speedup for escaping, escapes single-quotes for greater security (to
close a potential XSS attack route), and adds new methods to literal.
literal is now a subclass of markupsafe.Markup;
escape is a wrapper for markupsafe.escape_silent.

webhelpers.html.tags: The text() helper has a “type” argument for new
HTML 5 input types.

webhelpers.html.tags: No longer adds an “id” attribute to hidden fields
generated by the ``form()`` helper, to prevent IDs from clashing if the page
contains multiple forms. To create a hidden field with an ID, call hidden()
directly.

webhelpers.util: update_params now supports query parameters with
multiple values.

Version 1.1

webhelpers.pylonslib.minify: The Javascript minification code was removed
due to a non-free license. The helper now minifies Javascript only if the
“jsmin” package is installed. Otherwise it issues a warning and leaves the
Javascript unchanged. CSS minification is not affected. Details are in
webhelpers/pylonslib/_minify.py .

Version 1.0

WebHelpers 1.0 has a lot of new features compared to 0.6.4. Several modules
deprecated in 0.6.4 were removed, but otherwise there are only a few API
incompatibilities with the 0.6 series.

Deleted packages

The following deprecated packages were removed: rails, commands, hinclude,
htmlgen, pagination, and string24. Most of the functionality of the rails
helpers was replaced by new helpers in the date, html, misc,
number, and text packages. Prototype and Scriptaculous are not
replaced; WebHelpers no longer ships with Javascript libraries. pagination
was replaced by paginate. number_to_human_size() is in the unfinished
directory in the source distribution; you can copy it to your application if
you need it. If you can’t switch to the replacement helpers,
stick with WebHelpers 0.6.4.

secure_form

webhelpers.html.secure_form was moved to
webhelpers.pylonslib.secure_form because it depends on Pylons.

webhelpers.constants

uk_counties() now returns tuples rather than strings.

webhelpers.feedgenerator

webhelpers.feedgenerator was upgraded to the Django original (December 2009
version), and the “Geo” classes were added for geographical (GIS) feeds.
Points are latitude/longitude by default, but there’s a flag if your data is
longitude first (as Django is). A Geometry class was reverse engineered for
other geometries, but it’s untested. Add a “published” property for Atom
feeds.

webhelpers.html.builder

New method for producing CDATA sections. The basic tag builders have a _nl
flag to add a newline between content elements and after the tag for
readability.

webhelpers.html.converters

markdown() adds an argument to choose a Markdown implementation.
The Markdown included in WebHelpers will remain at version 1.7, but Markdown
2.x is available on PyPI, and a separate implementation confusingly called
“Markdown2” is also available on PyPI.

webhelpers.html.render

New helpers to render HTML to text, and to sanitize user input by stripping
HTML tags.

webhelpers.html.tags

New helpers to add CSS classes to a tag
programmatically, to support option groups in <select> tags, and to generate
<!doctype> and <?xml ?> declarations.

image() can calculate the width and height of an image automatically, using
either the Python Imaging Library (PIL) or a pure Python algorithm in
webhelpers.media.

form() puts its hidden “_method” field in a <div> for
XHTML compliance, and the hidden() helper has a magic ID attribute to match
the other helpers.

webhelpers.html.tools

Ported js_obfuscate() from the old rails helpers.

highlight() adds new arguments for flexibility, and
is reimplemented using the HTML builder. The ‘highlighter’ argument is
deprecated.

webhelpers.misc

New helpers to flatten nested lists and tuples, and to
gather all the subclasses of a specified class. There’s an exception
OverwriteError, a DeclarativeException class for making your own
exceptions with constant messages, and a deprecate function.

webhelpers.number

format_data_size() and its derivatives format_byte_size() and
format_bit_size() provide a convenient way to display numbers using SI
units (“1.2 kilobytes”, “1.2 kB”, “1.0 KiB”).

webhelpers.paginate

webhelpers.paginate has a new algorithm for generating URLs for page links,
has some enhancements for Javascript, works with all versions of SQLAlchemy 0.4
and higher, and has a presliced list option.

On Pylons it will use pylons.url.current as the URL generator, or fall back
to routes.url_for if that is not available. You can also pass a callback
function to the constructor to implement a custom generator. If none of these
are available, you’ll get a NotImplementedError. Previous versions of
WebHelpers (through 1.0b5) used routes.url_for unconditionally, but that
function is deprecated and is not supported in Pylons 1.x.

webhelpers.pylonslib

webhelpers.pylonslib is now a package. The Flash class accepts severity
categories, which you can use to style more severe messages differently. The
session structure is different, so delete existing HTTP sessions when
upgrading.

webhelpers.text

webhelpers.text adds a suite of helpers from Ruby’s stringex package to
convert strings to URL-friendly format, and to remove inconvenient accents from
characters, etc.

webhelpers.util

New helper to update the query parameters in a URL.

Experimental code

webhelpers.html.grid and webhelpers.pylonslib.grid contain helpers to
make an HTML table from a list of objects such as database records. It has
a demo program and an optional stylesheet. It’s “experimental” because the
docs aren’t very clear and the API could maybe do with some changes. But it works.

webhelpers.pylonslib.minify contains versions of javascript_link() and
stylesheet_link() that compress their files. It’s experimental because
their tests fail, so they probably don’t work.

Other experiments are in the “unfinished” directory in the source distribution.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

Full Changelog

1.3 (2011-03-24)

	webhelpers.paginate:
	Revert Sprox patch (#59) from 1.3b1; it makes SQLAlchemy inefficient (#63).
The bug reporter’s Sprox object seems to be unsliceable and therefore
incompatible with paginate. Changed error message to say this if the
slicing operation raises “TypeError: unhashable type”.

1.3b1 (2011-03-17)

	Documentation:

	Some webhelpers.misc helpers were undocumented.

	Spelling corrections throughout, done by Marius Gedminas.

	webhelpers.date:

	Adjust test in ‘test_date.py’ to account for leap years. (#61, reported
by Andrey Rahmatullin / wrar)

	webhelpers.html.grid, webhelpers.pylonslib.grid:

	Add ‘request’ and ‘url’ args to support paged display.
(webhelpers.html.grid only)

	Deprecate webhelpers.pylonslib.grid. It may be removed in a future
version.

	webhelpers.paginate:

	Add URL generator classes for new frameworks like Pyramid.

	In the Pylons backward compatibility code, support page parameter in the
route path (e.g., “/help/page5”) when using Routes explicit mode without a
URL generator.

	setup.py:

	Fix typo in test requirements. (#60, Andrey Rahmatullin/wrar)

1.2 (2010-08-18)

	WebHelpers now depends on MarkupSafe. literal and escape now use it.

	webhelpers.html.builder:
	literal and escape now use MarkupSafe, which has a C speedup for
escaping, escapes single-quotes for security, and adds new methods to
literal. Compatibility should not be a problem; but see the docs if
you encounter any edge cases.

	webhelpers.html.tags:
	For new HTML 5 input fields, the text helper has a “type” argument.

	Don’t put an “id” attribute on a hidden fields generated by the form()
helper, including the magic _method field. The IDs will clash if there
are multiple forms on the page.

	webhelpers.html.tools:
	Preserve case of “method” arg in button_to() for XHTML compatibility.
Patch by transducer.

	webhelpers.text:
	Urlencode urlify return value in case it contains special
characters like ”?”. Reported by mcd34@gmail.com.

	webhelpers.util:
	Fix bug in update_params in handling existing query strings. Support
multiple values per parameter.

1.1 (2010-08-09)

	webhelpers.paginate:
	Remove stray Routes import. (Other conditional Routes imports remain for
backward compatibility; see module docstring.)

	webhelpers.pylonslib.minify:
	Remove _jsmin module due to licensing issues. Details are in
webhelpers/pylonslib/_jsmin.py . You can install the “jsmin” package in
PyPI (which has the same license), and the helper will use it. If that
package is installed, the helper will use it. Otherwise the helper will
emit a warning and leave the Javascript unchanged. CSS minification is not
affected.

1.0 (2010-06-01)

	webhelpers.html.tools:

	Bugfix re URLs surrounded by []. Bug #32.

1.0rc1 (2010-05-24)

	webhelpers.html.tags:

	Change ‘id’ argument to all form field helpers. The default value is now
NotGiven rather than None. NotGiven tells WebHelpers to create an ID
attribute based on the field name (formerly None did this). None suppresses
the ID attribute entirely (formerly “” did this, and still does for backward
compatibility). This behavior of None is consistent with other parts of
WebHelpers.

	webhelpers.misc:

	New format_exception helper to display an exception as Python would but
without the traceback.

1.0b7 (2010-05-16)

	webhelpers.containers:
	Bugfix in canada_provinces, reported by rpetrello.

	webhelpers.html.grid / webhelpers.pylonslib.grid:
	Updates by Ergo, mainly styling and CSS classes.

	Rename classes: ObjectGrid, PylonsGrid, PylonsObjectGrid.

	webhelpers.paginate:

	New URL generation algorithm for Page.pager(). You can pass a callback
function to the constructor, or it will fall back to pylons.url.current
or routes.url_for (in that order). It will raise NotImplementedError if
none of these are available.

	Don’t allow extra positional args in constructor. The implementation does
nothing with them, so it shouldn’t allow them.

	Import sqlalchemy.orm as well as sqlalchemy. User Sybiam reports an
error otherwise.

	Add code to work with other iterable containers, contributed by Marcin
Kuzminski.

	webhelpers.pylonslib.flash:
	New argument ignore_duplicate to prevent adding the same message
multiple times.

1.0b6 (2010-04-23)

	webhelpers.containers / webhelpers.misc:
	NotGiven moved to webhelpers.misc.

	webhelpers.html.grid / webhelpers.pylonslib.grid:
	Updates by Ergo, including SQLAlchemy object grid classes.

	webhelpers.misc:
	New function deprecate.

	webhelpers.number:
	New functions format_data_size, format_byte_size, and
format_bit_size for displaying numbers in SI units
(“1.2 kilobytes”, “1.2 kB”, “1.0 KiB”). Contributed by
Wojciech Malinowski.

1.0b5 (2010-03-18)

	webhelpers.html.converters:
	Re-add import of render and sanitize from
webhelpers.html.render. That module is not public.

	webhelpers.misc:
	New exception OverwriteError.

	Add exclude argument to subclasses_only.

	webhelpers.text:
	Disable convert_misc_characters: it fails its doctests and there’s
no consensus on what it should do.

	“number_to_human_size.py” is in unfinished directory. This is an old rails
helper from WebHelpers 0.6.4. It’s here pending a more comprehensive helper;
see http://bitbucket.org/bbangert/webhelpers/issue/2/reinstate-number_to_human_size

1.0b4 (2010-01-24)

	Delete webhelpers.string24. WebHelpers no longer supports Python 2.3.

	webhelpers.feedgenerator:
	Add a basic Geometry class for the Geo helpers.

	webhelpers.html.grid_demo:
	Demonstrates webhelpers.html.grid. Run as
“python -m webhelpers.html.grid_demo OUTPUT_DIRECTORY”.

	webhelpers.html.converters:
	Don’t import render and sanitize to converters module.
(Reversed in 1.0b5.)

	webhelpers.html.secure_form:
	Move module to webhelpers.pylonslib.secure_form because it depends
on pylons.session.

	webhelpers.misc:
	New helper flatten to interpolate embedded lists and tuples.

	New helper subclasses_only to extract the subclasses of an abstract
base class from a module or iterable.

	webhelpers.pylonslib.flash:
	Moved to its own module.

	Changed Flash.__html__() implementation.

	Categories may be specified in constructor. Patch by Eli Collins.

	webhelpers.pylonslib.grid:
	Bugfixes.

	webhelpers.pylonslib.minify:
	Bugfix.

	webhelpers.util:
	Bugfix: parse_qs moved from cgi to urlparse in Python 2.6.
Patch by Mike Verdone.

1.0b3 (2009-12-29)

	webhelpers.feedgenerator:
	Allow either lat-lon and lon-lat formats in geometry data. The default is
lat-lon. For lon-lat, set GeoFeedMixin.is_input_latitude_first to
false. (You can set in a subclass or instance before writing the output.)
lat-lon is the most common format but GeoDjango and some other libraries
use lon-lat. The XML output is always lat-lon per the GeoRSS spec.

	webhelpers.html.grid:
	New module to create an HTML table from a list of records.

	webhelpers.html.tags:
	New helpers Doctype (class) and xml_declaration.

	Python 2.5 compatibility fix by Yuen Ho Wong. (#20)

	webhelpers.html.tools:
	New helper js_obfuscate implements the old rails helpers.

	webhelpers.util:
	New helper update_params to update query parameters in a URL.

1.0b2 (2009-12-21)

	webhelpers.constants:

	Fix spelling of Massachusetts.

	webhelpers.feedgenerator:

	Sync with Django rev 11910. This adds GeoRSS and makes the API more
extensible, as well as fixing a few bugs.
(Re-added the Atom1 ‘published’ property.)
(The ‘generator’ and ‘source’ properties were lost, but they weren’t
working correctly anyway.)

GeoRSS usage: use the Geo* classes and add geometry=(lat, lon) to
each news item. Other shapes and a (not yet implemented) Geometry class are
allowed; see the source.

	webhelpers.html:

	New HTML.cdata() method for producing “<!![CDATA[...]]>” sections.

	The basic tag builders (HTML.a() and HTML.tag("a")) now have a
_nl arg which, if true, inserts a newline between content elements
and at the end of the tag for readability. Example:

HTML.a("A", "B", href="/") => 'AB'
HTML.a("A", "B", href="/", _nl=True) => '\nA\nB\n\n'

This does not affect HTML attributes nor the higher-level tag helpers.
The exact spacing is subject to change. The tag building code has been
refactored to accommodate this.

	webhelpers.html.tags:

	form() puts its hidden “_method” field in a ‘<div style=”display:none”>’
to conform to XHTML syntax. The style prevents the div from being displayed
or affecting the layout. A new arg hidden_fields may be a dict or
iterable of additional hidden fields, which will be added to the div.

	Set magic ID attribute in hidden helper to match behavior of the other
tag helpers.

	image() can now calculate the width and height automatically
from an image file, using either the PIL algorithm or the pure Python
algorithm in webhelpers.media. It also logs the dimensions to the
debug log for troubleshooting.

	webhelpers.html.tools:

	Reimplement highlight() using the HTML builder. New arguments add
flexibility. Deprecate the highlighter argument, which creates tags
via string interpolation.

	Fixed auto_link() to parse slash characters in query string.
Patch by hanula; Bitbucket issue #10.

	Fix HTML overescaping and underescaping in auto_link(). Patch by Marius
Gedminas. A parsing bug remains:
http://pylonshq.com/project/pylonshq/ticket/657

	webhelpers.markdown / webhelpers.html.converters:

	webhelpers.markdown will not be upgraded to the version 2 series but
will remain at 1.7. Users who want the latest bugfixes and extensions
should download the full Markdown package or the alternative Markdown2
from PyPI.

	The markdown() helper in
webhelpers.html.converters now has support for external Markdown
implementations. You can pass a specific module via the markdown
argument, otherwise it will attempt to import markdown or fall back
to webhelpers.markdown.

	To see which version is autoloaded,
call _get_markdown_module() and inspect the .__file__,
.version, and/or .version_info attributes of the return value.

	webhelpers.media:

	Bugfix in get_dimensions_pil.

	webhelpers.paginate:

	Change for SQLAlchemy 0.6. (bug #11)

	webhelpers.pylonslib:

	Fix HTML overescaping. Patch by Marius Gedminas.

1.0b1 (2009-11-20)

	Delete deprecated subpackage: rails.
These are replaced by new helpers in date, html, misc, number, text.

	Delete other deprecated subpackages: commands, hinclude, htmlgen, pagination.
Pagination is replaced by paginate.

	webhelpers.constants:
	uk_counties returns tuples rather than strings.

	webhelpers.feedgenerator:
	rfc3339_date now accepts date objects without crashing.

	Add ‘generator’ and ‘source’ properties to RSS2 feeds. Patch by
Vince Spicer. (Removed in 1.0b2 due to bugs.)

	Add ‘published’ property to Atom1 feeds.

	webhelpers.html.converters:
	New helper render() formats HTML to text.

	New helper sanitize() strips HTML tags from user input.

	webhelprs.html.tags:
	New helper css_classes() to add classes to a tag programmatically.

	Fix bug in tag helpers when passing id_ argument (although id is
recommended instead).

	Add OptionGroup class and optgroup support to select(). Patch by
Alexandre Bourget.

	webhelpers.html.tools:

	New helper strip_tags() deletes HTML tags in a string.

	webhelpers.paginate:
	Allow all versions of SQLAlchemy > 0.3.

	convert “_range” and “_pagelink” function to Page class method so that they
can be overridden

	pager “onclick” argument use template string value. So, javascript code can
use “partial_url” or “page” value or any. Backward compatibility is
considered.

	Add presliced list option to avoid slicing when list is already.

	webhelpers.pylonslib:
	is now a package.

	The Flash class now accepts severity categories, thanks to Wichert
Akkerman. The docstring shows how to set up auto-fading messages using
Javascript a la Mac OSX’s “Growl” feature. This is backward compatible
although you should delete existing sessions when upgrading from 0.6.x.

	webhelpers.pylonslib.minify contains enhanced versions of
javascript_link and stylesheet_link to minify (shrink) files for
more efficient transmission. (EXPERIMENTAL: tests fail in
unfinished/disabled_test_pylonslib_minify.py; see
http://pylonshq.com/project/pylonshq/ticket/466 .)

	webhelpers.text:

	Port several helpers from Ruby’s “stringex” package.
	urlify() converts any string to a URL-friendly equivalent.

	remove_formatting().

	If the unidecode package is installed, these two helpers will also
transliterate non-ASCII characters to their closest pronounciation
equvivalent in ASCII.

	Four other helpers reduce HTML entities or whitespace.

0.6.4 (12/2/2008)

	text(), password(), checkbox(), textarea(), and select() have a
magic ‘id attribute. If not specified it defaults to the name. To suppress
the ID entirely, pass id="". This is to help set the ID for title().
radio() doesn’t do this because it generates the ID another way. hidden()
doesn’t because hidden fields aren’t used with labels.

	Bugfixes in mt.select():
	selected values not being passed as list.

	allow currently-selected value to be a long.

	Delete experimental module webhelpers.html.form_layout.

0.6.3 (10/7/2008)

	Bugfix in distribute() found by Randy Syring.

	New helpers title() and required_legend() in webhelpers.html.tags.

	New directory webhelpers/public for static files

	Suggested stylesheet webhelpers/public/stylesheets/webhelpers.css
(You’ll have to manually add this to your application.)

0.6.2 (10/2/2008)

	nl2br() and format-paragraphs were not literal-safe.

	webhelpers.converters:
	New helper transpose() to turn a 2D list sideways (making the rows columns
and the columns rows).

	webhelpers.markdown:
	Upgrade to Markdown 1.7.

	Add a warning about escaping untrusted HTML to
webhelpers.html.converters.markdown() docstring.

	Did not include Markdown’s extensions due to relative import issues.
Use the full Markdown package if you want footnotes or RSS.

	webhelpers.media:
	New module for muiltimedia helpers. Initial functions determine the size
of an image and choose a scaling factor.

	webhelpers.html.tags:
	Options tuple contains Option objects for select/checkbox/radio groups.
select() now uses this automatically.

	checkbox() and radio() now have a label argument.

	webhelpers.number:
	Population standard deviation contributed by Lorenzo Catucci.

	webhelpers.html.form_layout: form field layout (PRELIMINARY, UNSTABLE).

0.6.1 (7/31/2008)

	Include a faster version of cgi.escape for use by the literal object.

	Fixed bug in SimplerXMLGenerator that the FeedGenerator uses, so that
it doesn’t use a {} arg.

	New helpers:
	nl2br() and format_paragraphs() in webhelpers.html.converters.

	ul() and ol() in webhelpers.html.tags.

	series() in webhelpers.text.

	HTML.tag() is a synonym for make_tag(), both in webhelpers.html.builder.

	Change default form method to “post” (rather than “POST”) to conform to XHTML.

	Add DeprecationWarning for webhelpers.rails package,
webhelpers.rails.url_for(), and webhelpers.pagination.

0.6 (07/08/2008)

	Add webhelpers.html.builder to generate HTML tags with smart escaping,
along with a literal type to mark preformatted strings.

	Deprecate webhelpers.rails, including its Javascript libraries (Prototype
and Scriptaculous). Wrap all rails helpers in a literal.

	Many new modules:
	constants - countries, states, and provinces.

	containers - high-level collections, including flash messages.

	date - date/time (rails replacement).

	html.converters - text-to-HTML (rails replacement).

	html.tags - HTML tags (rails replacement).

	html.tools - larger HTML chunks (rails replacement).

	mail - sending email.

	misc - helpers that are neither text, numeric, container, nor date.

	number - numeric helpers and number formatters.

	paginate - successor to deprecated pagination module.

	text - non-HTML text formatting (rails replacement).

	Removed dependency on simplejson and normalized quotes. Patch by Elisha
Cook.

COMPATIBILITY CHANGES IN 0.6 DEV VERSION

	image(), javascript_link(), stylesheet_link(), and auto_discovery_link()
in webhelpers.html.tags do not add prefixes or suffixes to the URL args
anymore; they output the exact URL given. Same for button_to() in
webhelpers.html.tools.

	webhelpers.html.tags.javascript_path was deleted.

0.3.4 (03/18/08)

	Fixed missing javascripts dir.

0.3.3 (02/27/08)

	Fixed strip_unders so that it won’t explode during iteration when the size
changes.

	Updated feedgenerator with the latest changes from Django’s version (only
a few additional attributes).

0.3.2 (09/05/07)

	Added capability to pass pagination a SA 0.4 Session object which will be
used for queries. This allows compatibility with Session.mapper’d objects
and normal SA 0.4 mapper relations.

	Updated SQLAlchemy ORM pagination for SA 0.4 Session.mapper objects.

	Updated Scriptaculous to 1.7.1 beta 3 (1.7.0 is incompatible with Prototype
1.5.1). Thanks errcw. Fixes #288.

0.3.1 (07/14/07)

	Added the secure_form_tag helper module, for generating form tags
including client-specific authorization tokens for preventing CSRF
attacks. Original patch by David Turner. Fixes #157.

	current_url now accepts arguments to pass along to url_for. Fixes #251.

	Updated prototype to 1.5.1.1.

	Added image support to button_to. Patch by Alex Conrad. Fixes #184.

	Fix radio_button and submit_to_remote not handling unicode values.
Fixes #235.

	Added support for the defer attribute to javascript_include_tag. Suggested
by s0undt3ch. Fixes #214.

	Added a distutils command compress_resources, which can combine CSS
and Javascript files, and compress Javascript via ShrinkSafe. Add
“command_packages=webhelpers.commands” in [global] in setup.cfg to
enable this command for your package.

0.3 (03/18/2007)

	WARNING: paginate now takes arguments intended for the collection object as
query_args. This could affect backwards compatibility. This fixes a common
issue that non-keyword arguments passed into paginate get eaten by
paginate’s keyword arguments instead of being in *args to go on to the
collection.

	Added environ checking with Routes so that page will be automatically pulled
out of the query string, or from the Routes match dict if available.

	Added ability for paginate to check for objects that had SQLAlchemy’s
assign_mapper applied to them.

	Added better range checking to paginator to require a positive value that is
less than the total amount of pages available for a page.

	WARNING: Due to a typo, the Text helper highlight function no longer
highlights text with the CSS class name ‘hilight’ by default: it now uses
the CSS class name ‘highlight’ instead. The function’s ‘hilighter’ keyword
argument has also been deprecated, use ‘highlighter’ instead.

	Fixed the broken markdown function.

	Upgraded markdown from 1.5 to 1.6a.

	Sync’d Prototype helper to 6057.

	Sync’d Urls helper to 6070.

	Sync’d Text helper to 6096.

	Sync’d Date helper to 6080.

	Sync’d Tags helper to 5857.

	Sync’d Asset tag helper to 6057.

	Sync’d Rails Number helper to 6045.

	Updated Ajax commands to internally use with_ to avoid name conflicts with
Python 2.5 and beyond. Reported by anilj. Fixes #190.

	Applied patch from David Smith to decode URL parts as Routes does.
Fixes #186.

	Changed pagination to give better response if its passed an invalid object.
Patch from Christoph Haas.

	Fixed scriptaculous helper docs example. Fixes #178.

	Updated scriptaculous/prototype to Prototype 1.5.0 and Scriptaculous 1.7.0.

	Updated scriptaculous javascripts to 1.6.5. Fixes #155.

	Updated remote_function doc-string to more clearly indicate the arguments
it can receive.

	Synced Rails Javascript helper to 5245 (escape_javascript now escaping
backslashes and allow passing html_options to javascript_tag).

0.2.2 (10/20/06)

	Fixed tag_options function to not str() string and let html_escape handle
it so unicode is properly handled. Reported with fix by Michael G. Noll.

	Added sqlalchemy.Query support to the pagination orm wrappers, patch from
Andrija Zarić

	Fixed python 2.3 compliance in webhelpers.rails (use of sorted()) (Thanks
Jamie Wilkinson)

0.2.1 (9/7/06)

	Adding counter func to text helpers, patch from Jamie Wilkinson.

	Sync’d Rails Text helper to 4994.

	Sync’d Rails Asset tag helper to 4999.

	Sync’d Rails Form tag helper to 5045, also doesn’t apply to our version.

	Sync’d Rails Javascript func to 5039, doesn’t apply to us.

	Updated Scriptaculous to 1.6.3.

	Updated Prototype to 1.5.0_rc1.

	Updated radio_button so that id’s are unique. Brings up to date with Rails
changeset #4925, also fixes #103.

	More precise distance_of_time_in_words (Follows bottom half of #4989 Rails
changeset)

	button_to accepts method keyword so you can PUT and DELETE with it.
(Follows #4914 Rails changeset)

	Fixed auto_link to parse more valid url formats (Thanks Jamie Wilkinson).

	Sync’d text helper from latest Rails version.

	Fixed form tag’s method matching to be case insensitive.

0.2 (8/31/06)

	Adding simplejson req, adding use of json’ification. Updated scriptaculous
helpers to split out JS generation for use in JS Generation port.

	Finished sync’ing Rails ports (urls, tags) in WebHelpers. Closes #69.
url and prototype tests updated, url helpers updated to handle method
argument.

	Sync’d scriptaculous helper.

	Sync’d javascript, prototype helpers and prototype.js to latest Rails
modifications. Added more prototype tests.

	Sync’d form_options, form_tag helpers. form_tag’s form function can now
accept other HTTP methods, and will include a hidden field for them if
its not ‘get’ or ‘post’.

	Sync’d number helper, added number unit tests.

	Added markdown.py (python-markdown) for new markdown support in text helper.

	Added textile.py (PyTextile) for new textilize support in text helper.

	Brought asset/date/text helpers up to date with revision info.

0.1.3 (Release)

	Brought feedgenerator in line with Django’s version, which fixed the missing
support for feed categories and updated classes for new-style. Other minor
feed updates as well. Now synced as of Django r3143.

	Fixed typo in feedgenerator import, reported by tiksin@free.fr.

	Added webhelpers.rails.asset_tag, for generating links to other assets
such as javascripts, stylesheets, and feeds.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

Third-party helpers

The following third-party Python packages are not included in WebHelpers due to
their size or dependencies, but are often used in WebHelpers applications.

BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/]

A robust HTML/XML parser that can make sense of bad markup.

HTMLTidy [http://tidy.sourceforge.net/]

Clean up and pretty print HTML. This is a C library. There are several
Python bindings [http://pypi.python.org/pypi?%3Aaction=search&term=tidy&submit=search] to
it.

Unidecode [http://pypi.python.org/pypi/Unidecode]

Convert Unicode characters to ASCII equivalents. Accented letters and
symbols are converted to a visual approximation, and non-Latin letters
are converted to their standard Latin pronounciation. Several of the
convert_* functions in webhelpers.text will use Unidecode if
it’s installed.

Unipath [http://pypi.python.org/pypi/Unipath]

An object-oriented alternative to the path functions in os,
os.path, and shutil. Similar packages include
path.py [http://pypi.python.org/pypi/path.py].

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

TODO

WebHelpers 1.x is in a soft feature freeze, so only bugfixes and small changes
are likely to be made in the foreseeable future.

See also the bug list at http://bigbucket.org/bbangert/webhelpers .

webhelpers.html.grid needs better docs. The API could maybe use some
improvement too.

The “unfinished” directory in the WebHelpers source distribution contains
potential future helpers which are not finished enough for release. These are
not installed by the installer; they are available only in the source tarball.

Port to Python 3.

Too many strip_tags / sanitize / bleach functions.

grid_demo: usage message shows “__main__” rather than package.module.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	WebHelpers 1.3 documentation

Development

WebHelpers development is coordinated on the
pylons-discuss [http://groups.google.com/pylons-discuss] list. Proposals
for new helpers and offers to help with coding or documentation are always
welcome. Please post any bug reports or outlines for new helpers to the
bug tracker [http://bitbucket.org/bbangert/webhelpers/issues].

New helpers are considered if they conform to the following criteria:

	Is it useful in a wide variety of applications, especially web applications?

	Does it avoid dependencies outside the Python standard library, especially
C extensions which are hard to install on Windows and Macintosh?

	Is it too small to be released as its own project, and is there no other
Python project more appropriate for it?

	Does it work on all Python versions from 2.4 to the latest 2.x?
(Python 3 is not yet supported.)

	A small number of Pylons-specific helpers are accepted for the
webhelpers.pylonslib package. These are ones that offer significant
advantages over framework-neutral implementations, are too peripheral for the
Pylons core, and are too widely useful to exclude. The docstring should
explain how to port it to another web framework.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	WebHelpers 1.3 documentation

TODO

WebHelpers 1.x is in a soft feature freeze, so only bugfixes and small changes
are likely to be made in the foreseeable future.

See also the bug list at http://bigbucket.org/bbangert/webhelpers .

webhelpers.html.grid needs better docs. The API could maybe use some
improvement too.

The “unfinished” directory in the WebHelpers source distribution contains
potential future helpers which are not finished enough for release. These are
not installed by the installer; they are available only in the source tarball.

Port to Python 3.

Too many strip_tags / sanitize / bleach functions.

grid_demo: usage message shows “__main__” rather than package.module.

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	WebHelpers 1.3 documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 webhelpers	

 	
 	
 webhelpers.constants	

 	
 	
 webhelpers.containers	

 	
 	
 webhelpers.date	

 	
 	
 webhelpers.feedgenerator	

 	
 	
 webhelpers.html	

 	
 	
 webhelpers.html.builder	

 	
 	
 webhelpers.html.converters	

 	
 	
 webhelpers.html.grid	

 	
 	
 webhelpers.html.tags	

 	
 	
 webhelpers.html.tools	

 	
 	
 webhelpers.media	

 	
 	
 webhelpers.mimehelper	

 	
 	
 webhelpers.misc	

 	
 	
 webhelpers.number	

 	
 	
 webhelpers.paginate	

 	
 	
 webhelpers.pylonslib	

 	
 	
 webhelpers.pylonslib.flash	

 	
 	
 webhelpers.pylonslib.grid	

 	
 	
 webhelpers.pylonslib.minify	

 	
 	
 webhelpers.pylonslib.secure_form	

 	
 	
 webhelpers.text	

 	
 	
 webhelpers.util	

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	WebHelpers 1.3 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__call__() (webhelpers.number.SimpleStats method)

 	

 	(webhelpers.number.Stats method)

 	(webhelpers.paginate.PageURL method)

 	(webhelpers.paginate.PageURL_WebOb method)

 	(webhelpers.pylonslib.flash.Flash method)

A

 	

 	Accumulator (class in webhelpers.containers)

 	add() (webhelpers.util.UnicodeMultiDict method)

 	add_alias() (webhelpers.mimehelper.MIMETypes class method)

 	add_georss_element() (webhelpers.feedgenerator.GeoFeedMixin method)

 	add_georss_point() (webhelpers.feedgenerator.GeoFeedMixin method)

 	add_item() (webhelpers.feedgenerator.SyndicationFeed method)

 	add_item_elements() (webhelpers.feedgenerator.Atom1Feed method)

 	

 	(webhelpers.feedgenerator.Rss201rev2Feed method)

 	(webhelpers.feedgenerator.RssUserland091Feed method)

 	(webhelpers.feedgenerator.SyndicationFeed method)

 	add_root_elements() (webhelpers.feedgenerator.Atom1Feed method)

 	

 	(webhelpers.feedgenerator.RssFeed method)

 	(webhelpers.feedgenerator.SyndicationFeed method)

 	addQuickElement() (webhelpers.util.SimplerXMLGenerator method)

 	

 	aliases (webhelpers.mimehelper.MIMETypes attribute)

 	all() (in module webhelpers.misc)

 	any() (in module webhelpers.misc)

 	Atom1Feed (class in webhelpers.feedgenerator)

 	auth_token_hidden_field() (in module webhelpers.pylonslib.secure_form)

 	authentication_token() (in module webhelpers.pylonslib.secure_form)

 	auto_discovery_link() (in module webhelpers.html.tags)

 	auto_link() (in module webhelpers.html.tools)

 	average() (in module webhelpers.number)

B

 	

 	BR (in module webhelpers.html.tags)

 	

 	button_to() (in module webhelpers.html.tools)

C

 	

 	canada_provinces() (in module webhelpers.constants)

 	cgi_escape() (in module webhelpers.util)

 	checkbox() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	choose_height() (in module webhelpers.media)

 	chop_at() (in module webhelpers.text)

 	clear() (webhelpers.util.UnicodeMultiDict method)

 	collapse() (in module webhelpers.text)

 	convert_accented_entities() (in module webhelpers.text)

 	convert_boolean_attrs() (in module webhelpers.html.tags)

 	convert_misc_entities() (in module webhelpers.text)

 	

 	convert_or_none() (in module webhelpers.misc)

 	coords (webhelpers.feedgenerator.Geometry attribute)

 	copy() (webhelpers.util.UnicodeMultiDict method)

 	correlate() (webhelpers.containers.Accumulator class method)

 	

 	(webhelpers.containers.Counter class method)

 	correlate_dicts() (in module webhelpers.containers)

 	correlate_objects() (in module webhelpers.containers)

 	count_true() (in module webhelpers.misc)

 	Counter (class in webhelpers.containers)

 	country_codes() (in module webhelpers.constants)

 	css_classes() (in module webhelpers.html.tags)

D

 	

 	date() (webhelpers.html.tags.ModelTags method)

 	DeclarativeException (class in webhelpers.misc)

 	defaultdict (class in webhelpers.containers)

 	del_quiet() (in module webhelpers.containers)

 	deprecate() (in module webhelpers.misc)

 	

 	dict_of_lists() (webhelpers.util.UnicodeMultiDict method)

 	distance_of_time_in_words() (in module webhelpers.date)

 	distribute() (in module webhelpers.containers)

 	Doctype (class in webhelpers.html.tags)

 	DumbObject (class in webhelpers.containers)

E

 	

 	Enclosure (class in webhelpers.feedgenerator)

 	end_form() (in module webhelpers.html.tags)

 	endChannelElement() (webhelpers.feedgenerator.RssFeed method)

 	escape() (webhelpers.html.builder.literal class method)

 	

 	except_keys() (in module webhelpers.containers)

 	excerpt() (in module webhelpers.text)

 	extend() (webhelpers.number.SimpleStats method)

 	

 	(webhelpers.number.Stats method)

 	extract_keys() (in module webhelpers.containers)

F

 	

 	file() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	finish() (webhelpers.number.Stats method)

 	Flash (class in webhelpers.pylonslib.flash)

 	flatten() (in module webhelpers.misc)

 	form() (in module webhelpers.html.tags)

 	format_bit_size() (in module webhelpers.number)

 	

 	format_byte_size() (in module webhelpers.number)

 	format_data_size() (in module webhelpers.number)

 	format_exception() (in module webhelpers.misc)

 	format_number() (in module webhelpers.number)

 	format_paragraphs() (in module webhelpers.html.converters)

G

 	

 	generate_header_link() (webhelpers.html.grid.Grid method)

 	

 	(webhelpers.pylonslib.grid.PylonsGrid method)

 	GeoAtom1Feed (class in webhelpers.feedgenerator)

 	GeoFeedMixin (class in webhelpers.feedgenerator)

 	geom_type (webhelpers.feedgenerator.Geometry attribute)

 	Geometry (class in webhelpers.feedgenerator)

 	georss_coords() (webhelpers.feedgenerator.GeoFeedMixin method)

 	get_dimensions() (in module webhelpers.media)

 	get_dimensions_pil() (in module webhelpers.media)

 	

 	get_many() (in module webhelpers.containers)

 	get_popular() (webhelpers.containers.Counter method)

 	get_sorted_items() (webhelpers.containers.Counter method)

 	get_tag_uri() (in module webhelpers.feedgenerator)

 	getall() (webhelpers.util.UnicodeMultiDict method)

 	getone() (webhelpers.util.UnicodeMultiDict method)

 	Grid (class in webhelpers.html.grid)

H

 	

 	has_key() (webhelpers.util.UnicodeMultiDict method)

 	hidden() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	highlight() (in module webhelpers.html.tools)

 	HTML (class in webhelpers.html.builder)

 	

 	html4() (webhelpers.html.tags.Doctype method)

 	html5() (webhelpers.html.tags.Doctype method)

 	html_escape() (in module webhelpers.util)

I

 	

 	image() (in module webhelpers.html.tags)

 	init() (webhelpers.mimehelper.MIMETypes class method)

 	iri_to_uri() (in module webhelpers.util)

 	is_input_latitude_first (webhelpers.feedgenerator.GeoFeedMixin attribute)

 	item_attributes() (webhelpers.feedgenerator.SyndicationFeed method)

 	

 	items() (webhelpers.util.UnicodeMultiDict method)

 	iteritems() (webhelpers.util.UnicodeMultiDict method)

 	iterkeys() (webhelpers.util.UnicodeMultiDict method)

 	itervalues() (webhelpers.util.UnicodeMultiDict method)

J

 	

 	javascript_link() (in module webhelpers.html.tags)

 	

 	(in module webhelpers.pylonslib.minify)

 	

 	js_obfuscate() (in module webhelpers.html.tools)

K

 	

 	keys() (webhelpers.util.UnicodeMultiDict method)

L

 	

 	labels() (webhelpers.html.tags.Options method)

 	latest_post_date() (webhelpers.feedgenerator.SyndicationFeed method)

 	lchop() (in module webhelpers.text)

 	link_to() (in module webhelpers.html.tags)

 	

 	link_to_if() (in module webhelpers.html.tags)

 	link_to_unless() (in module webhelpers.html.tags)

 	lit_sub() (in module webhelpers.html.builder)

 	literal (class in webhelpers.html.builder)

M

 	

 	mail_to() (in module webhelpers.html.tools)

 	make_page_url() (in module webhelpers.paginate)

 	markdown() (in module webhelpers.html.converters)

 	mean() (in module webhelpers.number)

 	median() (in module webhelpers.number)

 	Message (class in webhelpers.pylonslib.flash)

 	

 	message (webhelpers.misc.DeclarativeException attribute)

 	mime_type (webhelpers.feedgenerator.Atom1Feed attribute)

 	

 	(webhelpers.feedgenerator.RssFeed attribute)

 	mimetype() (webhelpers.mimehelper.MIMETypes method)

 	MIMETypes (class in webhelpers.mimehelper)

 	mixed() (webhelpers.util.UnicodeMultiDict method)

 	ModelTags (class in webhelpers.html.tags)

N

 	

 	nl2br() (in module webhelpers.html.converters)

 	no() (in module webhelpers.misc)

 	NotGiven (class in webhelpers.misc)

 	

 	ns (webhelpers.feedgenerator.Atom1Feed attribute)

 	num_items() (webhelpers.feedgenerator.SyndicationFeed method)

O

 	

 	ObjectGrid (class in webhelpers.html.grid)

 	ol() (in module webhelpers.html.tags)

 	only_some_keys() (in module webhelpers.containers)

 	OptGroup (class in webhelpers.html.tags)

 	

 	Option (class in webhelpers.html.tags)

 	Options (class in webhelpers.html.tags)

 	ordered_items() (in module webhelpers.containers)

 	OverwriteError (class in webhelpers.misc)

P

 	

 	Page (class in webhelpers.paginate)

 	pager() (webhelpers.paginate.Page method)

 	PageURL (class in webhelpers.paginate)

 	PageURL_WebOb (class in webhelpers.paginate)

 	Partial (class in webhelpers.util)

 	password() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	percent_of() (in module webhelpers.number)

 	

 	plural() (in module webhelpers.text)

 	pop() (webhelpers.util.UnicodeMultiDict method)

 	pop_messages() (webhelpers.pylonslib.flash.Flash method)

 	popitem() (webhelpers.util.UnicodeMultiDict method)

 	PylonsGrid (class in webhelpers.pylonslib.grid)

 	PylonsObjectGrid (class in webhelpers.pylonslib.grid)

R

 	

 	radio() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	rchop() (in module webhelpers.text)

 	remove_formatting() (in module webhelpers.text)

 	replace_whitespace() (in module webhelpers.text)

 	required_legend() (in module webhelpers.html.tags)

 	rfc2822_date() (in module webhelpers.feedgenerator)

 	

 	rfc3339_date() (in module webhelpers.feedgenerator)

 	root_attributes() (webhelpers.feedgenerator.Atom1Feed method)

 	

 	(webhelpers.feedgenerator.SyndicationFeed method)

 	Rss201rev2Feed (class in webhelpers.feedgenerator)

 	rss_attributes() (webhelpers.feedgenerator.RssFeed method)

 	RssFeed (class in webhelpers.feedgenerator)

 	RssUserland091Feed (class in webhelpers.feedgenerator)

S

 	

 	secure_form() (in module webhelpers.pylonslib.secure_form)

 	select() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	series() (in module webhelpers.text)

 	setdefault() (webhelpers.util.UnicodeMultiDict method)

 	SimplerXMLGenerator (class in webhelpers.util)

 	SimpleStats (class in webhelpers.number)

 	standard_deviation() (in module webhelpers.number)

 	Stats (class in webhelpers.number)

 	

 	strip_leading_whitespace() (in module webhelpers.text)

 	strip_links() (in module webhelpers.html.tools)

 	strip_tags() (in module webhelpers.html.tools)

 	striptags() (webhelpers.html.builder.literal method)

 	stylesheet_link() (in module webhelpers.html.tags)

 	

 	(in module webhelpers.pylonslib.minify)

 	subclasses_only() (in module webhelpers.misc)

 	submit() (in module webhelpers.html.tags)

 	SyndicationFeed (class in webhelpers.feedgenerator)

T

 	

 	text() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	textarea() (in module webhelpers.html.tags)

 	

 	(webhelpers.html.tags.ModelTags method)

 	textilize() (in module webhelpers.html.converters)

 	th_sortable() (in module webhelpers.html.tags)

 	

 	time_ago_in_words() (in module webhelpers.date)

 	title() (in module webhelpers.html.tags)

 	transpose() (in module webhelpers.containers)

 	truncate() (in module webhelpers.text)

U

 	

 	uk_counties() (in module webhelpers.constants)

 	ul() (in module webhelpers.html.tags)

 	unescape() (webhelpers.html.builder.literal method)

 	UnicodeMultiDict (class in webhelpers.util)

 	unique() (in module webhelpers.containers)

 	UniqueAccumulator (class in webhelpers.containers)

 	

 	update_params() (in module webhelpers.util)

 	url_escape() (in module webhelpers.html.builder)

 	urlify() (in module webhelpers.text)

 	us_states() (in module webhelpers.constants)

 	us_territories() (in module webhelpers.constants)

V

 	

 	values() (webhelpers.html.tags.Options method)

 	

 	(webhelpers.util.UnicodeMultiDict method)

W

 	

 	W3CGeoFeed (class in webhelpers.feedgenerator)

 	webhelpers.constants (module)

 	webhelpers.containers (module)

 	webhelpers.date (module)

 	webhelpers.feedgenerator (module)

 	webhelpers.html (module)

 	webhelpers.html.builder (module)

 	webhelpers.html.converters (module)

 	webhelpers.html.grid (module)

 	webhelpers.html.tags (module)

 	webhelpers.html.tools (module)

 	webhelpers.media (module)

 	webhelpers.mimehelper (module)

 	webhelpers.misc (module)

 	

 	webhelpers.number (module)

 	webhelpers.paginate (module)

 	webhelpers.pylonslib (module)

 	webhelpers.pylonslib.flash (module)

 	webhelpers.pylonslib.grid (module)

 	webhelpers.pylonslib.minify (module)

 	webhelpers.pylonslib.secure_form (module)

 	webhelpers.text (module)

 	webhelpers.util (module)

 	wrap_paragraphs() (in module webhelpers.text)

 	write() (webhelpers.feedgenerator.Atom1Feed method)

 	

 	(webhelpers.feedgenerator.RssFeed method)

 	(webhelpers.feedgenerator.SyndicationFeed method)

 	write_items() (webhelpers.feedgenerator.Atom1Feed method)

 	

 	(webhelpers.feedgenerator.RssFeed method)

 	writeString() (webhelpers.feedgenerator.SyndicationFeed method)

X

 	

 	xhtml1() (webhelpers.html.tags.Doctype method)

 	

 	xml_declaration() (in module webhelpers.html.tags)

 Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_images/webhelpers-logo.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		WebHelpers 1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

_static/webhelpers-logo.png

_static/up-pressed.png

history.html

 Navigation

 		
 index

 		
 modules |

 		WebHelpers 1.3 documentation »

History

WebHelpers was originally created as a utility package for Pylons. Many of the
helpers were ported from Ruby on Rails. Version 0.6 introduced the HTML tag
builder and deprecated the rails helpers; new subpackages were added to replace
the rails helpers. Version 1.0 builds on this with many additional helpers.

WebHelpers has been in a soft feature freeze since 1.0. Only bugfixes, small
enhancements, and compatibility with new Pylons Project frameworks are likely
to be accepted.

 © Copyright 2009-2011, Ben Bangert and Mike Orr.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

