

Testing Applications with WebTest

	author

	Ian Bicking <ianb@colorstudy.com>

	maintainer

	Gael Pasgrimaud <gael@gawel.org>

Status & License

WebTest is an extraction of paste.fixture.TestApp, rewriting
portions to use WebOb [https://webob.org]. It is under
active development as part of the Pylons cloud of packages.

Feedback and discussion should take place on the Pylons discuss list [https://groups.google.com/forum/#!forum/pylons-discuss], and bugs
should go into the Github tracker [https://github.com/Pylons/webtest/issues].

This library is licensed under an MIT-style license.

Installation

You can use pip or easy_install to get the latest stable release:

$ pip install WebTest
$ easy_install WebTest

Or if you want the development version:

$ pip install https://nodeload.github.com/Pylons/webtest/tar.gz/main

What This Does

WebTest helps you test your WSGI-based web applications. This can be
any application that has a WSGI interface, including an application
written in a framework that supports WSGI (which includes most
actively developed Python web frameworks -- almost anything that even
nominally supports WSGI should be testable).

With this you can test your web applications without starting an HTTP
server, and without poking into the web framework shortcutting
pieces of your application that need to be tested. The tests WebTest
runs are entirely equivalent to how a WSGI HTTP server would call an
application. By testing the full stack of your application, the
WebTest testing model is sometimes called a functional test,
integration test, or acceptance test (though the latter two are
not particularly good descriptions). This is in contrast to a unit
test which tests a particular piece of functionality in your
application. While complex programming tasks are often suited to
unit tests, template logic and simple web programming is often best
done with functional tests; and regardless of the presence of unit
tests, no testing strategy is complete without high-level tests to
ensure the entire programming system works together.

WebTest helps you create tests by providing a convenient interface to
run WSGI applications and verify the output.

Quick start

The most important object in WebTest is TestApp, the wrapper
for WSGI applications. It also allows you to perform HTTP requests on it.
To use it, you simply instantiate it with your WSGI application.

Note

If your WSGI application requires any configuration,
you must set that up manually in your tests.

Here is a basic application:

>>> def application(environ, start_response):
... headers = [('Content-Type', 'text/html; charset=utf8'),
... ('Content-Length', str(len(body)))]
... start_response('200 OK', headers)
... return [body]

Wrap it into a TestApp:

>>> from webtest import TestApp
>>> app = TestApp(application)

Then you can get the response of a HTTP GET:

>>> resp = app.get('/')

And check the results, like response's status:

>>> assert resp.status == '200 OK'
>>> assert resp.status_int == 200

Response's headers:

>>> assert resp.content_type == 'text/html'
>>> assert resp.content_length > 0

Or response's body:

>>> resp.mustcontain('<html>')
>>> assert 'form' in resp

WebTest can do much more. In particular, it can handle Form handling.

Contents

	Functional Testing of Web Applications
	TestApp
	Making Requests

	Making JSON Requests

	Modifying the Environment & Simulating Authentication

	Testing a non wsgi application

	What Is Tested By Default

	TestResponse
	Form handling
	Getting a form

	Filling a form

	Field types
	Input and textarea fields

	Select fields

	Checkbox

	Radio

	File

	Submit a form

	Parsing the Body

	WSGI Debug application

	Framework Hooks

	webtest API
	webtest.app.TestApp

	webtest.app.TestRequest

	webtest.response.TestResponse

	webtest.forms

	webtest.http

	webtest.lint

	webtest.debugapp

	Contribute to webtest project
	Getting started

	Execute tests

	Use tox to test many Python versions

	Generate documentation

	Tips

	News
	3.0.1 (unreleased)

	3.0.0 (2021-08-19)

	2.0.35 (2020-04-27)

	2.0.34 (2020-01-29)

	2.0.33 (2019-02-09)

	2.0.32 (2018-10-05)

	2.0.31 (2018-10-05)

	2.0.30 (2018-06-23)

	2.0.29 (2017-10-21)

	2.0.28 (2017-08-01)

	2.0.27 (2017-03-15)

	2.0.26 (2017-03-05)

	2.0.25 (2017-02-05)

	2.0.24 (2016-12-16)

	2.0.23 (2016-07-21)

	2.0.22 (2016-07-21)

	2.0.21 (2016-04-12)

	2.0.20 (2015-11-03)

	2.0.19 (2015-11-01)

	2.0.18 (2015-02-05)

	2.0.17 (2014-12-20)

	2.0.16 (2014-09-19)

	2.0.15 (2014-04-17)

	2.0.14 (2014-01-23)

	2.0.13 (2014-01-23)

	2.0.12 (2014-01-17)

	2.0.11 (2013-12-29)

	2.0.10 (2013-11-14)

	2.0.9 (2013-09-18)

	2.0.8 (2013-09-17)

	2.0.7 (2013-08-07)

	2.0.6 (2013-05-23)

	2.0.5 (2013-04-12)

	2.0.4 (2013-03-28)

	2.0.3 (2013-03-19)

	2.0.2 (2013-03-15)

	2.0.1 (2013-03-05)

	2.0 (2013-02-25)

	1.4.2

	1.4.1

	1.4.0

	1.3.6

	1.3.5

	1.3.4

	1.3.3

	1.3.2

	1.3.1

	1.3

	1.2.4

	1.2.3

	1.2.2

	1.2.1

	1.2

	1.1

	1.0.2

	1.0

	0.9

License

Copyright (c) 2010 Ian Bicking and Contributors

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Functional Testing of Web Applications

	TestApp
	Making Requests

	Making JSON Requests

	Modifying the Environment & Simulating Authentication

	Testing a non wsgi application

	What Is Tested By Default

	TestResponse
	Form handling
	Getting a form

	Filling a form

	Field types
	Input and textarea fields

	Select fields

	Checkbox

	Radio

	File

	Submit a form

	Parsing the Body

	WSGI Debug application

Framework Hooks

Frameworks can detect that they are in a testing environment by the
presence (and truth) of the WSGI environmental variable
"paste.testing" (the key name is inherited from
paste.fixture).

More generally, frameworks can detect that something (possibly a test
fixture) is ready to catch unexpected errors by the presence and truth
of "paste.throw_errors" (this is sometimes set outside of testing
fixtures too, when an error-handling middleware is in place).

Frameworks that want to expose the inner structure of the request may
use "paste.testing_variables". This will be a dictionary -- any
values put into that dictionary will become attributes of the response
object. So if you do env["paste.testing_variables"]['template'] =
template_name in your framework, then response.template will be
template_name.

TestApp

Making Requests

To make a request, use:

app.get('/path', [params], [headers], [extra_environ], ...)

This call to get() does a request for
/path, with any params, extra headers or WSGI
environment keys that you indicate. This returns a
TestResponse object,
based on webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response]. It has some
additional methods to make it easier to test.

If you want to do a POST request, use:

app.post('/path', {'vars': 'values'}, [headers], [extra_environ],
 [upload_files], ...)

Specifically the second argument of post()
is the body of the request. You
can pass in a dictionary (or dictionary-like object), or a string
body (dictionary objects are turned into HTML form submissions).

You can also pass in the keyword argument upload_files, which is a
list of [(fieldname, filename, field_content)]. File uploads use a
different form submission data type to pass the structured data.

You can use put() and
delete() for PUT and DELETE requests.

Making JSON Requests

Webtest provide some facilities to test json apis.

The *_json methods will transform data to json before POST/PUT and
add the correct Content-Type for you.

Also Response have an attribute json to allow you to retrieve json
contents as a python dict.

Doing POST request with webtest.app.TestApp.post_json():

>>> resp = app.post_json('/resource/', dict(id=1, value='value'))
>>> print(resp.request)
POST /resource/ HTTP/1.0
Content-Length: 27
Content-Type: application/json
...

>>> resp.json == {'id': 1, 'value': 'value'}
True

Doing GET request with webtest.app.TestApp.get() and using json:

To just parse body of the response, use Response.json:

>>> resp = app.get('/resource/1/')
>>> print(resp.request)
GET /resource/1/ HTTP/1.0
...

>>> resp.json == {'id': 1, 'value': 'value'}
True

Modifying the Environment & Simulating Authentication

The best way to simulate authentication is if your application looks
in environ['REMOTE_USER'] to see if someone is authenticated.
Then you can simply set that value, like:

app.get('/secret', extra_environ=dict(REMOTE_USER='bob'))

If you want all your requests to have this key, do:

app = TestApp(my_app, extra_environ=dict(REMOTE_USER='bob'))

If you have to use HTTP authorization you can use the .authorization
property to set the HTTP_AUTHORIZATION key of the extra_environ
dictionary:

app = TestApp(my_app)
app.authorization = ('Basic', ('user', 'password'))

You can also use bearer token or JWT authorization types:

app = TestApp(my_app)
app.authorization = ('Bearer', 'mytoken')
or
app.authorization = ('JWT', 'myjwt')

Testing a non wsgi application

You can use WebTest to test an application on a real web server.
Just pass an url to the TestApp instead of a WSGI application:

app = TestApp('http://my.cool.websi.te')

You can also use the WEBTEST_TARGET_URL env var to switch from a WSGI
application to a real server without having to modify your code:

os.environ['WEBTEST_TARGET_URL'] = 'http://my.cool.websi.te'
app = TestApp(wsgiapp) # will use the WEBTEST_TARGET_URL instead of the wsgiapp

By default the proxy will use httplib but you can use other backends by
adding an anchor to your url:

app = TestApp('http://my.cool.websi.te#urllib3')
app = TestApp('http://my.cool.websi.te#requests')
app = TestApp('http://my.cool.websi.te#restkit')

What Is Tested By Default

A key concept behind WebTest is that there's lots of things you
shouldn't have to check everytime you do a request. It is assumed
that the response will either be a 2xx or 3xx response; if it isn't an
exception will be raised (you can override this for a request, of
course). The WSGI application is tested for WSGI compliance with
a slightly modified version of wsgiref.validate [https://docs.python.org/3/library/wsgiref.html#module-wsgiref.validate]
(modified to support arguments to InputWrapper.readline)
automatically. Also it checks that nothing is printed to the
environ['wsgi.errors'] error stream, which typically indicates a
problem (one that would be non-fatal in a production situation, but if
you are testing is something you should avoid).

To indicate another status is expected, use the keyword argument
status=404 to (for example) check that it is a 404 status, or
status="*" to allow any status, or status="400 Custom Bad Request"
to use custom reason phrase.

If you expect errors to be printed, use expect_errors=True.

TestResponse

The response object is based on webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response] with some additions
to help with testing.

The inherited attributes that are most interesting:

	response.status:

	The text status of the response, e.g., "200 OK".

	response.status_int:

	The text status_int of the response, e.g., 200.

	response.headers:

	A dictionary-like object of the headers in the response.

	response.body:

	The text body of the response.

	response.text:

	The unicode text body of the response.

	response.normal_body:

	The whitespace-normalized 1 body of the response.

	response.request:

	The webob.request.BaseRequest [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest] object used to generate
this response.

The added methods:

	response.follow(**kw):

	Follows the redirect, returning the new response. It is an error
if this response wasn't a redirect. All keyword arguments are
passed to webtest.app.TestApp (e.g., status). Returns
another response object.

	response.maybe_follow(**kw):

	Follows all redirects; does nothing if this response
is not a redirect. All keyword arguments are passed
to webtest.app.TestApp (e.g., status). Returns another
response object.

	x in response:

	Returns True if the string is found in the response body.
Whitespace is normalized for this test.

	response.mustcontain(string1, string2, no=string3):

	Raises an error if any of the strings are not found in the
response. If a string of a string list is given as no keyword
argument, raise an error if one of those are found in the
response. It also prints out the response in that case, so you
can see the real response.

	response.showbrowser():

	Opens the HTML response in a browser; useful for debugging.

	str(response):

	Gives a slightly-compacted version of the response. This is
compacted to remove newlines, making it easier to use with
doctest [https://docs.python.org/3/library/doctest.html#module-doctest].

	response.click(description=None, linkid=None, href=None, anchor=None, index=None, verbose=False):

	Clicks the described link (see click())

	response.forms:

	Return a dictionary of forms; you can use both indexes (refer to
the forms in order) or the string ids of forms (if you've given
them ids) to identify the form. See Form handling for more on the form
objects.

	response.form:

	If there is just a single form, this returns that. It is an error
if you use this and there are multiple forms.

Footnotes

	1

	The whitespace normalization replace sequences of whitespace characters and \n \r \t by a single space.

	Form handling
	Getting a form

	Filling a form

	Field types
	Input and textarea fields

	Select fields

	Checkbox

	Radio

	File

	Submit a form

Parsing the Body

There are several ways to get parsed versions of the response. These
are the attributes:

	response.html:

	Return a BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/] version of the
response body:

>>> res = app.get('/index.html')
>>> res.html
<html><body><div id="content">hey!</div></body></html>
>>> res.html.__class__
<class '...BeautifulSoup'>

	response.xml:

	Return an ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree]
version of the response body:

>>> res = app.get('/document.xml')
>>> res.xml
<Element 'xml' ...>
>>> res.xml[0].tag
'message'
>>> res.xml[0].text
'hey!'

	response.lxml:

	Return an lxml [https://lxml.de/] version of the response body:

>>> res = app.get('/index.html')
>>> res.lxml
<Element html at ...>
>>> res.lxml.xpath('//body/div')[0].text
'hey!'

>>> res = app.get('/document.xml')
>>> res.lxml
<Element xml at ...>
>>> res.lxml[0].tag
'message'
>>> res.lxml[0].text
'hey!'

	response.pyquery:

	Return a PyQuery [https://pypi.org/project/pyquery/] version of the
response body:

>>> res.pyquery('message')
[<message>]
>>> res.pyquery('message').text()
'hey!'

	response.json:

	Return the parsed JSON (parsed with simplejson [http://svn.red-bean.com/bob/simplejson/tags/simplejson-1.7/docs/index.html]):

>>> res = app.get('/object.json')
>>> sorted(res.json.values())
[1, 2]

In each case the content-type must be correct or an AttributeError is
raised. If you do not have the necessary library installed (none of
them are required by WebTest), you will get an ImportError.

Form handling

Getting a form

If you have a single html form in your page, just use the .form attribute:

>>> res = app.get('/form.html')
>>> form = res.form

If you have more then one HTML form in your page, use the .forms property and
access via the form index:

>>> form = res.forms[0]

Or the form id:

>>> form = res.forms['myform']

You can check form attributes:

>>> print(form.id)
myform
>>> print(form.action)
/form-submit
>>> print(form.method)
POST

Filling a form

You can fill out and submit forms from your tests. Fields are a dict like
object:

>>> # dict of fields
>>> form.fields.items()
[(u'text', [<Text name="text">]), ..., (u'submit', [<Submit name="submit">])]

You can check the current value:

>>> print(form['text'].value)
Foo

Then you fill it in fields:

>>> form['text'] = 'Bar'
>>> # When names don't point to a single field:
>>> form.set('text', 'Bar', index=0)

Field types

Input and textarea fields

>>> print(form['textarea'].value)
Some text
>>> form['textarea'] = 'Some other text'

You can force the value of an hidden field:

>>> form['hidden'].force_value('2')

Select fields

Simple select:

>>> print(form['select'].value)
option2
>>> form['select'] = 'option1'

Select multiple:

>>> print(form['multiple'].value)
['option2', 'option3']
>>> form['multiple'] = ['option1']

You can select an option by its text with .select():

>>> form['select'].select(text="Option 2")
>>> print(form['select'].value)
option2

For select multiple use .select_multiple():

>>> form['multiple'].select_multiple(texts=["Option 1", "Option 2"])
>>> print(form['multiple'].value)
['option1', 'option2']

Select fields can only be set to valid values (i.e., values in an <option>)
but you can also use .force_value() to enter values not present in an
option.

>>> form['select'].force_value(['optionX'])
>>> form['multiple'].force_value(['optionX'])

Checkbox

You can check if the checkbox is checked and is value:

>>> print(form['checkbox'].checked)
False
>>> print(form['checkbox'].value)
None

You can change the status with the value:

>>> form['checkbox'] = True

Or with the checked attribute:

>>> form['checkbox'].checked =True

If the checkbox is checked then you'll get the value:

>>> print(form['checkbox'].checked)
True
>>> print(form['checkbox'].value)
checkbox 1

If the checkbox has no value then it will be 'on' if you checked it:

>>> print(form['checkbox2'].value)
None
>>> form['checkbox2'].checked = True
>>> print(form['checkbox2'].value)
on

If there are multiple checkboxes of the same name, you can assign a list to
that name to check all the checkboxes whose value is present in the list:

>>> form['checkboxes'] = ['a', 'c']
>>> print(form.get('checkboxes', index=0).value)
a
>>> print(form.get('checkboxes', index=1).value)
None
>>> print(form.get('checkboxes', index=2).value)
c

Radio

>>> print(form['radio'].value)
Radio 2
>>> form['radio'] = 'Radio 1'

File

You can deal with file upload by using the Upload class:

>>> from webtest import Upload
>>> form['file'] = Upload('README.rst')
>>> form['file'] = Upload('README.rst', b'data')
>>> form['file'] = Upload('README.rst', b'data', 'text/x-rst')

If the file field has a multiple parameter, you can pass a
list of Upload:

>>> from webtest import Upload
>>> form['files'] = [
... Upload('README.rst'),
... Upload('LICENSE.rst'),
...]

Submit a form

Then you can submit the form:

>>> # Submit with no particular submit button pressed:
>>> res = form.submit()
>>> # Or submit a button:
>>> res = form.submit('submit')
>>> print(res)
Response: 200 OK
Content-Type: text/plain
text=Bar
...
submit=Submit

You can also select a specific submit button by its index:

>>> res = form.submit('submit', index=1)
>>> print(res)
Response: 200 OK
Content-Type: text/plain
...
submit=Submit 2

And you can select it by its value:

>>> res = form.submit('submit', value="Submit 2")
>>> print(res)
Response: 200 OK
Content-Type: text/plain
...
submit=Submit 2

WSGI Debug application

webtest.debugapp.debug_app is a faker WSGI app to help to test webtest.

Examples of use :

>>> import webtest
>>> from webtest.debugapp import debug_app
>>> app = webtest.TestApp(debug_app)
>>> res = app.post('/', params='foobar')
>>> print(res.body)
CONTENT_LENGTH: 6
CONTENT_TYPE: application/x-www-form-urlencoded
HTTP_HOST: localhost:80
...
wsgi.url_scheme: 'http'
wsgi.version: (1, 0)
-- Body ----------
foobar

Here, you can see, foobar in body when you pass foobar in app.post params argument.

You can also define the status of response :

>>> res = app.post('/?status=302', params='foobar')
>>> print(res.status)
302 Found

webtest API

Routines for testing WSGI applications.

webtest.app.TestApp

	
class webtest.app.TestApp(app, extra_environ=None, relative_to=None, use_unicode=True, cookiejar=None, parser_features=None, json_encoder=None, lint=True)

	Wraps a WSGI application in a more convenient interface for
testing. It uses extended version of webob.BaseRequest
and webob.Response.

	Parameters

	
	app (WSGI application) -- May be an WSGI application or Paste Deploy app,
like 'config:filename.ini#test'.

New in version 2.0.

It can also be an actual full URL to an http server and webtest
will proxy requests with WSGIProxy2 [https://pypi.org/project/WSGIProxy2/].

	extra_environ (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary of values that should go
into the environment for each request. These can provide a
communication channel with the application.

	relative_to (string) -- A directory used for file
uploads are calculated relative to this. Also config:
URIs that aren't absolute.

	cookiejar (CookieJar instance) -- cookielib.CookieJar alike API that keeps cookies
across requests.

	
cookies

	A convenient shortcut for a dict of all cookies in
cookiejar.

	Parameters

	
	parser_features (string or list [https://docs.python.org/3/library/stdtypes.html#list]) -- Passed to BeautifulSoup when parsing responses.

	json_encoder (A subclass of json.JSONEncoder) -- Passed to json.dumps when encoding json

	lint (A boolean) -- If True (default) then check that the application is WSGI compliant

	
RequestClass

	alias of TestRequest

	
authorization

	Allow to set the HTTP_AUTHORIZATION environ key. Value should look
like one of the following:

	('Basic', ('user', 'password'))

	('Bearer', 'mytoken')

	('JWT', 'myjwt')

If value is None the the HTTP_AUTHORIZATION is removed

	
delete(url, params='', headers=None, extra_environ=None, status=None, expect_errors=False, content_type=None, xhr=False)

	Do a DELETE request. Similar to get().

	Returns

	webtest.TestResponse instance.

	
delete_json(url, params=<NoDefault>, **kw)

	Do a DELETE request. Very like the
delete method.

params are dumped to json and put in the body of the request.
Content-Type is set to application/json.

Returns a webtest.TestResponse object.

	
do_request(req, status=None, expect_errors=None)

	Executes the given webob Request (req), with the expected
status. Generally get() and
post() are used instead.

To use this:

req = webtest.TestRequest.blank('url', ...args...)
resp = app.do_request(req)

Note

You can pass any keyword arguments to
TestRequest.blank(), which will be set on the request.
These can be arguments like content_type, accept, etc.

	
encode_multipart(params, files)

	Encodes a set of parameters (typically a name/value list) and
a set of files (a list of (name, filename, file_body, mimetype)) into a
typical POST body, returning the (content_type, body).

	
get(url, params=None, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False)

	Do a GET request given the url path.

	Parameters

	
	params -- A query string, or a dictionary that will be encoded
into a query string. You may also include a URL query
string on the url.

	headers (dictionary) -- Extra headers to send.

	extra_environ (dictionary) -- Environmental variables that should be added to the request.

	status (integer or string) -- The HTTP status code you expect in response (if not 200 or 3xx).
You can also use a wildcard, like '3*' or '*'.

	expect_errors (boolean) -- If this is False, then if anything is written to
environ wsgi.errors it will be an error.
If it is True, then non-200/3xx responses are also okay.

	xhr (boolean) -- If this is true, then marks response as ajax. The same as
headers={'X-REQUESTED-WITH': 'XMLHttpRequest', }

	Returns

	webtest.TestResponse instance.

	
get_authorization()

	Allow to set the HTTP_AUTHORIZATION environ key. Value should look
like one of the following:

	('Basic', ('user', 'password'))

	('Bearer', 'mytoken')

	('JWT', 'myjwt')

If value is None the the HTTP_AUTHORIZATION is removed

	
head(url, params=None, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False)

	Do a HEAD request. Similar to get().

	Returns

	webtest.TestResponse instance.

	
options(url, headers=None, extra_environ=None, status=None, expect_errors=False, xhr=False)

	Do a OPTIONS request. Similar to get().

	Returns

	webtest.TestResponse instance.

	
patch(url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None, xhr=False)

	Do a PATCH request. Similar to post().

	Returns

	webtest.TestResponse instance.

	
patch_json(url, params=<NoDefault>, **kw)

	Do a PATCH request. Very like the
patch method.

params are dumped to json and put in the body of the request.
Content-Type is set to application/json.

Returns a webtest.TestResponse object.

	
post(url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None, xhr=False)

	Do a POST request. Similar to get().

	Parameters

	
	params -- Are put in the body of the request. If params is an
iterator, it will be urlencoded. If it is a string, it will not
be encoded, but placed in the body directly.

Can be a collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] with
webtest.forms.Upload fields included:

app.post('/myurl', collections.OrderedDict([
 ('textfield1', 'value1'),
 ('uploadfield', webapp.Upload('filename.txt', 'contents'),
 ('textfield2', 'value2')])))

	upload_files (list [https://docs.python.org/3/library/stdtypes.html#list]) -- It should be a list of (fieldname, filename, file_content).
You can also use just (fieldname, filename) and the file
contents will be read from disk.

	content_type (string) -- HTTP content type, for example application/json.

	xhr (boolean) -- If this is true, then marks response as ajax. The same as
headers={'X-REQUESTED-WITH': 'XMLHttpRequest', }

	Returns

	webtest.TestResponse instance.

	
post_json(url, params=<NoDefault>, **kw)

	Do a POST request. Very like the
post method.

params are dumped to json and put in the body of the request.
Content-Type is set to application/json.

Returns a webtest.TestResponse object.

	
put(url, params='', headers=None, extra_environ=None, status=None, upload_files=None, expect_errors=False, content_type=None, xhr=False)

	Do a PUT request. Similar to post().

	Returns

	webtest.TestResponse instance.

	
put_json(url, params=<NoDefault>, **kw)

	Do a PUT request. Very like the
put method.

params are dumped to json and put in the body of the request.
Content-Type is set to application/json.

Returns a webtest.TestResponse object.

	
request(url_or_req, status=None, expect_errors=False, **req_params)

	Creates and executes a request. You may either pass in an
instantiated TestRequest object, or you may pass in a
URL and keyword arguments to be passed to
TestRequest.blank().

You can use this to run a request without the intermediary
functioning of TestApp.get() etc. For instance, to
test a WebDAV method:

resp = app.request('/new-col', method='MKCOL')

Note that the request won't have a body unless you specify it,
like:

resp = app.request('/test.txt', method='PUT', body='test')

You can use webtest.TestRequest:

req = webtest.TestRequest.blank('/url/', method='GET')
resp = app.do_request(req)

	
reset()

	Resets the state of the application; currently just clears
saved cookies.

	
set_cookie(name, value)

	Sets a cookie to be passed through with requests.

	
set_parser_features(parser_features)

	Changes the parser used by BeautifulSoup. See its documentation to
know the supported parsers.

webtest.app.TestRequest

	
class webtest.app.TestRequest(environ, charset=None, unicode_errors=None, decode_param_names=None, **kw)

	Bases: webob.request.BaseRequest [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest]

A subclass of webob.Request

	
ResponseClass

	alias of webtest.response.TestResponse

webtest.response.TestResponse

	
class webtest.response.TestResponse(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, charset=<object object>, **kw)

	Bases: webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response]

Instances of this class are returned by
TestApp methods.

	
click(description=None, linkid=None, href=None, index=None, verbose=False, extra_environ=None)

	Click the link as described. Each of description,
linkid, and url are patterns, meaning that they are
either strings (regular expressions), compiled regular
expressions (objects with a search method), or callables
returning true or false.

All the given patterns are ANDed together:

	description is a pattern that matches the contents of the
anchor (HTML and all -- everything between <a...> and
)

	linkid is a pattern that matches the id attribute of
the anchor. It will receive the empty string if no id is
given.

	href is a pattern that matches the href of the anchor;
the literal content of that attribute, not the fully qualified
attribute.

If more than one link matches, then the index link is
followed. If index is not given and more than one link
matches, or if no link matches, then IndexError will be
raised.

If you give verbose then messages will be printed about
each link, and why it does or doesn't match. If you use
app.click(verbose=True) you'll see a list of all the
links.

You can use multiple criteria to essentially assert multiple
aspects about the link, e.g., where the link's destination is.

	
clickbutton(description=None, buttonid=None, href=None, onclick=None, index=None, verbose=False)

	Like click(), except looks
for link-like buttons.
This kind of button should look like
<button onclick="...location.href='url'...">.

	
follow(**kw)

	If this response is a redirect, follow that redirect. It is an
error if it is not a redirect response. Any keyword
arguments are passed to webtest.app.TestApp.get. Returns
another TestResponse object.

	
form

	If there is only one form on the page, return it as a
Form object; raise a TypeError is
there are no form or multiple forms.

	
forms

	Returns a dictionary containing all the forms in the pages as
Form objects. Indexes are both in
order (from zero) and by form id (if the form is given an id).

See Form handling for more info on form objects.

	
goto(href, method='get', **args)

	Go to the (potentially relative) link href, using the
given method ('get' or 'post') and any extra arguments
you want to pass to the webtest.app.TestApp.get() or
webtest.app.TestApp.post() methods.

All hostnames and schemes will be ignored.

	
html

	Returns the response as a BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs3/documentation.html]
object.

Only works with HTML responses; other content-types raise
AttributeError.

	
json

	Return the response as a JSON response.
The content type must be one of json type to use this.

	
lxml

	Returns the response as an lxml object [https://lxml.de/].
You must have lxml installed to use this.

If this is an HTML response and you have lxml 2.x installed,
then an lxml.html.HTML object will be returned; if you
have an earlier version of lxml then a lxml.HTML object
will be returned.

	
maybe_follow(**kw)

	Follow all redirects. If this response is not a redirect, do nothing.
Any keyword arguments are passed to webtest.app.TestApp.get.
Returns another TestResponse object.

	
mustcontain(*strings, no=[])

	Assert that the response contains all of the strings passed
in as arguments.

Equivalent to:

assert string in res

Can take a no keyword argument that can be a string or a
list of strings which must not be present in the response.

	
normal_body

	Return the whitespace-normalized body

	
pyquery

	Returns the response as a PyQuery [https://pypi.org/project/pyquery/] object.

Only works with HTML and XML responses; other content-types raise
AttributeError.

	
showbrowser()

	Show this response in a browser window (for debugging purposes,
when it's hard to read the HTML).

	
unicode_normal_body

	Return the whitespace-normalized body, as unicode

	
xml

	Returns the response as an ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree] object.

Only works with XML responses; other content-types raise
AttributeError

webtest.forms

Helpers to fill and submit forms.

	
class webtest.forms.Checkbox(*args, **attrs)

	Bases: webtest.forms.Field

Field representing <input type="checkbox">

	
checked

	Returns True if checkbox is checked.

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Email(form, tag, name, pos, value=None, id=None, **attrs)

	Bases: webtest.forms.Field

Field representing <input type="email">

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Field(form, tag, name, pos, value=None, id=None, **attrs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for all Field objects.

	
classes

	Dictionary of field types (select, radio, etc)

	
value

	Set/get value of the field.

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.File(form, tag, name, pos, value=None, id=None, **attrs)

	Bases: webtest.forms.Field

Field representing <input type="file">

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Form(response, text, parser_features='html.parser')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This object represents a form that has been found in a page.

	Parameters

	
	response -- webob.response.TestResponse instance

	text -- Unparsed html of the form

	
text

	the full HTML of the form.

	
action

	the relative URI of the action.

	
method

	the HTTP method (e.g., 'GET').

	
id

	the id, or None if not given.

	
enctype

	encoding of the form submission

	
fields

	a dictionary of fields, each value is a list of fields by
that name. <input type="radio"> and <select> are
both represented as single fields with multiple options.

	
field_order

	Ordered list of field names as found in the html.

	
FieldClass

	alias of Field

	
get(name, index=None, default=<NoDefault>)

	Get the named/indexed field object, or default if no field is
found. Throws an AssertionError if no field is found and no default
was given.

	
lint()

	Check that the html is valid:

	each field must have an id

	each field must have a label

	
select(name, value=None, text=None, index=None)

	Like .set(), except also confirms the target is a <select>
and allows selecting options by text.

	
select_multiple(name, value=None, texts=None, index=None)

	Like .set(), except also confirms the target is a
<select multiple> and allows selecting options by text.

	
set(name, value, index=None)

	Set the given name, using index to disambiguate.

	
submit(name=None, index=None, value=None, **args)

	Submits the form. If name is given, then also select that
button (using index or value to disambiguate)``.

Any extra keyword arguments are passed to the
webtest.TestResponse.get() or
webtest.TestResponse.post() method.

Returns a webtest.TestResponse object.

	
submit_fields(name=None, index=None, submit_value=None)

	Return a list of [(name, value), ...] for the current state of
the form.

	Parameters

	
	name -- Same as for submit()

	index -- Same as for submit()

	
upload_fields()

	Return a list of file field tuples of the form:

(field name, file name)

or:

(field name, file name, file contents).

	
class webtest.forms.Hidden(form, tag, name, pos, value=None, id=None, **attrs)

	Bases: webtest.forms.Text

Field representing <input type="hidden">

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.MultipleSelect(*args, **attrs)

	Bases: webtest.forms.Field

Field representing <select multiple="multiple">

	
force_value(values)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Radio(*args, **attrs)

	Bases: webtest.forms.Select

Field representing <input type="radio">

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Select(*args, **attrs)

	Bases: webtest.forms.Field

Field representing <select /> form element.

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Submit(form, tag, name, pos, value=None, id=None, **attrs)

	Bases: webtest.forms.Field

Field representing <input type="submit"> and <button>

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Text(form, tag, name, pos, value=None, id=None, **attrs)

	Bases: webtest.forms.Field

Field representing <input type="text">

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Textarea(form, tag, name, pos, value=None, id=None, **attrs)

	Bases: webtest.forms.Text

Field representing <textarea>

	
force_value(value)

	Like setting a value, except forces it (even for, say, hidden
fields).

	
class webtest.forms.Upload(filename, content=None, content_type=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A file to upload:

>>> Upload('filename.txt', 'data', 'application/octet-stream')
<Upload "filename.txt">
>>> Upload('filename.txt', 'data')
<Upload "filename.txt">
>>> Upload("README.txt")
<Upload "README.txt">

	Parameters

	
	filename -- Name of the file to upload.

	content -- Contents of the file.

	content_type -- MIME type of the file.

webtest.http

This module contains some helpers to deal with the real http
world.

	
class webtest.http.StopableWSGIServer(application, *args, **kwargs)

	Bases: waitress.server.TcpWSGIServer

StopableWSGIServer is a TcpWSGIServer which run in a separated thread.
This allow to use tools like casperjs or selenium.

Server instance have an application_url attribute formatted with the
server host and port.

	
classmethod create(application, **kwargs)

	Start a server to serve application. Return a server
instance.

	
run()

	Run the server

	
shutdown()

	Shutdown the server

	
wait(retries=30)

	Wait until the server is started

	
wrapper(environ, start_response)

	Wrap the wsgi application to override some path:

/__application__: allow to ping the server.

/__file__?__file__={path}: serve the file found at path

	
webtest.http.check_server(host, port, path_info='/', timeout=3, retries=30)

	Perform a request until the server reply

webtest.lint

Middleware to check for obedience to the WSGI specification.

Some of the things this checks:

	Signature of the application and start_response (including that
keyword arguments are not used).

	Environment checks:

	Environment is a dictionary (and not a subclass).

	That all the required keys are in the environment: REQUEST_METHOD,
SERVER_NAME, SERVER_PORT, wsgi.version, wsgi.input, wsgi.errors,
wsgi.multithread, wsgi.multiprocess, wsgi.run_once

	That HTTP_CONTENT_TYPE and HTTP_CONTENT_LENGTH are not in the
environment (these headers should appear as CONTENT_LENGTH and
CONTENT_TYPE).

	Warns if QUERY_STRING is missing, as the cgi module acts
unpredictably in that case.

	That CGI-style variables (that don't contain a .) have
(non-unicode) string values

	That wsgi.version is a tuple

	That wsgi.url_scheme is 'http' or 'https' (@@: is this too
restrictive?)

	Warns if the REQUEST_METHOD is not known (@@: probably too
restrictive).

	That SCRIPT_NAME and PATH_INFO are empty or start with /

	That at least one of SCRIPT_NAME or PATH_INFO are set.

	That CONTENT_LENGTH is a positive integer.

	That SCRIPT_NAME is not '/' (it should be '', and PATH_INFO should
be '/').

	That wsgi.input has the methods read, readline, readlines, and
__iter__

	That wsgi.errors has the methods flush, write, writelines

	The status is a string, contains a space, starts with an integer,
and that integer is in range (> 100).

	That the headers is a list (not a subclass, not another kind of
sequence).

	That the items of the headers are tuples of 'native' strings (i.e.
bytestrings in Python2, and unicode strings in Python3).

	That there is no 'status' header (that is used in CGI, but not in
WSGI).

	That the headers don't contain newlines or colons, end in _ or -, or
contain characters codes below 037.

	That Content-Type is given if there is content (CGI often has a
default content type, but WSGI does not).

	That no Content-Type is given when there is no content (@@: is this
too restrictive?)

	That the exc_info argument to start_response is a tuple or None.

	That all calls to the writer are with strings, and no other methods
on the writer are accessed.

	That wsgi.input is used properly:

	.read() is called with zero or one argument

	That it returns a string

	That readline, readlines, and __iter__ return strings

	That .close() is not called

	No other methods are provided

	That wsgi.errors is used properly:

	.write() and .writelines() is called with a string, except
with python3

	That .close() is not called, and no other methods are provided.

	The response iterator:

	That it is not a string (it should be a list of a single string; a
string will work, but perform horribly).

	That .next() returns a string

	That the iterator is not iterated over until start_response has
been called (that can signal either a server or application
error).

	That .close() is called (doesn't raise exception, only prints to
sys.stderr, because we only know it isn't called when the object
is garbage collected).

	
webtest.lint.middleware(application, global_conf=None)

	When applied between a WSGI server and a WSGI application, this
middleware will check for WSGI compliance on a number of levels.
This middleware does not modify the request or response in any
way, but will throw an AssertionError if anything seems off
(except for a failure to close the application iterator, which
will be printed to stderr -- there's no way to throw an exception
at that point).

webtest.debugapp

	
class webtest.debugapp.DebugApp(form=None, show_form=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The WSGI application used for testing

	
webtest.debugapp.make_debug_app(global_conf, **local_conf)

	An application that displays the request environment, and does
nothing else (useful for debugging and test purposes).

Contribute to webtest project

Getting started

Get your working copy :

$ git clone https://github.com/Pylons/webtest.git
$ cd webtest
$ virtualenv .
$. bin/activate
$ python setup.py dev

Now, you can hack.

Execute tests

$ bin/pytest
Doctest: forms.rst ... ok
Doctest: index.rst ... ok

...

test_url_class (tests.test_testing.TestTesting) ... ok
tests.test_testing.test_print_unicode ... °C
ok

Name Stmts Miss Cover Missing
--
webtest 18 0 100%
webtest.app 603 92 85% 48, 61-62, 94, 98, 212-221, 264-265, 268-272, 347, 379-386, 422, 426-428, 432-434, 455, 463, 471, 473, 488, 496-497, 515, 520-527, 548, 553-554, 558-559, 577, 592, 597-598, 618, 624, 661-664, 742, 808, 872, 940-941, 945-948, 961-964, 975, 982, 995, 1000, 1006, 1010, 1049, 1051, 1095-1096, 1118-1119, 1122-1127, 1135-1136, 1148, 1155-1160, 1175
webtest.compat 50 11 78% 28-34, 55-56, 61-62
webtest.debugapp 58 0 100%
webtest.ext 80 0 100%
webtest.forms 324 23 93% 23, 49, 58, 61, 92, 116, 177, 205, 411, 478, 482-486, 491-493, 522, 538, 558-561
webtest.http 78 0 100%
webtest.lint 215 45 79% 135, 176, 214-216, 219-224, 227-231, 234, 243-244, 247, 250-251, 254, 263-264, 270, 274, 307, 311, 335, 359, 407, 424-427, 441-444, 476-479, 493, 508
webtest.sel 479 318 34% 38-39, 45-46, 64-78, 88-108, 120, 126, 151-153, 156-158, 164-165, 168-191, 194-201, 219-231, 236, 240, 243-259, 263-297, 301-306, 316-326, 331-336, 340, 344, 347-352, 357-359, 364, 392-394, 397-404, 408, 412-417, 421, 425-426, 430, 434, 438, 442, 445, 448-457, 470-480, 483-485, 488, 492, 495, 503, 506, 515-516, 520, 524, 528, 533, 538, 542-544, 547, 560-565, 576, 579, 582, 593-596, 599-602, 605-606, 617-620, 623-642, 668-677, 680-688, 715, 720, 732, 735, 744-754, 757-762, 770-779, 791, 794, 805-809, 813-826, 838-842
webtest.utils 99 11 89% 19-20, 23, 26, 32, 38, 100, 109, 152-154
--
TOTAL 2004 500 75%
--
Ran 70 tests in 14.940s

Use tox to test many Python versions

Tox [https://tox.readthedocs.io/en/latest/] installation :

$ pip install tox
$ tox

Launch tests with tox :

$ bin/tox
py26: commands succeeded
py27: commands succeeded
py32: commands succeeded
py33: commands succeeded

To execute test on all python versions, you need to have python2.6, python2.7, python3.2 and python3.3 in your PATH.

Generate documentation

$ pip install Sphinx
$ cd docs
$ make html
../bin/sphinx-build -b html -d _build/doctrees . _build/html
Running Sphinx v1.1.3
loading pickled environment... done

...

build succeeded, 3 warnings.

Build finished. The HTML pages are in _build/html.

Tips

You can use WSGI Debug application object to test webtest.

News

3.0.1 (unreleased)

	Multiple file input support.

	Rename "master" git branch to "main".

3.0.0 (2021-08-19)

	Dropped support for Python 2.7 and 3.5.

	Added support for Python 3.9.

	Clean up dependencies and requirements.

	Switch from Travis to GitHub Actions for building and testing.

	Prevent PytestCollectionWarning for TestApp

2.0.35 (2020-04-27)

	python3.8 compat

	Remove use of deprecated splittype and splithost

2.0.34 (2020-01-29)

	Fix the test length == 0 in check_content_type.

	Treat <input type="search"> like <input type="text">.

	Handle query parameters for the head method.

2.0.33 (2019-02-09)

	Fixed #210. Allow to reset select multiple with field.value = []

	Support for PYTHONOPTIMIZE=2, fix tests on PYTHONOPTIMIZE=1, 2

	Fixed #196. Fix deprecation warnings for collections to use
collections.abc for Iterable on Python 3.

2.0.32 (2018-10-05)

	remove invalid email from setup.py

2.0.31 (2018-10-05)

	py33 is no longer supported. It may works but has been removed from tox config

	Fixed #205: Use empty string as default value for submit and button

	tests use pytest

	docs use the standard Pylons template on RTD

2.0.30 (2018-06-23)

	Add Email class for input fields with type "email".

	Documentation bearer token and JWT authorization

2.0.29 (2017-10-21)

	Bugfix: Preserve submit order for radio inputs.

	Fixed #186: avoid UnicodeDecodeError in linter with py2 when a header contain
non ascii chars

2.0.28 (2017-08-01)

	Fixed #185: Fix strict cookie policy

	Fixed #146: Improve fields value checking when enctype is multipart

	Fixed #119: Assertion error should be raised when you have non-string
response header

	Bugfix: Allow to set an int value to form fields when enctype is multipart

	Added py36 to tox.ini / .travis.yaml

2.0.27 (2017-03-15)

	Bugfix: Allow to use set_cookie when HTTP_HOST is set

	Fix #177: resp.json now always decode body as utf8

2.0.26 (2017-03-05)

	Added JWT auth support

	Always show response body when response status is invalid

2.0.25 (2017-02-05)

	Fix #173: Do not omit file uploads without a file from post.
[Michael Howitz]

2.0.24 (2016-12-16)

	Drop python 2.6 support. Newer versions may still work if you use waitress < 1.0

	Remove bs4 warnings

	Docs improvments

	Tets are WebOb 1.7.x compatible

2.0.23 (2016-07-21)

	Create universal wheels.

2.0.22 (2016-07-21)

	Fix #160: Do not guess encoding if response's charset is set.

2.0.21 (2016-04-12)

	PR #154 Allow Bearer auth

	PR #147,#148 Take care of REFERER when using form.submit(), .click() and
.clickbutton()

	PR #145 Allow to override content-type when using json methods

2.0.20 (2015-11-03)

	nothing new release. just try to make wheel available on pypi

2.0.19 (2015-11-01)

	fixed #131 prevent passing HTML parameters that conflict with Field kwargs

	fixed #135 Document that WSGIProxy2 is required for "using webtest with a real url"

	fixed #136 reset values of select multiple

	drop py32 support (still work but test dependencies fail)

2.0.18 (2015-02-05)

	Avoid deprecation warning with py3.4

2.0.17 (2014-12-20)

	Properly check for default cookiejar arguments
[Julian Berman]

	Avoid raising encoding errors from debugapp (needed to use with WSGIProxy2)
[Laurence Rowe]

2.0.16 (2014-09-19)

	Fixed #110. Forced values for Radio inputs are no longer ignored by value
property on get.
[bayprogrammer]

	Added method TestApp.set_parser_features to change the parser_features used
by BeautifulSoup.
[tomasmoreyra]

	Added app.set_cookie
[luhn]

2.0.15 (2014-04-17)

	Fixed #73. Python < 2.6.5 does not support unicode as keyword arguments names.
[Stepan Kolesnik]

	Fixed #84 Application cookies for localhost are no longer ignored
[gawel]

	Fixed #89 remove WSGIWarning: You are not supposed to send a body in a DELETE
request because we now have a good reason for that. See
https://stackoverflow.com/questions/299628/is-an-entity-body-allowed-for-an-http-delete-request/299701#299701
[gawel]

	Fixed #92 You can now override TestApp.JSONEncoder to use a custom encoder
[gawel]

	Fixed #93 Support basic authentication
[gawel]

	Fixed #103 Broken "Edit me on GitHub" links in documentation
[gawel]

	Fixed #106 Make wrapping the app in the lint middleware optional
[dmlayton]

	Fixed #107 Explicit error message when WSGIProxy2 is not installer
[gawel]

	Fixed #108 cgi.parse_qsl is pending deprecation
[gawel]

2.0.14 (2014-01-23)

	Allow .select() on <select>s and <select multiple>s.
[Markus Bertheau]

2.0.13 (2014-01-23)

	Allow selecting <select> options by text
[Markus Bertheau]

2.0.12 (2014-01-17)

	Ignore the value attribute of file inputs
[Markus Bertheau]

	Allow selecting the form submit button by its value
[Markus Bertheau]

2.0.11 (2013-12-29)

	Depend on unittest2 only for Python versions lower than 2.7
[iElectric]

	Add an optional parameter to TestApp, allowing the user to specify the
parser used by BeautifulSoup
[lyndsysimon]

2.0.10 (2013-11-14)

	Make StopableWSGIServer thread daemonic
[lrowe]

2.0.9 (2013-09-18)

	Make sure Upload.content_type is not ignored
https://github.com/Pylons/webtest/pull/88
[Marius Gedminas]

2.0.8 (2013-09-17)

	Allow checking/unchecking a set of same-named checkboxes by assigning a list of values.
[carljm]

	fix "AttributeError: 'InputWrapper' object has no attribute 'seek'"
[iElectric]

	Added xhr=True parameter to TestApp.get, TestApp.post, TestApp.head, TestApp.delete
[kharandziuk]

	Remove old (and broken?) casperjs/selenium backward compat imports. Fix
https://github.com/gawel/webtest-selenium/issues/9
[gawel]

	Allow optionally specifying the MIME type of an uploaded form file. Fixes #86
[Marius Gedminas]

2.0.7 (2013-08-07)

	Detect JSON if mimetype ends with +json, such as application/vnd.webtest+json
[homm]

	Fixed #72. Use WSGIServer new api even if there waitress has backward compat.
[gawel]

	Fixed #50. Corrected default value for the delete params argument.
[noonat]

	Be sure to decode the content if it is gziped before returning it
[Alexis Métaireau]

2.0.6 (2013-05-23)

	fixed #64. cookiejar api has changed in python3.3 [gawel]

	allow to use a fixed StopableWSGIServer [gawel]

	Do not alter the BeautifulSoup object when parsing forms. [Georges
Dubus]

	Remove first newline while parse textarea block, how modern browsers does.
[Victor Safronovich] pull #69

2.0.5 (2013-04-12)

	Ignore select.error (not socket.error) following
StopableWSGIServer.shutdown. [Laurence Rowe]

	Handle the short form of <select multiple> [Marius Gedminas]

2.0.4 (2013-03-28)

	Correctly handle <option> elements with no value attribute
[Marius Gedminas]

	Ignore socket.error following StopableWSGIServer.shutdown. [Laurence Rowe]

	<button> without type='submit' attribute is treated as Submit
control [Andrey Lebedev].

	Support for redirects having relative "Location" header [Andrey Lebedev]

2.0.3 (2013-03-19)

	Treat strings in the WSGI environment as native strings, compliant with
PEP-3333. [wosc]

2.0.2 (2013-03-15)

	Allow TestResponse.click() to match HTML content again. [ender672]

	Support secure cookies [Andrey Lebedev]

2.0.1 (2013-03-05)

	Added Pasword field [diarmuidbourke]

	re-allow to use unknow field type. Like type="email". [gawel]

	Don't let BeautifulSoup use lxml. Fix GH-51 [kmike]

	added webtest.response.TestResponse.maybe_follow() method [kmike]

2.0 (2013-02-25)

	drop zc.buildout usage for development, now using only virtualenv
[Domen Kožar]

	Backward incompatibility : Removed the anchor argument of
webtest.response.TestResponse.click() and the button argument of
webtest.response.TestResponse.clickbutton(). It is for the greater good.
[madjar]

	Rewrote API documentation [Domen Kožar]

	Added wsgiproxy support to do HTTP request to an URL [gawel]

	Use BeautifulSoup4 to parse forms [gawel]

	Added webtest.app.TestApp.patch_json [gawel]

	Implement webtest.app.TestApp.cookiejar support and kindof keep
webtest.app.TestApp.cookies functionality. webtest.app.TestApp.cookies
should be treated as read-only.
[Domen Kožar]

	Split Selenium integration into separate package webtest-selenium
[gawel]

	Split casperjs integration into separate package webtest-casperjs
[gawel]

	Test coverage improvements [harobed, cdevienne, arthru, Domen Kožar, gawel]

	Fully implement decoding of HTML entities

	Fix tox configuration

1.4.2

	fix tests error due to CLRF in a tarball

1.4.1

	add travis-ci

	migrate repository to https://github.com/Pylons/webtest

	Fix a typo in apps.py: selectedIndicies

	Preserve field order during parsing (support for deform and such)

	allow equals sign in the cookie by spliting name-value-string pairs on
the first '=' sign as per
https://tools.ietf.org/html/rfc6265#section-5.2

	fix an error when you use AssertionError(response) with unicode chars in
response

1.4.0

	added webtest.ext - allow to use casperjs

1.3.6

	fix #42 [https://bitbucket.org/ianb/webtest/issues/42] Check uppercase
method.

	fix #36 [https://bitbucket.org/ianb/webtest/issues/36] Radio can use forced
value.

	fix #24 [https://bitbucket.org/ianb/webtest/issues/24] Include test
fixtures.

	fix bug when trying to print a response which contain some unicode chars

1.3.5

	fix #39 [https://bitbucket.org/ianb/webtest/issues/39] Add PATCH to
acceptable methods.

1.3.4

	fix #33 [https://bitbucket.org/ianb/webtest/issues/33] Remove
CaptureStdout. Do nothing and break pdb

	use OrderedDict to store fields in form. See
#31 [https://bitbucket.org/ianb/webtest/issues/31]

	fix #38 [https://bitbucket.org/ianb/webtest/issues/38] Allow to post falsey
values.

	fix #37 [https://bitbucket.org/ianb/webtest/issues/37] Allow
Content-Length: 0 without Content-Type

	fix #30 [https://bitbucket.org/ianb/webtest/issues/30] bad link to pyquery
documentation

	Never catch NameError during iteration

1.3.3

	added post_json, put_json, delete_json

	fix #25 [https://bitbucket.org/ianb/webtest/issues/25] params dictionary of
webtest.AppTest.post() does not support unicode values

1.3.2

	improve showbrowser. fixed #23 [https://bitbucket.org/ianb/webtest/issues/23]

	print_stderr fail with unicode string on python2

1.3.1

	Added .option() #20 [https://bitbucket.org/ianb/webtest/issues/20]

	Fix #21

	Full python3 compat

1.3

	Moved TestApp to app.py

	Added selenium testing framework. See sel module.

1.2.4

	Accept lists for app.post(url, params=[...])

	Allow to use url that starts with the SCRIPT_NAME found in extra_environ

	Fix #16 [https://bitbucket.org/ianb/webtest/issues/16] Default
content-type is now correctly set to application/octet-stream

	Fix #14 and #18 [https://bitbucket.org/ianb/webtest/issues/18] Allow to use
.delete(params={})

	Fix #12 [https://bitbucket.org/ianb/webtest/issues/12]

1.2.3

	Fix #10 [https://bitbucket.org/ianb/webtest/issues/10/testapprequest-method-overwrites-specifics-with-testapp-scoped],
now TestApp.extra_environ doesn't take precedence over a WSGI
environment passed in through the request.

	Removed stray print

1.2.2

	Revert change to cookies that would add " around cookie values.

	Added property webtest.Response.pyquery() which returns a
PyQuery [https://pypi.org/project/pyquery/] object.

	Set base_url on resp.lxml

	Include tests and docs in tarball.

	Fix sending in webob.Request (or webtest.TestRequest) objects.

	Fix handling forms with file uploads, when no file is selected.

	Added extra_environ argument to webtest.TestResponse.click().

	Fixed/added wildcard statuses, like status="4*"

	Fix file upload fields in forms: allow upload field to be empty.

	Added support for single-quoted html attributes.

	TestResponse now has unicode support. It is turned on by default
for all responses with charset information. This is backward
incompatible change if you rely (e.g. in doctests) on parsed
form fields or responses returned by json and lxml methods
being encoded strings when charset header is in response. In order
to switch to old behaviour pass use_unicode=False flag to
TestApp constructor.

1.2.1

	Added method TestApp.request(), which can be used for
sending requests with different methods (e.g., MKCOL). This
method sends all its keyword arguments to
webtest.TestRequest.blank() and then executes the request.
The parameters are somewhat different than other methods (like
webtest.TestApp.get()), as they match WebOb's attribute
names exactly (the other methods were written before WebOb existed).

	Removed the copying of stdout to stderr during requests.

	Fix file upload fields in forms (#340 [https://web.archive.org/web/20120516124643/http://trac.pythonpaste.org/pythonpaste/ticket/340]) -- you could
upload files with webtest.TestApp.post(), but if you use
resp.form file upload fields would not work (from rcs-comp.com
and Matthew Desmarais).

1.2

	Fix form inputs; text inputs always default to the empty string, and
unselected radio inputs default to nothing at all. From Daniele
Paolella.

	Fix following links with fragments (these fragments should not be
sent to the WSGI application). From desmaj.

	Added force_value to select fields, like
res.form['select'].force_value("new_value"). This makes it
possible to simulate forms that are dynamically updated. From
Matthew Desmarais.

	Fixed webtest.Response.mustcontain() when you pass in a
no=[strings] argument.

1.1

	Changed the __str__ of responses to make them more doctest
friendly:

	All headers are displayed capitalized, like Content-Type

	Headers are sorted alphabetically

	Changed __repr__ to only show the body length if the complete
body is not shown (for short bodies the complete body is in the
repr)

	Note: these are backward incompatible changes if you are using
doctest (you'll have to update your doctests with the new format).

	Fixed exception in the .delete method.

	Added a content_type argument to app.post and app.put,
which sets the Content-Type of the request. This is more
convenient when testing REST APIs.

	Skip links in <script>...</script> tags (since that's not real
markup).

1.0.2

	Don't submit unnamed form fields.

	Checkboxes with no explicit value send on (previously they
sent checked, which isn't what browsers send).

	Support for <select multiple> fields (from Matthew Desmarais)

1.0.1

	Fix the TestApp validator's InputWrapper lacking support for
readline with an argument as needed by the cgi module.

1.0

	Keep URLs in-tact in cases such as
app.get('http://www.python.org') (so HTTP_HOST=www.python.org,
etc).

	Fix lxml.html import, so lxml 2.0 users can get HTML lxml
objects from resp.lxml

	Treat <input type="image"> like a submit button.

	Use BaseCookie instead of SimpleCookie for storing cookies
(avoids quoting cookie values).

	Accept any params argument that has an items method (like
MultiDict)

0.9

Initial release

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 webtest	

 	
 	
 webtest.debugapp	

 	
 	
 webtest.forms	

 	
 	
 webtest.http	

 	
 	
 webtest.lint	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	action (webtest.forms.Form attribute)

 	
 	authorization (webtest.app.TestApp attribute)

C

 	
 	check_server() (in module webtest.http)

 	Checkbox (class in webtest.forms)

 	checked (webtest.forms.Checkbox attribute)

 	classes (webtest.forms.Field attribute)

 	
 	click() (webtest.response.TestResponse method)

 	clickbutton() (webtest.response.TestResponse method)

 	cookies (webtest.app.TestApp attribute)

 	create() (webtest.http.StopableWSGIServer class method)

D

 	
 	DebugApp (class in webtest.debugapp)

 	delete() (webtest.app.TestApp method)

 	
 	delete_json() (webtest.app.TestApp method)

 	do_request() (webtest.app.TestApp method)

E

 	
 	Email (class in webtest.forms)

 	
 	encode_multipart() (webtest.app.TestApp method)

 	enctype (webtest.forms.Form attribute)

F

 	
 	Field (class in webtest.forms)

 	field_order (webtest.forms.Form attribute)

 	FieldClass (webtest.forms.Form attribute)

 	fields (webtest.forms.Form attribute)

 	File (class in webtest.forms)

 	follow() (webtest.response.TestResponse method)

 	force_value() (webtest.forms.Checkbox method)

 	(webtest.forms.Email method)

 	(webtest.forms.Field method)

 	(webtest.forms.File method)

 	(webtest.forms.Hidden method)

 	(webtest.forms.MultipleSelect method)

 	(webtest.forms.Radio method)

 	(webtest.forms.Select method)

 	(webtest.forms.Submit method)

 	(webtest.forms.Text method)

 	(webtest.forms.Textarea method)

 	
 	Form (class in webtest.forms)

 	form (webtest.response.TestResponse attribute)

 	forms (webtest.response.TestResponse attribute)

G

 	
 	get() (webtest.app.TestApp method)

 	(webtest.forms.Form method)

 	
 	get_authorization() (webtest.app.TestApp method)

 	goto() (webtest.response.TestResponse method)

H

 	
 	head() (webtest.app.TestApp method)

 	
 	Hidden (class in webtest.forms)

 	html (webtest.response.TestResponse attribute)

I

 	
 	id (webtest.forms.Form attribute)

J

 	
 	json (webtest.response.TestResponse attribute)

L

 	
 	lint() (webtest.forms.Form method)

 	
 	lxml (webtest.response.TestResponse attribute)

M

 	
 	make_debug_app() (in module webtest.debugapp)

 	maybe_follow() (webtest.response.TestResponse method)

 	method (webtest.forms.Form attribute)

 	
 	middleware() (in module webtest.lint)

 	MultipleSelect (class in webtest.forms)

 	mustcontain() (webtest.response.TestResponse method)

N

 	
 	normal_body (webtest.response.TestResponse attribute)

O

 	
 	options() (webtest.app.TestApp method)

P

 	
 	patch() (webtest.app.TestApp method)

 	patch_json() (webtest.app.TestApp method)

 	post() (webtest.app.TestApp method)

 	
 	post_json() (webtest.app.TestApp method)

 	put() (webtest.app.TestApp method)

 	put_json() (webtest.app.TestApp method)

 	pyquery (webtest.response.TestResponse attribute)

R

 	
 	Radio (class in webtest.forms)

 	request() (webtest.app.TestApp method)

 	RequestClass (webtest.app.TestApp attribute)

 	
 	reset() (webtest.app.TestApp method)

 	ResponseClass (webtest.app.TestRequest attribute)

 	run() (webtest.http.StopableWSGIServer method)

S

 	
 	Select (class in webtest.forms)

 	select() (webtest.forms.Form method)

 	select_multiple() (webtest.forms.Form method)

 	set() (webtest.forms.Form method)

 	set_cookie() (webtest.app.TestApp method)

 	set_parser_features() (webtest.app.TestApp method)

 	
 	showbrowser() (webtest.response.TestResponse method)

 	shutdown() (webtest.http.StopableWSGIServer method)

 	StopableWSGIServer (class in webtest.http)

 	Submit (class in webtest.forms)

 	submit() (webtest.forms.Form method)

 	submit_fields() (webtest.forms.Form method)

T

 	
 	TestApp (class in webtest.app)

 	TestRequest (class in webtest.app)

 	TestResponse (class in webtest.response)

 	
 	Text (class in webtest.forms)

 	text (webtest.forms.Form attribute)

 	Textarea (class in webtest.forms)

U

 	
 	unicode_normal_body (webtest.response.TestResponse attribute)

 	
 	Upload (class in webtest.forms)

 	upload_fields() (webtest.forms.Form method)

V

 	
 	value (webtest.forms.Field attribute)

W

 	
 	wait() (webtest.http.StopableWSGIServer method)

 	webtest (module)

 	webtest.debugapp (module)

 	
 	webtest.forms (module)

 	webtest.http (module)

 	webtest.lint (module)

 	wrapper() (webtest.http.StopableWSGIServer method)

X

 	
 	xml (webtest.response.TestResponse attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Testing Applications with WebTest

 		
 Functional Testing of Web Applications

 		
 TestApp

 		
 Making Requests

 		
 Making JSON Requests

 		
 Modifying the Environment & Simulating Authentication

 		
 Testing a non wsgi application

 		
 What Is Tested By Default

 		
 TestResponse

 		
 Form handling

 		
 Parsing the Body

 		
 WSGI Debug application

 		
 Framework Hooks

 		
 webtest API

 		
 webtest.app.TestApp

 		
 webtest.app.TestRequest

 		
 webtest.response.TestResponse

 		
 webtest.forms

 		
 webtest.http

 		
 webtest.lint

 		
 webtest.debugapp

 		
 Contribute to webtest project

 		
 Getting started

 		
 Execute tests

 		
 Use tox to test many Python versions

 		
 Generate documentation

 		
 Tips

 		
 News

 		
 3.0.1 (unreleased)

 		
 3.0.0 (2021-08-19)

 		
 2.0.35 (2020-04-27)

 		
 2.0.34 (2020-01-29)

 		
 2.0.33 (2019-02-09)

 		
 2.0.32 (2018-10-05)

 		
 2.0.31 (2018-10-05)

 		
 2.0.30 (2018-06-23)

 		
 2.0.29 (2017-10-21)

 		
 2.0.28 (2017-08-01)

 		
 2.0.27 (2017-03-15)

 		
 2.0.26 (2017-03-05)

 		
 2.0.25 (2017-02-05)

 		
 2.0.24 (2016-12-16)

 		
 2.0.23 (2016-07-21)

 		
 2.0.22 (2016-07-21)

 		
 2.0.21 (2016-04-12)

 		
 2.0.20 (2015-11-03)

 		
 2.0.19 (2015-11-01)

 		
 2.0.18 (2015-02-05)

 		
 2.0.17 (2014-12-20)

 		
 2.0.16 (2014-09-19)

 		
 2.0.15 (2014-04-17)

 		
 2.0.14 (2014-01-23)

 		
 2.0.13 (2014-01-23)

 		
 2.0.12 (2014-01-17)

 		
 2.0.11 (2013-12-29)

 		
 2.0.10 (2013-11-14)

 		
 2.0.9 (2013-09-18)

 		
 2.0.8 (2013-09-17)

 		
 2.0.7 (2013-08-07)

 		
 2.0.6 (2013-05-23)

 		
 2.0.5 (2013-04-12)

 		
 2.0.4 (2013-03-28)

 		
 2.0.3 (2013-03-19)

 		
 2.0.2 (2013-03-15)

 		
 2.0.1 (2013-03-05)

 		
 2.0 (2013-02-25)

 		
 1.4.2

 		
 1.4.1

 		
 1.4.0

 		
 1.3.6

 		
 1.3.5

 		
 1.3.4

 		
 1.3.3

 		
 1.3.2

 		
 1.3.1

 		
 1.3

 		
 1.2.4

 		
 1.2.3

 		
 1.2.2

 		
 1.2.1

 		
 1.2

 		
 1.1

 		
 1.0.2

 		
 1.0

 		
 0.9

_static/up-pressed.png

_static/up.png

_static/plus.png

