
WebTest Documentation
Release 1.4.3

Ian Bicking

March 28, 2013

CONTENTS

i

ii

WebTest Documentation, Release 1.4.3

author Ian Bicking <ianb@colorstudy.com>

maintainer Gael Pasgrimaud <gael@gawel.org>

Contents

• Testing Applications with WebTest
– Status & License
– Installation
– What This Does
– TestApp

* Making Requests
· Modifying the Environment & Simulating Authentication
· What Is Tested By Default

* The Response Object
– Form Submissions
– Parsing the Body
– Framework Hooks
– API

* webtest – Functional Testing of Web Applications
· Response API

* webtest.ext – Using an external process
· Using casperjs to run tests

* webtest.sel – Functional Testing with Selenium
· Response API
· Environment variables
· Examples
· Testing a wsgi application
· Testing the jquery.ui website

– News
* 1.4.3
* 1.4.2
* 1.4.1
* 1.4.0
* 1.3.6
* 1.3.5
* 1.3.4
* 1.3.3
* 1.3.2
* 1.3.1
* 1.3
* 1.2.4
* 1.2.3
* 1.2.2
* 1.2.1
* 1.2
* 1.1
* 1.0.2
* 1.0
* 0.9

– License

CONTENTS 1

mailto:ianb@colorstudy.com
mailto:gael@gawel.org

WebTest Documentation, Release 1.4.3

2 CONTENTS

CHAPTER

ONE

STATUS & LICENSE

WebTest is an extraction of paste.fixture.TestApp, rewriting portions to use WebOb. It is under active devel-
opment as part of the Paste cloud of packages.

Feedback and discussion should take place on the Pylons discuss list, and bugs should go into the Github tracker.

This library is licensed under an MIT-style license.

3

http://docs.webob.org/
https://groups.google.com/forum/?fromgroups#!forum/pylons-discuss
https://github.com/Pylons/webtest/issues

WebTest Documentation, Release 1.4.3

4 Chapter 1. Status & License

CHAPTER

TWO

INSTALLATION

You can use pip or easy_install to get the latest stable release:

$ pip install WebTest
$ easy_install WebTest

Or if you want the development version:

$ pip install https://nodeload.github.com/Pylons/webtest/tar.gz/master

5

WebTest Documentation, Release 1.4.3

6 Chapter 2. Installation

CHAPTER

THREE

WHAT THIS DOES

WebTest helps you test your WSGI-based web applications. This can be any application that has a WSGI interface,
including an application written in a framework that supports WSGI (which includes most actively developed Python
web frameworks – almost anything that even nominally supports WSGI should be testable).

With this you can test your web applications without starting an HTTP server, and without poking into the web
framework shortcutting pieces of your application that need to be tested. The tests WebTest runs are entirely equivalent
to how a WSGI HTTP server would call an application. By testing the full stack of your application, the WebTest
testing model is sometimes called a functional test, integration test, or acceptance test (though the latter two are not
particularly good descriptions). This is in contrast to a unit test which tests a particular piece of functionality in
your application. While complex programming tasks are often is suited to unit tests, template logic and simple web
programming is often best done with functional tests; and regardless of the presence of unit tests, no testing strategy
is complete without high-level tests to ensure the entire programming system works together.

WebTest helps you create tests by providing a convenient interface to run WSGI applications and verify the output.

7

WebTest Documentation, Release 1.4.3

8 Chapter 3. What This Does

CHAPTER

FOUR

TESTAPP

The most important object in WebTest is TestApp, the wrapper for WSGI applications. To use it, you simply
instantiate it with your WSGI application. (Note: if your WSGI application requires any configuration, you must set
that up manually in your tests.)

>>> from webtest import TestApp
>>> from webtest.debugapp import debug_app
>>> app = TestApp(debug_app)
>>> res = app.get(’/form.html’)
>>> res.status
’200 OK’
>>> res.form
<Form />

4.1 Making Requests

To make a request, use:

app.get(’/path’, [headers], [extra_environ], ...)

This does a request for /path, with any extra headers or WSGI environment keys that you indicate. This returns a
response object, based on webob.Response. It has some additional methods to make it easier to test.

If you want to do a POST request, use:

app.post(’/path’, {’vars’: ’values’}, [headers], [extra_environ],
[upload_files], ...)

Specifically the second argument is the body of the request. You can pass in a dictionary (or dictionary-like object), or
a string body (dictionary objects are turned into HTML form submissions).

You can also pass in the keyword argument upload_files, which is a list of [(fieldname, filename,
fild_content)]. File uploads use a different form submission data type to pass the structured data.

For other verbs you can use:

app.put(path, params, ...)
app.delete(path, ...)

These do PUT and DELETE requests.

9

http://docs.webob.org/en/latest/reference.html#response

WebTest Documentation, Release 1.4.3

4.1.1 Modifying the Environment & Simulating Authentication

The best way to simulate authentication is if your application looks in environ[’REMOTE_USER’] to see if
someone is authenticated. Then you can simply set that value, like:

app.get(’/secret’, extra_environ=dict(REMOTE_USER=’bob’))

If you want all your requests to have this key, do:

app = TestApp(my_app, extra_environ=dict(REMOTE_USER=’bob’))

4.1.2 What Is Tested By Default

A key concept behind WebTest is that there’s lots of things you shouldn’t have to check everytime you do a request.
It is assumed that the response will either be a 2xx or 3xx response; if it isn’t an exception will be raised (you can
override this for a request, of course). The WSGI application is tested for WSGI compliance with a slightly modified
version of wsgiref.validate (modified to support arguments to InputWrapper.readline) automatically. Also it
checks that nothing is printed to the environ[’wsgi.errors’] error stream, which typically indicates a problem
(one that would be non-fatal in a production situation, but if you are testing is something you should avoid).

To indicate another status is expected, use the keyword argument status=404 to (for example) check that it is a 404
status, or status="*" to allow any status.

If you expect errors to be printed, use expect_errors=True.

4.2 The Response Object

The response object is based on webob.Response with some additions to help with testing.

The inherited attributes that are most interesting:

response.status: The text status of the response, e.g., "200 OK".

response.headers: A dictionary-like object of the headers in the response.

response.body: The text body of the response.

response.unicode_body: The unicode text body of the response.

response.request: The webob.Request object used to generate this response.

The added methods:

response.follow(**kw): Follows the redirect, returning the new response. It is an error if this response wasn’t
a redirect. Any keyword arguments are passed to app.get (e.g., status).

x in response: Returns True if the string is found in the response body. Whitespace is normalized for this test.

response.mustcontain(string1, string2, ...): Raises an error if any of the strings are not found in
the response. It also prints out the response in that case, so you can see the real response.

response.showbrowser(): Opens the HTML response in a browser; useful for debugging.

str(response): Gives a slightly-compacted version of the response. This is compacted to remove newlines,
making it easier to use with doctest

response.click(description=None, linkid=None, href=None, anchor=None, index=None, verbose=False):
Clicks the described link (see docstring for more)

10 Chapter 4. TestApp

http://python.org/doc/current/lib/module-wsgiref.validate.html
http://docs.webob.org/en/latest/reference.html#response
http://docs.webob.org/en/latest/reference.html#request
http://python.org/doc/current/lib/module-doctest.html

WebTest Documentation, Release 1.4.3

response.forms: Return a dictionary of forms; you can use both indexes (refer to the forms in order) or the string
ids of forms (if you’ve given them ids) to identify the form. See Form Submissions for more on the form objects.

response.form: If there is just a single form, this returns that. It is an error if you use this and there are multiple
forms.

4.2. The Response Object 11

WebTest Documentation, Release 1.4.3

12 Chapter 4. TestApp

CHAPTER

FIVE

FORM SUBMISSIONS

You can fill out and submit forms from your tests. First you get the form:

>>> res = app.get(’/form.html’)
>>> form = res.form

Then you fill it in fields:

>>> print(form.action)
/form-submit
>>> print(form.method)
POST
>>> # dict of fields
>>> form.fields.values()
[(u’name’, [<Text name="name">]), (u’submit’, [<Submit name="submit">])]
>>> form[’name’] = ’Bob’
>>> # When names don’t point to a single field:
>>> form.set(’name’, ’Bob’, index=0)

Then you can submit:

>>> # Submit with no particular submit button pressed:
>>> res = form.submit()
>>> # Or submit a button:
>>> res = form.submit(’submit’)
>>> print(res)
Response: 200 OK
Content-Type: text/plain
...
-- Body ----------
name=Bob&submit=Submit%21

Select fields can only be set to valid values (i.e., values in an <option>) but you can also use
form[’select-field’].force_value(’value’) to enter values not present in an option.

13

WebTest Documentation, Release 1.4.3

14 Chapter 5. Form Submissions

CHAPTER

SIX

PARSING THE BODY

There are several ways to get parsed versions of the response. These are the attributes:

response.html: Return a BeautifulSoup version of the response body.

response.xml: Return an ElementTree version of the response body.

response.lxml: Return an lxml version of the response body.

response.pyquery: Return an PyQuery version of the response body.

response.json: Return the parsed JSON (parsed with simplejson).

In each case the content-type must be correct or an AttributeError is raised. If you do not have the necessary library
installed (none of them are required by WebTest), you will get an ImportError.

Examples:

>>> from webtest import TestRequest
>>> from webtest import TestResponse
>>> res = TestResponse(content_type=’text/html’, body=b’’’
... <html><body><div id="content">hey!</div></body>’’’)
>>> res.request = TestRequest.blank(’/’)
>>> res.html

<html><body><div id="content">hey!</div></body></html>
>>> res.html.__class__
<class ’BeautifulSoup.BeautifulSoup’>
>>> res.lxml
<Element html at ...>
>>> res.lxml.xpath(’//body/div’)[0].text
’hey!’
>>> res = TestResponse(content_type=’application/json’,
... body=b’{"a":1,"b":2}’)
>>> res.request = TestRequest.blank(’/’)
>>> list(res.json.values())
[1, 2]
>>> res = TestResponse(content_type=’application/xml’,
... body=b’<xml><message>hey!</message></xml>’)
>>> res.request = TestRequest.blank(’/’)
>>> res.xml
<Element ...>
>>> res.xml[0].tag
’message’
>>> res.xml[0].text
’hey!’
>>> res.lxml

15

http://www.crummy.com/software/BeautifulSoup/
http://python.org/doc/current/lib/module-xml.etree.ElementTree.html
http://codespeak.net/lxml/
http://pypi.python.org/pypi/pyquery
http://svn.red-bean.com/bob/simplejson/tags/simplejson-1.7/docs/index.html

WebTest Documentation, Release 1.4.3

<Element xml at ...>
>>> res.lxml[0].tag
’message’
>>> res.lxml[0].text
’hey!’
>>> res.pyquery(’message’)
[<message>]
>>> res.pyquery(’message’).text()
’hey!’

16 Chapter 6. Parsing the Body

CHAPTER

SEVEN

FRAMEWORK HOOKS

Frameworks can detect that they are in a testing environment by the presence (and truth) of the WSGI environmental
variable "paste.testing" (the key name is inherited from paste.fixture).

More generally, frameworks can detect that something (possibly a test fixture) is ready to catch unexpected errors by
the presence and truth of "paste.throw_errors" (this is sometimes set outside of testing fixtures too, when an
error-handling middleware is in place).

Frameworks that want to expose the inner structure of the request may use "paste.testing_variables".
This will be a dictionary – any values put into that dictionary will become attributes of the response object. So
if you do env["paste.testing_variables"][’template’] = template_name in your framework,
then response.template will be template_name.

17

WebTest Documentation, Release 1.4.3

18 Chapter 7. Framework Hooks

CHAPTER

EIGHT

API

8.1 webtest – Functional Testing of Web Applications

Routines for testing WSGI applications.

Most interesting is app

class webtest.TestApp(app, extra_environ=None, relative_to=None, use_unicode=True)
Wraps a WSGI application in a more convenient interface for testing.

app may be an application, or a Paste Deploy app URI, like ’config:filename.ini#test’.

extra_environ is a dictionary of values that should go into the environment for each request. These can
provide a communication channel with the application.

relative_to is a directory, and filenames used for file uploads are calculated relative to this. Also config:
URIs that aren’t absolute.

delete(url, params=’‘, headers=None, extra_environ=None, status=None, expect_errors=False, con-
tent_type=None)

Do a DELETE request. Very like the .get() method.

Returns a webob.Response object.

delete_json(url, params=<class ‘webtest.app.NoDefault’>, headers=None, extra_environ=None,
status=None, expect_errors=False)

Do a DELETE request. Very like the .get() method. Content-Type is set to application/json.

Returns a webob.Response object.

do_request(req, status, expect_errors)
Executes the given request (req), with the expected status. Generally .get() and .post() are used
instead.

To use this:

resp = app.do_request(webtest.TestRequest.blank(
’url’, ...args...))

Note you can pass any keyword arguments to TestRequest.blank(), which will be set on the re-
quest. These can be arguments like content_type, accept, etc.

encode_multipart(params, files)
Encodes a set of parameters (typically a name/value list) and a set of files (a list of (name, filename,
file_body)) into a typical POST body, returning the (content_type, body).

get(url, params=None, headers=None, extra_environ=None, status=None, expect_errors=False)
Get the given url (well, actually a path like ’/page.html’).

19

WebTest Documentation, Release 1.4.3

params: A query string, or a dictionary that will be encoded into a query string. You may also include a
query string on the url.

headers: A dictionary of extra headers to send.

extra_environ: A dictionary of environmental variables that should be added to the request.

status: The integer status code you expect (if not 200 or 3xx). If you expect a 404 response, for
instance, you must give status=404 or it will be an error. You can also give a wildcard, like ’3*’
or ’*’.

expect_errors: If this is not true, then if anything is written to wsgi.errors it will be an error. If
it is true, then non-200/3xx responses are also okay.

Returns a webtest.TestResponse object.

head(url, headers=None, extra_environ=None, status=None, expect_errors=False)
Do a HEAD request. Very like the .get() method.

Returns a webob.Response object.

options(url, headers=None, extra_environ=None, status=None, expect_errors=False)
Do a OPTIONS request. Very like the .get() method.

Returns a webob.Response object.

post(url, params=’‘, headers=None, extra_environ=None, status=None, upload_files=None, ex-
pect_errors=False, content_type=None)

Do a POST request. Very like the .get() method. params are put in the body of the request.

upload_files is for file uploads. It should be a list of [(fieldname, filename,
file_content)]. You can also use just [(fieldname, filename)] and the file content will
be read from disk.

For post requests params could be a collections.OrderedDict with Upload fields included in order:

app.post(‘/myurl’, collections.OrderedDict([(‘textfield1’, ‘value1’), (‘uploadfield’, we-
bapp.Upload(‘filename.txt’, ‘contents’), (‘textfield2’, ‘value2’)])))

Returns a webob.Response object.

post_json(url, params=<class ‘webtest.app.NoDefault’>, headers=None, extra_environ=None, sta-
tus=None, expect_errors=False)

Do a POST request. Very like the .get() method. params are dumps to json and put in the body of the
request. Content-Type is set to application/json.

Returns a webob.Response object.

put(url, params=’‘, headers=None, extra_environ=None, status=None, upload_files=None, ex-
pect_errors=False, content_type=None)
Do a PUT request. Very like the .post() method. params are put in the body of the request, if params
is a tuple, dictionary, list, or iterator it will be urlencoded and placed in the body as with a POST, if it is
string it will not be encoded, but placed in the body directly.

Returns a webob.Response object.

put_json(url, params=<class ‘webtest.app.NoDefault’>, headers=None, extra_environ=None, sta-
tus=None, expect_errors=False)

Do a PUT request. Very like the .post() method. params are dumps to json and put in the body of the
request. Content-Type is set to application/json.

Returns a webob.Response object.

20 Chapter 8. API

WebTest Documentation, Release 1.4.3

request(url_or_req, status=None, expect_errors=False, **req_params)
Creates and executes a request. You may either pass in an instantiated TestRequest object, or you may
pass in a URL and keyword arguments to be passed to TestRequest.blank().

You can use this to run a request without the intermediary functioning of TestApp.get() etc. For
instance, to test a WebDAV method:

resp = app.request(’/new-col’, method=’MKCOL’)

Note that the request won’t have a body unless you specify it, like:

resp = app.request(’/test.txt’, method=’PUT’, body=’test’)

You can use POST={args} to set the request body to the serialized arguments, and simultaneously set
the request method to POST

reset()
Resets the state of the application; currently just clears saved cookies.

exception webtest.AppError(message, *args)

8.1.1 Response API

Some of the return values return instances of these classes:

class webtest.TestResponse(body=None, status=None, headerlist=None, app_iter=None, con-
tent_type=None, conditional_response=None, **kw)

Instances of this class are return by TestApp

click(description=None, linkid=None, href=None, anchor=None, index=None, verbose=False, ex-
tra_environ=None)

Click the link as described. Each of description, linkid, and url are patterns, meaning that they
are either strings (regular expressions), compiled regular expressions (objects with a search method), or
callables returning true or false.

All the given patterns are ANDed together:

•description is a pattern that matches the contents of the anchor (HTML and all – everything
between <a...> and)

•linkid is a pattern that matches the id attribute of the anchor. It will receive the empty string if no
id is given.

•href is a pattern that matches the href of the anchor; the literal content of that attribute, not the
fully qualified attribute.

•anchor is a pattern that matches the entire anchor, with its contents.

If more than one link matches, then the index link is followed. If index is not given and more than one
link matches, or if no link matches, then IndexError will be raised.

If you give verbose then messages will be printed about each link, and why it does or doesn’t match. If
you use app.click(verbose=True) you’ll see a list of all the links.

You can use multiple criteria to essentially assert multiple aspects about the link, e.g., where the link’s
destination is.

clickbutton(description=None, buttonid=None, href=None, button=None, index=None, ver-
bose=False)

Like .click(), except looks for link-like buttons. This kind of button should look like <button
onclick="...location.href=’url’...">.

8.1. webtest – Functional Testing of Web Applications 21

WebTest Documentation, Release 1.4.3

follow(**kw)
If this request is a redirect, follow that redirect. It is an error if this is not a redirect response. Returns
another response object.

form
Returns a single Form instance; it is an error if there are multiple forms on the page.

forms
A list of :class:‘~webtest.Form‘s found on the page

forms__get()
Returns a dictionary of Form objects. Indexes are both in order (from zero) and by form id (if the form is
given an id).

goto(href, method=’get’, **args)
Go to the (potentially relative) link href, using the given method (’get’ or ’post’) and any extra
arguments you want to pass to the app.get() or app.post() methods.

All hostnames and schemes will be ignored.

html
Returns the response as a BeautifulSoup object.

Only works with HTML responses; other content-types raise AttributeError.

json
Return the response as a JSON response. You must have simplejson installed to use this, or be using a
Python version with the json module.

The content type must be application/json to use this.

lxml
Returns the response as an lxml object. You must have lxml installed to use this.

If this is an HTML response and you have lxml 2.x installed, then an lxml.html.HTML object will be
returned; if you have an earlier version of lxml then a lxml.HTML object will be returned.

mustcontain(*strings, **kw)
Assert that the response contains all of the strings passed in as arguments.

Equivalent to:

assert string in res

normal_body
Return the whitespace-normalized body

pyquery
Returns the response as a PyQuery object.

Only works with HTML and XML responses; other content-types raise AttributeError.

showbrowser()
Show this response in a browser window (for debugging purposes, when it’s hard to read the HTML).

unicode_normal_body
Return the whitespace-normalized body, as unicode

xml
Returns the response as an ElementTree object.

Only works with XML responses; other content-types raise AttributeError

22 Chapter 8. API

http://www.crummy.com/software/BeautifulSoup/documentation.html
http://goo.gl/B9g6s
http://codespeak.net/lxml/
http://pyquery.org/
http://python.org/doc/current/lib/module-xml.etree.ElementTree.html

WebTest Documentation, Release 1.4.3

class webtest.TestRequest(environ, charset=None, unicode_errors=None, de-
code_param_names=None, **kw)

ResponseClass
alias of TestResponse

class webtest.Form(response, text)
This object represents a form that has been found in a page. This has a couple useful attributes:

text: the full HTML of the form.

action: the relative URI of the action.

method: the method (e.g., ’GET’).

id: the id, or None if not given.

fields: a dictionary of fields, each value is a list of fields by that name. <input type="radio"> and
<select> are both represented as single fields with multiple options.

FieldClass
alias of Field

get(name, index=None, default=<class ‘webtest.app.NoDefault’>)
Get the named/indexed field object, or default if no field is found.

lint()
Check that the html is valid:

•each field must have an id

•each field must have a label

select(name, value, index=None)
Like .set(), except also confirms the target is a <select>.

set(name, value, index=None)
Set the given name, using index to disambiguate.

submit(name=None, index=None, **args)
Submits the form. If name is given, then also select that button (using index to disambiguate)‘‘.

Any extra keyword arguments are passed to the .get() or .post() method.

Returns a webtest.TestResponse object.

submit_fields(name=None, index=None)
Return a list of [(name, value), ...] for the current state of the form.

upload_fields()

Return a list of file field tuples of the form: (field name, file name)

or (field name, file name, file contents).

class webtest.Field(form, tag, name, pos, value=None, id=None, **attrs)
Field object.

class webtest.Select(*args, **attrs)
Field representing <select>

class webtest.Radio(*args, **attrs)
Field representing <input type="radio">

class webtest.Checkbox(*args, **attrs)
Field representing <input type="checkbox">

8.1. webtest – Functional Testing of Web Applications 23

WebTest Documentation, Release 1.4.3

class webtest.Text(form, tag, name, pos, value=None, id=None, **attrs)
Field representing <input type="text">

class webtest.Textarea(form, tag, name, pos, value=None, id=None, **attrs)
Field representing <textarea>

class webtest.Hidden(form, tag, name, pos, value=None, id=None, **attrs)
Field representing <input type="hidden">

class webtest.Submit(form, tag, name, pos, value=None, id=None, **attrs)
Field representing <input type="submit"> and <button>

8.2 webtest.ext – Using an external process

Allow to run an external process to test your application

class webtest.ext.TestApp(app=None, url=None, timeout=30000, extra_environ=None, rela-
tive_to=None, **kwargs)

Run the test application in a separate thread to allow to access it via http

close()
Close WSGI server if needed

webtest.ext.casperjs(*args, **kwds)
A context manager to run a test with a webtest.ext.TestApp

8.2.1 Using casperjs to run tests

The js part:

The python part:

8.3 webtest.sel – Functional Testing with Selenium

Routines for testing WSGI applications with selenium.

Most interesting is SeleniumApp and the selenium() decorator

class webtest.sel.SeleniumApp(app=None, url=None, timeout=30000, extra_environ=None, rela-
tive_to=None, **kwargs)

See webtest.TestApp

SeleniumApp only support GET requests

browser
The current Selenium

close()
Close selenium and the WSGI server if needed

class webtest.sel.Selenium
Selenium RC control aka browser

A object use to manipulate DOM nodes. This object allow to use the underlying selenium api. See Selenium api

You can use the original method name:

24 Chapter 8. API

http://goo.gl/IecEk

WebTest Documentation, Release 1.4.3

browser.fireEvent(’id=#myid", ’focus’)

Or a more pythonic name:

browser.fire_event(’id=#myid", ’focus’)

Both are equal to:

browser.execute(’fireEvent’, ’id=#myid’, ’focus’)

webtest.sel.selenium(obj)
A callable usable as:

•class decorator

•function decorator

•contextmanager

8.3.1 Response API

Some of the return values return instances of these classes:

class webtest.sel.TestResponse(body=None, status=None, headerlist=None, app_iter=None, con-
tent_type=None, conditional_response=None, **kw)

doc
Expose a Document

follow(status=None, **kw)
If this request is a redirect, follow that redirect. It is an error if this is not a redirect response. Returns
another response object.

class webtest.sel.Document(resp)
The browser document. resp.doc.myid is egual to resp.doc.css(’#myid’)

button(description=None, buttonid=None, index=None)
Get a button

css(selector)
Get an Element using a css selector

get(tag, **kwargs)
Return an element matching tag, an attribute and an index. For example:

resp.doc.get(’input’, name=’go’) => xpath=//input[@name="go"]
resp.doc.get(’li’, description=’Item’) => xpath=//li[.="Item"]

input(value=None, name=None, inputid=None, index=None)
Get an input field

link(description=None, linkid=None, href=None, index=None)
Get a link

xpath(path)
Get an Element using xpath

class webtest.sel.Element(resp, locator)
A object use to manipulate DOM nodes. This object allow to use the underlying selenium api for the specified
locator. See Selenium api

You can use the original method name:

8.3. webtest.sel – Functional Testing with Selenium 25

http://goo.gl/IecEk

WebTest Documentation, Release 1.4.3

element.fireEvent(’focus’)

Or a more pythonic name:

element.fire_event(’focus’)

Both are equal to:

browser.execute(’fireEvent’, element.locator, ’focus’)

attr(attr)
Return the attribute value of the element

drag_and_drop(element)
Drag and drop to element

eval(*expr)
Eval a javascript expression in Selenium RC. You can use the following variables:

•s: the selenium object

•b: the browserbot object

•l: the element locator string

•e: the element itself

exist()
return true is the element is present

hasClass(name)
True iif the class is present

html()
Return the innerHTML of the element

text()
Return the text of the element

wait(timeout=3000)
Wait for an element and return this element

wait_and_click(timeout=3000)
Wait for an element, click on it and return this element

class webtest.sel.Form(resp, id)
See Form

submit(name=None, index=None, extra_environ=None, timeout=None)
Submits the form. If name is given, then also select that button (using index to disambiguate)‘‘.

Returns a webtest.browser.TestResponse object.

8.3.2 Environment variables

Those value are used if found in environment:

• SELENIUM_HOST: Default to 127.0.0.1

• SELENIUM_PORT: Default to 4444

• SELENIUM_BIND: IP used to bind extra servers (WSGI Server/File server). Default to 127.0.0.1

26 Chapter 8. API

WebTest Documentation, Release 1.4.3

• SELENIUM_DRIVER: The driver used to start the browser. Usualy something in *chrome, *firefox,
*googlechrome. Default to *googlechrome. You can get the full list by running:

$ java -jar selenium-server.jar -interactive
cmd=getNewBrowserSession

• SELENIUM_KEEP_OPEN: If exist then browser session are not closed so you can introspect the problem on
failure.

• SELENIUM_JAR: If selenium is not running then this jar is used to run selenium.

8.3.3 Examples

Testing a wsgi application

Testing the jquery.ui website

8.3. webtest.sel – Functional Testing with Selenium 27

WebTest Documentation, Release 1.4.3

28 Chapter 8. API

CHAPTER

NINE

NEWS

9.1 1.4.3

• fully implement decoding of HTML entities

• fix tox configuration

9.2 1.4.2

• fix tests error due to CLRF in a tarball

9.3 1.4.1

• add travis-ci

• migrate repository to https://github.com/Pylons/webtest

• Fix a typo in apps.py: selectedIndicies

• Preserve field order during parsing (support for deform and such)

• allow equals sign in the cookie by spliting name-value-string pairs on the first ‘=’ sign as per
http://tools.ietf.org/html/rfc6265#section-5.2

• fix an error when you use AssertionError(response) with unicode chars in response

9.4 1.4.0

• added webtest.ext - allow to use casperjs

9.5 1.3.6

• fix #42 Check uppercase method.

• fix #36 Radio can use forced value.

• fix #24 Include test fixtures.

29

https://github.com/Pylons/webtest
http://tools.ietf.org/html/rfc6265#section-5.2
https://bitbucket.org/ianb/webtest/issue/42
https://bitbucket.org/ianb/webtest/issue/36
https://bitbucket.org/ianb/webtest/issue/24

WebTest Documentation, Release 1.4.3

• fix bug when trying to print a response which contain some unicode chars

9.6 1.3.5

• fix #39 Add PATCH to acceptable methods.

9.7 1.3.4

• fix #33 Remove CaptureStdout. Do nothing and break pdb

• use OrderedDict to store fields in form. See #31

• fix #38 Allow to post falsey values.

• fix #37 Allow Content-Length: 0 without Content-Type

• fix #30 bad link to pyquery documentation

• Never catch NameError during iteration

9.8 1.3.3

• added post_json, put_json, delete_json

• fix #25 params dictionary of webtest.AppTest.post() does not support unicode values

9.9 1.3.2

• improve showbrowser. fixed #23

• print_stderr fail with unicode string on python2

9.10 1.3.1

• Added .option() #20

• Fix #21

• Full python3 compat

9.11 1.3

• Moved TestApp to app.py

• Added selenium testing framework. See sel module.

30 Chapter 9. News

https://bitbucket.org/ianb/webtest/issue/39
https://bitbucket.org/ianb/webtest/issue/33
https://bitbucket.org/ianb/webtest/issue/31
https://bitbucket.org/ianb/webtest/issue/38
https://bitbucket.org/ianb/webtest/issue/37
https://bitbucket.org/ianb/webtest/issue/30
https://bitbucket.org/ianb/webtest/issue/25
https://bitbucket.org/ianb/webtest/issue/23
https://bitbucket.org/ianb/webtest/issue/20

WebTest Documentation, Release 1.4.3

9.12 1.2.4

• Accept lists for app.post(url, params=[...])

• Allow to use url that starts with the SCRIPT_NAME found in extra_environ

• Fix #16 Default content-type is now correctly set to application/octet-stream

• Fix #14 and #18 Allow to use .delete(params={})

• Fix #12

9.13 1.2.3

• Fix #10, now TestApp.extra_environ doesn’t take precedence over a WSGI environment passed in through the
request.

• Removed stray print

9.14 1.2.2

• Revert change to cookies that would add " around cookie values.

• Added property webtest.Response.pyquery() which returns a PyQuery object.

• Set base_url on resp.lxml

• Include tests and docs in tarball.

• Fix sending in webob.Request (or webtest.TestRequest) objects.

• Fix handling forms with file uploads, when no file is selected.

• Added extra_environ argument to webtest.TestResponse.click().

• Fixed/added wildcard statuses, like status="4*"

• Fix file upload fields in forms: allow upload field to be empty.

• Added support for single-quoted html attributes.

• TestResponse now has unicode support. It is turned on by default for all responses with charset information. This
is backward incompatible change if you rely (e.g. in doctests) on parsed form fields or responses returned by
json and lxml methods being encoded strings when charset header is in response. In order to switch to old
behaviour pass use_unicode=False flag to TestApp constructor.

9.15 1.2.1

• Added method TestApp.request(), which can be used for sending requests with different methods
(e.g., MKCOL). This method sends all its keyword arguments to webtest.TestRequest.blank()
and then executes the request. The parameters are somewhat different than other methods (like
webtest.TestApp.get()), as they match WebOb’s attribute names exactly (the other methods were writ-
ten before WebOb existed).

• Removed the copying of stdout to stderr during requests.

9.12. 1.2.4 31

https://bitbucket.org/ianb/webtest/issue/16
https://bitbucket.org/ianb/webtest/issue/18
https://bitbucket.org/ianb/webtest/issue/12
http://bitbucket.org/ianb/webtest/issue/10/testapprequest-method-overwrites-specifics-with-testapp-scoped
http://pyquery.org/

WebTest Documentation, Release 1.4.3

• Fix file upload fields in forms (#340) – you could upload files with webtest.TestApp.post(), but if you
use resp.form file upload fields would not work (from rcs-comp.com and Matthew Desmarais).

9.16 1.2

• Fix form inputs; text inputs always default to the empty string, and unselected radio inputs default to nothing at
all. From Daniele Paolella.

• Fix following links with fragments (these fragments should not be sent to the WSGI application). From desmaj.

• Added force_value to select fields, like res.form[’select’].force_value("new_value").
This makes it possible to simulate forms that are dynamically updated. From Matthew Desmarais.

• Fixed webtest.Response.mustcontain() when you pass in a no=[strings] argument.

9.17 1.1

• Changed the __str__ of responses to make them more doctest friendly:

– All headers are displayed capitalized, like Content-Type

– Headers are sorted alphabetically

• Changed __repr__ to only show the body length if the complete body is not shown (for short bodies the
complete body is in the repr)

• Note: these are backward incompatible changes if you are using doctest (you’ll have to update your doctests
with the new format).

• Fixed exception in the .delete method.

• Added a content_type argument to app.post and app.put, which sets the Content-Type of the
request. This is more convenient when testing REST APIs.

• Skip links in <script>...</script> tags (since that’s not real markup).

9.18 1.0.2

• Don’t submit unnamed form fields.

• Checkboxes with no explicit value send on (previously they sent checked, which isn’t what browsers send).

• Support for <select multiple> fields (from Matthew Desmarais)

1.0.1 —

• Fix the TestApp validator’s InputWrapper lacking support for readline with an argument as needed by the cgi
module.

9.19 1.0

• Keep URLs in-tact in cases such as app.get(’http://www.python.org’) (so
HTTP_HOST=www.python.org, etc).

• Fix lxml.html import, so lxml 2.0 users can get HTML lxml objects from resp.lxml

32 Chapter 9. News

http://trac.pythonpaste.org/pythonpaste/ticket/340

WebTest Documentation, Release 1.4.3

• Treat <input type="image"> like a submit button.

• Use BaseCookie instead of SimpleCookie for storing cookies (avoids quoting cookie values).

• Accept any params argument that has an items method (like MultiDict)

9.20 0.9

Initial release

9.20. 0.9 33

WebTest Documentation, Release 1.4.3

34 Chapter 9. News

CHAPTER

TEN

LICENSE

Copyright (c) 2010 Ian Bicking and Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

35

